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Abstract The pathogenesis of Helicobacter pylori-associated gastric cancer is dependent on

delivery of CagA into host cells through a type IV secretion system (T4SS). The H. pylori Cag T4SS

includes a large membrane-spanning core complex containing five proteins, organized into an outer

membrane cap (OMC), a periplasmic ring (PR) and a stalk. Here, we report cryo-EM reconstructions

of a core complex lacking Cag3 and an improved map of the wild-type complex. We define the

structures of two unique species-specific components (Cag3 and CagM) and show that Cag3 is

structurally similar to CagT. Unexpectedly, components of the OMC are organized in a 1:1:2:2:5

molar ratio (CagY:CagX:CagT:CagM:Cag3). CagX and CagY are components of both the OMC and

the PR and bridge the symmetry mismatch between these regions. These results reveal that

assembly of the H. pylori T4SS core complex is dependent on incorporation of interwoven species-

specific components.

Introduction
H. pylori colonizes the stomach in about half of the world’s human population, and its presence in

the stomach is the strongest known risk factor for gastric cancer (Uemura et al., 2001). H. pylori

strains containing a pathogenicity island (cag PAI), encoding CagA (a secreted effector protein) and

the Cag T4SS, are associated with a significantly higher incidence of gastric cancer than that associ-

ated with strains lacking the cag PAI (Blaser et al., 1995; Cover, 2016). Gastric cancer is the third

leading cause of cancer-related death worldwide, and there are nearly one million new gastric carci-

noma cases annually (Plummer et al., 2016). Therefore, understanding the molecular organization

of the Cag T4SS is an important goal.

Bacterial T4SSs are versatile molecular machines that can mediate a wide variety of functions,

including horizontal transfer of DNA among bacteria (conjugation) and delivery of effector proteins

into eukaryotic cells (Galán and Waksman, 2018; Grohmann et al., 2018; Waksman, 2019). T4SSs

in Gram-negative bacteria are comprised of an inner membrane complex, a membrane-spanning

core complex that extends from the inner membrane to the outer membrane, and in some systems,

an extracellular pilus (Galán and Waksman, 2018; Grohmann et al., 2018; Waksman, 2019). T4SSs

vary in complexity, ranging from ‘minimized’ or ‘prototype’ systems that contain about 12 compo-

nents (VirB1-11 and VirD4), as found in Agrobacterium tumefaciens, Xanthomonas citri, or
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conjugation systems, to expanded systems containing more than 20 components (Bhatty et al.,

2013). Expanded T4SSs contain unique species-specific components and are much larger in size

than their minimized counterparts. Examples of the larger, ‘expanded’ T4SSs include the Dot/Icm

T4SSs of Legionella pneumophila and Coxiella and the Cag T4SS of H. pylori, each of which trans-

ports effector proteins into host cells (Chetrit et al., 2018; Chung et al., 2019; Frick-Cheng et al.,

2016; Ghosal et al., 2019). The Legionella Dot/Icm translocates more than 300 effector proteins,

thereby allowing intracellular bacterial replication (Qiu and Luo, 2017). In contrast, the H. pylori Cag

T4SS is only known to deliver one effector protein, CagA (a bacterial oncoprotein), into gastric cells,

resulting in altered cell signaling (Cover et al., 2020).

Structural studies of minimized T4SSs have revealed a core complex (typically ~250 Å in width

and ~150 Å in height) that contains three proteins (VirB7, VirB9, and VirB10) (Chandran et al., 2009;

Fronzes et al., 2009; Low et al., 2014; Sgro et al., 2018). The H. pylori Cag T4SS core complex is

a much larger mushroom-shaped assembly (~400 Å in width and ~250 Å in height) that contains

structural homologs of the proteins found in minimized systems [CagT (VirB7), CagX (VirB9), and

CagY (VirB10)] along with additional proteins (Cag3 and CagM) that lack homologs in other bacterial

species (Chung et al., 2019; Frick-Cheng et al., 2016). The Cag T4SS core complex has been

described as consisting of three distinct structural features: the outer membrane cap (OMC) consist-

ing of an outer-layer (O-layer) and inner-layer (I-layer), a periplasmic ring (PR), and a stalk

(Chang et al., 2018; Chung et al., 2019; Hu et al., 2019). There is an apparent symmetry mismatch

between the 14-fold-symmetric OMC and the 17-fold symmetric PR (Figure 1a; Chung et al., 2019).

Our recent sub-4Å structure of the Cag T4SS revealed that central portions of the OMC are com-

posed of CagT, CagX, and CagY (VirB7, VirB9, and VirB10 homologs), but the resolution of the map

Figure 1. Comparison between maps of the wild-type (WT) and DCag3 Cag T4SS core complex. (a) The Cag T4SS spans the inner membrane and outer

membrane and consists of distinct features with differing symmetry: the OMC (C14 symmetry), the PR (C17 symmetry), an inner-membrane complex

(IMC, C6 symmetry), and the stalk and collar with unknown symmetries. (b) In the reconstruction of the WT Cag T4SS, we observe the O-layer of the

OMC (shown in blue), the I-layer of the OMC (shown in gray), and the PR (shown in green). Left panel, WT Cag T4SS density map; Right panel, central

slice of the WT density map. (c) All of these features are observed in the DCag3 Cag T4SS map (shown in the same colors as panel b), but peripheral

regions of the OMC are missing in the DCag3 Cag T4SS map (shown in white). Left panel, DCag3 Cag T4SS density map; middle panel, central slice of

DCag3 Cag T4SS density map; right panel, overlaid central slices of WT (grey) and DCag3 (blue and green) Cag T4SS density maps.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Flow chart of cryo-EM processing steps.

Figure supplement 2. Cryo-EM processing of the DCag3 Cag T4SS core complex.

Figure supplement 3. Cryo-EM processing of the WT Cag T4SS core complex.

Figure supplement 4. Analysis of Cag T4SS core complex preparations.
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did not allow us to build molecular models for the entire complex (Chung et al., 2019). Specifically,

we could not determine the molecular composition of the PR or define the locations of Cag3 or

CagM. In the current study, we undertook a further analysis of single particle cryo-EM data for the

wild-type Cag T4SS core complex as well as analysis of a mutant form of the core complex. These

efforts allow us to define the locations of Cag3 and CagM within the core complex, determine the

molecular composition of the PR, and determine the stoichiometry of components within the OMC.

Results
To build a more complete model of Cag T4SS organization and determine how the OMC and PR

interact, we expanded our cryo-EM studies to analyze the core complex from a Cag3-deficient H.

pylori strain (Dcag3) (Frick-Cheng et al., 2016). We also implemented new data analysis techniques

for processing previously collected cryo-EM data for wild-type (WT) core complexes (including per-

particle defocus refinement and beam tilt estimation), which resulted in higher resolution maps (Fig-

ure 1—figure supplements 1, 2 and 3, Appendix 1—table 1). When comparing the maps recon-

structed from the WT and Dcag3 strains, peripheral components of the O-layer of the OMC are

missing in the Dcag3 map. At least a portion of this peripheral density is likely composed of Cag3,

since it is the component most notably absent in core complex preparations from the Dcag3 mutant

[based on SDS-PAGE and mass spectrometry analyses (Figure 1—figure supplement 4)]. Notably,

the PR remained intact in the Dcag3 map, and weak density was still observed within the I-layer

(Figure 1b,c).

As described previously, CagT and the C-terminal portions of CagX (residues 349–514) and CagY

(residues 1677–1909) are localized to central regions of the O-layer of the OMC (Chung et al.,

2019). The increased resolution of the new maps allowed us to define the OMC asymmetric unit and

determine the molecular composition of regions that were previously undefined (Figure 1—figure

supplement 2d, Figure 2a, Figure 2—figure supplements 1–6, Video 1). Positioned adjacent and

peripheral to the previously described CagT (CagT-1), we identified another copy of CagT which we

call CagT-2 (Figures 2a,b and 3a). We found that the two copies of CagT differ significantly in the

conformations of both their N- and C-termini (Figure 4a). In CagT-1, the N-terminus is an extended

loop that is nestled against a portion of CagT-1 and CagX from the neighboring asymmetric unit,

resulting in an interface similar to what was described for X. citri VirB7 and VirB9 (Sgro et al., 2018).

Within CagT-2, the N-terminus adopts a different conformation, one in which it is wrapped back

around the central, globular VirB7-like fold, forming a b-strand that completes a b-sheet within an

adjacent protein that we designate as Cag3-1 (Figure 4c–f, Video 2). This rearrangement likely

occurs due to changes in a stretch of amino acids (I44-I50) within the center of this loop (Figure 4—

figure supplement 1a–c). While it is currently not clear what drives these conformational differences,

it is possible that this rearrangement results from the different repertoire of binding partners medi-

ated by this loop (Figure 4—figure supplement 1d–f). Despite the structural differences between

CagT-1 and CagT-2, a putative lipidation site (C21) in both proteins (McClain et al., 2020) is placed

in close proximity to the outer membrane (Figure 4g). The C-termini of both CagT molecules adopt

extended conformations that differ in their overall direction and organization. In CagT-1, the C-ter-

minal a-helices extend outward from the center of the map, forming contacts with CagT-1 Cag3-1,

Cag3-2, and Cag3-4 within the OMC (Figure 4h; Chung et al., 2019). Conversely, the C-terminal a-

helices of CagT-2 are connected by an apparently dynamic linker and are arranged such that they

contact a distinct repertoire of OMC proteins, including Cag3-1, Cag3-2, and CagM-1 (Figure 4i). In

both cases, the arrangement of these helical extensions deviates significantly from corresponding

regions in the X. citri VirB7 structure, where the domain terminates shortly after the core VirB7 fold

(Sgro et al., 2018; Figure 4—figure supplement 2a). Because of this, we suggest that the addition

of these C-terminal a-helices is critical to maintaining the expanded architecture of the Cag T4SS

OMC, as it has been previously shown that Cag3 cannot be effectively incorporated into core com-

plexes lacking CagT (Frick-Cheng et al., 2016).

The orientation of the CagT-1 C-terminal a-helices differs significantly in the Dcag3 OMC recon-

struction compared to their orientation in the wild-type OMC reconstruction. In contrast to the

extended conformation of the CagT-1 a-helices in the WT OMC, in the Dcag3 OMC these helices

are folded inward and pack against a-helices of CagX and CagY within the central chamber

(Figures 2c,d and 5a, Figure 4—figure supplement 2b). Notably, the second a-helix of the
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C-terminal extension is not observed within the Dcag3 OMC map and may be flexible. We suspect

that the C-terminal a-helices of CagT-1 adopt multiple conformations in the Dcag3 OMC, since addi-

tional components that would otherwise lock them into a single conformation are not present. In

addition to the loss of peripheral density corresponding to Cag3 within the Dcag3 map, we observe

no density for CagT-2 in the Dcag3 map. One possible explanation for the loss of CagT-2 is that it

Figure 2. The asymmetric unit of the WT and DCag3 Cag T4SS core complex. (a) A cross-section model of the mapped portions of CagY (yellow), CagX

(orange), CagT (red and salmon), CagM (brown and tan), and Cag3 (various shades of green and blue) in the OMC from the WT Cag T4SS. Portions of

CagX and CagY are present in both the OMC and the PR (denoted by the gray box). (b) A cartoon representation of the WT Cag T4SS core complex

proteins, colored as in panel a. The dotted lines represent densities that were not clearly seen in the density maps. (c) A cross-section model of the

mapped portions of CagY (yellow), CagX (orange), and CagT (red) from the DCag3 Cag T4SS core complex. (d) A cartoon representation of the DCag3

Cag T4SS core complex proteins with CagY (yellow), CagX (orange), CagT-1 (red). The red rectangles represent the alternate conformation of the

C-terminal helices of CagT-1. CagT-2 and Cag-3 were not observed within this map. The dashed lines represent densities that were not clearly seen in

the density map.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Correlation of each component of the WT Cag T4SS to experimental maps.

Figure supplement 2. Correlation of each component of the DCag3 Cag T4SS to experimental maps.

Figure supplement 3. Correlation between the WT OMC cryo-EM map and models.

Figure supplement 4. Model-map correlation for each protein within the OMC.

Figure supplement 5. Quality of models within the OMC of the DCag3 T4SS.

Figure supplement 6. Quality of models within the PR of the WT and DCag3 maps.
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Figure 3. Locations of components within the OMC. (a) The O-layer of the OMC contains two copies of CagT (CagT-1 and CagT-2) (shown in red and

salmon). The two copies are localized within the center of the asymmetric unit (inset) as shown in red and salmon. (b) Cag3 comprises a significant

portion of the O-layer of the Cag T4SS, as shown in blue and green. Within the asymmetric unit (inset), we observe five copies of Cag3 (denoted Cag3-

1 through Cag3-5, shown in various shades of blue and green). (c) Within the I-layer of the OMC, there are two similar folds, each defined as CagM.

Within the asymmetric unit, we observe two copies (inset) that are colored in brown and tan.
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cannot effectively fold when Cag3 is absent, lead-

ing to dissociation of the complex or unfolding of

the protein. These results are largely in agree-

ment with previous cryo-electron tomography

(Cryo-ET) studies, which noted the loss of most of

the O-layer of the OMC in the Dcag3 strain

(Hu et al., 2019). CagX and CagY adopt nearly

identical conformations in the DCag3 mutant core

complex when compared to the WT structure

(RMSDs of 0.5 Å and 0.3 Å, respectively)

(Figure 5b,c). This is consistent with a proposal

that assembly of the Cag T4SS is initiated by

positioning CagX and CagY in association with

the outer membrane (Hu et al., 2019).

Further analysis revealed five copies of Cag3 within each asymmetric unit (named Cag3-1 through

Cag3-5, based on their proximity to the central channel) (Figure 2a,b Figure 3b). All five copies of

Cag3 are found within the periphery of the OMC and adopt similar core folds (with RMSDs of 0.5–

1.3 Å) that are connected via a highly interwoven architecture (Figure 6a–c). Although the resolution

is lower towards the periphery of the map than near the center, we note that several Cag3 structural

features are recognizable in all five copies of Cag3 within the cryo-EM density map (Figure 6d–f,

Figure 6—figure supplement 1). The first copy of Cag3 (Cag3-1) contains the longest uninterrupted

span of density (corresponding to residues 62–308) and consists of two globular domains (proximal

and distal) connected by a long loop, without an intramolecular interface (Figure 6a,b). The proximal

domain of Cag3-1 is positioned adjacent to CagT-2 within the center of the map and contains a loop

(residues 181–204) that interacts with adjacent asymmetric units (Figure 6g). We predict that this

loop may act as a lynchpin during assembly, since it forms the most extensive network of contacts

within the center of the complex. Notably, the proximal domain of Cag3-1 consists of a ‘core’ fold

that is similar to a corresponding fold in CagT and the related VirB7 homolog from X. citri

(Figure 6h; Sgro et al., 2018). The distal domain of Cag3-1 is linked to the proximal domain

through a linker that runs along a second copy of Cag3 (Cag3-2) and resides within the periphery of

the map,~50 Å away from the proximal domain, tucked up next to another copy of Cag3 (Cag3-3)

(Figure 2a,b). A distal domain was not seen in any of the other copies of Cag3, possibly due to the

lower resolution at the periphery of the map or to inherent heterogeneity associated with this

domain.

While the local resolution of the I-layer is lower than that of the O-layer, we observe several key

features of the I-layer that are consistent with the sequence of CagM (Figures 3c and 7a). We mod-

eled a portion of CagM (residues 187–366) into peripheral density within the I-layer and observe an

a-helical fold with two sub-domains: a 3-helix bundle at the N-terminus connected by a short loop to

a 5-helix fold at the C-terminus. We also observe a second helical fold containing 9 a-helices,

arranged in a nearly identical fashion as in CagM-1 within the center of the I-layer, albeit at lower

resolution (Figure 7b). We fit the CagM sequence into this density and note that the refined struc-

ture (designated CagM-2) again contains two subdomains connected via a flexible hinge (Figure 7c).

When aligning each subdomain of CagM-1 with

the corresponding subdomain of CagM-2, the

RMSD for each is ~1.1 Å, supporting our assign-

ment of this portion of the map as a second copy

of CagM (Figure 7d,e). The difference in the ori-

entation of the subdomains in CagM-1 and

CagM-2 is the result of unique contacts mediated

by the C-terminal subdomains (Figure 7f,g).

Based on these analyses, we conclude that the

OMC proteins exist at a stoichiometry of

1:1:2:2:5 (CagX:CagY:CagM:CagT:Cag3). This

stoichiometry helps explain the large size of the

Cag T4SS core complex, since core complexes in

characterized minimized systems contain only

Video 1. The Cag T4SS OMC.

https://elifesciences.org/articles/59495#video1

Video 2. Differences between CagT-1 and CagT-2 in

the Cag T4SS asymmetric unit.

https://elifesciences.org/articles/59495#video2
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Figure 4. The N- and C-termini from CagT-1 and CagT-2 are positioned differently. (a–c) The N-terminus of CagT-1 extends inward toward the center

of the map and interacts with CagX from the next asymmetric unit. The residues that contribute to this interaction are largely hydrophobic, as indicated

in the inset panel. CagT-2 differs from CagT-1 in that the N-terminus of the protein extends outward toward the periphery of the map, forming the last

strand of a b-sheet with Cag3-1. (d) The three proteins (CagT-1, CagT-2 and Cag3-1) have an interwoven architecture. (e) The interface that is formed

Figure 4 continued on next page
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single copies of each component within the asymmetric unit (Fronzes et al., 2009; Sgro et al.,

2018). Illustrating this point, we note that the inclusion of 5 copies of Cag3 within the asymmetric

unit results in 70 copies of Cag3 incorporated into the fully assembled Cag T4SS OMC. In total, the

Cag T4SS OMC contains 154 different polypeptide chains. In comparison, prototype core complexes

contain a total of 42 different polypeptide chains (14 copies each of VirB7, VirB9 and VirB10).

The resolution of the PR within the Dcag3 map is higher than what was previously determined for

the wild-type complex (Figure 1—figure supplement 2j,k; Chung et al., 2019). Because of this

advance, it is possible to identify the two components of the PR as portions of CagX (residues 32–

130, 261–323) and CagY (residues 1469–1603). The PR is mostly comprised of a globular domain

formed by an N-terminal portion of CagX, which starts from the cytoplasm-facing side of the PR,

wraps back and forth to form two b-sheets, and ends in an a-helix pointed towards the OMC

(Figure 8a, Video 3). The N-terminal domain of CagX is homologous to the N-terminal domain of X.

citri VirB9 (RMSD of 0.8 Å, PDB 6GYB) (Figure 8b–d; Sgro et al., 2018). The C-terminal domain of

CagX is also highly similar to its X. citri counterpart (RMSD of 0.6 Å, PDB 6GYB) (Figure 8e,f). The

major difference between the two proteins is the presence of an insertion within CagX that forms a

long a-helix in the center of the molecule (Figure 8d,g). Because of this feature, the N- and C-termi-

nal domains of H. pylori CagX are positioned ~200 Å apart (within the PR and OMC, respectively),

whereas the corresponding domains of X. citri VirB9 are ~80 Å apart (Figure 8h).

Wrapped around the PR portion of CagX is a segment of CagY that starts from the cytoplasm-

facing side of the PR and forms four a-helices that are connected by loops that vary in length (rang-

ing from 3 to 41 residues) (Figure 8i). This is similar to a described interaction between

Figure 4 continued

between the three proteins consists of two b-sheets that include strands from all three molecules. (f) The interface of CagT-2 and Cag3-1 is a pair of a-

helices that bury hydrophobic residues within the interface. (g) The position of the N-terminal loops of CagT-1 (red) and CagT-2 (salmon) are such that

the putative lipidation sites are near the outer membrane. (h) The C-terminal a-helices of CagT-1 adopt an extended conformation (left) and interact

with Cag3-1, Cag3-2, and Cag3-4 within the same asymmetric unit and Cag3-1 and CagT-1 in neighboring asymmetric units (right). (i) The C-terminal a-

helices of CagT-2 are connected by an apparently flexible linker (left) and interact with Cag3-1, Cag3-2, and CagM-1 (right).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. The N-terminal loop of CagT is observed in two different conformations.

Figure supplement 2. The C-terminal helices of CagT mediate interactions within the OMC.

Figure 5. Conservation of protein structures in WT and DCag3 Cag T4SS complexes. (a) Despite global differences between the overall WT and Dcag3

maps, the structure of CagT-1 shares a similar core VirB7-like fold in both maps. (b–c) Similarly, CagX and CagY adopt nearly identical orientations

within both maps. The illustrated portions of CagX and CagY are the domains localized to the OMC.
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Figure 6. There are five copies of Cag3 within the OMC asymmetric unit. (a) Five different molecules of Cag3 are present within the asymmetric unit.

The general architecture of Cag3 can be described as two domains, the proximal domain (residues 62–232) and the distal domain (residues 252–309).

(b) All five of the Cag3 proteins share a heavily interwoven architecture in which b-sheets are formed between adjacent molecules within the asymmetric

unit. (c) A topology diagram showing the general architecture of all copies of Cag3 within the asymmetric unit. (d) The interface of Cag3-2 (cyan) and

Figure 6 continued on next page
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Figure 6 continued

Cag3-3 (light blue) is formed predominantly by two helices with contact mediated by Y114 and R128 of each molecule. (e) The interface of Cag3-3 (light

blue) and Cag3-4 (blue) is dramatically different from the other Cag3 interfaces and includes an extensive hydrophobic interaction that is formed by two

adjacent beta sheets. (f) Cag3-4 (blue) and Cag3-5 (navy blue) share a similar interface as Cag3-2 and Cag3-3, as shown above. (g) A view of the Cag

T4SS is shown from the top-down (left) and indicates the position of a loop within the Cag3-1 proximal domain (amino acids 181–204, black box) that

mediates contacts between asymmetric units. (h) The proximal domain of Cag3 contains a fold that is structurally similar to folds within CagT-1 (shown

in red), CagT-2 (shown in salmon) and X. citri VirB7 (PDB 6GYB, shown in purple).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. The repetitive b-sheet structure of CagT and Cag3.

Figure 7. Localization of CagM within the I-layer of the OMC. (a) We modeled a single domain of CagM-1, consisting of 8 helices within the I-layer of

the OMC. Representative density for all eight helices is shown with landmark residues indicated. (b) Although the local resolution within the I-layer is

notably lower than that of the O-layer, several structural features within the I-layer density are consistent with the sequence of CagM (designated

CagM-1). The correlation of all 8 helices of CagM-2 to the experimental map is shown. (c) The two subdomains within CagM are connected by a hinge

(noted by the red dotted line). When the CagM-1 subdomains are aligned independently, we note RMSDs of 1.1 Å for both the N-terminal subdomain

(d) and the C-terminal domain (e). The differences in sub-domain orientation are likely the result of differences in interacting partners of CagM-1 (f) and

CagM-2 (g) within the OMC.
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a corresponding part of VirB10 and the N-termi-

nal domain of VirB9 in the X. citri T4SS

(Sgro et al., 2018). In both cases, a segment of

CagY/VirB10 in this region is linked to the C-ter-

minal portion of the protein through a linker

which is not directly observed in the data. Both

CagY and X. citri VirB10 start with the N-terminus

of this portion positioned near the periplasmic

space and pass ‘below’ two protomers of CagX/

VirB9. Both proteins then extend upward toward

the outer membrane through the interior of the

ring formed by the N-terminal domain of CagX/

VirB9. The CagX-CagY interface in H. pylori is

much larger than the corresponding VirB9-VirB10

interface, likely due to an expansion of CagY compared to VirB10 homologs in minimized systems

(Figure 8j). The position of CagY within the PR could potentially allow the unresolved segment (resi-

dues 1604–1676) to span the inner chamber of the OMC to connect with a C-terminal domain of

CagY in the OMC. We note that the portion of CagY visible in the PR is positioned so that the

remaining N-terminal 1468 residues (not observed) likely extend into the periplasm, possibly contrib-

uting to the low resolution ‘collar’ and stalk densities (Figure 8k; Hu et al., 2019).

The identification of CagX and CagY within the PR was unexpected, as it suggests that each pro-

tein exists within both the OMC and PR, two distinct regions of the T4SS that differ in overall sym-

metry (Figure 9a). Although we cannot specifically trace either component across the symmetry

mismatch, we note that the long helical expansion within CagX appears to bridge the OMC and PR.

This model is supported by focused refinement of the connecting region between the OMC and PR

in the WT map without imposition of symmetry, which shows 14 tubes of helical density connecting

the OMC and PR (Figure 9b). Notably, only 14 copies of CagX within the PR appear to traverse the

symmetry mismatch, leaving three domains within the PR without an obvious connection to the

OMC (Figure 9c, Video 4). It is not clear if the density corresponding to these copies of CagX and

CagY cannot be traced due to inherent flexibility within the respective C-terminal domains, if these

additional protomers represent truncated versions of CagX and CagY, or if they represent uncharac-

terized structural homologs.

Discussion
The Cag T4SS structure reported here represents the most comprehensive high-resolution analysis

of the unique architectural features of an expanded T4SS to date. We have identified the positions

of all five core complex proteins, including the previously uncharacterized Cag3 and CagM. A nota-

ble discovery is the structural conservation between central domains of CagT and Cag3, a result

which could not have been predicted based on sequence comparisons alone. Our finding that the

Cag T4SS incorporates multiple copies of Cag3, CagM and CagT into the OMC allows for a refined

understanding of how this very large complex is assembled from only a few components. The cur-

rent analysis also provides a better understanding of how the components of the Cag T4SS are

arranged, highlighting important interactions

among the newly described components. Specifi-

cally, interactions between CagT-1-CagT-2,

CagT-1-Cag3-1, Cag3-Cag3, Cag3-CagM, and

CagM-CagX have all been localized within this

map. Although this study presents the first struc-

tural description of these interactions, it is inter-

esting to note that many of these interactions

have been previously detected by various bio-

chemical methods. Specifically, interactions

between Cag3-Cag3, Cag3-CagT, Cag3-CagM,

CagX-CagM, and CagT-CagM were previous

detected using a yeast two-hybrid screening

Video 3. Arrangement of CagX and CagY within the

PR of the Cag T4SS.

https://elifesciences.org/articles/59495#video3

Video 4. Apparent Symmetry of CagX in the OMC and PR.

https://elifesciences.org/articles/59495#video4
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Figure 8. CagX and CagY comprise the PR. (a) The PR is comprised of N-terminal portions of CagX and a fragment of CagY. Both proteins start from

the inner membrane side of the PR, form small globular folds, and extend upward toward the outer membrane. A portion of CagY within the PR wraps

around CagX, starting from the periplasm and winding into the lumen of the PR. (b) The N-terminal domain of CagX (residues 41–310) is similar to that

of VirB9 (c) from X. citri in both structure and sequence (d). The C-terminal domain of CagX (e) is similar to that of the C-terminal domain of VirB9 from

Figure 8 continued on next page
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Figure 8 continued

X. citri (f). (g) The periplasmic and outer membrane domains (PD and OMD, respectively) are similar in structurally characterized VirB9 homologs,

though they are separated by a periplasmic linker (PL) that is variable in length. CagX contains an additional insertion (residues 102–153, periplasmic

insertion or PI) that is unique when compared to other homologs. The structure corresponding to the PI was not observed within any of our cryo-EM

reconstructions. (h) The spacing of the two CagX/VirB9 domains varies depending on the organism and appears to be highly dependent on the length

of the periplasmic linker (CagX and VirB9 are shown in orange). (i) The segment of CagY within the PR (residues 1469–1603) adopts a highly elongated

fold that consists of four a-helices (left). The periplasmic portion of CagY (as shown on the left) starts within the periplasm and wraps around the

globular domain of CagX (shown in orange), eventually ending in the lumen of the PR (gray, right). (j) The periplasmic segment of CagY, which we call

the periplasmic domain (PD, brown), is unique to CagY and is not present in other VirB10 homologs such as VirB10 from X. citri (yellow indicates a

VirB10 like domain, and red represents the unstructured linker). (k) The N-terminus of CagY was not observed within any of these cryo-EM

reconstructions. The N-terminal portion of CagY in the model that was constructed (about residue 1469) is positioned so that it might continue outward

into the periplasmic space, possibly contributing to the structural feature known as the collar, as well as the stalk.

Figure 9. CagX and CagY span the symmetry mismatch between the OMC and PR. (a) Models of CagX and CagY within the OMC and PR asymmetric

units. (b) In the asymmetric reconstruction from a focused refinement of the interface between the OMC and PR of the WT map, we note the presence

of helical density predicted to be a portion of CagX (top). We have modeled 14 copies of CagX into density within the OMC (bottom, left) and 17

copies of CagX into the PR (bottom, right). (c) Though we observe clear connections between 14 subunits of the OMC and 14 subunits of the PR, three

copies of CagX in the PR do not show any obvious connection to the OMC.
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approach or by studies of recombinant proteins produced in E. coli, and are consistent with the

structural observations reported here (Busler et al., 2006; Kutter et al., 2008; Smart et al., 2017).

Importantly, the structural detail obtained from single particle cryo-EM analysis reveals the context

of these interactions, allowing us to define which interactions occur within one asymmetric unit and

which interactions occur between adjacent asymmetric units.

The structure that we present here provides an improved understanding of how the PR is assem-

bled and highlights the presence of portions of CagX and CagY within the PR. We show that CagX

and CagY assemble to form portions of both the OMC and PR, bridging the previously described

symmetry mismatch within the core complex (Chung et al., 2019). Although the existence of CagX

and CagY in both the OMC and PR seems inconsistent with the observed symmetry mismatch, it

should be noted that this is not the first example of such a phenomenon. Indeed, a similar phenome-

non has been detected in the Type Three Secretion System (T3SS) of Salmonella, in which one mole-

cule (InvG) exists on both sides of a C15-C16 symmetry mismatch (Hu et al., 2018). Symmetry

mismatch has been observed in multiple types of bacterial secretion systems or other large bacterial

machines, including T2SSs, T3SSs, the L. pneumophila Dot/Icm T4SS, T6SSs, and the Salmonella fla-

gellar motor (Chernyatina and Low, 2019; Dix et al., 2018; Hu et al., 2018; Johnson et al., 2020;

Park et al., 2020), suggesting an important physiological function for this architecture. The mecha-

nisms by which symmetry mismatch arises in these systems have not yet been determined, and the

functional consequences of symmetry mismatch in these systems remain unclear. Interestingly, no

symmetry mismatch has been observed in core complexes of minimized T4SS systems such as the X.

citri T4SS, which contain 14 copies of both the N-terminal and C-terminal domains of VirB9

(Sgro et al., 2018).

When comparing the H. pylori Cag T4SS core complex to corresponding T4SS subassemblies in

other species, there are striking differences. Most notably, the Cag T4SS core complex is much

larger in size than core complexes in prototype systems, and it contains two species-specific compo-

nents (Cag3 and CagM). The CagT, CagX and CagY components of the Cag T4SS are homologs of

VirB7, VirB9 and VirB10 components of prototype systems, but there are marked differences in the

sequences and structures. Finally, the Cag T4SS core complex includes a PR feature, which has not

been detected in prototype systems. In the current study, we discovered that the portions of CagX

and CagY within the PR are similar to the parts of VirB9 and VirB10 which reside in the I-layer of the

X. citri T4SS (Sgro et al., 2018). Because of this relationship, it is perhaps appropriate to consider

the PR of the Cag T4SS and the I-layer of the X. citri T4SS as analogous structures. However, there

are several important distinctions. First, the difference in symmetry between the OMC and the PR of

the H. pylori Cag T4SS contrasts the C14 symmetry observed throughout the X. citri T4SS core com-

plex. Second, the position of the X. citri T4SS I-layer within the OMC (~115 Å below the outer mem-

brane, as determined by the position of the membrane spanning helices) is similar to that of the

I-layer of the Cag T4SS (positioned ~120 Å beneath the outer membrane, and composed of CagM).

Therefore, in comparison to the Cag T4SS PR, the I-layer within the X. citri T4SS is positioned much

closer to the OMC. The functional roles of these structures are currently unclear, but we speculate

that the OMC I-layer and the PR represent structural expansions within the Cag T4SS that are associ-

ated with specific functions. Future investigations building on the current structural studies will be

needed to develop a more complete understanding of the similarities and differences that exist

among T4SSs.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Strain, strain
background
(Helicobacter
pylori 26695)

HA-CagF PMID:26758182 produces HA epitope-tagged CagF

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Strain, strain
background
(Helicobacter
pylori 26695)

Dcag3; HA-CagF PMID:26758182 Dcag3 mutant, produces HA epitope-tagged CagF

Software,
algorithm

Leginon PMID:15890530

Software,
algorithm

MotionCor2 PMID:28250466

Software,
algorithm

CTFFind4 PMID:26278980

Software,
algorithm

cryoSPARC PMID:28165473

Software,
algorithm

RELION PMID:27685097
PMID:30412051

Software,
algorithm

Coot PMID:20383002

Software,
algorithm

UCSF Chimera PMID:15264254
PMID:29340616

Software,
algorithm

PHENIX PMID:29872004

Software,
algorithm

DALI server PMID:31263867

Core complex purification
Cag T4SS complexes were purified from either a wild-type H. pylori strain or a Dcag3 mutant strain,

each engineered to produce an epitope-tagged form of CagF, as described previously

(Chung et al., 2019; Frick-Cheng et al., 2016). The resulting preparations were analyzed by SDS-

PAGE and colloidal Coomassie blue staining, and the composition of the preparations was deter-

mined by LC-MS/MS analysis (Frick-Cheng et al., 2016; Lin et al., 2020).

Cryo-EM data collection and map reconstruction
For cryo-EM, Cag T4SS core complex preparations purified from wild-type or Dcag3 mutant strains

were applied to glow discharged Lacey 400 mesh copper grids (TED PELLA) coated with home-

made ultra-thin (~2 nm) continuous carbon film or Quantifoil 2/2 200 mesh copper grids with ultra-

thin (2 nm) continuous carbon film (Electron Microscopy Services), respectively. To increase particle

density in suspended vitreous ice, 5 mL aliquots of the samples were applied three times, incubated

for ~60 s after each application, and the grids were then washed with water to remove detergent

(Cheng et al., 2015). The grids were vitrified by plunge-freezing in a slurry of liquid ethane using a

Vitrobot Mark IV (Thermo Fisher Scientific) at 4˚C and 100% humidity.

All the images were collected on a Thermo Fisher 300 kV Titan Krios electron microscope

equipped with a Gatan K2 Summit Direct Electron Detector. The nominal pixel sizes for WT and

DCag3 samples were 1.64 Å per pixel (x18,000 magnification) and 1.00 Å per pixel (x29,000 magnifi-

cation), respectively. The total exposure time was 8 s, and frames were recorded every 0.2 s, result-

ing in a total accumulated dose of 59.0 e�A˚�2 (for WT Cag T4SS) or 59.7 e�A˚�2 (for DCag3 Cag

T4SS). Different defocus ranges were used for each sample (�2.5 to �3.5 mm for WT and �1.5 to

�3.5 mm for DCag3) as they had different ice-thicknesses. All the raw images for WT samples were

identical to the datasets used in the previous study (Chung et al., 2019). In the previous study,

approximately 20,000 raw micrographs were collected. Approximately 6,000 micrographs were

selected and used for image processing steps in the current study, based on the quality of images.

All the image frames were first dose-weighted and aligned using MotionCor2 (Zheng et al.,

2017). The contrast transfer function (CTF) values were then determined using CTFFind4

(Rohou and Grigorieff, 2015). Two different image processing software packages, cryoSPARC and
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Relion3.0, were used for different types of processing (Punjani et al., 2017; Zivanov et al., 2018).

For analysis of the WT Cag T4SS, 361,706 particles were picked from 5,980 micrographs using the

template picker in cryoSPARC. The selected particles were then extracted with a 510 pixel box size

(1.64 Å/pixel) and used to generate representative 2D classes. After the 2D classification, classes

with clear secondary structural features and intact particles were retained (corresponding to 77,133

particles). The particles in these classes were then subjected to a 3D classification with a reference-

free initial 3D model (ab initio model in cryoSPARC). The best 3D class (approximately 70,000 par-

ticles) was used as the reference for 3D refinement with C1 symmetry (lowpass filtered to 60 A˚).

Finally, a solvent mask and B-factor were applied to improve the overall features and resolution of

the map, resulting in reconstruction of a 3D electron density map with a global resolution of 4.7 A˚

(Figure 1—figure supplement 3). For the DCag3 Cag T4SS dataset, 107,917 particles were selected

using template picker in cryoSPARC and extracted with a 510 pixel box size (1.00 Å/pixel). After 2D

and 3D particle filtering steps, approximately 12,000 particles were retained and subjected to 3D

refinement with C1 symmetry. Subsequently, a solvent mask and B-factor were applied, resulting in

reconstruction of a 3D map with 7.1 A˚ resolution (Figure 1—figure supplement 2).

The particle stacks used in 3D refinements of WT and DCag3 Cag T4SSs were then exported to

Relion for further steps, such as per-particle CTF refinement and focused refinement. In the freezing

step, the formation of relatively thick ice was necessary because of the very large size of the com-

plexes (height,~470 Å). In addition, thin carbon support film (continuous ultra-thin carbon film) was

used to overcome preferred particle orientation in vitrified ice. Within the conditions, different par-

ticles were situated at different heights within the field of view, causing per-particle defocus varia-

tions within a micrograph (Zivanov et al., 2018). Therefore, to reconstruct high resolution 3D

models, per-particle defocus refinement and beam tilt estimation were applied, followed by 3D

auto-refinements, which yielded a final resolution of 4.5 A˚ (for the WT Cag T4SS) and 5.3 A˚ (for the

DCag3 Cag T4SS) with no symmetry applied.

For focused refinement of the WT OMC, signal subtraction for each individual particle containing

the OMC was used with a soft mask. After signal subtraction and alignment-free focused 3D classifi-

cation, one highly populated 3D class of OMC was produced (~47,000 particles). The best 3D class

was then subjected to a masked 3D refinement, resulting in reconstruction of the 3D map at 3.6 A˚

resolution. Another round of per-particle defocus refinement and beam tilt estimation was applied,

followed by another focused 3D refinement, which yielded a final resolution of 3.4 A˚ (Figure 1—fig-

ure supplement 3).

Similar steps were used for focused refinement of the DCag3 OMC and PR, starting with signal

subtraction of the sub-complex for each particle. The subtracted particles were subjected to align-

ment-free focused 3D classification, and this produced one highly populated 3D class for each data-

set (~7000 particles for the DCag3 OMC and ~10,000 particles for the DCag3 PR). The best 3D class

was then subjected to a masked 3D refinement with C14 (DCag3 OMC) or C17 (DCag3 PR) symme-

try, resulting in resolutions of 3.1 A˚ (OMC) and 3.0 A˚ (PR) (Figure 1—figure supplement 2). All res-

olutions described above were calculated using the gold-standard 0.143 FSC and visualized using

UCSF Chimera and ChimeraX (Goddard et al., 2018; Pettersen et al., 2004).

Model building and refinement
Models of the OMC were constructed within either the WT or the DCag3 Cag T4SS cryo-EM OMC

maps using PDB-6OEE, PDB-6OEF, and PDB-6ODI as starting models (Chung et al., 2019). Each

model was first docked into either the WT or the DCag3 Cag T4SS map using UCSF Chimera

(Pettersen et al., 2004). The models were then iteratively built and refined within COOT

(Emsley et al., 2010). After successive rounds of building, the models were subjected to real space

refinement in Phenix with secondary structure and Ramachandran restraints applied (Adams et al.,

2010; Afonine et al., 2018). The nonbonded weight applied during refinement was tuned to reduce

steric clashing. Models of the PR were constructed de novo based on density reconstructed from

the Dcag3 sample using COOT. These models were then iteratively refined in Phenix real space with

secondary structure and Ramachandran restraints applied. Similarly, the nonbonded weight applied

during refinement of the PR was tuned to reduce steric clashing. After refinement, this model was

docked into a previously reported map corresponding to the PR of the WT Cag T4SS (EMD-20021)

(Chung et al., 2019). This model was refined using a protocol similar to that which was described

above. The quality of each model was determined by assessing how well the model fit the map using
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model-map FSC calculations as well as per-residue correlation coefficients (CCs). All model building

and refinement software was accessed through the SBGrid Consortium (Morin et al., 2013).
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Appendix 1

Appendix 1—table 1. Cryo-EM data collection and processing.

HpT4SS OMC WT HpT4SS PC WT HpT4SS OMC Dcag3
HpT4SS PR
Dcag3

EMDB Accession Codes EMD-22081 EMD-20021 EMD-22076 EMD-22077

Data Collection and Processing

Magnification 18,000 - 29,000 29,000

Voltage (kV) 300 - 300 300

Total Electron Dose (e-/Å2) 59.0 - 59.7 59.7

Defocus Range (mm) �2.5 ~ �3.5 - �1.5 ~ �3.5 �1.5 ~ �3.5

Pixel Size (Å) 1.64 - 1.0 1.0

Processing Software CryoSPARC/Relion - CryoSPARC/Relion CryoSPARC/
Relion

Symmetry C14 - C14 C17

Initial Particles (number) 361,706 - 107,917 107,917

Final Particles (number) 47,440 - 7337 10,477

Map Sharpening B Factor �64.34 - �47.40 �52.23

Map Resolution (Å) 3.4 - 3.1 3.0

FSC Threshold 0.143 - 0.143 0.143

Model Refinement and Validation

Refinement

Initial Model Used 6OEF, 6OEE,
6ODI

6X6L 6OEF, 6OEE,
6ODI

6OEF, 6OEE,
6ODI

Model Resolution

FSC (0.5) 3.5 3.5 3.4 3.3

FSC (0.143) 3.3 3.4 3.1 3.0

Model Composition (Residues) 27,468 7602 5083

Residues Modelled

CagY 1677–1820,
1851–1909

1469–1603 1677–1823,
1849–1910

1469–1603

CagX 349–514 32–130, 261–325 361–515 32–130, 261–325

CagT-1 26–278 - 26–139, 165–175,
190–221, 286–307

-

CagT-2 29–139, 178–238,
254–273

- - -

Cag3-1 62–308 - - -

Cag3-2 104–193 - - -

Cag3-3 104–195 - - -

Cag3-4 74–79, 94–181 - - -

Cag3-5 78–181 - - -

CagM-1 187–366 -

CagM-2 187–365 - -

Bond RMSD

Bond Length (Å) 0.011 0.006 0.011 0.007

Bond Angle (˚) 1.490 0.616 1.279 0.775

Continued on next page
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Appendix 1—table 1 continued

HpT4SS OMC WT HpT4SS PC WT HpT4SS OMC Dcag3
HpT4SS PR
Dcag3

Validation

Molprobity Score 2.15 2.51 1.82 2.59

Clashscore 9.64 13.41 8.21 11.66

Ramachandran (%)

Favored 94.0 95.9 94.5 96.4

Allowed 6.0 4.1 5.5 3.6

Outliers 0.0 0.0 0.0 0.0

B Factor 127.48 95.94 75.84 76.90

PDB Accession Codes 6X6S 6X6J 6X6K 6X6L
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