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Abstract Some sea slugs sequester chloroplasts from algal food in their intestinal cells and

photosynthesize for months. This phenomenon, kleptoplasty, poses a question of how the

chloroplast retains its activity without the algal nucleus. There have been debates on the horizontal

transfer of algal genes to the animal nucleus. To settle the arguments, this study reported the

genome of a kleptoplastic sea slug, Plakobranchus ocellatus, and found no evidence of

photosynthetic genes encoded on the nucleus. Nevertheless, it was confirmed that light

illumination prolongs the life of mollusk under starvation. These data presented a paradigm that a

complex adaptive trait, as typified by photosynthesis, can be transferred between eukaryotic

kingdoms by a unique organelle transmission without nuclear gene transfer. Our phylogenomic

analysis showed that genes for proteolysis and immunity undergo gene expansion and are up-

regulated in chloroplast-enriched tissue, suggesting that these molluskan genes are involved in the

phenotype acquisition without horizontal gene transfer.

Introduction
Since the Hershey–Chase experiment (Hershey and Chase, 1952), which proved that DNA is the

material transferred to bacteria in phage infections, horizontal gene transfer (HGT) has been consid-

ered essential for cross-species transformation (Arber, 2014). Although the prion hypothesis has

rekindled the interest in proteins as an element of phenotype propagation (Crick, 1970;

Wickner et al., 2015), HGT is still assumed to be the cause of transformation. For example, in a sec-

ondary plastid acquisition scenario in dinoflagellates, (1) a non-phototrophic eukaryote sequesters a

unicellular archaeplastid; (2) the endogenous gene transfer to the non-phototrophic eukaryote leads

to the shrinkage of the archaeplastidan nuclear DNA (nucDNA); and (3) the archaeplastidan nucleus

disappears, and its plastid becomes a secondary plastid in the host (Reyes-Prieto et al., 2007).
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Chloroplast sequestration in sea slugs has attracted much attention due to the uniqueness of the

algae-derived phenotype acquisition. Some species of sacoglossan sea slugs (Mollusca: Gastropoda:

Heterobranchia) can photosynthesize using the chloroplasts of their algal food (Figure 1A and B;

de Vries and Archibald, 2018; Kawaguti, 1965; Pierce and Curtis, 2012; Rumpho et al., 2011;

Serôdio et al., 2014). These sacoglossans ingest species-specific algae and sequester the chloro-

plasts into their intestinal cells. This phenomenon is called kleptoplasty (Gilyarov, 1983;

Pelletreau et al., 2011). The sequestered chloroplasts (named kleptoplasts) retain their electron

microscopic structure (Fan et al., 2014; Kawaguti, 1965; Martin et al., 2015; Pelletreau et al.,

2011; Trench, 1969) and photosynthetic activity (Cartaxana et al., 2017; Christa et al., 2014a;

Cruz et al., 2015; Händeler et al., 2009; Taylor, 1968; Teugels et al., 2008; Wägele, 2001;

Yamamoto et al., 2009). The retention period of photosynthesis differs among sacoglossan species

(1 to >300 days; Figure 1B; Christa et al., 2015, Christa et al., 2014a, Christa et al., 2014b;

Evertsen et al., 2007; Laetz and Wägele, 2017) and development stages and depends on the plas-

tid ‘donor’ species (Curtis et al., 2007; Laetz and Wägele, 2017).

The absence of algal nuclei in sacoglossan cells makes kleptoplasty distinct from other symbioses

and plastid acquisitions (de Vries and Archibald, 2018; Rauch et al., 2015). Electron microscopic

studies have indicated that the sea slug maintains photosynthetic activity without algal nuclei (Hir-

ose, 2005; Kawaguti, 1965; Laetz and Wägele, 2019; Martin et al., 2015; Pierce and Curtis,

2012). Because the algal nucleus, rather than the plastids, encodes most photosynthetic proteins,

the mechanism to maintain photosynthetic proteins is especially intriguing, given that photosynthetic

proteins have a high turnover rate (de Vries and Archibald, 2018; Pelletreau et al., 2011). Previous

polymerase chain reaction (PCR)-based studies have suggested the HGT of algal nucleic photosyn-

thetic genes (e.g., psbO) to the nucDNA of the sea slug, Elysia chlorotica (Pierce et al., 1996;

Pierce et al., 2009; Pierce et al., 2007; Pierce et al., 2003; Rumpho et al., 2008; Schwartz et al.,

2014). A genomic study of E. chlorotica (N50 = 824 bases) provided no reliable evidence of HGT

but predicted that fragmented algal DNA and mRNAs contribute to its kleptoplasty

(Bhattacharya et al., 2013). Schwartz et al., 2014 reported in situ hybridization-based evidence for

HGT and argued that the previous E. chlorotica genome might overlook the algae-derived gene.

Although an improved genome of E. chlorotica (N50 = 442 kb) was published recently, this study

made no mention of the presence or absence of algae-derived genes (Cai et al., 2019). The geno-

mic studies of sea slug HGT have been limited to E. chlorotica, and the studies have used multiple

samples with different genetic backgrounds for genome assembling (Bhattacharya et al., 2013;

Cai et al., 2019). The genetic diversity of sequencing data may have inhibited genome assembling.

Although transcriptomic analyses of other sea slug species failed to detect HGT (Chan et al., 2018;

Wägele et al., 2011), transcriptomic data were insufficient to ascertain genomic gene composition

(de Vries et al., 2015; Rauch et al., 2015).

Here, the genome sequences of another sacoglossan species, Plakobranchus ocellatus

(Figure 1C–E), are presented to clarify whether HGT is the primary system underlying kleptoplasty.

For more than 70 years, multiple research groups have studied P. ocellatus for its long-term (>3

months) ability to retain kleptoplasts (Christa et al., 2013; Evertsen et al., 2007; Greve et al.,

2017; Kawaguti, 1941; Trench et al., 1970; Wade and Sherwood, 2017; Wägele et al., 2011).

However, a recent phylogenetic analysis showed that P. ocellatus is a species complex (a set of

closely related species; Figure 1F; Christa et al., 2014c; Krug et al., 2013; Maeda et al., 2012;

Meyers-Muñoz et al., 2016; Yamamoto et al., 2013). Therefore, it is useful to revisit previous stud-

ies on P. ocellatus. This study first confirmed the photosynthetic activity and adaptive relevance of

kleptoplasty to P. ocellatus type black (a species confirmed by Krug et al., 2013 via molecular phy-

logenetics; hereafter ‘PoB’). The genome sequences of PoB (N50 = 1.45 Mb) and a related species,

Elysia marginata (N50 = 225 kb), were then constructed. By improving the DNA extraction method,

the genome sequences from a single sea slug individual in each species were successfully assembled.

The comparative genomic and transcriptomic analyses of these species demonstrate the complete

lack of photosynthetic genes in these sea slug genomes and supported an alternative hypothetical

kleptoplasty mechanism.
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Figure 1. Kleptoplasty in sea slugs. (A) Process of algal chloroplast retention by a sacoglossan sea slug (Pierce and Curtis, 2012). Sacoglossan sea

slugs puncture the cell wall of food algae to suck out the protoplasm. The chloroplasts in the protoplasm are transported to the sea slug’s intestinal

tract, and the intestinal epithelial cells sequester chloroplasts by phagocytosis. The sequestered chloroplasts (kleptoplasts) maintain the photosynthetic

activity in the cell for days to months. The sacoglossan cell contains no algal nuclei. Kleptoplast has never been found in germ cells of sea slug. (B)

Phylogenetic distribution of kleptoplasty in the order Sacoglossa. Phylogenetic analysis showed that a common ancestor of Sacoglossa acquired non-

functional chloroplast retention phenomena (without the maintenance of photosynthetic function), and multiple sacoglossan groups subsequently

acquired the ability to maintain photosynthetic activity. Phylogenetic tree and kleptoplasty states are simplified from Christa et al., 2015.

Christa et al., 2014b defined functional chloroplast retention for less than 2 weeks as ‘short-term retention’, and for more than 20 days as ‘long-term

retention’. Relationships within Heterobranchia are described according to Zapata et al., 2014. The red-colored taxa include the species used in the

present study (P. ocellatus and E. marginata). (C–E) Photo images of PoB starved for 21 days. (C) Dorsal view. H, head; R, rhinophores; P, parapodia

(lateral fleshy flat protrusions). Almost always, PoB folded parapodia to the back in nature. (D) The same individual of which parapodium was turned

inside out (without dissection). The back of the sea slug and inside of the parapodia are green. This coloration is caused by the kleptoplasts in DG,

which are visible through the epidermis. (E) Magnified view of the inner surface of parapodium. The diagonal green streaks are ridged projections on

the inner surface of the parapodium. The cells containing kleptoplasts are visible as green spots. (F) Phylogeny of the P. cf. ocellatus species complex

Figure 1 continued on next page
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Results

Does the kleptoplast photosynthesis prolong the life of PoB?
To explore the photosynthetic activity of PoB, three photosynthetic indices were measured: photo-

chemical efficiency of kleptoplast photosystem II (PSII), oxygen production rate after starvation for

1–3 months, and effect of illumination on PoB longevity. The Fv/Fm value, which reflects the maxi-

mum quantum yield of PSII, was 0.68–0.69 in the ‘d38’ PoB group (starved for 38 days) and 0.57–

0.64 in the ‘d109’ group (starved for 109–110 days; Figure 2A). These values were only slightly lower

than those of healthy Halimeda borneensis, a kleptoplast donor of PoB (Maeda et al., 2012), which

showed Fv/Fm values of 0.73–0.76. The donor algae of PoB consisted of at least eight green algal

species, and they are closely related to H. borneensis (Maeda et al., 2012). Although it is not clear

whether the Fv/Fm is the same for all donor algae, Fv/Fm is almost identical (~0.83) in healthy terres-

trial plants regardless of species (Maxwell and Johnson, 2000). Moreover, the values of H. borneen-

sis were similar to those of other green algae (e.g., Chlamydomonas reinhardtii, Fv/Fm = 0.66–0.75;

Bonente et al., 2012). Hence, we assumed that Fv/Fm values are similar among the donor species.

The Fv/Fm value suggested that PoB kleptoplasts retain a similar photochemical efficiency of PSII to

that of the food algae for more than 3 months.

Based on the measurement of oxygen concentrations in seawater, starved PoB individuals (‘d38’

and ‘d109’) displayed gross photosynthetic oxygen production (Figure 2B and C). The mock exami-

nation without the PoB sample indicated no light-dependent increase in oxygen concentrations, i.e.,

no detectable microalgal photosynthesis in seawater (Figure 2—figure supplement 1). The results

demonstrated that PoB kleptoplasts retain photosynthetic activity for more than 3 months, consis-

tent with previous studies on P. cf. ocellatus (Christa et al., 2014c; Evertsen et al., 2007).

The longevity of starved PoB specimens was then measured under different light conditions. The

mean longevity was 156 days under continuous darkness and 195 days under a 12 hr light/12 hr dark

cycle (p=0.022; Figure 2D), indicating that light exposure significantly prolongs PoB longevity. This

observation was consistent with that of Yamamoto et al., 2013 that the survival rate of PoB after 21

days under starvation is light dependent. Although a study using P. cf. ocellatus reported that pho-

tosynthesis had no positive effect on the survival rate (Christa et al., 2014c), our results indicated

that this finding does not apply to PoB.

Given the three photosynthetic indices’ data, we concluded that the increase in PoB survival days

was due to photosynthesis. A previous study using the short-term (retention period of 4–8 days)

kleptoplastic sea slug, Elysia atroviridis, indicated no positive effect of light illumination on their sur-

vival rate (Akimoto et al., 2014). These results supported that light exposure does not affect saco-

glossan longevity in the absence of kleptoplasts. Although plastid-free PoB may directly indicate

that kleptoplasty extends longevity, there is no way to remove kleptoplasts from PoB, except during

long-term starvation. PoB feeds on nothing but algae and retains the kleptoplast for 3–5 months.

Although future research methods may allow for more experimental analyses of kleptoplast func-

tions, the currently most straightforward idea is that kleptoplast photosynthesis increases the starva-

tion resistance of PoB.

Do kleptoplasts encode more photosynthetic genes than general
plastid?
To reveal the proteins synthesized from kleptoplast DNA (kpDNA), we sequenced the whole kpDNA

from PoB and compared the sequences with algal plastid and nuclear genes. Illumina sequencing

provided two types of circular kpDNA and one whole mitochondrial DNA (mtDNA) (Figure 3A;

Figure 1 continued

based on mitochondrial cox1 genes (ML tree from 568 nucleotide positions) from INSD and the whole mtDNA sequence. The sequence data for the

phylogenetic analysis are listed in Figure 1—source data 1. Clade names in square brackets are based on Krug et al., 2013. Asterisks mark the

genotypes from Krug et al., 2013. Study topics analyzed by previous researchers were described within the colored boxes for each cluster. Small black

circles indicate nodes supported by a high bootstrap value (i.e., 80–100%). Thuridilla gracilis is an outgroup. Plakobranchus papua is a recently

described species and previously identified as P. ocellatus (Meyers-Muñoz et al., 2016).

The online version of this article includes the following source data for figure 1:

Source data 1. Sequence ID list used for phylogenetic analysis on Figure 1B.
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Figure 2. Photosynthetic activity of PoB. (A) Jitter plot of Fv/Fm values indicating the photochemical efficiency of

PSII. Habo, H. borneensis; d38, starved PoB for 38 days; d109, starved for 109 to 110 days (12 hr light/12 hr dark

cycle; the light phase illumination was 10 mmol photons m�2 s�1). The magenta line indicates the mean, and the

black dot indicates each individual’s raw value (n = 3 per group). (B) Dynamics of seawater oxygen concentration.

To better demonstrate the PoB photosynthesis, a change of oxygen concentration every second was visualized. A

PoB individual, one of the d38 samples (ID1), was put into the measurement chamber, and the light conditions

were changed in tens of minutes. The measurements in other individuals are visualized in Figure 2—figure

supplement 1, along with the diagrams of the measuring equipment. Each point represents the oxygen

concentration value per second. Gray signifies a dark period, and yellow means an illuminated period (50 mmol

photons m�2 s�1). Temp, water temperature. Although the values fluctuated by the noise due to ambient light and

other factors, the oxygen concentration decreased in the dark conditions and increased in the light conditions.

When the illumination condition was changed, the changing pattern kept the previous pattern for a few minutes.

This discrepancy may reflect the distance between the organism and oxygen sensor and the time for adaptation to

brightness by the kleptoplast. (C) Jitter plots of PoB oxygen consumption and generation. D, dark conditions; L,

light conditions; G, gross rate of light-dependent oxygen generation (L minus D). (D) Jitter plots of PoB longevity

(n = 5 per group). D, Continuous dark; L/D, 12 hr light/12 hr dark cycle. The p from Welch’s two-sample t-test was

Figure 2 continued on next page
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Supplementary file 1; Figure 3—figure supplements 1–3). The mtDNA sequence was almost iden-

tical to the previously sequenced P. cf. ocellatus mtDNA (Figure 3—figure supplement 3B;

Greve et al., 2017). The sequenced kpDNAs corresponded to those of the predominant kleptoplast

donors of PoB (Maeda et al., 2012), i.e., Rhipidosiphon lewmanomontiae (AP014542; hereafter

‘kRhip’) and Poropsis spp. (AP014543; hereafter ‘kPoro’; Figure 3B; Figure 3—figure supplement

4).

To determine whether kpDNA gene repertoires were similar to green algal chloroplast DNAs

(cpDNAs), H. borneensis cpDNA was sequenced, and 17 whole cpDNA sequences were obtained

from public databases (Figure 3C; Figure 3—figure supplements 5 and 6). PoB kpDNAs contained

all the 59 conserved chloroplastic genes in Bryopsidales algae (e.g., psbA and rpoA), although they

lacked four to five of the dispensable genes (i.e., petL, psb30, rpl32, rpl12, and ccs1; Figure 3C).

To test whether kpDNAs contained no additional photosynthetic genes, a dataset of 614 photo-

synthetic genes was then used (hereafter the ‘A614’ dataset), which were selected from the algal

transcriptomic data and public algal genomic data (Supplementary files 2 and 3). A tblastn homol-

ogy search using A614 obtained no reliable hits (E-value < 0.0001) against the kpDNA sequences,

except for the chlD gene, which resembled the kpDNA-encoded chlL gene (Figure 3D,E). A positive

control search against an algal nucDNA database (Caulerpa lentillifera; https://marinegenomics.oist.

jp/umibudo/viewer/info?project_id=55; Arimoto et al., 2019) found reliable matches for 93% (575/

614) of the queries (Figure 3D,E), suggesting that the method has high sensitivity. Hence, it was

concluded that kpDNAs lack multiple photosynthetic genes (e.g., psbO) as general green algal

cpDNAs.

Are there horizontally transferred algal genes to the PoB nucleic
genome?
To determine whether the PoB nucleic genome contains algae-derived genes (i.e., evidence of

HGT), we sequenced the nuclear genome of PoB. A search for algae-like sequences in gene models,

genomic sequences, and pre-assembled short reads were conducted. The genome assembly con-

tained 927.9 Mbp (99.1% of the estimated genome size; 8647 scaffolds; N50 = 1.45 Mbp; 77,230

gene models; Supplementary file 4; Figure 4—figure supplements 1–3). Benchmarking Universal

Single-Copy Orthologs (BUSCO) analysis using the eukaryota_odb9 dataset showed high coverage

(93%) of the eukaryote conserved gene set, indicating that the gene modeling was sufficiently com-

plete to enable HGT searches (Supplementary file 4). The constructed gene models were deposited

in INSD (PRJDB3267) and FigShare (DOI: 10.6084/m9.figshare.13042016) with annotation data.

Searches of PoB gene models found no evidence of algae-derived HGT. Simple homology

searches (blastp) against the RefSeq database found 127 PoB gene models with top hits to Cyano-

bacteria or eukaryotic algae. Eighty-two of the 127 top hits encoded functionally unknown protein

(annotated as ‘hypothetical protein’ or ‘uncharacterized protein’; Supplementary file 5). Viridiplantal

Volvox was the most abundant source of algae of the top-hit sequences (17 genes), and cryptophy-

tan Guillardia was the second most abundant source (10 genes). However, the prediction of taxo-

nomical origin using multiple blast-hit results (Last Common Ancestor [LCA] analysis with MEGAN

software; Huson et al., 2007) denied the algal origin of the genes (Supplementary file 5). A blastp

search using the A614 dataset, which contains sequences of the potential gene donor (e.g., tran-

scriptomic data of H. borneensis), also determined no positive HGT evidence (Supplementary file

5).

Figure 2 continued

used. A source file of Fv/Fm jitter plot, time course of oxygen concentration, and longevity analysis are available in

Figure 2—source data 1–3, respectively.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Summarized data of Fv/Fm and oxygen generation activity analysis of P.

Source data 2. Raw data of oxygen concentration dynamics.

Source data 3. Summary of the longevity of analyzed P. ocellatus individuals used for Figure 2D.

Figure supplement 1. Light-dependent oxygen generation by P. ocellatus.
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Figure 3. Gene composition of PoB kpDNAs. (A) Gene map of two kpDNAs from PoB. Gene positions are described in circles colored according to the

gene’s functional category (see keys in the box). Genes on the outside and inside of each circle are transcribed in the clockwise and anticlockwise

directions, respectively (for detailed maps, see Figure 3—figure supplements 1 and 2). (B) Phylogenetic positions of sequenced kleptoplasts among

green algal plastids. The original ML tree (Figure 3—figure supplement 4) was created based on rbcL genes (457 positions) and converted to the tree.

Figure 3 continued on next page
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Using LCA analysis for all PoB gene models, some genes were predicted to originate from spe-

cies other than Lophotrochozoa. These genes may be due to HGT, but no photosynthesis-related

genes were found from them. MEGAN predicted that 20,189 of the PoB genes originated from

Lophotrochozoa and its subtaxa. The prediction also assigned 5550 genes to higher adequate taxa

as Lophotrochozoa (e.g., Bilateria). MEGAN assigned the 2964 genes to Opisthokonta other than

Lophotrochozoa (e.g., Ecdysozoa) and 312 genes derived from proteobacteria as promising horizon-

tally transferred genes. However, these 3276 genes contained no photosynthetic gene. Many of the

PoB genes assigned as promising horizontally transferred genes encoded reverse transcriptase. For

the remaining 48,215 genes, MEGAN assigned no species. A homology search against the public

database annotated 41,203 of the no-taxon-assigned genes as functionally unknown genes (Fig-

Share; DOI: 10.6084/m9.figshare.13042016). Other no-taxon-assigned 7012 genes were not associ-

ated with photosynthesis, except one gene (p288c60.92) annotated to ‘photosystem I assembly

protein ycf3’. However, this annotation to p288c60.92 was not reliable because it seems to be

derived from incorrect annotations on public databases. Our reannotation via blastp search against

the RefSeq database indicated the similarity of the PoB gene (p288c60.92) to ‘XP_013785360,

death-associated protein kinase related-like’ of a horseshoe crab. The details of the analyses are

summarized in Supplementary file 6. MEGAN-based analysis, hence, indicated that several non-

photosynthetic genes might have originated from proteobacteria or other organisms but provided

no evidence of algae-derived HGT.

In gene function assignment with Gene Ontology (GO) terms, no PoB gene model was annotated

as a gene relating ‘Photosynthesis (GO:0015979),” although the same method found 72 to 253 pho-

tosynthesis-related genes in the five referential algal species (Figure 4A). Six PoB genes assigned to

the child terms of ‘Plastid (GO:0009536)’ were found (Figure 4A; Supplementary file 7). However,

an ortholog search with animal and algal genes did not support these six genes’ algal origin (Fig-

ure 4—figure supplement 5). It was considered that the sequence conservation beyond the king-

dom caused these pseudo-positives in the GO assignment. The function of these six genes had no

relationships to photosynthesis (Supplementary file 7); six genes relate proteasome (p2972c65.3),

arginine kinase (p197c68.18), DNA-binding response regulator (p234c64.89), chromatin structure

Figure 3 continued

Red indicates sequenced kpDNA or cpDNA in the present study. Underlines indicate algal species used in RNA-Seq sequencing. (C) An UpSet plot of

plastid gene composition. Species abbreviations are defined in Figure 3—source data 1. The horizontal bar chart indicates the gene numbers in each

species. The vertical bar chart indicates the number of genes conserved among the species. Intersect connectors indicate the species composition in a

given number of genes (vertical bar chart). Connections corresponding to no gene were omitted. Connectors were colored according to the gene’s

conservation level in Bryopsidales: Core gene, conserved among all analyzed Bryopsidales species; Dispensable gene, retained more than two

Bryopsidales species; Rare gene, determined from a single or no Bryopsidales species. Gray shading indicates non-Viridiplantae algae, and magenta

shading indicates PoB kleptoplasts. Cyme (C. merolae) and Vali (V. litorea) had more than 100 genes that Bryopsidales does not have (e.g., left two

vertical bars). (D) Box-plots of tblastn results. The vertical axis shows the database searched (kPoro and kRhip, PoB kpDNAs; nCale, nucDNA of C.

lentillifera). Each dot represents the tblastn result (query is the A614 dataset). Red dots show the result using the chlD gene (encoding magnesium-

chelatase subunit ChlD) as the query sequence; this sequence is similar to the kleptoplast-encoded chlL gene. The right pie chart shows the proportion

of queries with hits (E-value < 0.0001). (E) Heat map of tblastn results of representative photosynthetic nuclear genes (a subset of data in D). The source

species of the query sequences are described on the top. The source files of plastid gene composition and tblastn analysis are available in Figure 3—

source data 1 and 2.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Plastid gene composition.

Source data 2. Tblastn analysis of kleptoplast/chloroplast DNA.

Figure supplement 1. Gene map of a P. ocellatus kleptoplast DNA sequestered from Rhipidosiphon lewmanomontiae.

Figure supplement 2. Gene map of a P. ocellatus kleptoplast DNA sequestered from Poropsis spp.

Figure supplement 3. Mitochondrial gene map of the P. ocellatus type black.

Figure supplement 4. Bryopsidales ML tree made by RAxML (a -x 12345 p 12345 -# 300 m GTRGAMMAI) based on 457 positions of rbcL genes.

Figure supplement 5. Gene map of the H. borneensis chloroplast DNA.

Figure supplement 6. Gene compositions of 18 algal cpDNAs and P. ocellatus kpDNAs.

Figure supplement 7. Read coverage depth of the constructed P. ocellatus genomic assemblies.

Figure supplement 8. Annotation procedure of H. borneensis transcripts.

Figure supplement 9. Annotation procedure of B. hypnoides transcripts.

Figure supplement 10. Annotation procedure of C. lentillifera.
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Figure 4. Search for horizontally transferred algal genes in the PoB genome. (A) Heatmap of the number of genes assigned to photosynthesis- or

plastid-related GO terms. The abundance of photosynthesis- or plastid-related genes was compared among PoB, two non-kleptoplastic mollusk

species (Aca, A. californica; Bgl, B. glabrata), and five algal species (see abbreviations in Figure 3, Figure 3—source data 1). A color scale was

visualized in the box on the left. (B) Scatter plot of the Exonerate results, the alignment of the A614 gene set (query sequences) to the PoB genome.

Figure 4 continued on next page
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(p466c59.83), mitochondrial inner membrane translocase (p503c65.126), and functionally unknown

protein (p45387c41.1).

To confirm that the gene modeling did not overlook a photosynthetic gene, the A614 dataset

against the PoB and C. lentillifera genome sequences was directly searched using tblastn and Exon-

erate software (Slater and Birney, 2005). Against the C. lentillifera genome (positive control), 455

(tblastn) and 450 (Exonerate) hits were found; however, using the same parameters, only 1 (tblastn)

and 2 (Exonerate) hits against the PoB genome were detected (Figure 4B; Figure 4—figure supple-

ment 5). The three PoB loci contain the genes encoding serine/threonine-protein kinase LATS1

(p258757c71.5, Figure 4—figure supplement 5), deoxyribodipyrimidine photolyase (p855c67.9,

Figure 4B), and phosphoglycerate kinase (p105c62.89, Figure 4B). A phylogenetic analysis with

homologous genes showed the monophyletic relationships of these three genes with molluskan

homologs (Figure 4—figure supplement 6–8). This result indicated that the three PoB loci contain

molluskan genes rather than algae-derived genes. It was thus concluded that the PoB genome

assembly contains no algae-derived photosynthetic genes.

To examine whether the genome assembly failed to construct algae-derived regions in the PoB

genome, a search for reads resembling photosynthetic genes among the pre-assembled Illumina

data was performed. From 1065 million pre-assembled reads, 1698 reads showed similarity against

261 of the A614 dataset queries based on MMseq2 searches. After normalization by query length,

the number of matching reads against algal queries was about 100 times lower than that against

PoB single-copy genes: the normalized read count (mean ± SD) was 25 ± 105 for the A614 dataset

and 2601 ± 2173 for the 905 PoB single-copy genes (p<0.0001, Welch’s two-sample t-test;

Figure 4 continued

The enlarged view with the tblastn results; Figure 4—figure supplement 5. The dot color shows the source algae of each query sequence (see keys in

the box). The horizontal axis shows the percentage of the query length aligned to the hit sequences (PoB genome). The vertical axis shows the similarity

of the aligned sequences between the query and PoB genome; alignment score (the sum of the substitution matrix scores and the gap penalties)

divided by aligned length (bp). Dashed lines are thresholds for a credible query hit (i.e., a hit covering >60% of the query sequence and a normalized

Exonerate alignment score of >2). (C) Scatter plot of MMseq2 results for the A614 dataset (algal photosynthetic genes, red) and P911 reference dataset

(PoB single-copy genes, blue) used as query sequences against the database of pre-assembled read sets from paired-end DNA libraries of PoB. The

top panel shows the probability density distribution of the number of hit reads (normalized with TPM: transcripts per kilobase million; x-axis) versus the

averaged ‘pident’ value (percentage of identical matches) from the hit reads (y-axis). (D) Scatter plot of HGT indices (hA-index versus h-index) for genes

in PoB, the two non-kleptoplastic mollusk species (Aca and Bgl), and one algae species (C. lentillifera [Cale]). Each dot represents a gene. A high hA-

index or h-index value means the possibility of algal or prokaryote origin, respectively. Dashed red lines represent the conventional threshold for HGT

(�100 for h-index and 100 for hA-index). Three red arrowheads indicate PoB genes exceeding the thresholds. (E) Heatmap of the results of searches for

algae-like RNA fragments in the PoB RNA-Seq data. Pa, parapodium; EG, egg; He, head; Pe, pericardium. The blue gradient indicates the number of

RNA-Seq reads assigned as algae-like fragments (see key). The y-axis labels show the RNA-Seq library name and analyzed tissue types. The x-axis

labels indicate the query protein; the queries having no corresponding reads were omitted from the figure. For queries using the P911 reference

dataset, the mean of the hit-read counts from each library was described. The total number of reads for each library is given on the far right. The source

files of homology-based algal gene searching analysis using Exonerate, MMseq2, and blastp are available in raw data Figure 4—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Algal gene detection from PoB genome.

Figure supplement 1. Genome size estimation of P. ocellatus type black by flow cytometry.

Figure supplement 2. Genome assembling and gene modeling approach for the P. ocellatus genome analysis.

Figure supplement 3. Annotation procedure for the genomic gene models of P. ocellatus type black.

Figure supplement 4. ML tree for the candidate HGT genes with algal and molluscan homologous genes.

Figure supplement 5. Summary of Exonerate and tblastn results.

Figure supplement 6. ML tree for the orthologous group ‘65’ by SonicParanoid.

Figure supplement 7. ML tree for the orthologous group ‘501’ by SonicParanoid.

Figure supplement 8. ML tree for the orthologous group ‘456’ by SonicParanoid.

Figure supplement 9. Sequence similarity between g566.t1 (C. lentillifera) and p310c70.15 (P. ocellatus).

Figure supplement 10. Overview of the sample preparation for P. ocellatus type black transcriptomic analysis.

Figure supplement 11. Agarose gel electrophoresis image displaying extracted P. ocellatus DNA for the nuclear genome sequencing with two
fragment size markers.

Figure supplement 12. Read depth of the P. ocellatus genome assemblies.

Figure supplement 13. Dot-plot of the referential kleptoplast DNAs and PoB genomic scaffolds determined as the kleptoplast DNA (kpDNA).

Figure supplement 14. Dot plot of the two referential kleptoplast DNAs.

Figure supplement 15. Dot plot of the referential mtDNAs and one scaffold determined as mtDNA sequence.
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Figure 4C). This massive difference indicated that most algae-like reads come from contaminating

microalgae rather than PoB nucDNA. For six algal queries (e.g., peptidyl-prolyl cis-trans isomerase

gene), the number of matching reads was comparable between PoB and the A614 dataset

(Figure 4C; the normalized read count was higher than 100). However, the presence of homologous

genes on the PoB genome (e.g., p310c70.15) suggests that the reads were not derived from an

algae-derived region but rather resemble molluskan genes. For example, a simple alignment showed

that the C. lentillifera-derived g566.t1 gene (encoding peptidyl-prolyl cis-trans isomerase) was par-

tially similar to the PoB p310c70.15 gene, and 76% (733/970) of reads that hit against g566.t1 were

also hitting against p310c70.15 under the same MMseq2 parameter (Figure 4—figure supplement

9). Hence, it was considered that no loss of algal-derived HGT regions occurred in the assembly

process.

Changing the focus to HGT of non-photosynthetic algal genes, the indices for prokaryote-derived

HGT (h-index; Boschetti et al., 2012) and algae-derived HGT (hA-index; see Materials and methods)

were calculated for PoB and two non-kleptoplastic gastropods (negative controls;

Supplementary file 8). Three PoB gene models as potential algae-derived genes were detected

(Figure 4D); however, two of these encoded a transposon-related protein, and the other encoded

an ankyrin repeat protein with a conserved sequence with an animal ortholog (Figure 4—source

data 1). Furthermore, non-kleptoplastic gastropods (e.g., Aplysia californica) had similar numbers of

probable HGT genes (Figure 4D). Taking these results together, it was concluded that there is no

evidence of algae-derived HGT in the PoB genomic data.

The presence of algae-like RNA in PoB was then examined, as a previous study of another sea

slug species E. chlorotica hypothesized that algae-derived RNA contributes to kleptoplasty

(Bhattacharya et al., 2013). This previous study used short-read-based blast searches and reverse

transcription PCR analyses to detected algal mRNA (e.g., psbO mRNA) in multiple adult E. chlorotica

specimens (no tissue information was provided; Bhattacharya et al., 2013). To analyze the algal

RNA distribution in PoB, 15 RNA-Seq libraries were constructed from six tissue types (digestive

gland [DG], parapodium, DG-exenterated parapodium [DeP], egg, head, and pericardium; Fig-

ure 4—figure supplement 10), and MMseq2 searches were conducted (Figure 4C). Although

almost all (594/614) of the A614 dataset queries matched no reads, 19 queries matched 1–10 reads

and the C. lentillifera-derived g566.t1 query matched more than 10 reads (Figure 4E). This high hit

rate for g566.t1 (peptidyl-prolyl cis-trans isomerase in Figure 4E), however, is due to its high

sequence similarity with PoB ortholog, p310c70.15, as mentioned above. A previous anatomical

study showed the kleptoplast density in various tissues to be DG > parapodium > DeP = head =

pericardium >>> egg (Hirose, 2005). Therefore, the amount of algae-like RNA reads did not corre-

late with the kleptoplast richness among the tissues. Enrichment of algae-like RNA was only found in

the egg (Figure 4E). The PoB egg is considered a kleptoplast-free stage and is covered by a mucous

jelly, which potentially contains environmental microorganisms (Figure 4—figure supplement 10).

Hence, it was presumed that these RNA fragments are not derived from kleptoplasts but from con-

taminating microalgae. The searches for algae-like RNA in PoB found no credible evidence of algae-

derived RNA transfer and no correlation between algal RNA and kleptoplasty.

What kind PoB genes are reasonable candidates for kleptoplasty-
related genes?
Because the PoB genome was found to be free of algae-derived genes, it was considered that a neo-

functionalized molluskan gene might contribute to kleptoplasty. To find candidate kleptoplasty-

related molluskan (KRM) genes, we assessed genes that were up-regulated in DG (the primary klep-

toplasty location) versus DeP in the RNA-Seq data described above. As a result, 162 DG-up-regu-

lated genes were found (false discovery rate [FDR] < 0.01, triplicate samples; Figure 5A; Figure 5—

figure supplements 1 and 2; Supplementary file 9). By conducting GO analysis, the functions of 93

DG-up-regulated genes were identified. These up-regulated genes are enriched for genes involved

in proteolysis (GO terms: ‘Proteolysis,’ ‘Aspartic-type endopeptidase activity,’ ‘Cysteine-type endo-

peptidase inhibitor activity’, and ‘Anatomical structure development’), carbohydrate metabolism

(‘Carbohydrate metabolic process’, ‘One-carbon metabolic process’, ‘Cation binding’, and ‘Regula-

tion of pH’), and immunity (‘Defense response’; Supplementary file 10). Manual annotation identi-

fied the function of 42 of the remaining DG-up-regulated genes. Many of these are also related to

proteolysis and immunity: three genes relate to proteolysis (i.e., genes encoding interferon-g-
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inducible lysosomal thiol reductase, replicase polyprotein 1a, and phosphatidylethanolamine-binding

protein), and 21 genes contribute to natural immunity (i.e., genes encoding lectin, blood cell aggre-

gation factor, and MAC/perforin domain-containing protein; Figure 5—figure supplements 1 and

2). Manual annotation also found four genes encoding apolipoprotein D, which promotes resistance

to oxidative stress (Charron et al., 2008), and three genes involved in nutrition metabolism (i.e.,

genes encoding betaine-homocysteine S-methyltransferase 1-like protein, intestinal fatty acid-bind-

ing protein, and cell surface hyaluronidase). Because the analyzed slugs were starved for 1 month, it

was considered that DG-up-regulated genes contribute to kleptoplasty rather than digestion.

A comparative genomic analysis was then conducted to find orthogroups that expand or contract

in size along the metazoan lineage to PoB. The phylogenomic analysis showed that 6 of the 193

orthogroups that underwent gene expansion in this lineage contained DG-up-regulated genes

(Figure 5B; Figure 5—figure supplement 3–5; Supplementary file 11). This result supported the

notion that these DG-up-regulated genes play a role in kleptoplasty. The most distinctive

orthogroup in the six groups was OG0000132, which contained 203 cathepsin D-like genes of PoB.

Forty-five of the 203 genes were DG-up-regulated, and Fisher’s exact test supported the significant

enrichment of DG-up-regulated genes (p<0.0001; Supplementary file 11). Other heterobranchian

mollusks only had four to five genes belonging to OG0000132 (Figure 5B). These gene duplications

Figure 5. Probable KRM genes in PoB. (A) Volcano plot comparing gene expressions in DG and DeP tissues of PoB. Red, orthogroup OG0000132

(cathepsin D-like protease genes); blue, orthogroup OG0000005 (lectin-like genes); orange, other orthogroups (for details, see Figure 5—figure

supplement 2). Up and down arrows signify up- and down-regulation, respectively, in DG. (B) Orthogroups expanded on the P. ocellatus lineage and

containing DG-up-regulated genes. Ema, E. marginata; Bgl, B. glabrata; Lgi, Lottia gigantea; Hdi, Haliotis discus; Obi, Octopus bimaculoides; Pfu,

Pinctada fucata; Cgi, Crassostrea gigas; Cte, Capitella teleta; Dme, D. melanogaster; Bmo, Bombyx mori; Api, A. pisum; Hsa, Homo sapiens; Mmu. Mus

musculus. The phylogenetic tree was scaled to divergence time based on 30 conserved single-copy genes. Mya, million years. The numbers of rapidly

expanded (blue) and contracted (magenta) orthogroups on the lineages to PoB are provided at the nodes (for details, see Figure 5—figure

supplements 4 and 5). Below the tree is information for the six expanded orthogroups that contained DG-up-regulated genes. The left-side heatmap

shows the gene numbers (number in boxes) and Z-score of gene numbers (color gradient) for each orthogroup. The table shows the expanded/not

expanded status of each orthogroup (P–E, Plakobranchus-Elysia node; PoB, Plakobranchus node). The right-side heat map indicates the number of

DEGs between DG and DeP tissue in each orthogroup. Representative gene products are given on the far right. The source files of RNA-Seq analysis

and comparative genomic analysis are available in raw data Figure 5—source data 1 and 2, respectively.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. KRM gene searching using RNA-Seq.

Source data 2. KRM gene searching using ortholog analysis.

Figure supplement 1. DG-up-regulated genes by the RNA-seq comparison with -DeP samples.

Figure supplement 2. Volcano plot of the cross-tissue comparison between DG and DeP samples.

Figure supplement 3. The procedure of gene family history analyses.

Figure supplement 4. CAFE-based all rapidly expanding/contracting genes on the sacoglossan linage.

Figure supplement 5. Z-score-based rapidly expanding/contracting genes on the P. ocellatus linage (Threshold: Z-score > 2).
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in PoB might reduce selection pressure to maintain function via redundancy and promote new func-

tion acquirement of the paralogs, as occurs in the well-known neofunctionalization scenario

(Conrad and Antonarakis, 2007). Significant enrichment of DG-up-regulated genes was also

detected in OG0000005 (18 genes) and OG0000446 (four genes; both p<0.0001; Figure 5B;

Supplementary file 11), which contain lectin-like and apolipoprotein D-like genes, respectively. DG-

up-regulated genes were also detected in OG0000002, OG0009179, and OG0000194. However, no

significant enrichment of these genes was found in these orthogroups (p>0.05). OG0000002 con-

tains DG-up-regulated gene for type two cystatin and various genes with reverse transcriptase

domains. This result suggested that the reverse transcriptase domain clustered the various genes as

one orthogroup, and the gene number expansion was due to the high self-duplication activity of the

retrotransposon in PoB. OG0009179 and OG0000194 contain DG-up-regulated genes of unknown

function. From the above results, 67 genes were finally selected as promising targets of study for

PoB kleptoplasty: 45 genes for cathepsin D-like proteins, 18 genes for lectin-like proteins, and 4

genes for apolipoprotein D-like protein (Supplementary file 9).

Evolution of candidate KRM genes
For a more detailed analysis of the evolution of KRM genes in sacoglossan lineages, a new draft

genome sequence of another sacoglossan sea slug E. marginata (previously included in E. ornata;

Krug et al., 2013) was constructed. PoB and E. marginata belong to the same family (Plakobranchi-

dae; Figure 1B). Both species sequester plastids from Bryopsidales algae; however, the kleptoplast

retention time is limited to a few days in E. marginata (Yamamoto et al., 2009). These features sug-

gested that their common ancestor obtained a mechanism to sequester algal plastids, but E. margin-

ata did not develop a system for their long-term retention. Hence, it was considered that comparing

gene expansion in these species would clarify the genetic basis of plastid sequestration and long-

term retention.

Using the same methods as described for PoB, one complete circular kpDNA, one complete

mtDNA, and 790.3 Mbp nucDNA (87.8% of the estimated genome size; 14,149 scaffolds;

N50 = 0.23 Mbp; 70,752 genes; Supplementary files 1, 4, 13, and 14) were sequenced for E. mar-

ginata. The constructed gene models covered 89.5% of the BUSCO eukaryota_odb9 gene set

(Supplementary file 4). No credible photosynthetic gene was detected from E. marginata nucDNA

(annotation data; DOI: 10.6084/m9.figshare.13042016).

The evolution of representative candidate PoB KRM genes (i.e., cathepsin D-like, apolipoprotein

D-like, and lectin-like genes) was then phylogenetically analyzed. In cathepsin D-like genes, sacoglos-

san (PoB and E. marginata) genes formed a specific subgroup in the OG0000132 phylogenetic tree

(Figure 6A), and gene duplication in OG0000132 seemed to be accelerated along the PoB lineage

(203 genes in PoB versus five genes in E. marginata; Figure 5B). All sacoglossan cathepsin D-like

genes belonged to a clade with several other heterobranchian homologs; this clade contained three

subclades (a, b, and g in Figure 6B). The basal a-clade contained three A. californica genes, one Bio-

mphalaria glabrata gene, and three sacoglossan genes. The b- and g-clades contained sacoglossan

genes only and an A. californica gene located at the basal position of the b- and g-clades. Almost all

duplicated PoB genes (201/203) belonged to the g-clade, including one E. marginata gene

(e8012c40.2). These phylogenetic relationships suggested that the g-clade has undergone dozens of

gene duplication events in the PoB lineage. Interestingly, all DG-up-regulated differentially

expressed genes (DEGs) belonged to the g-clade, and the PoB paralogs that belong to the a- and b-

clades showed different expression patterns from the g-clade paralogs; the gene p609c69.52 (a-

clade) was ubiquitously expressed in the examined tissues, and p374c67.53 (b-clade) was expressed

only in the egg (Figure 6B). The mammalian genes encoding cathepsin D and its analog (cathepsin

E) were ubiquitously expressed on various tissue types (Benes et al., 2008). Therefore, we consid-

ered that (1) the ubiquitously expressed p609c69.52 gene in a-clade is a functional ortholog of the

mammalian cathepsin D gene, (2) the p374c67.53 gene in b-clade relates sea slug embryo develop-

ment, and (3) the g-clade genes have been acquired with the development of plastid sequestration.

To test the positive or relaxed selection on the duplication event, the ratio of substitution rates at

non-synonymous (dN) and synonymous (dS) sites (w = dN/dS) was used. Longly alignable hetero-

branchian genes from OG0000132 were used and statistically tested using CodeML and RELAX soft-

ware (Supplementary file 12). The CodeML analysis (branch-site model) determined no significant

positive selection on the basal node of the g-clade (p>0.05, c2 test), but RELAX suggested that the
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Figure 6. Evolutional process of KRM gene candidates of OG0000132. (A) ML phylogenetic tree for OG0000132 genes (for details, see Figure 6—

figure supplement 1). Red circle, PoB gene; blue square, E. marginata (Ema) gene. Genes mentioned in the text are indicated with their IDs beside the

circles. Pictograms represent non-sacoglossan species defined in Figure 5—source data 2. (B) Expression of each PoB gene and gene position on the

genomic assemblies. The left-side heat plot indicates normalized expression degree (FPKM) of the PoB genes in various tissues; tissue abbreviations

Figure 6 continued on next page
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g-clade evolved under relaxed selection relative to the rest branches (K = 0.44, p<0.001). The

cathepsin D-like genes formed multiple tandem repeat structures in the PoB genome, although

other Heterobranchia had no tandem repeat (Figure 6B; Figure 6—figure supplements 1 and 2). In

E. marginata, the gene e8012c40.2 located at the basal position of the g-clade had no repeat struc-

ture, although two genes from the a-clade (e4981c37.5 and e4981c37.4) and two from the b-clade

(e2244c39.16 and e2244c39.20) made two tandem repeats (Figure 6—figure supplements 1 and

2). The tree and repeat structure suggested that the g-clade was separated from the b-clade as a sin-

gle-copy gene in the common ancestor of PoB and E. marginata and duplicated in the PoB lineage

(Figure 6B). The revealed genomic structure indicated that the duplicates were not due to whole-

genome duplication but rather a combination of several subgenomic duplication events: the dis-

persed duplicates are likely due to replicative transposition by a transposable element, and the tan-

dem repeats are likely due to a local event (e.g., unequal crossover).

The gene duplication in OG0000446 seems to have happened in the PoB lineage and at the node

between PoB and E. marginata (Figure 5B; Figure 6—figure supplements 3 and 4). The sacoglos-

san genes were duplicated in a monophyletic clade (clade I) only, and all DG-up-regulated DEGs

were contained in clade I. CodeML found no significant positive selection on the basal node of clade

Ia (p>0.05), but RELAX suggested evolution under relaxed selection relative to the rest branches

(K = 0.69; p=0.003; Supplementary file 12). On the other subclades, no significant positive selection

or relaxed selection was found (Supplementary file 12). All DG-up-regulated DEGs were contained

in clade I. It was hypothesized that duplication on the common lineage relates to plastid sequestra-

tion, and the PoB-specific duplication events contribute to long-term kleptoplasty.

In OG0000005 (lectin-like gene group), the gene counts were comparable between PoB (367

genes) and E. marginata (213 genes; Figure 5B); however, the phylogenetic tree suggests that this

similarity is due to different gene duplication events in each species. One-by-one orthologous gene

pairs were rare between PoB and E. marginata (only 14 were detected), and many of the other

homologs formed species-specific subclades (Figure 6—figure supplement 5). Lectins are carbohy-

drate-binding molecules that mediate the attachment of bacteria and viruses to their intended tar-

gets (Lis and Sharon, 1998; Yamasaki et al., 2008). The observed gene expansions of lectin-like

genes in each of these sea slugs may widen their targets and complicate the natural immune system

to distinguish the kleptoplast from other antigens. Four clades having expanded homologs on the

sacoglossan lineage were detected (clades A–D in Figure 6—figure supplement 5). These clades

contained all 34 DEGs between DG and DeP tissues. The DG-up-regulated and DG-down-regulated

genes are located on different clades, except for one DG-up-regulated gene (p3334c67.98) in clade

A. These results indicated that the determined DEGs have different expression patterns depending

on the clade.

Figure 6 continued

are defined in Figure 4, Figure 4—figure supplement 10. The vertical gene order corresponds with the position in (A). The white box with a diagonal

line means a non-PoB gene (no expression data is available). Tissue samples for the FDR calculation (DG versus DeP) were enclosed with square

brackets. Color scales for FPKM and FDR are visualized on the right-side boxes. The FDR’s black color indicates that the value could not be calculated

(NA) due to its undetectable gene expression. The right panel shows the genomic positions of the genes. The bands’ color indicates the correlation

between the gene and position, purple text and arrows indicate the scaffold ID and direction, and colored boxes on the scaffolds mean the genes’

positions (magenta, OG0000132 gene; gray box, other protein-encoding genes). Scaffolds having less than five OG0000132 genes were omitted from

the figure.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Outputs of a prediction of protein subcellular localization via DeepLoc.

Figure supplement 1. Enlarged view of gene tree and annotation data for all member of OG0000132 (cathepsin D-like).

Figure supplement 2. Positions of genes belonging to OG0000132 on the E. marginata genome.

Figure supplement 3. Gene tree and annotation data for all genes of OG0000446 (apolipoprotein D-like).

Figure supplement 4. Gene positions of OG0000446 on E. marginata genome.

Figure supplement 5. Gene tree for the member of OG0000005 (lectin-like).

Maeda et al. eLife 2021;10:e60176. DOI: https://doi.org/10.7554/eLife.60176 15 of 32

Research article Evolutionary Biology

https://doi.org/10.7554/eLife.60176


Discussion
Here, it was demonstrated that (1) kleptoplast photosynthesis extends the lifetime of PoB under star-

vation, (2) the PoB genome encodes no algal nucleus-derived genes, and (3) PoB individuals up-reg-

ulate genes for carbohydrate metabolism, proteolysis, and immune response in their DG. Candidate

KRM genes, i.e., apolipoprotein D-like, cathepsin D-like, and lectin-like genes, were also identified

using a combination of genomic and transcriptomic analysis. Data present a paradigm of klepto-

plasty in which PoB obtains the adaptive photosynthesis trait by a HGT-independent phenotype

acquisition.

The PoB genomic sequence clarified the gene repertory of its kpDNA, mtDNA, and nucDNA. The

whole kpDNA sequence indicated that PoB kleptoplasts could produce some proteins involved in

photosynthesis (e.g., PsbA, a core protein in PSII; Figure 3) if gene expression machinery is suffi-

ciently active, as reported in E. chlorotica (Green et al., 2000; Pierce et al., 2007). The absence of

core photosynthetic genes in the PoB genome was then demonstrated. For instance, no genes

encoding PsaF of photosystem I, PsbO of PSII, or RbcS of Rubisco in kpDNAs, mtDNA, or nucDNA

(Figures 3 and 4) were detected despite the queries (e.g., A612 dataset; Supplementary file 3) con-

taining multiple algal orthologs of these genes; these gene products are essential for photosynthesis

in various plants and algae and located on their nuclear genome, not plastid genome (Farah et al.,

1995; Izumi et al., 2012; Pigolev et al., 2009). This result means that PoB can perform photosyn-

thesis (Figure 2) without de novo synthesis of these gene products. The absence of algae-derived

HGT is consistent with previous transcriptomic analyses of P. cf. ocellatus (Wägele et al., 2011) and

other sacoglossan species (de Vries et al., 2015; Han et al., 2015; Wägele et al., 2011). A previous

genome study of E. chlorotica predicted that fragmented algal DNA and mRNAs contribute to its

kleptoplasty (Bhattacharya et al., 2013), and fluorescence in situ hybridization study detected algal

gene signals on E. chlorotica chromosomes (Schwartz et al., 2014). Although our manual check of

gene annotation found no photosynthesis-related gene from a more complete version of the E.

chlorotica nuclear genome sequence, Cai et al., 2019 provided no discussion about HGT. After all,

the PoB results proposed that algal DNA and/or RNA is not an absolute requirement for kleptoplast

photosynthesis.

The combination of genomics and transcriptomics suggests that the maintenance of algae-

derived protein activity is the most probable mechanism for retaining PoB photosynthesis. Because

of the limited longevity of the photosynthetic proteins in algal cells and/or in vitro (Roberts et al.,

2013), previous studies have discussed the elongation of algal protein lifespans via protective sea

slug proteins as an alternative hypothesis to HGT (de Vries and Archibald, 2018; Serôdio et al.,

2014). This study shows three types of potential KRM genes: apolipoprotein D-like, cathepsin D-like,

and lectin-like genes. Some of these KRM genes may encode proteins that protect algae-derived

proteins. Although further studies are needed to elucidate their functional roles in detail, the

obtained results are consistent with HGT’s alternative hypothesis, algal protein retention.

Previous RNA-Seq studies of Elysia timida and E. chlorotica found up-regulation of superoxide

dismutase (SOD) genes in response to photostress and postulated that SOD protects algal proteins

in the kleptoplasts from oxidative damage (Chan et al., 2018; de Vries et al., 2015). No significant

up-regulation of the SOD gene in PoB DG was found (Figure 5—figure supplement 1). However,

there was up-regulation of apolipoprotein D-like genes and the expansion of these genes in PoB lin-

eages (Figure 5). Apolipoprotein D, a lipid antioxidant, confers resistance to oxidative stress in

higher plants and animal brains (Bishop et al., 2010; Charron et al., 2008). Ortholog analysis of the

new E. chlorotica data found no gene number expansion of these homologs in E. chlorotica, i.e.,

only three apolipoprotein D-like homologs (Supplementary file 15). Although the retention process

details may differ among species and abiotic conditions, it is attractive to speculate that oxidative

stress resilience is of major importance for kleptoplasty in multiple sacoglossan species.

Previous kleptoplasty studies have not focused on cathepsin D-like and lectin-like genes. The

involvement of the mechanisms of these proteins in kleptoplasty remains to be solved. Cathepsin D

degrades intracellular proteins and contributes to the degradation of damaged mitochondria

(Benes et al., 2008). In general, damaged photosynthetic proteins generate abundant ROS, promot-

ing further protein damage. In PoB, cathepsin D-like protease may degrade damaged proteins and

prevent further protein inactivation. Lectin is involved in self-recognition in natural immunity

(Geijtenbeek and Gringhuis, 2009; Worthley et al., 2005). The diverse lectins expressed in PoB
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DG tissue may bind the antigens of algae-derived molecules, mediate the detection of non-self-pro-

teins and/or saccharides, and lead to the selective degradation and retention of algae-derived pro-

teins and organelles.

These genomic data indicate that a proteomic analysis of kleptoplasts is warranted. A previous

isotopic study indicated that E. chlorotica kleptoplasts contain function-unknown proteins trans-

ported from the sea slug cytoplasm (Pierce et al., 1996). Although several algal photosynthetic pro-

teins have been immunoassayed in kleptoplasts, animal nuclear-encoded proteins have been out of

the target (Green et al., 2000; Pierce et al., 1996). The in silico study found no typical chloroplast

localization signal in PoB KRM genes (Figure 6—figure supplements 1 and 3). However, the geno-

mic data will help identify kleptoplast-localized sea slug proteins by peptide mass fingerprinting.

This study provides the first genomic evidence of photosynthesis acquisition without horizontal

DNA or RNA transfer. Previous studies have demonstrated that DNA is the core material for heredity

(Hershey and Chase, 1952; Watson and Crick, 1953) and assumed that horizontal DNA transfer

causes cross-species phenotype acquisition (Acuña et al., 2012; Anderson, 1970; Luis, 2014;

Dehal et al., 2002). However, our studies indicate that PoB gains adaptive photosynthetic activity

without acquiring any of the many algal nucleic genes involved in photosynthesis. This is evidence of

a phenotype (and organelle) acquisition, although temporally, from the donor without DNA or RNA

transfer. Recent studies of shipworms (wood-feeding mollusks in the family Teredinidae) showed

that they utilize several symbiont-derived proteins for their food digestion (O’Connor et al., 2014).

Golden sweeper fish (Parapranthus ransonneti) gain the luciferase for their bioluminescence from

ostracod prey, suggesting phenotype acquisition via the sequestration of a non-self-protein (klepto-

protein; Bessho-Uehara et al., 2020). However, these two examples of HGT-independent pheno-

type acquisition are limited to the transfer of simple phenotypes that depend on just a few enzymes.

In contrast, the well-known complexity of photosynthesis suggests that sea slug kleptoplasty

depends on DNA/RNA-independent phenotype acquisition of complex pathways requiring multiple

enzymes (e.g., entire photosystems and the Calvin cycle). It is attractive to speculate that other sym-

biont-derived organelles (e.g., mitochondria) and obligate endosymbiotic bacteria and protozoan

kleptoplasts (e.g., in Dinophysis acuminata; Hackett et al., 2003) can obtain traits derived from

another species via a HGT-independent system. Although several organisms have multiple HGT-

derived functional genes, it is still unclear how the organism evolutionarily obtained the appropriate

expression control system of the non-self-gene (Sasakura et al., 2016). These PoB data suggested

that the transfer of complex adaptive phenotypes sometimes precede the gene transfer from the

donor species, having the potential to explain the process of cross-species development of complex

phenotypes. Some organisms might evolutionarily obtain the HGT-derived genes and appropriate

control system of the gene expression after the transfer of phenotype. Our finding of HGT-indepen-

dent complex phenotype acquisition may open new viewpoints on cross-species evolutionary

interaction.

Materials and methods

Samplings of sea slugs and algae
Samples were collected from southwestern Japan. Specifically, PoB and H. borneensis were col-

lected on Okinawa Island shores, and E. marginata was collected from Kinkowan Bay. Regarding B.

hypnoides, a cultivated thallus was initially collected from Kinkowan Bay and used in the authors’ lab-

oratory for several years. The collected samples of PoB and E. marginata in seawater were trans-

ported to the laboratories at the National Institute for Basic Biology (NIBB) and Kyoto Prefectural

University, respectively, under dark conditions within 2 days. The samples were then acclimated in

an aquarium filled with artificial seawater (REI-SEA Marine II; Iwaki, Japan) at 24˚C.

Photosynthetic activity of sea slugs and algae
The photosynthetic activity of PoB was measured after 38, 109, or 110 days of incubation under a 12

hr light/12 hr dark cycle without food. During the light phase, the photosynthetic photon flux density

was 10 mmol photons m�2 s�1 (LI-250A Light Meter with LI-193 Underwater Spherical Quantum Sen-

sor; LI-COR, Lincoln, NE). The seawater was not changed during the incubation period, except to

adjust the salinity using distilled water. Photosynthetic activity indices (oxygen generation rate and

Maeda et al. eLife 2021;10:e60176. DOI: https://doi.org/10.7554/eLife.60176 17 of 32

Research article Evolutionary Biology

https://doi.org/10.7554/eLife.60176


PAM fluorometry) were measured using oxygen sensor spots (Witrox 4; Loligo Systems, Tjele, Den-

mark) and PAM-2500 (Walz, Effeltrich, Germany), respectively (Figure 2—figure supplement 1B–F).

H. borneensis, which was easily collected and kept in the laboratory, was used as a reference for

comparison in the PAM analysis. This species is a donor alga of PoB kleptoplasts and closely related

species with the major donors of PoB, R. lewmanomontiae, and Poropsis spp. These two major

donors firmly adhered to the rock, were tangled up in other algal species, and were difficult to be

collected.

The oxygen sensor spots were affixed to the inside of a glass respirometry chamber. Before per-

forming the measurements, the system was calibrated using sodium sulfite (0% O2 saturation) and

fully O2-saturated seawater (100% O2 saturation). A sea slug was placed into a respirometry chamber

filled with fully O2-saturated filtered artificial seawater (7 ml). The top of the chamber was closed

with a glass slide. All visible bubbles were removed from the chamber. The chamber was maintained

at a constant temperature (23–24˚C) using a water jacket attached to a temperature-controlled water

flow. The Witrox temperature probe for calibration was immersed in the water jacket (Figure 2—fig-

ure supplement 1B–F).

The oxygen concentration was measured sequentially under changing light conditions. The per-

cent O2 saturation was monitored continuously and recorded using AutoResp software (Loligo Sys-

tems) for 10 min after the respirometry chamber acclimation period (10 min). The oxygen

consumption rate by respiration was measured under dark conditions. Next, the respirometry cham-

bers were exposed to the red LED light (800 mmol photons m�2 s�1) to measure the change in the

oxygen concentration under light conditions due to the balance between the photosynthesis and

respiration rates. The chambers were illuminated from the sides because a mounted LED light

increased the oxygen meter’s noise. The light direction to the sea slug was inconsistent because the

slug kept moving around the chamber during the measurement period. In sea slugs, the rate of pho-

tosynthesis was unaffected by the direction of illumination because the rate of O2 generation rate

under a particular constant illumination did not change regardless of the sea slug’s position in the

chamber. The percent O2 saturation was measured for 10 min. One blank (i.e., without sea slug) con-

dition was run as a negative control to account for background biological activity in seawater.

AutoResp software was used to convert the percent saturation to an oxygen concentration ([O2], mg

O2 l
�1) based on the rate of change in the percent O2 saturation, water temperature, and barometric

pressure (fixed at 1013 Pa). A regression analysis was performed using the ‘lm’ function in R version

3.5.2 (tidyverse 1.2.1 package) to calculate the changing oxygen concentration rate under dark and

light conditions. A gross oxygen generation rate was then obtained by photosynthesis (oL + oD =

oG; oL, oxygen production rate under light conditions; oD, oxygen consumption rate under dark

conditions; oG, gross oxygen generation by photosynthesis).

During PAM fluorometry analysis, each sea slug was caged in a single well of a 12-well cell culture

plate (Corning, Corning, NY) after adaptation to the dark for 15 min. To ensure reproducibility, the

sea slug was caged upside down (i.e., the ventral surface was brought to the upside), the animal was

softly squeezed with a plastic sponge, and the PAM light probe was connected to the plate from

underneath the well. Consequently, the samples could not move during the measurement, and the

PAM light probe always measured the fluorescence of the dorsal surface. The maximal quantum

yield, Fv/Fm, was determined by a saturation pulse of >8000 mmol photons m�2 s�1 and a measure-

ment light of 0.2 mmol photons m�2 s�1.

Effect of light conditions on P. ocellatus longevity
The longevity of PoB was measured using a modified medaka (Japanese rice fish) housing rack sys-

tem (Iwaki, Japan). For the longevity measurement, different individuals from the photosynthetic

activity measurement were used. The longevity was investigated from the samples used in the

above-mentioned photosynthetic activity measurement. Using centrally filtered systems, the water

tank rack maintained consistent water conditions (e.g., temperature and mineral concentrations)

among the incubation chambers (subtanks) and enabled a focus on the effect of light conditions.

After acclimating the collected sea slugs under the same conditions for 1 week in an aquarium, the

organisms were incubated separately for 8 months under different light conditions (continuous dark

and 12 hr light/12 hr dark cycle). The sea slugs’ conditions were measured daily, and death was

defined when a sea slug remained motionless for 30 s after stimulation (i.e., touching with plastic

bar).
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Sequencing of H. borneensis cpDNA
A combination of pyrosequencing and Sanger sequencing was used to evaluate H. borneensis

cpDNA. Collected H. borneensis thalli were washed with tap water to remove the attached organ-

isms. The cleaned thalli (27 g) were frozen in liquid nitrogen, ground with a T-10 basic homogenizer

(IKA, Germany) to a fine powder, suspended in15 ml AP1 buffer from a DNeasy Plant Mini Kit (Qia-

gen, Hilden, Germany), and centrifuged (500 � g, 1 min) to remove the calcareous parts. Total DNA

was purified from the supernatant according to the protocol supplied with the DNeasy Plant Mini

Kit. The resulting DNA yield (76.8 mg) was measured using a dsDNA HS Assay Qubit Starter Kit

(Thermo, Waltham, MA) and used to prepare a single-fragment library for pyrosequencing. The

Pyrosequencer GS-FLX Titanium Platform (Roche, Germany) was used to generate 23.04 Mb of total

singleton reads (68032 reads; average read length, 368 bp). After filtering low-quality reads, the

remaining 21865 reads (~8 Mb) were submitted for assembly by Newbler (Roche). Of the 6309

obtained contigs (N50 = 663 bp), the cpDNA sequences were identified by blastx searches (version

2.2.28) against the protein coding sequences of cpDNA from the chlorophyte alga B. hypnoides

(NC_013359). The gaps between the four identified contigs (55551, 21264, 8076, and 3435 bp) and

ambiguous sites in the contigs were amplified by PCR using inverse primers. The PCR products were

sequenced by primer walking and Sanger sequencing with Takara LA Taq (Takara, Japan), a dGTP

BigDye Terminator Cycle Sequencing FS Ready Reaction Kit (Thermo), and an ABI PRISM 3130xl

DNA Sequencer (Thermo). Regions that could not be read by direct sequencing were amplified

using specific primers, cloned with a TOPO TA cloning kit (Thermo), and sequenced with plasmid-

specific primers. Complete cpDNA sequences were obtained by assembling the GS-FLX contigs and

reads generated by Sanger sequencing using Sequencher version 4.10 (Gene Codes Corporation,

Ann Arbor, MI). All open reading frames > 100 bp were annotated using a blastx search version

2.2.31+ against the non-redundant protein sequences (nr) database in GenBank and a tblastx search

of chloroplast genes from other algae (B. hypnoides, C. reinhardtii, Vaucheria litorea, and H. bor-

neensis). Introns were detected using RNAweasel (Gautheret and Lambert, 2001), Rfam

(Kalvari et al., 2018), and Mfold (Zuker, 2003). The splicing sites were confirmed via alignment with

orthologous genes from other green algal cpDNAs. MAFFT version 7.127b (Katoh and Standley,

2013) was used to perform the alignment. The origins of bacteria-like proteins were explored using

a blastx search against the nr database and a phylogenetic analysis with blast-hit sequences. MAFFT

(Katoh and Standley, 2013) was used for alignment, Trimal version 1.4 (Capella-Gutiérrez et al.,

2009) was used for trimming, and RaxML version 8.2.4 (Stamatakis, 2014) was used for phyloge-

netic tree construction. The resulting gene maps were visualized using Circos version 0.69–2.

Sequencing of kpDNAs from P. ocellatus
Kleptoplast sequences were generated using an Illumina system. Total DNA was extracted from DG

(kleptoplast-rich tissue) and parapodium (including DG, kleptoplast-less muscle, and reproductive

systems) of a single PoB individual using a CTAB-based method (Murray and Thompson, 1980).

Two Illumina libraries with 180 and 500 bp insertions were constructed from each DNA pool

(DRR063261, DRR063262, DRR063263, and DRR063264). An S220-focused ultrasonicator (Covaris,

Woburn, MA), Pippin Prep (Sage Science, Beverly, MA), and a TruSeq DNA Sample Prep Kit (Illu-

mina, San Diego, CA) were used for DNA fragmentation, size selection, and library construction,

respectively. Libraries were sequenced (101 bp from each end) on a HiSeq 2500 platform (Illumina).

A total of 42,206,037 raw reads (8.53 Gb) were obtained. After filtering the low-quality and adapter

sequences, the remaining 5.21 Gb of sequences were used for assembly. Paired sequences from 180

bp libraries were combined into overlapping extended contigs using FLASH version 1.2.9

(Magoč and Salzberg, 2011) with the default settings. An input of 14,867,401 paired-end sequen-

ces and FLASH were used to construct 13,627,554 contigs (101–192 bp). The joined fragments and

filtered paired sequences from 500 bp libraries were assembled using Velvet assembler version

1.2.07 (Zerbino and Birney, 2008), with parameters that were optimized based on the nucDNA and

kpDNA sequence coverage depths; the estimated nucDNA depth was approximately 30� based on

the k-mer analysis, and the predicted kpDNA depth was 272� based on the read mapping to previ-

ously obtained kleptoplast rbcL sequences (AB619313; 1195 bp) using Bowtie2 version 2.0.0

(Langmead and Salzberg, 2012). After several tests to tune the Velvet parameters, the best assem-

bly was achieved with a k-mer of 83 and exp_cov of 50. The resulting assembly comprised 1537
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scaffolds (>2000 bp) containing 4,743,113 bp (N50 = 2830 bp). Two kpDNAs (AP014542 and

AP014543) from this assembly were then identified based on the sequence similarity with H. bor-

neensis cpDNA and a mapping back analysis. blastx version 2.2.31 assigned bit scores > 1000 to the

two scaffolds (AP014542 = 1382, AP014543 = 1373, database = coding sequences in the obtained

H. borneensis cpDNA, and query = all constructed scaffolds). Mapping back, which was performed

using BWA version 0.7.15-r1140, showed that the coverage depths of AP014542 and AP014543 cor-

related with the relative abundance of kleptoplasts; the read’s average coverage depth was

increased by twofold to fourfold in a library from kleptoplast-rich tissue (DRR063263) relative to a

library from kleptoplast-poor tissue (DRR063261). The same degree of change was never observed

in other scaffolds (Figure 3—figure supplement 7).

The two kleptoplast sequences were annotated and visualized using the same method described

for H. borneensis cpDNA. The phylogenetic positions of PoB kleptoplasts and algal chloroplasts

were analyzed using the rbcL gene sequences from 114 ulvophycean green algae according to the

maximum likelihood (ML) method (Figure 3B). A phylogenetic tree was constructed according to the

same method used to search for the origins of bacteria-like genes in H. borneensis cpDNA.

Analysis of H. borneensis and B. hypnoides transcriptomes
The de novo transcript profiles of H. borneensis and B. hypnoides were obtained from Illumina RNA-

Seq data. Total RNA was extracted using the RNeasy Plant Mini Kit (Qiagen). An Illumina library was

constructed for each species using the TruSeq RNA Sample Prep Kit. The libraries were sequenced

on a HiSeq 2500 platform (101 bp from each end). A total of 290,523,622 reads (29 Gb) and

182,455,350 raw reads (18 Gb) were obtained for H. borneensis and B. hypnoides, respectively

(Supplementary file 1). After filtering the low-quality and adapter sequences, the obtained reads

were assembled using Trinity version 2.4.0 (Grabherr et al., 2011) and clustered using CD-Hit ver-

sion 4.6 (Fu et al., 2012) with the -c 0.95 option. The TransDecoder version 2.0.1 was used to iden-

tify 26,652 and 24,127 candidate coding regions from H. borneensis and B. hypnoides, respectively

(Supplementary file 2). The gene completeness of the transcripts was estimated using BUSCO ver-

sion 2.0 (Waterhouse et al., 2018). The obtained H. borneensis transcripts covered 86.5% (262/303)

of the total BUSCO groups, and the B. hypnoides transcripts covered 92.7% (281/303) of the con-

served genes in Eukaryota (database, eukaryota_odb9). The transcripts were annotated using AHRD

version 3.3.3 (https://github.com/groupschoof/AHRD, Tomato Genome Consortium, 2012) based

on the results of a blastp search against nr, RefSeq, and Chlamydomonas proteome dataset on Uni-

Prot. The composed functional domains on the transcripts were annotated using InterProScan ver-

sion 5.23–62 (Jones et al., 2014). To distinguish the reliable target species transcripts, the original

transcript species were predicted using MEGAN version 5 (Huson et al., 2007) and 11,629 and 8630

transcripts were selected as viridiplantal genes. The annotation procedure details are visually pre-

sented in Figure 3—figure supplements 8 and 9.

A query dataset from the algal transcripts was manually selected to search algae-derived genes

on the sea slug DNAs. Then, 176 and 129 transcripts were selected from H. borneensis and B. hyp-

noides, respectively. To perform more comprehensive searches, queries from three public genomic

datasets derived from C. lentillifera, C. reinhardtii, and Cyanidioschyzon merolae were also obtained;

these queries were termed as the A614 dataset (Supplementary file 3; Figure 3—figure supple-

ment 10).

Sequencing of the PoB genome
The mean nucDNA size in three PoB individuals was estimated using flow cytometry (Figure 4—fig-

ure supplement 1). Dissected parapodial tissue (5 mm2) was homogenized in 1 ml phosphate-buff-

ered saline (PBS) containing 0.1% Triton X-100 (Thermo) and 0.1% RNase A (Qiagen) using a

BioMasher (Nippi, Tokyo, Japan). The homogenate was then filtered through a 30 mm CellTrics filter

(Sysmex, Hyogo, Japan), and the filtrate was diluted with PBS at a density of <5 � 106 cells/ml. The

resulting solution was mixed with genome size standard samples and stained with a 2% propidium

iodide solution (SONY, Tokyo, Japan). Acyrthosiphon pisum (genome size = 517 Mb) and Drosophila

melanogaster (165 Mbp) samples were used as genome size standards. The references were proc-

essed using the same method described for PoB. The mixture was analyzed on Cell Sorter SH800
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(SONY) according to the manufacturer’s instructions. The above procedure was repeated for three

PoB individuals, and an estimated genome size of 936 Mb was determined.

Genomic DNA was extracted from a single PoB individual using the CTAB-based method

(Murray and Thompson, 1980). The adapted buffer compositions are summarized in

Supplementary file 16. A fresh PoB sample (collected on October 17, 2013 and starved for 21 days)

was cut into pieces and homogenized in 2� CTAB using a BioMasher. To digest the tissues, 2% vol

of proteinase K solution (Qiagen) was added, and the sample was incubated overnight at 55˚C. The

lysate was emulsified by gentle inversion with an equal volume of chloroform; after centrifugation

(12,000 � g, 2 min), the aqueous phase was collected using a pipette. This phase was combined

with a one-tenth volume of 10% CTAB, mixed well at 60˚C for 1 min, and again emulsified with chlo-

roform. These 10% CTAB and chloroform treatment steps were repeated until a clear aqueous phase

was achieved. The aqueous phase was then transferred to a new vessel, an equal volume of CTAB

precipitation buffer was overlaid onto the mixture, and the liquids were gently mixed by tapping.

The resulting filamentous precipitations (DNA) were removed using a pipette chip and incubated at

room temperature for 10 min in high salt TE buffer. DNA was purified according to the protocol sup-

plied with the DNeasy Blood and Tissue Kit (Qiagen); briefly, the supernatant was transferred after

vortex mixing, equal volumes of buffer AL (supplied with the kit) and EtOH were added to the super-

natant, and the sample was processed on a Qiagen spin column according to the protocol. We

finally obtained a DNA quantity of 15 mg from a PoB individual (Figure 4—figure supplement 11).

The PoB genomic sequence was obtained via Illumina paired-end and mate-pair DNA sequencing

(Supplementary file 1; Figure 4—figure supplement 2). Two paired-end Illumina libraries contain-

ing 250 and 600 bp insertions (DRR029525 and DRR029526) were constructed using a TruSeq DNA

Sample Prep Kit (Illumina). Three mate-pair libraries with 3000, 5000, and 10,000 bp insertions

(DRR029528, DRR029529, and DRR029530) were constructed using a Nextera Mate Pair Library

Prep Kit (Illumina). The libraries were sequenced (150 bp from each end) on a HiSeq 2500 platform

(Illumina). A total of 1,130,791,572 and 787,040,878 raw reads were obtained for the paired-end

(170 Gb) and mate-pair (118 Gb) libraries. After filtering the low-quality and adapter sequences, the

remaining 161 Gb of sequences were assembled using Platanus assembler version 1.2.1

(Kajitani et al., 2014) with the default settings. The assembly comprised 8716 scaffolds containing

928,345,517 bp. The repetitive regions were masked using a combination of RepeatModeler version

open-1.0.8 and RepeatMasker version open-4.0.5 (http://www.repeatmasker.org). The default

parameters were used for identification and masking. A total of 268,300,626 bp (29%) of the assem-

blies were masked with RepeatMasker.

Strand-specific RNA-Seq sequencing was used for gene modeling (Supplementary file 1; Fig-

ure 4—figure supplement 2). PoB RNA was extracted from an individual after starvation for 20 days

(collected on October 17, 2013). TRIzol Plus RNA Purification Kit (Thermo) was used to extract RNA

according to the manufacturer’s protocol. A paired-end Illumina library (DRR029460) was con-

structed using the TruSeq Stranded mRNA LT Sample Prep Kit (Illumina). Libraries were sequenced

(150 bp from each end) on a HiSeq 2500 platform (Illumina). The library produced a total of

286,819,502 raw reads (28 Gb).

The PoB assemblies were processed using a single transcript-based gene model construction

pipeline (AUGUSTUS version 3.2; Stanke and Morgenstern, 2005), two transcriptomic data map-

ping tools (Trinity version 2.4.0 and Exonerate version 2.2.0; Grabherr et al., 2011; Slater and Bir-

ney, 2005), and two non-transcript-based model construction pipelines (GeneMark-ES version 4.33

and glimmerHMM version 3.0.4; Majoros et al., 2004; Ter-Hovhannisyan et al., 2008). The four

obtained gene sets were merged with the EVidenceModeler version 1.1.1 pipeline (Haas et al.,

2008) to yield a final gene model set. For AUGUSTUS, Braker pipeline version 1.9 (Hoff et al.,

2019) was used to construct PoB-specific probabilistic models of the gene structure based on

strand-specific RNA-Seq data. After filtering the low-quality and adapter sequences, the remaining

181,873,770 RNA-Seq reads (16 Gb) were mapped to the PoB genome assembly using TopHat ver-

sion 2.1.1 (Kim et al., 2013), with the default setting and the Braker pipeline-constructed PoB-spe-

cific probabilistic models from mapped read data. TopHat mapped 132,786,439 of the reads (73%)

to the PoB model. AUGUSTUS then predicted 78,894 gene models from the TopHat mapping data

(as ‘splicing junction’ data) and the Braker probabilistic model. Using Trinity and Exonerate, de novo

transcriptomic data from RNA-Seq data were then constructed, and these were aligned to the

genome. Trinity constructed 254,336 transcripts, which were clustered to 194,000 sequences using
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CD-Hit version 4.6 (-c 0.95); subsequently, Transdecoder identified 44,596 protein coding regions

from these sequences. Exonerate (–bestnX1X–percentX90 options) then aligned 13,141 of the

transcripts to the genome. GeneMark-ES with the default settings predicted 107,735 gene models,

and glimmerHMM predicted 115,633 models after the model training, with 320 manually con-

structed gene models from long scaffolds. EVidenceModeler was then used to merge the model

with the following weight settings: AUGUSTUS = 9, Exonerate = 10, GeneMark-ES = 1, and glim-

merHMM = 2. Finally, EVidenceModeler predicted 77,444 gene models.

The removal of contaminant sequences was minimized to avoid missing horizontally transferred

genes. Bacterial scaffolds were defined as those encoding >1 bacterial gene with no lophotrocho-

zoan gene, and the potential bacterial scaffolds were removed from the PoB assemblies. The bacte-

rial genes were predicted using MEGAN software according to a blastp search against the RefSeq

database. Of the 40,330 gene hits identified from the RefSeq data, MEGAN assigned the origins for

39,113 genes. Specifically, 719 and 23,559 genes were assigned as bacterial and lophotrochozoan

genes, respectively. MEGAN results before removing bacterial scaffolds are summarized in

Supplementary file 17, with the detailed data of removed scaffolds. Fifty-five of the 8716 scaffolds

contained two or more bacterial genes and no lophotrochozoan gene. The mean depth of read cov-

erage of the bacterial scaffolds differed from the mean coverage of sea slug scaffolds.

Kleptoplast- or mitochondria-derived scaffolds were also removed from the assemblies

(Supplementary file 18). The source of scaffolds was determined based on a blast bit score against

the three referential organelle DNAs (kRhip AP014542, kPoro AP014543, and PoB mtDNA

AP014544) and the difference of the read depth value from the other (nuclear-derived) scaffolds.

The blastn search detected 13 and 1 scaffolds as sequences of kleptoplast or mitochondrial origin,

respectively (bit score > 1000; Supplementary file 18). Mapping back of the Illumina read

(DRR029525) by Bowtie version 2.4.1 indicated that the depth values of the 14 scaffolds were 537 to

5143, and the averaged depth of the other scaffolds was 31 (Supplementary files 17 and 18), indi-

cating that the 14 scaffolds were derived from organelle DNAs or repetitive regions on the nucDNA.

Mapping of the reads derived from DG (kleptoplast enriched tissue; DRR063263) and parapodium

(including a muscle, gonad, and DG; DRR063261) indicated that the relative read depth of the 13

kpDNA-like scaffolds was higher in the DG sample than in the parapodium sample, supporting that

the 13 scaffolds are derived from the kleptoplasts (Figure 4—figure supplement 12). It was then

confirmed that the 14 scaffolds contain no algal nuclear-derived photosynthetic gene using two

methods: dot plots with referential organelle DNAs and homology search using A612 query set (Fig-

ure 4—figure supplement 13-15). Therefore, even if these removed 14 scaffolds are part of the

nucDNA, they do not provide HGT evidence. The removed scaffold sequence data were deposited

in FigShare (DOI: 10.6084/m9.figshare.12587954).

The final PoB assembly comprised 8647 scaffolds containing 927,888,823 bp (N50 = 1,453,842

bp) and 77,230 genes. Gene completeness was estimated using BUSCO version 2.0

(Waterhouse et al., 2018). The predicted gene models were annotated using AHRD version 3.3.3.

The results of a blastp search against the SwissProt, Trembl, and A. californica proteome datasets on

UniProt were used as reference data for AHRD under the following weight parameter settings: Swis-

sProt = 653, Trembl = 904, and A. californica = 854. The functional domains were annotated using

InterProScan version 5.23–62 (Figure 4—figure supplement 3).

A blastp analysis against the RefSeq database was performed to identify algae-derived genes

from the constructed genes models. After translating the protein coding region to the amino acid

sequence data, the blastp search was adapted to include the ‘-e-value 0.0001’ option. The output

was analyzed using MEGAN software with the following LCA and analysis parameters: Min

Score = 50, Max Expected = 1.0E-4, Top Percent = 20, Min Support Percent = 0.1, Min Support = 1,

LCA percent = 90, and Min Complexity = 0.3.

The GO annotation was assigned using Blast2GO version 5.2.5 according to the blastp searches

against the RefSeq database and InterProScan results. SonicParanoid version 1.0.11 was then used

for orthogroup detection. All parameters of SonicParanoid were left at the default values. The spe-

cies analyzed in the orthogroup detections are summarized in Supplementary file 19. The phyloge-

netic tree was constructed using IQ-tree. The resulting trees were visualized using iTol version 4.

Exonerate version 2.2.0 (with the –bestnX1X–modelXprotein2genom options) was used to

identify algal genes in the PoB genome. The A614 dataset was used as a query after translating the

sequence to amino acids. C. lentillifera (green algae) genomic data were used as a control to
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estimate the sensitivity of the method. The results were handled and visualized using R (tidyverse

packages version 1.2.1).

MMseq2 version 2.6 (–orf-start-mode 1) was used to search for algae-like reads among the

trimmed Illumina reads. The matching threshold was set using a default E-value < 0.001. As a posi-

tive control, PoB genes were selected from the BUSCO analysis of the genomic model data, and 911

gene models detected by BUSCO version two were selected as single-copy orthologs of the meta-

zoa_odb9 gene set and named the dataset P911 (DOI: 10.6084/m9.figshare.13042016).

The HGT index ‘h’ and the modified index ‘hA’ were calculated using the R script, HGT_index_-

cal.R (https://github.com/maedat/HGT_index_cal copy archived at swh:1:rev:

073b9992919b19e0f415aca93c448e073e6b107b; Maeda, 2021a; R version 3.6.1). The h-index was

calculated as the difference in bit scores between the best prokaryote and best eukaryote matches

in the blast alignments, and the hA-index was calculated as the difference in bit scores between the

best lophotrochozoan and best algae matches. The blast databases of adapted species are summa-

rized in Figure 4—source data 1.

RNA-Seq analysis of PoB tissues
Total RNA samples from five PoB individuals and one egg mass were obtained for a gene expression

analysis. An overview of sample preparation is illustrated in Figure 4—figure supplement 10. Col-

lected adult PoB individuals were dissected manually after incubation for 21–94 days. An egg mass

was obtained via spontaneous egg lying in an aquarium. A TRIzol Plus RNA Purification Kit (Thermo)

was used to extract RNA according to the manufacturer’s protocol. Six paired-end and nine single-

end Illumina libraries were constructed using a combination of the RiboMinus Eukaryote Kit

(Thermo), RiboMinus concentration module (Thermo), and TruSeq RNA Sample Preparation Kit ver-

sion 2 (Illumina) according to the manufacturers’ protocols. Libraries were sequenced (101 bp) on a

HiSeq 2500 platform (Illumina). A total of 280,445,422 raw reads (28 Gb) were obtained from the

libraries (Supplementary file 1).

After filtering the low-quality and adapter sequences, 150,701,605 RNA-Seq reads (13 Gb) were

obtained. Only the R1 reads were used for the six paired-end datasets. MMseq2 was used to identify

algae-derived reads from the trimmed reads using the A614 dataset as a query. The same parame-

ters were applied as the above-described DNA read search. The PoB gene dataset P911 was also

used as a positive control.

The Hisat–stringtie–DESeq2 pipeline was used to conduct a differential gene expression analysis

of DGs and DeP (epidermis, muscle, and reproductive systems, DeP). According to the Stringtie pro-

tocol manual (http://ccb.jhu.edu/software/stringtie/index.shtml?t=manual), trimmed RNA-Seq reads

were mapped to the PoB genome assembly using Hisat version 2.1.0 with the default setting. The

obtained BAM files were processed using Stringtie version 1.3.4d (-e option) with PoB gene model

data (gff3 format) acquired through the above-mentioned EVidenceModeler analysis. Following the

default settings of Stringtie software, if more than 95% of the reads aligned in a gene locus are

multi-mapped, processing of that locus is skipped (Pertea et al., 2015). It was assumed that this

reduces the type I error on the gene enrichment analysis on the duplicated orthogroup. The pairwise

sequence similarity of three KRM gene-including orthogroups is summarized on Supplementary file

21. The averaged pairwise sequence similarities were 70.3%, 71.0%, and 66.9% in OG0000005,

OG0000132, and OG0000446, respectively. The resulting count data were analyzed using R and the

DESeq2 package, and 1490 DEGs (p<0.01 and padj<0.05) were identified between the tissues. The

GOseq (Young et al., 2010) and topGO packages in R were used to apply a GO enrichment analysis

to the up-regulated genes in DG tissue (threshold: p<0.01).

Sequencing of the E. marginata genome
The E. marginata genome sequencing process was nearly identical to the methodology applied to

PoB. Flow cytometry yielded an estimated genome size of 900 Mb. Genomic DNA was extracted

from an individual using a CTAB-based method. Four types of Illumina libraries were constructed:

two paired-end libraries with 250 and 500 bp insertions and two mate-pair libraries with 3000 and

5000 bp insertions (Supplementary file 1). Using the HiSeq 2500 platform (Illumina), 562,732,268

and 608,977,154 raw reads were obtained for the paired-end (84 Gb) and mate-pair (91 Gb) librar-

ies, respectively. After filtering the low-quality and adapter sequences, the remaining 40 Gb of
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sequences were assembled using the Platanus assembler. The assembly comprised 14,285 scaffolds

containing 791,005,940 bp.

For gene modeling, strand-specific RNA-Seq sequencing of E. marginata was performed. A

paired-end Illumina library (DRR029460; see also Supplementary file 1) was constructed using a Tru-

Seq Stranded mRNA LT Sample Prep Kit (Illumina) and an RNA sample extracted from an E. margin-

ata individual via a TRIzol Plus RNA Purification Kit (Thermo). Libraries were sequenced (150 bp from

each end) on a HiSeq 2500 platform (Illumina). A total of 286,819,502 raw reads (28 Gb) were

obtained from the library. Using the gene modeling procedure described for PoB, EVidenceModeler

constructed 71,137 gene models of the genomic assemblies based on the RNA-Seq data.

Next, contaminant-derived bacterial scaffolds were removed from the genomic assemblies. Using

the same gene annotation as applied to PoB, it was determined that the 110 of the 14,285 scaffolds

contained >1 bacterial gene and no lophotrochozoan gene, and these scaffolds were removed. The

organelle-derived scaffolds (kpDNA and mtDNA) were identified using blastn searches and removed

from the final assemblies. A blastn search (query = all scaffolds, database = cpDNA of B. hypnoides

NC_013359.1 or mtDNA of PoB) identified 25 kleptoplast-matching scaffolds and one mitochondria-

matching scaffold (bit score > 1000). The complete kpDNA and mtDNA was then reassembled using

the same method as described for PoB organellar DNA assembling.

Ortholog analysis of sacoglossan genes
Orthologous relationships were classified using OrthoFinder version 2.2.3 (Emms and Kelly, 2015),

and rapidly expanded/contracted families were identified using CAFE version 4.2 (Han et al., 2013)

based on the OrthoFinder results. All parameters of OrthoFinder were left at the default values, and

no ‘user-specified rooted species tree’ was set. OrthoFinder and CAFE analyses used 16 metazoan

species as reference species (Figure 5—figure supplement 3). Phylogenetic trees for CAFE were

constructed based on 30 single-copy genes in 15 major species according to the OrthoFinder results

(Figure 5—source data 2). The sequences were trimmed using PREQUAL version 1.02

(Whelan et al., 2018), aligned with MAFFT version 7.407, and analyzed with IQ-tree version 1.6.1

for the ML analysis. The obtained ML tree was converted to an ultrametric tree for CAFE analysis

based on the divergence times of Amphiesmenoptera-Antliophora (290 Myr) and Euarchontia-Glires

(65 Myr) using r8s version 1.81 (Sanderson, 2003).

The expanded/contracted families was also analyzed using the Z-scores of the assigned gene

numbers for each orthogroup. The analysis included all 16 referential species and two sacoglossan

species, and an expanded group of 38 was determined on the PoB lineage (Threshold: Z-score >2;

Figure 5—figure supplement 5). The phylogenetic relationships in the orthogroups were analyzed

using a PREQUAL-MAFFT-IQ-tree as in the CAFE analysis. The domain structures and gene positions

on the constructed genomic data were visualized using the GeneHere script (https://github.com/

maedat/GeneHere copy archived at [swh:1:rev:00a122bd16b1cf7efaa60b171047f219e60c9f04;

Maeda, 2021b]) and Biopython packages.
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Christa G, Händeler K, Schäberle TF, König GM, Wägele H. 2014b. Identification of sequestered chloroplasts in
photosynthetic and non-photosynthetic sacoglossan sea slugs (Mollusca, gastropoda). Frontiers in Zoology 11:
15. DOI: https://doi.org/10.1186/1742-9994-11-15, PMID: 24555467
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