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Abstract Opisthorchiasis is an overlooked danger to Southeast Asia. High-resolution disease

risk maps are critical but have not been available for Southeast Asia. Georeferenced disease data

and potential influencing factor data were collected through a systematic review of literatures and

open-access databases, respectively. Bayesian spatial-temporal joint models were developed to

analyze both point- and area-level disease data, within a logit regression in combination of

potential influencing factors and spatial-temporal random effects. The model-based risk mapping

identified areas of low, moderate, and high prevalence across the study region. Even though the

overall population-adjusted estimated prevalence presented a trend down, a total of 12.39 million

(95% Bayesian credible intervals [BCI]: 10.10–15.06) people were estimated to be infected with O.

viverrini in 2018 in four major endemic countries (i.e., Thailand, Laos, Cambodia, and Vietnam),

highlighting the public health importance of the disease in the study region. The high-resolution

risk maps provide valuable information for spatial targeting of opisthorchiasis control interventions.

Introduction
End of the epidemics of neglected tropical diseases (NTDs) by 2030 embodied in the international

set of targets for the sustainable development goals (SDGs) endorsed by the United Nations

empowers the efforts made by developing countries to combat the NTD epidemics (UN, 2015). To

date, 20 diseases have been listed as NTDs, and opisthorchiasis is under the umbrella of food-borne

trematodiasis (Ogorodova et al., 2015). Two species of opisthorchiasis are of public health signifi-

cance, that is, Opisthorchis felineus (O. felineus), endemic in eastern Europe and Russia, and Opi-

thorchis viverrini (O. viverrini), endemic in Southeast Asian countries (Petney et al., 2013). The later

species is of our interest in the current article.
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According to WHO’s conservative estimation, an overall disease burden due to opisthorchiasis

was 188,346 disability-adjusting life years (DALYs) in 2010 (Havelaar et al., 2015). Fürst and col-

leagues estimated that more than 99% of the burden worldwide attribute to O. viverrini infection in

Southeast Asia (Fürst et al., 2012). Five countries in Southeast Asia, Cambodia, Lao PDR, Myanmar,

Thailand, and Vietnam, are endemic for opisthorchiasis, with an estimated 67.3 million people at risk

(Keiser and Utzinger, 2005). It is well documented that chronic and repeated infection with O.

viverrini leads to the development of fatal bile duct cancer (cholangiocarcinoma)

(International Agency for Research on Cancer, 1994).

The life cycle of O. viverrini involves freshwater snails of the genus Bithynia as the first intermedi-

ate host, and freshwater cyprinoid fish as the second intermediate host. Humans and other carni-

vores (e.g., cats and dogs), the final hosts, become infected by consuming raw or insufficiently

cooked infected fish (Andrews et al., 2008; Saijuntha et al., 2014). Behavioral, environmental, and

socioeconomic factors affect the transmission of O. viverrini (Grundy-Warr et al., 2012,

Phimpraphai et al., 2017, Phimpraphai et al., 2018, Prueksapanich et al., 2018). Raw or insuffi-

ciently cooked fish consumption is the cultural root in endemic countries, showing a strong relation-

ship with the occurrence of the disease (Andrews et al., 2008; Grundy-Warr et al., 2012). Poorly

hygienic conditions increase the risk of infection, especially in areas practicing raw-fish-eating habit

(Grundy-Warr et al., 2012). In addition, environmental and climatic factors, such as temperature,

precipitation, and landscape, affecting either snail/fish population or growth of the parasites inside

the intermediate hosts, can potentially influence the risk of human infection (Forrer et al., 2012;

Suwannatrai et al., 2017). Important control strategies of O. viverrini infection include preventive

chemotherapy, health education, environmental modification, improving sanitation, as well as com-

prehensive approaches with combinations of the above (Saijuntha et al., 2014). For purposes of

public health control, WHO recommends implementing preventive chemotherapy once a year or

once every 2 years depending on the levels of prevalence in population, with complementary inter-

ventions such as health education and improvement of sanitation (WHO, 2009).

Understanding the geographical distribution of O. viverrini infection risk at high spatial resolution

is critical to prevent and control the disease cost-effectively in priority areas. Thailand conducted

national surveys for O. viverrini prevalence in 1981, 1991, 2001, 2009, and 2014 (Echaubard et al.,

2016; Suwannatrai et al., 2018), but the results of these surveys were presented at the

province level, which is less informative for precisely targeting control interventions. Suwannatrai

and colleagues, based on climatic and O. viverrini presence data, produced climatic suitability maps

for O. viverrini in Thailand using the MaxEnt modeling approach (Suwannatrai et al., 2017). The

maps brought insights for identifying areas with a high probability of O. viverrini occurrence; how-

ever, they did not provide direct information on prevalence of O. viverrini in population (Elith et al.,

2011). A risk map of O. viverrini infection in Champasack province of Lao PDR was presented by

Forrer and colleagues (Forrer et al., 2012). To our knowledge, high-resolution, model-based risk

estimates of O. viverrini infection are unavailable in the whole endemic region of Southeast Asia.

Bayesian geostatistical modeling is one of the most rigorous inferential approaches for high-reso-

lution maps depicting the distribution of the disease risk (Karagiannis-Voules et al., 2015). Geostat-

istical modeling relates geo-referenced disease data with potential influencing factors (e.g.,

socioeconomic and environmental factors) and estimates the infection risk in areas without observed

data (Gelfand and Banerjee, 2017). Common geostatistical models are usually based on point-refer-

enced survey data (Banerjee et al., 2014). In practice, disease data collected from various sources

often consists of point-referenced and area-aggregated data. Bayesian geostatistical joint modeling

approaches provide a flexible framework for combining analysis of both kinds of data

(Moraga et al., 2017; Smith et al., 2008). In this study, we aimed (1) to collect all available survey

data on the prevalence of O. viverrini infection at point- or area-level in Southeast Asia through sys-

tematic review; and (2) to estimate the spatial-temporal distribution of the disease risk at a high spa-

tial resolution, with the application of advanced Bayesian geostatistical joint modeling approach.

Results
A total of 2690 references were identified through systematically reviewing peer-review literatures,

and 13 additional references were gathered from other sources. According to the inclusion and

exclusion criteria, 168 records were included, resulted in a total of 580 ADM1-level surveys in 174
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areas, 210 ADM2-level surveys in 142 areas, 53 ADM3-level surveys in 51 areas, and 251 point-level

surveys at 207 locations in five endemic countries (i.e., Cambodia, Lao PDR, Myanmar, Thailand, and

Vietnam) of Southeast Asia (Figure 1). Around 70% and 15% of surveys were conducted in Thailand

and Lao PDR, respectively. Only two relevant records were obtained from Myanmar. To avoid large

estimated errors, we did not include this data in the final geostatistical analysis. All surveys were

Figure 1. Data search and selection flow chart.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Study protocol.
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conducted after 1970, with around 75% done after 1998. Most surveys (95%) are community based.

Around 40% of surveys used the Kato–Katz technique for diagnosis, while another 42% did not spec-

ify diagnostic approaches. Mean prevalence calculated directly from survey data was 16.74% across

the study region. A summary of survey data is listed in Table 1, and survey locations and observed

prevalence in each period are shown in Figure 2. Area-level data cover all regions in Thailand and

Lao PDR, and most regions in Cambodia and Vietnam, while point-referenced data are absent in

most areas of Vietnam, the western part of Cambodia and southern part of Thailand. Around 70% of

eligible literatures got a score equal or more than 7, indicating an overall good quality of eligible lit-

eratures in our study (Figure 2—figure supplement 1).

Seven variables were selected for the final model through the Bayesian variable selection process

(Table 2). The infection risk was 2.61 (95% BCI: 2.10–3.42) times in the community as much as that in

school-aged children. Surveys using FECT (formalin-ethyl acetate concentration technique) as the

diagnostic method showed a lower prevalence (OR 0.76, 95% BCI: 0.61–0.93) compared to that

using Kato–Katz method, while no significant difference was found between Kato–Katz and the other

diagnostic methods. Human influence index and elevation were negatively correlated with the infec-

tion risk. Each unit increase of the HII index was associated with 0.01 (95% BCI: 0.003–0.02) decrease

Table 1. Overview of opisthorchiasis survey data in Southeast Asia.

Cambodia Lao PDR Myanmar Thailand Vietnam Total

Relevant papers 14 43 2 97 15 168

Total surveys/locations 91/73 156/99 6/6 770/335 71/64 1094/574

Survey type (surveys/locations)

School 33/31 4/4 0/0 13/13 0/0 50/48

Community 58/46 152/94 6/6 757/325 71/64 1044/535

Location type (surveys/locations)

Point-level 55/43 63/51 3/3 125/105 5/5 251/207

ADM3-level 0/0 0/0 0/0 53/51 0/0 53/51

ADM2-level 14/11 35/27 0/0 159/102 2/2 210/142

ADM1-level 22/19 58/18 3/3 433/77 64/57 580/174

Period 1998–2016 1989–2016 2015–2016 1978–2018 1991–2015 1978–2018

Year of survey (surveys/locations)

1978–1982 0/0 0/0 0/0 123/115 0/0 123/115

1983–1987 0/0 0/0 0/0 7/6 0/0 7/6

1988–1992 0/0 2/2 0/0 97/89 1/1 100/92

1993–1997 0/0 9/5 0/0 18/18 6/2 33/25

1998–2002 25/22 28/22 0/0 103/103 2/2 158/149

2003–2007 3/2 26/24 0/0 15/15 1/1 45/42

2008–2012 62/48 75/54 0/0 166/153 9/8 312/263

2013–2018 1/1 16/16 6/6 241/201 52/52 316/276

Diagnostic methods (surveys/locations)

Kato–Katz 86/70 128/83 3/3 212/166 7/7 436/329

FECT 2/2 8/7 3/3 109/99 0/0 122/111

Stoll’s 0/0 0/0 0/0 38/28 0/0 38/28

PCR 0/0 5/4 0/0 1/1 0/0 6/5

Combined 3/3 14/13 0/0 14/12 0/0 31/28

Others 0/0 1/1 0/0 6/6 0/0 7/7

NS* 0/0 5/5 0/0 391/111 64/57 460/173

Mean prevalence 10.56% 39.50% 4.93% 14.25% 2.65% 16.74%

*NS: not stated or missing.
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in the logit of the prevalence. And increase in 1 m in elevation was associated with the 0.003

(95% BCI: 0.001–0.005) decrease in the logit of the prevalence. The spatial range was estimated as

83.55 km (95% BCI: 81.34–86.61), the spatial variance s2

f was 12.59 (95% BCI: 11.96–13.56), the vari-

ance of beta-likelihood s2

b was 0.15 (95% BCI: 0.14–0.15), and the temporal correlation coefficient �

was 0.66 (95% BCI: 0.65–0.67). Model validation showed that our model was able to correctly esti-

mate 79.61% of locations within the 95% BCI, indicating the model had a reasonable capacity of pre-

diction accuracy. The ME, MAE, and MSE were 0.24%, 9.06%, and 2.38%, respectively, in the final

model, while they were �7.14%, 16.67%, and 5.09%, respectively, in the model only based on point-

referenced data, suggesting that the performance of the final model was better than the model only

based on point-referenced data. On the other hand, Monte Carlo test for preferential sampling sug-

gested that preferential sampling may exist for survey locations in one third (6/18) of the survey

years (Figure 2—source data 2).

The estimated risk maps of O. viverrini infection in different selected years (i.e., 1978, 1983, 1988,

1993, 1998, 2003, 2008, 2013, and 2018) are presented in Figure 3. In 2018, the high infection risk

(with prevalence >25%) was mainly estimated in regions of the southern, the central, and the north-

central parts of Lao PDR, some areas in the east-central parts of Cambodia, and some areas of the

northeastern and the northern parts of Thailand. The southern part of Thailand, the northern part of

Lao PDR, and the western part of Cambodia showed low risk estimates (with prevalence <5%) of O.

viverrini infection. The central and several southern parts of Vietnam showed low to moderate risk of

O. viverrini infection, while there was no evidence of O. viverrini in other parts of Vietnam. High

Figure 2. Survey locations and observed prevalence of O. viverrini infection in endemic countries of Southeast Asia. (A) 1978–1982, (B) 1983–1987, (C)

1988–1992, (D) 1993–1997, (E) 1998–2002, (F) 2003–2007, (G) 2008–2012, and (H) 2013–2018.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. The original data of O. viverrini infection in endemic countries of Southeast Asia.

Source data 2. The results of the preferential sampling test.

Figure supplement 1. Result of quality assessment of eligible studies.

Figure supplement 1—source data 1. The results of quality assessment.
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estimation uncertainty was mainly present in the central part of Lao PDR, the northern and the east-

ern parts of Thailand, and the central part of Cambodia and Vietnam (Figure 4).

In addition, the infection risk varies over time across the study region (Figure 5). Areas of north-

ern Thailand showed an increasing trend in periods 1978–1988 and 1993–2003, while most areas of

the country presented a considerable decrease of infection risk after 2008. The infection risk first

increased and then decreased in areas of the north, the central, and the southern parts of Lao PDR

and the central parts of Vietnam. The east-central and western part of Cambodia showed an increas-

ing trend in recent years.

The population-adjusted estimated prevalence over the study region presents a trend down after

1995 (Figure 6 and Figure 6—figure supplements 1–9). At the country level, the estimated preva-

lence in Thailand showed a fast decline after 1995 and took on a gradually decreasing change in

Cambodia. In Lao PDR, the overall prevalence maintained quite stable before 1990 and decreased

slightly between 1990 and 1997, increased significantly after 1997, then decreased from 2006, and

became stable after 2011. The prevalence is stable in Vietnam during the whole study period. We

estimated that in 2018, the overall population-adjusted estimated prevalence of O. viverrini infection

in the whole study region was 6.57% (95% BCI: 5.35–7.99%), corresponding to 12.39 million (95%

BCI: 10.10–15.06) infected individuals (Table 3). Lao PDR showed the highest prevalence (35.21%,

95% BCI: 28.50–40.70%), followed by Thailand (9.71%, 95% BCI: 7.98–12.17%), Cambodia (6.15%,

95% BCI: 2.41–11.73%), and Vietnam (2.15%, 95% BCI: 0.73–4.40%). Thailand had the largest num-

bers of individuals estimated to be infected with O. viverrini (6.71 million, 95% BCI: 5.51–8.41), fol-

lowed by Lao PDR (2.45 million, 95% BCI: 1.98–2.83), Vietnam (2.07 million, 95% BCI: 0.70–4.24),

and Cambodia (1.00 million, 95% BCI: 0.39–1.90).

Discussion
In this study, we produced model-based, high-resolution risk estimates of opisthorchiasis across

endemic countries of Southeast Asia. The disease is the most important foodborne trematodiasis in

the study region (Sripa et al., 2010), taking into account most of the disease burden of opisthorchia-

sis in the world (Fürst et al., 2012). The estimates were obtained by systematically reviewing all pos-

sible geo-referenced survey data and applying a Bayesian geostatistical modeling approach that

jointly analyzes point-referenced and area-aggregated disease data, as well as environmental and

Table 2. Posterior summaries of model parameters.

Estimated median (95% BCI) OR Prob (%)*

Intercept �4.51 (�5.08, –3.94)

Survey type

School-based survey Ref Ref -

Community-based survey 0.96 (0.70, 1.23) 2.61 (2.10, 3.42) >99.99

Diagnostic methods

Kato–Katz Ref Ref -

FECT �0.28 (–0.49, –0.07) 0.76 (0.61, 0.93) 0.80

Other methods 0.01 (–0.07, 0.10) 1.01 (0.93, 1.12) 64.20

Land surface temperature (LST) in the daytime (˚C)

<30.65 Ref Ref -

30.65–32.07 0.25 (–0.001, 0.50) 1.28 (0.999, 1.65) 97.40

>32.07 0.07 (–0.18, 0.33) 1.07 (0.84, 1.39) 73.40

Human influence index �0.01 (–0.02, –0.003) 0.99 (0.98, 1.00) 0.80

Distance to the nearest open water bodies (km) 0.24 (–1.45, 1.94) 1.27 (0.23, 6.96) 60.20

Elevation (m) �0.003 (–0.005,–0.001) 0.997 (0.995, 0.999) <0.01

Travel time to the nearest big city (min) 0.0001 (–0.002, 0.002) 1.00 (0.998, 1.002) 56.60

*Posterior probability of OR > 1.
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socioeconomic predictors. Our findings will be important for guiding control and intervention cost-

effectively and serve as a baseline for future progress assessment.

Our estimates suggested that there was an overall decrease of O. viverrini infection in Southeast

Asia from 1995 onwards, which may be largely attributed to the decline of infection prevalence in

Thailand. This decline was probably on account of the national opisthorchiasis control program

launched by the Ministry of Public Health of Thailand from 1987 (Jongsuksuntigul and Imsomboon,

2003; Jongsuksuntigul et al., 2003). Our high-resolution risk estimates in Thailand in 2018 showed

similar pattern as the climatic suitability map provided by Suwannatral and colleagues

(Suwannatrai et al., 2017). In this case, we estimated the prevalence of the population instead of

the occurrence probability of the parasite, which arms decision makers with more direct epidemio-

logical information for guiding control and intervention. The national surveys in Thailand reported a

prevalence of 8.7% and 5.2% in 2009 and 2014, respectively (MOPH, 2014; Wongsaroj et al.,

2014). However, we estimated higher prevalence of 12.44% (95% BCI: 10.79–14.26%) and 9.34%

(95% BCI: 7.88–11.02%) in 2009 and 2014, respectively. Even though the national surveys covered

most provinces in Thailand, estimates were based on simply calculating the percentage of positive

cases among all the participants (Wongsaroj et al., 2014), and the remote areas might not be

included (Maipanich et al., 2004). Instead, our estimates were based on rigorous Bayesian geostat-

istical modeling of available survey data with environmental and socioeconomic predictors, account-

ing for heterogeneous distribution of infection risk and population density when aggregating

country-level prevalence.

Our findings suggested that the overall prevalence of O. viverrini remained high (>20%) in Lao

PDR during the study periods, consistent with conclusions drawn by Suwannatrai et al., 2018. We

Figure 3. Model-based estimated risk maps of O. viverrini infection in endemic countries of Southeast Asia in different years. Estimated prevalence

based on the median of the posterior estimated distribution of infection risk in (A) 1978, (B) 1983, (C) 1988, (D) 1993, (E) 1998, (F) 2003, (G) 2008, (H)

2013, and (I) 2018.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. The sensitivity analysis results of model-based estimated risk maps in 2018.

Figure supplement 1. Model-based estimated risk maps of O. viverrini infection in 2018 under different values assigned to prevalence for surveys only

reported prevalence in intervals.

Figure supplement 1—source data 1. Sensitivity analysis for surveys reported prevalence in intervals.

Zhao et al. eLife 2021;10:e59755. DOI: https://doi.org/10.7554/eLife.59755 7 of 21

Research article Epidemiology and Global Health

https://doi.org/10.7554/eLife.59755


estimated that a total number of 2.45 (95% BCI: 1.98–2.83) million people living in Lao PDR were

infected with O. viverrini, equivalent to that estimated by WHO in 2004 (WHO, 2002). Besides, our

risk mapping for Champasack province shares similarly risk map pattern produced by Forrer and col-

leagues (Forrer et al., 2012). A national-scaled survey in Cambodia during the period 2006–2011

reported infection rate of 5.7% (Yong et al., 2014), lower than our estimation of 8.34% (95% BCI:

5.25–14.95%) in 2011. The former may underestimate the prevalence because more than 77% of par-

ticipants were schoolchildren (Yong et al., 2014). Another large survey in five provinces of Cambo-

dia suggested a large intra-district variation, which makes the identification of endemic areas

difficult (Miyamoto et al., 2014). Our high-resolution estimates for Cambodia help to differentiate

the intra-district risk. However, the estimates should be taken cautious due to large district-wide var-

iances and a relatively small number of surveys. Indeed, O. viverrini infection was underreported in

Cambodia (Khieu et al., 2019), and further point-referenced survey data are recommended for

more confirmative results.

Although an overall low prevalence was estimated in Vietnam (2.15%, 95% BCI: 0.73–4.40%) in

2018, it corresponds to 2.07 million (95% BCI: 0.70–4.24 million) people infected, comparable to the

number in Lao PDR, mainly due to a larger population in Vietnam. The risk mapping suggested mod-

erate to high risk areas presented in central Vietnam, with a high risk in Phu Yen province for many

years, particularly. This agreed with previous studies considering the province a ‘hotspot’

(Doanh and Nawa, 2016). Of note, even though there was no evidence of O. viverrini infection in

the northern part of the country, Clonorchis sinensis, another important liver fluke species, is

endemic in the region (Sithithaworn et al., 2012). We did not provide estimates for Myanmar in

case of large estimated errors. Indeed, only two relevant papers were identified by our systematic

review, where one shows low to moderate prevalence in three regions of Lower Myanmar

(Aung et al., 2017), and the other found low endemic of O. viverrini infection in three districts of the

capital city Yangon (Sohn et al., 2019). Nation-wide epidemiological studies are urgent for a more

comprehensive understanding of the disease in Myanmar.

Figure 4. The estimation uncertainty in endemic countries of Southeast Asia in different years. (A) 1978, (B) 1983, (C) 1988, (D) 1993, (E) 1998, (F) 2003,

(G) 2008, (H) 2013, and (I) 2018.

The online version of this article includes the following source data for figure 4:

Source data 1. The results of the estimated uncertainty in endemic countries of Southeast Asia in different years.
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We identified several important factors associated with O. viverrini infection in Southeast Asia,

which may provide insights for the prevention and control of the disease. The infection risk was

higher in the entire community than that in schoolchildren, consistent with multiple studies

(Aung et al., 2017; Forrer et al., 2012; Miyamoto et al., 2014; Van De, 2004; Wongsaroj et al.,

2014). A negative association was found between O. viverrini infection and elevation, suggesting

the disease was more likely to occur in low altitude areas, which was consistent with a previous study

(Wang et al., 2013). HII, a measure of human direct influence on ecosystems (Sanderson et al.,

2002), showed a negative relationship with O. viverrini infection risk, indicating the disease was

more likely to occur in areas with low levels of human activities, which were often remote and eco-

nomically underdeveloped. The habit of eating raw or insufficiently cooked fish was more common

in rural areas than that in economically developed ones, which could partially explain our findings

(Grundy-Warr et al., 2012, Keiser, 2019). Indeed, this culturally rooted habit is one of the determi-

nants for human opisthorchiasis (Kaewpitoon et al., 2008; Ziegler et al., 2011). However, the pre-

cise geographical distribution of such information is unavailable and thus we could not use it as a

covariate in this study.

Our estimate of the number of people infected with O. viverrini is higher than that of the previous

study (12.39 million vs 8.6 million [Qian and Zhou, 2019]) emphasizing the public health importance

of this neglected disease in Southeast Asia, and suggesting that more effective control interventions

should be conducted, particularly in the high risk areas. The successful experience in the intervention

of Thailand may be useful for reference by other endemic countries of the region. The national opis-

thorchiasis control program, supported by the government of Thailand, applied interrelated

approaches, including stool examination and treatment of positive cases, health education aiming at

the promotion of cooked fish consumption, and environmental sanitation to improve hygienic defe-

cation (Jongsuksuntigul and Imsomboon, 2003). In addition, for areas with difficulties to reduce

infection risk, a new strategy was developed by Sripa and colleagues, using the EcoHealth approach

Figure 5. Changes of O. viverrini infection risk across time periods. Changes were calculated by the median of the posterior estimated distribution of

infection risk for the latter time period minus that for the former time period divided by that for the former time period. The risk changes (A) between

1978 and 2018; (B) between 1978 and 1983; (C) between 1983 and 1988; (D) between 1988 and 1993; (E) between 1993 and 1998; (F) between 1998 and

2003; (G) between 2003 and 2008; (H) between 2008 and 2013; and (I) between 2013 and 2018 (source data: Figure 5—source data 1).

The online version of this article includes the following source data for figure 5:

Source data 1. The results of the changes of O. viverrini infection risk across time periods.
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Figure 6. Trends in estimated prevalence of O. viverrini infection in Southeast Asia.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. The results of the estimated prevalence of O. viverrini infection in Southeast Asia in different years.

Figure 6 continued on next page
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with anthelminthic treatment, novel intensive health education on both communities and schools,

ecosystem monitoring, and active participation of the community (Sripa et al., 2015). This ‘Lawa

model’ shows good effectiveness in Lawa Lake area, where the liver fluke was highly endemic

(Sripa et al., 2015). Furthermore, common integrated control interventions (e.g., combination of

preventive chemotherapy with praziquantel, improvement of sanitation and water sources, and

health education) are applicable not only for opisthorchiasis but also for other NTDs, such as soil-

transmitted helminth infection and schistosomiasis, which are also prevalent in the study region

(Dunn et al., 2016; Gordon et al., 2019). Implementation of such interventions in co-endemic areas

could be cost-effective (Linehan et al., 2011; WHO, 2012).

Frankly, several limitations exist in our study. We collected data from different sources, locations

of which might not be random and preferential sampling may exist. We performed a risk-preferential

sampling test and the results showed that preferential sampling might exist for survey locations in

one third (6/18) of the survey years (Figure 2—source data 2). The corresponding impacts might

Figure 6 continued

Figure supplement 1. The population-adjusted estimated prevalence (median ± 95% BCI) in 2018 in four countries at administrative division of level 1.

Figure supplement 1—source data 1. The results of the population-adjusted estimated prevalence in 2018 in four countries at administrative division

of level 1.

Figure supplement 2. The population-adjusted estimated prevalence (median ± 95% BCI) in 2013 in four countries at administrative division of level 1.

Figure supplement 2—source data 1. The results of the population-adjusted estimated prevalence in 2013 in four countries at administrative division

of level 1.

Figure supplement 3. The population-adjusted estimated prevalence (median ± 95% BCI) in 2008 in four countries at administrative division of level 1.

Figure supplement 3—source data 1. The results of the population-adjusted estimated prevalence in 2008 in four countries at administrative division

of level 1.

Figure supplement 4. The population-adjusted estimated prevalence (median ± 95% BCI) in 2003 in four countries at administrative division of level 1.

Figure supplement 4—source data 1. The results of the population-adjusted estimated prevalence in 2003 in four countries at administrative division

of level 1.

Figure supplement 5. The population-adjusted estimated prevalence (median ± 95% BCI) in 1998 in four countries at administrative division of level 1.

Figure supplement 5—source data 1. The results of the population-adjusted estimated prevalence in 1998 in four countries at administrative division

of level 1.

Figure supplement 6. The population-adjusted estimated prevalence (median ± 95% BCI) in 1993 in four countries at administrative division of level 1.

Figure supplement 6—source data 1. The results of the population-adjusted estimated prevalence in 1993 in four countries at administrative division

of level 1.

Figure supplement 7. The population-adjusted estimated prevalence (median ± 95% BCI) in 1988 in four countries at administrative division of level 1.

Figure supplement 7—source data 1. The results of the population-adjusted estimated prevalence in 1988 in four countries at administrative division

of level 1.

Figure supplement 8. The population-adjusted estimated prevalence (median ± 95% BCI) in 1983 in four countries at administrative division of level 1.

Figure supplement 8—source data 1. The results of the population-adjusted estimated prevalence in 1983 in four countries at administrative division

of level 1.

Figure supplement 9. The population-adjusted estimated prevalence (median ± 95% BCI) in 1978 in four countries at administrative division of level 1.

Figure supplement 9—source data 1. The results of the population-adjusted estimated prevalence in 1978 in four countries at administrative division

of level 1.

Table 3. Population-adjusted estimated prevalence and number of individuals infected with

O. viverrini in endemic countries of Southeast Asia in 2018*.

Population (�103) Prevalence (%) No. infected (�103)

Cambodia 16227.39 6.15 (2.41, 11.73) 997.95 (390.46, 1903.46)

Lao PDR 6960.28 35.21 (28.50, 40.70) 2450.54 (1983.38, 2832.96)

Thailand 69112.64 9.71 (7.98, 12.17) 6708.68 (5514.87, 8411.98)

Vietnam 96421.69 2.15 (0.73, 4.40) 2073.72 (703.46, 4244.85)

Total 188722.01 6.57 (5.35, 7.98) 12389.69 (10099.29, 15060.18)

*Estimates were based on gridded population of 2018 and the median and 95% BCI of the posterior estimated distri-

bution of the infection risk in 2018.
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include improper variogram estimator, biased parameter estimation, and unreliable exposure surface

estimates (Diggle et al., 2010; Pati et al., 2011; Gelfand et al., 2012). To avoid a more complex

model, we did not take into account the preferential sampling issue for our final model, as the model

validation showed a reasonable capacity of prediction accuracy. However, the disadvantage of this

issue should be well aware.

We set clear criteria for selection of all possible qualified surveys and did not exclude surveys that

reported prevalence in intervals without exact observed values. Sensitivity analysis showed that the

using the midpoint values of the intervals had little effects on the final results (Figure 3—figure sup-

plement 1). For surveys across a large area, complex designs, such as randomly sampling from sub-

groups of the population under a well-designed scheme, are likely adopted, as it is impractical to

draw simple random samples from the whole area. In such case, respondents may have unequal

probabilities to be selected, thus weighting should be used to generalize results for the entire area.

The observed disease data we collected were from surveys either at point-level (i.e., community or

school) or aggregated over areas. For point-level data, as study areas were quite small, simple sam-

pling design was mostly used in the corresponding surveys. And for areal-level data, particularly

those aggregated across ADM1, complex designs were likely applied. However, most of the corre-

sponding surveys were only reported raw prevalence or prevalence without clarifying whether

weighting was applied. Thus, we did not have enough information to address the design effect for

each single survey included. On the other hand, as population density across the study region was

different, we calculated the estimated country- and provincial-level prevalence by averaging the esti-

mated pixel-level prevalence weighted by population density. In this way, we took into account the

diversity of population density across areas for regional summaries of the estimates.

We assumed similar proportions of age and gender in different surveys, as most of which only

reported prevalence aggregated by age and gender. Nevertheless, considering the possible differ-

ences in infection risk between the whole population and schoolchildren, we categorized survey

types to the community- and school-based. Furthermore, our analysis was based on survey data

under different diagnostic methods. The sensitivity and specificity of the same diagnostic method

may differ across studies (Charoensuk et al., 2019; Laoprom et al., 2016; Sayasone et al., 2015),

while different diagnostic methods may result in different results in the same survey. To partially tak-

ing into account the diversity of diagnostic methods, we assumed the same diagnostic method has

similar sensitivity and specificity, and we considered the types of diagnostic methods as covariates in

the model. Results showed that the odds of infection with FECT methods was significantly lower

than that with Kato–Katz, which was consistent with results found by Lovis et al., 2009. In addition,

most of the diagnostic methods in the surveys were based on fecal microscopic technique on eggs,

which could not effectively distinguish between O. viverrini and minute intestinal flukes of the family

Heterophyidae (e.g., heterophyid and lecithodendriid) (Charoensuk et al., 2019, Sato et al., 2010).

Thus, our results may overestimate the O. viverrini infection risk in areas where heterophyid and leci-

thodendriid are endemic, such as Phongsaly, Saravane, and Champasak provinces in Lao PDR

(Sato et al., 2010, Chai et al., 2010; Chai et al., 2013), Nan and Lampang provinces in Thailand

(Wijit et al., 2013), and Takeo province in Cambodia (Sohn et al., 2011). There is an urgent need

for the application of more powerful diagnostic practices with higher sensitivity and specificity to

better detect the true O. viverrini prevalence, such as PCR (Lovis et al., 2009, Lu et al., 2017,

Sato et al., 2010). Nevertheless, because of the similar treatment and the prevention strategies of

O. viverrini and minute intestinal flukes (Keiser and Utzinger, 2010), our risk mapping is valuable

also for areas co-endemic with the above flukes.

In conclusion, this study contributes to better understand the spatial-temporal characteristics of

O. viverrini infection in major endemic countries of Southeast Asia, providing valuable information

guiding control and intervention, and serving as a baseline for future progress assessment. Estimates

were based on a rigorous geostatistical framework jointly analyzing point- and areal-level survey

data with potential predictors. The higher number of infected people we estimated highlights the

public health importance of this neglected disease in the study region. More comprehensive epide-

miological studies are urgently needed for endemic areas with scant survey data.
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Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Software, algorithm R Project for
Statistical Computing

R Project for
Statistical Computing

RRID:SCR_001905

Software, algorithm ArcGIS for Desktop Basic ArcGIS for Desktop Basic RRID:SCR_011081

Software, algorithm R-INLA Project R-INLA Project https://www.r-inla.org/

Software, algorithm ‘PStestR’ R Package ‘PStestR’ R Package https://github.com/joeno
middlename/PStestR

Search strategy, selection criteria, and data extraction
We collected relevant publications reporting prevalence data of opisthorchiasis in Southeast Asia

through a systematic review (registered in the International Prospective Register of Systematic

Reviews, PROSPERO, No.CRD42019136281), and reported our systematic review according to the

PRISMA guidelines (Supplementary file 1A; Moher et al., 2010). We searched PubMed and ISI

Web of Science from inception to February 9, 2020, with search terms: (liver fluke* OR Opisthorchi*)

AND (Southeast Asia OR Indonesia OR (Myanmar OR Burma) OR Thailand OR Vietnam OR Malaysia

OR Philippines OR Lao PDR OR Cambodia OR Timor OR Brunei OR Singapore). We set no limita-

tions on language, date of survey, or study design in our search strategy. For literatures not found

by the above methods, we also reviewed reports from governments or Ministry of Health, theses,

relevant books, and documents.

We followed a protocol (Figure 1—figure supplement 1) for inclusion, exclusion, and extraction

of survey data. First, we screened titles and abstracts to identify potentially relevant articles. Publica-

tions on in vitro studies, or absence of human studies or absence of disease studies were excluded.

Quality control was undertaken by re-checking 20% of randomly selected irrelevant papers. Second,

the full-text review was applied to potentially relevant articles. We excluded publications with follow-

ing conditions: absence of prevalence data; studies done in specific patient groups (e.g., prevalence

on patients with specific diseases), in specific population groups (e.g., travelers, military personnel,

expatriates, nomads, displaced or migrating population), under specific study designs (e.g., case

report studies, case–control studies, clinical trials, autopsy studies); drug efficacy or intervention

studies (except for baseline data or control groups), population deworming within 1 year, the survey

time interval more than 10 years, data only based on the direct smear method (due to low sensitivity)

or serum diagnostics (due to unable to differ the past and the active infection). During the full-text

review, the potential relevant cited references of the articles were also screened. Studies were

included if they reported survey data at provincial level and below, such as administrative divisions

of level 1 (ADM1: province, state, etc.), 2 (ADM2: city, etc.), and 3 (ADM3: county, etc.), and at

point-level (village, town, school, etc.). Duplicates were checked and removed. The quality assess-

ment of each individual record included in the final geostatistical analysis was performed by two

independent reviewers, based on a nine-point quality evaluation checklist (Figure 2—figure supple-

ment 1—source data 1).

We followed the GATHER checklist (Supplementary file 1B; Stevens et al., 2016) for the data

extraction. Detailed information of records was extracted into a database, which includes literature

information (e.g., journal, authors, publication date, title, volume, and issue), survey information (e.

g., survey type: community- or school-based, and year of survey), location information (e.g., location

name, location type, and coordinates), and disease-related data (e.g., species of parasites, diagnos-

tic method, population age, number of examined, number of positive, and percentage of positive).

The coordinates of the survey locations were obtained from Google Maps (https://www.google.

com/maps/). For surveys reported prevalence in intervals without exact observed values, the mid-

points of the intervals were assigned.
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Environmental, socioeconomic, and demographic data
The environmental data (i.e., annual precipitation, distance to the nearest open water bodies, eleva-

tion, land cover, land surface temperature [LST] in the daytime and at night, and normalized differ-

ence vegetation index [NDVI]), socioeconomic data (i.e., human influence index, survey type, and

travel time to the nearest big city), and demographic data of Southeast Asia were downloaded from

open data sources (Figure 7—source data 1). Land cover data was summarized by the most fre-

quent category within each pixel over the period of 2001–2018. We combined similar land cover

classes and re-grouped them into five categories: (i) croplands; (ii) forests; (iii) shrub and grass; (iv)

urban; and (v) others. LST in the daytime and at night, as well as NDVI were averaged over the

period of 2000–2018. All data were aligned over a 5 � 5 km grid across the study region (Figure 7).

Data at point-referenced survey locations were extracted. We linked the data to the divisions (i.e.,

ADM1, ADM2, or ADM3) reported aggregated outcome of interest (i.e., infection prevalence) by

averaging them within the corresponding divisions. The above data processing was done using the

package ‘ratser’ (https://cran.r-project.org/web/packages/raster) through R (version 3.5.0).

Model fitting and variable selection
As our outcome of interest derived from both point-referenced and area-aggregated surveys, a

bivariate Bayesian geostatistical joint modeling approach was applied to analyze the area-level and

point-level survey data together (Moraga et al., 2017; Utazi et al., 2019), and account for both dis-

ease data reporting numbers of examined and positive, and those reporting only prevalence.

We defined pit the probability of infection at location i and time period t, where i is the index

either for the location of point-referenced data or of the area for area-level data. Based on the prob-

ability theory, for data reported with numbers of examined and positive, we assumed that the num-

ber of examined Yit followed a binomial distribution Yit ~Bin pit;Nitð Þ, where Nit denoted the number

of examined; and for data only reported with the observed prevalence, we assumed that the

Figure 7. Images of spatial covariates used in the present study.

The online version of this article includes the following source data for figure 7:

Source data 1. The sources of covariate layers.

Zhao et al. eLife 2021;10:e59755. DOI: https://doi.org/10.7554/eLife.59755 14 of 21

Research article Epidemiology and Global Health

https://cran.r-project.org/web/packages/raster
https://doi.org/10.7554/eLife.59755


observed prevalence obit followed a beta distribution obit ~Be pit ;s
2

b

� �

. The period of this study was

from 1978 to 2018. We modeled predictors on a logit scale of pit.

We referred to the method proposed by Cameletti and colleagues (Krainski, 2019;

Cameletti et al., 2013) to build a spatial-temporal model combined with covariates, which was

defined as an SPDE (Stochastic Partial Differential Equation) model for the spatial domain and an

AR1 model for the time dimension. A standard grid of 5 � 5 km2 was overlaid to each survey area

resulting in a certain number of pixels representing the area. We assumed that survey locations and

pixels within survey areas shared the same spatial-temporal process. In addition, we assumed the

infection risk the same within 1-year period for the same areas. Different observations from the same

year in the same areas can be treated as realizations of the randomized spatial-temporal process.

Let i ¼ 1; . . . ; nA; nA þ 1; . . . ; nA þ np, where nA is the total number of areas for area-level surveys and

np is the total number of locations for point-referenced surveys. Regarding area-level data,

logit pitð Þ ¼ b0 þ x
0
it

~

bþ Aij j�1
R

Ai
! s; tð Þdsdt, where i ¼ 1; . . . ; nA, xit

~

the vectors of covariate values for ith

area in time period t with x
0
it

~

¼ Aij j�1
R

Ai
x s; tð Þdsdt and b0 and b are the intercept and the correspond-

ing regression coefficients. Aij j ¼
R

Ai
1ds is the size of the ith area and ! s; tð Þ the spatial-temporal ran-

dom effects of pixels within the area. For point-referenced data, logit pitð Þ ¼ b0 þ x
0
itbþ ! si; tð Þ, where

i ¼ nA þ 1; . . . ; nA þ np, x
0
it is the vectors of covariate values and ! si; tð Þ is the spatial-temporal random

effect for ith location in time period t. To decrease the computational burden, under the SPDE frame-

work, we built the GMRF on regular temporal knots, that

is, ! ¼ !t¼1978; !t¼1983; !t¼1988; !t¼1993; !t¼1998; !t¼2003; !t¼2008; !t¼2013; !t¼2018ð Þ0 (Cameletti et al., 2013;

Krainski, 2019). We assumed the spatio-temporal random effect ! s; tð Þ follow a zero-mean Gaussian

distribution, that is, ! ~GP 0;Kspace 
 Ktime

� �

, where the spatial covariance matrix Kspace was defined as

a stationary Matérn covariance function s2

f kDð ÞvKv kDð Þ= G vð Þ2v�1ð Þ and the temporal covariance

matrix as Ktime ¼ �jtu�to j with �j j<1, corresponding to the autoregressive stochastic process with first

order (AR1). And the spatio-temporal random effect ! s; tð Þ was assumed independent of each other

in different times and locations, that is,Cov !it; !jt
0

� �

¼ 0; if t 6¼ t
0

s2

f; if t ¼ t
0

�

. Here D donates the Euclid-

ean distance matrix, k is a scaling parameter, and the range r ¼
ffiffiffiffiffi

8n
p

=k, representing the distance at

which spatial correlation becomes negligible (<0.1), and Kn is the modified Bessel function of the

second kind, with the smoothness parameter n fixed at 1. The latent fields corresponding to other

years are approximated by projection of ! using the B-spline basis function of degree two, that is,

Bi;1 tð Þ ¼ 1; ti � t<tiþ1

0; otherwise

�

and Bi;m tð Þ ¼ t�ti
tiþm�1�ti

Bi;m�1 tð Þ þ tiþm�t

tiþm�tiþ1

Biþ1;m�1 tð Þ, where m is the degree of

two (Krainski, 2019; Cameletti et al., 2013).

We formulated the model in a Bayesian framework. Minimally informative priors were specified

for parameters and hyper parameters as follows: b~N 0; 105I
� �

, log 1=s2

b

� �

~ logGamma 1; 0:1ð Þ,

log 1=s2

f

� �

~ logGamma 1; 0:01ð Þ, log 1þ �ð Þ= 1� �ð Þð Þ ~N 0; 0:15ð Þ, and log kð Þ~N log
ffiffiffi

8
p

=d
� �

; 1
� �

, where d

is the median distance between the predicted grids.

Additionally, we applied variable selection procedure to identify the best set of predictors for a

parsimonious model. First, the best functional form (continuous or categorical) of continuous varia-

bles was selected, by fitting univariate Bayesian spatial-temporal models with either form as the

independent variable and selecting the form with the lowest log score (Pettit, 1990). Second, the

best subset method was used to identify the best combination of predictors for the final model.

According to previous studies (Aung et al., 2017; Forrer et al., 2012; Miyamoto et al., 2014;

Wongsaroj et al., 2014), the infection risk in community and school may be different, and using dif-

ferent diagnostic methods may differ the observed prevalence (Charoensuk et al., 2019;

Laoprom et al., 2016; Sayasone et al., 2015). Thus, the survey type (i.e., community- or school-

based) and the diagnostic methods (i.e., Kato–Katz, FECT, or other methods) were kept in all poten-

tial models, while the other 10 environmental and socioeconomic variables were put forth into the

Bayesian variable selection process. The model with the minimum log score was chosen as the final

model.
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Model fitting and variable selection process were conducted through INLA-SPDE approach

(Lindgren et al., 2011; Rue et al., 2009), using INLA package in R (version 3.5.0). Estimation of risk

for O. viverrini infection in each year of the study period was done over a grid with cell size of 5 � 5

km2. And the relative changes of the prevalence were also calculated using a formula as

ppstj � ppsti
� �

=ppsti for pixel s between the former year ti and the later year tj, where pp indicates the

median of the posterior estimated distribution of infection risk. The corresponding risk maps and the

prevalence changing maps were produced using ArcGIS (version 10.2). In addition, as population

density across the study region was different, the population-adjusted estimated prevalence and

number of infected individuals in 2018 were calculated at the country and provincial levels averaging

the estimated pixel-level prevalence weighted by population density, that is,

ppA ¼
P

i2A ppiwi=
P

i2A wi. Here ppA, ppi, and wi are the estimated prevalence in area A, estimated

prevalence at pixel i, and population density at pixel i, respectively, where i belongs to area A. Based

on previous studies, for the provinces in Vietnam where there was no evidence of O. viverrini infec-

tion, we multiplied the estimated results by zero as the final estimated prevalence (Doanh and

Nawa, 2016). The R code used for model fitting is publicly available in GitHub (https://github.com/

SYSU-Opisthorchiasis/Spatial-temporal-mapping-of-opisthorchiasis and archived in software heri-

tage; Zhao, 2021; copy archived at swh:1:rev:6493df4ba60c1f2f1aaaad979174a3a5d928627a).

Model validation, sensitivity analysis, and test of preferential sampling
Model validation was conducted using the 5-fold out-of-sample cross-validation approach. Mean

error (ME ¼ 1

N

P

obit � ppitð Þ), mean absolute error (MAE ¼ 1

N

P

obit � ppitj j), mean square error

(MSE ¼ 1

N

P

obit � ppitð Þ2), and the coverage rate of observations within 95% BCI were calculated to

evaluate the performance of the model. Furthermore, a Bayesian geostatistical model only based on

point-referenced data was fitted and validated, to compare its performance with our joint modeling

approach. In addition, a sensitivity analysis was conducted to evaluate the effects of using the mid-

point values of the intervals as the observed prevalence in one literature from Suwannatrai and col-

leagues (Suwannatrai et al., 2018), reporting observed prevalence of O. viverrini infection in

intervals. Sensitivity analysis was done by using the lower and the upper limits of the intervals in the

modeling analysis.

Considering that the data in this study were sourced from different studies, preferential sampling

may exist. We performed a test for preferential sampling of the data. To our knowledge, no method

has been developed for preferential sampling test on observations combined at point and areal lev-

els. To compromise, we took centers of the areas with survey data as their locations for the test of

preferential sampling. A fast and intuitive Monte Carlo test developed by Watson was adopted for

its advantage of fast speed and feasibility of data arising from various distributions. We assumed St

(i.e., the collection of sampled points at time t) a realization from an inhomogeneous Poisson pro-

cesses (IPP) under the condition of ! s; tð Þ (i.e., the spatial-temporal Gaussian random field), that is,

½stj!ðs; tÞ� ¼ IPPðlðs; tÞÞ, and log l s; tð Þð Þ ¼ a0 þ h ! s; tð Þð Þ, where h is a monotonic function of ! s; tð Þ.
When h � 0, the sampling process is independent from ! s; tð Þ, thus the preferential sampling is not

significant. In this way, the problem of detecting preferential sampling can be transformed into the

hypothesis testing of h � 0. If h � 0 is false, for example, in case that h is a monotonic increasing

function of ! s; tð Þ, then the point patterns St are expected to exhibit an excess of clustering in areas

with higher ! s; tð Þ, thus positive association can be detected between the localized amount of clus-

tering and estimated ! s; tð Þ. First, we used the mean of the distances to the K nearest points (DK) to

measure the clustering of locations, and calculated the rank correlation rt Kð Þ between DK and the

estimated ! s; tð Þ for survey year t. Here the estimated ! s; tð Þ was obtained from fitting the Bayesian

spatial-temporal joint model. Next, the Monte Carlo method was used to sample realizations from

the IPP under the null hypothesis (i.e., h � 0), following which a set of rank correlations rM
t Kð Þ were cal-

culated, approximating the distribution of the rank correlations �t Kð Þ under h � 0. In this way, the

nonstandard sampling distribution of the test statistic can be approximated. Finally, we computed

the desired empirical p-value by evaluating the proportion of the Monte Carlo-sampled rM
t Kð Þ which

are more extreme than rt Kð Þ. We set a sample size of 1000 for each Monte Carlo sampling. We also

considered K from 1 to 8 to measure the clustering of locations and resulted in eight p-values

respective to different K for each survey year. If one of the p-values is smaller or equal to 0.05, we
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considered preferential sampling existing in the corresponding survey year. Since our model could

estimate the disease risk each year of the study period, this test was done for each survey year with

number of locations more than or equal to 10 (i.e., 1978, 1981, 1991, 1995, 1998, 2000, 2001, 2004,

2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, and 2016). The test was conducted using the

package ’PStestR’ in R (version 3.6.3) (Watson, 2020).

Acknowledgements
We are grateful to Dr Roy Burstein from Institute for Disease Modeling, Bellevue, Washington, USA

for providing very good suggestions for the manuscript.

Additional information

Funding

Funder Grant reference number Author

National Natural Science
Foundation of China

81703320 Ying-Si Lai

National Natural Science
Foundation of China

82073665 Ying-Si Lai

Natural Science Foundation of
Guangdong

2017A030313704 Ying-Si Lai

China Medical Board 17-274 Ying-Si Lai

Sun Yat-sen University One
Hundred Talent Grant

Ying-Si Lai

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Ting-Ting Zhao, Data curation, Formal analysis, Validation, Visualization, Methodology, Writing -

original draft, Project administration, Writing - review and editing; Yi-Jing Feng, Data curation, For-

mal analysis; Pham Ngoc Doanh, Conceptualization, Data curation, Writing - review and editing;

Somphou Sayasone, Virak Khieu, Choosak Nithikathkul, Men-Bao Qian, Conceptualization, Writing -

review and editing; Yuan-Tao Hao, Conceptualization, Methodology, Writing - review and editing;

Ying-Si Lai, Conceptualization, Data curation, Formal analysis, Supervision, Funding acquisition, Vali-

dation, Visualization, Methodology, Writing - original draft, Writing - review and editing

Author ORCIDs

Ting-Ting Zhao https://orcid.org/0000-0003-2932-2647

Ying-Si Lai https://orcid.org/0000-0003-4324-5465

Ethics

Human subjects: This work was based on survey data pertaining to the prevalence of opisthorchiasis

extracted from open published peer-reviewed literatures. All data were aggregated and did not

contain any information at the individual or household levels. Therefore, there were no specific ethi-

cal issues warranted special attention.

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.59755.sa1

Author response https://doi.org/10.7554/eLife.59755.sa2

Zhao et al. eLife 2021;10:e59755. DOI: https://doi.org/10.7554/eLife.59755 17 of 21

Research article Epidemiology and Global Health

https://orcid.org/0000-0003-2932-2647
https://orcid.org/0000-0003-4324-5465
https://doi.org/10.7554/eLife.59755.sa1
https://doi.org/10.7554/eLife.59755.sa2
https://doi.org/10.7554/eLife.59755


Additional files
Supplementary files
. Supplementary file 1. PRISMA 2009 Checklist and GATHER checklist. Quality assessment: We did

quality evaluation for each literature included in the final geostatistical modeling analysis, which is

undertaken using a nine-point checklist. The items of quality evaluation are as follows: Q1: provide

specific inclusion and exclusion criteria. Q2: provide basic characteristics of the investigated popula-

tion (gender, age, etc.). Q3: provide prevalence rate of the survey. Q4: provide number of positive

patients and number of examined people of the survey. Q5: provide diagnostic method used in the

survey. Q6: provide survey type. Q7: provide time of the survey. Q8: describe or discuss the possible

bias of the survey or how confounders are controlled. Q9: the literature comes from Science Citation

Index Expanded database. Each item is scored 1 in case the publication meets or 0 in contrary. The

scores are summed up for all items and assigned to the publication as its quality score. The score for

each literature is listed in Figure 2—figure supplement 1—source data 1.

. Transparent reporting form

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Source data files have been provided for Figures 2–7, Figure 2-figure supplement 1, Figure 3-figure

supplement 1, and Figure 6-figure supplement 1–9.

References
Andrews RH, Sithithaworn P, Petney TN. 2008. Opisthorchis viverrini: an underestimated parasite in world
health. Trends in Parasitology 24:497–501. DOI: https://doi.org/10.1016/j.pt.2008.08.011, PMID: 18930439

Aung WPP, Htoon TT, Tin HH, Thinn KK, Sanpool O, Jongthawin J, Sadaow L, Phosuk I, Rodpai R, Intapan PM,
Maleewong W. 2017. First report and molecular identification of Opisthorchis viverrini infection in human
communities from lower Myanmar. PLOS ONE 12:e0177130. DOI: https://doi.org/10.1371/journal.pone.
0177130, PMID: 28472153

Banerjee S, Carlin BP, Gelfand AE. 2014. Hierarchical Modeling and Analysis for Spatial Data. Second Edition.
Boca Raton: Chapman & Hall/CRC.

Cameletti M, Lindgren F, Simpson D, Rue H. 2013. Spatio-temporal modeling of particulate matter
concentration through the SPDE approach. AStA Advances in Statistical Analysis 97:109–131. DOI: https://doi.
org/10.1007/s10182-012-0196-3

Chai JY, Yong TS, Eom KS, Min DY, Shin EH, Banouvong V, Insisiengmay B, Insisiengmay S, Phommasack B, Rim
HJ. 2010. Prevalence of the intestinal flukes Haplorchis taichui and H. yokogawai in a mountainous area of
phongsaly province, lao PDR. The Korean Journal of Parasitology 48:339–342. DOI: https://doi.org/10.3347/
kjp.2010.48.4.339, PMID: 21234239

Chai JY, Yong TS, Eom KS, Min DY, Jeon HK, Kim TY, Jung BK, Sisabath L, Insisiengmay B, Phommasack B, Rim
HJ. 2013. Hyperendemicity of Haplorchis taichui infection among riparian people in saravane and champasak
province, lao PDR. The Korean Journal of Parasitology 51:305–311. DOI: https://doi.org/10.3347/kjp.2013.51.3.
305, PMID: 23864741

Charoensuk L, Subrungruang I, Mungthin M, Pinlaor S, Suwannahitatorn P. 2019. Comparison of stool
examination techniques to detect Opisthorchis viverrini in low intensity infection. Acta Tropica 191:13–16.
DOI: https://doi.org/10.1016/j.actatropica.2018.12.018, PMID: 30550733

Diggle PJ, Menezes R, Su T-li, Tl S. 2010. Geostatistical inference under preferential sampling. Journal of the
Royal Statistical Society: Series C 59:191–232. DOI: https://doi.org/10.1111/j.1467-9876.2009.00701.x

Doanh PN, Nawa Y. 2016. Clonorchis sinensis and Opisthorchis spp. in Vietnam: current status and prospects.
Transactions of the Royal Society of Tropical Medicine and Hygiene 110:13–20. DOI: https://doi.org/10.1093/
trstmh/trv103, PMID: 26740358

Dunn JC, Turner HC, Tun A, Anderson RM. 2016. Epidemiological surveys of, and research on, soil-transmitted
helminths in Southeast Asia: a systematic review. Parasites & Vectors 9:31. DOI: https://doi.org/10.1186/
s13071-016-1310-2, PMID: 26813007

Echaubard P, Sripa B, Mallory FF, Wilcox BA. 2016. The role of evolutionary biology in research and control of
liver flukes in Southeast Asia. Infection, Genetics and Evolution 43:381–397. DOI: https://doi.org/10.1016/j.
meegid.2016.05.019

Elith J, Phillips SJ, Hastie T, Dudı́k M, Chee YE, Yates CJ. 2011. A statistical explanation of MaxEnt for ecologists.
Diversity and Distributions 17:43–57. DOI: https://doi.org/10.1111/j.1472-4642.2010.00725.x

Forrer A, Sayasone S, Vounatsou P, Vonghachack Y, Bouakhasith D, Vogt S, Glaser R, Utzinger J, Akkhavong K,
Odermatt P. 2012. Spatial distribution of, and risk factors for, Opisthorchis viverrini infection in southern lao

Zhao et al. eLife 2021;10:e59755. DOI: https://doi.org/10.7554/eLife.59755 18 of 21

Research article Epidemiology and Global Health

https://doi.org/10.1016/j.pt.2008.08.011
http://www.ncbi.nlm.nih.gov/pubmed/18930439
https://doi.org/10.1371/journal.pone.0177130
https://doi.org/10.1371/journal.pone.0177130
http://www.ncbi.nlm.nih.gov/pubmed/28472153
https://doi.org/10.1007/s10182-012-0196-3
https://doi.org/10.1007/s10182-012-0196-3
https://doi.org/10.3347/kjp.2010.48.4.339
https://doi.org/10.3347/kjp.2010.48.4.339
http://www.ncbi.nlm.nih.gov/pubmed/21234239
https://doi.org/10.3347/kjp.2013.51.3.305
https://doi.org/10.3347/kjp.2013.51.3.305
http://www.ncbi.nlm.nih.gov/pubmed/23864741
https://doi.org/10.1016/j.actatropica.2018.12.018
http://www.ncbi.nlm.nih.gov/pubmed/30550733
https://doi.org/10.1111/j.1467-9876.2009.00701.x
https://doi.org/10.1093/trstmh/trv103
https://doi.org/10.1093/trstmh/trv103
http://www.ncbi.nlm.nih.gov/pubmed/26740358
https://doi.org/10.1186/s13071-016-1310-2
https://doi.org/10.1186/s13071-016-1310-2
http://www.ncbi.nlm.nih.gov/pubmed/26813007
https://doi.org/10.1016/j.meegid.2016.05.019
https://doi.org/10.1016/j.meegid.2016.05.019
https://doi.org/10.1111/j.1472-4642.2010.00725.x
https://doi.org/10.7554/eLife.59755


PDR. PLOS Neglected Tropical Diseases 6:e1481. DOI: https://doi.org/10.1371/journal.pntd.0001481,
PMID: 22348157

Fürst T, Keiser J, Utzinger J. 2012. Global burden of human food-borne trematodiasis: a systematic review and
meta-analysis. The Lancet Infectious Diseases 12:210–221. DOI: https://doi.org/10.1016/S1473-3099(11)70294-
8, PMID: 22108757

Gelfand AE, Sahu SK, Holland DM. 2012. On the effect of preferential sampling in spatial prediction.
Environmetrics 23:565–578. DOI: https://doi.org/10.1002/env.2169, PMID: 24077640

Gelfand AE, Banerjee S. 2017. Bayesian Modeling and Analysis of Geostatistical Data. Annual Review of Statistics
and Its Application 4:245–266. DOI: https://doi.org/10.1146/annurev-statistics-060116-054155

Gordon C, Kurscheid J, Williams G, Clements A, Li Y, Zhou X-N, Utzinger J, McManus D, Gray D. 2019. Asian
schistosomiasis: current status and prospects for control leading to elimination. Tropical Medicine and
Infectious Disease 4:40. DOI: https://doi.org/10.3390/tropicalmed4010040

Grundy-Warr C, Andrews RH, Sithithaworn P, Petney TN, Sripa B, Laithavewat L, Ziegler AD. 2012. Raw
attitudes, wetland cultures, life-cycles: Socio-cultural dynamics relating to Opisthorchis viverrini in the Mekong
Basin. Parasitology International 61:65–70. DOI: https://doi.org/10.1016/j.parint.2011.06.015

Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T, Lake RJ, Praet N, Bellinger DC, de Silva NR, Gargouri N,
Speybroeck N, Cawthorne A, Mathers C, Stein C, Angulo FJ, Devleesschauwer B, World Health Organization
Foodborne Disease Burden Epidemiology Reference Group. 2015. World health organization global estimates
and regional comparisons of the burden of foodborne disease in 2010. PLOS Medicine 12:e1001923.
DOI: https://doi.org/10.1371/journal.pmed.1001923, PMID: 26633896

International Agency for Research on Cancer. 1994. Schistosomes, liver flukes and Helicobacter pylori. IARC
Monographs on the Evaluation of Carcinogenic Risks to Humans 61:1–241.

Jongsuksuntigul P, Manatrakul D, Tw T, Krisanamara P, Sawatdimongkol S, Wongsaroj S. 2003. Evaluation of the
helminthiasis control program in Thailand at the end of the 8th health development plan. The Journal of
Tropical Medicine and Parasitology 26:18–45.

Jongsuksuntigul P, Imsomboon T. 2003. Opisthorchiasis control in Thailand. Acta Tropica 88:229–232.
DOI: https://doi.org/10.1016/j.actatropica.2003.01.002

Kaewpitoon N, Kaewpitoon SJ, Pengsaa P. 2008. Opisthorchiasis in Thailand: Review and current status. World
Journal of Gastroenterology 14:2297–2302. DOI: https://doi.org/10.3748/wjg.14.2297

Karagiannis-Voules D-A, Biedermann P, Ekpo UF, Garba A, Langer E, Mathieu E, Midzi N, Mwinzi P, Polderman
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