
*For correspondence:

desimone@sissa.it

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 18

Received: 05 May 2020

Accepted: 12 February 2021

Published: 26 April 2021

Reviewing editor: Raymond E

Goldstein, University of

Cambridge, United Kingdom

Copyright Cicconofri et al.

This article is distributed under

the terms of the Creative

Commons Attribution License,

which permits unrestricted use

and redistribution provided that

the original author and source are

credited.

The biomechanical role of extra-axonemal
structures in shaping the flagellar beat of
Euglena gracilis
Giancarlo Cicconofri1, Giovanni Noselli1, Antonio DeSimone1,2*

1SISSA - International School for Advanced Studies, Trieste, Italy; 2The BioRobotics
Institute, Scuola Superiore Sant’Anna, Trieste, Italy

Abstract We propose and discuss a model for flagellar mechanics in Euglena gracilis. We show

that the peculiar non-planar shapes of its beating flagellum, dubbed ’spinning lasso’, arise from the

mechanical interactions between two of its inner components, namely, the axoneme and the

paraflagellar rod. The spontaneous shape of the axoneme and the resting shape of the

paraflagellar rod are incompatible. Thus, the complex non-planar configurations of the coupled

system emerge as the energetically optimal compromise between the two antagonistic

components. The model is able to reproduce the experimentally observed flagellar beats and the

characteristic geometric signature of spinning lasso, namely, traveling waves of torsion with

alternating sign along the length of the flagellum.

Introduction
Flagella and cilia propel swimming eukaryotic cells and drive fluids on epithelial tissues of higher

organisms (Alberts et al., 2015). The inner structure of the eukaryotic flagellum is an arrangement

of microtubules (MTs) and accessory proteins called the axoneme (Ax). A highly conserved structure

in evolution, the Ax typically consists of nine cylindrically arranged MT doublets cross-bridged by

motor proteins of the dynein family. An internal central pair of MTs is connected by radial spokes to

the nine peripheral doublets, determining the typical ’9+2’ axonemal structure. Motor proteins

hydrolyze ATP to generate forces that induce doublet sliding. Due to mechanical constraints exerted

by linking proteins (nexins) and the basal body, dynein-induced sliding of MTs translates into bend-

ing movements of the whole structure. Motor proteins are thought to self regulate their activity via

mechanical feedback, generating the periodic beats of flagella, see, for example, Brokaw, 2009 and

Lindemann and Lesich, 2010.

Despite a general consensus on the existence of a self-regulatory mechanism, the inner working

of the Ax is not fully understood and it is still the subject of active research (Wan and Jékely, 2020).

While bending-through-sliding is the accepted fundamental mechanism of flagellar motility, how

specific flagellar shapes are determined is not yet clear. Nodal cilia present in early embryonic devel-

opment display markedly non-planar beats (Buceta et al., 2005). On the other hand, for the most

studied swimming microorganisms, such as animal sperm cells and the biflagellate alga Chlamydo-

monas reinhardtii, the flagellar beat is, to a good approximation, planar. For these organisms, beat

planarity is thought to be induced by the inter-doublet links between one pair of MTs, typically those

numbered 5 and 6 (Lin et al., 2012). These links inhibit the relative sliding of the 5-6 MTs pair, thus

selecting a beating plane that passes through the center of the Ax and the midpoint between the

inhibited MTs.

A remarkable deviation from the flagellar structure of the aforementioned organisms is found in

euglenids and kinetoplastids. These flagellated protists have an extra element attached alongside

the Ax (Cachon et al., 1988), a slender structure made of a lattice-like arrangement of proteins
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called ’paraxial’ or ’paraflagellar’ rod (PFR), see Figure 1. The latter name is more common, but the

former is possibly more accurate (Rosati et al., 1991). PFRs are attached via bonding links to up to

four axonemal MTs, depending on the species (Walne and Dawson, 1993). PFRs are thought to be

passive but, at least in the case of Euglena gracilis, some degree of activity is not completely ruled

out (Piccinni, 1975).

E. gracilis has two flagella, designated as dorsal and ventral. The ventral flagellum remains within

the reservoir, an invaginated region of the cell. The dorsal, PFR-bearing, flagellum emerges from the

reservoir and serves as a propulsive apparatus by means of periodic beating. In this paper, we show

that the beating style of E. gracilis, sometimes dubbed ‘spinning lasso’ (Bovee, 1982), is character-

ized by a distinctive geometric signature, namely, traveling torsional peaks with alternating sign

along the length of the flagellum. Moreover, we put forward and test the hypothesis that this distinc-

tive beating style arises from the PFR-Ax mechanical interaction.

In order to put our hypothesis into context, we observe that the flagellar beat of PFR-bearing

kinetoplastid organisms, such as Leishmania and Crithidia, is planar (Gadelha et al., 2007). An

apparent exception to beat planarity in kinetoplastids is found in the pathogenic parasite Trypano-

soma brucei, which shows a characteristic non-planar ’drill-like’ motion (Langousis and Hill, 2014). It

has been claimed that the flagellar structure alone could account for the emergence this motion

(Koyfman et al., 2011). However, the flagellum of T. brucei is not free, like that of Leishmania and

Crithidia, but it is attached to the organism for most of its length, wrapped helically around the cell

body. According to Alizadehrad et al., 2015, the flagellum-body mechanical interaction can alone

explain T. brucei’s distinctive motion. Confirming this conclusion, Wheeler, 2017 showed that

T. brucei mutants with body-detached flagellum generate fairly planar beating. It is conjectured that

the PFR-Ax bonds operate as the 5-6 interdoublet links in Chlamydomonas and sperm cells, inhibit-

ing MTs sliding and selecting a plane of beat (Woolley et al., 2006).

The spinning lasso beat of E. gracilis does not conform to this scenario. Indeed, E. gracilis beating

style is characterized by high asymmetry and non-planarity. The full 3d flagellar kinematics of freely

swimming cells has recently been revealed by Rossi et al., 2017 thanks to a mixed approach based

on hydrodynamic theory and image analysis. As we report in the first part of this paper, the geome-

try of the spinning lasso is characterized by traveling waves of torsion with alternating sign along the

flagellum length.

We argue that the key to the emergence of non-planarity lies in a prominent structural asymmetry

of the PFR-Ax attachment in euglenid flagella. Figure 1 shows a sketch of the cross-section of the

euglenid flagellum redrawn from the electron microscopy studies by Melkonian et al., 1982 and

Bouck et al., 1990. Following the latter studies, we number MTs in increasing order in the clockwise

direction, as seen from the distal end of the Ax. Notice that a different convention is commonly used

in structural studies of cilia and flagella, see, for example, Lin and Nicastro, 2018. The PFR is

attached to MTs 1, 2, and 3. We consider two lines. One line (dashed) passes through the center of

the Ax and MT 2, in the middle of the bonding complex. The other (solid) line connects the center

of the Ax and the center of the PFR. The two lines cross each other. This is the structural feature on

which we build our model.

In modeling the flagellar complex, we assume that the bonding links to the PFR select the local

spontaneous beating plane of the Ax, from the same principle of MTs’ sliding inhibition discussed

above. The local spontaneous beating plane so generated passes through the dashed line in Fig-

ure 1. We follow closely Hilfinger and Jülicher, 2008 and Sartori et al., 2016a in our modeling of

the Ax, while we use a simple elastic spring model for the PFR. We show that, under generic actu-

ation, the two flagellar components cannot be simultaneously in their respective states of minimal

energy, and this crucially depends on the offset between the spontaneous beating plane of the Ax

(dashed line in Figure 1) and the line joining the PFR-Ax centers (solid line in Figure 1). Instead, the

typical outcome is an elastically frustrated configuration of the system, in which the two competing

components drive each other out of plane. Under dyneins activation patterns that, in the absence of

extra-axonemal structures, would produce an asymmetric beat similar to those of Chlamydomonas

(Qin et al., 2015), or Volvox (Sareh et al., 2013), the model specifically predicts the torsional signa-

ture of the spinning lasso.

Interestingly, the lack of symmetry of the spinning lasso beat produces swimming trajectories

with rotations coupled with translations (Rossi et al., 2017). In turn, cell body rotations have a key

role in the light-guided navigation behavior of phototactic unicellular organisms (Goldstein, 2015),

Cicconofri et al. eLife 2021;10:e58610. DOI: https://doi.org/10.7554/eLife.58610 2 of 30

Research article Physics of Living Systems

https://doi.org/10.7554/eLife.58610


and of E. gracilis in particular, which has recently attracted renewed attention (Giometto et al.,

2015; Ogawa et al., 2016; Tsang et al., 2018). Rotations along the major axis of the cell body pro-

duced by the spinning lasso beat allow the light-sensing apparatus of the organism to constantly

scan the environment, and align E. gracilis with light intensity gradients.

In light of these observations, our analysis shows that the beat of the euglenid flagellum can be

seen as an example of a biological function arising from the competition between antagonistic struc-

tural components. It is not dissimilar from the body-flagellum interaction in T. brucei, which
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Figure 1. Inner structure of Euglena gracilis’ flagellum. (a) A specimen of freely swimming Euglena gracilis, and (b) a sketch of the cross-section of its

flagellum, as seen from the distal end. The flagellar inner structure is composed by the paraflagellar rod (PFR, textured), and the axoneme (Ax). The PFR

is connected via bonding links to the axonemal doublets 1, 2, and 3. The inner structure of the flagellum is enclosed by the flagellar membrane (dotted

contour). By inhibiting MTs’ sliding, the PFR selects the spontaneous bending plane of the Ax (dashed line). As a key geometric feature, the solid line

that joins the Ax center ra and the PFR center rp crosses at an angle fp the spontaneous bending plane. Doublets are numbered following the

convention adopted in the electron microscopy studies Melkonian et al., 1982 and Bouck et al., 1990, to facilitate comparison. The opposite

convention, in which microtubules are numbered in increasing order in the anti-clockwise direction when seen from the distal end of the Ax, is far more

common in structural studies of cilia.
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generates 3d motility. But the principle is much more general in biology and many other examples

can be found across kingdoms and species, and at widely different scales. For instance in plants, a

mechanism of seed dispersal arises from the mechanical competition between the two valves of the

seed pods, see, for example Armon et al., 2011 for Bauhinia variegata and Hofhuis et al., 2016 for

Cardamine hirsuta. Contraction by antagonistic muscles is key for animal movement and, in particu-

lar, for the functioning of hydrostatic skeletons (used from wormlike invertebrates to arms and ten-

tacles of cephalopods, to the trunk of elephants, see Kier, 2012). The mechanical coupling of the

helical periplasmic flagella to the rod-shaped cell cylinder determines the flat-wave morphology of

the Lyme disease spirochete Borrelia burgdorferi (Dombrowski et al., 2009). Antagonistic contrac-

tion along perpendicularly oriented families of fibres is at work at the subcellular level, for example

in the antagonistic motor protein dynamics in contractile ring structures important in eukaryotic cell

division and development, see, for example Coffman et al., 2016. At the same subcellular scale,

competing elastic forces arising from lipid-protein interactions are often crucial in determining the

stability of complex shapes of the cellular membrane (Moser von Filseck et al., 2020), and in the

case of the overall structure of the coronavirus envelope (Schoeman and Fielding, 2019).

Observations
We first analyze the experimental data from the 3d reconstruction of the beating euglenid flagellum

obtained in Rossi et al., 2017 for freely swimming organisms. Swimming E. gracilis cells follow gen-

eralized helical trajectories coupled with rotation around the major axis of the cell body. It is pre-

cisely this rotation that allows for a 3d reconstruction of flagellar shapes from 2d videomicroscopy

images. E. gracilis takes many beats to close one complete turn around its major axis. So, while

rotating, cells expose their flagellar beat to the observer from many different sides. Stereomatching

techniques can then be employed to reconstruct the flagellar beat in full (assuming periodicity and

regularity of the beat). Figure 2 shows N ¼ 10 different curves in space describing the euglenid fla-

gellum in different instants within a beat taken from Rossi et al., 2017. The reconstruction fits well

experimental data from multiple specimens. The figure also illustrates the computed torsion of the

flagellar curve at each instant (not previously published). Torsion, the rate of change of the binormal

vector, is the geometric quantity that measures the deviation of a curve from a planar path (see the

‘Results’ Section below for the formal definition). The ’spinning lasso’ exhibits here a distinct tor-

sional signature: torsion peaks of alternate sign that travel from the proximal to the distal end of the

flagellum. We return to this point below.

To further investigate E. gracilis’ flagellar beat, we observed stationary cells trapped at the tip of

a capillary. In this setting, the flagellum is not perturbed by the hydrodynamic forces associated with

E. gracilis’ rototranslating swimming motion. The beat can then manifest itself in its most ’pristine’

form. We recorded trapped cells during periodic beating. We rotated the capillary and recorded the

same beating cell from different viewpoints. Videomicroscopy images from one specimen are shown

in Figure 3 and Video 1. While with fixed specimens we cannot reconstruct reliably the 3d flagellar

shapes, Figure 3 shows that there is a high stereographical consistency with the flagellar shapes

obtained from swimming organisms. Flagellar non-planarity is thus not intrinsically associated with

swimming, which reinforce the idea that the mechanism that generates non-planar flagellar shapes

might be structural in origin. Moreover, these observations justify the choice we made in our study

to focus on a model of flagellar mechanics for stationary organisms, allowing for substantial

simplifications.

Getting back to the torsion measurement in Figure 2, we show here that the pattern of torsional

peaks of alternate sign is consistent with E. gracilis’ flagellar shapes as seen from common 2d

microscopy, for either swimming or trapped organisms. Typically, the 2d outline (i.e. the projection

on the focal plane) of a beating euglenid flagellum is that of a looping curve, see Figure 3 and,

for example Tsang et al., 2018 for independent observations. Consider now an idealized 3d model

of the spinning lasso geometry: a ’torsion dipole’. This simple geometric construction, shown in Fig-

ure 3, consists of a curve with two singular points of concentrated torsion with opposite sign. If we

move along the curve, from proximal end to distal end, we first remain on a fixed plane (blue). Then

the plane of the curve abruptly rotates by 90˚ (red plane) first, and then back by 90˚ in the opposite

direction (yellow plane). These abrupt changes correspond to concentrated torsional peaks of oppo-

site sign. When seen in a two-dimensional projection, the torsion dipole generates a looping curve,

which closely matches euglenid flagella’s outlines during a spinning lasso beat.
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Mechanical model
We model Ax and PFR as cylindrical structures with deformable centerlines, see Figure 4. The eugle-

nid flagellum is the composite structure consisting of Ax and PFR attached together. We suppose

that the Ax is the only active component of the flagellum, whereas the PFR is purely passive. Our

mechanical model builds on the definition of the total internal energy of the flagellum

W ¼Wa
pas þWa

act þWp (1)

which is given by the sum of three terms: the passive (elastic) internal energy Wa
pas of the Ax, the

active internal energy Wa
act of the Ax (generated by dynein action), and the (passive, elastic) internal

energy Wp of the PFR. The passive internal energy of the Ax is given by

Wa
pas ¼

1

2

Z L

0

BaðU1ðsÞ
2 þU2ðsÞ

2ÞþCaU3ðsÞ
2
ds ; (2)

where U1 and U2 are the bending strains of the Ax, U3 is the twist, Ba and Ca are the bending and

twist moduli (respectively), and L is the total length of the Ax centerline ra. Bending strains and twist
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Figure 2. Flagellar beat kinematics of freely swimming Euglena gracilis. (a) N ¼ 10 flagellar configurations in evenly spaced instants (phases) within a

periodic beat. (b) The same configurations overlapped and color coded according to their phases. (c) Computed torsion t ¼ t ðsÞ as a function of the

flagellar arc length s. The plot is presented in terms of the normalized quantities t =L�1 and s=L, where L is the total length of the flagellum. Panels (a-b)

are adapted from Figure 5.E of Rossi et al., 2017.

The online version of this article includes the following source code for figure 2:

Source code 1. Experimental flagellar waveforms and torsion calculator.
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depend on the arc length s of the centerline, and they are defined as follows. We associate to the

curve ra an orthonormal frame diðsÞ, with

i¼ 1;2;3, which determines the orientation of

the orthogonal sections of the Ax (enclosed by

light blue circles in Figure 4). The unit vectors

d1ðsÞ and d2ðsÞ define the plane of the orthogo-

nal section at s. The unit vector d1ðsÞ lies on the

line that connects the center of the Ax to MT 2,

the center of the bonding links complex, see Fig-

ure 1. The unit vector d3ðsÞ ¼ qsr
aðsÞ lies perpen-

dicular to the orthogonal section. Bending

strains and twist are then given by

U1 ¼ qsd2 �d3 ; U2 ¼ qsd3 �d1 ;

and U3 ¼ qsd1 �d2 :
(3)

Thus, U1 and U2 measure the bending of the

Ax on the local planes d2-d3 and d3-d1, respec-

tively, while the twist U3 is given by the rotation

rate of the orthonormal frame around the tan-

gent d3 to the centerline.

We remark that the right-hand side of Equa-

tion 2 is formally identical to a classical expres-

sion arising in Kirchhoff’s theory for elastic rods

a
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Figure 3. Flagellar beat of capillary trapped specimens. (a) A specimen of Euglena gracilis trapped at the tip of a capillary (bottom). The typical outline

of its beating flagellum is that of a looping curve, which is consistent with the outline of a simple curve with two concentrated torsional peaks of

alternate sign along the length of the curve, that is, a torsion dipole (top). (b) Close-up images of the same specimen of capillary-trapped (CT) E.

gracilis as seen from different viewpoints, upon successive ~90˚ turns of the capillary tube. The body orientation with respect to the objective is

estimated from the anatomy of the cell, and in particular from the position of the eyespot (a visible light-sensing organelle present on the cell surface).

Microscopy images are decorated with the tracked outlines of the flagellum in different phases (same color coding as in Figure 2). The outlines (2d

projections) of the 3d reconstructed flagellar beat of freely swimming (FS) specimens are shown for comparison.

Video 1. Four views of a capillary-trapped specimen of

E. gracilis recorded during periodic flagellar beating.

https://elifesciences.org/articles/58610#video1

Cicconofri et al. eLife 2021;10:e58610. DOI: https://doi.org/10.7554/eLife.58610 6 of 30

Research article Physics of Living Systems

https://elifesciences.org/articles/58610#video1
https://doi.org/10.7554/eLife.58610


(Goriely, 2017). Our rod is however non-standard because it consists of a hollow tubular structure

arising as the envelope of nine individual MTs. In Appendix 1, we model each of the MTs as a stan-

dard rod with (full cross-section and) bending and twisting moduli Bm and Cm. We then show that

the geometry and deformations of the Ax (centerline ra, frame vectors d1, d2, and d3, bending strains

and twist) determine the geometry and deformations of the individual MTs. By summing the elastic

contributions of individual MTs, we obtain Equation 2 as the elastic energy of the assembly, with

Ba ¼ 9Bm and Ca ¼ 9Cm.

The active internal energy of the Ax is defined as minus the total mechanical work of the dyneins

Wa
act ¼�

Z L

0

ðH1ðsÞg1ðsÞþH2ðsÞg2ðsÞÞds�ðbH1g1ðLÞþ bH2g2ðLÞÞ ; (4)

where g1 and g2 are the two variables that quantify the shear (i.e., collective sliding) of MTs, while

H1 and H2 are the corresponding shear forces exerted by molecular motors. Following Sartori et al.,

2016b we also allow for singular shear forces, bH1 and bH2, concentrated at the distal end of the Ax.

These forces arise naturally, as we remark after Equation 23 in the ‘Results’ Section.

The active internal energy can be written in a more natural way at the level of individual MT pairs

in terms of the work done by the sliding forces Fj generated by the dyneins cross-bridging MTs j

and jþ 1 against their relative sliding displacements sj, for j ¼ 1; 2; . . . ; 9. These forces and displace-

ments are defined in detail in Appendix 1, and their work computed in Equation 35. The way Equa-

tion 35 gives rise to the equivalent reformulation (Equation 4) in terms of global cross-section

variables, the forces Hi and shears gi, is also discussed there. Here, we simply notice that the struc-

tural constraints of the Ax lead to simplifications on the kinematics. These constraints do not allow

MTs to slide by whatever amount, and the sliding of MT pairs sj are not independent. Rather, there

are only two degrees of freedom that determine MTs sliding, which are given by the shear variables

g1 and g2. Moreover, again due to the structural constraints of the Ax, the shear variables are cou-

pled to the bending strains (Equation 3), as discussed further below. In Appendix 1, we derive the

d1(s)

d2(s)

d3(s)

r
a(s)

φ �→ C(s,φ)

a

g1(s)

g2(s)

g3(s)
r
p(s)

N(s,φp)∂φC(s,φp)

b

Figure 4. Details of the mechanical model. (a) Geometry of the Ax. MTs lie on a tubular surface Cðs;fÞ parametrized by generalized polar coordinates s

and f, where s is the arc length of the axonemal centerline ra. The unit vectors d1ðsÞ and d2ðsÞ lie on the orthogonal cross sections of the Ax (light blue

circles). The material sections of the Ax are given by the curves f 7!Cðs;fÞ (red), which connect points of neighbouring axonemal MTs corresponding to

the same arc length s. Bend deformations of the axoneme are generated by the shear (collective sliding) of MTs. The shear is quantified by the angle

between the orthogonal sections and the material sections of the Ax. (b) Geometry of the euglenid flagellum, detail of the Ax-PFR attachment. The unit

vectors g1ðsÞ and g2ðsÞ generate the plane of the PFR’s cross sections. The vector g1ðsÞ is parallel to the outer unit normal to the axonemal surface

Nðs;fpÞ, while g2ðsÞ is parallel to the tangent vector to the material section qfCðs;f
pÞ.
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linear relations between the shear variables and the individual sliding of MT pairs (Equation 36). We

also compute the relations between the dynein forces Fj acting on each pair of adjacent MTs and

the shear forces H1 and H2 (Equation 37). The singular shear forces bH1 and bH2 arise from concen-

trated sliding forces bFj at the distal end of the Ax in an analogous way.

To explain how the shear variables g1 and g2 are related to the MTs’ kinematics, we observe that

the MTs centerlines rj, for j ¼ 1; 2 . . . 9 , are given by rjðsÞ ¼ Cðs;fjÞ, where fj ¼ 2pð2� jÞ=9, and

Cðs;fÞ»raðsÞþ �aðcosfd1ðsÞþ sinfd2ðsÞþ ðcosfg1ðsÞþ sinfg2ðsÞÞd3ðsÞÞ (5)

is the parametrization of the cylindrical surface of the Ax (�a is the Ax radius) in terms of the center-

line arc length s and the angle f. A special axonemal deformation with g2 ¼ 0 is shown in Figure 4.

In this case, the Ax is bent into a circular arc, and the centerline ra lies on the plane generated by

the unit vectors d1 and d3. The shear variable g1ðsÞ 6¼ 0 has here a simple geometrical interpretation.

For each fixed s the curve f 7!Cðs;fÞ describes what we call the ‘material’ section of the Ax at s (red

curves in Figure 4). The material section is a planar ellipse centered in raðsÞ which connects points of

neighboring MTs’ corresponding to the same arc length. Equation 5 says that g1ðsÞ is the tangent of

the angle at which the material sections at s intersect the orthogonal sections at s.

As mentioned above, the kinematic constraints of the Ax couple the shear variables with bending

strains. We have

g1ðsÞ ¼

Z s

0

U2 and g2ðsÞ ¼�

Z s

0

U1 : (6)

The above formulas (whose detailed derivation is given in Appendix 1) underlie the essential

mechanism of axonemal motility: collective sliding of MTs generates bending of the whole Ax. We

point out here that there is no coupling between the shear variables g1;g2 and the twist U3, a fact

that will have consequences in the remainder.

The special axonemal deformation in Figure 4 shows the case in which U1ðsÞ ¼ 0 and U2ðsÞ ¼ K,

so that the Ax is bent into a circular arc of radius 1=K. While g2ðsÞ ¼ 0, the shear variable g1ðsÞ ¼ Ks

increases linearly with s. Material and orthogonal sections coincide at the base (the basal body

impose no shear at s ¼ 0) and the angle between them grows as we move along the centerline

towards the distal end of the Ax. In order for the Ax to bend, MTs from one side of the Ax must be

driven toward the distal end while the others must be driven toward the proximal end.

We remark here that Equation 4 defines the most general active internal energy generated by

molecular motors, and we do not assume at this stage any specific (spatial) organization of dynein

forces. We will introduce specific shear forces later in the ‘Results’ Section.

The PFR is modelled as an elastic cylinder with circular cross sections of radius �p and rest length

L. We assume that the PFR can stretch and shear. The total internal energy of the PFR is given by

Wp ¼
1

2

Z L

0

DpðV1ðsÞ
2þV2ðsÞ

2ÞþEpV3ðsÞ
2
ds (7)

where V1 and V2 are the shear strains, V3 is the stretch, Dp and Ep are the shear and stretching mod-

uli, respectively. We are neglecting here the PFR’s bending and twisting stiffness. Classical estima-

tions on homogeneous elastic rods, see, for example Goriely, 2017, show that bending and twist

moduli scale with the fourth power of the cross section radius, whereas shear and stretching moduli

scale with the second power and hence they are dominant for small radii. We assume that dynein

forces are strong enough to induce shear in the PFR, thus PFR’s bending and twist contributions to

the energy of the flagellum become negligible. We are also neglecting Poisson effects by treating

the PFR cross-sections as rigid.

The PFR shear strains and stretch are defined as follows. The cross-sections centers of the PFR lie

on the curve rd, and their orientations are given by the orthonormal frame giðsÞ, with i ¼ 1; 2; 3. The

unit vectors g1ðsÞ and g2ðsÞ determine the cross section plane centered at rpðsÞ, while the unit vector

g3ðsÞ is orthogonal to it. The curve rp is not parametrized by arc length and g3 is not in general

aligned with the tangent to rp. Shear strains and stretch are given by the formulas

V1 ¼ qsr
p � g1 ; V2 ¼ qsr

p � g2 ; and V3 ¼ qsr
pk k� 1 : (8)
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The shear strains thus depend on the orientation of the cross sections with respect to the center-

line (tangent), while the stretch measures the elongation of the centerline.

The PFR-Ax attachment couples the kinematics of the two substructures, see Figure 4. In the

remainder, we formalize the attachment constraint and we show how the PFR’s shear strains and

stretch (Equation 8), and thus the flagellar energy (Equation 1), are completely determined by the

Ax kinematic variables.

For each s, the PFR cross-section centered at rpðsÞ is in contact with the Ax surface at the point

Cðs;fpÞ for a fixed angle coordinate fp, see Figure 1 and Melkonian et al., 1982. The PFR center-

line is given by

rpðsÞ ¼Cðs;fpÞþ �pNðs;fpÞ ; (9)

where Nðs;fpÞ»d1ðsÞcosf
p þd2ðsÞ sinf

p is the outer unit normal to the axonemal surface at Cðs;fpÞ.

The normal vector Nðs;fpÞ lies on the plane of the PFR cross-section centered at rpðsÞ. Indeed, we

have g1ðsÞ ¼Nðs;fpÞ for the first unit vector of the PFR orthonormal frame. Only one more degree of

freedom remains, namely g2ðsÞ, which must be orthogonal to Nðs;fpÞ, to fully characterize the orien-

tations of the PFR cross-sections. Here is where the bonding links attachments are introduced in the

model. The bonding links of the PFR cross-section centered at rpðsÞ are attached to three adjacent

MTs at the same MTs’ arc length s. The individual attachments are therefore located on the material

section of the Ax at s. Given this, g2ðsÞ is imposed to be parallel to qfCðs;f
pÞ, the tangent vector to

the material section of the Ax at the point of contact Cðs;fpÞ, see Figure 4. This condition critically

couples MTs’ shear to the orientations of the PFR cross-sections, as further demonstrated below.

To summarize, we have the following formulas for the PFR orthonormal frame vectors

g1ðsÞ ¼Nðs;fpÞ ; g2ðsÞ ¼ qfCðs;f
pÞ=kqfCðs;f

pÞk ; and g3ðsÞ ¼ g1ðsÞ� g2ðsÞ : (10)

By replacing the expressions in Equations 9-10 in Equation 8, we obtain formulas for the shear

strains and stretch of the PFR in terms of the Ax kinematic parameters. The shear strain V1 and the

stretch V3 are found to be of order �p ~�a (see Appendix 1 for detailed calculations). Since �p is small

compared to the length scale L of both PFR and Ax, we neglect these quantities. The only non-negli-

gible contribution to the PFR energy is thus given by the shear strain V2. After linearization, we have

V2 » � sinfpg1 þ cosfpg2. The PFR energy in terms of Ax kinematic parameters is then given by

Wp
»
1

2

Z L

0

Dpð� sinfpg1ðsÞþ cosfpg2ðsÞÞ
2
ds : (11)

The shear of axonemal MTs determines the orientation of the PFR cross-sections. In Figure 5

(middle pictures), we show an example of this kinematic interplay. The Ax is again bent in an arc of a

circle on the plane d1 �d3, with U1ðsÞ ¼ 0, U2ðsÞ ¼K, g1ðsÞ ¼Ks, and g2ðsÞ ¼ 0. PFR and Ax centerlines

run parallel to each other, indeed from Equation 9 we have that qsr
a
»qsr

p for every deformation.

The linking bonds impose a rotation of the cross sections of the PFR as we progress from the proxi-

mal to the distal end of the flagellum, generating shear strain V2ðsÞ ¼�sinfpg1ðsÞ ¼�sinfpKs on the

PFR. This mechanical interplay leads to non-planarity of the euglenid flagellar beat. This mechanism

is controlled by the offset between the PFR-Ax joining line and the local spontaneous bending plane

of the Ax, as further discussed in the ‘Results’ Section.

Equilibria
Under generic (steady) dynein actuation, that is, given H1 and H2 (not time-dependent), and in the

absence of external forces, the flagellum deforms to its equilibrium configuration dW ¼ 0. Bending

strains and twist at equilibrium solve the equations

Ba
qsU�H? �Dpep 
 ep

Z s

0

U¼ 0 and Ca
qsU3 ¼ 0 ; (12)

where U¼ ðU1;U2Þ is the bending vector, ep ¼ ðcosfp; sinfpÞ, and H? ¼ ð�H2;H1Þ. We use the symbol

a
b to denote the matrix with components ða
bÞij ¼ aibj. The field Equation 12 is complemented

by the boundary conditions
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BaUðLÞþ bH? ¼ 0 and U3ðLÞ ¼ 0 ; (13)

where bH? ¼ ð�bH2; bH1Þ. Equations 12, 13 can be interpreted as the torque balance equations of the

Ax. The derivative of the (elastic) bending moment and the internal shear stresses balance the tor-

que per unit length exerted by the PFR on the Ax, which is given by the Dp-dependent term appear-

ing in the first equation. The torque depends on the integral of the bending vector, making the

balance equations non-standard (integrodifferental instead of differential). This dependency is due

to the fact that the torque arises from the shear deformations of the PFR, which are induced by the

shear of axonemal MTs, which is, in turn, related to axonemal bending strains via the integral rela-

tions (Equation 6). The torque exerted by the PFR on the Ax is sensitive to the direction given by

the unit vector ep, hence it depends on the angle fp between the Ax-PFR joining line and the unit

vector d1.

Hydrodynamics
We consider here our mechanical model in the presence of external forces. For simplicity, we ignore

the possible forces exerted by the cell surface on the non-emergent portion of the flagellum, located

inside the reservoir of the cell. Indeed, we suppose that the flagellum is immotile and straight in the

region inside the reservoir. We can assume, therefore, that our model effectively describes the fla-

gellum from its emergence point outwards. The only forces the flagellum is subject to come from

fluid interaction, which we assume to act all along its length. We consider the extended functional

L¼Wþ

Z L

0

L � ðqsr
a �d3Þ (14)

where L is the Lagrange multiplier vector enforcing the constraint qsr
a ¼ d3. We treat the fluid-flagel-

lum interaction in the local drag approximation of Resistive Force Theory, see for example

Wolgemuth et al., 2000. In this approximation, viscous forces and torques depend locally on the

to
p
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shearing of PFR

shear
relaxation

non-planarity
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lanarity

forced to match equilibriumspontaneous configurations
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id

e
 v

ie
w

planar
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PFR

Ax

Figure 5. Flagellar non-planarity arising from structural incompatibility. The Ax-PFR mechanical interplay is explained in a three-steps argument (left to

right). Consider first the two separated structures in their spontaneous configurations (left). The Ax is bent into a planar arc while the PFR is straight.

Then, the PFR is forced to match to the Ax, while the latter is kept in its spontaneous configuration (middle). The attachment constraint induces shear

strains in the PFR, such that the composite system cannot be in mechanical equilibrium without external forcing. When the composite system is

released (right), it reaches equilibrium by the relaxation of the PFR shear, which induces additional distortion of the Ax. At equilibrium, an optimal

energy compromise is reached, which is characterized by an emergent non-planarity.
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translational and rotational velocity of the flagellum, represented here for simplicity by the transla-

tional and rotational velocity of the Ax. The external viscous forces F and torques G (per unit length)

acting on the flagellum are given by

F¼��?ðId�d3
d3Þqtr
a��jjd3 
d3qtr

a
and G¼��rðqtd1 �d2Þd3 ; (15)

where �?, �jj, and �r are the normal, parallel, and rotational drag coefficient (respectively), and Id is

the identity tensor. The principle of virtual work imposes

dL¼

Z L

0

F � dra þG � du (16)

for every variation dra and du¼ d�1d1þ d�2d2 þ d�3d3, where d�1 ¼ ðdd2 �d3Þ, d�2 ¼ ðdd3 �d1Þ, and

d�3 ¼ ðdd1 �d2Þ. Linearizing the force balance equations derived from Equation 16 we obtain the fol-

lowing equations for bending strains and twist

�?qtU¼�Ba
q
4

sUþ q
3

sH
? þDpep 
 epq

2

sU (17)

and �rqtU3 ¼Ca
q
2

sU3 ; (18)

which are decoupled from the extra unknown L. Equations 17 and 18 are complemented by the

boundary conditions

BaUjs¼Lþ
bH? ¼ 0 ; Ba

qsU�H? �Dpep 
 ep

Z s

0

U

� �
js¼L ¼ 0 ; U3js¼L ¼ 0 ; qsU3js¼L ¼ 0 ; (19)

Ba
q
2

sU� qsH
? �Dpep 
 epU

� �
js¼0

¼ 0 ; and Ba
q
3

sU� q
2

sH
? �Dpep 
 epqsU

� �
js¼0

¼ 0 : (20)

The details of the derivation of Equations 17–20 are provided in Appendix 2.

Once we solve for U1, U2, and U3 either the equilibrium Equations 12, 13 or the dynamic Equa-

tions 17–20, the shape of the flagellum can be recovered. In particular, we obtain the orthonormal

frame di with i ¼ 1; 2; 3 by solving Equation 53, while the centerline of the Ax is recovered by inte-

grating qsr
a ¼ d3.

Results
We analyze the geometry of the centerline ra which, due to the slenderness of the flagellar structure,

is a close proxy for the shape of the flagellum.

In general, the shape of a curve is determined by its curvature k and torsion t . Since ra is parame-

trized by arc length, the two quantities are given by the formulas qst ¼ kn and qsb ¼ �t n, where

t ¼ qsr
a, n ¼ qst=jqstj, and b ¼ t� n are the tangent, normal, and binormal vector to the curve ra,

respectively. Given k and t , ra is uniquely determined up to rigid motions.

From the previous definitions and from Equation 3 we obtain the relations between curvature,

torsion, bending, and twist. In compact form these relations are given by

U1þ iU2 ¼ kei and t ¼ qs þU3 ; (21)

which hold for U 6¼ 0. In Equation 21 we introduced the angle  that the bending vector U¼ ðU1;U2Þ

forms with the line U2 ¼ 0, see Figure 6. Now, at equilibrium (Equation 12) we have

U3 ¼ 0 ; (22)

under any dynein actuation. In other words, axonemal deformations are twistless. This is, fundamen-

tally, a consequence of the fact that shear of axonemal MTs and twist are uncoupled (Equation 6).

The torsion of the centerline ra is our main focus, since we are interested in emergent non-planarity.

Combining Equation 21 and Equation 22 we have that torsion can arise only from the rotation rate

qs of the bending vector U along the length of the flagellum. This last observation will be important

in the following.
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Dyneins’ actuation induced by sliding inhibition
Under the assumptions Equation 22 and Equation 24, the flagellar energy (Equation 1) can be

rewritten as

W ¼
1

2

Z L

0

Ba U�
U�

1

U�
2

� �










2

þDp

Z s

0

ep �U

� �2

�BaðU�
1

2 þU�
2

2Þ ;

where U�
1
ðsÞ ¼ bH2 þ

Z L

s

H2

� �
=Ba

and U�
2
ðsÞ ¼� bH1 þ

Z L

s

H1

� �
=Ba

(23)

are the target bending strains generated by the dynein forces. The use of this terminology is clear

from Equation 23. The effect of dynein actuation at equilibrium (when the energy is minimized) is to

bring the bending strains U1 and U2 as close as possible to U�
1
and U�

2
, respectively. The emerging

bending strains and the target bending strains might not match due to the interference by the PFR

component of the energy (Dp 6¼ 0). From the formulas for the target bending strains in Equation 23,

we can infer the importance of the concentrated shear forces bH1 and bH2. Without these forces,

admissible spontaneous configurations of the Ax would be ruled out. If the concentrated shear
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Figure 6. Geometry and mechanics of non-planar flagellar shapes. (a) The bending vector UðsÞ ¼ ðU1ðsÞ;U2ðsÞÞ traces a curve on the plane of the

bending parameters U1 and U2. The norm of the bending vector determines the curvature kðsÞ ¼ jUðsÞj of the flagellum. The rate of change of the

angle  ðsÞ determines the torsion t ¼ qs . (b–f) Bending vectors’ traces of flagellar equilibrium configurations under the same (steady) dynein

actuation, but different values of the material parameter n ¼ Dp=ðBaL�2Þ. Equilibria are minimizer of the energy W ¼ Wa þWp. For small values of n,

the Ax component of the energy Wa dominates. In this case, U is close to the target bending vector ð0;U�
2
Þ where U�

2
ðsÞ ¼ A0 þ A1 sinð2ps=LÞ. For large

values of n the PFR component of the energy Wp dominates, and equilibria are dragged closer to the line orthogonal to the vector ep (dashed green).

The bending vector undergoes rotations which result in torsional peaks of alternating sign.

The online version of this article includes the following source code for figure 6:

Source code 1. Equilibrium equations solver.
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forces are null, for example, the Ax cannot spontaneously bend into a circular arc. Indeed, for a cir-

cular arc of radius 1=K on the plane d1-d3 we must have U�
2
¼ 0 and U�

2
¼K. In this case, from Equa-

tion 23 we have that �H1=B
a ¼ qsU

�
2
¼ 0, which implies H1 ¼ 0 and bH1 ¼�BaK, so the concentrated

forces must be non null.

Our working hypothesis is that MTs’ sliding stretches the Ax-PFR bonding links, which, in turn,

inhibits sliding of MTs’ 1, 2, and 3, and triggers a dynein organization (via mechanical feedback) simi-

lar to the one present in Chlamydomonas. We take this feedback-based self-organization process as

a given, and we consider a force pattern that produces local spontaneous bending on the plane

d1ðsÞ-d3ðsÞ, as shown in Figure 1. This is equivalent to require that U�
1
¼ 0, which leads to the follow-

ing condition on the shear forces

H2 ¼ bH2 ¼ 0 : (24)

Emergence of non-planarity
We consider here the equilibrium Equation 12 under the hypothesis (Equation 24). We look at the

equilibrium configurations for every possible value of the angle fp between the Ax-PFR joining line

and the spontaneous bending plane of the Ax, even though the value of actual interest for E. gracilis

is fp
» � 2p=9. We can prove analytically the following statement: if the Ax-PFR joining line is neither

parallel nor orthogonal to the spontaneous bending plane of the Ax, then the emergent flagellar

shapes are non-planar.

Indeed, suppose H1 6¼ 0. From Equation 21 and Equation 22 it follows that the shape of the fla-

gellum is planar ðt ¼ 0Þ if and only if the angle  of the bending vector UðsÞ ¼ ðU1ðsÞ;U2ðsÞÞ is con-

stant. The bending vector must therefore be confined on a line for every s. In this case there must be

two constants c1 and c2 such that U1ðsÞ ¼ c1UðsÞ and U2ðsÞ ¼ c2UðsÞ for some scalar function U. Now,

if a planar U is a solution of Equation 12, we must have

c1B
a
qsU�Dp

cosfpðc1 cosf
pþ c2 sinf

pÞ

Z s

0

U ¼ 0 ; (25)

c2B
a
qsU�Dp

sinfpðc1 cosf
p þ c2 sinf

pÞ

Z s

0

U ¼H1 ; (26)

with c1UðLÞ ¼ 0 and c2UðLÞ ¼�bH1=B
a. If fp=2f0;p=2;p;3p=2g the system of Equations 25, 26 admits

no solution. Indeed, suppose first that bH1 ¼ 0. Since H1 6¼ 0 we must have ðc1;c2Þ 6¼ ð0;0Þ. However, in

this case, Equation 25 admits the unique solution U ¼ 0, which is incompatible with Equation 26. If

bH1 6¼ 0, then the boundary conditions impose c1 ¼ 0, but in this case Equation 25 has again U ¼ 0 as

a unique solution, which is incompatible with both the boundary conditions and with Equation 26.

Our statement is thus proved.

For fp
» � 2p=9, the characteristic value for E. gracilis, the non-planarity of flagellar shapes is not

just possible. It is the only outcome under any non-trivial dynein actuation.

Structural incompatibility and torsion with alternating sign
Alongside the previous analysis, there is a less technical way to infer the emergence of non-planarity

from our model. We look here more closely to the flagellum energy, and we think in terms of struc-

tural incompatibility between Ax and PFR, seen as antagonistic elements of the flagellum assembly,

see Figure 5.

Under the assumptions Equation 22 and Equation 24, the flagellar energy is given by

W ¼Wa þWp ; where

Wa ¼
1

2

Z L

0

Ba U�
0

U�
2

� �










2

�BaU�
2

2
and Wp ¼Dp

Z s

0

ep �U

� �2

;
(27)

with U�
2
as in Equation 23. The energy has two components, Wa that depends on the Ax bending

modulus Ba, and Wp that depends on the PFR shear modulus Dp. We can vary these material param-

eters and explore what the resulting minima of W, that is, the equilibrium configurations (Equa-

tions 12-13), must look like. We consider the nondimensional parameter n¼Dp=ðBaL�2Þ. When
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n� 1 the Ax component Wa of the energy dominates. In this case, at equilibrium, the bending vec-

tor has to be close to the target bending vector U» ð0;U�
2
Þ. In particular, then, UðsÞ will be confined

near the line U1 ¼ 0 for every s. In the case n� 1 the PFR component Wp dominates, and the energy

is minimized when UðsÞ lies close to the line generated by the vector e?p ¼ ð� sinfp;cosfpÞ. Clearly, if

the latter line is different from U1 ¼ 0, the two extreme regimes n� 1 and n� 1, each of which

favours one of the two individual components, aim at two different equilibrium configurations. In

other words, Ax and PFR are structurally incompatible.

When neither of the two energy components dominates, the emergence of non-planarity can be

intuitively predicted with the following reasoning. In the intermediate case of n ~ 1, we expect the

equilibrium configurations to be a compromise among the two extreme cases, with the bending vec-

tor UðsÞ being ‘spread out’ in the region between the two extreme equilibrium lines. The spreading

of the bending vector is aided by the concentrated shear force at the tip, which imposes

UðLÞ ¼ ð0;U�
2
ðLÞÞ irrespectively of the PFR stiffness. The bending vector is then ‘pinned’ at s ¼ L on

the U1 ¼ 0 line while it gets dragged toward the line generated by e?p for large values of n. Hence

the spreading. The bending vector will then span an area and, consequently, undergo rotations.

Since torsion is determined by the rotation rate of the bending vector (t ¼ qs ), the resulting flagel-

lar shapes will be non-planar.

Figure 6 illustrates a critical example in which the previous intuitive reasoning effectively plays

out. We consider a target bending of the kind U�
2
ðsÞ ¼ A0 þ A1 sinð2ps=LÞ, a fair idealization of the

asymmetric shapes of a Chlamydomonas-like flagellar beat (Geyer et al., 2016). We take fp ¼ �p=4

(larger than the E. gracilis value, to obtain clearer graphs). For n ¼ 0, the bending vector lies inside

the U1 ¼ 0 line, and its amplitude oscillates. For positive values of n, when the PFR stiffness is ’turned

on’, the oscillating bending vector is extruded from the U1 ¼ 0 line. For large values of n it gets

closer and closer to the line generated by e?p . The bending vector spans an area and, following the

oscillations, it rotates clock-wise and anti-clock-wise generating an alternation in the torsion sign.

This is the geometric signature of the spinning lasso.

In Appendix 3, we relaxed the planar constraint (Equation 24), and considered different weakly

non-planar spontaneous configurations, by perturbing Chlamydomonas-like target bending strains.

Each configuration presents a different (non-null) torsional profile when the antagonistic mechanical

interaction of the PFR is absent n ¼ 0. For larger values of n, each perturbation assumes the typical

spinning lasso geometry (torsional peaks of alternate sign), regardless of the native (n ¼ 0) torsional

profile. This shows that the PFR-Ax interactions strongly influence the flagellar shape outcome even

when the perfectly planar constraint on the spontaneous bending is relaxed.

Hydrodynamic simulations and comparison with observations
Our model is able to predict the torsional characteristic of the euglenid flagellum in the static case,

and in absence of external forces. We test here the model in the more realistic setting of time-

dependent dynein actuation in the presence of hydrodynamic interactions.

We first observe that, as in the static case, the dynamic equations for U and U3 are decoupled

(Equations 17, 18), and that dynein forces do not affect twist. We have then twistless kinematics

under any actuation also in the dynamic case, at least after a time transient. We can simply assume

Equation 22 for all times, so the torsion of ra is still completely determined by the bending vector.

We consider a dynein actuation that generates Chlamydomonas-like shapes in a flagellum with no

extra-axonemal structures. The shear forces H1 and bH1 employed in our simulation are shown in Fig-

ure 7. The same figure also shows the emergent bending strains of a PFR-free flagellum actuated by

said forces, beating in a viscous fluid. The dynamic equations for this system are simply Equa-

tions 17, 18 with Dp ¼ 0. The resulting bending strains, which generate a planar beat, resembles the

experimentally observed Chlamydomonas flagellar curvatures reported in Qin et al., 2015.

Finally, Figure 7 presents the emergent bending strains of the beating euglenid (PFR-bearing) fla-

gellum, together with the corresponding flagellar torsion. The spinning lasso torsional signature is

clearly present. Indeed, the fluid-structure interaction does not disrupt the Ax-PFR structural incom-

patibility, which still generates non-planar shapes with traveling waves of torsional peaks with alter-

nating sign and the typical looping-curve outlines, Figure 2. All the details on the methods and

parameters employed in the simulations are given in Appendix 4. Video 2 shows a comparison

between the simulated flagellar beat and the experimental observations.
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Swimming simulations
The unique flagellar beat of E. gracilis is at the

base of the distinctive behavior of the organism,

producing the typical roto-translational trajecto-

ries of swimming cells. This has been demon-

strated by swimming simulations using the

experimentally measured flagellar shapes in

Rossi et al., 2017 with a Resistive Force Theory

approach to model hydrodynamic interactions

between the cell and the surrounding fluid. Simi-

lar conclusions are reached with a Boundary Ele-

ment Method for the computation of the fluid
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Figure 7. Kinematics of the beating euglenid flagellum: comparison between theoretical model and experiments. (a-b) Dyneins’ shear forces. (c)

Resulting bending strains and torsion for an Ax actuated by the force pattern (a–b), beating in a viscous fluid, and free of extra-axonemal structures.

The beat is planar (Chlamydomonas-like). (d) Resulting bending strains and torsion for an euglenid flagellum (composite structure Ax+PFR) actuated by

(a–b) and beating in a viscous fluid. The Ax-PFR interaction generates torsional peaks with alternate sign traveling from the proximal to the distal end of

the flagellum. (e) Resulting shapes for the euglenid flagellum at different instants within a beat, and comparison with experimental observations.

The online version of this article includes the following source code for figure 7:

Source code 1. Flagellar dynamics solver and visualization tool.

Video 2. Comparison between observations of a

beating euglenid flagellum and the numerical

simulations of our mechanical model.

https://elifesciences.org/articles/58610#video2
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flows induced by the same measured history of the flagellar shapes, see Giuliani et al., 2021. We

carried out here analogous simulations using the theoretical waveforms produced by our model.

The application of Resistive Force Theory hydrodynamics to the waveforms shown in Figure 7

produces swimming paths similar to the typical observed trajectories. Swimming cell simulations are

reported in Figure 8, see also Video 3. The cell is propelled by the flagellum, following a general-

ized right-handed helical trajectory while rotating around its major axis. After each full turn of the

helix the cell completes one full body rotation. For more details on the implementation and physics

behind swimming simulation see Appendix 5.

Discussion and outlook
We have shown how the origin of the peculiar shapes of the euglenid flagellum can be explained by

the mechanical interplay of two antagonistic flagellar components, the Ax and the PFR. Our conclu-

sions are based mainly on the hypothesis that sliding inhibition by the PFR organizes dynein activity,

and localizes the spontaneous bending plane of the Ax as the one that passes from the Ax center

through the MTs bonded to the PFR. This is in agreement with the current understanding of the

mechanism that generates beat planarity in other PFR-bearing flagellar systems. Non-planarity in E.

gracilis can arise because of a marked asymmetry in the Ax-bonding links-PFR complex in the eugle-

nid flagellum, which is not found in kinetoplastids such as Leishmania (Gluenz et al., 2010) or Trypa-

nosoma (Portman and Gull, 2010).

In the absence of a precise knowledge of the dynein actuation pattern, we tested our mechanical

model under shear forces that would, in the absence of extra-axonemal structures, realize a beat

similar to those found in model systems like Chlamydomonas. We appreciate that the emergent dis-

tortion of the Ax, generated by the Ax-PFR interplay, could in principle lead to different actuation

patterns, consistently with the hypothesis of dynein actuation via mechanical feedback. Including

dynein feedback in the euglenid flagellum model we proposed will require further study, and can

potentially open new avenues for the study of ciliary motility in general. While the existence of a

mechanical feedback between molecular motors and the flagellar scaffold is fairly accepted, there

are several competing theories arguing in favour of different feedback mechanisms. The structural

and kinematic peculiarities of the E. gracilis beat may provide a challenging new model system to

test the relative merits of these alternative theories.

Along with the mechanism that let the euglenid flagellar shapes emerge, it is worth considering

how this characteristic flagellar beat is integrated in the overall behavior of the organism. The spin-

ning lasso produces the typical roto-translational motion of E. gracilis cells. Cell body rotation is in

turn associated with phototaxis. Indeed, rotation allows cells to veer to the light source direction

when stimulated, or escape in the opposite direction, when the signal is too strong. Here, the key

biochemical mechanism could be the one often found in nature, by which periodic signals generated

by lighting and shading associated with body rotations are used for navigation, in the sense that the

existence of periodicity implies a lack of proper alignment (Goldstein, 2015). It is known that the

PFR is directly connected with the light-sensing apparatus (Rosati et al., 1991), and might even be

contractile (Piccinni, 1975). Transient light stimuli have been shown to change flagellar beat

ba

Figure 8. Swimming kinematics. (a) Side view and (b) top view of swimming cell simulation resulting from the flagellar beat generated by our model.

The dimension of the cell body is not to scale with displacements for visualization purposes.
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patterns. While the euglenid flagellum consis-

tently present looping outlines (the 2d trace of a

torsion dipole), its extension from the cell body

changes with changing light intensity signals,

resulting in a variety of ’quantized’ phototaxis

behaviors (Tsang et al., 2018). With suitable

modifications, our model could provide a start-

ing point to address the (possible) mechanisms

of active contraction of the PFR, light percep-

tion, and their interplay. Further study on eugle-

nid flagellar motility and phototaxis could lead

to a more comprehensive understanding of the

biomechanical role of PFR, both in phototaxis

and in general.

The very basic question of ’why’ euglenids

have evolved a structure such as PFR is an inter-

esting challenge, but beyond the scope of the

model we have developed in this paper. Our

results confirm, however, the interest of eugle-

nids as model systems for responsive unicellular

organisms: E. gracilis, in particular, is a unicellu-

lar organism exhibiting a variety of motility

behaviors (flagellar swimming and metaboly, see

Leander et al., 2017) and capable of respond-

ing to a variety of stimuli, from light to confine-

ment, see Noselli et al., 2019.

Materials and methods
Strain SAG 1224-5/27 of Euglena gracilis

obtained from the SAG Culture Collection of

Algae at the University of Göttingen was main-

tained axenic in liquid culture medium Eg. Cul-

tures were transferred weekly. Cells were kept in

an incubator at 15˚C at a light:dark cycle of 12 hr

under a cold white LED illumination with an irra-

diance of about 50�mol � m�2 � s�1.

An Olympus IX 81 inverted microscope with

motorized stage was employed in all the experi-

ments. These were performed at the Sensing and Moving Bioinspired Artifacts Laboratory of SISSA.

The microscope was equipped with a LCAch 20X Phc objective (NA 0.40) for the imaging of cells

trapped at the tip of a glass capillary using transmitted brightfield illumination. The intermediate

magnification changer (1.6 X) of the microscope was exploited to achieve higher magnification.

Micrographs were recorded at a frame rate of 1; 000 fps with a Photron FASTCAM Mini UX100 high-

speed digital camera.

Tapered capillaries of circular cross section were obtained from borosilicate glass tubes by

employing a micropipette puller and subsequently fire polished. At each trial, observation a glass

capillary was filled with a diluted solution of cells and fixed to the microscope stage by means of a

custom made, 3d-printed holder. The holder allowed for keeping the capillary in place and rotating

it about its axis, so as to image a cell specimen from distinct viewpoints. Cells were immobilized at

the tip of the capillary by applying a gentle suction pressure via a syringe connected to the capillary

by plastic tubing. Occasionally, large body deformations of the cells were observed, a behavior com-

monly known as ‘metaboly’ which E. gracilis often manifest under confinement. The observations

reported in this paper are restricted to specimens with immotile cell bodies, that is, in absence of

metaboly. This choice allows for a clear capture of the flagellar beat. The absence of metaboly also

suggests minimal impact on cell behavior in response to capillary entrapment.

Video 3. Simulations of swimming cell kinematics

resulting from the flagellar beat generated by our model.

https://elifesciences.org/articles/58610#video3
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l’Università e della Ricerca

Dipartimenti di Eccellenza
2018-2022 (SISSA - Area
Matematica; Scuola
Superiore Sant’Anna -
Department of Excellence in
Robotics and AI)

Giovanni Noselli
Antonio DeSimone

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Giancarlo Cicconofri, Conceptualization, Data curation, Software, Formal analysis, Validation, Investi-

gation, Visualization, Methodology, Writing - original draft, Writing - review and editing; Giovanni

Noselli, Resources, Investigation, Visualization, Writing - review and editing; Antonio DeSimone,

Conceptualization, Supervision, Funding acquisition, Methodology, Writing - original draft, Project

administration, Writing - review and editing

Author ORCIDs

Giancarlo Cicconofri https://orcid.org/0000-0003-1704-7609

Giovanni Noselli https://orcid.org/0000-0001-8637-713X

Antonio DeSimone https://orcid.org/0000-0002-2632-3057

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.58610.sa1

Author response https://doi.org/10.7554/eLife.58610.sa2

Additional files
Supplementary files
. Transparent reporting form

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Source data and code files have been provided for Figures 2, 6, and 7 in the main text, and for Fig-

ure 1 in Appendix 5.

References
Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P. 2015. Molecular Biology of the Cell. In:
Richter M. L (Ed). Molecular Sciences. New York: Garland Science. p. 941–942.
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Appendix 1

Model details
The Ax consists of a bundle of inextensible filaments of length L (MTs) lying on a cylindrical surface

of radius �a. For simplicity, the model ignores the mechanical effects of radial spokes and the central

pair. The axonemal surface is parametrized by the generalized cylindrical coordinates z and f via the

map

xðz;fÞ ¼ raðzÞþ �aðcosfd1ðzÞþ sinfd2ðzÞÞ ; (28)

with ra, d1, and d2 defined as in the main text. In Cicconofri et al., 2020, this surface is modelled as

a continuous subject to active shear deformations. Here, we base our model on the explicit descrip-

tion of the individual MTs. Following Hilfinger and Jülicher, 2008, we suppose that the axonemal

constraints confine MTs on the Ax surface at a fixed angular distance Df¼ 2p=9 between each other.

More formally, for j¼ 1; . . . ;9, we define the centerline rj of the j-th MT as rjðsÞ ¼Cðs;fjÞ, where

Cðs;fÞ ¼ xðZðs;fÞ;fÞ ; and fj ¼ 2pð2� jÞ=9 : (29)

The function Zðs;fÞ in Equation 29 is defined (implicitly) via the equality

ZðSðz;fÞ;fÞ ¼ z where Sðz;fÞ ¼

Z z

0

qzxðz
0;fÞk kdz0: (30)

From the definitions above follows qsr
jk k¼ 1, so that MTs are indeed inextensible and s is their

arc length. Moreover, the Taylor expansion of C at the first order in �a gives the approximated for-

mula (Equation 5), with g1 and g2 given by Equation 6.

We associate to the j-th MT an orthonormal frame along rj given by the unit vectors

e
j
3
ðsÞ ¼ qsr

jðsÞ ; e
j
1
ðsÞ ¼Nðs;fjÞ ; and e

j
2
ðsÞ ¼ e

j
3
ðsÞ� e

j
1
ðsÞ ; (31)

where N¼ cosfd1ðZÞþ sinfd2ðZÞ is the (outer) unit normal to the cylindrical surface. The unit vectors

(Equation 31) determine MTs’ cross-section orientations. The unit vectors e
j
1
ðsÞ and e

j
2
ðsÞ lie on the

cross-section centered at rjðsÞ, while e
j
3
ðsÞ ¼ qsr

jðsÞ is orthogonal to it. The (passive) elastic energy of

the Ax is given by the sum of the MTs’ elastic energies

Wa
pas ¼

X9

j¼1

1

2

Z L

0

BmðUj
1
ðsÞ2 þU

j
2
ðsÞ2ÞþCmU

j
3
ðsÞ2 ds ;

where U
j
1
¼ qse

j
2
� ej

3
; U

j
2
¼ qse

j
3
� ej

1
; and U

j
3
¼ qse

j
1
� ej

2

(32)

are the strains associated to the j-th MT, while Bm and Cm are the MTs’ bending and twisting moduli

(respectively). At the leading order approximation in �a we have

e
j
1
» cosfjd1 þ sinfjd2 ; e

j
2
» � sinfjd1 þ cosfjd2 ; and e

j
3
»d3 : (33)

From Equation 33 and Equation 3 follows that Wa
pas, as defined in Equation 32, can indeed be

approximated by the right hand side of Equation 2, with Ba ¼ 9Bm and Ca ¼ 9Cm.

We consider now MT sliding. Fixed a point rjþ1ðsÞ on the ðjþ 1Þ-th MT’s centerline, we look for

the nearest point to rjþ1ðsÞ on the centerline rj of the j-th MT. Such a point rjðs�Þ (we can think of it

as a projection) lies at some arc length s�, which depends on s. We write s� ¼ PjðsÞ. We then define

the sliding sjðsÞ as the difference of the two arc lengths s and PjðsÞ. More formally,

sjðsÞ ¼ s�PjðsÞ ; where PjðsÞ ¼
�

argmin rjþ1ðsÞ� rjð�Þ


 

 : (34)

The figure below illustrates the geometric idea behind Equation 34.
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rj+1(s)

rj+1

Appendix 1—figure 1. Sketch of two MTs’ centerlines during deformation. The sliding sjðsÞ is

defined as the difference between the arc lengths s and PjðsÞ. The latter is the arc length

corresponding to the projection of rjþ1ðsÞ on the curve rj. We have positive sliding when dyneins

push the j-th MT toward the distal end of the flagellum and the ðjþ 1Þ-th MT toward the proximal

end.

The active internal energy of the Ax is defined as minus the total mechanical work of the dyneins

Wa
act ¼�

X9

j¼1

Z L

0

FjðsÞsjðsÞds�
X9

j¼1

bFjsjðLÞ ; (35)

where FjðsÞ are the sliding forces on the j-th MT exerted by the dyneins on the ðjþ 1Þ-th MT, and bFj

are the singular sliding forces (on the j-th MT exerted by the dyneins on the ðjþ 1Þ-th MT) concen-

trated at the distal end of the Ax. Taylor expanding (Equation 34) in �a we have, at the leading

order,

sjðsÞ»�
aðcosfjþ1 � cosfjÞg1ðsÞþ �

aðsinfjþ1� sinfjÞg2ðsÞ ; (36)

with g1 and g2 given by Equation 6. From Equation 36 we have that Wa
act, as defined in Equation 35,

is approximated by the right hand side of Equation 4, with

H1ðsÞ ¼ �a
X9

j¼1

ðcosfjþ1� cosfjÞFjðsÞ ; H2ðsÞ ¼ �a
X9

j¼1

ðsinfjþ1� sinfjÞFjðsÞ ;

bH1 ¼ �a
X9

j¼1

ðcosfjþ1 � cosfjÞbFj ; and bH2 ¼ �a
X9

j¼1

ðsinfjþ1 � sinfjÞbFj :

(37)

In the remainder we give some details of the derivation of Equation 11 from Equation 7.

Expanding Equation 10 at the leading order in �p gives

g1ðsÞ» cosfpd1ðsÞþ sinfpd2ðsÞ ;

g2ðsÞ»
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þgp?ðsÞ
2

q ð� sinfpd1ðsÞþ cosfpd2ðsÞþgp?ðsÞd3ðsÞÞ ;

and g3ðsÞ»
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þgp?ðsÞ
2

q ðgp?ðsÞ sinf
pd1 �gp?ðsÞcosf

pd2ðsÞþd3ðsÞÞ ;

(38)

with gp?ðsÞ ¼�sinfpg1ðsÞþ cosfpg2ðsÞ. From Equation 8 and Equation 38, leading order calcula-

tions give V1 ~�
p and V3 ~�

p, whereas V2 »gp?=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þg2

p?

q
. Linearizing in gp? we have V2 ¼ gp?, from

which follows Equation 11.
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Appendix 2

Dynamical equations
To derive Equations 17–20, it is convenient to introduce the quantities M1, M2 and M3 defined via

the following variational equality

dW ¼

Z L

0

M1dU1 þM2dU2 þM3dU3 : (39)

These quantities can be interpreted as the local components of the flagellar moment

M¼M1d1þM2d2 þM3d3 : (40)

A direct calculation gives

M1ðsÞ ¼ BaU1ðsÞþ bH2þ

Z L

s

H2�Dp
cosfp

Z L

s

gp? ;

M2ðsÞ ¼ BaU2ðsÞ� bH1 �

Z L

s

H1 �Dp
sinfp

Z L

s

gp? ; and M3ðsÞ ¼CaU3ðsÞ

(41)

where gp?ðsÞ ¼� sinfpg1ðsÞþ cosfpg2ðsÞ, as in the previous Section. We then write the variations dUi

in terms of d�i (defined in the main text) obtaining

dU1 ¼ qsd�1þ d�3U2 � d�2U3 ; dU2 ¼ qsd�2þ d�1U3� d�3U1 ; dU3 ¼ qsd�3 þ d�2U1� d�1U2 : (42)

Combining Equations 39, 40 and Equation 42 we have

dW ¼MðLÞ � duðLÞ�

Z L

0

qsM � du ; and

d

Z L

0

L � ðqsr
a �d3Þ ¼LðLÞ � draðLÞ�

Z L

0

qsL � dra �

Z L

0

ðd3�LÞ � du :

In the calculations above, we took variations with drað0Þ ¼ duð0Þ ¼ 0, since we consider a flagellum

with a clamped end at s¼ 0. Then, the principle of virtual work (Equation 16) yields the following

force and torque balance equations

qsLþF¼ 0 and qsMþd3 �LþG¼ 0 ; (43)

with LðLÞ ¼ 0 ; and MðLÞ ¼ 0 : (44)

Equations 17–20 are derived from Equation 43 and Equation 44, after some extra formal

manipulations that we explain in the reminder.

We first introduce the local angular velocities

W1 ¼ qtd2 �d3 ; W2 ¼ qtd3 �d1 ; and W3 ¼ qtd1 �d2 ; (45)

which are related to the strains via the following compatibility equations

qtU1 þU2W3 �U3W2 ¼ qsW1 ; qtU2 þU3W1 �U1W3 ¼ qsW2 ; qtU3 þU1W2 �U2W1 ¼ qsW3 : (46)

Equation 46 follows from the identities qsqtdi ¼ qtqsdi, with i¼ 1;2;3. We then rewrite the external

forces and torques (Equation 15) in compact form as

F¼�V d3½ �qtr
a

and G¼��rW3d3 ; with V d3½ � ¼ �?ðId�d3
d3Þþ�jjd3 
d3 : (47)

Scalar multiplying the torque balance equation by d1 and d2 we obtain the expressions for the

first two local components

L1 ¼�qsM �d2 and L2 ¼ qsM �d1 (48)
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of the Lagrange multiplier vector L¼L1d1 þL2d2þL3d3. Scalar multiplying the torque balance

equation by d3 gives

�rW3 ¼ qsM �d3 : (49)

We rewrite the force balance equation as qtr
a ¼V d3½ ��1

qsL and, after differentiating both sides

with respect to s and then scalar multiplying by d1, d2, and d3, we obtain

W1 ¼�qs V d3½ ��1
qsL

� �
�d2 ; W2 ¼ qs V d3½ ��1

qsL
� �

�d1 ; (50)

and 0¼ qs V d3½ ��1
qsL

� �
�d3 : (51)

From Equation 41, 46, and Equation 49 we obtain Equation 18 by first differentiating with

respect to s both sides of Equation 49, and then by linearizing the resulting equation. Similarly,

exploiting also Equation 48 this time, we differentiate with respect to s and then linearize Equa-

tion 50 to obtain Equation 17. Boundary conditions in Equation 19 follow from Equation 44,

whereas Equation 20 are derived from

qsLð0; tÞ ¼V½d3�qtr
að0; tÞ ¼ 0 ; (52)

which follows from the fixed end condition rað0; tÞ ¼ 0.

Given U1, U2, and U3 the orthonormal frame d1, d2, and d3 can be recovered by integrating the

system of equations

qsd1 ¼U3d2�U2d3 ; qsd2 ¼U1d3 �U3d1 ; qsd3 ¼U2d1 �U1d2 ; (53)

which is derived from Equation 3. We can then recover the centerline ra by integrating qsr
a ¼ d3.

The PFR centerline rp and the orthonormal frame g1, g2, and g3 follow from Equation 9 and

Equation 10.
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Appendix 3

Numerical simulations I: equilibria
We define the nondimensional variables for arc length x, time y, strains ui, shear forces hi, and con-

centrated shear forces ĥi as follows

x¼ s=L ; y¼ t=T ; ui ¼Ui=L
�1 ; hi ¼Hi=B

aL�2 ; and ĥi ¼ bHi=B
aL�1 : (54)

The equilibrium Equation 12, with Equation 22, is solved by seeking for a minimizer of the

energy (Equation 23) in nondimensional form

w¼
1

2

Z
1

0

u�
u�
1

u�
2

� �










2

þn

Z x

0

ep �u

� �2

�u�
2

2 ; where n¼
Dp

BaL�2
:

In the formula above u¼ ðu1;u2Þ is the nondimensional bending vector and u�i ¼U�
i =L

�1, with

i¼ 1;2, are the nondimensional target bending strains. We find the minimizer using the gradient

descent method

unþ1 ¼ un �a
dw

du
un½ � ; where

dw

du
un½ � ¼ un �

u�
1

u�
2

� �
þ nep 
 ep

Z
1

x

Z x0

0

unðx00Þdx00dx0

and a is a conveniently chosen step size. We initiate the algorithm with u0 ¼ ðu�
1
;u�

2
Þ, and then we

iterate it until kunþ1�unk falls below a pre-set tolerance parameter.
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Appendix 3—figure 1. Bending vector traces and torsion of equilibrium configurations of the

Appendix 3—figure 1 continued on next page
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Appendix 3—figure 1 continued

euglenid flagellum under four different target bending strains, and for different values of the param-

eter n ¼ Dp=ðBaL�2Þ. The target bending strains are given by ðu�
1
; u�

2
Þ, with u�

2
ðxÞ ¼ a0 þ a1 sinð2pxÞ

and u�
1
¼ �~u�

1
, where (a) ~u�

1
ðxÞ ¼ sinð2pxÞ, (b) ~u�

1
ðxÞ ¼ sinð4pxÞ, (c) ~u�

1
ðxÞ ¼ cosð2pxÞ, and (d)

~u�
1
ðxÞ ¼ cosð4pxÞ.

In the figure above, we considered four different perturbations of a perfectly planar, Chlamydo-

monas-like, target bending strain, and calculated the resulting flagellar equilibrium configurations

for different values of the parameter n. Each configuration presents a different (non-null) torsional

profile for n ¼ 0 (thick, light blue lines). For larger values of n, all perturbations lead to (roughly) simi-

lar configurations, with torsional peaks of alternate sign.
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Appendix 4

Numerical simulations II: flagellar dynamics
We consider the nondimensional variables defined in Equation 54. The dynamic Equation 17 is

recast, and then solved, in terms of the shear vector g ¼ ðg1; g2Þ where

g1ðxÞ ¼

Z x

0

u2 ; and g2ðxÞ ¼�

Z x

0

u1 : (55)

After solving for g, we obtain the bending strains by differentiation. The equation for g is

hqyg¼�q
4

xgþ q
2

xhþ ne?p 
 e?p q
2

xg ; where h¼
�?T

�1L2

BaL�2
; (56)

and h¼ ðh1;h2Þ. The corresponding boundary conditions are given by

qxgjx¼1
þ ĥ¼ 0 ; q

2

xg�h� ne?p 
 e?p g
� �

jx¼1
¼ 0 ;

gjx¼0
¼ 0 ; q

3

xg� qxh� ne?p 
 e?p qxg
� �

jx¼0
¼ 0

(57)

where ĥ¼ ðĥ1; ĥ2Þ. The above (Equation 57) are point-wise conditions, which do not involve integral

terms as in Equation 19. Avoiding this non-locality allows for an easier numerical implementation.

The finite difference scheme we employ to solve Equations 56–57 is illustrated in the remainder.

We consider the discrete time sequence yn ¼ nDy with n ¼ 0; 1; 2; . . . and we define

gnðxÞ ¼ gðyn; xÞ, h
nðxÞ ¼ hðyn; xÞ, and ĥn ¼ ĥðynÞ. Equation 56 is discretized in time with the one-step

(semi-implicit) numerical scheme

h

Dy
ðgnþ1 �gnÞ ¼�q

4

xg
nþ1 þ q

2

xh
nþ ne?p 
 e?p q

2

xg
n ; (58)

and complemented by the boundary conditions

qxg
nþ1jx¼1

þ ĥnþ1 ¼ 0 ; q
2

xg
nþ1 �hn � ne?p 
 e?p g

n
� �

jx¼1
¼ 0 ;

gnþ1jx¼0
¼ 0 ; q

3

xg
nþ1 � qxh

n� ne?p 
 e?p qxg
n

� �
jx¼0

¼ 0 :

(59)

The nondimensional arc length interval 0;1½ � is discretized uniformly in Mþ 1 points xk ¼ kDx , with

k¼ 0;1; . . . ;M ¼ 1=Dx. We also consider the extra ’ghost points’ xk ¼ kDx with k¼�1;Mþ 1;Mþ 2. The

discrete values q
2

xg
n
k ¼ q

2

xg
nðxkÞ of the second derivative in Equation 56 are approximated by the

finite difference scheme

q
2

xg
n
k ¼

ð2gn
0
� 5gn

1
þ 4gn

2
�gn

3
Þ=Dx2 for k¼ 0;

ðgnk�1
� 2gnk þgnkþ1

Þ=Dx2 for 1� k�M� 1;

ð�gnM�3
þ 4gnM�2

� 5gnM�1
þ 2gnMÞ=Dx

2
for k¼M;

8
><

>:
(60)

where gnk ¼ gnðxkÞ. Analogous formulas are employed for the second derivative of hn. The discrete

values q4xg
nþ1

k ¼ q
4

xg
nþ1ðxkÞ of the forth derivative in Equation 56 are given by the scheme

q
4

xg
nþ1

k ¼
ð2gnþ1

�1
� 9gnþ1

0
þ 16gnþ1

1
� 14gnþ1

2
þ 6gnþ1

3
�gnþ1

4
Þ=Dx4 for k¼ 0;

ðgnþ1

k�2
� 4gnþ1

k�1
þ 6gnþ1

k � 4gnþ1

kþ1
þgnþ1

kþ2
Þ=Dx4 for 1� k�M;

(

(61)

which involves the ghost points values g�1
, gMþ1

, and gMþ2
. The discretized approximations of the

boundary conditions (Equation 59) are given by

gnþ1

Mþ1
�gnþ1

M�1

2Dx
¼�ĥnþ1 ;

gnþ1

Mþ2
� 2gnþ1

M þgnþ1

M�2

4Dx2
¼ ne?p 
 e?p g

n
M þhnM ; gnþ1

0
¼ 0 ;

�3gnþ1

�1
þ 10gnþ1

0
� 12gnþ1

1
þ 6gnþ1

2
�gnþ1

3

2Dx3
¼ ne?p 
 e?p

�3gn
0
þ 4gn

1
�gn

2

2Dx
þ
�3hn

0
þ 4hn

1
�hn

2

2Dx
:
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The previous formulas give us the expressions for the ghost points’ values gnþ1

�1
, gnþ1

Mþ1
, and gnþ1

Mþ2
in

terms of ĥnþ1, gnþ1

k , gnk , and hnk with 0� k�M. These expressions are then plugged in Equation 61. In

turn, the iterative scheme (Equation 58) allows to calculate gnþ1

k from gnk with 0� k�M, while incor-

porating the boundary conditions (Equation 59) in the numerical solution. The scheme is iterated for

several time periods until a periodic solution is reached.

We obtain the history of shear forces presented in Figure 7 by solving the following inverse

dynamical problem. We assign first a history of normalized bending strains ð0; u2ðx; yÞÞ, periodic in

time, that imitates the experimentally observed Chlamydomonas flagellar curvatures reported in

Qin et al., 2015. We use the following model

u2ðx;yÞ ¼ a0 � a1 cosðlðxÞ�!ðyÞÞ

with lðxÞ ¼ 2pl0ðxþl1 sinðpxÞÞ and !ðyÞ ¼ 2pðyþ!1 sinðpyÞÞ :
(62)

Then, we calculate the shear forces that generate said history of bending strains for an Ax beating

in a viscous fluid (without extra-axonemal structures attached to it). Equation 56 with n¼ 0 and h2 ¼

bh2 ¼ 0 defines exactly the dynamics of this system. We can solve for h1 and bh1 explicitly, obtaining

bh1ðyÞ ¼�u2ð1;yÞ and h1ðx;yÞ ¼ qxu2ðx;yÞ�h
R
1

x

R x0

0

R x00

0
qyu2ðx

000;yÞdx000dx00dx0 :

In the dynamic simulation shown in Figure 7, we used the following numeric values for the physi-

cal parameters of the system. The bending modulus of the Ax is Ba ¼ 840pN � �m2, taken from

Xu et al., 2016. We set L ¼ 28�m, T ¼ 25ms, and �? ¼ 3:1fN � s � �m�2, which are all values estimated

in Rossi et al., 2017. The angle between spontaneous bending plane and the Ax-PFR joining line

fp ¼ �2p=9 is estimated from micrographs in Melkonian et al., 1982 and Bouck et al., 1990. For

the bending strains parameters in Equation 62 we took a0 ¼ 7:8, a1 ¼ 7:5, l0 ¼ 1:85, l1 ¼ 0:1, and

!1 ¼ �0:1.

Without direct measurements for Dp, we set n ¼ 20 as the value that best replicates the shapes

and tridimensionality of the Euglena beat. The nondimensional parameter n ¼ Dp=BaL�2 can be

defined as the ratio between the elastic energy of an Ax bent with constant curvature 1=L and the

elastic energy of the PFR deformed with uniform shear g ¼ 1. The two deformations do not happen

simultaneously during flagellar deformation, where the kinematics of Ax and PFR are coupled. For

this reason, the numerical value of parameter n does not give a reliable estimate of the relative con-

tribution ox Ax and PFR to the total elastic energy during flagellar deformation. One can define an

effective parameter ne to measure the interplay of PFR and Ax elasticity in the following way. We

can consider the elastic energy of an Ax bent along the spontaneous bending plane with constant

curvature 1=L, thus U1 ¼ 0 and U2 ¼ 1=L. This deformation of the Ax induces a PFR shear deforma-

tion with g1 ¼ s=L and g2 ¼ 0 (due to the kinematic constraints, see ‘Mechanical model’ Section). In

this case, the (passive) elastic energy of the Ax is given by Wa
pas ¼

1

2
BaL�1, while the elastic energy of

the PFR is given by Wp ¼ 1

6
LDp

sin
2ðfpÞ. We define the effective parameter ne as the ratio between

these two energies, which gives ne ¼
1

3
sin

2ðfpÞn. For fp ¼ �2p=9, the value for the angle we used for

E. gracilis, we have ne ¼ 0:13n. Thus, for n ¼ 20 we have ne ¼ 2:75. This value of ne is close to one,

showing that our simulations lead to large non-planarity of the flagellar beat when the two compet-

ing elastic energies of Ax and PFR are of similar magnitude. This is in agreement with our hypothesis

that non-planarity emerges form competing and frustrated elastic structures, via the principle of

structural incompatibility.
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Appendix 5

Numerical simulations III: swimming
We associate to the (elliptical) cell body a moving frame of orthonormal unit vectors i, j and k,

aligned with the major axis of the cell, see the figure below. The moving frame is located at the geo-

metric center of the body c. We denote with �rðs; tÞ the flagellum centerline in the moving frame coor-

dinates. In the lab frame coordinates, the centerline of the flagellum is thus given by

rðs; tÞ ¼ cðtÞþQðtÞ�rðs; tÞ ;

where QðtÞ is the cell body rotation, which has the column-wise matrix expression

QðtÞ ¼ ðiðtÞ j jðtÞ jkðtÞÞ :

In our simulation, the (periodic) time history of curves �rðs; tÞ is given by the the flagellar shapes

obtained from our model, shown in the ‘Hydrodynamic simulations’ Section of the main text. The

body center trajectory cðtÞ and the rotation QðtÞ are quantities to be obtained from the swimming

simulation. We have

qtrðs; tÞ ¼ _cðtÞþvðtÞ�QðtÞ�rðs; tÞþQðtÞqt�rðs; tÞ ¼QðtÞ �vðtÞþ �vðtÞ��rðs; tÞþ qt�rðs; tÞð Þ ;

where vðtÞ is the rotational velocity of the cell body, �v¼QT
_c, and �v¼QT

v. From the force balance equa-

tions of the swimmer we can derive a formula for the quantities �v and �v, which are completely determined

by �r and the geometry of the cell body (which are given quantities). The hydrodynamic forces acting on

the flagellum and the cell body are approximated using Resistive Force Theory (Equation 15). The linear

density force fðs; tÞ at time t exerted by the surrounding fluid can be written as

fðs; tÞ ¼��?v?ðs; tÞ��jjvjjðs; tÞ ¼��?qtrðs; tÞ� ð�jj��?Þvjjðs; tÞ ;

where vjj ¼ qsr ðqsr � qtrÞ and v? ¼ qtr� vjj are the local velocity components parallel and perpendicu-

lar to the flagellum. We have

vjjðs; tÞ ¼Qqs�r ðqs�r � �vþð�r� qs�rÞ � �vþ qs�r � qt�rÞ :

The total viscous force f tot and torque gtot acting on the swimmer are given by

f tot ¼ fbodyþ f flag and gtot ¼ gbodyþ gflag ;

where f flag and gflag are total viscous force and torque acting on the flagellum

f flag ¼

Z L

0

fðs; tÞds and gflag ¼

Z L

0

ðrðs; tÞ� cðtÞÞ� fðs; tÞds ;

while fbody and gbody are the total force and torque acting on the cell body

fbody ¼QAbody�v and gbody ¼QDbody�v ; where

Abody ¼
�A? 0 0

0 �A? 0

0 0 �Ajj

0

@

1

A and Dbody ¼
�D? 0 0

0 �D? 0

0 0 �Djj

0

@

1

A :

For the detailed expressions of the viscous resistive coefficients Ajj, A?, Djj, and D? see,

for example Kim and Karrila, 2013. The force and torque balance on the cell gives us the equations

of swimming dynamics

f tot ¼ 0 and gtot ¼ 0 ;

which lead to the following formula

�v

�v

� �
¼�

A B

BT D

� ��1
�f

�g

� �
;

where
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A¼AbodyþAflag ; B¼Bflag ; D¼DbodyþDflag ;

Aflag ¼��?Id�ð�jj ��?Þ

Z L

0

qs�r
 qs�r ; Bflag ¼ �?

Z L

0

�r½ ���ð�jj��?Þ

Z L

0

qs�r
ð�r� qs�rÞ ;

Dflag ¼ �?

Z L

0

�r½ �2��ð�jj��?Þ

Z L

0

ð�r� qs�rÞ
 ð�r� qs�rÞ ;

�f ¼��?

Z L

0

qt�r�ð�jj��?Þ

Z L

0

qs�rðqs�r � qt�rÞ ;

�g¼��?

Z L

0

�r� qt�r�ð�jj ��?Þ

Z L

0

ð�r� qs�rÞðqs�r � qt�rÞ :

In the identities above a½ �� denotes the skew-symmetric matrix generated by the vector a, which

is defined as the matrix such that a½ ��b¼ a�b for every vector b. The time evolution of cðtÞ and QðtÞ

are then obtained by integrating the equations

dc

dt
¼QðtÞ�vðtÞ and

dQ

dt
¼QðtÞ �vðtÞ½ �� :

Results of the simulation are shown in Figure 8 and in Video 3. In the figure below we show the

calculated components of the vectors �v¼ ðv � i;v � j;v �kÞ and �v¼ ðv � i;v � j;v �kÞ during a flagellar

beat. We considered an ellipsoidal cell 42�m long and 7:2�m wide, with a flagellum of length

L¼ 28�m. The flagellum shapes are those illustrated in Figure 7, and we use for the resistive coeffi-

cients the values estimated in Rossi et al., 2017.

The simulations show a good qualitative agreement with the experimentally observed trajecto-

ries. They predict a (generalized) helical trajectory with radius » 1:4�m and with the cell closing a full

turn of the helix in ~ 24 beats, in excellent agreement with observations of E. gracilis specimens

(Rossi et al., 2017). The pitch of the numerical trajectory is » 9:5�m, ~ 0:2 times the length of the

cell which is less then typically observed values of ~ 0:7.
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Appendix 5—figure 1. Swimming kinematics: numerical results. (a) Cell body and body frame unit vectors. (b) Body velocity and (c) rotational velocity

projections on the body frame vectors during a flagellar beat.

The online version of this article includes the following source code for figure app51:

Appendix 1—Source code 1. Swimming dynamics solver.
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