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Abstract  22 

Approximately 35% of women with Gestational Diabetes (GDM) progress to Type2 Diabetes 23 

(T2D) within 10 years. However, links between GDM and T2D are not well understood. We used 24 

a well-characterised GDM prospective cohort of 1,035 women following up to 8 years 25 

postpartum. Lipidomics profiling covering >1000 lipids, was performed on fasting plasma 26 

samples from participants 6-9week postpartum (171 incident T2D vs. 179 controls). We 27 

discovered 311 lipids positively and 70 lipids negatively associated with T2D risk. The 28 

upregulation of glycerolipid metabolism involving triacylglycerol and diacylglycerol biosynthesis 29 

suggested activated lipid storage before diabetes onset. In contrast, decreased 30 

sphingomyelines, hexosylceramide and lactosylceramide indicated impaired sphingolipid 31 

metabolism. Additionally, a lipid signature was identified to effectively predict future diabetes 32 

risk. These findings demonstrate an underlying dyslipidemia during the early postpartum in 33 

those GDM women who progress to T2D and suggest endogenous lipogenesis may be a driving 34 

force for future diabetes onset. 35 
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 40 

Introduction 41 

Gestational diabetes mellitus (GDM) develops during pregnancy, affecting 1%-14% of all 42 

pregnancies depending on diagnostic criteria and the population characteristics [1,2]. The 43 
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majority of women with a history of GDM were not known to have overt diabetes before 44 

pregnancy and return to non-diabetes post-delivery. However women with a history of GDM 45 

are ~7 times more likely to develop type 2 diabetes (T2D) during the child bearing years 46 

compared to women who had no previous GDM [1,3,4]. In fact, it is estimated that 35%-50% of 47 

women with GDM may progress to T2D within 10 years after delivery [3,5]. Within 15 to 25 48 

years, the lifetime maternal risk for overt diabetes is estimated to reach >50% [6,7]. Therefore, 49 

it is critical to uncover the underlying metabolic changes and understand the distinctive 50 

pathophysiology in T2D progression/development following GDM.  51 

In the past decade, omics-based approaches have been used to discover novel metabolic 52 

fluctuations in humans, providing insight into pathophysiology of disease and identifying 53 

biomarkers of future disease including diabetes [8-10]. In particular, lipidomics has emerged as 54 

a more specialized omics platform that enables the measurement of a wide spectrum of lipid 55 

species. This approach has greatly expanded our understanding of the complexity of lipid 56 

dysregulation in metabolic diseases. Recently, an increasing number of lipidomics studies have 57 

aimed to link lipid dysregulation to diabetes pathology [11-20]. In the Framingham Heart Study 58 

cohort, more than 100 lipid analytes were measured and a group of triacylglycerols (low total 59 

carbon number and carbon double bonds) were found to be associated with increased risk of 60 

T2D[14]. In the PREDIMED trial, 207 plasma lipids were measured in which 61 

lysophosphatidylcholines (LPCs), phosphatidylcholine-plasmalogens (PC-PLs), sphingomyelins 62 

(SMs), and cholesteryl esters (CEs) were found to be inversely associated with T2D risk while 63 

triacylglycerols (TAGs), diacylglycerol (DAGs) and phosphatidylethanolamine (PEs) were 64 

positively associated with T2D risk [20]. A total of 277 plasma lipids were analyzed using a 65 
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lipidomics approach in Finnish males in which 5 lipids were selected to predict progression to 66 

Type 2 diabetes (T2D) [19]. In this cohort, higher levels of specific TAGs and diacyl- 67 

phospholipids and lower levels of alkylacyl-phosphatidylcholines were also observed in those 68 

who progressed to T2D[19]. In a very recent lipidomics study of a Chinese cohort, 250 lipids 69 

were tested and 38 significantly associated with T2D risk, including TAGs, LPCs, PCs, 70 

polyunsaturated fatty acid (PUFA)–plasmalogen phosphatidylethanolamines (PUFA-PEps), and 71 

CEs [15]. A lipid panel including 6 lipids significantly improved T2D prediction compared to that 72 

achieved by conventional risk factors [15]. In all of these studies, the positive association of 73 

TAG/DAG and T2D risk was consistently reported. However, a convergence on other specific 74 

lipids were not evident. This could be due to the differences in study design, cohort background 75 

and methodology including, importantly, limitations in coverage - expressed lipids in each study 76 

were not consistent. 77 

Lipidomics has also been performed in GDM cohorts, including the measurement of 181 lipids 78 

in serum samples obtained from GDM women in their early second trimester. Four lipid 79 

biomarkers (TG(51:1), TG(48:1), PC(32:1), and PCae(40:4)) were identified for GDM prediction 80 

with moderate accuracy 71% [18]. Another lipidomic study measuring ~300 lipid species in 81 

blood samples from 104 women with recent GDM at 12-week post-delivery, of whom 21 cases 82 

later developed T2D, showed 84% accuracy in T2D prediction based on three lipids [i.e., PE(P-83 

36:2), PS38:4, CE20:4] in combination with six other risk factors (i.e., age, BMI, prenatal fasting 84 

glucose, postpartum fasting glucose, total triglycerides, and total cholesterol) which were not 85 

matched for the analysis [21]. Our team identified 7 lipids from early postpartum blood samples 86 

to predict later incident T2D with an AUC of 0.92 in a very small subset of women with recent 87 
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GDM in our large prospective cohort (55 matched pairs of incident cases controls) [9]. To date 88 

however, no consensus has been achieved in terms of lipidomic dysregulation in GDM 89 

progression to T2D, likely due to limitation in the coverage of lipidome, cohort size, clinical data 90 

including diagnosis and follow-up years. Lipidomic changes within a large prospective cohort of 91 

women with GDM followed from the early postpartum period have not been evaluated. A 92 

comprehensive evaluation of lipidomic changes in relation to progression to T2D could 93 

elucidate the pathogenesis of transition from GDM to T2D, and thereby improve our 94 

understanding of the clinical targets for therapeutic interventions. 95 

In the present study, lipidomics of 1008 lipid species from 15 lipid classes and 296 fatty acids 96 

was measured in a well-characterised prospective cohort of 1,010 women with recent GDM 97 

pregnancy and no diabetes, followed from 6-9 weeks post-delivery (baseline), retested with 98 

OGTTs for 2 years and followed via clinical laboratory testing and diagnoses up to 8 years later. 99 

Our aims were to systematically investigate lipidomic dysregulation in the transition from no 100 

diabetes to incident T2D following a GDM pregnancy and uncover lipid markers that may 101 

facilitate the early prediction of T2D incidence with clinical risk factors. 102 

 103 

Results 104 

Clinical characterization of the participants at baseline  105 

The SWIFT cohort enrolled a total of 1,035 women diagnosed with GDM. Of these, 1010 did not 106 

have T2D at 6–9 weeks postpartum (baseline) and 989 had follow up testing for glucose 107 

tolerance up to 8 years post-baseline. Fasting blood samples were collected at baseline. During 108 

the follow-up period, 197 women had developed incident T2D and 791 did not (Figure 1). The 109 
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total years of  follow-up were similar between incident T2D and control groups. All research 110 

participants underwent 2-h 75-g OGTTs and other assessments at baseline and thereafter 111 

annually for 2 years and subsequent medical diagnoses of diabetes was retrieved from 112 

electronic medical records for 8 years post-baseline. In our current study, 171 women with 113 

incident T2D cases had available plasma samples at baseline, and 179 controls who did not 114 

develop T2D in 8 years’ follow-up (350 participants in total) were profiled for lipidomics. A total 115 

of 1008 lipid species from 15 lipid classes as well as 296 fatty acids were assessed in the plasma 116 

samples of all participants (Figure 1). Socio-demographic and clinical parameters of the 350 117 

participants at baseline are summarized in Table 1. There was no significant difference in age, 118 

race, parity, pre-pregnancy BMI, family history of diabetes, postpartum BMI, total cholesterol, 119 

LDL-C, HOMA-B, smoker, dietary glycemic index, dietary intake and physical activity score. 120 

Compared to the control group, a higher percentage of participants who developed T2D later 121 

on had been treated with insulin or oral medications during pregnancy (p<0.001). Prenatal 3-hr 122 

100g OGTT (sum of the 4 z-scores for glucose values; fasting, 1 hour, 2 hour and 3 hours post-123 

load, p<0.001) for the incident T2D case group were higher than the control group. At 6-9 124 

weeks postpartum, compared to controls, women in the incident T2D group had higher mean 125 

FPG (p<0.001), 2hPG (p<0.001), fasting insulin (p=0.001), 2h insulin (p<0.001), fasting TAG (p 126 

=0.003), median HOMA-IR (p <0.001) and hypertension (p=0.04), but lower mean fasting HDL-C 127 

(p=0.017).  128 

Lipids associated with future T2D risk 129 

Lipid biosynthesis and metabolism have been implicated in the development and progression of 130 

T2D. However, in previous studies, it has been an understudied component of metabolomics 131 
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profiling in the GDM transition to T2D. Thus, we have launched a broad spectrum lipidomics 132 

analysis, screening lipid metabolites and providing a comprehensive linkage of lipid metabolism 133 

to T2D. With a total of 1008 lipid species, we excluded lipids with >5% missing values among 134 

subjects, allowing only robust lipids (816 species) to be included in further analysis. Supervised 135 

PCA indicated partial separability of lipid profiles between case and control groups (Figure 2–136 

figure supplement 1). By applying multiple logistic regression analysis, we assessed the 137 

association of lipids with future diabetes risk after adjusting for age, race and BMI. Of the 816 138 

lipid species, 311 were positively and 70 were negatively associated with T2D risk (Figure 2A, 139 

Figure 2–figure supplement 2, FDR<0.05). Of the 311 lipids positively associated with risk, 293 140 

were from TAG class while 17 from DAG class and 1 from PE class (Figure 2A-B). Of the 70 lipids 141 

negatively associated with T2D, 31 were from SM class, 27 from PC class, 7 from CE class, 4 142 

from FFA class and 1 from TAG class (Figure 2A-B).  143 

Most notably, 57.2% of all TAG species measured (293 out of 512 TAG) were significantly 144 

positively associated with T2D risk (Figure 2B). Plasma TAG, a transporter of dietary fats, 145 

increased, suggesting an overload of lipids in circulation before T2D onset. Additionally, 17 out 146 

of 54 DAGs, intermediates of TAG synthesis, were upregulated, further suggesting TAG 147 

biosynthesis was abnormally active (Figure 2B). In contrast, 40% (22 out of 55) measured PC 148 

and 25% (3 out of 12) measured LPC were negatively associated with T2D risk (Figure 2B). 149 

Similarly, 62% measured sphingolipids (31 out of 50) were inversely associated with T2D risk, 150 

particularly in classes of HCER (6 out of 9), LCER (9 out of 10) and sphingomyelins (10 out of 12) 151 

(Figure 2B). These findings suggested an inverse association of phospholipids and sphingolipids 152 

and increased risk of T2D.  153 
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More strictly, by using a cut-off of FDR<0.001, we demonstrated 107 lipids were significantly 154 

associated with T2D progression (Figure 3A). In this panel, 97 TAGs spanning carbon atom 155 

numbers from 42 to 56 with double bonds from 0-8, along with one saturated DAG(16:0/16:0) 156 

were consistently associated with increased diabetes risk. One monounsaturated PC(17:0/18:1) 157 

and 3 polyunsaturated PC(17:0/18:2), PC(18:1/20:4), PC(18:2/16:1) were inversely associated 158 

with future diabetes risk. Similarly, SM (18:1), SM(20:1), SM(24:1), HCER(24:1), and LCER(16:0) 159 

from the sphingolipid class were negatively associated with diabetes risk. Correlations between 160 

the 107 incident T2D associated lipids and conventional clinical parameters (BMI, FPG, 2hPG, 161 

fasting insulin HOMA-IR and HOMA-B) were assessed (Figure 3B). TAGs and DAG demonstrated 162 

a weak to moderate positive correlation with fasting insulin and HOMA-IR while sphingolipids 163 

and phospholipids were shown to have a weak negative correlation (Figure 3B). In contrast, 164 

those 107 lipids showed little correlation with 2hPG, age and BMI (Figure 3B).   165 

Association between diabetes risk and lipid biochemical configuration  166 

Lipidomics profiling provided a comprehensive coverage of plasma lipids for us to gain insight 167 

into the associations of lipid species biochemical structure (i.e. chain length, numbers of carbon 168 

atoms, double bonds) with diabetes risk. Among all the TAGs detected (carbon atoms from 36-169 

60), those significantly associated with diabetes risk contained between 40-56 carbon atoms 170 

and 0-8 double bonds. Within those TAGs containing 40-56 carbon atoms, T2D risk increased in 171 

step with the number of carbon atoms (except carbon atom 55). TAGs most significantly 172 

associated with T2D risk were clustered in the range of carbon atoms 50-54 and double bond 0-173 

4, particularly with even carbon atoms 52 and 54 (Figure 4A). DAGs with an even number of 174 

carbon atoms 30, 32, 34, 36 but not odd numbers were associated with diabetes risk more 175 
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prominently. There was no clear pattern of association with incident T2D by numbers of carbon 176 

atoms or double bonds in other lipid classes (Figure 4A). From the perspective of specific fatty 177 

acid chains in lipids, a relationship between diabetes risk and fatty acid composition was 178 

revealed. For total fatty acids, three SFAs (FA12:0, FA14:0 and FA16:0) as well as a PUFA 179 

(FA18:3) were positively associated with T2D risk and two very long chain MUFAs (FA24:1, 180 

FA26:1) were negatively associated with T2D risk (Figure 4B). Considering lipid classes, 181 

positively associated fatty acids were mainly from DAGs and TAGs including long chain SFAs 182 

(C12-C20), MUFA (C14 and C16) and PUFA (C20 and C22) (Figure 4B). In contrast, in PC and LPC 183 

classes, odd chain fatty acids (C15 and 17) were negatively associated with T2D risk. 184 

Interestingly, in the sphingolipid class, only even chain saturated and MUFAs were negatively 185 

associated with T2D risk (Figure 4B).  186 

Metabolic pathways associated with future diabetes 187 

To identify metabolic pathways associated with future diabetes, 381 lipids with significant 188 

association with diabetes risk (FDR<0.05) (Figure 2–figure supplement 2) were subjected to 189 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Glycerolipid metabolism, 190 

which involves TAG and DAG biosynthesis, was significantly up-regulated (p=0.01). In contrast, 191 

sphingolipid (p=2.11E-05), linoleic acid (p=0.016) and alpha linoleic acid (p=0.041) metabolism 192 

were found to be significantly down-regulated (Figure 5A). Specifically, in the glycerolipid 193 

biosynthesis pathway, the TAG class was increased with strong significance (p=0.003), 194 

suggesting an induced process of lipid storage (Figure 5B). While as a whole the phospholipid 195 

metabolism pathway was not significantly altered, the PC class of lipids was significantly 196 

reduced (p=0.015) along with a modest decrease in the downstream LPC class (p<0.2), 197 
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suggesting the potential inhibition of pathway from DAG to PC class. In sphingolipids 198 

metabolism, the central metabolite ceramide, which is a precursor for complex sphingolipids, 199 

was marginally down-regulated (p<0.2). However, classes of SM (p=0.002), HCER (p=0.006) and 200 

LCER (p=0.0005), which are downstream of sphingolipid metabolism were highly reduced, 201 

suggesting the inhibition in the process of deriving of complex sphingolipids from ceramide 202 

(Figure 5B).  203 

Selective lipids can predict future diabetes and complement clinical diagnostics 204 

The 107 lipids are the most significantly associated with future diabetes (odds ratio FDR cut-off 205 

<0.001) (Figure 3A). It is intuitive that some may actually have predictive properties, and this 206 

was tested. By using stepwise logistic regression modelling, we identified a panel of 11 lipids 207 

(10 TAGs and 1 PC) with excellent ability to predict future diabetes in the cohort examined 208 

(Figure 6A). With these lipids alone, we achieved the prediction ability as AUC of 0.739 (Figure 209 

6B). The classical clinic predictive parameter FPG showed the prediction power of AUC 0.703 210 

which was improved to AUC 0.795 by adding lipids (Figure 6B). The clinic predictive parameter 211 

2hPG showed the prediction power of AUC 0.704 which was improved to AUC 0.809 by adding 212 

lipids (Figure 6B). The combination of two clinical parameters 2hPG and FPG can achieve an 213 

AUC 0.775. Importantly, combining the 11 lipid panel outcomes with FPG and 2hPG, the 214 

discriminative power was significantly improved to AUC 0.842 (Figure 6B). This demonstrates 215 

that the circulating levels of specific lipids can in part be used to assess future diabetes risk and 216 

when applied, can improve diabetes prediction, especially when combined with routine clinical 217 

parameters (2hPG and FPG) during the early postpartum period.  218 

 219 
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Discussion  220 

In the present study, lipidomic profiling was used to assess the lipid changes at early post-221 

partum (6 to 9 weeks) in a well-characterized, racially and ethnically diverse prospective cohort 222 

of postpartum women with recent GDM.  A lipid signature associated with future diabetes risk 223 

was uncovered which contributes new knowledge into understanding the aetiology of diabetes 224 

in women associated with GDM. Importantly, our data indicate that women with recent GDM 225 

who later develop new onset T2D have clear differences in their lipidome compared to controls 226 

after delivery. This clearly shows they already exhibit lipid dysregulation in the early post-227 

partum period. 228 

Among the 311 lipids positively associated with progression to T2D, we found 293 belonging to 229 

TAG classes. This is equivalent to an impressive 57.2% of all measured TAG (293 out of 512) 230 

(Figure 2B). In addition, among the lipids associated with the most significant T2D risk, 91% of 231 

them were TAGs (97 out of 107) (Figure 3A). This finding fits our clinical measurements showing 232 

elevated TAG in T2D incident cases (Table 1) and is consistent with other studies [9,11,14-233 

17,19,20,22]. TAGs, belonging to neutral lipids, are the energy storage in adipocytes and are an 234 

efficient energy source for muscle. In plasma, TAGs enable the bidirectional flow of fat from 235 

adipose tissue storage and blood glucose from the liver. Therefore, it is not surprising that TAGs 236 

outweigh other lipids as the dominant lipid species in terms of reflecting the changes of lipid 237 

metabolism in the body. The source of TAGs could be from food intake or endogenous TAG 238 

biosynthesis, such as lipogenesis. Our KEGG analysis demonstrated that the glycerolipid 239 

metabolism pathway was upregulated, suggesting the accumulation of TAGs could be 240 

attributed to the up-regulation of TAG biosynthesis (Figure 5). It was reported high sugar could 241 

https://en.wikipedia.org/wiki/Adipose_tissue
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stimulate de novo lipogenesis in liver thereby increasing serum TAG level [23]. This process 242 

could be activated directly through transcriptional factor carbohydrate responsive element 243 

binding protein (ChREBP) to promote expression of lipogenic enzymes. Alternatively, 244 

lipogenesis could also be regulated by insulin through sterol regulatory element binding 245 

protein-1 (SREBP1). The elevated level of plasma hexose and insulin in those incident T2D cases 246 

at baseline could be associated with the enhanced endogenous lipogenesis. 247 

In contrast, classes of glycerophospholipids (PC and LPC classes) are inversely associated with 248 

T2D risk (Figure 2B). Glycerophospholipids (through DAG) and TAGs share the same precursor 249 

glycerol-3-phosphate. Therefore, the downward trend in glycerophospholipids could be linked 250 

to the up-regulation of TAG biosynthesis. In addition to the phospholipids, an impressive 62% of 251 

measured sphingolipids (31 out of 50 tested) were inversely associated with T2D risk (Figure 2B). 252 

Particularly SM(18:1), SM(20:1), SM(24:1), HCER(24:1), and LCER(16:0) were among the lipids 253 

with the most significant risk associated with diabetes (Figure 3A). KEGG analysis revealed that 254 

sphingolipid metabolism was most significantly down-regulated (p=2.11E-05), further 255 

supporting the inverse association between sphingolipids and diabetes risk. So far, the 256 

relationship between sphingolipids and T2D risk has not been unequivocally ascertained. 257 

Several cross-sectional clinical studies have shown that CERs (upstream node of the 258 

sphingolipids pathway) are elevated in obese subjects with T2D [11,24-26]. We and others, 259 

however, have previously shown a negative association of SMs (downstream node of the whole 260 

pathway) with diabetes risk [9,10,20,27,28]. Further biological testing in humans and models of 261 

diabetes risk are required to validate the association between sphingolipids and diabetes onset.  262 
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Glycerophospholipids (through DAG) and TAGs share the same precursor glycerol-3-phosphate 263 

(G3P). The higher G3P induced by higher plasma glucose levels could shift the acyl-CoA to 264 

lipogenesis from sphingolipids and phospholipids pathways. Therefore, in those incident T2D 265 

cases, the downward trend in glycerophospholipids and sphingolipids could be associated with 266 

the up-regulation of TAG biosynthesis. In normal physiological conditions, de novo lipogenesis 267 

mainly occurs in the liver and adipose tissue and is a minor contributor to serum TAG 268 

homeostasis. However, an up-regulated lipogenesis could break the balance causing lipidemia. 269 

In addition, down-regulation of glycerophospholipids and sphingolipids biosynthesis impairs the 270 

integrity of cell membrane structure, which might contribute to insulin resistance. Although 271 

higher glucose level could correlate with higher TAG, TAG is not simply an indirect measure of 272 

glucose. Instead, increased TAG along with decreased phospholipids and sphingolipids could be 273 

a cue of up-regulated endogenous de novo lipogenesis, a driving force of T2D. 274 

Investigating the composition of the fatty acids in the lipids showed long chain SFA myristic acid 275 

(C14:0) and palmitic acid (C16:0) were positively associated with T2D risk. Previously, palmitic 276 

acids were reported to cause pancreatic beta cell dysfunction and were shown to be associated 277 

with diabetes [29,30]. A previous study on a large prospective cohort EPIC-InterAct case 278 

suggested that even-chain SFA in phospholipids were positively associated with diabetes risk 279 

while odd-chain SFA had a negative association [31]. Similarly, we detected odd-chain SFA from 280 

phospholipids were negatively associated with T2D risk. However, the association between 281 

even-chain SFAs and T2D risk was more complicated depending on the lipid classes from which 282 

they were derived. Even-chain SFAs from glycerol lipids (TAGs and DAGs) were positively 283 

associated with T2D risk while those from sphingolipids had a negative association. No 284 
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significant association to T2D risk was detected in even-chain SFAs from phospholipids (Figure 285 

4B). Odd-chain SFAs (C15:0 and C17:0) are mainly exogenously derived from dairy fat intake 286 

[32-34]. In contrast, even-chain SFAs are from an endogenous source, such as increased 287 

lipolysis from adipose tissue or de-novo lipogenesis from excess carbohydrates [34-38]. 288 

In addition to the carbon numbers of fatty acids, we also showed the association between the 289 

degree of fatty acid unsaturation (number of double bonds) with diabetes. MUFAs, particularly 290 

those from sphingolipids, were negatively associated with T2D risk; however， PUFAs from TAGs 291 

were positively associated. These findings suggest that fatty acids from different sources and 292 

lipid classes have opposite influences on diabetes risk. This would provide novel insight into the 293 

role of lipid metabolism in diabetes onset and further develop guidelines for a healthy diet to 294 

prevent diabetes.  295 

In addition to investigating the pathology of diabetes onset, we also developed an 11-lipid 296 

panel to predict future diabetes. Traditional clinical parameters such as FPG and 2hPG can 297 

achieve a prediction power AUC of 0.775. When we combined this lipid panel with FPG and 298 

2hPG, we improved the prediction power from 0.775 to 0.842. Among those 11 lipids, 10 299 

belong to TAG and 1 is PC, suggesting specific metabolites of the TAG and PC classes play a 300 

critical role in early prediction for detecting in the early postpartum period of GDM women who 301 

have the highest risk of transitioning to T2D. Diabetes is a metabolic disorder involving 302 

dysmetabolism of carbohydrate, lipids and amino acids. Therefore, it is not surprising that a 303 

combination of biomarkers from both the carbohydrate and lipid metabolism could improve 304 

the predictive power compared to using those from the carbohydrate metabolism pathway 305 

alone. Based on our data, we would envision that adding a specific lipidomic signature to 306 
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existing clinical parameters for testing, perhaps including other metabolites (ie. biogenic amines 307 

and amino acids) will provide a more accurate assessment of future T2D risk. Nonetheless, our 308 

study provides an important clinical application for early prediction of diabetes when most 309 

GDM women return to normoglycemia after delivery. The early prediction will contribute to 310 

early intervention and prevention of diabetes.   311 

 312 

Materials and Methods  313 

SWIFT cohort 314 

The Study of Women, Infant Feeding, and Type 2 Diabetes Mellitus After GDM Pregnancy 315 

(SWIFT) is a prospective cohort that conducted in-person research exams among 1,035 women 316 

with GDM diagnosed based on the 3-h 100-g OGTT via Carpenter and Coustan’s criteria, and no 317 

prior history of diabetes or other serious health conditions (age 20–45 years, diverse ethnicities) 318 

within the Kaiser Permanente Northern California Healthcare System (KPNC) [39]. Details of the 319 

cohort recruitment, selection criteria, methodologies have been described previously [40]. Of 320 

1,035 women with GDM who consented to participate in the 3 in-person research exams for 321 

the SWIFT Study, 1,010 participants did not have T2D at baseline (6–9 weeks postpartum) 322 

based on 2-h 75g oral glucose tolerance tests (OGTTs). All research participants underwent 323 

annual research 2-h 75-g OGTTs and other assessments at baseline throughout 2 years of 324 

follow-up, and subsequently for medical diagnoses of diabetes confirmed by laboratory testing 325 

from electronic medical records up to 8 years post-baseline. Research methodology included 326 

monthly quantitative assessment of lactation intensity and duration, socio-demographics, 327 

medical conditions, medication use, reproductive history, depression, subsequent births, 328 
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lifestyle behaviors, body composition and anthropometry [40]. Fasting and 2-h postload plasma 329 

samples from 75g OGTTs (baseline, 1 year, and 2 years post-baseline) were analyzed within 330 

several weeks for glucose and insulin levels, and fasting stored samples from the SWIFT Biobank 331 

(-80C) were used to measure a lipid panel, free fatty acids and adipokines, as previously 332 

described[41,42]. Follow-up assessments to determine new onset T2D status were based on 333 

research 2-hour 75 g OGTTs and KPNC electronic medical records data based on mediation, ICD 334 

codes and laboratory tests for glucose tolerance[43]. T2D diagnosis was based on the American 335 

Diabetes Association (ADA) criteria[44]. The study design and all procedures were approved by 336 

the Kaiser Permanente Northern California Institutional Review Board (protocol numbers #CN-337 

04EGund-03-H and #1279812-10) and Office of Research Ethics at University of Toronto 338 

(protocol number #38188). All participants gave written informed consent before taking part in 339 

the research exams. 340 

Lipidomics assay 341 

Baseline fasting plasma from 350 samples from a subset of the cohort (171 incident T2D vs 179 342 

non-T2D controls) were sent to Metabolon, Inc. (Morrisville, NC) and measured by GC-MS and 343 

LC-MS. Lipids were extracted from the bio-fluid in the presence of deuterated internal 344 

standards using an automated BUME extraction according to the method of Lofgren et al [45]. 345 

The extracts were dried under nitrogen and reconstituted in ammonium acetate 346 

dichloromethane: methanol. The extracts were transferred to vials for infusion-MS analysis, 347 

performed on a Shimadzu LC with nano PEEK tubing and the Sciex SelexIon-5500 QTRAP.  The 348 

samples were analyzed via both positive and negative mode electrospray.  The 5500 QTRAP was 349 

operated in MRM mode with a total of more than 1,100 MRMs.  Individual lipid species were 350 
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quantified by taking the ratio of the signal intensity of each target compound to that of its 351 

assigned internal standard, then multiplying by the concentration of internal standard added to 352 

the sample. Lipid class concentrations were calculated from the sum of all molecular species 353 

within a class, and fatty acid compositions were determined by calculating the proportion of 354 

each class comprised by individual fatty acids. In this study, a total of 1008 lipid species from 15 355 

classes and 296 fatty acid were measured. In particular, in the natural lipid group, 26 356 

cholesterol esters (CE), 26 monoacylglycerol (MAG), 59 diacylglycerol (DAG), 493 triacylglycerol 357 

(TAG), and 26 free fatty acids (FFA) were detected. In phospholipid group, 140 358 

phosphatidylcholine (PC), 216 phosphatidylethanolamine (PE), 28 phosphatidylinositol (PI), 26 359 

lysophosphatidylcholine (LPC), and 26 lysophosphatidylethanolamine (LPE) were measured. In 360 

sphingolipid group, levels of 13 dihydroceramide (DCER), 12 ceramide (CER), 12 361 

hexosylceramide (HCER), 12 lactosylceramide (LCER), and 12 species of sphingomyelin (SM) 362 

were tested. 363 

Data Analyses 364 

Data processing was performed for further statistical analysis. Lipids with >5% missing values 365 

were removed from the data allowing only the most robust lipids for the following statistical 366 

analysis. After this filtering step, 1008 species were reduced to 816 for further analysis. 367 

Remaining missing values were imputed as 1/2 minimum value for each specific lipid. Sample 368 

normalization was performed by normalizing each value within the sample to the total value of 369 

the sample to adjust differences among the samples. Log-transformation was performed. Odds 370 

ratios (ORs) of each lipid for T2D incidence were calculated by applying logistic regression 371 

models adjusting effects from race/ethnicity, age and BMI. FDR was calculated by correcting p-372 
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value by Benjamini-Hochberg method for multiple comparison. A cut-off of FDR<0.05 was used 373 

for significance. Lipids with FDR of odds ratio <0.001 were subjected for lipid predictor selection. 374 

By applying a conditional logistic regression model with stepwise method (including forward 375 

and backwards), 11 lipids were selected for prediction models. Classification models were built 376 

with logistic regression and 10-fold cross validation was performed to evaluate the prediction 377 

performance. Prediction performance were presented as receiver operating characteristic (ROC) 378 

curves. Because association of lipids with diabetes risk can differ based on acyl chain length and 379 

unsaturation degree, lipids were grouped and further analyzed based on carbon atom and 380 

double bond numbers. All the analysis above was performed in open-source, statistical 381 

software, R v3.2.4. Pathway analysis was performed using positive- or negative- associated 382 

lipids in the web tool MetaboAnalyst 4.0 [46]. 383 
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 508 

Table 1. Prenatal and Study Baseline (6-9 weeks postpartum) Characteristics of Women with 
Gestational Diabetes Mellitus in Prospective Cohort Follow Up Study of Incidence of Diabetes (n = 
350) 

Prenatal characteristics 

Case 
Diabetes at 
follow up 

Control 
No Diabetes at 

follow up p-
value (N=171) (N=179) 

Age (years), Mean (SD) 33.3 (5.2) 33.0 (4.5) 0.63 
Race/ethnicity, n (%) 

  
0.72 

White 31 (18.1) 27 (15.1) 
 Asian 51 (29.8) 55 (30.7) 
 Black 21 (12.3) 16 (8.9) 
 Hispanic 66 (38.6) 79 (44.1) 
 Other 2 (1.2) 2 (1.1) 
 Parity, n (%) 

  
0.80 

Primiparous (1 birth) 56 (32.7) 54 (30.2) 
 Biparous (2 births) 62 (36.3) 64 (35.8) 
 Multiparous (>2 births) 53 (31.0) 61 (34.1) 
 GDM treatment, n (%) 

  
<0.001 

Diet only 74 (43.3) 128 (71.5) 
 Oral medications 79 (46.2) 47 (26.3) 
 Insulin 18 (10.5) 4 (2.3) 
 Pre-pregnancy BMI (kg/m2), Mean (SD) 33.6 (8.2) 32.3 (6.9) 0.10 

Sum of Prenatal 3-hr 100 g OGTT glucose z-scores, 
Mean (SD) 1.4 (3.1) -0.2 (2.5) <0.001 
Family history of diabetes, n (%) 101 (59.1) 89 (52.0) 0.08 
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Baseline characteristics at 6-9 weeks Postpartum  
   BMI (kg/m2), Mean (SD) 33.5 (7.4) 32.4 (6.3) 0.18 

Fasting plasma glucose (FPG), mg/dl, Mean (SD) 101.5 (10.4) 94.3 (7.7) <0.001 
2-hr Post-load plasma glucose (75 g OGTT), mg/dl, 
Mean (SD) 131.0 (29.5) 109.8 (27.4) <0.001 
Fasting insulin, μU/ml, Median (IQR) 26.5 (20.7) 22.1 (17.4) 0.001 
2-hr insulin, μU/ml, Median (IQR) 111.5 (85.7) 83.3 (73.6) <0.001 
Fasting plasma Triglycerides, mg/dl, Median (IQR) 119.0 (103.0) 94.0 (72.0) 0.003 
Fasting plasma HDL-C, mg/dl, Mean (SD) 49.0 (16.0) 52.0 (19.0) 0.017 
Fasting plasma Total Cholesterol, Mean (SD) 199.4 (34.5) 203.5 (35.5) 0.27 
Fasting plasma LDL-C, Mean (SD) 121.0 (31.1) 126.4 (31.2) 0.10 
HOMA-IR, Median (IQR) 6.8 (5.6) 5.0 (4.3) <0.001 
HOMA-B, Median (IQR) 268.1 (192.1) 256.0 (176.2) 0.61 
Hypertension, n (%) 14 (8.2) 5 (2.8) 0.04 
Smoker, n (%) 5 (2.9) 4 (2.2) 0.68 
Dietary glycemic index, Mean (SD) 242.5 (106.7) 246.5 (112.5) 0.73 
Dietary Intake, Percentage of Kcal as animal fat, Mean 
SD 27.0 (7.7) 25.6 (8.6) 0.10 
Physical activity score, met-hrs per week, Mean (SD) 50.7 (23.4) 47.4 (20.6) 0.16 

Data are presented as the mean (SD) unless otherwise noted.  
Variables obtained from the SWIFT Study that administered the research 2-hr 75 g OGTTs and other 
assessments at in-person research visits (baseline). 
Participants did not have diabetes at study baseline and underwent annual 2-hr 75 g OGTTs at 
baseline and annually for two years, and thereafter evaluated for diabetes onset from electronic 
medical records.  
P-values are for incident diabetes case versus no diabetes controls at follow-up. 
Statistically significant differences between group characteristics are shown in boldface type. 
 
 509 

Figure Legends 510 

 511 

Figure 1. SWIFT cohort and study design. SWIFT prospective cohort. 1,035 women diagnosed 512 

with GDM in 2008-2011 were enrolled at 6–9 weeks postpartum (baseline). 1,010 of the 1,035 513 

participants were confirmed via 2h 75 g OGTT without diabetes at baseline. Up to 8 years’ post-514 

baseline, a total of 197 (19.5%) women developed T2D. At baseline, samples of 171 available 515 
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cases with 179 controls were measured using lipidomics. A total of 1008 lipid species from 15 516 

lipid classes and 296 fatty acids were assessed in the plasma samples of all participants. 517 

 518 

Figure 2. Overview of T2D associated lipids. (A) Volcano plot showed -log10(FDR) against 519 

log2(odds ratio) of 816 lipid species in the association with T2D risk. Grey circles were denoted 520 

as no significant association with T2D risk. Of those that are significantly associated, red circles 521 

denote as neutral lipids, orange as phospholipids, blue as sphingolipids. (B) Number of T2D 522 

positive-, negative- and non- associated lipids in each lipid class were shown. Orange, green and 523 

blue bars denote positive, negative and non- associated lipids respectively. Significance was 524 

indicated by FDR<0.05. 525 

Figure supplement 1. Supervised PCA indicated partial separability of lipid profiles between 526 

case and control groups. 527 

Figure supplement 2. Odds ratio and 95% CI of 311 lipids associated with T2D risk (FDR<0.05). 528 

Source data 1. Odds ratio, 95%CI and FDR values of all lipids. Lipids with FDR<0.05 were 529 

highlighted. 530 

 531 

Figure 3. Lipids strongly associated with risk of incident T2D. (A) Odds ratio and 95% CI of 107 532 

lipids strongly associated with T2D risk (FDR<0.001) were indicated. The multivariate logistic 533 

regression model was adjusted for race, age and BMI. (B) Correlation between 107 T2D-risk 534 

associated lipids and conventional clinical parameters was indicated by correlation coefficient 535 

(r). Orange color indicates positive correlation while blue denotes negative correlation. 536 
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Source data 1. Odds ratio, 95%CI and FDR values of all lipids. Lipids with FDR<0.001 were 537 

highlighted. 538 

Source data 2. Correlation r values of T2D risk associated lipids with clinical parameters. 539 

 540 

Figure 4. Association between diabetes risk and lipid structure. (A) Relationship between 541 

diabetes risk and total number of carbon atoms and double bonds in lipid species. Odds ratios 542 

were represented with dots, color denoting odds ratio value, dot size denoting significance by 543 

FDR value. (B) Relationship between diabetes risk and fatty acid composition in lipids. Red and 544 

blue color denotes log2(odds ratio) with significance (FDR<0.05), white denotes values with no 545 

significance, grey denotes fatty acids not detected.  546 

Source data 1. Odds ratio values, FDR values, numbers of carbon atoms and double bonds in all 547 

lipid species. 548 

Source data 2. Relationship between diabetes risk and fatty acid composition in lipids. 549 

 550 

Figure 5. Pathways associated with future T2D at baseline. (A) Significantly regulated biological 551 

pathways associated with future diabetes onset analyzed by Kyoto Encyclopedia of Genes and 552 

Genomes (KEGG). Blue denotes the down-regulated pathways and red denotes the up-553 

regulated pathway. (B) The altered lipid classes in an integrated lipid metabolism pathway. Red 554 

denotes positive association whereas blue denotes negative association with significance of p-555 

value indicated.  556 

 557 
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Figure 6. Selected lipid signature predicting future T2D. (A) Top 11 lipids with the best 558 

predictive performance were selected for building a model to predict future T2D. Their odds 559 

ratio and 95% CI of T2D association were shown. (B) Predictive performance of logistic 560 

regression model was demonstrated as ROC curve. The area under the curve and 95% CI in each 561 

model were shown.  562 

Source data 1. Predictive performance of logistic regression model. 563 

 564 
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