
*For correspondence:

marcotte@icmb.utexas.edu

(EMM);

wallingford@austin.utexas.edu

(JBW)

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 18

Received: 07 May 2020

Accepted: 01 December 2020

Published: 02 December 2020

Reviewing editor: Andrew P

Carter, MRC Laboratory of

Molecular Biology, United

Kingdom

Copyright Lee et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Functional partitioning of a liquid-like
organelle during assembly of axonemal
dyneins
Chanjae Lee1, Rachael M Cox1, Ophelia Papoulas1, Amjad Horani2, Kevin Drew1,
Caitlin C Devitt1, Steven L Brody3, Edward M Marcotte1*, John B Wallingford1*

1Department of Molecular Biosciences, University of Texas, Austin, United States;
2Department of Pediatrics, Washington University School of Medicine, St. Louis,
United States; 3Department of Medicine, Washington University School of Medicine,
St. Louis, United States

Abstract Ciliary motility is driven by axonemal dyneins that are assembled in the cytoplasm

before deployment to cilia. Motile ciliopathy can result from defects in the dyneins themselves or

from defects in factors required for their cytoplasmic pre-assembly. Recent work demonstrates that

axonemal dyneins, their specific assembly factors, and broadly-acting chaperones are concentrated

in liquid-like organelles in the cytoplasm called DynAPs (Dynein Axonemal Particles). Here, we use

in vivo imaging in Xenopus to show that inner dynein arm (IDA) and outer dynein arm (ODA)

subunits are partitioned into non-overlapping sub-regions within DynAPs. Using affinity- purification

mass-spectrometry of in vivo interaction partners, we also identify novel partners for inner and

outer dynein arms. Among these, we identify C16orf71/Daap1 as a novel axonemal dynein

regulator. Daap1 interacts with ODA subunits, localizes specifically to the cytoplasm, is enriched in

DynAPs, and is required for the deployment of ODAs to axonemes. Our work reveals a new

complexity in the structure and function of a cell-type specific liquid-like organelle that is directly

relevant to human genetic disease.

Introduction
Motile cilia are microtubule-based cellular projections and their oriented beating generates fluid

flows that are critical for development and homeostasis. Ciliary beating is driven by a complex set of

axoneme-specific dynein motors that drive sliding of the axonemal microtubule doublets. Based on

their relative positions within the axoneme, these motors are classified as either outer dynein arms

(ODAs) or inner dynein arms (IDAs)(Figure 1A, upper inset), the former driving ciliary beating gener-

ally, and the latter tuning the waveform (Kamiya and Yagi, 2014; King, 2018). Mutations in genes

encoding ODA or IDA subunits are the major cause of the motile ciliopathy syndrome known as pri-

mary ciliary dyskinesia (PCD; MIM 244400). This genetic disease results in repeated sinopulmonary

disease, bronchiectasis, cardiac defects, situs anomalies, and infertility (Horani et al., 2016;

Mitchison and Valente, 2017; Wallmeier et al., 2020). Interestingly, PCD can also result from muta-

tions in genes encoding any of several cytoplasmic proteins collectively known as Dynein Axonemal

Assembly Factors (DNAAFs)(Desai et al., 2018; Fabczak and Osinka, 2019).

Axonemal dynein motors were known to be pre-assembled in the cytoplasm before deployment

to cilia (Fowkes and Mitchell, 1998), but the first description of DNAAFs came later, with the identi-

fication of KTU (aka DNAAF2)(Omran et al., 2008). Studies of motile ciliopathy patients have now

defined an array of cytoplasmic DNAAFs that are never part of the axoneme, yet when mutated

result in loss of axonemal dyneins, and in turn, defective cilia beating (Diggle et al., 2014;

Horani et al., 2012; Horani et al., 2013; Kott et al., 2012; Mitchison et al., 2012; Moore et al.,
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Figure 1. Dynein subunits occupy sub-regions within DynAPs. (A) Schematic showing an MCC. The upper inset shows a schematic cross section

through an axoneme indicating the relative positions of ODAs and IDAs; the lower inset shows a representative en face optical section through the

MCC cytoplasm with dynAPs indicated DynAPs. (B) En face optical section through the cytoplasm of a Xenopus MCC expressing GFP-Stip1 (a

chaperone, green) and mCherry-Dnaaf5 (a DNAAF, magenta). Note near-perfect co-localization. Dashed box indicates region shown in high

magnification, split-channel views at right. Scale bars = 10 mm. (C) GFP-Dnai2 (a dynein subunit, green) co-localizes only partially with mCherry-Dnaaf5.

(D, E) Images showing enlarged views of individual DynAPs after pairwise labeling with the indicated tagged DNAAFs or chaperones. Smaller panels

show split channels, larger images show the merged channels. Note high degree of co-localization. (F) Similar pair-wise labeling with dynein subunits

reveals only partial co-localization. Scale bar = 1 mm for panels D-F. (G) Heatmap showing Pearson correlation for colocalization of GFP fusion proteins

with mCherry fusion proteins. Yellow indicates high value (Pearson’s R value = 0.85), while blue indicates low value (Pearson’s R value = 0.45). Exact

Pearson’s R values for each protein combination can be found in Figure 1—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Quantification of localization data.
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2013; UK10K Rare Group et al., 2017; Paff et al., 2017; UK10K et al., 2013; Zariwala et al.,

2013). These specialized DNAAFs are now known to act in concert with ubiquitous, broadly-acting

chaperones of the Heat Shock Protein (Hsp) Family (Cho et al., 2018; Li et al., 2017; Mali et al.,

2018; UK10K Rare Group et al., 2017; Omran et al., 2008; Paff et al., 2017; UK10K et al., 2013;

Yamaguchi et al., 2018; Yamamoto et al., 2010; Zhao et al., 2013; Zur Lage et al., 2018).

How DNAAFs organize the assembly of axonemal dyneins is a complex question, as each axo-

neme contains an series of closely related multiprotein complexes (King, 2018). For example, ODAs

and IDAs incorporate diverse heavy, intermediate, and light chains encoded by distinct genes; few

subunits are shared. Moreover, at least eight distinct IDA sub-types and two ODA sub-types have

been described (Dougherty et al., 2016; Fliegauf et al., 2005; King, 2018). Generally, disruption

of any single DNAAF has been found to impact both ODAs and IDAs (Fabczak and Osinka, 2019),

but a recent study suggests that distinct DNAAFs may be dedicated for the assembly of specific sub-

sets of dyneins (Yamaguchi et al., 2018). Another recent study has suggested that distinct DNAAFs

may catalyze specific stages of the dynein assembly process (Mali et al., 2018). This complexity

motivates another key question, this one regarding the spatial organization of axonemal dynein

assembly.

Several studies indicated that the DNAAFs and chaperones act together in cytosolic foci

(Diggle et al., 2014; Horani et al., 2012; Li et al., 2017; Mali et al., 2018), and we recently demon-

strated that DNAAFs, chaperones, and axonemal dynein subunits are sequestered in specialized

membrane-less organelles that we termed DynAPs (Huizar et al., 2018). DynAPs are multiciliated

cell (MCC)-specific organelles that display hallmarks of biological phase separation, with DNAAFs

and chaperones fluxing through rapidly while dynein subunits are stably retained (Huizar et al.,

2018). Though DynAPs display properties similar to many ubiquitous liquid-like organelles

(Banani et al., 2017; Shin and Brangwynne, 2017), little else is known of the cell biology underlying

DynAP assembly or function.

We show here that DynAPs contain functionally distinct sub-compartments. Confocal imaging

revealed that the organelles defined by enrichment of DNAAFs and/or chaperones are sub-divided

into sub-compartments specifically enriched for ODA or IDA subunits. Affinity-purification and mass-

spectrometry of IDA and ODA subunits from MCCs identified several novel interactors, including the

uncharacterized protein Daap1/C16orf71. We show that Daap1 is a cytoplasmic protein that is

enriched in DynAPs in both human and Xenopus MCCs. Moreover, Daap1 localization is restricted

to the ODA sub-region of DynAPs, where assays of fluorescence recovery after photobleaching

(FRAP) show it is stably retained. Finally, disruption of Daap1 elicits a severe loss of ODAs from

motile cilia. These data provide new insights into the structure and function of a still poorly defined,

cell-type specific, disease-associated organelle.

Results

Outer and inner arm dynein subunits occupy sub-regions within DynAPs
The Xenopus embryo epidermis is a mucociliary epithelium that serves as a highly tractable model

for understanding motile cilia (Hayes et al., 2007; Walentek and Quigley, 2017; Werner and

Mitchell, 2012). Using this system, we previously showed that while DNAAFs, chaperones, and

dyneins all co-localize in DynAPs with the canonical DNAAF, Ktu/Dnaaf2, dynein subunits displayed

relatively more variable co-localization (Huizar et al., 2018). Here, we explored these localization

patterns in more detail by pairwise co-expression of several fluorescently tagged DNAAFs, Hsp

chaperones, and axonemal dynein subunits. We examined their localization in en face optical sec-

tions through the cytoplasm of Xenopus MCCs in vivo using confocal microscopy (Figure 1A, lower

inset).

We found, for example, that the Hsp co-chaperone Stip1/Hop displayed essentially total co-locali-

zation with the assembly factor Dnaaf5/Heatr2 (Figure 1B), while by contrast, the outer dynein arm

subunit Dnai2 clearly displayed only partial overlap with Dnaaf5 (Figure 1C). In fact, pairwise tests of

five distinct DNAAFs and three chaperones revealed consistent, strong co-localization in all combi-

nations (Figure 1D,E,G). Conversely, pairwise tests with three different axonemal dynein subunits

consistently revealed only partial co-localization (Figure 1F,G). In all cases, IDA or ODA subunits

occupied distinct, well-demarcated sub-regions within DNAAF- or chaperone-labeled DynAPs
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(Figure 1F). Pearson correlations revealed that these differences were statistically significant (Fig-

ure 1—figure supplement 1).

We then performed pairwise tests of co-localization of several axonemal dynein subunits. Strik-

ingly, we found that IDAs and ODAs were partitioned into mutually exclusive sub-regions. For exam-

ple, the ODA subunit Dnai2 displayed near-perfect co-localization with two additional ODA sub-

units, Dnai1 and Dnal4 (Figure 2A,B). By contrast, Dnai2 displayed very little colocalization with IDA-

f subunit Wdr78 or the IDA-a, c, d subunit Dnali1 (Figure 2C,D; Figure 2—figure supplement 1A,

B). Again, Pearson correlations revealed these differences to be highly significant (Figure 2—figure

supplement 1C).

Specific sub-classes of inner dynein arms are partitioned to distinct sub-
compartments within DynAPs
We further observed that the different sub-classes of IDAs were also restricted to discrete sub-

regions within DynAPs. For example, the IDA-a, c, d subunit Dnali1 and the IDA-f subunit Wdr78 dis-

played only very little co-localization (Figure 2E; Figure 2—figure supplement 1D). By contrast,

Wdr78 displayed significantly stronger co-localized with another IDA-f subunit, Tctex1d2 (Figure 2F;

Figure 2—figure supplement 1D).

Together, these data suggest that axonemal dynein subunits are partitioned into functionally dis-

tinct sub-regions; based upon their contents, with ODAs, and at least two sub-classes of IDAs
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Figure 2. Outer and inner dynein arms localize to distinct sub-regions in DynAPs. (A) En face optical section of a Xenopus MCC expressing ODA

subunits GFP-Dnai1 and mCherry-Dnai2 (as per lower inset in Figure 1A). The dashed box indicates the area shown at higher magnification in the

panels to the right. Note near complete co-localization. (B) mCherry-Dnai2 also displays near-total co-localization with another ODA subunit, Dnal4. (C,

D) mCherry-Dnai2 shows very little co-localization with the IDA subunit GFP-Wdr78 or GFP-Dnali1. (E) IDA-f subunit mCherry-Wdr78 displays little co-

localization with IDA-a, c, d subunit GFP-Dnali1. (F) IDA-f subunits, mCherry-Wdr78 and GFP-Tctex1d2, show complete co-localization. Scale bar = 10

mm.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Co-localization data for IDAs and ODAs in DynAPs.
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occupying functionally-related restricted spaces within DynAPs. We will refer to these here as ‘ODA

sub-DynAPs’ and ‘IDA-f sub-DynAPs,’ etc.

Affinity-purification and mass-spectrometry identifies specific in vivo
interactors for vertebrate inner and outer dynein arm subunits in
Xenopus MCCs
Given the essential role of cytoplasmic DNAAFs and chaperones in assembly of axonemal dyneins

(Desai et al., 2018; Fabczak and Osinka, 2019), we reasoned that sub-DynAPs may also contain

regulatory factors with specific roles in the assembly or deployment of either IDAs or ODAs. To test

this idea, we sought to determine the interactomes of IDAs and ODAs directly in MCCs. We there-

fore developed a method to perform affinity-purification and mass-spectrometry (APMS) of in vivo

interaction partners using Xenopus mucociliary epithelium and then examined the localization of

interaction partners using in vivo imaging.

For this experiment, we took advantage of organotypically cultured explants of pluripotent ecto-

derm from early Xenopus embryos (so-called ‘animal caps’), which can be differentiated into a wide

array of organs and tissues, including mucociliary epithelium (Ariizumi et al., 2009; Walentek and

Quigley, 2017; Werner and Mitchell, 2012). We and others have used such explants previously for

large-scale genomic studies of ciliogenesis and cilia function (Chung et al., 2014; Kim et al., 2018;

Ma et al., 2014; Quigley and Kintner, 2017; Walentek et al., 2016).

As baits for APMS, we used GFP-fusions to either IDA or ODA subunits, expressing them specifi-

cally in MCCs using a well-defined MCC-specific a-tubulin promoter (Deblandre et al., 1999;

Tu et al., 2018). For each experiment, we excised ~550 animal caps and cultured them until MCCs

developed beating cilia (NF stage 23)(Figure 3A, green, blue arrows). Protein was isolated from

these tissue explants and APMS was performed using an anti-GFP antibody (Figure 3A). To control

for non-specific interactions, each APMS experiment was accompanied by a parallel APMS experi-

ment (i.e. from explants cut from the same clutch of embryos) using un-fused GFP (Figure 3A, gray).

The results of the latter experiment were then used to subtract background (Figure 3A, right; see

Materials and methods), and we calculated a Z-test, fold-change, and a false discovery rate for differ-

ential enrichment of identified proteins (see Materials and methods).

To identify ODA interactors, we used GFP-Dnai2; for IDAs we used GFP-Wdr78 (King, 2018).

For both proteins, we found that the bait itself was the most strongly enriched hit in the APMS,

providing an important positive control (Circled in Figure 3—figure supplement 1C, E; see

Supplementary files 1, 2). Dnai2 pulldown strongly enriched for known ODA-specific sub-units,

including the intermediate chain Dnai1, the heavy chains Dnah9/11, and the light chain Tctex1d1,

among others (Figure 3B; Figure 3—figure supplement 1A–C; Supplementary file 1). Conversely,

our Wdr78 sample was enriched for IDA components, specifically the IDA-f subtype, as expected

(Figure 3C); these included the axonemal dynein heavy chains Dnah2 and Dnah10, as well as several

light and intermediate chains (Figure 3C; Figure 3—figure supplement 1D–F; Supplementary file

2).

Finally, we identified weaker but significant interaction of Dnai2 and Wdr78 with a variety of

known chaperones and assembly factors, including Ruvbl1/2, Spag1, and Dnaaf1

(Supplementary files 1, 2), consistent with findings that these proteins are enriched in DynAPs and

are essential for axonemal dynein assembly (Fabczak and Osinka, 2019; Huizar et al., 2018). Our

data provide new insights into the compositions of ODAs and f-type IDAs in Xenopus MCCs and

also serve as positive controls for the specificity of our APMS approach in MCCs.

Identification and localization of novel IDA and ODA interactors
Importantly, our APMS identified not only known interactors, but also several novel interaction part-

ners. For example, we observed interaction between Dnai2 and Nme9 (Figure 3B). Nme9 is highly

similar to the Chlamydomonas ODA light chain LC3 and is present in the axonemes of airway cilia

and sperm flagella in mice (Sadek et al., 2003). As in mice, Xenopus GFP-Nme9 localized to MCC

axonemes (Figure 4A). More importantly, however, we also observed GFP-Nme9 in the cytoplasm,

where it colocalized with Dnai2 specifically in ODA sub-DynAPs (Figure 4B,C).

Another notable interaction was that between Wdr78 and Wdr18 (Figure 3C). This result is signif-

icant because Wdr18 has been implicated in the control of ciliary beating, but its mechanism of
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action is entirely unknown (Gao et al., 2011; Silversides et al., 2012). Interestingly, GFP-Wdr18 was

not present in the axonemes of motile cilia (not shown) but did localize to DynAPs (Figure 4D). Inter-

estingly, GFP-Wdr18 was also strongly enriched in the apical cytoplasm of MCCs, near the basal

bodies (Figure 4E). Similarly, another IDA interactor, Sf3a3 (Figure 3C), was also absent from
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Figure 3. Specific identification of outer and inner arm dynein interactors. (A) Schematic of APMS workflow for

identifying in vivo ODA and IDA interactors. GFP-tagged ODA or IDA driven by MCC-specific alpha-tubulin

promoter by plasmid injection into Xenopus embryos and animal caps were isolated at stage 8. The cultured

explants were collected at early ciliogenesis stage (stage 23) and subjected to APMS. Unfused GFP was assessed

simultaneously and the data subtracted to control for non-specific interactions. (B) Spoke diagram displaying

Dnai2 (ODA) interactors, line weight of spokes indicates Log2 fold-change of PSMs. b’. Schematic of outer dynein

arm indicating identified Dnai2 preys. (C) Spoke diagram displaying Wdr78 (IDA) interactors. c’. Schematic of inner

dynein arm (f type) indicating identified Wdr78 preys.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Proteins co-precipitating with Dnai2, Wdr78, and C16orf71 by APMS.
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axonemes (not shown), but did localize in DynAPs (Figure 4F). This protein was previously implicated

in splicing (Krämer et al., 2005), so as expected, we also observed GFP-Sf3a3 in nuclear foci in Xen-

opus MCCs (Figure 4—figure supplement 1). Together, these data demonstrate that our APMS

approach in Xenopus effectively identified novel, biologically plausible IDA and ODA-interacting

proteins in vivo.

C16orf71/Daap1 is a novel ODA-interacting protein with an interesting
evolutionary trajectory
The most interesting interaction we identified in this study was that between Dnai2 and C16orf71

(Figure 3B). Though highly conserved among vertebrates, this protein has yet to be the subject of

even a single published study. We first sought to confirm that C16orf71 is a bona fide ODA interac-

tor using a reciprocal APMS experiment, with GFP-tagged Xenopus C16orf71 as the bait. This analy-

sis revealed interaction of C16orf71 not only with Dnai2, but also other ODA subunits such as Dnai1,

Dnah9 and Nme9, as well as Ruvbl1 (Figure 5A; Figure 3—figure supplement 1G–I, Supp. File 3).

Based on these findings and data described below, we propose to rename this protein Daap1, for

Dynein Axonemal-Associated Protein 1.

In situ hybridization revealed that Xenopus Daap1 expression was enriched in MCCs in the epi-

dermis and the nephrostomes of the pronephros (Figure 5B). Likewise, examination of data from

the Human Protein Atlas (Uhlén et al., 2015) revealed that human DAAP1 protein is present exclu-

sively in tissues with motile cilia (Figure 5C). Interestingly, while Daap1 is conserved among verte-

brates, it appears to have followed an interesting evolutionary trajectory. In mammals, including

humans, orthologs of Daap1 are composed entirely of a domain of unknown function (DUF4701),

which phylogenetic analysis suggests is vertebrate-specific (Figure 5D). Our analysis of this sequence

suggests it is intrinsically disordered (Figure 5E), a feature commonly associated with liquid-like

organelles. By contrast, all non-mammalian vertebrate Daap1 orthologs contain not only the

DUF4701 domain, but also a long C-terminal extension harboring, remarkably, an NDK domain

E
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MergeD

F Sf3a3 Dnaaf2 Merge
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Figure 4. Localization of novel IDA and ODA interactors. (A) En face optical section just above the apical surface of a Xenopus MCC showing

axonemal localization of GFP-Nme9. (B) A similar optical section through the MCC cytoplasm shows near-perfect colocalization of GFP-Nme9 with the

ODA subunit mCherry-Dnai2 in DynAPs. Dashed box indicates area shown at higher magnification in the inset. (C) GFP-Nme9 only partially co-localizes

with mCherry-Dnaaf2. (D) En face optical section through the cytoplasm shows colocalization of GFP-Wdr18 with mCherry-Dnaaf2 in DynAPs. (E) A

similar section just below the MCC apical surface reveals GFP-Wdr18 localization near basal bodies labeled with RFP-Centrin4 (F) GFP-Sf3a3 co-

localizes with mCherry-Dnaaf2. Scale bars = 10 mm.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Sf3a3-GFP (green) also localizes to speckles within the nucleus (labeled with RFP-Histone2B, red) in a Xenopus MCC.
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similar to those in Nme8 and Nme9 (Figure 5D). We therefore chose this novel ODA interactor for

more in-depth study.

Daap1 is a DynAP-specific protein in Xenopus and human MCCs
We next examined the localization of the Daap1 protein in Xenopus MCCs. Intriguingly, no signal

was detectable in MCC axonemes as marked by Dnai2, and instead, GFP-Daap1 was localized exclu-

sively to foci in the cytoplasm of MCCs (Figure 6A,B). GFP-Daap1 strongly co-localized with Dnai2

(Figure 6B), suggesting that the interaction we identified by APMS occurs in DynAPs. Indeed,
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Figure 5. C16orf71/Daap1 is a novel ODA interactor specifically expressed in MCCs. (A) Spoke diagram
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showing C16orf71 protein expression levels in human tissues from the Human Protein Atlas (Uhlén et al., 2015).
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Daap1 displayed a partial co-localization with Dnaaf2 similar to that observed in the cytoplasm for

other ODA subunits (Figure 6C). Finally, Daap1 displayed little or no overlap with GFP-Wdr78

(Figure 6D), suggesting that it localized specifically in ODA sub-DynAPs (Figure 6D).

Because human DAAP1 lacks the C-terminal NDK domain present in the Xenopus ortholog

(Figure 5D), we were curious to know if the human ortholog also localizes to DynAPs. We therefore

performed immunostaining for DAAP1 on sections of human lung. As observed in Xenopus, DAAP1

was not detectable in the axonemes of human MCCs (Figure 7A, brackets), and cytoplasmic staining

for DAAP1 was strongly enriched in DynAPs, as indicated by co-labeling for the ODA subunit DNAI1

(Figure 7A, arrowheads).

This result then prompted us to examine the localization of a deletion construct comprising the

isolated N-terminal DUF4701 domain of Xenopus Daap1 (i.e. a Xenopus equivalent of human

DAAP1)(Figure 7B). We found that GFP-Daap1-Nterm also localized to ODA sub-DynAPs in Xeno-

pus MCCs (Figure 7C–E). Thus, despite their divergent evolutionary trajectories, both Xenopus and

human DAAP1 are DynAP-specific cytoplasmic proteins, and the N-terminal DUF4701 domain is suf-

ficient to direct localization to ODA sub-DynAPs.
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Figure 6. Daap1 is a DynAP-specific protein in Xenopus MCCs. (A) En face optical section above the apical

surface of a Xenopus MCC reveals absence of GFP-Daap1 in axonemes. (B) A similar optical section through the

MCC cytoplasm shows near-perfect colocalization of GFP-Daap1 with the ODA subunit mCherry-Dnai2 in DynAPs.

Inset shows higher magnification view of dashed box for each panel. (C) GFP-Daap1 only partially co-localizes with

mCherry-Dnaaf2. (D) GFP-Daap1 co-localizes only very weakly with the IDA subunit mCherry-Wdr78. Scale

bars = 10 mm.
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panels. Scale bars = 10 mm.
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Daap1 is stably retained in ODA sub-DynAPs
DynAPs are liquid-like organelles, and we previously found using FRAP that both the DNAAFs and

broadly-acting chaperones flux rapidly through these organelles, while both ODA and IDA subunits

are stably retained (Huizar et al., 2018). Because Daap1 does not localize to axonemes in either

humans or Xenopus, its localization to DynAPs suggests a role in ODA processing or assembly,

rather than a direct function in ciliary beating. We therefore expected Daap1 to flux rapidly through

DynAPs, similar to other cytoplasmic assembly factors. To our surprise, however, FRAP revealed

instead that Xenopus Daap1 was retained in DynAPs in a manner that was similar, but not identical,

to dynein subunit Dnai2 (Figure 8). Specifically, Daap1 displayed a somewhat slower initial recovery,

but rather than plateauing at around 20 s, the signal continued to slowly recover for at least 60 s

(Figure 8B).

We were also interested to know if human Daap1 displays similar dynamics, but FRAP assays in

human MCCs are very challenging. We therefore examined the FRAP kinetics of Xenopus Daap1-

Nterm as a proxy of the human protein for use in Xenopus MCCs. In FRAP assays, Daap1-Nterm
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displayed essentially identical kinetics to full-length Daap1 (Figure 8B). This result is consistent with

the localization data above and strongly suggests that the DUF4701 domain is sufficient to drive the

retention of Daap1 in ODA sub-DynAPs.

Daap1 is required for deployment of ODAs to the axoneme
We tested this idea using morpholino (MO)-mediated knockdown (KD) to disrupt splicing of the

Daap1 transcript in Xenopus (Figure 9—figure supplement 1A). Consistent with its interaction spe-

cifically with ciliary beating machinery, Daap1-KD had no impact on ciliogenesis itself, and well-

defined ciliary tufts were observed in all morphants. However, Daap1-KD elicited severe loss of

ODAs from MCC axonemes (Figure 9A,B, D, E). Both the intermediate chain Dnai2, as well as the

light chain Dnal1 were severely reduced, with only small domains of the proximal axoneme labeled

by either marker following knockdown (Figure 9A,B). We quantified this phenotype by examining

intensity plots for Dnai2 and Dnai1 along the length of motile axonemes and normalizing this against

co-expressed membrane-RFP (Figure 9C,F). Importantly, this phenotype was also observed using a

second MO targeting a distinct splice site, suggesting that this phenotype is a specific effect of

Daap1 depletion. (Figure 9—figure supplement 1B,C).

Given the specific localization of Daap1 to ODA sub-DynAPs, we expected that Daap1 loss

should specifically impact axonemal deployment of ODAs, and for the most part, this was the case.

While both ODA proteins were depleted along the entire length of the axoneme, the IDA-a, c, d

protein Dnali1 and the IDA-f protein Wdr78 displayed more subtle defects (Figure 9G,H,J,K). Dnali1

displayed a mild reduction along the entire axoneme (Figure 9I), while Wdr78 displayed an even

mild disruption that was largely restricted to the distal axoneme (Figure 9L). Interestingly, this result

may relate to the partial co-localization of Dnali1 with Dnai2 (Figure 2—figure supplement 1C) and

reflects the known intimate link between assembly of ODAs and IDA-c (e.g. Yamaguchi et al., 2018;

Yamamoto et al., 2020).

Overall, comparisons of subunit intensities demonstrated that loss of Daap1 had a significantly

greater impact on ODA compared to IDAs. Because the effect on IDA-f was quite subtle

(Figure 9L), we also made a more direct comparison by generating intensity plots to directly com-

pare Wdr78 and Dnai1 co-expressed in the same axonemes (Figure 9M–P). This analysis clearly

demonstrated a profoundly more substantial loss of ODAs than IDAs after Daap1 depletion.

Thus, Daap1 is a DynAP-specific protein that interacts with ODA subunits and is essential for the

deployment of ODAs to axonemes and further suggests a complex interplay of ODAs and IDAs is

required to establish the final patterning of motors that drive ciliary beating.

Discussion
Here, we have used live imaging to demonstrate that DynAPs contain sub-compartments that specif-

ically partition inner and outer dynein arm subunits (Figures 1 and 2). Using in vivo proteomics, we

identify several novel axonemal dynein interactors, including C16orf71/Daap1 (Figures 3 and 5). In

both Xenopus and humans, Daap1 is present exclusively in the cytoplasm and not in ciliary axo-

nemes. Moreover, the protein is highly enriched in DynAPs, where it is restricted to the ODA sub-

DynAP (Figures 6–8). Remarkably, loss-of-function experiments revealed a requirement for Daap1

predominantly in the deployment of ODAs throughout the length of MCC cilia, while the impact on

IDAs was only very mild, and restricted largely to the distal axoneme (Figure 9). Together, these

data are significant for (1) adding weight to the argument that DynAPs serve a specific function in

the assembly of axonemal dyneins, (2) demonstrating that sub-DynAPs represent molecularly and

functionally distinct spaces within DynAPs, and (3) suggesting that additional DynAP-specific regula-

tory factors remain to be discovered.

Novel axonemal dynein interactors
In addition to the mechanistic insights provided by this study (discussed in detail below), our method

for APMS and the datasets of in vivo IDA and ODA interactors provided here will be a useful

resource for future studies. For example, wdr18 knockdown results in left/right asymmetry defects in

zebrafish and mutations in human WDR18 are associated with congenital heart defects (Gao et al.,

2011; Silversides et al., 2012); both phenotypes are indicative of ciliary beating defects, but the

mechanism of Wdr18 action is entirely unknown. The data here are significant, then, for connecting
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Figure 9. Loss of C16orf71 disrupts deployment of dynein subunits to the axoneme. (A–B) Xenopus MCC axonemes labeled by membrane-RFP

(magenta) together with the GFP-Dnai2, an ODA intermediated chain in control embryo (A) and in C16orf71/Daap1 morphant (B). (C) Graph showing

intensity of GFP-Dnai2 along the normalized axoneme length (n = 29 for control, 51 for morphant). (D–E) MCCs labeled by membrane-RFP (magenta)

together with the GFP-Dnal1, an ODA light chain in control embryo (D) and in C16orf71/Daap1 morphant (E). (F) Graph showing intensity of GFP-Dnal1

along the normalized axoneme length (n = 27 for control, 26 for morphant). (G–H) MCCs labeled by membrane RFP (magenta) together with the GFP-

Dnali1, an IDA a, c, d interacting protein in control embryo (G) and in C16orf71/Daap1 morphant (H). (I) Graph showing intensity of GFP-Dnali1 along

Figure 9 continued on next page
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Wdr18 to IDAs (Figure 3C) and for reporting the localization of Wdr18 in motile ciliated cells for the

first time. Because we found that Wdr18 was not present in the axonemes of motile cilia but was

present in DynAPs and near basal bodies (Figure 4D,E), our data suggest that Wdr18 function may

not relate directly to IDA function, but rather to the assembly or transport of IDAs.

The more curious result here is the interaction of Wdr78 with Sf3a3 (Figure 3C), a well-defined

component of the RNA splicing machinery (Krämer et al., 2005). Though unexpected, this result,

and our finding that Sf3a3 is enriched in DynAPs (Figure 4F) is consistent with our recent report that

DynAPs contain both RNA and RNA-associated proteins (Drew et al., 2020), similar to other liquid-

like organelles such as stress granules and P bodies (Banani et al., 2017; Lin et al., 2015;

Mittag and Parker, 2018). Indeed, we found that Cfap43 and Cfap44, which tether IDA-f to micro-

tubules (Fu et al., 2018; Kubo et al., 2018), are both RNA-associated and localized to sub-DynAPs

in Xenopus MCCs (Drew et al., 2020).

These findings are especially interesting in light of two additional recent papers. First, a recent

paper reports that splicing factor Srsf1 plays a splicing-independent role in ciliary beating, likely via

control of translation of protein essential for ciliary beating (Haward et al., 2020). A second recent

paper reports the presence of ‘KL granules’ in Drosophila sperm that -like DynAPs- contain the

Dynein assembly chaperones Ruvbl1/2, and these granules are also highly enriched in the mRNAs

encoding axonemal dyneins (Fingerhut and Yamashita, 2020). Taken together, these findings sug-

gest that the role of RNA-associated proteins in DynAP assembly or function should be a rich area

for future investigation.

Daap1 and the Nme family of proteins and ciliary beating
Our data here also shed light on the evolution of motile cilia function and regulation in vertebrates,

particularly with respect to Daap1 and the Nme family of NDK proteins (Desvignes et al., 2009).

Three Nme proteins have been implicated in motile cilia function, including Nme8, which is ortholo-

gous to the LC3 ODA subunit in Chlamydomonas and has been implicated in human motile ciliop-

athy (Duriez et al., 2007; Pazour et al., 2006). Nme5 is also required for ciliary beating in Xenopus

and mammals, though its mechanism of action remains unknown (Anderegg et al., 2019;

Chung et al., 2014; Vogel et al., 2012). Nme9 (aka Txndc6 or Txl-2) is localized to motile cilia in the

mouse (Sadek et al., 2003), but its function is also unknown. It is significant, then, that we found

Nme9 to be localized to Xenopus MCC cilia (Figure 4A–C). The observed interactions with Dnai2

and Daap1 (Figure 3C, Figure 5A) suggest that it too may be an ODA subunit.

Curiously, examination of genome data using Xenbase (Karimi et al., 2018; Session et al., 2016)

suggests that Xenopus lacks the Nme8 gene, and further exploration in NCBI revealed that many

vertebrate genomes contain only Nme8 or Nme9, but not both (not shown). The linkage of an NDK

domain to the DUF4701 domain in non-mammalian Daap1 orthologs suggest the possibility that

these two protein domains may act in concert, and it is tempting to speculate that the NDK domain

of Daap1 in non-mammalian vertebrates may explain the absence of either Nme8 or Nme9 in those

genomes. Interestingly, a very recent report describes the discovery of novel NDK domain protein in

Tetrahymena with a specific role in stabilizing ODA dyneins in an inactive conformation for targeting

to axonemes (Mali et al., 2020). It is possible then that Daap1 plays a similar role in Xenopus. Con-

tinued studies in diverse organisms will thus be of great interest.

Figure 9 continued

the normalized axoneme length (n = 30 for control, 33 for morphant). (J–K) MCCs labeled by membrane-RFP (magenta) together with the GFP-Wdr78,

an IDA l1/f intermediated chain in control embryo (J) and in C16orf71/Daap1 morphant (K). (L) Graph showing intensity of GFP-Dnal1 along the

normalized axoneme length (n = 32 for control, 43 for morphant). Both Dnai2, an ODA Intermediated chain and Dnal1, an ODA light chain are severely

reduced in the axoneme in C16orf71 morphants, while IDA subunits display only mild loss from the distal most axoneme (inset). Yellow boxes indicate

regions shown in accompanying insets for each panel. (M–N) MCCs co-expressing a marker for both ODAs (Dnai2, green) and IDAs (Wdr78, magenta).

Loss of C16orf71 results in specific loss of ODAs in the axoneme (N), while both ODA and IDA properly localize in the axoneme in control (M). (O–P)

Graphs showing intensities of GFP-Dnai2 and mCherry-Wdr78 along the normalized axoneme length in controls (O) and morphants (P). Scale bars = 10

mm.

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. Validation of C16orf71 morpholinos.
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The composition and function of DynAPs
DynAPs have now been observed in human, mouse, Xenopus and zebrafish, so it is clear that these

organelles represent a conserved element of MCCs (Diggle et al., 2014; Horani et al., 2018;

Huizar et al., 2018; Li et al., 2017; Mali et al., 2018). However, the precise function of DynAPs

remains unknown, a situation shared with many liquid-like organelles. Genetic evidence suggests

that DynAPs are factories for axonemal dynein assembly, as genetic loss of DynAP-localized DNAAFs

consistently results in a failure of dynein arm assembly, failure of dynein deployment to axonemes,

and defective ciliary beating (Fabczak and Osinka, 2019). Our identification of Daap1 as yet another

protein that is enriched in DynAPs and is specifically required for deployment of axonemal dyneins

to cilia adds weight to the argument that DynAPs perform a critical assembly or deployment

function.

Strictly speaking, however, all DNAAF proteins and chaperones yet studied are present through-

out the cytoplasm and enriched in DynAPs, so we cannot rule out the possibility that dyneins are

normally assembled in the cytoplasm, while DynAPs serve some other function. For example,

DynAPs may act in storage or assembly of dyneins for rapid deployment to cilia (e.g. for ciliary

regeneration) or for quality control and/or degradation of mis-folded dyneins. Answering such ques-

tions is a key challenge, and is one faced generally for liquid-like organelles.

Regardless, our data clearly demonstrate that DynAPs are structurally partitioned, as are many

other liquid-like organelles (e.g. Feric et al., 2016; Jain et al., 2016; Schmidt and Rohatgi, 2016).

Moreover, our observation that Daap1 is restricted to ODA sub-DynAPs (Figures 6 and 7) and that

its loss results predominantly in ODA defects (Figure 9) argues that sub-DynAPs reflect a functional

sub-compartmentalization. Conversely, though it has been suggested that DNAAFs and chaperones

act in a relay system to catalyze iterative steps of ODA and IDA assembly (Mali et al., 2018), we

found no evidence of physical compartmentalization of any of the tested DNAAFs and chaperones

(Figure 1), suggesting that partitioned localization of those factors is not strictly required. Consistent

with this idea, though Ktu has been shown to specifically impact assembly of ODAs and IDA-c

(Yamaguchi et al., 2018), we found no restriction of Ktu localization within DynAPs (Figure 1 and

see Huizar et al., 2018). Together, our findings here provide a deeper cell biological framework in

which to understand the complex genetics of dynein assembly in motile ciliated cells.

Materials and methods

Xenopus embryo manipulations
Xenopus embryo manipulations were carried out using standard protocols. Briefly, female adult Xen-

opus were induced to ovulate by injection of hCG (human chorionic gonadotropin). In vitro fertiliza-

tion was carried out by homogenizing a small fraction of a testis in 1X Marc’s Modified Ringer’s

(MMR). Embryos were dejellied in 1/3x MMR with 2.5%(w/v) cysteine (pH7.8). Embryos were microin-

jected with mRNA, circular DNA or morpholinos in 2% Ficoll (w/v) in 1/3x MMR and injected

embryos were washed with 1/3x MMR after 2 hr.

Plasmids and MOs for microinjections
Xenopus gene sequences were obtained from Xenbase (http://www.xenbase.org) and open reading

frames (ORF) of genes were amplified from the Xenopus cDNA library by polymerase chain reaction

(PCR), and then are inserted into a pCS10R vector containing a fluorescence tag. In addition to the

vectors described previously (Huizar et al., 2018), the following constructs were cloned into pCS

vector: ruvbl2-mCherry, mCherry-zmynd10, GFP-wdr78, GFP-dnai1, GFP-dnal4, GFP-dnal1, GFP-

nme9, GFP-wdr18, GFP-sf3a3, GFP-c16orf71, GFP-c16orf71 N-term (1-527aa), GPF-tctex1d2 and

mCherry-wdr78. These constructs were linearized and the capped mRNAs were synthesized using

mMESSAGE mMACHINE SP6 transcription kit (ThermoFisher Scientific). Each 80 pg of each mRNA

was injected into two ventral blastomeres. For APMS, GFP-dnai2, GFP-wdr78 and GFP-c16orf71

N-term were inserted into pCS2 vectors under multiciliated-cell-specific alpha-tubulin promoter and

each 40 pg of each DNA was injected into blastomeres. C16orf71/Daap1 morpholinos were

designed to target 1st or 3rd exon-intron splicing junction, The MO sequences and the working con-

centrations include:
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MO #1: 5’-AGTAAGGTCTGTACACTTACCAGGG-3’, 30 ng per injection
MO #2: 5’-ACAAATGCAAGTTTTTCTTACCTCA-3’, 10 ng per injection

Immunoprecipitation of Xenopus animal caps for mass-spectrometry
To identify Dnai2 or Wdr78 interactors, circular plasmids of GFP only, GFP-dnai2 and GFP-wdr78

driven by MCC-specific a-tubulin promoter were injected into 4-blastomeres of 4 cell stage Xenopus

embryos. Approximately 550 animal caps per sample were isolated at stage eight using forceps and

were cultured in 1X Steinberg’s solution (0.58 mM NaCl, 0.64 mM KCl, 0.33 mM Ca(NO2)2, 0.8 mM

MgSO4, 5 mM Tris, 50 mg/ml gentamicin, pH 7.4–7.6) until sibling embryos reached stage 23. The

cultured explants were collected and immunoprecipitation (IP) was performed using GFP-Trap Aga-

rose Kit (ChromoTek, cat# gtak-20). Immunoprecipitated proteins were eluted in 2X sample buffer.

For MS of C16orf71, GFP only and GFP-c16orf71 plasmid driven by alpha-tubulin promoter were

injected into Xenopus embryos and ~500 animal caps were collected from each sample. The follow-

ing steps were performed with the same procedures as described for Dnai2 and Wdr78 AP. For sta-

tistical tests of enrichment, GFP-wdr78 and GFP-dnai2 share a GFP- only control

(GFP_1a_08292018, GFP_1b_08292018) and GFP-c16orf71 uses a separate GFP-only control

(GFP_1a_04252019, GFP_1b_ 04252019).

Affinity-purification-mass-spectrometry
Immunoprecipitated proteins were resuspended in SDS-PAGE sample buffer and heated 5 min at

95˚C before loading onto a 7.5% acrylamide mini-Protean TGX gel (BioRad). After 7 min of electro-

phoresis at 100 V the gel was stained with Imperial Protein stain (Thermo) according to manufac-

turer’s instructions. The protein band was excised, diced to 1 mm cubes and processed by standard

trypsin in-gel digest methods for mass-spectrometry (for experiments with baits Dnai2 and Wdr78)

or by the more rapid method of Goodman et al., 2018 for C16orf71. Digested peptides were

desalted with HyperSep Spin Tip C-18 columns (Thermo Scientific), dried, and resuspended in 30–60

ml of 5% acetonitrile, 0.1% acetic acid for mass-spectrometry.

Samples from experiments with baits Dnai2 and Wdr78 were analyzed on a Thermo Orbitrap

Fusion mass spectrometer and those with bait C16orf71 were analyzed using a Thermo Orbitrap

Fusion Lumos Tribrid mass spectrometer. In all cases peptides were separated using reverse phase

chromatography on a Dionex Ultimate 3000 RSLCnano UHPLC system (Thermo Scientific) with a C18

trap to Acclaim C18 PepMap RSLC column (Dionex; Thermo Scientific) configuration and eluted

using a 3% to 45% gradient over 60 min. with direct injection into the mass spectrometer using

nano-electrospray. Data were collected using a data-dependent top speed HCD acquisition method

with full precursor ion scans (MS1) collected at 120,000 m/z resolution. Monoisotopic precursor

selection and charge-state screening were enabled using Advanced Peak Determination (APD), with

ions of charge � + two selected for high energy-induced dissociation (HCD) with stepped collision

energy of 30% +/- 3% (Lumos) or 31% +/- 4% (Orbitrap Fusion). Dynamic exclusion was active for

ions selected once with an exclusion period of 20 s (Lumos) or 30 s (Orbitrap Fusion). All MS2 scans

were centroid and collected in rapid mode.

Raw MS/MS spectra were processed using Proteome Discoverer (v2.3). We used the Percolator

node in Proteome Discoverer to assign unique peptide spectral matches (PSMs) at FDR < 5% to the

composite form of the X. laevis reference proteome described in Drew et al., 2020, which com-

prises both genome-derived Xenbase JGI v9.1 + GenBank X. laevis protein sets, but with homeologs

and highly related entries combined into EggNOG vertebrate-level orthology groups (Huerta-

Cepas et al., 2016), based on the method developed in McWhite et al., 2020. In order to identify

proteins statistically significantly associated with each bait, we calculated both a log2 fold-change

and a Z-score for each protein based on the observed PSMs in the bait (‘expt’) versus control (‘ctrl’)

pulldown. The fold-change was computed for each protein as:

FCprotein i ¼ log2

ðPSMi;exptþ1Þ=
P

n

j¼1

ðPSMj;exptþ1Þ

ðPSMi;ctrlþ1Þ=
P

n

k¼1

ðPSMk;ctrlþ1Þ

0

B

B

B

@

1

C

C

C

A

;

where n is the total number of proteins considered in the experiment.
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For visualization purposes and initial rankings, we calculated significance for protein enrichment

in the experiment relative to control using a one-sided Z-test as in Lu et al., 2007 with a 95% confi-

dence threshold (z � 1.645), as:

Zprotein i ¼
fi;expt � fi;ctrl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fi;combð1�fi;combÞ
P

n

j¼1

PSMj;expt

þ
fi;combð1�fi;combÞ
P

n

j¼1

PSMj;ctrl

s ;

e for each protein based on the where fi ¼ PSMi=
P

n

j¼1

PSMj and

fi;comb ¼ PSMi;expt þPSMi;ctrl

� �

=
P

n

j¼1

PSMj;expt þPSMj;ctrl

� �

.

We determined significance by calculating p-values for each Z-score using the pnorm distribution

function available in the R Stats Package (v3.6.1). We corrected for multiple comparisons by comput-

ing the Benjamini-Hochberg false discovery rate using the p.adjust function, also from the R Stats

Package (v3.6.1). Probability values and false discovery rates are provided in Supplementary files

1–3.

Imaging, FRAP and image analysis
Xenopus embryos were mounted between cover glass and submerged in 1/3x MMR at stage 22 or

23, and then were imaged immediately. Live images were captured with a Zeiss LSM700 laser scan-

ning confocal microscope using a plan-apochromat 63 � 1.4 NA oil objective lens (Zeiss) or with

Nikon eclipse Ti confocal microscope with a 63�/1.4 oil immersion objective. For FRAP experiments,

a region of interest (ROI) was defined as a 1.75 mm X 1.75 mm box. ROIs were bleached using 50%

laser power of a 488 nm laser and a 0.64 msec pixel dwell time. Fluorescence recovery was recorded

at ~ 0.20 s intervals for up to 300 frames. Bleach correction and FRAP curve-fitting was carried out

using a custom python script (modified from http://imagej.net/Analyze_FRAP_movies_with_a_

Jython_script). For colocalization analysis, z- stack images were captured from at least 15 cells from

at least five different embryos. Z stacks were split to single sections and ROI for DynAPs was defined

in red channel (mCherry) of each section using ImageJ selection tool. The analysis was carried out

using Fiji coloc2 plugin.

Intensity of dynein subunits and length of axonemes were measured using Fiji. Plots were gener-

ated using PRISM eight and the ggplot2 package in R. One-way ANOVA and Tukey’s Honest Signifi-

cant Difference (HSD) test and Welch Two Sample t-test were performed in R.

Protein domain prediction
The human DAAP1 sequence was analyzed using the PSIPRED Protein Analysis Workbench for disor-

der and secondary structure prediction (Buchan and Jones, 2019).

Airway epithelial cell culture and immunostaining
Human trachea were isolated from surgical excess of tracheobronchial segments of lungs donated

for transplantation. These unidentified tissues are exempt from regulation by HHS regulation 45 CFR

Part 46. Paraffin embedded tracheal sections were fixed and immunostained as previously described

(Pan et al., 2007; You et al., 2002). Nuclei were stained using 4’, 6-diamidino-2-phenylindole (DAPI,

Vector Laboratories, Burlingame, CA, USA). The ODA protein, DNAI1, was detected using primary

antibodies obtained from NeuroMab (UC Davis, Ca, clone UNC 65.56.18.11). Antibodies to DAAP1

(C16orf71) were obtained from Sigma-Millipore (St. Louis, MO, HPA049468). Images were acquired

using a Zeiss LSM700 laser scanning confocal microscope.

In situ hybridization
In situ hybridization was performed as described previously (Sive et al., 2000) using DIG-labeled sin-

gle-stranded RNA probes against a partial sequence (1–1572) of Xenopus c16orf71 ORF. Bright field

images were captured with a Zeiss Axio Zoom. V16 stereo microscope with Carl Zeiss Axiocam HRc

color microscope camera.
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Rt-pcr
To verify the efficiency of C16orf71 MOs, MOs were injected into all cells at the 4 cell stage and total

RNA was isolated using the TRIZOL reagent (Invitrogen) at stage 23. cDNA was synthesized using

M-MLV Reverse Transcriptase (Invitrogen) and random hexamers. C16orf71 cDNAs were amplified

by Taq polymerase (NEB) with these primers: c16orf71 5F 5’-cttcagagcaggacggattt-3’, c16orf71

582R 5’-ggcagaggtgcttagatgtt-3’, c16orf71 600F 5’- gggcttgtcattgcagtttc-3’, c16orf71 1254R 5’-

tctctaccgtccttctcttctc-3’. odc1 primers were odc1 426F 5’-ggcaaggaatcacccgaatg-3’ and odc1 843R

5’-ggcaacatagtatctcccaggctc-3’.

Data deposition
Proteomics data has been deposited into Massive which in turn was passed to ProteomeXchange.

The Massive accession # is: MSV000085075 The direct link is https://massive.ucsd.edu/Proteo-

SAFe/dataset.jsp?task=f6a5e10c6e114b36b8c895664860db7e.

The ProteomeXchange # is PXD017980 as noted in the paper. The direct link is http://proteome-

central.proteomexchange.org/cgi/GetDataset?ID=PXD017980.

The direct link to the data ftp site is ftp://massive.ucsd.edu/MSV000085075/.
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