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Abstract Comparing sequential stimuli is crucial for guiding complex behaviors. To understand

mechanisms underlying sequential decisions, we compared neuronal responses in the prefrontal

cortex (PFC), the lateral intraparietal (LIP), and medial intraparietal (MIP) areas in monkeys trained

to decide whether sequentially presented stimuli were from matching (M) or nonmatching (NM)

categories. We found that PFC leads M/NM decisions, whereas LIP and MIP appear more involved

in stimulus evaluation and motor planning, respectively. Compared to LIP, PFC showed greater

nonlinear integration of currently visible and remembered stimuli, which correlated with the

monkeys’ M/NM decisions. Furthermore, multi-module recurrent networks trained on the same

task exhibited key features of PFC and LIP encoding, including nonlinear integration in the PFC-like

module, which was causally involved in the networks’ decisions. Network analysis found that

nonlinear units have stronger and more widespread connections with input, output, and within-area

units, indicating putative circuit-level mechanisms for sequential decisions.

Introduction
The ability to compare and make decisions about sequentially presented sensory stimuli is essential

for generating appropriate behavioral responses to the stimuli and events in our surroundings. Such

sequential decisions require incoming sensory information to be compared to information main-

tained in short-term memory. Although previous work has given insight into patterns of activity

across several cortical areas during sequential decision tasks, particularly those based on delayed

match and delayed nonmatch to sample paradigms (Freedman and Assad, 2006; Freedman et al.,

2001; Miller and Desimone, 1994; Miller et al., 1991; Wallis et al., 2001), the mechanisms and

computations underlying sequential decisions remain largely unknown. The current study examines

the pattern of neuronal activity across three interconnected frontal-parietal cortical areas—prefrontal

cortex (PFC), lateral intraparietal (LIP), and medial intraparietal (MIP)—during a delayed match to

category (DMC) task, which requires monkeys to indicate whether sequentially presented sample

and test stimuli belong to the same category. Our group showed previously that neural activity in

PFC, LIP, and MIP all encode learned categories during this task (Freedman and Assad, 2006;

Swaminathan and Freedman, 2012; Swaminathan et al., 2013), with evidence suggesting that LIP

is more directly involved in categorization of visual motion compared to MIP and PFC. However, the

mechanisms by which sample and test stimuli are compared in order to generate matching (M)/

nonmatching (NM) decisions are the focus of the current study.

The lateral PFC, LIP, and MIP are important processing stages for mediating decision-making and

other types of cognitive task (Andersen and Buneo, 2002; Andersen et al., 1997; Bisley and
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Goldberg, 2010; Colby and Goldberg, 1999; de Lafuente et al., 2015; Ding and Gold, 2012;

Funahashi et al., 1993; Gold and Shadlen, 2007; Gottlieb, 2007; Gregoriou et al., 2009;

Huk et al., 2017; Kim and Shadlen, 1999; Miller et al., 1996; Moore and Armstrong, 2003;

Padoa-Schioppa and Assad, 2006; Platt and Glimcher, 1999; Rossi-Pool et al., 2017; Seger and

Miller, 2010; Shadlen and Newsome, 1996; Squire et al., 2013; Sugrue et al., 2004; Zhou and

Freedman, 2019; Zhou et al., 2016; Zhou et al., 2018; Zhou et al., 2020). Specifically, PFC neural

activity has been shown to reflect the comparison of sequential stimuli during delayed match to sam-

ple tasks using either visual or vibrotactile stimuli, and such comparison-related activity correlates

with monkeys’ choice behavior (Hussar and Pasternak, 2012; Hussar and Pasternak, 2013;

Romo et al., 2004; Rossi-Pool et al., 2016). LIP neural activity was also recently reported to repre-

sent the match status of sequential stimuli in a delayed conjunction matching task (Ibos and Freed-

man, 2017). Moreover, MIP has been shown to be involved in planning manual movements and

mediating hand movements during decision-making tasks (Cui and Andersen, 2007; de Lafuente

et al., 2015; Snyder et al., 1997). However, because these three cortical areas have not been

directly compared in the same animals performing the same tasks, it is unclear how activity within

these cortical areas contributes to the comparison of sequential stimuli to form M/NM decisions.

In this study, we focus on the test period of the DMC task, during which monkeys made their M/

NM decisions by comparing remembered sample information with the currently visible test stimulus.

We found that test-period activity in all three cortical areas was correlated with monkeys’ M/NM

decisions, but in different ways. M/NM selectivity in PFC appeared with a shorter latency than in LIP

and MIP, suggesting a leading role for PFC in that decision process. Meanwhile, LIP showed the

strongest categorical encoding of both the previously presented sample stimulus and the currently

visible test stimulus. In contrast, MIP activity primarily reflected the monkeys’ arm and/or hand

movements used to report their decisions, rather than more abstract decision variables. Individual

neurons in PFC and LIP, but not MIP, encoded both the remembered sample and currently visible

test categories simultaneously during the test period. However, sample and test information in PFC

was combined in a more nonlinear fashion than in LIP, and PFC neurons— which showed a greater

level of nonlinear integrative encoding, correlated more closely with the monkeys’ M/NM decisions

compared to neurons with more linear encoding. This suggests that nonlinear integration of sample

and test information in PFC is an important information processing step for generating decision-

related M/NM encoding for sequential decision making.

Previous studies from our group and others have trained artificial recurrent neural networks

(RNNs) on similar behavioral tasks used in experimental neurophysiological studies—an approach

that has proven helpful in exploring putative circuit computations underlying cognitive tasks, gener-

ating predictions for analyses of experimental data, and potentially for enhancing capabilities of

RNNs (Engel et al., 2015; Masse et al., 2019; Yang et al., 2019). To further understand the circuit

mechanisms of M/NM computation and the roles of nonlinear integration of task variables during M/

NM decisions, we trained multi-module RNNs to perform the same DMC task and analyzed activity

of model units within each module of the hidden layer during task performance. The trained RNNs

exhibited high levels of behavioral task performance, and the units in each of the networks’ modules

showed similar patterns of activity and dynamics as in neural data from posterior parietal cortex

(PPC) and PFC. In particular, this included two key observations, which mirrored those from the neu-

ral data: (1) shorter-latency M/NM selectivity in the PFC module than the LIP module and (2) deci-

sion-correlated nonlinear encoding of sample and test information in the PFC module. We also

found that the M/NM selectivity in the LIP module was at least partially inherited from top-down

projections from the PFC module in the RNNs, potentially giving insight into the origin of M/NM

encoding observed in the experimental data. Interestingly, when we compared the patterns of con-

nectivity among RNN units, we found that nonlinear integrative units in the PFC are like ‘hubs’: in

comparison to the other units in the PFC module, they received greater feedforward input from the

LIP units, were more recurrently connected within the PFC module, and sent greater output to the

two key output units. Furthermore, through causal inactivation experiments in the RNNs, we showed

that the nonlinear integrative units in the PFC module were necessary for mediating the M/NM deci-

sions. Together, our results from both neurophysiological experiments in trained monkeys, and anal-

ysis of neural activity and connection weights in trained RNNs, suggest that nonlinear integrative

encoding, like that observed in PFC, functions as a key neuronal substrate for mediating sequential

decisions.
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Results

Task and behavioral performance
Two monkeys performed a DMC task, in which they needed to (1) categorize the sample stimulus,

(2) remember it during the delay period, (3) categorize the following test stimulus, (4) determine

whether the test was a categorical match to the sample, and (5) report that decision by releasing or

holding a manual lever (Figure 1A). Stimuli consisted of six random-dot motion directions that were

grouped into two arbitrary learned categories, with three motion directions per category

(Figure 1B). This corresponds to a total of 36 possible sample-test direction combinations and four

sample-test category combinations. Both monkeys performed the DMC task with high accuracy

(monkey A: 91%; monkey B: 97%), and greater than 80% for all 36 stimulus conditions during record-

ings from each of the three areas (Figure 1C, D, monkey A: PFC = 93% ± 4.6%, LIP = 93% ± 4.8%,

MIP = 88% ± 6.3%; monkey B: PFC = 98% ± 1.3%, LIP = 96% ± 4.1%, MIP = 98% ± 2.5%). Slightly

higher error rates were observed on match compared to nonmatch trials for all three datasets of
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Figure 1. Task and behavioral performance. (A) Sequence of the delayed match to category (DMC) task. Monkeys

needed to release a touch-bar when the categories of sample and test stimuli matched, or hold the bar and wait

for the second test stimulus when they did not match. The matching (M)/nonmatching (NM) decision was required

to be made during the test period to receive the reward. Stimulus offset occurred immediately after monkeys

released the touched-bar. The green dashed circle indicates the position of a neuron’s receptive field. (B) Monkeys

needed to group six motion directions into two categories (corresponding to the red and blue arrows) separated

by a learned category boundary (black dashed line). (C, D) Two monkeys’ average performance (accuracy) for all

stimulus conditions during recordings from prefrontal cortex (PFC), lateral intraparietal (LIP), and medial

intraparietal (MIP) recordings are shown separately. Each row corresponds to one monkey. The error bar denotes

standard deviation.

Zhou, Rosen, et al. eLife 2021;10:e58782. DOI: https://doi.org/10.7554/eLife.58782 3 of 30

Research article Neuroscience

https://doi.org/10.7554/eLife.58782


both monkeys (Supplementary file 1). These results indicate that monkeys reliably based their M/

NM decisions on the category membership of both sample and test stimuli.

M/NM selectivity in PFC, LIP, and MIP
We recorded neuronal spiking activity and local field potential (LFP) signals from PFC, LIP, and MIP

in separate sessions; in each session, one cortical area was targeted while the monkey performed

the DMC task (except for a subset of simultaneous PFC-LIP sessions). While neural data from the

same sessions were presented in previous reports from our lab (Swaminathan and Freedman,

2012; Swaminathan et al., 2013), the current analysis focuses on decision signals in the test period

of the task, which was not a primary focus of our previous work. Furthermore, our previous reports

compared only pairs of cortical areas rather than all three areas, as in the current study. We focus

our analysis on neurons that showed firing rates above an arbitrary threshold (the maximum of the

condition averaged firing rate across the task period � 5 spike/s) and were significantly modulated

by task variables (see Materials and methods). In order to capture the neuronal correlates of the M/

NM decision from sensory processing to motor planning, we analyzed neuronal activity from 50 to

350 ms following test stimulus onset since monkeys’ manual responses (indicating their M/NM deci-

sions) occurred within this epoch on 95.6% of match trials (monkey A: 246.2 ± 14.0 ms, monkey B:

282.7 ± 16.3 ms). Note that most of our subsequent analyses focus on a shorter-duration time win-

dow, ending prior to the monkeys’ mean reaction time. In this time period, a substantial fraction of

neurons in each cortical area (PFC: 104/145, LIP: 35/53, MIP: 60/66) showed significantly different

test-period activity between match and nonmatch trials (match vs. nonmatch; p<0.01, one-way

ANOVA). We classified these neurons as ‘match-preferring’ and ‘nomatch-preferring’ based on

whether they showed significantly higher firing rates for match or nonmatch trials, respectively

(example neurons in Figure 2—figure supplement 1 and population activity in Figure 2A–C).

To characterize the time course of M/NM selectivity, we performed a receiver-operating charac-

teristic (ROC) analysis comparing each neuron’s firing rates on match and nonmatch trials using a 50

ms window advanced in 5 ms steps (Figure 2D–F). Both match- and nonmatch-preferring neurons

showed M/NM selectivity shortly after test onset in all three areas, though the fractions of neurons

preferring match or nonmatch differed among the areas. PFC showed a relatively balanced distribu-

tion of match- and nonmatch-preferring neurons (match:nonmatch, 43:61), while LIP and MIP were

more biased toward match-preferringneurons (match:nonmatch, LIP: 22:13, MIP: 51:9, P(PFCvs.LIP) =

0.027, P(PFCvs.MIP) = 5.2 � 10�8, chi-square test). In all three areas, match-preferring neurons exhib-

ited significantly greater activity than nonmatch-preferring neurons during the test period (P(PFC) =

0.0372; P(MIP) = 0.0427; P(LIP) = 0.012; Wilcoxon test).

To compare the strength of M/NM selectivity between match- and nonmatch-preferring neurons,

we calculated the unbiased fraction of explained variance (FEV) by the M/NM choice (see Materials

and methods). On average, match-preferring neurons showed significantly greater M/NM selectivity

in all three areas (P(PFC) = 2.6 � 10�4; P(MIP) = 0.024; P(LIP) = 0.039; Wilcoxon test, Figure 2—figure

supplement 2), as well as significantly shorter latency of M/NM selectivity than nonmatch-preferring

neurons in PFC (118.0 vs. 128.5 ms, p=0.0071, Wilcoxon test; see Materials and methods). Differen-

ces of M/NM selectivity remained statistically significant in PFC and MIP (in both magnitude and

latency), but showed only a nonsignificant trend in LIP, after equating the mean firing rates between

groups of neurons (see Materials and methods, P(PFC, magnitude) = 0.0015; P(PFC, latency) = 0.0251; P(LIP)

= 0.12; P(MIP) = 0.040; Wilcoxon test). This suggests that the stronger M/NM selectivity of match-pre-

ferring neurons observed in these areas is unlikely to be explained by the higher firing rates of

match-preferring neurons.

Comparing the roles of PFC, LIP, and MIP in M/NM decisions
To elucidate the relative contributions of PFC, LIP, and MIP to M/NM decisions, we first compared

the time course of M/NM selectivity across areas. Since match-preferring neurons showed earlier

and stronger M/NM selectivity than nonmatch-preferring neurons, and the distributions of the two

groups of neurons were different among areas, we compared the M/NM selectivity of match-prefer-

ring and nonmatch-preferring neurons separately in each cortical area. Using an unbiased FEV analy-

sis, we found that match-preferring neurons exhibited significantly shorter-latency (see Materials and

methods) M/NM selectivity in PFC than in LIP and MIP (Figure 3A, PFC: n = 40, LIP: n = 22, MIP:
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n = 50; P(PFC vs. LIP) = 0.026, P(PFC vs. MIP) = 0.0058, Wilcoxon test). Nonmatch-preferring neurons

showed a similar trend (Figure 3B), although the difference did not rise to significance—likely due

to the small population of nonmatch-preferring neurons in LIP and MIP (PFC: n = 50, LIP: n = 12,

MIP: n = 9; P(PFC vs. LIP) = 0.11, P(PFC vs. MIP) = 0.13, Wilcoxon test). We also examined the M/NM

selectivity of the LFP signal, which likely reflects the activity and/or computations within the local net-

work (Burns et al., 2010; Logothetis et al., 2001). The mean amplitude of the LFP in PFC also

showed significantly shorter-latency M/NM selectivity than in LIP and MIP (Figure 3C, P(PFC vs. LIP) =

8.9 � 10�4, P(PFC vs. MIP) = 0.014, Wilcoxon test). We determined that the shorter-latency M/NM

selectivity in PFC compared to PPC was not due to differences in latency on sessions that targeted

each brain area, as we observed similar results in a different dataset from another study (conducted

in different monkeys) using the DMC task in our lab (Masse et al., 2017), in which neuronal activity

was recorded simultaneously from PFC and PPC using a semi-chronic multielectrode approach (see

Materials and methods). As shown in Figure 3—figure supplement 1, PFC neurons showed signifi-

cantly shorter-latency M/NM selectivity than PPC neurons in that study (p=0.0158, Wilcoxon test).

Furthermore, the raw LFP amplitude, which was recorded simultaneously from the two areas,

showed shorter-latency M/NM selectivity in PFC than in PPC in 52 of 58 recording sessions from

both monkeys (PFC:PPC, monkey Q: 151.2 ms:199.1 ms, monkey W: 157.3 ms:171.7 ms, the differ-

ence in 46 sessions reached statistical significance p<0.05, Wilcoxon test; Figure S3D–G). Together,

the shorter latency M/NM selectivity in PFC compared with PPC is consistent with a preferential role

for PFC in M/NM decisions.
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Figure 2. Matching (M)/nonmatching (M/NM) selectivity in prefrontal cortex (PFC), lateral intraparietal (LIP), and medial intraparietal (MIP) areas. (A–C)

The normalized population activity of both match-preferring and nonmatch-preferring neurons in PFC (A), LIP (B), and MIP (C). The shaded area

represents ± SEM. (D–F) The strength of the M/NM selectivity was evaluated using receiver-operating characteristic analysis for all neurons in PFC (D),

LIP (E), and MIP (F). Values close to 0.0 and 1.0 correspond to strong encoding preference for nonmatch and match, respectively. Values of 0.5 indicate

no M/NM selectivity.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Examples of match and nonmatch-preferring neurons in prefrontal cortex (PFC), lateral intraparietal (LIP), and medial
intraparietal (MIP) areas.

Figure supplement 2. Comparison of the matching/nonmatching (M/NM) selectivity between match-preferring and nonmatch-preferring neurons.
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Second, we tested whether the M/NM selectivity observed in each cortical area correlated with

specific cognitive processes, such as the comparison of sample and test categories, or movement

planning/initiation. For this purpose, we compared the activity of match-preferring neurons between

match and nonmatch trials aligned to the monkeys’ lever release. In the DMC task, monkeys

released the lever during both the first test period of match trials and the second test period of non-

match trials. However, the decision about the match status of the test stimulus occurred during the

first test period of both types of trials since the second test stimulus was only shown on nonmatch

trials and was always a match (requiring a lever release). Match-preferring neurons in PFC showed

greater activity preceding and up to the time of the lever release on match trials compared to non-

match trials (200–0 ms prior to the hand movement, Figure 4A, p=0.0018, paired t-test). In LIP,

match-preferring neurons showed greater activity during match trials vs. nonmatch trials only prior

to, but not coincident with, the hand movement (200–100 ms prior to the hand movement,

Figure 4B, p=0.0024; �100–0 ms, p=0.21; paired t-test). The activity of match-preferring neurons in

MIP during both match and nonmatch trials was very similar both before and during the hand move-

ment (200–0 ms prior to the hand movement, Figure 4C, p=0.99, paired t-test). These results sug-

gest that match-preferring neurons in PFC and LIP are more involved in nonmotor functions during

M/NM decisions, such as the comparison of sample and test categories, while match-preferring neu-

rons in MIP are primarily involved in motor functions such as planning and/or initiating hand/arm

movements.

Furthermore, we examined how neuronal M/NM selectivity covaried with the monkeys’ reaction

time (RT) across the three cortical areas. To examine this, we separated match trials into two equal-

sized RT subgroups (fast and slow) for each neuron (fast:slow: LIP = 240.6:287.3 ms, MIP =

243.9:293.1 ms, PFC = 233.4:278.3 ms, see Materials and methods). We then compared M/NM

selectivity for these subgroups in each area. Both the unbiased FEV and the SVM analyses revealed

significantly shorter-latency M/NM selectivity in MIP for faster vs. slower RT trials (Figure 4F and Fig-

ure 4—figure supplement 1C; P(FEV) = 0.0011, paired t-test; P(SVM) < 0.02, bootstrap), but not in
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Figure 3. The comparison of matching/nonmatching (M/NM) selectivity between prefrontal cortex (PFC), lateral intraparietal (LIP), and medial

intraparietal (MIP) areas. (A, B) The magnitude and time course of M/NM selectivity was determined using unbiased fraction of explained

variance (FEV). Different colors represent different cortical areas, and the shaded area represents ± SEM. The blue dots denote the time points for

which there were significant differences between PFC and MIP, while the green dots denote the time points for which there were significant differences

between PFC and LIP (p<0.05, Wilcoxon test). The upper inset figures show the cumulative distribution of the latency of M/NM selectivity. (C) The M/

NM selectivity of LFP amplitude in PFC, LIP, and MIP, which is shown in the same format as (A). The LFP signal from all recording channels in each area

is included.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Comparison of matching/nonmatching (M/NM) selectivity between prefrontal cortex (PFC) and PPC in the delayed match to
category (DMC) task.
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PFC or LIP (Figure 4D, E and Figure 4—figure supplement 1A, B; PFC: P(FEV) = 0.20, paired t-test;

P(SVM) > 0.3, bootstrap; LIP: P(FEV) = 0.60, paired t-test; P(SVM) > 0.40, bootstrap). Given the longer

latency of M/NM selectivity in MIP and the preponderance of neurons preferring match conditions

(which were accompanied by arm/hand movement), these results further suggest that M/NM selec-

tivity in MIP is primarily associated with motor aspects of the monkeys’ M/NM decisions.

Integrative sample and test category representations in PFC and LIP
To solve the DMC task, the category membership of both sample and test stimuli needs to be com-

pared or integrated to form the M/NM decision. To gain insight into the basis for this integration,

we examined how test-period activity in the three cortical areas encoded the previously presented

sample category and the currently visible test category, and how sample and test category represen-

tation is related to the M/NM decision process. We first quantified the neuronal representation of

sample and test categories in each area during the first test period using a two-way ANOVA on test-

period activity with sample and test categories as factors. The magnitude of the category selectivity

was quantified using unbiased fraction explained variance (see Materials and methods). We focused

on the time window preceding the mean RTs of both monkeys (0–250 ms after test onset) since sam-

ple and test category information must be integrated before the monkeys’ M/NM choice. Test-

period activity in LIP showed significantly stronger encoding of both sample and test categories than

PFC and MIP (Figure 5—figure supplement 1, P(LIP vs. PFC, sample) = 0.0083, P(LIP vs. MIP, sample) =

0.00076, P(LIP vs. PFC, test) = 0.0094, P(LIP vs. MIP, test) = 8.3 � 10�6, Wilcoxon test)—consistent with our

previous findings (Swaminathan and Freedman, 2012; Swaminathan et al., 2013)—suggesting

that LIP is more directly involved in category computation than PFC. Meanwhile, test-period activity

in both PFC and LIP both showed a combined encoding of sample and test category information,

but this was not observed in MIP (Figure 5A–C, PFC: FEV(sam) = 0.0399, p=6.7 � 10�8, FEV(tes) =

0.0108, p=1.7 � 10�5; LIP: FEV(sam) = 0.1143, p=3.5 � 10�6, FEV(tes) = 0.0402, p=5.7 � 10�4; MIP:

FEV(sam) = 0.0230, p=3.5 � 10�5, FEV(tes) = 0.0026, p=0.1146; paired t-test). This raises a question

about the manner by which sample and test information is simultaneously encoded in both PFC and
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Figure 4. Matching/nonmatching (M/NM) selectivity in medial intraparietal (MIP) cortex but not prefrontal cortex (PFC) and lateral

intraparietal (LIP) cortex primarily correlated with monkeys’ hand movement for reporting M/NM decisions. (A–C) The population activity of match-

preferring neurons during match and nonmatch trials when activity was aligned to the start of hand movement. The black stars mark the time periods

for which there were significant differences (p<0.01, paired t test). (D–F) The time course and magnitude of the M/NM selectivity in faster trials (red) and

slower trials (blue) were evaluated using unbiased fraction of explained variances (FEVs) for PFC (D), LIP (E), and MIP (F). The shaded area represents

± SEM, and the black dots denote the time points for which there were significant differences (p<0.01, paired t-test).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Matching/nonmatching (M/NM) selectivity in medial intraparietal (MIP) cortex correlated with monkeys’ reaction times (RTs).
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LIP—specifically whether sample and test information are encoded independently (e.g., additively),

reflecting linear-like integration. Alternatively, sample and test information might be combined in a

more nonlinear fashion in either or both areas, reflecting local computation.

To better understand how PFC and LIP integrate sample and test category information, we exam-

ined how each area simultaneously encoded the sample and test categories during the test period.

First, we asked whether there was a correlation between the strength of neurons’ sample and test

category encoding. A positive correlation would suggest that a special pool of neurons is preferen-

tially involved in encoding both the remembered sample and currently visible test categories, indica-

tive of sample-test category integration at the single-neuron level. In contrast, a negative correlation

or zero correlation would indicate that there is less overlap of the neurons’ sample and test category

encoding. We calculated the unbiased FEV of sample and test category encoding for each neuron’s

test-period activity and found PFC and LIP neurons that showed both sample and test category

selectivity. However, the correlation between sample and test category representations at the popu-

lation level differed between PFC and LIP. In PFC, there was a significant positive correlation

between sample and test category selectivity shortly after test onset (Figure 5D, r = 0.38,

p=2.9 � 10�6, t-test), while in LIP, they were not correlated (Figure 5E, r = 0.086, p=0.54, t-test).

The positive correlation in PFC was also evident by using the category tuning index (rCTI) to quantify

category selectivity (r = 0.33, p=0.001) (see Materials and methods). Furthermore, neuronal sample

category selectivity prior to test onset in PFC but not LIP (�50–50 ms relative to test onset) was cor-

related with M/NM selectivity during the test period (100–200 ms after test onset) (PFC: r = 0.33,

p=6.1 � 10�5; LIP: r = �0.20, p=0.15), suggesting that PFC neurons with greater sample category

encoding before test onset were more likely to be involved in the M/NM computation. These results
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Figure 5. Sample and test category representation in prefrontal cortex (PFC), lateral intraparietal (LIP), and medial intraparietal (MIP) areas. (A–C) The

selectivity of sample category (red) and test category (blue) was evaluated using the unbiased fraction of explained variance (FEV) for all neurons in PFC

(A), LIP (B), and MIP (C). The shaded area represents ± SEM. The red and blue dots represent the time points for which the sample and test category

selectivity are significantly greater than chance level (p<0.01, paired t-test), respectively. (D–F) The correlations between sample category and test

category selectivity (using FEV) during the test period for all neurons in PFC (D), LIP (E), and MIP (F). Each symbol represents a single neuron. Yellow

dots denote neurons that showed significantly mixed sample test category selectivity. The blue and red dots denote the neurons that showed only

significant sample category or test category selectivity, respectively, and the black circles denote the neurons that did not show significant category

selectivity (one-way ANOVA test, p<0.01).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Comparisons of category selectivity among prefrontal cortex (PFC), lateral intraparietal (LIP), and medial intraparietal (MIP) areas.
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suggest that single neurons in PFC, but not in LIP, integrate sample and test category information.

MIP is unlikely to be involved in such an integration process as very few MIP neurons showed signifi-

cant encoding of test category (Figure 5F).

Next, we examined whether sample and test category selectivity was integrated in a linear or

nonlinear manner in PFC and LIP. In the DMC task, there were four possible combinations of sample

and test categories (i.e., S1T1, where both sample and test stimuli are category 1, S1T2, S2T1, and

S2T2). Examining the correlation of test category selectivity between the two sample category condi-

tions (S1T1 vs. S1T2 and S2T1 vs. S2T2) provides insight into the way in which sample and test catego-

ries are integrated. We attempt to differentiate between two possible outcomes, with each

suggestive of a particular kind of representation: (1) test category selectivity that added linearly to

the existing sample category selectivity, in which the test category selectivity in the two sample cate-

gory conditions would be similar in sign and magnitude (positive correlation); and (2) test category

selectivity that combined nonlinearly with sample selectivity, in which the test category selectivity for

the two sample category conditions would be different (negative or no correlation). In particular, a

negative correlation would result if the neuron shows an opposite test category preference between

the two sample category conditions (i.e., M/NM selectivity). We evaluated these possibilities in PFC

and LIP using two approaches. The first was an ROC analysis, which quantified, for each neuron, test

category selectivity in each of the two sample category conditions, and then calculated their correla-

tion across the population in each area. This revealed a positive correlation in LIP shortly following

test onset (Figure 6B maximum r = 0.7052, p<0.001, t-test), but not much in PFC (Figure 6A maxi-

mum r = 0.2472, p=0.0027). Second, we trained a decoder (SVM) to classify test category using the

trials in one sample category condition (e.g., S1T1 and S1T2), and tested the decoder using trials

from the other sample category condition (e.g., S2T1 and S2T2). Decoder performance is expected to

be above chance if the test category selectivity was similar in each of the two sample category con-

ditions or below chance if the test category selectivity differed based on which sample stimulus has

been shown on that trial. As shown in Figure 6C, D, decoder accuracy is significantly greater than

chance shortly after test onset in LIP (maximum accuracy = 0.7738, p<0.01, bootstrap), but does not
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Figure 6. Mixed category selectivity was more nonlinear in prefrontal cortex (PFC) than in lateral intraparietal (LIP) cortex. (A, B) The correlation

coefficient between the test category selectivity (using receiver-operating characteristic [ROC] value) of two sample category conditions is shown for

both PFC (A) and LIP (B). The black dots mark the time points for which the correlation was statistically significant (p<0.01, t-test). (C, D) The decoding

performance of a test category classifier using neuronal activity in PFC (C) and LIP (D). The support vector machine (SVM) classifier was trained by using

activity from one sample category condition (e.g., S1T1 vs. S1T2) and tested with activity from the other sample category conditions (e.g., S2T1 vs. S2T2).

The shaded area represents ± STD, and the black stars mark the time points for which the decoder performance is significantly different from chance

level (bootstrap, p<0.05). (E) The nonlinearity index of mixed category-selective neurons in both PFC (red) and LIP (green). The shaded area represents

± SEM, and the black stars denote the time points for which there is a significant difference between LIP and PFC (unpaired t-test, p<0.05). The upper

panel shows the cumulative distribution of nonlinearity index shortly after test onset (50–150 ms after test onset) for both PFC and LIP neurons.
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exceed chance in PFC (maximum accuracy = 0.5381, p>0.50, bootstrap). Together, these results

suggest that the combination of sample and test category information during the test period is

more consistent with linear integration in LIP compared to PFC.

We quantified the degree to which the integrated sample-test category encoding during the test

period was linear or nonlinear by calculating a nonlinearity index for LIP and PFC neurons, which

showed both sample and test category selectivity in both LIP and PFC. The nonlinearity index was

defined as the absolute difference between the test category selectivity in two sample category con-

ditions quantified by the FEV between S1T1 and S1T2, or S2T1 and S2T2 (see Materials and methods).

The value of the nonlinearity index, which is not expected to be affected by linearly combined cate-

gory selectivity or M/NM selectivity, can range from 0 to 1. Values near 0 indicate linear-like com-

bined encoding of the two factors, while increasing values indicate nonlinear combination of sample

and test category selectivity. Because the neuronal activity shortly before monkeys’ M/NM choice

mainly correlated with monkeys’ M/NM choice (Figure 6), we focus on the time window shortly after

test onset (50–150 ms). As shown in Figure 6E, the nonlinearity index is significantly greater in PFC

than LIP during the early test period (p=0.0093, unpaired t-test). This suggests greater nonlinearity

in the combination of sample and test category representation in PFC compared to LIP, independent

of the strength of M/NM selectivity in these two areas. The more linearly integrated sample and test

category representations in LIP suggest that it is better suited for independently encoding the

remembered sample stimulus and currently visible test stimulus, perhaps facilitating readout of these

variables by downstream cortical areas. Considering the observation of shorter-latency M/NM selec-

tivity in PFC than LIP and MIP (Figure 3), the positively correlated and more nonlinear integration of

sample-test category selectivity in PFC is consistent with it combining remembered sample and visi-

ble test category information in order to facilitate M/NM decisions.

Nonlinear PFC encoding was preferentially engaged in M/NM decisions
The results presented so far suggest that PFC is more involved in integrating sample and test cate-

gory information to form M/NM decisions compared to LIP and MIP. We tested this idea more

directly by assessing the relationship between PFC neurons’ activity and monkeys’ M/NM decisions

as a function of the linearity or nonlinearity of their selectivity for sample and test categories. As in a

previous study (Lindsay et al., 2017), we performed a two-way ANOVA on test-period activity (0–

250 ms after test onset) with sample and test categories as factors to quantify the selectivity profile

of PFC neurons (Figure 7—figure supplement 1). This allowed us to identify two populations of

PFC neurons: (1) linearly integrating neurons (LIN), which exhibited main effects of both sample and

test categories (p<0.01) but a nonsignificant interaction term; and (2) nonlinearly integrating neurons

(NIN), which exhibited main effects of both sample and test categories (p<0.01), as well as a signifi-

cant interaction term (p<0.01). We also identified nonmixed-selective neurons (NMN), which showed

a significant effect of only sample category, test category or their interaction, but not mixed sample

and test category encoding. Note that the M/NM-selective NMNs are different from the NINs as

they did not show combined sample and test category encoding. Figure 7—figure supplement 2

shows test-period activity of three NINs, each of which encoded both sample and test categories,

and preferentially responded to one of the four sample-test category combinations. In order to test

whether the NINs were more involved in mediating DMC task performance than the other groups of

PFC neurons, we first compared the strength with which sample and test category information was

encoded among the NINs, LINs, and NMNs using the unbiased FEV. Interestingly, NINs showed sig-

nificantly stronger sample category encoding than either the LINs or sample category-selective

NMNs in PFC (Figure 7A, P(NIN vs. LIN) = 0.0036; p(NIN vs. NMN) = 4.6 � 10�8; Wilcoxon test), while the

strength of sample category selectivity did not differ between LINs and sample category-selective

NMNs (p=0.0917, Wilcoxon test). We also quantified the relationship between the nonlinear integra-

tive encoding and category representation of neurons in both PFC and LIP. This reveled a positive

correlation between the degree of nonlinear integrative encoding and the magnitude of sample cat-

egory selectivity in PFC but not LIP (Figure 7B and Figure 7—figure supplement 3A, PFC: r = 0.48,

p=1.4 � 10�9; LIP: r = 0.18, p=0.19), suggesting that sample category encoding in PFC but not LIP

was primarily mediated by NINs. However, NINs did not show significantly greater test category

selectivity than LINs and test category-selective NMNs (p(NIN vs. LIN) = 0.4642, p(NIN vs. NMN) =

0.2235). This might be because PFC showed weaker test category selectivity compared to LIP and
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may therefore be less involved in rapidly encoding the currently visible test category compared to

LIP.

Furthermore, NINs showed significantly greater and shorter-latency M/NM selectivity than the

NMNs in PFC (Figure 7C, E, p(latency) = 8.7 � 10�4, p(magnitude) = 5.6 � 10�4, Wilcoxon test;

focusing on M/NM-selective neurons in both groups). We did not include LIN for this analysis since

they did not show significant M/NM selectivity based on our criteria. To better clarify this, we calcu-

lated the correlation between the degree of nonlinear integrative encoding and the M/NM selectiv-

ity of PFC neurons (both magnitude and latency). We found a significant positive correlation

between the degree of nonlinear integrative encoding and the magnitude of M/NM encoding (r =

0.75, p=2.0 � 10�27), as well as a significant negative correlation between the degree of nonlinear

integrative encoding and the latency of M/NM selectivity of PFC neurons (r = �0.44, p=2.3 � 10�5).

These correlations suggest that the PFC neurons showing greater nonlinear category encoding

played a preferential role in M/NM computation. To ensure that this difference between NINs and

other PFC neurons was not due to differences in firing rates among the different groups, we com-

pared the mean test-period activity among these groups of neurons and did not find significant dif-

ferences (NIN: 12.8 spike/s; LIN: 11.0 spike/s, p(NIN vs. LIN) = 0.9670; category-selective NMN:

12.2 spike/s, p(NIN vs. NMN) = 0.7730; M/NM-selective NMN: 11.9 spike/s, p(NIN vs. NMN) = 0.7529, Wil-

coxon test).

C

D

E

F

NM sample 

NIN
LIN

0 100 200 300
Time from test onset (ms)

0

0.02

0.04

0.06

0.08

0.1

Sa
m

pl
e 

FE
V

0 100 200 300
Time from test onset (ms)

0

0.06

0.12

0.18

M
/N

M
 F

EV NM M/NM 

NIN
LIN

0 100 200 300
M/NM latency (ms)

0.2

0.4
0.6

0.8

1

Pr
op

or
tio

n
of

 n
eu

ro
ns

p = 8.7*10-4

NM M/NM 
NIN

0 100 200
Time from test onset (ms)

0.45

0.5

0.55

0.6

0.65

0.7

R
O

C

NM M/NM 
NIN

Selectivity between
 correct/error trials

0 0.2 0.4 0.6 0.8
M/NM FEV

0

0.2

0.4

0.6
N

on
lin

ea
rit

y 
in

de
x r = 0.75

p = 2.0*10

0 0.2 0.4 0.6
Sample FEV

0

0.2

0.4

0.6

N
on

lin
ea

rit
y 

in
de

x r = 0.48
p = 1.4*10

A

B

-9 -27

Figure 7. Nonlinearly integrating neurons (NIN) in prefrontal cortex (PFC) were more engaged in the delayed match to category (DMC) task. (A) The

sample category selectivity of the NIN, linearly integrating neurons (LIN), and nonmixed sample category-selective neurons in PFC were compared

using fraction of explained variance (FEV). The shaded area denotes ± SEM. The blue and black dots denote the time point for which the NINs were

significantly different from LINs and nonmixed sample category-selective neurons (NM sample), respectively; while the cyan dots denote the time point

for which there was significant difference between LIN and NM sample (p<0.05, Wilcoxon test). (B) The correlation between sample category selectivity

and nonlinearity indices of PFC neurons. Each dot denotes one single neuron. (C) The matching/nonmatching (M/NM) selectivity of the NINs, LINs, and

the nonmixed M/NM-selective neurons (NM M/NM) in PFC were compared using FEV. The colored dots denote the statistical significance in the same

format as in (A). (D) Correlation between M/NM selectivity and nonlinearity index of PFC neurons. (E) The cumulative distribution of the latency of M/

NM selectivity for NINs and NM M/NM. (F) The change in activity on incorrect match trials relative to correct match trials was evaluated using receiver-

operating characteristic (ROC) for both NINs and NM M/NM neurons. The shaded area denotes ± SEM. The red and black dots denote the time points

for which the activity changes of NINs and NM M/NM neurons were statistically significant (p<0.05, paired t-test), respectively; while the blue dots

denote the time points for which there were significant differences between NINs and the NM M/NM neurons (p<0.05, Wilcoxon test).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Selectivity profile of prefrontal cortex (PFC) (A) and lateral intraparietal (LIP) (B) neurons.

Figure supplement 2. Nonlinearly integrating neurons (NIN) in prefrontal cortex (PFC).

Figure supplement 3. Correlation between nonlinearly integrative encoding and encoding of task variables in lateral intraparietal (LIP) cortex.
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We also tested whether the activity of NINs was more closely correlated with the monkeys’ M/

NM decisions compared to M/NM-selective NMNs in PFC. To do so, we compared neuronal activity

on correct and incorrect match trials (in which monkeys should have released the lever in response

to the first test stimulus; monkeys made very few errors on nonmatch trials) with an ROC analysis

(see Materials and methods). ROC values greater than 0.5 indicate that a neuron’s M/NM selectivity

covaries with the monkey’s trial-by-trial M/NM choices, while values near or lower than 0.5 indicate

no correlation or anti-correlation, respectively. As shown in Figure 7F, significantly elevated ROC

values indicate that the activity of NINs (but not M/NM-selective NMNs) reflected the monkeys’ trial-

by-trial M/NM decisions (NIN: ROC = 0.604, p=0.0019; PN: ROC = 0.529, p=0.4325, paired t-test).

Furthermore, the difference in NIN activity between correct and incorrect match trials (measured by

ROC) was greater than that of M/NM-selective NMNs (p=0.0178, Wilcoxon test), suggesting that

activity of NINs was more closely related to the monkeys’ trial-by-trial M/NM decisions. Together,

our results suggest that PFC nonlinear integrative encoding is a key mechanism for the formation of

M/NM decisions.

PFC NINs are crucial for solving the M/NM computation in trained
multi-module RNNs
RNN models trained on complex behavioral tasks have shown promise for understanding neural

computations (Engel et al., 2015; Masse et al., 2019; Song et al., 2016)—particularly for behav-

ioral tasks that require integrating or comparing events across time. We therefore trained RNNs to

perform the DMC task in order to further examine circuit mechanisms underlying sequential deci-

sions. Recent studies from a number of groups, including our own, have employed RNN models with

a single pool of recurrent units in the hidden layer. However, this poses a challenge for relating

modeling work to neuroscience questions involving multiple interconnected brain areas, as in our

current study. Inspired by several recent studies (Kleinman et al., 2019; Song et al., 2016), we

implemented a multi-module RNN framework, in which neurobiological principles constrain the con-

nections between an RNN’s hidden units to generate recurrently connected modules. Because our

neurophysiological results suggest that MIP did not play a direct role in M/NM decisions in the DMC

task, we designed and implemented RNNs composed of two hierarchically organized modules, with

the module closer to sensory input intended to correspond to LIP, and the module closer to the

behavioral output corresponding to PFC. The modularity and hierarchy were imposed through a set

of initial constraints on networks’ recurrent weight matrices, as well as the input and output weight

matrices that project in sensory information and read out the behavioral decision (Figure 8A, B, see

Materials and methods). In designing our multi-module modeling approach, we also tested several

other methods of defining RNN modules, for example, via additional constraints on the identity/

number of projections across modules. However, we chose the constraints used here because they

consistently yielded networks whose structurally defined modules also manifested different patterns

of activity and task variable encoding, suggesting effectively modular solutions to the task (see Dis-

cussion and Materials and methods).

Both modules were assigned 50% of units in the network, with matched proportions of excit-

atory/inhibitory neurons (80% excitatory to 20% inhibitory). The LIP module receives the motion

direction input, while the PFC module projects to three response units—a unit corresponding to fixa-

tion, which the network must maintain until the test period, and separate match/nonmatch units,

which simulate holding and releasing a touch-bar, respectively. Aside from these biologically derived

architectural features, the modules’ functional roles were not explicitly constrained (e.g., the LIP

module and PFC module were not forced to encode category information or decision information,

respectively). Because we found similar results using networks with hidden layers varying across a

range of sizes (n = [100,200,300,400]; Figure 8—figure supplement 1), all results discussed hence-

forth used networks with n = 100 hidden units.

We independently trained 50 such networks with randomly initialized weights and identical hyper-

parameters to perform the DMC task using methods previously described (Masse et al., 2019). The

DMC task that the models were trained to perform was tailored to match that used in experiments:

the task sequence and motion directions were the same as in the monkey experiments, and the net-

works were required to indicate whether the sample and test stimuli belonged to the same category.

Network parameters (recurrent weights/biases and output weights) were optimized to minimize a

loss function with three parts: (1) one related to performance of the DMC task (cross-entropy of the
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Figure 8. Two-module recurrent neural networks (RNNs) showed similar patterns of activity and dynamics as in

neural data. (A) Model schematic of the two-module ‘frontoparietal’ RNNs. Each RNN consists of 24 motion

direction turned input units, 100 hidden units, and 3 response units. The hidden layer of each RNN consists of two

modules simulating lateral intraparietal (LIP) and prefrontal cortex (PFC), respectively, with half of the units

designated to each module (and E/I proportion maintained). Both the excitatory and inhibitory units in each

module are recurrently connected within each module. The cross-module connections are more sparse than

recurrent connection within each module. Only excitatory units project to the units in the other module. (B)

Example recurrent connectivity matrix of an example two-module RNN. Inhibition is strictly local to each module,

as is emphasized by the block-diagonal structure in the bottom fifth of rows. Excitatory projections between

modules are sparse, while excitatory projections within modules are denser. Each row/column represents one unit.

The 1–40th and 41–80th represent PFC and LIP excitatory units, respectively; while the 81–90th and 91–100th

represent LIP and PFC inhibitory units, respectively. (C) The averaged sample category selectivity, test category

selectivity, and matching/nonmatching (M/NM) selectivity of units in the LIP modules of the 41 successfully trained

RNNs were quantified using fraction of explained variance (FEV). Each thin line denotes the result from one RNN.

The thick lines denote the average of all the RNNs. (D) The sample category selectivity, test category selectivity,

and M/NM selectivity of PFC modules. (E) The comparison of the latencies of M/NM selectivity between LIP and

PFC modules. All RNNs were separated into the late and early group based on the latency of the M/NM selectivity

in LIP module. The error bar denotes STD. (F) The averaged nonlinearity index of units in LIP (green) and PFC

(pink) modules. The thick lines denote the average across all the RNNs. (G, H) The task variable encodings

(sample, test, and M/NM) of the more-nonlinear (G) and less-nonlinear (H) groups of units in the PFC module are

shown separately.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. We observe similar patterns of activity and task variable encoding across recurrent neural
networks (RNNs) with different sizes (50, 100, 150, and 200 units in each module, 100, 200, 300, and 400 units for
the whole networks, respectively).
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network’s generated outputs with respect to the correct outputs), (2) a metabolic cost on firing

rates (Harris et al., 2012), and (3) a metabolic cost on connectivity (Wildenberg et al., 2020) (see

details in Materials and methods). After training, 41 of 50 networks converged to perform the DMC

task with high accuracy (99.9% ± 0.0009%), which were therefore included in the following analysis.

Both LIP and PFC modules’ units encoded all three key task variables during the test period in a sim-

ilar manner to the neurophysiological data (Figure 8C, D). LIP module units showed significantly

greater encoding of both sample and test categories (sample: p=0.0069, tstats = 2.9; test:

p=7.6 � 10�24, tstats = 21.8; df = 40, paired t-test), while PFC module units showed significantly

greater M/NM encoding (p=1.2 � 10�7, tstats = 6.4, df = 40, paired t-test). Individual units in both

LIP and PFC modules encoded both sample and test category (Figure 8—figure supplement 1).

Importantly, M/NM selectivity in the PFC module emerged with similar or shorter latency than in the

LIP module. In particular, in networks where the M/NM signal emerged late (�100 ms after test

onset; n = 17 networks) in the LIP module, M/NM selectivity in the PFC module appeared with signif-

icantly shorter latency (Figure 8E; p=5.9 � 10�9 tstats = 7.9, df = 16). In the other 24 networks, the

latencies of M/NM selectivity in the PFC vs. LIP module did not differ significantly (Figure 8E;

p=0.69, tstats = –0.39, df = 23), despite a minimum sensory delay of 20 ms in the PFC vs. the LIP

module. As in the real LIP and PFC data, sample and test category encoding in the RNNs during the

test period was more strongly correlated in the PFC than LIP module (rPFC = 0.34± 0.24, rLIP =

�0.15± 0.20, p=2.3e-15, tstats = 12.5, df = 40, paired t-test), and more nonlinearly integrated in the

PFC than the LIP module (Figure 8F, p=1.1 � 10�16, tstats = 13.7, df = 40). Furthermore, the more-

nonlinear units in PFC module showed greater encoding of all the key task variables compared to

the less-nonlinear units (Figure 8G, H, sample: p=1.2 � 10�8, tstats = 7.0; test: p=8.9 � 10�18, tstats

= 14.8; M/NM: p=1.2 � 10�14, tstats = 11.8, df = 40, paired t-test). These results suggest that neural

activity and information encoding in the two-module RNNs closely resembled the neurophysiological

data and lend support to the idea that nonlinear integration of task-related variables in neural net-

works close to the output of the decision process (i.e., both PFC and the higher-order RNN module)

is critical for mediating M/NM computation in the DMC task.

We next aimed to explore the circuit mechanisms underlying M/NM computation in the RNNs.

Our neurophysiological data suggests that PFC is a likely site of M/NM computation, and that M/

NM selectivity in LIP might be inherited from top-down input from higher areas such as PFC. To test

this idea, we performed a projection-specific inactivation study in the RNNs. Specifically, we per-

formed precise, graded ablation of top-down projections from the PFC module to the LIP module

during the test period (see Materials and methods), smoothly titrating the amount of silencing

applied to each projection from complete (100% reduction in efficacy) to minimal (0% reduction in

efficacy). At each time point during the test period, and for each inactivation level, we measured the

impact on M/NM encoding in the LIP module. If the M/NM signal that arises in the LIP module is

inherited from the PFC module, then increasing abolishment of feedback from the higher to the

lower module during the test period should result in an increasingly strong effect on M/NM encod-

ing in the LIP module. In 17/41 networks, inactivating feedback during the test period had a signifi-

cant effect on M/NM encoding in the LIP module (Figure 9A, example RNN). To quantify the

correspondence between the size of the perturbation applied and the size of the effect at each

time point, we computed the correlation between the inactivation extent (a vector of values between

0 and 1) and mean M/NM encoding in the module (a vector of the same length). This analysis

revealed that the amount of feedback inactivation corresponded significantly with the size of the

effect on M/NM encoding in the LIP module of 17/41 networks (see Materials and methods). These

results suggest that M/NM encoding in the LIP module at least partially reflects top-down input

from the PFC module.

To further test the causal importance of nonlinear integrative units in the PFC module during M/

NM decisions, we performed an additional inactivation experiment in silico. We selectively silenced

different groups of units in the PFC module during the test period and then tested the impact of

that inactivation on behavioral performance of the network. For each RNN, we separated task-

related units in the PFC module into two groups based on their nonlinearity index and then silenced

the more-nonlinear group (top 50% ranked by nonlinearity index) and less-nonlinear group (bottom

50%) separately. This procedure allows a direct test of the causal involvement of different PFC units

based on their degree of nonlinear sample-test integration. As with the projection-ablation experi-

ments above, we smoothly titrated the amount of silencing applied to each unit from complete

Zhou, Rosen, et al. eLife 2021;10:e58782. DOI: https://doi.org/10.7554/eLife.58782 14 of 30

Research article Neuroscience

https://doi.org/10.7554/eLife.58782


(100% reduction in activity) to minimal (0% reduction in activity). At every level of inactivation, the

more-nonlinear group resulted in a greater behavioral effect than the other group, even though they

contained the same number of neurons and were inactivated to the same extent (Figure 9B). We

obtained very similar results after leaving out the units directly projecting to the response units (Fig-

ure 9—figure supplement 1), This implicates a specific ablation of the M/NM computation rather

than a gross disruption of the network’s wiring to decision readouts in the behavioral deficit that

results from inactivating the more-nonlinear group of PFC units. Additionally, this difference was not

due to differences in the activity level of the two groups of units as the mean activity was similar

between the two groups (p=0.98, tstats = 0.02, df = 40, paired t-test) during the test period. These

results suggest that nonlinear integrative units in PFC module of our RNNs play a key role in the M/

NM decisions for solving the DMC task.

Lastly, we explored potential circuit mechanisms underlying this critical role of nonlinear integra-

tive encoding in the PFC module during M/NM decisions. Because they allow complete knowledge

of the connectivity between hidden units, RNNs are also a model system uniquely well-suited to

exploring circuit mechanisms that underlie network behavior. We examined the input and output

weights of the PFC units and calculated the correlation between the connection weights and the

degree of nonlinear integrative encoding of the PFC units for each RNN. We found that PFC nonlin-

ear integrative units were more likely to receive greater feedforward input from the LIP module,
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Figure 9. Circuit mechanisms underlying nonlinear integration of task variables to form matching/

nonmatching (M/NM) decisions. (A) The M/NM selectivity of units in an example lateral intraparietal (LIP) module is

shown as a function of time after increasingly inactivating the feedback projection from prefrontal cortex (PFC)

module during the test period. Different colors denote different inactivation levels. (B) The behavioral performance

of the recurrent neural networks (RNNs) after gradually inactivating the more-nonlinear and less-nonlinear groups

of units in the PFC module. Each thin line denotes the result from one RNN. The thick lines denote the averaged

performance for all 41 RNNs. (C) The Spearman rank correlations between the feedforward input weights from the

LIP modules and the nonlinear integrative index values of PFC module units. (D) The Spearman rank correlations

between the recurrent connection weights of units within the PFC module and their nonlinear integrative index

values. (E) The Spearman rank correlations between the output weights to different types of response units and

the nonlinear integrative indexes of units in the PFC module. The M and NM units were responsible for reporting

the match and nonmatch decisions, respectively.

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. Behavioral performance of recurrent neural networks (RNNs) after gradually inactivating the
more-nonlinear and less-nonlinear groups of units in the prefrontal cortex (PFC) module.
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indicated by the positive correlations between the nonlinearity index and the feedforward input

weights from the LIP module (Figure 9C, r = 0.52 ± 0.13). Meanwhile, the nonlinear integrative units

were more recurrently connected within the PFC module than the other PFC units, indicated by the

positive correlations between PFC neurons’ nonlinearity index and their recurrent input/output

weights (Figure 9D, input: r = 0.27 ± 0.14; output: r = 0.34 ± 0.14). Furthermore, the nonlinear inte-

grative units in the PFC module were more likely than other PFC module units to project to the

match and nonmatch response units, but not the fixation response unit. This is shown by the positive

correlations between the nonlinearity index and the output weights to the M/NM response units,

and negative correlations between the nonlinearity index and the output weights to the fixation unit

(Figure 9E, M/NM units: r = 0.30 ± 0.17; fix units: r = �0.20 ± 0.13). These results suggest that PFC

nonlinear integrative units may derive their nonlinear encoding as a result of their hub-like strong

interconnection with both input and output units as well as recurrent connections with other PFC

module units.

Together, the two-module RNN simulations and in silico inactivation experiments reinforce the

plausibility of our central neurophysiological findings of the importance of PFC nonlinear integrative

encoding of task-relevant information for mediating sequential decisions during the DMC task.

Discussion
In this study, we directly compared neural activity in PFC, LIP, and MIP in monkeys performing a

delayed match-to-category task and focused on understanding how sequential decisions are carried

out across the cortex. In particular, we sought to understand where, when, and how the remem-

bered sample stimulus and currently visible test stimulus are integrated to reach a M/NM decision.

We found that PFC functions as a candidate source of M/NM decision signals. By contrast, LIP’s role

is more aligned with stimulus evaluation and short-term memory, and MIP primarily reflects pre-

motor/motor functions. We also highlight a particular form of encoding in PFC—nonlinear mixed

encoding of sample and test information—during the decision phase of the task as being especially

important for mediating the monkeys’ M/NM decisions.

These interpretations arise primarily from comparisons of the magnitude, latency, and format

with which task variables are encoded in PFC, LIP, and MIP. First, we found that test-period activity

in LIP showed the strongest categorical encoding of both the remembered sample and the currently

visible test stimulus, consistent with it playing a primary role representing the category of both visi-

ble and remembered stimuli during the DMC task. Second, LIP appears less directly involved than

PFC in transforming categorical encodings into M/NM decisions. This is supported by the longer-

latency M/NM selectivity in LIP compared with PFC, suggesting that M/NM encoding in LIP may

reflect input from higher cortical areas, such as PFC. Test-period activity in MIP, on the other hand,

was found to reflect only the remembered sample category but not the currently visible test cate-

gory. Instead, MIP activity during the test period was dominated by motor-related encoding arising

with a longer latency compared to M/NM selectivity in PFC, consistent with previous reports

(Cui and Andersen, 2007; Swaminathan et al., 2013). These results indicate that MIP is unlikely to

be directly involved in the comparison of sample and test categories, but instead may receive M/NM

signals from another decision-related area, such as PFC, during decision execution.

Our analyses also reveal three lines of evidence that PFC leads the M/NM decision process during

sequential decision tasks like DMC. First, M/NM selectivity of both spiking and LFP signals arose

with a shorter latency in PFC than in both PPC areas, consistent with a flow of M/NM encoding from

PFC to PPC. Second, PFC neurons showed a relatively balanced preference for both ‘match’ and

‘nonmatch,’ while LIP and MIP were biased toward preferring ‘match’ conditions, which were accom-

panied by hand movements. Balanced M/NM representation in PFC suggests it is more likely to

reflect the abstract M/NM decision rather than preparatory motor activity. Furthermore, those PFC

neurons responding more strongly to nonmatching test stimuli may be involved in PFC’s established

role in response inhibition (Aron et al., 2014; Krämer et al., 2013; Schall and Godlove, 2012) (i.e.,

withholding a motor response on nonmatch trials). Third, the sample and test categories are com-

bined more nonlinearly in PFC than in LIP and MIP, and PFC neurons showing nonlinear encoding

were more strongly correlated with the monkeys’ decisions than other PFC neurons. Previous studies

using a delayed match to sample task with visual motion stimuli observed comparison-related activ-

ity in both PFC and medial temporal cortex (MT), but found that such activity was decision-
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correlated only in PFC (Lui and Pasternak, 2011; Zaksas and Pasternak, 2006). Together, these

results are suggestive of an abstract M/NM decision process in PFC that intervenes between stimu-

lus evaluation (motion categorization) in areas like LIP (Zhou and Freedman, 2019) and motor plan-

ning in areas like MIP.

Previous studies using a delayed match to sample task, rather than the categorization task used

in our study, reported that some MT neurons’ activity was suppressed on match trials, and that

match suppression in MT emerges with a shorter latency than M/NM selectivity in PFC. This suggests

that a distributed network, including both PFC and early sensory cortex, might be involved in

sequential decisions (Hussar and Pasternak, 2012). Although we observe M/NM selectivity across

frontoparietal cortical areas, the pattern of results we observed suggests that PFC is a likely site of

M/NM computation in the DMC task. LIP is considered to be closer to sensory input and upstream

motion processing areas (e.g., MT) compared to PFC, but our results suggest that PFC is more

closely involved in M/NM computation than LIP. Different conclusions regarding the roles of these

areas between different studies could be due to the unique cognitive demands of the DMC task

compared to the delayed match to sample tasks used in previous studies, which could lead to differ-

ences in the network of areas recruited to solve each task. Previous work in MT during the DMC task

did not find abstract encoding of visual motion categories (Freedman and Assad, 2006). This makes

it unlikely that MT would show categorical match enhancement or suppression during the DMC task.

Cortical neurons have been shown to encode mixed representations of multiple task variables

during cognitively demanding tasks (Johnston et al., 2020; Parthasarathy et al., 2017;

Rigotti et al., 2013; Zhang et al., 2017), and nonlinear mixed selectivity (NMS) in PFC has been par-

ticularly emphasized as an important mechanism for cognitive computations. Specifically, NMS can

potentially facilitate a linear readout of task variables, and the strength of NMS is correlated with the

subjects’ behavior (Fusi et al., 2016; Ramirez-Cardenas and Viswanathan, 2016; Rigotti et al.,

2013). Our observation of nonlinear integrative encoding in PFC may be related to recent experi-

mental and theoretical work on NMS in PFC (Parthasarathy et al., 2017; Rigotti et al., 2013;

Zhang et al., 2017). Our results suggest that the way in which task variables are integrated (i.e., lin-

ear vs. nonlinear) differs between cortical areas, and such differences potentially give insights into

underlying functions of each area. We found that test period encoding of the remembered and

currently visible stimuli was integrated, or mixed, in both LIP and PFC, but in different ways. In LIP,

the linearly integrated encoding of sample and test information could faithfully encode stimulus

information and facilitate downstream readout of both variables, which is in accordance with LIP’s

role in evaluating sensory stimuli (Zhou and Freedman, 2019). In contrast to LIP, sample and test

category selectivity was more nonlinearly integrated in PFC, and such nonlinear integrative encoding

was correlated with the monkeys’ M/NM decisions. These results build on and extend previous find-

ings, and suggest that nonlinear integrative encoding in PFC is a key mechanism for manipulating

the encoding of sensory stimuli and items in working memory to form decision-related (M/NM) rep-

resentations. Our results are consistent with the idea that mixed integrative encoding in PFC and LIP

may relate to the core functions of each area during the DMC task: in areas closer to sensory input,

such as LIP, linear integrative encoding may support independent encoding of visible and remem-

bered stimulus features. In areas more associated with cognitive or task-related functions, such as

PFC, NMS may facilitate the integration of task-relevant variables in order to satisfy the task

demands.

Despite neurophysiological evidence that PFC neurons nonlinearly mix/integrate information, a

mechanistic, circuit-level understanding of how they do so has remained elusive. Here, we extended

a burgeoning class of model system—artificial RNNs trained to perform cognitive tasks—to explore

the mechanisms for and importance of such nonlinear integration during decision making

(Masse et al., 2019; Song et al., 2016). Several recent efforts have successfully trained such

biologically inspired RNNs with multiple modules (analogous to distinct cortical areas)

(Kleinman et al., 2019; Michaels et al., 2020; Pinto et al., 2019). Inspired by these, we trained a

population of hierarchical, modular RNNs, the lower corresponding with LIP and the higher with

PFC, to perform the DMC task. The units of our two-module RNNs exhibited highly similar patterns

of activity as in neuronal physiology data, including both the key features of information encoding

within either LIP or PFC and the functional differences between LIP and PFC. Future studies with

RNNs that include more realistic motor output modules will likely be useful for understanding how

decisions are transformed into specific actions.
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These RNN models’ primary benefits are twofold: first, they offer full knowledge of network con-

nectivity; and second, they facilitate causal perturbations analogous to those used in experimental

preparations. Using the RNNs’ synaptic connectivity matrices, we first identified a relationship

between neuronal connectivity and nonlinear integration. Relative to PFC module units that more lin-

early integrated sample/test category information, nonlinear integrative units in the PFC module

were more strongly connected to inputs, outputs, and with one another. This suggests that PFC

NINs might serve as ‘hubs’ for information integration and transformation to solve cognitive tasks.

We also extended causal approaches used in neuroscience experiments to provide important

insights into the mechanisms underlying M/NM computation and the role of nonlinear integration in

the trained RNNs. In vivo, perturbations of neuronal activity/connectivity are usually targeted based

on features like anatomy or genetic identity. Here, we adopted an alternative targeting approach,

selectively and gradually silencing the activity of artificial units based on the extent to which they

show a particular pattern of information encoding (in this case, nonlinear integration of sequentially

presented stimuli), and ablating connections based on the identities of the pre- and postsynaptic

modules. Using this type of functional targeting, we first examined the functional interaction

between the LIP and PFC modules, finding that M/NM selectivity in the LIP module was significantly

modulated by top-down input from the PFC module. Second, we validated the necessity of nonlin-

ear integrative encoding for mediating the M/NM decisions during the DMC task. These are impor-

tant complements to our experimental results, which demonstrate correlations between the activity

of different neurons in PFC/LIP with monkeys’ trial-by-trial decisions, and make predictions which

can guide future experiments and data analysis.

Critically, however, we note that not all of the approaches we tried for enforcing modularity by

constraining connectivity resulted in networks that exhibited functionally modular solutions to the

DMC task. We found that when the criteria that define which neurons can send or receive out-of-

module connections are too restrictive, for example, networks are not allowed sufficient flexibility in

how they communicate information between modules. In this regime, networks can be pushed to

‘solve’ tasks within one module rather than effectively modularizing the computation across all the

modules, and thus appear modular in structure but not in function. Careful verification that modular

connectivity also results in modular computation, through analysis of RNN activity and encoding, will

therefore be essential when using multi-module RNN models in studying neural processes distrib-

uted across multiple brain regions. In our experiments, we found parsimony to be a useful principle

in obtaining functionally modular networks, and had the most success using a simple set of con-

straints—sparser connections between modules than within modules, with inhibitory connections

restricted to within-module targets. Although we also explored additional restrictions on how mod-

ules communicate, including the prohibition of direct connections between units receiving external

sensory inputs and units projecting to the network’s behavioral output, these additional restrictions

did not help to yield networks matching the key features of the neural data in the current study.

It will be important to extend this work to examine the roles played by a wider network of cortical

and subcortical areas in sequential decisions. This includes premotor cortex, which shows decision-

related activity during a shape (cat vs. dog) DMC task (Cromer et al., 2011) and abstract decision

tasks (Wallis and Miller, 2003), as well as subcortical structures such as basal ganglia and thalamus.

Future studies need to conduct large-scale simultaneous recordings from multiple brain areas to

characterize the real-time functional interactions among these brain regions, as well as extend inves-

tigations of multi-module RNNs in parallel with experimental work.

Materials and methods

Datasets
This study includes five datasets from two independent experiments. Most of the data are from a

DMC experiment that includes a PFC dataset, an LIP dataset, and an MIP dataset. Analyses from

these datasets have been published previously (Swaminathan and Freedman, 2012;

Swaminathan et al., 2013), though unrelated to the present study. The data in Figure 3—figure

supplement 1 originated from a DMC learning experiment (Masse et al., 2017). This study was per-

formed in strict accordance with the recommendations in the Guide for the Care and Use of Labora-

tory Animals of the National Institutes of Health. All of the animals were handled according to
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approved Institutional Animal Care and Use Committee (IACUC) protocol of The University of

Chicago.

Behavioral task and stimulus display
The DMC task has been described previously (Freedman and Assad, 2006; Swaminathan and

Freedman, 2012) and is briefly summarized below. In this task, monkeys were trained to release a

lever when the categories of sequentially presented sample and test stimuli matched, or hold the

lever when the sample and test categories did not match. Stimuli consisted of six motion directions

(15˚, 75˚, 135˚, 195˚, 255˚, 315˚) grouped into two categories separated by a learned category bound-

ary oriented at 45˚ (Figure 1B). Trials were initiated by the monkey holding the lever and keeping

central fixation. Monkeys needed to maintain fixation within a 2˚ radius of a fixation point through

the trial. 500 ms after gaze fixation was maintained, a sample stimulus was presented for 650 ms, fol-

lowed by a 1000 ms delay and a 650 ms test stimulus. If the categories of the sample and test stimuli

matched, monkeys needed to release a manual touch-bar within the test period to receive a juice

reward. Otherwise, monkeys needed to hold the touch-bar during the test period and a second

delay (150 ms) period, and wait for the second test stimulus, which was always a match, and then

release the touch-bar, so that monkeys concluded all trials with the same motor response (lever

release). The motion stimuli were high contrast, 9˚ diameter, random-dot movies composed of 190

dots per frame that moved at 12˚/s with 100% coherence. Task stimuli were displayed on a 21-inch

color CRT monitor (1280 * 1024 resolution, 75 Hz refresh rate, 57 cm viewing distance). Identical

stimuli, timing, and rewards were used for both monkeys in all PFC, LIP, and MIP recordings. Mon-

keys’ eye positions were monitored by an EyeLink 1000 optical eye tracker (SR Research) at a sam-

pling rate of 1 kHz and stored for offline analysis. Stimulus presentation, task events, rewards, and

behavioral data acquisition were accomplished using an Intel-based PC equipped with MonkeyLogic

software running in MATLAB (Asaad et al., 2013) (http://www.monkeylogic.net).

In the DMC learning experiment, two other monkeys were trained to perform a slightly altered

version of the standard DMC task. Identical setups, stimuli, timing, and rewards were used; however,

only 24 stimulus conditions (sample-test-direction combinations) were used. Neuronal activity was

recorded while monkeys learned this DMC task, which is after the monkeys had learned a

delayed match to sample (direction) task.

Electrophysiological recording
Two male monkeys (Macaca mulatta, 8–10 kg) were implanted with a head post and recording cham-

bers positioned over PPC and PFC. Stereotaxic coordinates for chamber placement were deter-

mined from magnetic resonance imaging (MRI) scans obtained before chamber implantation. PFC

chambers were centered on the principal sulcus and anterior to the arcuate sulcus, ~27.0 mm ante-

rior to the intra-aural line. Areas LIP and MIP were accessed from the same PPC chamber, which was

positioned over the intraparietal sulcus (IPS) centered ~3.0 mm posterior to the intra-aural line. All

experimental and surgical procedures were in accordance with the University of Chicago Animal

Care and Use Committee and National Institutes of Health guidelines. Monkeys were housed in indi-

vidual cages under a 12 hr light/dark cycle. Behavioral training and experimental recordings were

conducted during the light portion of the cycle.

LIP and PFC recording sessions were interleaved in each monkey to reduce the influence of tim-

ing on the neuronal responses and monkeys’ behavior. In monkey A, 35 PFC recordings sessions

were followed by 29 LIP sessions and an additional 15 PFC sessions. In monkey B, most LIP record-

ings (n = 22 sessions) were conducted first, followed by PFC recordings (n = 36 sessions) and simul-

taneous LIP-PFC recording sessions (n = 4 sessions). The MIP recordings were conducted in separate

sessions after completing PFC and LIP recording.

All recording equipment and procedures were the same as in the previous studies

(Swaminathan and Freedman, 2012; Swaminathan et al., 2013). LIP and MIP recordings were con-

ducted using single 75 mm tungsten microelectrodes (FHC), a dura piercing guide tube, and a Kopf

(David Kopf Instruments) hydraulic micro-drive system. In general, LIP cells were found at more lat-

eral locations and MIP cells were found at more medial locations within the same recording cham-

ber. LIP was 2–7 mm below the surface and MIP was 1–5 mm below the surface in both monkeys.

PFC recordings were made using 250 mm dura-piercing tungsten microelectrodes (FHC) and a
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custom manual micro-drive system that allowed simultaneous recordings from up to 16 electrodes.

Neurophysiological signals were amplified, digitized, and stored for offline spike sorting (Plexon) to

verify the quality and stability of neuronal isolations. The offline spike sorting used the same stan-

dard as in the previous studies, which ensured that each single neuron was well isolated.

In the DMC learning experiment, two additional monkeys (M. mulatta, 9–12 kg) were implanted

with a head post and two 32-channel semi-chronic recording systems (Gray Matter Research) on PPC

and PFC. MRI scans were used to guide chamber placement. For PPC recordings, chambers were

placed over the IPS, ~2.0 mm posterior to the intra-aural line and ~14.0 mm lateral from the midline

for monkey Q, and ~2.0 mm anterior to the intra-aural line and ~13.0 mm lateral from the midline for

monkey W. We advanced all PPC electrodes until their estimated positions were below the IPS,

guided by its known anatomical depth. Additional evidence for electrode depth on many recording

channels was the marked reduction in spiking activity as electrodes entered the sulcus. For PFC

recordings, chambers were placed over the principal sulcus, ~29.0 mm anterior to the intra-aural line

and ~20.0 mm lateral from the midline for monkey Q, and ~33.0 mm anterior to the intra-aural line

and ~22.0 mm lateral from the midline for monkey W. Each micro-drive system contained 32, 125

mm tungsten microelectrodes (Alpha-Omega). Before each session, we lowered electrodes between

0 and 1 mm to optimally record the spiking activity of well-isolated neurons. Neuronal activity in PFC

and PPC was recorded simultaneously for every session. The PPC recording might include both LIP

and MIP. We used the same standard for offline isolation of single neuron as in the regular DMC

experiment. All experimental and surgical procedures were standard and in accordance with the Uni-

versity of Chicago Animal Care and Use Committee and National Institutes of Health guidelines.

Receptive field mapping and stimulus placement
All PFC and LIP neurons as well as most MIP neurons were tested with a memory-guided saccade

(MGS) task before DMC task. LIP neurons were identified by spatially selective visual responses and/

or persistent activity during the MGS task. MIP neurons were identified by responses during the ani-

mals’ spontaneous hand movements, such as lever releases, scratching, or arm movements observed

before the DMC task commenced, and the absence of modulation during the MGS task. LIP and

MIP neurons were also differentiated based on anatomical criteria, such as the location of each elec-

trode track relative to that expected from the MRI scans, the pattern of gray–white matter transitions

encountered on each electrode penetration, and the relative depths of each neuron.

Motion stimuli for the DMC task were always targeted to LIP receptive fields (RFs). The typical

eccentricity of stimulus placement for LIP recordings was ~6.0–10.0˚. During MIP recordings, the

motion stimulus was always placed at 7˚ from the fixation along the horizontal axis contralateral to

the recording hemisphere. For most PFC recordings (n = 55 of 86 sessions), sample and test stimuli

were presented in blocks of 30 trials at three nonoverlapping locations in the contralateral visual

field centered 7.0˚ from fixation, which covered much of the contralateral visual field on the monitor.

For the remaining PFC recording sessions (31 of 86), stimuli were shown at a single fixed location,

7.0˚ from fixation along the horizontal axis in the contralateral visual field. All recorded trials for PFC

neurons were used for subsequent analyses. Similar results were observed using only the one-loca-

tion or three-location PFC datasets, or using PFC data for which stimuli were presented at the best

of the three locations. None of the recorded neurons were pre-screened for direction, category, or

M/NM selectivity before recording.

In the DMC learning experiment, we recorded all neurons with well-isolated action potentials, as

we could not place stimuli within the RFs of all recorded neurons. To increase the chances that stim-

uli were in or near neuronal RFs, we ran the experiment in alternating 10-trial blocks in which stimu-

lus position was varied between two nonoverlapping positions (7.0˚ eccentricity; ±45˚ relative to

horizontal meridian) in the visual field that was contralateral to the hemisphere targeted for neuronal

recordings. Analysis of neuronal data revealed qualitatively similar results (in both cortical areas) for

each of the two stimulus locations considered separately or when trials from the two locations were

combined. Thus, we combined trials for both stimulus locations in current study.
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Data analysis
Pre-analysis neuron screening
We used multi-electrodes to record PFC neurons and did not pre-screen neurons prior to recording.

For LIP and MIP recording, we used single-electrode recording and applied some standard criteria

to screen the neurons (visual responsiveness for LIP and movement responsiveness for MIP). Thus,

the total number of neurons was much larger in PFC than in LIP and MIP (PFC: 447; LIP: 75; MIP:

94). However, many PFC neurons exhibited very low firing rates and were not task-modulated during

the task interval, and therefore might not contribute to the task variable representations. In contrast,

most of the recorded LIP and MIP neurons showed relatively high firing rates and were task modu-

lated. To reduce any potential confounds that might be caused by differences between PFC and

PPC (LIP and MIP) datasets, we used the following criteria to further pre-screen all neurons for data

analysis: (1) the maximum of the mean conditional averaged firing rate during the task interval (from

fixation onset to 350 ms after test onset) should be no less than 5 spikes/s; and (2) the activity should

exhibit at least one kind of task-related modulation (such as sample category selectivity, test cate-

gory selectivity, and M/NM selectivity, one-way ANOVA test, p<0.01) during one of the four task

intervals (sample period, earlier delay period, later delay period, and test periods). After screening,

145 PFC neurons, 53 LIP neurons, and 66 MIP neurons were included for further analysis. We also

tested different thresholds (1 spike/s or 4 spike/s) to screen the neurons, which produced similar

results.

In order to select neurons that showed significant M/NM selectivity during the test period, we

applied a one-way ANOVA test (p<0.01) to the mean activity within a 200 ms time window, sliding

by 5 ms, during the test period (50–350 ms after test stimulus onset). To compare M/NM selectivity

time courses across different cortical areas (Figure 3), we only selected neurons that showed signifi-

cant M/NM selectivity during the early test period (50–300 ms after test onset). The results were

qualitatively similar when we used different time windows (50–250 or 50–350 ms after test onset) to

select neurons.

In the DMC learning experiment, we used the same criteria with one difference to screen neurons

for the data analysis. Since most neurons exhibited a very low firing rate, we selected the neurons

that had a maximum firing rate greater than 4 spike/s during the task interval to include more neu-

rons. We also used different thresholds (1 spike/s or 5 spike/s) to screen neurons and obtained simi-

lar results.

Behavioral performance quantification
For all recording sessions that contained trials for all 36 stimulus conditions, we calculated the mon-

key’s accuracy for each condition within a single session and then averaged across all sessions. To

compare performance across PFC, LIP, and MIP datasets, we first calculated the overall average

accuracy for each session and then applied a one-way ANOVA test to test whether there were any

differences between different datasets.

We separated both match trials and nonmatch trials into easier and more-difficult subgroups

based on sample and test motion directions as well as monkey’s averaged performance across all

recording sessions (including all PFC, LIP, and MIP data) for all the 36 stimulus conditions separately

for each monkey. There were 10 stimulus conditions in which the motion direction of either sample

or test or both stimuli were center direction (135˚ or 315˚) for both match and nonmatch trials. We

defined 9 of the 10 stimulus conditions in which monkeys showed higher average accuracy for both

match and nonmatch trials as easier subgroup and the other nine stimulus conditions as more-diffi-

cult subgroup. Thus, there were roughly an equal number of trials between the easier and more-diffi-

cult subgroups for each sample and test category. To correlate M/NM selectivity with monkeys’ RT,

we separated the match trials into faster and slower RT trials (below or above median RT) for all con-

ditions in each session; the faster and slower RT trials from two category conditions were pooled

together.

Spike density function and normalized activity
For all the figures showing the activity of example neurons and population neurons, we used a 20

ms Gaussian window to smooth the peristimulus time histogram (PSTH). In Figures 2 and 4, the

activity of each neuron was normalized by its maximum firing rate.
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Equating (decimating) firing rates
We equated the firing rate between match-preferring and nonmatch-preferring neurons when their

M/NM selectivity was compared. For each brain area, we first computed a ratio (R) of the averaged

firing rate of the nonmatch-preferring neurons over the averaged firing rate of match-preferring neu-

ron during the test period. Since the averaged firing rate of match-preferring neurons is higher than

that of nonmatch-preferring neurons in all three cortical areas, for each match-preferring neuron, we

then randomly removed from respective spike trains a number of action potentials that corre-

sponded to the rounded product of 1 R with the number of action potentials for each trial.

ROC analysis
We applied ROC analysis to the distribution of firing rates (50 ms sliding time window with a 5 ms

step) of each neuron during the test period to quantify their M/NM selectivity. The area under the

ROC curve is a value between 0.0 and 1.0 indicating the performance of an ideal observer in assign-

ing M/NM choice based on each neuron’s trial-by-trial firing rates. Values of 0.0 and 1.0 correspond

to strong encoding preference for nonmatch or match, respectively. Values of 0.5 indicate no M/NM

selectivity.

To test whether the M/NM selectivity in PFC (Figure 7) correlated with monkeys’ trial by trial

choice, we used ROC analysis to evaluate the activity change in error-match trials relative to

correct match trials. Since the number of correct trials greatly exceeded error trials and might influ-

ence the reliability of ROC values, we applied a shuffling procedure to equalize the trial totals

between correct and error trials. We first randomly selected the same amount of correct trials as the

error trials and calculated the ROC value. Then, we repeated this procedure 100 times and averaged

the 100 ROC values. The ROC values were calculated in slightly different ways for match-preferring

and nonmatch-preferring neurons: values greater than 0.5 indicate that neuronal activity on incorrect

match trials was more similar to activity on correct nonmatch trials, that is, lower activity in error-

match trials than in correct-nonmatch trials for match-preferring neurons, or greater activity in error-

match trials than in correct-nonmatch trials for nonmatch-preferring neurons. This is consistent with

a correlation between neurons’ M/NM selectivity and monkeys’ trial-by-trial M/NM choices. ROC val-

ues near 0.5 indicate similar activity between incorrect match and correct match trials, which indi-

cates that neuronal activity is not correlated with the monkeys’ trial-by-trial choices. ROC values

lower than 0.5 indicate even greater M/NM selectivity between incorrect match and correct non-

match trials.

Unbiased FEV
To quantify M/NM and category selectivity, we performed one-way ANOVA on the neuron’s average

firing rate within a sliding window (width = 50 ms, step size = 5 ms) using either the M/NM choice or

the category membership as factors. To quantify the amount of information that a neuron encoded

about each factor that was independent of the absolute neuronal firing rate, we calculated the unbi-

ased FEV in the neuron’s firing rate that could be attributed to the M/NM choice or category mem-

bership (sample category or test category) with the following:

FEVfactor = (SSfactor-(k-1)MSE)/(SStotal +MSE), where SS indicates the sum of squares, MSE indi-

cates mean square error, and k indicates number of conditions.

We also calculated the unbiased FEV of M/NM choice for the LFP signal. We directly applied the

analysis on the average amplitude of the LFP signal within a 50 ms sliding window in all recording

channels of each cortical area. The LFP signal was pre-filtered by a bandstop filter (Butterworth,

59~61 HZ) to remove power-line noise.

ROC-based category tuning index (rCTI)
We used the rCTI measurement to quantify the category selectivity, which was described in detail in

our previous work (Swaminathan et al., 2013) and defined as follows: rCTI = BCD - WCD,

WCD = (2 |ROC(75,195) - 0.5| + |ROC(135,195) - 0.5| + |ROC(75,135) - 0.5| + 2|ROC(255,15)- 0.5|+

|ROC(315,15) - 0.5| + |ROC(255,315) - 0.5|)/8,

BCD = (2|ROC(75,15) - 0.5| + |ROC(75,315) - 0.5| + |ROC(135,255) - 0.5| + |ROC(135,15) - 0.5|+ 2|

ROC(195,255) - 0.5| + |ROC(195,315) - 0.5)|/8.
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Latency of M/NM selectivity
We calculated the latency of M/NM selectivity for spiking activity or LFP signals using the following

criteria: (1) the activity (spike count or mean LFP amplitude) in at least two successive (following) slid-

ing time windows (20 ms width, 20 ms step size) showed significant M/NM selectivity (one-way

ANOVA test, p<0.05); and (2) the M/NM preference of the activity in these time windows must be

consistent with the global M/NM preference during the test period (50–350 ms after test onset). For

this calculation, we only analyzed neurons that showed significant M/NM selectivity. When we com-

pared the latency between different subgroups or brain regions, we used only the neurons

for which we could calculate a latency according to these criteria. We also tested different criteria

(different numbers of sliding window such as 5) to perform the analysis and obtained similar results.

Correlation between sample category and test category representation and
selection of neurons showing mixed category selectivity
To test the correlation between sample and test category selectivity during the test period, we per-

formed two-way ANOVA on the neuron’s activity and calculated the unbiased FEV of both sample

category and test category as mentioned above during the early test period (0–250 ms after test

stimuli onset), which mostly preceded the monkeys’ decision. The analysis was applied on the mean

firing rates of each neuron with a 100 ms sliding window (5 ms step). The maximal FEV value of sam-

ple category and the maximal FEV value of test category of each single neuron were chosen to calcu-

late the rank correlation between sample and test category selectivity in each cortical area. Neurons

that showed significant selectivity for both sample and test category in the selected sliding windows

above (0~250 ms after test onset, p<0.01) were defined to be mixed category-selective neurons.

SVM decoding
Similar to previous studies (Sarma et al., 2016), we used a linear SVM classifier to decode monkeys’

M/NM choice, category membership, and sample-test-category combination separately from a sur-

rogate population of three cortical areas. In this surrogate population, activities from different neu-

rons in one cortical area were treated as if they were recorded simultaneously although neurons

were, for the most part, not recorded simultaneously. The linear classifier was trained using an SVM.

In training a linear classifier, a hyperplane that best separates the trials belonging to two or several

different classes was determined. In the case of decoding M/NM choice, each class corresponds to

one type of choice. In contrast to previous studies (Swaminathan et al., 2013), we used all six

motion directions together to perform the decoding analysis for category as we think the direction

turning might also contribute to the category representation.

Decoding was applied to the mean firing rates of neurons within a 50 ms sliding window (5 ms

step). For each neuron, we randomly selected 66% of trials to train the classifier and left the other

34% of trials for testing. We then randomly sampled, with replacement, 120 trials from the training

list and 60 trials for the testing list for bootstrapping. In order to reduce the potential confound

caused by uneven number of trials of different motion directions, a minimum number for trials of

each motion direction was required for random sampling (10 and 5 trials for training and testing

data of each direction, respectively). To compare different types of selectivity across different popu-

lations, we applied a shuffling procedure to select an equal number of neurons for all decoding anal-

yses except in Figure 4. We bootstrapped all decoding analyses 100 times.

Definition of nonlinear integrative encoding
We used two-way ANOVA to identify linearly and nonlinearly integrated sample and test category

representations as a previous study (Lindsay et al., 2017). This method is conceptually similar to the

approaches used in the early study on NMS (Rigotti et al., 2013). Specifically, we defined the non-

linear integrative neurons as those that exhibited significant sample and test category selectivity, as

well as significant interaction between sample and test category selectivity. Meanwhile, we identified

the neurons that exhibited a significant interaction between sample and test category selectivity, but

nonsignificant sample and test category selectivity, as pure M/NM-selective neurons. We did not

classify the pure M/NM-selective neurons as mixed selective because they exhibited neither signifi-

cant sample category selectivity nor significant test category selectivity. Therefore, the interaction

term cannot be directly related to the NMS in our study. However, the structure of the task used in
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the current study prohibits us from following their analytical approach due to the smaller number of

distinct conditions tested in our task (Fusi et al., 2016; Ramirez-Cardenas and Viswanathan, 2016;

Rigotti et al., 2013).

Nonlinearity index
To quantify the nonlinearity of mixed sample and test category selectivity, a nonlinearity index was

calculated for each mixed category-selective neuron in PFC and LIP. The nonlinearity index was

defined as the test category selectivity difference between two sample category conditions:

NLI = | FEV (S1T1 vs. S1T2) - FEV (S2T1 vs. S2T2)|; where NLI indicates nonlinearity index, and ‘| |’ indi-

cates absolute value. If the test category selectivity is linear addictive to the existing sample category

selectivity, or the neuron purely responds to the M/NM status of the test stimuli, then FEV(S1T1 vs.

S1T2) = FEV(S2T1 vs. S2T2). Therefore, if there is pure linear mixed sample-test-category selectivity or

pure M/NM selectivity, the value of nonlinearity index will be 0. According to the above formula, the

value of the nonlinearity index would correlate with the test category selectivity as neurons showing

greater test category selectivity would potentially show greater nonlinearity index. In order to dimin-

ish the potential confound caused by the test category difference between LIP and PFC, we normal-

ized the nonlinearity index of each neuron to the averaged value of test category selectivity in PFC

and LIP, respectively, when compared to the nonlinearity index between two areas.

Recurrent neural network training
All RNN analyses involved training biologically inspired networks, as described previously

(Masse et al., 2019). These differ from standard RNNs in two main ways: first, they contain separate

excitatory and inhibitory units, per Dale’s law; and second, synapses are endowed with short-term

plasticity, allowing synaptic efficacies to fluctuate over short timescales in an activity-dependent

manner, as in a previous study from our group. All networks were trained using Tensorflow

(Martı́n Abadi et al., 2016) on a GEFORCE RTX-2080Ti GPU with the same hyperparameters: 100

hidden units, 80 of which were excitatory and 20 of which were inhibitory; a learning rate of 0.01; a

batch size of 256 trials; metabolic costs on mean activity and mean connection strength, weighted

consistently across all networks; and initial weights and biases for input, hidden, and output weight

matrices drawn from identical distributions across all networks. All networks received input from 24

motion direction-tuned neurons, with tuning distributed according to a von Mises function with con-

centration factor 2 and a scaling factor of 4. All networks were wired to two output units, which cor-

responded with the animals’ behavior of maintaining fixation, indicating match, and indicating

nonmatch on each trial.

The E/I ratio (80% excitatory to 20% inhibitory) was chosen to be consistent with the range of pro-

portions found in the mammalian neocortex (Markram et al., 2004), and accordingly reflects the

standard among models constrained to obey Dale’s principle. Further, in this kind of network, a simi-

lar amount of inhibition is generally required for stable convergence. Networks where excitation and

inhibition are inappropriately balanced undergo runaway activity, and thus are difficult to train using

gradient-descent methods. Network hidden neurons used the ReLU activation function, which is lin-

ear and nonsaturating for non-negative activities and clips negative activities to 0. Input projections

were linear and fixed (e.g., not trainable, to prohibit networks from discarding motion direction

information immediately). The output layer (fixation, match, and nonmatch units) used the softmax

activation function, which scales output unit activities to generate a probability distribution over out-

put values at each time point. Network parameters (recurrent weights/biases and output weights)

were optimized to minimize a loss function with three parts: (1) a performance loss, given by the cat-

egorical cross-entropy between the desired vs. actual output activities, which pushes networks to

perform the DMC task at a high level of accuracy; (2) a metabolic cost on firing rates (mean neuronal

activity), which pushes networks to solve the task without using firing rates that are pathologically

high (Harris et al., 2012); and (3) a metabolic cost on connectivity (mean synaptic weight), to reflect

the costliness of maintaining synaptic connections in vivo (Wildenberg et al., 2020).

For each trial of the DMC task, networks were presented with a sample motion direction stimulus;

following a stimulus-free delay period, the networks were presented with a second motion direction,

after which they were required to determine whether the test was a categorical match to the sample.

Importantly, each element of task design in the DMC task the models were trained to perform was
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tailored to match those used in the monkey experiments: in particular, sample/delay/test epochs

were of the same duration used in experiments, and motion stimuli were drawn from the same set of

motion directions. Trials were programmatically generated by choosing sample/test stimulus identi-

ties and using these to construct inputs to the networks at each timestep (based on the motion tun-

ing of the input layer) and desired output (fixation, match, nonmatch) at each timestep.

We trained 50 networks to perform DMC (Masse et al., 2019). 41/50 networks achieved consis-

tently high performance by the end of training (>95% accuracy for the last 50 batches). In order to

verify that our RNN modeling results did not critically depend on the number of neurons, we trained

more example networks with different numbers of neurons (100, 200, 300, 400) using the same con-

straints for modularity used in the rest of the article (Figure 8—figure supplement 1). We found

that the key results are consistent between the networks with different sizes, confirming that the

results we obtained are robust to network size within a reasonable range, and thus that network size

was not the key constraint for determining the characteristics of information encoding across multi-

ple modules in our study.

Implementing multi-module RNNs
The existence of multiple modules in these RNNs was implemented through constraints on the initial

recurrent connectivity of the hidden layer. The simplicity (and computational efficiency) of this

approach for implementing multi-module RNNs derives from the way that the separation between

excitatory and inhibitory units is implemented: all connection weights are passed through a ReLU

before they are multiplied by a constant +1/–1 (E vs. I) and applied, so a connection that is culled

before training never contributes to the loss, and is never adjusted up or down. To model LIP and

PFC, we built networks with two modules, with half of the hidden layer units designated to each

module. Each module was allocated half of the excitatory units and half of the inhibitory units in the

overall network to ensure that the modules did not differ in their balance of excitation/inhibition

prior to training. Motivated by the observation that inhibitory connections in cortex are largely local,

we prohibited all inhibitory projections targeting out-of-module neurons. Divisions between brain

areas are also distinguished by denser connectivity within areas than between areas, a form of bot-

tleneck that we modeled by restricting the number of excitatory connections between modules—at

most 50% of bottom-up connections and 50% of top-down connections. We implemented a weaker

form of bottleneck on connections with respect to sensory inputs and motor outputs. No units in

module 2 (PFC-like module) could receive projections from the motion-tuned input units, while 50%

of units in module 1 (LIP-like module) could receive such projections. Similarly, no units in the LIP-like

module could project to the output neurons, while only 50% of the excitatory units in the PFC-like

module could. All output drive was restricted to excitatory neurons.

Analysis of RNN activity
We performed the same analyses on units in the RNNs as we did on the neurophysiology data. As

with the neural recordings, we only included the units that showed task-related activity during the

test period of the DMC task, defined using the following criteria: (1) the maximum of the averaged

activity during the test period should be no less than 0.001; and (2) the activity should exhibit at least

one kind of task-related modulation during the test period (such as sample category selectivity, test

category selectivity, and M/NM selectivity, one-way ANOVA test, p<0.01).

To compute the latency of M/NM encoding in the LIP and PFC modules in the RNN data, we

identified stretches consecutive timesteps where the M/NM signal exceeded its own mean by at

least three standard deviations (mean and standard deviation both computed over the first 100 time-

steps of the trial, before test onset). The latency was defined as the first timestep of the first such

stretch that exceeded 10 timesteps in length.

Inactivation experiments in silico
To assess the contribution of different RNN units to M/NM decisions, we performed an in silico ana-

logue of neuronal inactivation experiments similar to those used in experimental studies. The mon-

key experiments revealed a correlation between the activity of PFC nonlinear integrative neurons

and the animals’ trial-by-trial decisions. As such, we hypothesized that inactivating units with greater

nonlinear integrative encoding would have a greater impact on the RNN’s ability to perform the task
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than inactivating units with weaker nonlinear integrative encoding. To test this hypothesis, we exam-

ined the RNNs’ behavioral performance after inactivating different subsets of units in the PFC for

the duration of the test period during the DMC task (the final 650 ms of each trial). To do this, we

first freeze all the parameters of the RNNs after the initial learning. We then divide task-related units

in the PFC module into more-nonlinear and less-nonlinear groups, as measured by nonlinearity

index. The more- and less-nonlinear groups might project to the output units to different extents, a

difference which could explain any divergence in network behavior during inactivation across groups

rather than the specific ablation of a local network computation. To control for this possibility, we

performed two inactivation experiments: one including all PFC units, the other including only those

units in the PFC module that did not directly project to the output units. After selecting the two inac-

tivation groups based on these nonlinearity indices and ensuring that they matched in size, we per-

formed bulk inactivation from the onset of the test stimulus to the end of the trial during DMC. The

inactivation was implemented by directly multiplying an activity multiplier (�1) to the activity of the

target units. In this way, we performed precise, graded causal manipulations; for example, to

smoothly titrate the amount of inactivation applied to each unit from complete (100% reduction in

activity) to minimal (0% reduction in activity).

We used a similar approach to inactivate feedback projections from the PFC-like module to the

LIP-like module. In these projection-specific ablations, rather than multiplying units’ activity at each

time point by a value between 0 and 1, we multiplied entries of the recurrent weight matrix Wrnn by

a value ranging between 0 and 1. Multiplication by 0 made LIP entirely immune to the progression

of activity in PFC; multiplication by 1 left the interaction between LIP and PFC unaffected relative to

what was learned during training. These projection ablations, as with the inactivation of units based

on nonlinearity index, were carried out during the test period.

To determine whether, for each network, LIP M/NM encoding was significantly affected by the

inactivation of feedback from PFC, we computed at each time point during the test period the corre-

lation between the amount by which projections were multiplied (a vector vtrue of 10 evenly spaced

values between 1,e.g., no inactivation, and 0, e.g., complete inactivation) and the level of M/NM

selectivity in LIP at that timestep. If some component of LIP M/NM selectivity is inherited from/arises

from PFC feedback, then this correlation between vtrue and the amount of M/NM selectivity in LIP

should differ significantly from baseline. If, however, LIP selectivity for M/NM is entirely independent

of PFC feedback, then the amount by which LIP selectivity for M/NM changes should not be consis-

tently related to the amount by which feedback is inactivated. To determine the baseline level of

correlation between LIP M/NM selectivity and the amount of PFC feedback inactivation, we com-

puted a full distribution of correlations between vtrue and each permutation of LIP M/NM selectiv-

ities. The number of permutations grows as the factorial of the number of conditions (here, 10 in

total), so we limited this analysis to the middle six inactivation conditions/selectivities. To account for

the fact that not all permutations are equally ‘unrelated’ to the true ordering, which influences the

level of the correlation obtained, the correlation for each permutation was weighted by the similarity

between that permutation and the true ordering. This distribution was then z-transformed and used

to compute the p-value of the true ordering’s correlation (probability of observing a correlation of

equal or greater value among all random permutations of the true ordering). Networks where this

p-value fell below 0.001 for a period of at least five consecutive timesteps during the test period

were considered to show significant modulation of LIP M/NM selectivity by PFC feedback.
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