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Abstract Although identifying cell names in dense image stacks is critical in analyzing functional

whole-brain data enabling comparison across experiments, unbiased identification is very difficult,

and relies heavily on researchers’ experiences. Here, we present a probabilistic-graphical-model

framework, CRF_ID, based on Conditional Random Fields, for unbiased and automated cell

identification. CRF_ID focuses on maximizing intrinsic similarity between shapes. Compared to

existing methods, CRF_ID achieves higher accuracy on simulated and ground-truth experimental

datasets, and better robustness against challenging noise conditions common in experimental data.

CRF_ID can further boost accuracy by building atlases from annotated data in highly

computationally efficient manner, and by easily adding new features (e.g. from new strains). We

demonstrate cell annotation in Caenorhabditis elegans images across strains, animal orientations,

and tasks including gene-expression localization, multi-cellular and whole-brain functional imaging

experiments. Together, these successes demonstrate that unbiased cell annotation can facilitate

biological discovery, and this approach may be valuable to annotation tasks for other systems.

Introduction
Annotation of anatomical structures at cellular resolution in large image sets is a common data analy-

sis step in many studies in Caenorhabditis elegans such as gene expression pattern analysis

(Long et al., 2009; Murray, 2008), lineage tracing (Bao et al., 2006), multi-cell calcium imaging and

whole-brain imaging (Schrödel et al., 2013; Kato et al., 2015; Venkatachalam et al., 2016;

Nguyen et al., 2016). It is necessary for cellular resolution comparison of data across animals, trials,

and experimental conditions. Particularly in whole-brain functional imaging, meaningful interpreta-

tion of population activity critically depends on cell identities as they facilitate the incorporation of

existing knowledge about the system (Kato et al., 2015). Cell identities are also needed for apply-

ing common statistical data analysis methods such as Principal Component Analysis, Tensor Compo-

nent Analysis, demixed-Principal Component Analysis (Williams et al., 2018; Kobak et al.,

2016) etc as data across experiments needs to be indexed and pooled by cell identities before

applying these methods.

While accurate annotation of cell identities in images is critical, this task is difficult. Typically, the

use of cell-specific markers as landmarks delivers good accuracy, but has the cost of having to engi-

neer cell-specific reagents without interfering with phenotypes of interest, which is not guaranteed.

Further, even with markers such as the recently developed impressive reagents in the NeuroPAL col-

lection (Yemini et al., 2021), there is still a need to automate the cell identification process. In the

absence of markers, cells are identified by comparing images to a reference atlas such as WormAtlas

(Altun and Hall, 2009) and OpenWorm (Szigeti et al., 2014) atlas. However, there are severe limita-

tions from both using reference atlas and the presence of noise in data. Reference atlases assume a
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static and often single view of the anatomy; in contrast, anatomical features vary across individuals.

Moreover, due to variations in experimental conditions during acquisition such as exact resolution

and orientation of animals, image data often do not match the static atlases, making manual cell

identification extremely difficult if not infeasible. Separately, two kinds of noise are prevalent in data.

First, individual-to-individual variability in cell positions compared to positions in atlas (position

noise). Second, mismatch between number of cells in image and atlas (count noise). Count noise is

primarily caused by variability in the expression levels of the reporter used to label cells across ani-

mals (i.e. mosaicism), incomplete coverage of promoter to label desired cells, and limits in the

computational methods to detect cells. In each of these cases, fewer cells are detected in the images

than cells in the atlas. Empirical data have shown that in normalized coordinates, a cell’s position can

deviate from the atlas position by more than the cell’s distance to its tenth’ nearest neighbor in the

image (Yemini et al., 2021; Toyoshima et al., 2016). Further, our data, as well as data from other

labs, have shown that 30–50% of cells in atlases may be missing from images (Kato et al., 2015;

Venkatachalam et al., 2016; Nguyen et al., 2016). As a result of the large position and count noise

common in data, identifying densely packed cells in head ganglion images of C. elegans by manually

comparing images to the atlas is extremely difficult, even for experienced researchers. Further, man-

ual annotation is labor intensive. Therefore, there is a critical need for automated methods for cell

identification.

Previous computational methods for cell identification in C. elegans images (Long et al., 2009;

Long et al., 2008; Qu et al., 2011; Aerni et al., 2013) focused on identifying sparsely distributed

cells with stereotypical positions in young larvae animals. Tools for identification of cells in whole-

brain datasets, that is in dense head ganglion, do not exist. Further, previous methods (Long et al.,

2009; Yemini et al., 2021; Qu et al., 2011; Aerni et al., 2013; Toyoshima, 2019; Scholz, 2018) do

not explicitly address the challenges imposed by the presence of position and count noise in

the data. All previous methods either are registration-based or formulate a linear assignment prob-

lem; objective functions in these methods minimize a first-order constraint such as the distances

between cell-specific features in images and atlases. Thus, these methods maximize only extrinsic

similarity (Bronstein et al., 2007) between images and atlas, which is highly sensitive to count noise,

position noise, and pre-alignment of spaces in which the image and the atlas exist (i.e. orientations

of animals in images and atlases). With the amount of position and count noise commonly observed

in experimental data, registration-based methods produce large matching errors.

An alternative criterion proposed for topology-invariant matching of shapes is to maximize intrin-

sic similarity (Bronstein et al., 2007; Bronstein et al., 2009), orthogonal to extrinsic similarity. This

approach has advantages because noise that affects extrinsic similarity does not necessarily imply

worse intrinsic similarity. For instance, although cell positions in an image may deviate from their

positions in the atlas (large extrinsic noise), geometrical relationships among them are largely main-

tained (low intrinsic noise). As a specific example, although absolute positions of the cell bodies of

AIBL and RIML in an image may deviate greatly from their atlas positions, AIBL soma stays anterior

to RIML soma. Therefore intrinsic similarity is more robust against noises, independent of the pre-

alignment of spaces, and inherently captures dependencies between cell label assignments that reg-

istration methods do not consider.

To directly optimize for intrinsic similarity and dependencies between label assignments, we cast

the cell annotation problem as a Structured Prediction Problem (Bakir, 2007; Nowozin, 2010;

Caelli and Caetano, 2005; Kappes et al., 2015) and build a Conditional Random Fields (CRF)

model (Lafferty et al., 2001) to solve it. The model directly optimizes cell-label dependencies by

maximizing intrinsic and extrinsic similarities between images and atlases. One major advantage, as

shown using both synthetic data with realistic properties (e.g. statistics from real data) and manually

annotated experimental ground-truth datasets, is that CRF_ID achieves higher accuracy compared

to existing methods. Further, CRF_ID outperforms existing methods in handling both position noise

and count noise common in experimental data across all challenging noise levels.

To further improve accuracy, we took two approaches. First, we took advantage of spatially dis-

tributed (fluorescently labeled) landmark cells. These landmark cells act as additional constraints on

the model, thus aiding in optimization, and helping in pre- as well post-prediction analysis. Second,

we developed a methodology to build data-driven atlases that capture the statistics of the experi-

mentally observed data for better prediction. We provide a set of computational tools for automatic

and unbiased annotation of cell identities in fluorescence image data, and efficient building of data-
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driven atlases using fully or partially annotated image sets. We show the utility of our approach in

several contexts: determining gene expression patterns with no prior expectations, tracking activities

of multiple cells during calcium imaging, and identifying cells in whole-brain imaging videos. For the

whole-brain imaging experiments, our annotation framework enabled us to analyze the simulta-

neously recorded response of C. elegans head ganglion to food stimulus and identify two distinct

groups of cells whose activities correlated with distinct variables – food sensation and locomotion.

Results

Cell annotation formulation using structured prediction framework
Our automated cell annotation algorithm is formulated using Conditional Random Fields (CRF). CRF

is a graphical model-based framework widely used for structured/relational learning tasks in Natural

Language Processing and Computer Vision community (Bakir, 2007; Nowozin, 2010;

Lafferty et al., 2001; Sutton and McCallum, 2010). The goal of structured learning tasks is to pre-

dict labels for structured objects such as graphs. In our neuron annotation problem, we assume that

our starting point is a 3D image stack of the C. elegans head ganglion (Figure 1A(i)) in which neu-

rons have already been detected (Figure 1A(ii)), either manually or by automated segmentation,

and we want to match each neuronal cell body or nucleus to an identity label (a biological name).

Hence, we have N detected neuronal cell bodies x1; . . . ; xNf g that form the set of observed varia-

bles x ¼ xif gN
1
, and their 3D coordinates, pi 2 R

3; i 2 1; . . . ; Nf g. We also have a neuron atlas that

provides a set of labels L ¼ l1; . . . ; lKf g (biological names) of the neurons and positional relation-

ships among them. Note that the number of neurons in the atlas is greater than the number of neu-

rons detected in the image stack in all datasets, that is K>N. The goal is to annotate a label yj 2 L to

each neuron in the image stack. The problem is similar to structured labeling (Nowozin, 2010) since

the labels to be assigned to neurons are dependent on each other. For example, if a certain neuron

is assigned label AVAL, then the neurons that can be assigned label RMEL become restricted since

only the cells anterior to AVAL can be assigned RMEL label.

We use CRF-based formulation to directly optimize for such dependencies and automatically

assign names to each cell. Briefly, a node vi is associated with each observed variable xi (i.e. seg-

mented neuron in image data) forming the set of variables V ¼ vif gN
1
in the model. Then, CRF mod-

els a conditional joint probability distribution P
y
x

� �

over product space Y ¼ Y1 � . . .� YN of labels

assigned to V given observations x, where each Yi ¼ L; i 2 1; . . . ;Nf g and y 2 Y is a particular assign-

ment of labels to V . Y contains non-optimal and optimal assignments. In CRF, label dependencies

among various nodes are encoded by the structure of an underlying undirected graph G V ; Cð Þ

defined over nodes V , where C denotes the set of cliques in graph G. With the underlying graph

structure, the conditional joint probability distribution P
y
x

� �

over full label space Y factorizes over cli-

ques in G, making it tractable to the model:

P
y

x

� �

¼
1

Z c

Y

Fcðyc;xÞ (1)

Here, Z is the normalization constant with Z ¼
y2Y

X

c2C

Y

Fc yc;xð Þ and Fc denotes clique potential if

nodes in clique c are assigned label yc 2Yc ¼Y1 � . . .�Yc. In our model, the fully connected graph

structure considers only pairwise dependencies between every pair of neurons. Thus, the graph

structure of our model becomes G V ;Eð Þ, with the node set V containing nodes vi associated with

each segmented neuron and pairwise edges between all nodes that form the edge set E. The poten-

tial functions in our model are node-potentials Fi and edge-potentials Fij. These functions are

parameterized with unary feature functions fa:x�Yi ! R and pairwise feature functions

fb:x�Yi�Yj ! R, respectively:

Fi m; i;xð Þ ¼ exp
X

a

lafaðm; i;xÞ

8

>

>

>

:

9

>

>

>

;

(2)
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Figure 1. CRF_ID annotation framework automatically predicts cell identities in image stacks. (A) Steps in CRF_ID framework applied to neuron

imaging in C. elegans. (i) Max-projection of a 3D image stack showing head ganglion neurons whose biological names (identities) are to be

determined. (ii) Automatically detected cells (Materials and methods) shown as overlaid colored regions on the raw image. (iii) Coordinate axes are

generated automatically (Note S1). (iv) Identities of landmark cells if available are specified. (v) Unary and pairwise positional relationship features are

Figure 1 continued on next page

Chaudhary et al. eLife 2021;10:e60321. DOI: https://doi.org/10.7554/eLife.60321 4 of 46

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.60321


Fij m;n; i; j;xð Þ ¼ exp
X

b

lbfbðm;n; i; j;xÞ

8

>

>

>

:

9

>

>

>

;

(3)

where m 2L and n2L are labels in atlas. Note, there are a unary features and b pairwise features

with weights la and lb respectively to define node and edge potentials.

While unary features account for extrinsic similarity and cell-specific features, pairwise features

account for intrinsic similarity. To maximize accuracy, we encode pairwise dependencies between all

pairs of cells in the form of several geometrical relationship features (Figure 1—figure supplement

1). Optimal identities of all neurons y 2 Y is obtained by maximizing the joint-distribution P
y
x

� �

. This

is equivalent to maximizing the following energy function.

y¼ arg maxy2y
X

i2V

X

a

lafaðm; i;xÞþ
X

eij2E

X

b

lbfbðm;n; i; j;xÞ (4)

Optimizing this energy function over fully connected graphs (more specifically graphs with loops)

is known to be an NP-hard problem (Kohli et al., 2009). However, approximate inference algorithms

are widely used in CRF community as they provide reasonable solutions. We implemented a popular

method called Loopy Belief Propagation (Murphy et al., 1999) to infer the most probable labeling

over all cells, as well as marginal distributions of label assignments for each cell.

The features used in the base version of the model are geometrical relationship features that

ensure identities assigned to cells in image are consistent with the atlas in terms of satisfying pair-

wise geometrical relationships. These features include binary positional relationship feature, proxim-

ity relationship feature, and angular relationship feature (Figure 1—figure supplement 1, Appendix

1–Extended methods S1.2). All these features are a variant of the quadratic Gromov-Wasserstein dis-

tance used in matching metric spaces (Bronstein et al., 2009; Peyre et al., 2016) and shapes

(Solomon et al., 2016; Mémoli, 2011). Briefly, binary positional relationship features encode that as

an example, if cell i is anterior, dorsal and to the right of cell j in image stack, then identities

assigned to these cells should satisfy these relationships in the atlas. Proximity relationship features

ensure that if cell i is spatially near to cell j in image stack, then identities of spatially distant cells in

atlas would not be assigned to these cells. Finally, angular relationships ensure that identities

assigned to cells i and j should satisfy fine-scale directional relationships as well, and not just simple

binary relationships. We show that the CRF model can be easily updated to include additional fea-

tures such as cells with known identities (landmark cells) and fluorescent spectral codes of cells. We

demonstrate this by incorporating landmark cells and spectral information of cells in the model and

show improvement in accuracy.

A critical component for the success of automated cell identification methods is data-driven atlas.

Static atlases such as OpenWorm atlas provide a single observation of positional relationships

among cells. For instance, if cell RMEL is to the left of cell AVAL in OpenWorm atlas, then the model

assumes that RMEL is to the left of AVAL with 100% probability. In contrast, in observed experimen-

tal data RMEL may be observed to be left of AVAL with 80% probability (e.g. in 8 out of 10

Figure 1 continued

calculated in data. These features are compared against same features in atlas. (vi) Atlas can be easily built from fully or partially annotated dataset

from various sources using the tools provided with framework. (vii) An example of unary potentials showing the affinity of each cell taking the label

RMGL. (viii) An example of dependencies encoded by pairwise potentials, showing the affinity of each cell taking the label ALA given the arrow-pointed

cell is assigned the label RMEL. (ix) Identities are predicted by simultaneous optimization of all potentials such that assigned labels maximally preserve

the empirical knowledge available from atlases. (x) Predicted identities. (xi) Duplicate assignment of labels is handled using a label consistency score

calculated for each cell (Appendix 1–Extended methods S1). (xii) The process is repeated with different combinations of missing cells to marginalize

over missing cells (Note S1). Finally, top candidate label list is generated for each cell. (B) An example of automatically predicted identities (top picks)

for each cell.

The online version of this article includes the following video and figure supplement(s) for figure 1:

Figure supplement 1. Schematic description of various features in the CRF model that relate to intrinsic similarity and extrinsic similarity.

Figure supplement 2. Additional examples of unary and pairwise potentials and label consistency scores calculated for each cell.

Figure 1—video 1. Identities predicted automatically by the CRF_ID framework in head ganglion stack.

https://elifesciences.org/articles/60321#fig1video1
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annotated experimental datasets). Thus, data-driven atlases relax the hard-coded constraint of 100%

probability imposed by static atlas and accounts for the statistics that is observed experimentally for

all positional relationship features (Figure 1—figure supplement 1). Note, data-driven atlas built in

our framework is considerably different from those built by registration-based methods. While the

latter atlases store probabilistic positions of cells, atlases built by our framework store only probabi-

listic pairwise positional relationship features among cells, thus more generalizable. We show that

building such data-driven atlases is easy for our CRF model (Appendix 1–Extended methods S1.7).

We demonstrate this by building several data-driven atlases from different data sources containing

various features, showing considerable improvement in accuracy. Further, building data-driven

atlases is computationally cheap in CRF_ID, requiring only simple averaging operations; thus, it is

scalable to build atlases from large-scale annotated data that may become available in future.

Computational workflow for automatic cell identification
Our annotation framework consists of four major steps (Figure 1A; Appendix 1–Extended methods

S1). First, cells are automatically detected in input image channels using a Gaussian Mixture-based

segmentation method (see Materials and methods – Whole-brain data analysis). Cells with known

identities (landmarks cells) are also detected in this step and their identities are specified. We

designed the framework to be flexible on several fronts: (1) easily using manual segmentations of

image channels or segmenting on the run; (2) integrating landmark information from any number of

image channels; (3) specifying identities of landmark cells on the run or from existing fully or partially

annotated files generated with other tools such as Vaa3D (Peng et al., 2010). In the second step, a

head coordinate is generated by solving an optimization problem with considerations of the direc-

tional consistency of axes (see Appendix 1-Extended methods S1.3). With this coordinate system,

we next define cell-specific features (unary potentials) and co-dependent features (pairwise poten-

tials) in the data (Figure 1—figure supplement 2A,B). The base version of the model uses only pair-

wise relationship features for all pairs of cells, including binary positional relationships, angular

relationship, and proximity relationship between cells in images (Figure 1—figure supplement 1).

However, additional unary features such as landmarks and color information can be easily added in

the model. By encoding these features among all pairs of cells, our fully connected CRF model

accounts for label dependencies between each cell pair to maximize accuracy. The atlas used for

prediction may be a standard atlas such as the OpenWorm (Szigeti et al., 2014) atlas or it can be

easily built from fully or partially annotated datasets from various sources using the tools provided

with our framework (see Appendix 1–Extended methods S1.7). In the third step, identities are auto-

matically predicted for all cells by optimizing the CRF energy function consisting of unary and pair-

wise potentials, which in our formulation is equivalent to maximizing the intrinsic similarity between

data and the atlas (see Appendix 1–Extended methods S1.4). Duplicate assignments are resolved by

calculating a label-consistency score for each neuron, removing duplicate assignments with low

scores (Figure 1—figure supplement 2C,D, see Appendix 1–Extended methods S1.5) and re-run-

ning the optimization. After the third step, the code outputs top predicted label for each cell. Next,

an optional fourth step can be performed to account for missing neurons in image stack. In this step,

full atlas is subsampled to remove fixed number of labels from atlas by either sampling uniformly or

based on prior confidence values available on missing rate of labels in images (see Appendix 1–

Extended methods S1.5). Subsampled atlas assumes that labels removed are missing from the image

and thus ensures that those labels cannot be assigned to any cell in the image. The sampling proce-

dure is repeated, and identities are predicted in each run. We perform these runs in parallel on com-

puting clusters. Lastly, identities predicted across each run are pooled to generate top candidate

identities for each cell (Figure 1B; Figure 1—video 1; see Appendix 1–Extended methods S1.6).

Thus, there are two modes of running the framework – single-run mode that outputs only top label

for each cell and parallel-run mode that outputs multiple top candidate labels for each cell. We

make the software suite freely available at https://github.com/shiveshc/CRF_Cell_ID (Chaudh-

ary, 2021; copy archived at swh:1:rev:aeeeb3f98039f4b9100c72d63de25f73354ec526).

Prediction accuracy is bound by position and count noise in data
Given the broad utility of image annotation, we envision our workflow to apply to a variety of prob-

lems where experimental constraints and algorithm performance requirements may be diverse. For
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example, experimental data across different tasks inherently contains noise contributed by various

sources in varying amounts that can affect annotation accuracy. These sources of noises include the

following: (1) deviation between cell positions in images and positions in atlases, which is position

noise, (2) smaller count of cells in images than number of cells in atlas due to missing cells in images,

which is count noise, and (3) absence of cells with known identities, i.e. known landmarks. We set

out to determine general principles of how these noises may affect cell identification accuracy across

various tasks. We used two different kinds of data: synthetic data generated from OpenWorm 3D

atlas (Szigeti et al., 2014; Figure 2—figure supplement 1A,B and Figure 2—figure supplement 2)

and experimental data generated using NeuroPAL strains (Yemini et al., 2021), consisting of anno-

tated ground-truth of nine animals with ~100 uniquely identified neurons (Figure 2—figure supple-

ment 3). While experimental data enables the assessment of prediction accuracy in real scenarios,

synthetic data enable us to tune the amount of noise contributed from various sources and dissect

their effects on accuracy independently.

To assess the effects of position noise and count noise on prediction accuracy, we simulated four

scenarios using the synthetic data (Figure 2—figure supplement 1C). In the absence of any noise,

relative positional relationship features predicted neuron identities with perfect accuracy (scenario

one in Figure 2—figure supplement 1C), thus demonstrating the suitability of co-dependent fea-

tures and CRF_ID framework for the annotation task. We found that both position noise and count

noise affect accuracy significantly (Figure 2—figure supplement 1C,D) with position noise having a

larger effect (compare scenarios 1–2 with 3–4 in Figure 2—figure supplement 1C). As mentioned

before, count noise is primarily caused by inefficiencies of either the reporter used to label cells or

inaccuracies of the cell detection algorithm used, thus leading to fewer cells detected in the images

than cells in atlases. Results on both synthetic data and real data show that 10–15% improvement in

prediction accuracy can be attained by simply improving reagents and eliminating count noise (Fig-

ure 2—figure supplement 1D). Next, we tested the effect of landmarks (cells with known identities)

on annotation accuracy (Figure 2—figure supplement 1E). We hypothesized that landmarks will

improve accuracy by acting as additional constraints on the optimization while the algorithm

searches for the optimal arrangement of labels for non-landmark cells. Indeed, we found, in both

experimental data and synthetic data, randomly chosen landmarks increased prediction accuracy

by ~10–15%. It is possible that strategic choices of landmarks could further improve accuracy.

Another advantage of simulations using synthetic data is that by quantifying accuracy across the

application of extreme-case of empirically observed noises, they can be used to obtain expected

accuracy bounds for real scenarios. We obtained such bounds (shown as gray regions in Figure 2—

figure supplement 1F) based on observed position noise in experimental data (Figure 2—figure

supplement 2). Notably, the prediction results for experimental data lay close to the estimated

bounds using synthetic data (Figure 2—figure supplement 1F). Together, good agreement

between results obtained on synthetic and experimental data suggest that the general trends uncov-

ered using synthetic data of how various noises affect accuracy are applicable to experimental data.

Next, with this knowledge, we tuned the features in the model, and we compared prediction

accuracy for several combinations of positional relationship features. Among all co-dependent posi-

tional relationship features, the angular relationship feature by itself or when combined with PA, LR,

and DV binary position relationship features performed best (Figure 2—figure supplement 4A). To

account for missing cells, we developed a method that considers missing neurons as a latent state in

the model (similar to hidden-state CRF Quattoni et al., 2007) and predicts identities by marginaliz-

ing over latent states (see Appendix 1–Extended methods S1.6). Compared to the base case that

assumes all cells are present in data, simulating missing neurons significantly increased the predic-

tion accuracy (Figure 2—figure supplement 4B) on experimental data.

Identity assignment using intrinsic features in CRF_ID outperforms
other methods
We next characterized the performance of our CRF_ID framework by predicting the identities of cells

in manually annotated ground-truth datasets (Figure 2A). To specify prior knowledge, we built data-

driven atlases combining positional information of cells from annotated ground-truth datasets and

OpenWorm atlas (Appendix 1–Extended methods S1.7). To predict cell identities in each ground-

truth dataset, separate leave-one-out atlases were built keeping the test dataset held out. Building

such data-driven atlases for our framework is extremely computationally efficient, requiring simple
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Figure 2. CRF_ID annotation framework outperforms other approaches. (A) CRF_ID framework achieves high prediction accuracy (average 73.5% for

top labels) using data-driven atlases without using color information. Results shown for whole-brain experimental ground truth data (n = 9 animals).

Prediction was performed using separate leave-one-out data-driven atlases built for each animal dataset with test dataset held out. Gray regions

indicate bounds on prediction accuracy obtained using simulations on synthetic data (see Figure 2—figure supplement 1F). Experimental data comes

Figure 2 continued on next page
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averaging operations; thus, new atlases can be built from thousands of annotated images very

quickly. With data-driven atlases (of only eight annotated set, one for each test dataset), 74% of cells

were correctly identified by the top label prediction in the ground-truth data set, which exceeds the

state of the art. Further, 88% and 94% of cells had true identities within the top 3 and the top 5 pre-

dicted labels, respectively (Figure 2A). Note that with using only positional relationship features in

the data-driven atlas, this case is equivalent to predicting identities in experimental whole-brain

datasets without color information. More importantly, automated annotation is unbiased because, in

principle, the framework can combine manual annotations of cell identities of several users (possibly

across labs) in the form of data-driven atlases and can predict identities such that positional relation-

ships in the atlas are maximally preserved. Thus, automated annotation removes individual biases in

annotating cells. Further, it greatly supports researchers with no prior experience.

We next compared our method against registration-based methods popular for automatic cell

annotation (Long et al., 2009; Long et al., 2008; Aerni et al., 2013; Toyoshima, 2019;

Scholz, 2018) (see Appendix– S1.9 Registration methods do not consider intrinsic similarity features

such as relative positional relationships and S2.1 Registration). For fair comparison across methods,

all methods used OpenWorm atlas as reference for prediction. The major difference between our

framework and previous methods is the use of intrinsic similarity compared to extrinsic similarities in

previous methods in the annotation task (Figure 2B, Figure 1—figure supplement 1). Remarkably,

for both experimental and synthetic data, CRF_ID using relative positional features performs the

best (Figure 2C; Figure 2—figure supplement 5A). Note that the decrease in accuracy compared

to Figure 2A here is due to using static OpenWorm atlas, further highlighting the importance of

building data-driven atlases. Notably, CRF_ID outperforms registration-based method across all lev-

els of count noise and position noise in data (Figure 2D,E; Figure 2—figure supplement 5B,C). The

accuracy of registration-based methods falls rapidly with increasing count noise levels, whereas

CRF_ID is highly robust, maintaining higher accuracy even when up to 75% of cells in atlas were

missing from data. This has important practical implications as the amount of count noise observed

in experimental data may vary significantly across reagents, imaging conditions etc. Further, neuron

Figure 2 continued

from strain OH15495. Top, middle, and bottom lines in box plot indicate 75th percentile, median, and 25th percentile of data, respectively. (B)

Schematic highlighting key difference between registration-based methods and our CRF_ID framework. (C) Prediction accuracy comparison across

methods for ground truth experimental data (n = 9, *p<0.05, Bonferroni paired comparison test) and synthetic data (n = 190–200 runs for each method,

***p<0.001, Bonferroni paired comparison test). OpenWorm atlas was used for predictions. Accuracy results shown for top predicted labels.

Experimental data comes from strain OH15495. For synthetic data, random but realistic levels of position and count noise applied in each run. Gray

regions indicate bounds on prediction accuracy obtained using simulations on synthetic data (see Figure 2—figure supplement 1F). Top, middle, and

bottom lines in box plot indicate 75th percentile, median, and 25th percentile of data, respectively. (D) Comparison of methods across count noise

levels (defined as percentage of cells in atlas that are missing from data) using synthetic data. (n = 150–200 runs for Rel. Position for each noise level, n

= ~1000 runs for Registration for each noise level, ***p<0.001, Bonferroni paired comparison test). OpenWorm atlas was used for prediction. Accuracy

results shown for top predicted labels. For a fixed count noise level, random cells were set as missing in each run. Markers and error bars indicate mean

± standard deviation. (E) Comparison of methods across position noise levels using synthetic data. (n = 190–200 runs for each method for each noise

level, ***p<0.001, Bonferroni paired comparison test). OpenWorm atlas was used for prediction. Accuracy results shown for top predicted labels. For a

fixed position noise level, random position noise was applied to cells in each run. Different noise levels correspond to different variances of zero-mean

gaussian noise added to positions of cells (see section Materials and methods – Generating synthetic data for framework tuning and comparison

against other methods). Noise levels 3 and 6 correspond to the lower bound and upper bound noise levels shown in Figure 2—figure supplement 1F.

Markers and error bars indicate mean ± standard deviation. (F) Pairwise positional relationships among cells are more consistent with OpenWorm atlas

even though the absolute positions of cells vary across worms. (Left) average deviation of angular relationship measured in ground truth data (n = 9)

from the angular relationship in static atlas. (Right) distribution of all deviations in left panel (total of 8516 relationships) is sparse and centered around 0

deviation, thus indicating angular relationships are consistent with atlas.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Performance characterization using synthetic data.

Figure supplement 2. Method of applying position noise to the atlas to generate synthetic data.

Figure supplement 3. Details of manually annotated experimental ground-truth datasets.

Figure supplement 4. Model tuning/characterization – features selection and simulating missing cells.

Figure supplement 5. CRF_ID framework with relative positional features outperforms registration method.

Figure supplement 6. Variability in absolute positions of cells and relative positional features in experimental data compared to the static atlas.

Figure supplement 7. Comparison of optimization runtimes of CRF_ID framework with a registration method CPD (Myronenko and Song, 2010).
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positions being highly variable across individual animals have been shown (Yemini et al., 2021), and

confirmed by our datasets as well (Figure 2—figure supplement 6A). Because cell positions on

average can deviate from their atlas position by more than the distance to their tenth nearest neigh-

bor (Figure 2—figure supplement 6B), we expect that this variability introduces large matching

errors in registration-based methods. In contrast, most pair-wise relationships are preserved despite

the variability of absolute positions (Figure 2F; Figure 2—figure supplement 6C,D). Interestingly, a

hybrid objective function that combines registration using absolute positions with relative position

features in CRF_ID framework corrupts the annotation performance (Figure 2—figure supplement

5A), likely due to competing effects in the objective function. This again highlights the fact that

higher accuracy is achieved by positional relationship features in CRF_ID method.

Next, to compare the computational efficiency of CRF_ID framework with that of registration

based methods, we compared the optimization step runtimes of the single-run mode of CRF_ID

framework with that of a popular registration method (Coherent Point Drift Myronenko and Song,

2010; Figure 2—figure supplement 7A). The computational speed of both methods scales with

the number of cells to be annotated in images and the number of cells in the atlas. As expected,

CRF_ID framework is computationally more expensive compared to CPD, because it optimizes both

unary and pairwise potentials. Nonetheless, the optimization runtime of CRF_ID framework for multi-

cell calcium imaging use-case (10–50 cells in image) is on the order of 0.1–10 s, on a desktop com-

puter (see Materials and methods – Runtime comparison), when full head ganglion atlas (206 cells) is

used for annotation. We emphasize that using full head ganglion atlas for cell identity annotation in

whole-brain imaging is important because without prior knowledge of which cells are missing in

images, full atlas provides unbiased opportunity to cells in images to take any label from the atlas. In

contrast, if only a partial atlas or partially annotated data set is used as atlas, the labels absent in

atlas will never get assigned to any cell in images, thus potentially biasing the annotation. In prac-

tice, faster runtimes can be achieved in multi-cell calcium imaging and whole-brain imaging case

with the use of smaller atlases based on prior knowledge of cells expected in strains. Further, the

multiple-run mode of CRF_ID framework can be parallelized using multiple CPU workers. Thus,

higher accuracy compared to registration based methods combined with reasonable speeds makes

CRF_ID favorable for cell annotation tasks.

Cell annotation in gene-expression pattern analysis
We next demonstrate the utility of our framework for gene-expression localization analyses, which is

important for many problems, for example mapping the cellular atlas of neurotransmitters

(Gendrel et al., 2016; Pereira et al., 2015), receptors (Vidal et al., 2018), and neuropeptides

(Bentley et al., 2016). Conventional methods, for example screening a list of cell-specific marker

lines that overlap in expression with the reporter, are laborious and scale poorly with the number of

cells expressing the genes of interest and the number of new genes for which expression patterns

are to be determined. Our cell annotation framework can considerably reduce manual efforts by

generating a small list of candidate identities for each cell expressing the reporter. Subsequently,

researchers can easily verify or prune the candidate list. To demonstrate this use case, we imaged a

strain with multiple cells labeled with GFP and predicted candidate identities for each cell

(Figure 3A). Determining cell identities in this case is difficult due to large count noise along with

position noise: since the full list of labels in the atlas is much bigger than few cells in the reporter

strain (equivalent to scenario four in Figure 2—figure supplement 1C). Thus, several degenerate

(equally probable) solutions are possible. To avoid accuracy decrease in such cases, we directly pre-

dicted the candidate identities of all cells marked with pan-neuronal red fluorescent protein (RFP)

using full whole-brain atlas and subsequently assessed the accuracy of only cells of interest, that is

those marked with GFP. Our framework accurately generated a candidate list for cells across all

datasets (n = 21 animals); 85% of cells had true identities within the top five labels chosen by the

framework. In comparison, the candidate list generated by the registration method achieved only

61% accuracy (Figure 3B).

Cell annotation in multi-cell functional imaging experiments
We next demonstrate the utility of our algorithm in another important application - annotating cell

identities in multi-cell calcium functional imaging in vivo (Figure 4). Automation in this case
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dramatically reduces labor associated with cell annotation for many time points, across trials, ani-

mals, and experiments. We used a strain carrying GFP in multiple cells as a proxy for GCaMP-labeled

strains for illustration purposes (Figure 4A). Given the known candidate list of labels that can be

assigned (i.e. no count noise), the configurational space is small, which makes the task easy (similar

to scenario three in Figure 2—figure supplement 1C). Indeed, our annotation framework identified

neurons with high accuracy (98%, n = 35 animals). In comparison, the registration method predicted

identities with lower accuracy (88%) even with the small label assignment space (Figure 4B). In real-

ity, some neurons may be undetected in the data due to expression mosaicism or low-calcium transi-

ents thus adding count noise to data (equivalent to scenario 4 in Figure 2—figure supplement 1C).

We thus simulated this case by randomly removing up to a third of total neurons from the images

and predicting identities of remaining cells using the full label list (Figure 4C; Figure 4—figure sup-

plement 1A). Even under these conditions, the accuracy of our method remains high (88%), signifi-

cantly outperforming registration method (81%) (Figure 4—video 1). In practice, the performance

can be further compensated for by using multiple frames from each video, which we are not doing

here in the mock experiment.

To further facilitate annotation accuracy, we explored the utility of landmarks with known identi-

ties. Landmarks can also help in establishing a coordinate system in images and guiding post-predic-

tion correction. Because the combinatorial space of potential landmarks is very large (~1014 for 10

landmarks out of ~200 cells in the head), we asked what properties landmarks should have. We

found that landmarks distributed throughout the head or in lateral ganglion perform better in pre-

dicting identities of neurons in all regions of the brain (Figure 4—figure supplement 2;

Materials and methods). As a test case, we developed strains with spatially distributed, sparse neu-

ronal landmarks using CyOFP (see Material and methods - Construction of landmark strains), which

by itself can assist researchers in manual cell identification tasks. When crossed with pan-neuronally

expressing GCaMP/RFP reagents, the strains can be used for whole-brain imaging (Figure 4D) by

Figure 3. CRF_ID framework predicts identities for gene expression pattern analyses. (A) (Top) Schematic showing

a fluorescent reporter strain with GFP expressed in cells for which names need to be determined. Since no

candidate labels are known a priori neurons labels are predicted for all cells marked with pan-neuronally

expressed RFP using full whole-brain atlas. (Bottom) A proxy strain AML5 [rab-3p(prom1)::2xNLS::TagRFP; odr-2b::

GFP] with pan-neuronal RFP and 19 cells labeled with GFP was used to assess prediction accuracy. (B) CRF_ID

framework with relative position features outperforms registration method (n = 21 animals) (***p<0.001, Bonferroni

paired comparison test). Accuracy shown for top five labels predicted by both methods. Experimental data comes

from strain AML5. Top, middle, and bottom lines in box plot indicate 75th percentile, median, and 25th percentile

of data, respectively.
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Figure 4. Cell identity prediction in mock multi-cell calcium imaging experiments and landmark strain. (A) (Top) schematic showing automatic

identification of cells in multi-cell calcium imaging videos for high-throughput analysis. (Bottom) A mock strain with GFP-labeled cells was used as an

illustration of GCaMP imaging. Only green channel of AML5 strain was used for this purpose. (B) CRF_ID framework outperforms registration method

(n = 35 animals, ***p<0.001, Bonferroni paired comparison test). OpenWorm atlas was used for prediction. Accuracy results shown for top predicted

labels. Experimental data comes from strain AML5 (only green channel used). Top, middle, and bottom lines in box plot indicate 75th percentile,

median, and 25th percentile of data, respectively. (C) Prediction accuracy comparison for the case of missing cells in images (count noise). ***p<0.001,

Bonferroni paired comparison test. Total n = 700 runs were performed across 35 animals for each method with 3 out 16 randomly selected cells

Figure 4 continued on next page
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using only two channels. This has two advantages: CyOFP can be imaged ’for free’ while imaging

GCaMP and RFP simultaneously, thus the landmarks providing a concurrent reference in all frames;

this strategy also leaves other channels open for optogenetic manipulations and voltage imaging

(Piatkevich et al., 2019; Piatkevich et al., 2018).

We next tested this strategy in a simple whole-brain imaging experiment. Isoamyl alcohol (IAA) is

a well-known component of the bacterial metabolites that C. elegans senses and responds to

Chalasani et al., 2007; L’Etoile and Bargmann, 2000; Bargmann et al., 1993. We recorded neuro-

nal responses to a step-change in IAA concentration using a microfluidic system (Cho et al.,

2020; Figure 4—figure supplement 3). We observed both odor-specific responses and spontane-

ous activities (Figure 4E). More importantly, neurons with algorithm-assigned identities demonstrate

expected behavior. For instance, we identified the sensory neuron AWC, and detected an off-

response to IAA, consistent with known AWC behavior. In addition, the predicted interneurons (e.g.

AVA, RIB, and AIB) also demonstrate previously known activity patterns (Kato et al., 2015).

We also tested worms’ responses to periodic stimuli of a more complex and naturalistic input –

supernatant of bacterial culture (Figure 5, Figure 5—video 1). A periodic input (5 s On and 5 s Off

for eight cycles) entrains many neurons as expected, therefore allowing us to better separate the

odor-elicited responses from spontaneous activities (Figure 5A). We generated the candidate identi-

ties for all recorded neurons (Figure 5—figure supplement 1A). Notably, several highly entrained

neurons were identified as sensory neurons known to respond to food stimuli (Liu et al., 2019;

Wakabayashi et al., 2009; Zaslaver et al., 2015; Figure 5C), some of which responded to the onset

of the stimuli and some to the withdrawal of the stimuli (Figure 5D). The power spectrum of these

neurons showed a strong frequency component at 0.1 Hz as expected (Figure 5B).

Next, to examine the latent dynamics in the whole-brain activities during the entire experiment,

we used traditional Principal Component Analysis (PCA) and Sparse Principal Component Analysis

(sPCA) (Zou et al., 2006). The overall dynamics are low-dimensional with top three traditional PCs

capturing 70% of the variance (Figure 5—figure supplement 1B). In comparison, while the top 3

sparse PCs (SPCs) explain 43% of the variance in the data, they enable meaningful interpretation of

the latent dynamics by eliminating mixing of activity profiles in PCs (Figure 5E). SPC1 shows a sys-

tematic decline of the signals, presumably related to photobleaching of the fluorophores; both

SPC2 and SPC3 illustrate spontaneous activities with different temporal dynamics. With automatic

annotation, we were able to identify cell classes belonging to each SPC (Figure 5—figure supple-

ment 1C). We then analyzed the relationship between motion and neuron activities. In our microflui-

dic device, the animals are not fully immobilized. By tracking landmarks on the body; we observed

propagating waves along the body (Figure 5F; Figure 5—figure supplement 1D, Figure 5—video

2). Interestingly, cells participating in SPC2 showed significantly higher mutual information with

motion than any other component (Figure 5G). Examining the connection between activities of neu-

rons that drive SPC2 and animal motion demonstrates that these neurons are indeed correlated or

Figure 4 continued

removed in each run. For fair comparison, cells removed across methods were the same. OpenWorm atlas was used for prediction. Accuracy results

shown for top predicted labels. Experimental data comes from strain AML5 (only green channel used). Top, middle, and bottom lines in box plot

indicate 75th percentile, median, and 25th percentile of data, respectively. (D) Max-projection of 3D image stacks showing CyOFP labeled landmark

cells in head ganglion (pseudo-colored as cyan): animals carrying [unc47p::NLS::CyOFP1::egl-13NLS] (GT296 strain) with nine landmarks (top), and

animals carrying [unc-47p::NLS::CyOFP1::egl-13NLS; gcy-32p::NLS::CyOFP1::egl-13NLS] with 12 landmarks (bottom). (E) (Left) max-projection of a 3D

image stack from whole-brain activity recording showing head ganglion cells and identities predicted by CRF_ID framework (Top labels). Animal is

immobilized in a microfluidic device channel and IAA stimulus is applied to the nose tip. (Right) GCaMP6s activity traces extracted by tracking cells over

time in the same 108 s recording and their corresponding identities. Blue shaded region shows IAA stimulation period. Experimental data comes from

strain GT296.

The online version of this article includes the following video and figure supplement(s) for figure 4:

Figure supplement 1. Relative position features perform better than registration in handling missing cells in images.

Figure supplement 2. Spatially distributed landmarks or landmarks in lateral ganglion perform best in supporting CRF_ID framework for predicting
identities.

Figure supplement 3. Microfluidic device used in chemical stimulation experiments and characterization.

Figure 4—video 1. Comparison between the CRF_ID framework and the registration method for predicting identities in case of missing cells.

https://elifesciences.org/articles/60321#fig4video1
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Figure 5. CRF_ID framework identifies neurons representing sensory and motor activities in whole-brain recording. (A) GCaMP6s activity traces of 73

cells automatically tracked throughout a 278 s long whole-brain recording and the corresponding predicted identities (top labels). Periodic stimulus (5

sec-on – 5 sec-off) of bacteria (E. coli OP50) supernatant was applied starting at 100 s (shaded blue regions). Experimental data comes from strain

GT296. (B) Power spectrum of neuron activity traces during the stimulation period for all cells. Cells entrained by 0.1 Hz periodic stimulus show

Figure 5 continued on next page
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anti-correlated with the motion we detected (Figure 5H); notably, these neurons included several

command interneurons such as AVA, RIM, and motor neurons such as VA and DA (Kato et al.,

2015; Figure 5H). Cross-correlation analysis between motion and neuron activities showed that neu-

rons are activated ahead of motion (Figure 5I); when a lag is added to the neuron activities, the

mutual information of SPC2 neurons with motion is maximum at the same delay observed in the

cross-correlation analysis (Figure 5—figure supplement 1E). These experiments together demon-

strate the power of the approach, which enabled previously difficult simultaneous analyses of several

sensory, inter-, and motor neurons’ activities to natural food stimulus. Thus, automatic identity pre-

diction enabled meaningful interpretation of the whole-brain data.

CRF framework is broadly applicable to wider conditions
Another important advantage of the CRF_ID framework is its flexibility to incorporate additional

information to improve the identification accuracy, by simply adding new terms in the objective func-

tion without disturbing the weights of existing features. Here we demonstrate this idea by using the

recently developed NeuroPAL (Yemini et al., 2021) that provides a unique chromatic code to each

neuron (Figure 6A). The chromatic code was included as a unary feature in the model (see Appendix

1–Extended methods S2.6). Using manually curated ground-truth data, we compared different meth-

ods. These methods included different orthogonal feature combinations, as used by previous

approaches, thus providing insights into which features perform best in predicting cell identities

(Figure 6B, see Appendix 1–Extended methods S2). For fair comparison across methods, static

OpenWorm atlas was used across all methods. For methods that use color information, we built

data-driven color atlases (Appendix 1–Extended methods S2.4) using all datasets except the test

dataset: leave-one-out color atlases. Unsurprisingly, registration performs poorly (with or without

color information); color alone is not sufficient, and color combined with spatial features improves

the accuracy (whether registration or relative position is used). Notably, the best performing model

uses relative position features in combination with color and without registration term (Figure 6B;

Figure 6—figure supplement 1A), achieving 67.5% accuracy for the top-label prediction. Further,

for 85.3% of the neurons, the true identity is within the top three labels.

Next, to assess true potential of CRF_ID framework, instead of using OpenWorm atlas, we used

data-driven positional relationship atlases, so that the predictions are now performed with data-

driven atlases for both positional relationships and color. To test the generalizability of the method

Figure 5 continued

significant amplitude for 0.1 Hz frequency component (green). (C) Activity traces of cells entrained by periodic stimulus shown for the stimulation

period. Blue shaded regions indicate stimulus ON, unshaded region indicate stimulus OFF. Identities predicted by the framework are labeled. (D)

Average ON and OFF responses of cells entrained by periodic stimulus across trials. The black line indicates mean and gray shading indicates ± s.e.

m. (E) Average activities of neurons with significant non-zeros weights in the first three sparse principal components (SPCs). Activities within each

component are stereotypical and different components show distinct temporal dynamics. Cells with positive weights (blue) and negative weights (red)

in SPC2 and SPC3 showed anti-correlated activity. Out of the 67 non-stimulus-tuned cells, 19 had non-zero weights in SPC1, 16 cells had non-zero

weights in SPC2, and 5 cells had non-zero weights in SPC3. SPC1, SPC2, and SPC3 weights of cells are shown in Figure 5—figure supplement 1.

Shading indicates mean ± s.e.m of activity. (F) Velocity (motion/second) traces of cells along anterior-posterior (AP) axis (blue to red) show phase shift in

velocity indicating motion in device shows signatures of wave propagation. (G) Cells with non-zero weights in SPC2 show high mutual information with

worm velocity compared to cells grouped in other SPCs (*** denotes p<0.001, Bonferroni paired comparison test). Median (red line), 25th and 75th

percentiles (box) and range (whiskers). Dashed line indicates entropy of velocity (maximum limit of mutual information between velocity and any

random variable). Velocity of cell indicated by the black arrow in panel H right was used for mutual information analysis. (H) Activity traces of 16 cells

(with significant non-zero weights) in SPC2 and corresponding identities predicted by the framework. Red traces for cells with negative weights in SPC2,

blue traces for cells with positive weights in SPC2. Worm motion/second shown on top. (Right) max projection of 3D image stack showing head

ganglion neurons and cells with positive weights (blue) and negative weights (red) in SPC2. Motion/second of cell indicated with arrow is shown in left

panel. (I) Cross-correlation analysis between velocity and cells with non-zero weights in SPC2 shows a strong correlation between neuron activities and

velocity. In comparison, other cells show low correlation. Velocity of cell indicated by arrow in panel H right was used for cross-correlation analysis.

The online version of this article includes the following video and figure supplement(s) for figure 5:

Figure supplement 1. Further analysis of data in periodic food stimulation and whole-brain imaging experiment.

Figure 5—video 1. Whole-brain functional imaging with bacteria supernatant stimulation.

https://elifesciences.org/articles/60321#fig5video1

Figure 5—video 2. Wave propagation in animal and correlation of neuron activities to worm motion.

https://elifesciences.org/articles/60321#fig5video2
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Figure 6. Annotation framework is generalizable and compatible with different strains and imaging scenarios. (A) A representative image (max-

projection of 3D stack) of head ganglion neurons in NeuroPAL strain OH15495. (B) (Left) comparison of prediction accuracy for various methods that

use different information. CRF_ID framework that combines relative position features along with color information performs best (n = 9 animals,

*p<0.05, **p<0.01, ***p<0.001, Bonferroni paired comparison test). (Right) the best performing method predicts cell identities with high accuracy.

OpenWorm static atlas was used for all methods. Color atlas was built using experimental data with test data held out. Ensemble of color atlases that

combine two different color matching methods were used for prediction. Accuracy results shown for top predicted labels. Experimental data comes

from strain OH15495. (C) (Left) annotation framework can easily incorporate information from annotated data in the form of data-driven atlas, which

Figure 6 continued on next page
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on unseen datasets, we compared the accuracy of CRF_ID framework across several kinds of data-

driven atlases (Figure 6—figure supplement 1B). These included the following: (1) positional rela-

tionship and color atlases, which include information from all datasets including test dataset, (2)

color information comes from all datasets and leave-one-out atlases for positional relationships

built with test dataset held out, (3) positional relationship information, which comes from all datasets

and leave-one-out color atlases, and (4) leave-one-out atlases for both positional relationships and

color. The analysis revealed that accuracy falls more sharply with using color leave-one-out atlases

compared to the leave-one-out positional relationship atlases. This implies that in the datasets used,

positional relationship features are more consistent compared to color features. Thus, leave-one-out

positional relationships atlases can represent positional relationships among cells in test datasets.

Further, to assess the contribution of color information to prediction accuracy, we compared the

accuracy of the case using both positional relationship and color leave-one-out atlases (Figure 6—

figure supplement 1B last column) to the case where predictions were performed using only leave-

one-out positional relationship atlases shown earlier in Figure 2A. We found that color contributed

little to improving accuracy. This is because in the datasets used, the color variability in raw RGB val-

ues across animals is far greater than the position variability across animals; hence, the distribution

of color features in the training data does not match the distribution of features in the test data. This

could be due to inherent variations in fluorophore expressions across animals, or variations in imag-

ing settings (i.e. exposure time of each channel, laser power etc.) across sessions. Thus, a naive

approach of building color atlas by directly aggregating RGB values from training images contrib-

uted little to improving accuracy. The problem of mismatched feature distributions in test data com-

pared to training data is commonly solved by domain adaptation methods in machine-learning

community. We adopted a simple domain adaptation strategy for dealing with color discrepancies

and developed a two-step method (Appendix 1–Extended methods S2.4). First, we aligned the dis-

tributions of RGB values in training datasets to the test dataset by several methods such as simple

normalization of color channels, histogram matching color channels in training images to test data

set, contrast and gamma adjustment of image channels, and transforming the color space of all

images with color invariants (Finlayson et al., 1998; Figure 6—figure supplement 1C). Note that

this alignment does not rely on cell identity information at all. These color alignment methods by

themselves or in combination with other methods improved accuracy for some datasets but not all

datasets. Second, we used an ensemble of leave-one-out color atlases for prediction, that is predic-

tions were performed using multiple leave-one-out color atlases each built with a different color

alignment technique. The ensemble, in comparison to single atlases, provides a combination of color

features from aligned color distributions, thus improving accuracy. The two-step method improves

accuracy by 6% over the naı̈ve approach (Figure 6—figure supplement 1D). Overall, a significant

improvement in the model accuracy was achieved by using data-driven atlas to account for biologi-

cal variability in both the positional relationships and color (Figure 6C; Figure 6—figure

Figure 6 continued

improves prediction accuracy (***p<0.001, Bonferroni paired comparison test). Prediction was performed using leave-one-out data-driven atlases for

both positional relationship features and color. Accuracy shown for top predicted labels. Ensemble of color atlases that combine two different color

matching methods were used for prediction. (Right) accuracy achieved by top, top 3, and top 5 labels. Experimental data comes from strain OH15495.

Top, middle, and bottom lines in box plot indicate 75th percentile, median and 25th percentile of data, respectively. (D) An example image of head

ganglion neurons in NeuroPAL strain for rotated animal (nematode lying on DV axis). In contrast, animal lying on the LR axis is shown below. The

locations of RMDVL/R, AVEL/R cells in the two images are highlighted for contrasts. Dashed ellipses indicate positions of cells in retrovesicular

ganglion, showing that the rotated animal is not rigidly rotated. Experimental data comes from strain OH15495. (E) Top-label prediction accuracies for

non-rigidly rotated animal. n = 7 animals. Experimental data comes from strain OH15495 and OH15500. Prediction was performed using leave-one-out

data-driven atlases for both positional relationship features and color. Accuracy shown for top predicted labels. Ensemble of color atlases that combine

two different color matching methods were used for prediction.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Additional results on prediction performance of CRF_ID method on NeuroPAL data: comparison against registration method
and utility of ensemble of color atlases.

Figure supplement 2. Example annotations predicted by the CRF_ID framework for animals imaged lying on the LR axis.

Figure supplement 3. Example annotations predicted by the CRF_ID framework for animals twisted about the anterior-posterior axis (note the anterior
and lateral ganglions show clear left-right separation whereas retrovesicular ganglion instead of being in the middle is more toward one of the left or
right sides).
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supplement 2). Using the data-driven atlas, accuracy improved to 81% (top labels); more than 93%

of the neurons have their true identities in the top three labels chosen by the model. We expect that

more datasets for the atlas will continue to improve the accuracy.

Lastly, we show that our framework is equipped to work with realistic complex scenarios of ani-

mals imaged in different orientations, often not rigid rotations (Figure 6D). Identifying cells in these

cases is challenging: manual annotation using the 2D-atlas (Altun and Hall, 2009) is not possible

since it lacks left-right information; further, due to low-z sampling of image stacks, segmented posi-

tions of cells along z-axis are noisier. These challenges can be addressed by using the data-driven

atlas. We manually annotated data collected for animals imaged with varying degrees of non-rigid

rotations and built data-driven atlases for positional relationships and color. Further, we combined

rotated animals’ atlas with the previous atlas built from animals imaged in lateral orientation to build

a super atlas. With the test data held out in atlases, the prediction accuracy of top labels was 48.8%,

and the accuracy was 68.7% for top three labels (Figure 6E ), which are reasonable for practical pur-

poses. In this case too, aligning the color distributions in atlas to the test data set and using ensem-

ble of color atlases with different alignment techniques helped to significantly improve accuracy over

the naı̈ve approach to build color atlases (Figure 6—figure supplement 1E).

Discussion
Annotating anatomical features and cellular identities in biological images are important tasks for

many applications. Here, we demonstrated our CRF_ID framework is suitable for fluorescently

labeled cells in 3D images for many applications. Using both ground-truth experimental data of

whole-brain image stacks and synthetic data generated from an atlas, we showed that our frame-

work is more accurate compared to existing approaches. We demonstrated using real examples

how the pipeline can be used for analysis of gene expression pattern for instance, and for neuron

identification from dense multi-cell or whole-brain imaging experiments. Further, our CRF_ID frame-

work significantly speeds up the cell identification compared to manual labeling while reducing bias.

With the pipeline, we address several challenges. There is ample evidence that anatomy varies

from individual to individual, and from condition to condition. This variability, or position noise, is a

major source of roadblock in effectively applying previous methods to annotate the whole-brain

recording data. Because our framework leverages intrinsic similarity (Bronstein et al., 2007), it per-

forms better than registration methods in handling position noise (Figure 2E; Figure 2—figure sup-

plement 5C). Further, CRF_ID formulation is more accurate in handling count noise that is cases of

missing or undetectable cells in images (Figure 2D; Figure 4C; Figure 2—figure supplement 5B;

Figure 4—figure supplement 1A), because the missing neurons do not upset the relationships

among the detectable neurons in the CRF_ID formulation while missing neurons introduce large

uncertainty in registration methods. Lastly, CRF_ID method predicts identities with sufficient accu-

racy for different postural orientations of the worms often seen in our microfluidic experiments. We

expect that this superiority is maintained for any data that have relational information preserved, this

is the case virtually in all biological samples where tissues are connected by matrix materials, such as

in other whole-brain recordings or for registration of fixed tissues.

Building and using data-driven atlases in the pipeline is simple and yet highly effective. We expect

that data from more animals, different orientations, age, and imaging techniques will further improve

the generalizability. Since building such data-driven atlas for our framework requires only cheap

mathematical operations (Appendix 1–Extended methods S1.7), incorporating more data is quite

simple and easily scalable. In contrast, previous registration-based methods may require simulta-

neous or batch-wise registration of multiple images to one reference image; this would require solv-

ing multiple constrained regression problems on increasingly large data sets, thus rendering them

computationally unscalable. Further, without systematic methodology of which image should be cho-

sen as reference image, atlas gets biased toward the chosen reference image or by the order in

which blocks of images are registered to the reference image. Tackling this challenge is an active

field of research (Wang et al., 2008; Evangelidis et al., 2014). In comparison, in CRF method, atlas

building is unbiased toward any image set because there is no concept of reference image. Addi-

tionally, atlas can be built from all images simultaneously because of the cheapness of mathematical

operations.
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Another major advantage of data-driven atlases in our framework is that the atlases can be built

incrementally using partially or fully annotated datasets, for example using lines that label partial

and distinct subsets of cells. In comparison, registration-based methods cannot build atlas from lines

that label distinct subset of cells. This is because registration-based methods build probabilistic spa-

tial atlases by first establishing correspondence among cells in images and subsequently registering

images. However, this is not possible if the cells in different images do not have any overlapping

cells or have very few overlapping cells. In comparison, atlases built in CRF_ID framework store

probabilistic positional relationship features among cells observed within each image. Hence, corre-

spondence between images is not required. Thus, in principle, CRF_ID framework can combine man-

ually annotated data across different lines, generated by different researchers (and across labs) in

the form of data-driven atlases. Automated annotation using such atlases removes individual biases

in annotating cells. Further, it greatly supports researchers with no prior experiences with cell identi-

fication. We expect that using our framework, large-scale atlases can be built in the future with com-

munity contributed data.

Finally, a distinction of CRF_ID framework is its ability to build and annotate with complete atlases

covering all cells. This is made possible by the efficient utilization of data, even from strains with

non-overlapping cells. Annotating against a complete atlas is crucial because commonly in practice,

no prior information is available on exactly which cells are missing from the images before annota-

tion. Registration-based or unary potential-based methods are limited in building atlas by the avail-

ability of overlapping strains. Thus, in these methods, cells that are missing in the atlas can never be

assigned to cells in images; hence these methods do not perform completely unbiased annotation.

In comparison, CRF_ID framework uses a complete atlas to assign any possible label in the atlas to

cells in the images, thus performing unbiased annotation, resulting in better handling of count noise

in images.

CRF framework offers the flexibility of combining arbitrary unary features with arbitrary pairwise

features for cell annotation task. We demonstrate the utility of such flexibility by combining color

information of cells in NeuroPAL strain with positional relationship features and show higher accu-

racy compared to other methods. Our experiments show that in order to be able to utilize color

information of cells in NeuroPAL for automatic annotation of cell identities, color consistency across

animals needs to be maintained, either experimentally or by post hoc corrections. Experimentally,

consistent protocol/imaging settings across sessions should be maintained as much as possible.

Even with consistent protocol, color variation may exist due to inherent differences across animals in

relative expressions of fluorophores that define the chromatic code of cells. This can be tackled by

(1) collecting large volume of data to capture each cells’ full RGB variations and (2) using computa-

tional domain adaptation techniques. More advancement in image color transfer and domain adap-

tation techniques will further improve accuracy in future.

While we only considered pairwise features in the current formulation, feature functions with arbi-

trary dependency can be included in the model that may further improve prediction accuracy

(Kohli et al., 2009; Najafi et al., 2014). Advances in structured energy minimization field

(Kohli et al., 2009; Komodakis and Paragios, 2009; Krähenbühl and Koltun, 2011) will enable

tackling the increased complexity of combinatorial optimization in these cases. Our workflow bor-

rows techniques developed in metric object/shape matching literature for annotation in biological

images. Log-linear parameterization in our framework makes the model a member of the exponen-

tial families (Wainwright and Jordan, 2007); thus, the objective function in our framework has inter-

esting connections with max-entropy models and with the entropy-regularized optimal transport

objective functions (Solomon et al., 2016; Nitzan et al., 2019). Therefore, improvements in compu-

tational speed can be achieved by borrowing fast optimization techniques for quadratic assignment

problems developed in optimal transport literature. Advances in these fields will continue to improve

the method development in image analysis.

We anticipate that by using our generalizable formulation, similar pipelines can be set up to anno-

tate more image sets in other organisms and build atlases. Data in many anatomical annotation

problems (e.g. brain atlas construction, registering images from different modalities, comparing ani-

mals or related species to one another for developmental studies) share a similar property, in that

the anatomical features of interest maintain a cohesion from sample to sample. This underlining

cohesion lends itself to the CRF framework. As we have shown, the pipeline is extremely flexible in

incorporating new information. Thus, framework should be easily modifiable catering to the data
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demands in other organisms including features besides landmarks and spectral information such as

cellular morphology and expected cellular activities (e.g. calcium transients). Because the only inputs

to our framework are segmented anatomical regions in images and positional relationships among

them, information already available in data across organisms (Robie et al., 2017; Kim et al., 2015;

Chen et al., 2019; Ronneberger et al., 2012), the framework proposed here should be generally

useful for many problems in model organisms such as Drosophila (Robie et al., 2017; Vaadia et al.,

2019), zebrafish (Ronneberger et al., 2012), mammalian brains (Kim et al., 2015; Chen et al.,

2019). Besides fluorescence, the pipeline should also be able to work with data from other modali-

ties including EM, live imaging, and fluorescence imaging from cleared tissues.

Materials and methods

Reagents
For all experiments, animals were cultured using standard techniques (Stiernagle, 2006). A detailed

list of strains used is provided below.

Name Genotype Experiments Reference

GT290 aEx18[unc-47p::NLS::CyOFP1::egl-13NLS] Strain with nine
neuronal landmarks in head

This work

GT298 aEx22[unc-47p::NLS::CyOFP1::egl-13NLS
+ gcy-32p::NLS::CyOFP1::egl-13NLS]

Strain with 12 neuronal
landmarks in head

This work

AML32 wtfIs5 [rab-3p::NLS::GCaMP6s
+ rab-3p::NLS::tagRFP]

Strain used to make whole-brain
imaging strain with CyOFP
labeled landmarks GT296

Nguyen et al., 2016

AML70 wtfIs5 [rab-3p::NLS::GCaMP6s
+ rab-3p::NLS::tagRFP]; lite-1(ce314) X

Strain used to make whole-brain
imaging strain with CyOFP
labeled landmarks GT293

Scholz, 2018

KG1180 lite-1(ce314) X Strain used to make whole-brain
imaging strain with CyOFP
labeled landmarks GT296

CGC

GT296 wtfIs5 [rab-3p::NLS::GCaMP6s + rab-
3p::NLS::tagRFP]; aEx18[unc-
47p::NLS::CyOFP1::egl-13NLS]; lite-1(ce314) X

Strain used for whole-brain
functional imaging experiments
(Figures 4 and 5) and quantifying
cell position variability.

This work

GT293 wtfIs5 [rab-3p::NLS::GCaMP6s +
rab-3p::NLS::tagRFP]; lite-1(ce314) X;
aEx22[unc-47p::NLS::CyOFP1::egl-13NLS +
gcy-32p::NLS::CyOFP1::egl-13NLS]

Strain used for quantifying
cell position variability.

This work

AML 5 otIs355 [rab-3p(prom1)::2xNLS::TagRFP]
IV. kyIs51 [odr-2p::GFP + lin-15(+)]

Strain used for mock gene-
expression pattern analysis and
mock multi-cell calcium
imaging experiments

Nguyen et al., 2016

Continued on next page
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Continued

Name Genotype Experiments Reference

OH15495 otIs696 [UPN::NLS::TagRFP-T +
acr-5::NLS::mTagBFP2::H2B +
flp-1::NLS::mTagBFP2::H2B +
flp-6::NLS::mTagBFP2::H2B +
flp-18::NLS::mTagBFP2::H2B +
flp-19::NLS::mTagBFP2::H2B +
flp-26::NLS::mTagBFP2::H2B +
gcy-18::NLS::mTagBFP2::H2B +
ggr-3::NLS::mTagBFP2::H2B +
lim-4::NLS::mTagBFP2::H2B +
pdfr-1::NLS::mTagBFP2::H2B +
srab-20::NLS::mTagBFP2::H2B +
unc-25::NLS::mTagBFP2::H2B +
cho-1::NLS::CyOFP1::H2B +
flp-13::NLS::CyOFP1::H2B +
flp-20::NLS::CyOFP1::H2B +
gcy-36::NLS::CyOFP1::H2B +
gpa-1::NLS::CyOFP1::H2B +
nlp-12::NLS::CyOFP1::H2B +
nmr-1::NLS::CyOFP1::H2B +
ocr-1::NLS::CyOFP1::H2B +
osm-9::NLS::CyOFP1::H2B +
srh-79::NLS::CyOFP1::H2B +
sri-1::NLS::CyOFP1::H2B +
srsx-3::NLS::CyOFP1::H2B +
unc-8::NLS::CyOFP1::H2B +
acr-2::NLS::mNeptune2.5 +
ceh-2::NLS::mNeptune2.5 +
dat-1::NLS::mNeptune2.5 +
dhc-3::NLS::mNeptune2.5 +
eat-4::NLS::mNeptune2.5 +
flp-3::NLS::mNeptune2.5 +
gcy-35::NLS::mNeptune2.5 +
glr-1::NLS::mNeptune2.5 +
gcy-21::NLS::CyOFP1::H2B::T2A::NLS::
mTagBFP2::H2B + klp-
6::NLS::mNeptune2.5::T2A::NLS::
CyOFP1::H2B + lim-6::NLS::
mNeptune2.5::T2A::NLS::CyOFP1
::H2B + mbr-1::NLS::mNeptune2.5::
T2A::NLS::mTagBFP2::H2B +
mec-3::NLS::CyOFP1::H2B::T2A::
NLS::mTagBFP2::H2B
+ odr-1::NLS::mNeptune2.5::T2A::NLS::
mTagBFP2::H2B + srab-
20::NLS::mNeptune2.5::
T2A::NLS::mTagBFP2::H2B]

NeuroPAL strain demonstrating
the ease of incorporating color
information, and thus
demonstrating generalizability

Yemini et al., 2021

Continued on next page
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Continued

Name Genotype Experiments Reference

OH15500 otIs672 [rab-3::NLS::GCaMP6s +
arrd-4:NLS:::GCaMP6s]. otIs669
[UPN::NLS::TagRFP-T + acr-5::NLS::mTagBFP2
::H2B + flp-1::NLS::mTagBFP2::H2B +
flp-6::NLS::mTagBFP2::H2B +
flp-18::NLS::mTagBFP2::H2B +
flp-19::NLS::mTagBFP2::H2B +
flp-26::NLS::mTagBFP2::H2B +
gcy-18::NLS::mTagBFP2::H2B +
ggr-3::NLS::mTagBFP2::H2B +
lim-4::NLS::mTagBFP2::H2B +
pdfr-1::NLS::mTagBFP2::H2B +
srab-20::NLS::mTagBFP2::H2B +
unc-25::NLS::mTagBFP2::H2B +
cho-1::NLS::CyOFP1::H2B +
flp-13::NLS::CyOFP1::H2B +
flp-20::NLS::CyOFP1::H2B +
gcy-36::NLS::CyOFP1::H2B +
gpa-1::NLS::CyOFP1::H2B +
nlp-12::NLS::CyOFP1::H2B +
nmr-1::NLS::CyOFP1::H2B +
ocr-1::NLS::CyOFP1::H2B +
osm-9::NLS::CyOFP1::H2B +
srh-79::NLS::CyOFP1::H2B +
sri-1::NLS::CyOFP1::H2B +
srsx-3::NLS::CyOFP1::H2B +
unc-8::NLS::CyOFP1::H2B +
acr-2::NLS::mNeptune2.5 +
ceh-2::NLS::mNeptune2.5 +
dat-1::NLS::mNeptune2.5 +
dhc-3::NLS::mNeptune2.5 +
eat-4::NLS::mNeptune2.5 +
flp-3::NLS::mNeptune2.5 +
gcy-35::NLS::mNeptune2.5 +
glr-1::NLS::mNeptune2.5 +
gcy-21::NLS::CyOFP1::H2B::T2A::NLS::
mTagBFP2::H2B + klp-
6::NLS::mNeptune2.5::T2A::NLS::CyOFP1::H2B
+ lim-6::NLS::mNeptune2.5::T2A::NLS::
CyOFP1::H2B + mbr-1::NLS::mNeptune2.5::
T2A::NLS::mTagBFP2::H2B + mec-
3::NLS::CyOFP1::H2B::T2A::NLS::m
TagBFP2::H2B +
odr-1::NLS::mNeptune2.5::
T2A::NLS::mTagBFP2::H2B + srab-
20::NLS::mNeptune2.5::T2A::NLS::m
TagBFP2::H2B] V

NeuroPAL strain demonstrating
the ease of incorporating color
information, and thus
demonstrating generalizability

Yemini et al., 2021

Imaging
All imagings were performed using either a Perkin Elmer spinning disk confocal microscope (1.3 NA,

40x, oil objective) or Brucker Opterra II Swept field confocal microscope (0.75 NA, 40x, Plan Fluor

air objective), with an EMCCD camera.

To acquire data used for framework validation and comparison against other methods (Figure 2),

gene expression pattern analysis (Figure 3), multi-cell calcium imaging (Figure 4), imaging landmark

strain (Figure 4) and NeuroPAL imaging (Figure 6), animals were synchronized to L4 stage and were

imaged in an array microfluidic device (Lee et al., 2014). A single 3D stack was acquired with either

0.5 mm or 1 mm spacing between z-planes and 10 ms exposure time (except for NeuroPAL strain

where exposure times of different channels were chosen based on the guidelines provided in Neuro-

PAL manuals Yemini et al., 2021).

Whole-brain functional recording data while providing chemical stimulus were acquired using a

microfluidic device designed for applying chemical stimulation (Cho et al., 2020) to the nose-tip of

the animal. Here, image stacks were acquired with 1 mm spacing between z-planes and 10 ms
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exposure for each z-plane. This enabled recording videos at 1.1 volumes/s while imaging two chan-

nels simultaneously (GCaMP and RFP). Animals were synchronized to Day-1 adult stage.

Generating synthetic data for framework tuning and comparison
against other methods
Synthetic data was generated using the freely available 3D atlas at OpenWorm (Szigeti et al.,

2014). Atlas available at Worm Atlas (Altun and Hall, 2009) was not used as it provides only a 2D

view. To mimic the conditions encountered in experimental data, two noise perturbations were

applied to the 3D atlas (Figure 2—figure supplement 2). First, due to inherent biological variability,

positions of cells observed in images do not exactly match the positions in atlas. Thus, position noise

was applied to each cell in the atlas. This noise was sampled from a normal distribution with zero

mean and fixed variance S ¼ diag sx;sy;sz

� �� �

. Here sx; sy and sz denote variances along x, y and z

image dimensions and diag xð Þ denotes diagonalizing vector x. Hence, the position of ith cell pi 2 R3

in synthetic data was defined as pi ¼ pi;atlas þ �; � ~ N 0;Sð Þ. Here pi;atlas is the position of the ith cell in

the atlas. To determine the variance S, we quantified the variance of cell positions observed in

experimental data (Figure 2—figure supplement 2A, C, E) using the strains GT293, GT295 with

neuronal landmarks. We calculated the 25th percentile and 75th percentile of the variance across all

cells across all animals (n = 31) to define the lower bound and upper bound position noise levels

observed in experimental data. However, this variability cannot be directly applied to the atlas due

to different spatial scales in images and atlas. Thus, we first normalized the observed variance of cell

positions in images with inter-cell distances in images and then scaled it according to the inter-cell

distances in atlas (Figure 2—figure supplement 2B,D,F,G,H) to define lower bound and upper

bound noise to be applied to the atlas. More position noise levels such as those in Figure 2E and

Figure 2—figure supplement 5 were set by varying S between zero and upper-bound noise level.

Second, although there are 195–200 neurons in head ganglion in C. elegans, only 100–130 cells

were detected in most image stacks. Remaining cells are not detected either due to low-expression

levels of fluorophores, variability in expression levels of genetic marker used to label cells (mosai-

cism, incomplete coverage etc.) or inability of segmentation methods to resolve densely packed

cells. This increases the complexity of determining the labels of cells. To illustrate this, matching 195

cells in an image to 195 cells in the atlas is easier as only one or very few possible configurations of

label assignments exist that maximally preserves the positional relationships among cells. In contrast,

in the case of matching 100 cells in an image to 195 cells in atlas, many possible labeling arrange-

ments may exist that will equally preserve the positional relationships among cells. Thus, to simulate

count noise in synthetic data, randomly selected cells in atlas were marked as missing and synthetic

data was generated from the atlas with remaining cells. Hence, identities were predicted for remain-

ing cells only in synthetic data using the full atlas. Number of cells set as missing was set by the

count noise level parameter, defined as the fraction of total cells in the atlas that were set as missing.

Since no prior information was available on which regions of the head ganglion had more cells miss-

ing, we selected the missing cells uniformly across brain regions.

Finally, bounds on prediction accuracy (shown as gray regions in Figure 2, Figure 2—figure sup-

plement 1) were obtained as the average prediction accuracy across runs obtained on synthetic

data by applying lower bound and upper bound position noise.

Generating ground-truth data for framework tuning and comparison
against other methods
NeuroPAL reagents OH15495 and OH15500 were used to generate ground-truth data. 3D image

stacks were acquired following the guidelines provided in NeuroPAL manual (Yemini et al., 2021).

Identities were annotated in image stacks using the example annotations provided in NeuroPAL

manual. Individual channel image stacks were read in MATLAB, gamma and contrast were adjusted

for each channel individually so that the color of cells in the RGB image formed by combining the

individual channels matched as much as possible (perceptually) with the colors of cells in NeuroPAL

manuals. To annotate identities in the 3D stack, Vaa3D software was used (Peng et al., 2010).
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Model comparison against previous methods
Detailed description of the methodology used for each method that our CRF_ID framework was

compared against is provided in Appendix 1–Extended methods S2. Note, for fair comparisons,

standard 3D OpenWorm atlas was used by all methods as the reference: either for defining positions

of cells (used by registration methods) or for defining positional relationships among cells (used by

the CRF_ID framework).

Simulations for choosing landmark locations
Landmarks (cell with known identities) improve prediction accuracy by constraining the optimization

problem as it forces the CRF_ID framework to choose optimal labels for all cells such that they pre-

serve their positional relationships with the cells with fixed identities. However, choosing an optimal

set of landmarks is difficult. This is because the combinatorial space of choosing landmarks is huge

(~1014 for 10 landmark cells out of 195 in head ganglion). Simulating each such combination and pre-

dicting identities is not computationally tractable. Thus, we asked which regions of the brain land-

mark cells should lie in. We divided the head ganglion region into three groups: anterior group

consisting of anterior ganglion, middle group consisting of lateral, dorsal and ventral ganglion, and

posterior group consisting of retrovesicular ganglion. Two hundred runs were performed for each

group with 15 randomly selected landmarks in each run. We constrained the landmarks cells to lie in

a specific group and assessed how well the landmarks in that group perform in predicting the identi-

ties of cells in other regions. Overall, landmarks in anterior and posterior groups performed badly in

predicting identities of cells in posterior and anterior groups respectively. Landmarks in the middle

group and landmarks spatially distributed throughout the head performed equally (Figure 4—figure

supplement 2). We chose landmarks spatially distributed throughout the head due to practical

advantages: spatially distributed landmarks can be easily identified manually in image stacks thus

can be used as inputs to the CRF_ID framework. In contrast, cells in middle group are densely

packed and may not be identified easily. We tested this using several reporter strains with GFP

labeled cells. Further, landmarks should be reliably expressed across animals, should have known

and verified expression patterns and should label neither too few cells (not useful) nor too many cells

(difficult identification). Thus, we chose unc-47 and gcy-32 reporters for labeling landmarks.

Construction of landmark strains
We constructed two different transgenic strains in which nine (GT290) and twelve (GT298) neurons,

respectively, were labeled with the fluorescent protein CyOFP1 (Chu et al., 2016). Due its long

Stokes shift, CyOFP1 can be excited by the same laser line as GCaMP, while emitting red-shifted

photons. This conveniently allows us to perform three-color imaging on our two-channel confocal

microscope. We designed an optimized version of the CyOFP1 gene using the C. elegans Codon

Adapter (Redemann et al., 2011), which was then synthesized (Integrated DNA Technologies) and

sub-cloned into a kanamycin-resistant vector to yield the pDSP11 plasmid. Our CyOFP1 construct

contains two different nuclear localization sequences (NLS), SV40 NLS at the N-terminus and EGL-13

NLS at the C-terminus, a strategy which has been shown to more effective at trafficking recombinant

proteins to the nucleus of worm cells (Lyssenko et al., 2007). The nuclear localization of the CyOFP1

protein allows us to unambiguously identify labeled cells in the densely packed head ganglion of C.

elegans.

We tested two different labeling strategies in our study. The first used the promoter of the unc-

47 gene to drive expression CyOFP1 in all 26 GABAergic neurons of the worm (McIntire et al.,

1997). As our study focused on the head ganglion, only the RMEL, RMER, RMEV, RMED, AVL, RIS,

DD1, VD1, and VD2 neurons are labeled by this promoter in this region (Strain GT296, Figure 4D

top panel). Our second strategy used the unc-47 CyOFP1 construct in combination with a second

driven by the promoter of the gcy-32 gene, which is expressed in the AQR, PQR, and URX neurons

(Yu et al., 1997), to label twelve cells in the head ganglion (Strain GT293, Figure 4D bottom panel).

The DNA sequence of each promoter was amplified from N2 (wild type) genomic DNA and incorpo-

rated into a NotI-digested linear pDSP11 vector backbone using the NEBuilder HiFi DNA Assembly

master mix (New England Biolabs) to yield the vectors pSC1 and pSC2. The following primers were

used to amplify the promoters: unc-47 Forward 5’- cagttacgctggagtctgaggctcgtcctgaatgatatgcC

TGCCAATTTGTCCTGTGAATCGT-3’ and Reverse 5’- gcctctcccttggaaaccatCTGTAATGAAATAAATG
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TGACGCTGTCGT, gcy-32 Forward 5’- cagttacgctggagtctgaggctcgtcctgaatgatatgcTTGTATAG

TGGGAAATACTGAAATATGAAACAAAAAATATAGCTG-3’ and Reverse 5’- gcctctcccttggaaaccatTC

TATAATACAATCGTGATCTTCGCTTCGG-3’.

To make landmark strains pSC1 and pSC2 were injected into N2 strain to make GT290 and

GT298. GT290 and GT298 strains can be crossed with any strain where cells need to be identified.

Landmarks in these strains help in defining a coordinate system in head and also improve the accu-

racy of automatic annotation framework by constraining optimization problem. To make strain

GT293 for whole-brain imaging experiments, AML70 was crossed with GT298; lite-1(ce314) was con-

firmed by sequencing. To make strain GT296 for whole-brain imaging experiments, AML32 was

crossed with GT290 and subsequently crossed with KG1180, lite-1(ce314) was confirmed by

sequencing.

Whole-brain data analysis
All videos were processed using custom software in MATLAB for automatic segmentation and track-

ing of nuclei in whole-brain image stacks. Tracks for nuclei with minor tracking errors were corrected

in post-processing steps. Tracks with large tracking errors were dropped from the data.

Segmentation
Neurons were automatically segmented in image stacks using a Gaussian Mixture model based seg-

mentation technique. Briefly, intensity local maxima are detected in images to initialize the mixture

components and subsequently a 3D gaussian mixture model is fitted to the intensity profiles in

image stacks using Expectation-Maximization (EM) algorithm. The number of components in the

model and the ellipsoidal shape of each component determines the number of nuclei segmented

and their shapes.

Tracking
Custom software was used for tracking cells. Briefly, segmented nuclei at each timepoint in image

stacks are registered to a common reference frame and temporally nearby frames to produce glob-

ally and locally consistent matching. Based on these matchings, consistency constraints such as tran-

sitivity of matching were imposed in the post-processing step to further improve tracking accuracy.

A custom MATLAB GUI was used to quickly manually inspect the accuracy of tracking. Tracks of cells

with minor tracking errors were resolved using semi-automated method.

Cell identification
Identities were predicted using the CRF_ID framework with positional features (Appendix 1–

Extended methods S1) using the data-driven atlas. Landmarks cells with known identities were iden-

tified in the CyOFP channel and were provided as input to the framework to achieve higher

accuracy.

Identification of stimulus tuned neurons
To identify stimulus tuned neurons, the power spectrum of activities of all cells within the stimulus

application window (100 s – 180 s) was calculated using ‘fft’ function in MATLAB. Cells that showed

significant power (>0.08) at 0.1 Hz (due to 5 s on 5 s off stimulus, Figure 5) were selected. This crite-

rion identified all cells except two with low response amplitude to the stimulus; however, the

response could be manually seen in the video. Thus, these cells were manually selected.

PCA and Sparse PCA
Principal Component analysis (PCA) of neuron activity time-series data was performed using in-built

functions in MATLAB. Sparse Principal component analysis (SPCA) was performed using freely avail-

able MATLAB toolbox (Sjöstrand et al., 2018).

Neuron activities correlation to animal motion
To ascertain that the motion of the worm in device has signatures of wave-propagation in freely

moving animals, we looked for phase shift in the velocity of the different regions of the animal in the

device (similar to phase shift in curvature of body parts of animals seen in freely moving animals
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Stephens et al., 2008). To calculate the velocity, displacement of randomly selected cells along the

anterior-posterior axis of the animal was calculated (Figure 5—video 2) based on the tracking of

cells. Cell displacements were smoothed using Savitzky-Golay filter. Subsequently, velocity of each

cell was calculated by differentiating the displacement of each cell.

Mutual information (MI) of the obtained velocity signal was calculated with (1) stimulus tuned neu-

rons, (2) neurons with significant weights in sparse principal components 1–3, and (3) remaining cells.

MI analysis requires estimating the joint probability density of velocity and neuron activity. We used

the kernel density estimation (KDE) method to do so. KDE method used Gaussian kernel with band-

width parameters (that specify the variance of gaussian kernel) set to [0.05, 0.05]. Cells grouped in

SPC2 always had the largest mutual information with velocity regardless of the choice of the band-

width parameter.

Runtime comparison
To compare optimization runtimes of CRF and registration-based method CPD (Myronenko and

Song, 2010), synthetic data was generated using OpenWorm atlas as described previously with ran-

domly selected 10, 20, 50, and 130 cells. Annotation was performed using only positional relation-

ship features. Full head ganglion OpenWorm atlas (206 cells) was used for annotation. Simulations

were run on standard desktop computer (Intel Xeon CPU E5-1620 v4 @3.5 GHz, 32 GB RAM).

Statistical analysis
Standard statistical tests were performed using Paired Comparisons App in OriginPro 2020. Details

regarding the tests (sample size, significance, method) are reported in figure legends. Following

asterisk symbols are used to denote significance level throughout the manuscript - * (p<0.05), **

(p<0.01), *** (p<0.001). Significance level not indicated in figures implies not significantly different

(n.s).

Code and data availability
Code and data used in this study can be accessed at https://github.com/shiveshc/CRF_Cell_ID.git.

This repository contains the following (1) All code and individual components necessary for using

CRF_ID framework to annotate cells in new data, visualize results, and build new atlases based on

annotated data (2) Code to reproduce results for comparison shown against other methods in this

study, and (3) all raw datasets used in this study as well as human annotations created for those

datasets except whole-brain imaging datasets.
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Schrödel T, Prevedel R, Aumayr K, Zimmer M, Vaziri A. 2013. Brain-wide 3D imaging of neuronal activity in
Caenorhabditis elegans with sculpted light. Nature Methods 10:1013–1020. DOI: https://doi.org/10.1038/
nmeth.2637, PMID: 24013820
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Appendix 1

Extended methods
S1: Detailed description of CRF_ID model for cell annotation
S1.1 Advantages of CRF_ID framework
There are several advantages of CRF-based formulation for automatic cell annotation as discussed

below.

1. The major advantage of CRF framework is that arbitrary feature relationships fk among non-
independent observations x can be specified (Sutton and McCallum, 2010). This enables opti-
mizing user-defined arbitrary features. Depending on the scope of potential functions Fc,
these features may be cell specific that is unary features (Fc ¼ Fi), pairwise features (Fc ¼ Fij)
or higher order features. For example position of cells in ganglion, position related to a land-
mark cell with known identity, color etc.

2. Since we are modeling a probability distribution over labels assigned to neurons, a set of can-
didate list of names can be generated for each neuron. A straightforward way to do this is by
using the marginal probabilities of labels assigned to each cell. Once the normalization con-
stant Z has been calculated, marginal probability of cell i taking a label yi can be obtained as

P
yi
x

� �

¼
j2V ; j 6¼i

X

P y=xð Þ. Other computationally efficient methods to estimate the marginal proba-

bilities using eigenvector of potential functions Leordeanu and Hebert, 2005; Leordeanu and
Hebert, 2009 have been proposed as well. We propose an alternative method to generate
such list (see Appendix 1–Extended methods S1.5) taking into account the undetected neurons
in image stack.

3. With log-linear parameterization of feature functions as in (Equation 2), CRF models belong to
exponential family models (Wainwright and Jordan, 2007) or max-entropy models. Thus, the
joint probability distribution over labels assigned to neurons that we infer is maximally unbi-
ased (maximum entropy) subject to some empirical constraints (sufficient statistics to define
the probability distribution). In our case, these empirical constraints are geometrical relation-
ships among cell positions. Interestingly, the maximum entropy nature of the objective func-
tion in our model also makes it very similar to the entropy regularized optimal transport
problems (Solomon et al., 2016; Nitzan et al., 2019).

4. CRF framework is a trainable algorithm (Taskar et al., 2004; Taskar et al., 2003). Thus, if
annotated image stacks are available, the weights lk of the feature functions can be optimized
directly such that the cell labels in annotated image stacks match the predicted labels. Further,
we show that annotated experimental data can be utilized by building a data-driven atlas and
feature functions can updated based on data-driven atlas (S1.7). For pairwise feature functions
in our model, building such data-driven atlas requires cheap mathematical operations
(averaging).

S1.2 Features in CRF_ID-based annotation framework

During manual annotation of neuron identities in images, researchers use intuitive features such as

positions of neurons in image and atlas, positional relationships among neurons, proximity of neu-

rons to one another, neuron with known identities such as neurons expressing specific markers etc.

In this section, we describe how such intuitive features are encoded in our model.

S1.2.1 Unary potentials – positions along AP axis
In empirical data, we observed that anterior-posterior (AP) positional relationships among the cells

are most stereotypical (Figure 2—figure supplement 6C,D) and consistent with the 3D atlas. Fur-

ther since, x-y sampling of image stacks is much higher than z sampling, AP axis’ sampling is always

higher than LR and DV axes. Thus, positions along AP axes detected by segmentation method are

less noisy. Thus, we included a feature based on positions of cell along AP axis as unary feature.

fa m; i;xð Þ ¼ exp �
jjxi;AP� ym;APjj2

s2
u

� �

(5)

Here, xi;AP is the position of cell i along AP axes in data and ym;AP is the position of cell with label
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m in atlas. su is the bandwidth parameter. To account for scale differences between image and atlas,

positions along AP axis are normalized first in image and atlas. Low value of su greatly penalizes the

deviation of cell position along AP axis in image from atlas position thus favoring that labeling

should preserve positions along AP axis. Large value of su decreases the effect of deviation of cell

position along AP axis. Thus, this feature restricts the assignment of a particular label to certain cells

along AP axes making the labeling AP consistent. Low values of su also increases the influence

(weight) of this unary potential compared to the pairwise potentials in labeling. We set this parame-

ter as 1 to set equal influence of unary and pairwise potentials.

S1.2.2 Pairwise potentials – binary positional relationships
These features encode that the labels assigned to neuron in an image should preserve the relative

positional relationships among them in the atlas. for example if neuron i is to the left of neuron j in

the image stack and these neurons are assigned labels m and n respectively, then the neuron with

label m in the atlas should be to the left of neuron with label n. Similar constraints can also be

applied on anterior-posterior relationship and dorsal-ventral relationship of neurons in the image

stack. Let xi;AP; xi;LR; xi;DV
� �

denote the coordinate of neuron i in the image along anterior-posterior

(AP), left-right (LR) and dorsal-ventral (DV) axes, respectively. Similarly, ym;AP; ym;LR; ym;DV
� �

be the

coordinates of neuron with label m in the atlas. The feature functions fAP is defined as

fAP m;n; i; j;xð Þ ¼ lAP
1; ðxi;AP� xj;APÞðym;AP� yn;APÞ>0

0; ðxi;AP� xj;APÞðym;AP� yn;APÞ<0

�

(6)

Thus, this feature implies that if atlas labels m and n assigned to neurons i and j in image are con-

sistent with the AP positional relationship of cells i and j, then the feature value is 1 else 0. Note that

the feature values for cells i and j is same (1 or 0) irrespective of the labels m and n assigned to cells.

This is true only if annotation is performed using a static atlas or an atlas built from only one data

source. We expand more on this in section S1.7 (Building data-driven atlases) and explain how label

dependent feature functions are formed with the availability of empirical hand-annotated datasets.

Similarly, features are defined for left-right and dorsal-ventral relationships, fLR and fDV ,

respectively.

fLR m;n; i; j;xð Þ ¼ lLR
1; xi;LR� xj;LR
� �

ym;LR� yn;LR
� �

>0

0; xi;LR� xj;LR
� �

ym;LR� yn;LR
� �

<0

(

(7)

fDV m;n; i; j;xð Þ ¼ lDV
1; xi;DV � xj;DV
� �

ym;DV � yn;DV
� �

>0

0; xi;DV � xj;DV
� �

ym;DV � yn;DV
� �

<0

(

(8)

Here, lAP, lLR, and lDV are hyperparameters in the model that weigh positional relationship fea-

tures against other pairwise features in the model. We set these parameters as 1 to give equal

weightage to all features.

S1.2.3 Pairwise potentials – proximity relationships
While manually annotating images by comparing positions of neurons to atlas, researchers often use

proximity relationship among neurons that is if neuron i is anatomically far from neuron j then the

identities to be assigned to these neurons from atlas should not belong to neighboring or nearby

neurons. To encode such intuition in the model, we include proximity feature similar to the Gromov-

Wasserstein discrepancy used in shape matching (Solomon et al., 2016; Mémoli, 2011)

fproximity m;n; i; j;xð Þ ¼ �lproximityjjd xi;xj
� �

� d ym;ynð Þjj
2

(9)

Here, d xi;xj
� �

is any distance measure between neurons i and j in the image stack and d ym;ynð Þ is

the same distance measure between neurons with labels m and n in the atlas. We use geodesic dis-

tances between cells. To calculate geodesic distances, graphs were constructed by connecting each

neuron to its nearest six neighbors. lproximity is hyperparameter that weighs proximity relationship fea-

ture function against other features in the model. We set lproximity as 1.
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We compared geodesic distances rather than Euclidean L2 distances because geodesic distances

are invariant to spatial scale in the image and atlas. This is critical since the scale of spatial distribu-

tion of neurons in the atlas is very different (much lower) than those in the images. Also, the spatial

scale of distribution of cells may vary across images, depending on the size of worm in images; how-

ever, geodesic distances among neurons should be preserved.

S1.2.4 Pairwise potentials – angular positional relationships
Relative positional relationship features described in S1.2.2 encode information about positional

relationships along axes independently that is each feature contains information about positional

relationship along one axis only. For example fAP encodes whether neuron i is anterior to or posterior

to neuron j and how the labels should be assigned to these cells. A feature that simultaneously

accounts for positional relationships along all axes may additionally help in determining identities of

neurons. Such a feature could be formed by multiplying AP, LR, and DV positional relationship fea-

tures. However, a multiplied feature will still contain binary information only about whether neuron i

is anterior, dorsal and to the right of neuron j or not. It would not tell anything about fine scale direc-

tional relationships. Thus, we formulated an angular relationship feature. Let p0i and p0j be the 3D vec-

tors associated with coordinates of neurons i and j in the image stack. Also let p00m and p00n be the 3D

vectors associated with coordinates of neurons with labels m and n in the atlas. Then the feature is

defined as

fangle m;n; i; j;xð Þ ¼

langle 1þ
p
0

i
�p0

j

jjp
0
i
�p

0
j
jj
2

:
p
00
m�p00n

jjp00m�p
00
n jj2

� �� �

2
(10)

Thus, if the vector p0q0
!

aligns perfectly with the vector p00q00
!

, fangle ¼ 1 and fangle ¼ 0 if the vectors

point in completely opposite directions. This feature encodes directional agreement of the labels m

and n assigned to neurons i and j. Here langle is hyperparameter that weighs angular relationship fea-

ture function against other features in the model. We set langle as 1.

S1.3 Defining AP, LR, and DV axes

To compare positional relationships among neurons in image and atlas, it is necessary to define

anterior-posterior (AP), left-right (LR), and dorsal-ventral (DV) axes in image as well in atlas. 3D coor-

dinates of neurons along these axes are then used to define features described above. We use two

methods to define these axes. In method 1, we use Principal Component Analysis to obtain these

axes. Let p ¼ p1; . . . pN½ � 2 R3�N be the centered coordinates (zero mean) of N neurons detected in

the image stack or atlas. Then the principal components correspond to the eigenvectors of the

matrix ppT . Since the spatial spread of neurons in image as well as in atlas is maximum along AP

axes, the first principal component (eigenvector corresponding to maximum eigenvalue) always cor-

responds to AP axis. Second and third PCs can be assigned to LR and DV axes depending on the

orientation of worm in image as described below. Due to rotation of worm about AP axis, the sec-

ond and third eigenvectors may not always correspond to LR and DV axes. Thus, we designed two

methods for these different scenarios –

1. Worm lying on LR axis – In this case LR axis is assigned to the third eigenvector. This is
because z-sampling of image stacks is much smaller compared to x-y sampling. Thus, the
spread of neurons along LR axis is smallest. Figure below shows axes obtained using PCA.

2. Worm rotated about AP axis – In this case we developed an alternative method. First, we
define LR axis. To do so we use left-right pair of neurons that are easily detectable in image
stack. We used RMEL-RMER for landmark strain (Figure 4) and RMDVL-RMDVR for NeuroPAL

strain (Figure 6E, F). Using these neuron-pair coordinates, an LR vector, lr
!

was defined as
pr�pl

jjpr�pljj2
. Next AP vector, ap

!
was determined by solving constrained optimization problem
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ap
!

¼maxð~ap:~v1Þ

s:t: ap
!
:lr
!
¼ 0 and jap

!
j

�

�

�

�

�

�

2

¼ 1

(11)

That is a unit vector which is orthogonal to LR vector and in the direction of first principal compo-

nent v
!
1. Next, dv

!
vector is obtained by defining a vector orthogonal to both ap

!
and lr

!
vectors.

Finally, we check the consistency of ap
!
, lr

!
, dv

!
vectors that is these vectors should point to the

anterior, right and ventral of the worm and should satisfy cross product rule to constitute a valid

coordinate system. This is necessary because PCA axes are determined up to a multiplication factor

of -1 that is coordinate system specified by the principal components (PC1, PC2, PC3) is same as the

coordinate system specified by (-PC1, -PC2, -PC3). Thus, a user input is taken in the framework while

defining axes. Users can easily click on any neuron in the anterior portion and the posterior portion

of the worm image, when asked to do so, to specify PC1 direction.

Appendix 1—figure 1. Examples of PA (blue), LR (green), and DV (black) axes generated automati-

cally in a whole-brain image stack. Here red dots correspond to the segmented nuclei in image

stack. Shown are 3D view (a), XY (b), YZ (c), and XZ (d) views of the image stack.

S1.4 Inferring neuron identities

To infer most probable identity of neurons, energy function in (Equation 4) is to be maximized.

Exact inference techniques for maximizing energy functions over arbitrary graph structures, such as

the fully connected graph structure of our model, are not available (Kohli et al., 2009). Thus, we use

a commonly used approximate inference method that has been used successfully in past for several

applications, Loopy Belief Propagation (LBP) (Murphy et al., 1999; Ikeda et al., 2004) to infer opti-

mal labeling that is the maximum of joint-probability distribution p
y
x

� �

as well as the marginal proba-

bilities of labels assigned to each node. We implement our model in MATLAB using an open source

package for undirected graphical models (Schmidt, 2007).
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S1.5 Resolving duplicate assignments with label consistency score

In general, we define pairwise feature functions in the model such that it penalizes duplicate assign-

ments of any label m to cells i and j in image as follows

fangle m;m; i; j;xð Þ ¼�¥ (12)

Even with this measure, we still see some duplicate assignments when the LBP optimization con-

verges. To resolve such assignments, we mark all cells that were not assigned duplicate labels as

assigned. Next, we calculate a label consistency score for each cell that was assigned a duplicate

label (examples shown in Figure 1—figure supplement 1C). This score measures how consistent the

current label assigned to the cell is in terms of preserving its positional relationships with other cells

that were not assigned any duplicate labels (i.e. cells marked as assigned). Among all the cells that

were assigned same duplicate label, the cell with the highest consistency score is assigned the dupli-

cate label and marked as assigned. Remaining cells are marked as unassigned. After resolving all

such duplicate assignments for all labels, optimization is run again only for the unassigned cells while

keeping the identities of other cells fixed. We calculate the label consistency score for each cell as

follows

bin:pos:rel: ið Þ ¼
j2v0

X

fAPðm;n; i; j;xÞþ fLRðm;n; i; j;xÞþ fDV ðm;n; i; j;xÞ (13)

ang:rel: ið Þ ¼
j2v0

X

fangleðm;n; i; j;xÞ (14)

proximity rel: ið Þ ¼
j2v0

X

fproximityðm;n; i; j;xÞ (15)

consistencyscore ¼ bin:pos: rel: þ ang: rel: þ proximity rel: (16)

Here, i is a cell that was assigned a duplicate label and V
0
denotes the set of all other cells that

were not assigned duplicate labels. Intuitively, correctly predicted cells should have higher consis-

tency score. This is because correctly predicted cells will preserve their relationship with other cor-

rectly predicted cells and won’t preserve their relationship with incorrectly predicted cells. In

contrast, incorrectly predicted cells will neither preserve their relationship with correctly predicted

cells nor with incorrectly predicted cells thus having a lower consistency score. This was observed in

simulations as well (Figure 1—figure supplement 1D). Thus, label consistency score also serves as a

good criterion for sorting candidate list of labels predicted by the framework.

Label consistency score is combination of features in the model that define the probability distri-

bution p y=xð Þ in our model. Thus, another way to look at the label consistency score is that it tries to

maximize the pseudo-loglikelihood (Sutton and McCallum, 2007; Hyvärinen, 2006) of labels to be

assigned to all cells with duplicate labels conditioned on the labels of other cells that were not

assigned duplicate labels that is
i2dup

X

log p yi; yV 0 ; x
� �� �

. Here dup denotes the set of all cells that were

assigned duplicate labels.

S1.6 Simulating missing cells and generating candidate name list for each
cell

The 3D atlas of C. elegans neurons we used is freely available (Szigeti et al., 2014). There are 195

cells in head ganglion in this atlas, that is the label list from which identities are to be assigned to

cells in data has 195 elements. However, empirically we detect only ~120–130 neurons in whole-

brain image stacks. Remaining neurons are undetected due to either no/low expression levels of flu-

orophore in these cells or false-negatives in automated detection algorithm. Approximately similar

number of neurons were detected by other labs as well (Kato et al., 2015). Further, which cells are

undetected is not known a priori. Thus, to take into account missing cells while annotating identities

with the model, we define a hidden variable h 2 0; 1f gN that specifies the cells missing in images that
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is hk ¼ 1 if cell with label k in atlas is missing in the image. Here N is the number of labels/cells in

atlas. With the hidden variable, we model the joint probability distribution P y;h
x

� �

as

P
y;h

x

� �

¼
1

Z

Y

i2V

Fiðm; i;xÞ
Y

eij2E

Fijðm;n; i; j;xÞ
Y

i2V

Fiðm;hÞFðh;xÞ (17)

Here Z ¼
y2Y;h

X

i2V

Y

Fi yi; i;xð Þ
eij2E

Y

Fij yi;yj; i; j;x
� �

i2V

Y

Fi yi;hð ÞF h;xð Þ. Unary potential functions Fi and

pairwise potential functions Fij are same as described in S1 and S1.2. Potential function Fi m;hð Þ cap-

tures the dependencies between label m assigned to cell i when the hidden variable is h. We set the

potential function as

Fi m;hð Þ ¼
0 if hm ¼ 1

1 if hm ¼ 0

�

(18)

Thus, the potential specifies that if mth label in atlas is missing in the image then that label cannot

be assigned to any cell in the image. Further, if mth label is not missing in the image then each cell

has equal potential to be assigned that label which will be updated based on positional relationship

potentials. Further, the potential function Fi h;xð Þ captures the dependence between the observed

image x and the hidden variable h. Defining this potential function is not trivial for whole-brain

images since predicting which cells are missing just based on observed 3D whole-brain image stack

is difficult. However, in specific cases confidence values of each label missing in the image may be

available, denoted by bk; 0� bk � 1. Such confidence values may be specified based on prior knowl-

edge for example based on expression pattern of fluorophore labeling cells in strain, cells that have

low detection probability may have higher parameter bk. Using these confidence values, we define

F h;xð Þ as

F h;xð Þ ¼
Y

N

k¼1

b
hk
k 1�bkð Þ 1�hkð Þ (19)

Our goal is to calculate P
y
x

� �

which can be obtained by marginalizing (Equation 17) over the hid-

den states h. However, since the number of elements in the space of h is huge, marginalizing as well

as calculating the normalization constant Z is not tractable. But, for specific cases such as we

describe below, the calculation can be simplified.

In the absence of any prior information about which labels are missing in images for whole-brain

imaging case, we assigned equal confidence value for each label missing in the image that is bk ¼ b.

Thus, for a fixed number P of missing cells in image, F h; xð Þ ¼ bP
1� bð ÞN�P. A consequence of defin-

ing potential function this way is that for a given number of missing cells in image, each combination

of missing labels in atlas is equally probable as long as labels of missing cells are not assigned to any

cell in image

P
h

y¼ y;x

� �

¼
P

y;h
x

� �

h

X

P
y;h
x

� �

(20)

¼

Q

i2V Fiðm; i;xÞ
Q

eij2E
Fijðm;n; i; j;xÞ

Q

i2V Fiðm;hÞFðh;xÞ
P

h

Q

i2V Fiðm; i;xÞ
Q

eij2E
Fijðm;n; i; j;xÞ

Q

i2V Fiðm;hÞFðh;xÞ
(21)

¼

Q

i2V Fiðm;hÞFðh;xÞ
P

h

Q

i2V Fiðm;hÞFðh;xÞ
¼

1

h0j j
(22)

Here, h0 � 0;1f gN such that hk ¼ 08kthlabel assigned to cells in y and
P

khk ¼ P. Further, jh
0

j is the

number of elements in h0. Thus, we can randomly and uniformly sample h and keep it fixed while pre-

dicting P
y
x

� �

. Our goal is to calculate P
y
x

� �

. We do so as
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argmax
y2Y

P
y

x

� �

¼
X

h

argmax
y2Y

P
y;h

x

� �

(23)

Therefore, we randomly select P cells in atlas that are considered to be missing in the image

data. These P cells are selected uniformly across different regions of the head ganglion following the

discussion above. Labels of these P cells are removed from the atlas i.e. the list of possible labels

that can be assigned to neurons, and identities of cells are predicted using the remaining atlas. This

process is repeated ~1000 times to sample multiple possible combinations of h. Finally, a candidate

list of names is generated using (Equation 23) that is compiling a list of optimum labels predicted

for each cell in each run (by maximizing P y;h
x

� �

in each run) and choosing the top frequent labels for

each cell across all runs.

S1.7 Building data-driven consensus atlas

Here we describe the procedure and the intuition behind building data-driven consensus atlas in our

framework. We also describe the intuition behind why it is computationally more efficient than build-

ing data-driven atlases for registration methods.

First, we describe how features in the model are defined using a static atlas such as OpenWorm

atlas and then extend the formulation to building and using data-driven atlas. Positional relationships

among cells based on the OpenWorm atlas are stored as matrices of size N � N where N is the num-

ber of cells in atlas. Each cell in matrix records the positional relationship between a pair of cells

observed in the atlas. For example, for AP positional relationship matrix, if a column cell such as

RMEL is anterior to a row cell such as AIZR in atlas, then the corresponding cell in matrix will denote

1 and otherwise 0. Here, 1 implies that according to the prior information available from Open-

Worm, cell RMEL is observed to be anterior to cell AIZR with 100% probability. Let FAP 2 RN�N be

the AP positional relationship matrix and m; n be labels in atlas. Then,

FAPðm;nÞ ¼
1; n>malongAP

0; n<malongAP

�

(24)

Note that FAP n;mð Þ ¼ 1�FAP m;nð Þ. Using the matrix FAP, the AP positional relationship feature

function fAP m;n; i; j;xð Þ for cells i and j (as described in S1.2.2) can be defined as

fAP m;n; i; j;xð Þ ¼
FAP m;nð Þ j>i alongAP

FAP m;nð Þ j<i alongAP

�

(25)

Here, fAP m;n; i; j;xð Þ denotes the AP positional relationship feature for assigning labels m and n in

atlas to cells i and j in image. Note that Equation 25 is consistent with Equation 6 as shown below

by expanding FAP m;nð Þ and FAP n;mð Þ terms using Equation 24 in Equation 25.

fAPðm;n; i; j;xÞ ¼

1; n>m\ j>i alongAP

0; n<m\ j>i alongAP

1; m>n\ j<i alongAP

0; m<n\ j<i alongAP

8

>

>

>

<

>

>

>

:

(26)

Thus, the AP positional relationship matrix FAP stores the prior knowledge available on anterior-

posterior relationships among cells. Since, FAP is built using only a single data source that is Open-

Worm atlas, all elements in the matrix are either 1 or 0. This implies that for all pairs of cells m and n

in atlas, the FAP matrix says that cell n is anterior to cell m with either 100% probability or 0 probabil-

ity. Also, note that since FAP consists of only 1’s and 0’s, the AP positional relationship feature,

fAP m;n; i; j;xð Þ, also consists of only 1’s and 0s, thus it is independent of labels m and n assigned to

cells i and j.

In contrast to using a single data source, if additional information is available in the form of anno-

tated experimental datasets, the prior knowledge on anterior-posterior relationships can be

updated. For example it may be possible that cell n is observed to be anterior to cell m with 80%

probability in annotated datasets (e.g. in 8 out of 10 experimental datasets) and posterior to cell n
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with 20% probability. This empirically observed AP positional relationships among cells can be

updated in matrix FAP as

FAP;data�driven m;nð Þ ¼
wmn n>malongAP

1�wmn n<malongAP

�

(27)

Here, wmn; 0�wmn � 1 is the fraction of annotated datasets in which labels m is annotated to the

anterior of label n. Thus, instead of specifying a hard constraint based on a single data source static

atlas (as in Equation 24), wmn specifies a soft constraint based on positional relationships observed

in experimental annotated datasets. Formally, wmn is defined as

wmn ¼
1

D

X

D

d¼1

I m;n;x;dð Þ (28)

I m;n;x;dð Þ ¼
1 xdn>x

d
m

0 xdn<x
d
m

(

(29)

Here, d 2 dif gD
1
denotes an annotated data set, D is the total number of annotated datasets used

to build atlas, xdm 2 x and xdn 2 x are the coordinates along AP axis of cells annotated labels m and n in

dataset d. Equation 26 can be seen as a generalization of Equation 24. Further, the AP positional

relationship feature function fAP m;n; i; j;xð Þ can be updated based on data-driven atlas using Equa-

tion 25. The above discussion can be similarly extended to LR, DV relationships, angular relation-

ship, and proximity relationship.

Similarly, for angular relationship feature, instead of using a fixed vector p00q00
!

(refer to Equa-

tion 10) between cells m and n that is provided in static atlas, we use an average vector obtained

from annotated experimental datasets.

p
00

q
00

!

data�driven ¼
1

D

X

D

d¼1

p
00

m;d � p00n;d

jjp
00

m;d � p
00

n;djj2
(30)

Here, p
00

m;d and p
00

n;d are position coordinates of cells with labels m and n in data d. Similarly, for

proximity relationship feature (refer to Equation 9), instead of using a fixed distance between cells

with labels m and n in atlas, we use an average distance obtained from annotated experimental

datasets.

d ym;ynð Þdata�driven¼
1

D

X

D

d¼1

d ym;d;yn;d
� �

(31)

Here, d ym;ynð Þ is the distance between cells with labels m and n in data d.

The key difference between registration-based methods and our framework in building data-

driven atlases lies in the underlying methodology used by these methods to annotate cells. Registra-

tion methods annotate cells by maximizing extrinsic similarity between images and atlas. This

requires the pre-alignment of spaces in which the image and the atlas exist. Thus, building data-

driven atlas for registration-based methods also requires pre-alignment of all annotated images to

the same space. This is typically done by simultaneously registering or block-wise registering all

annotated images which requires solving several constrained regression problems. In contrast, our

framework annotates cells by maximizing intrinsic similarity between images and atlas which is inde-

pendent to the pre-alignment of images to same space. Thus, in our framework positional relation-

ship features can be calculated for each annotated dataset in its own space and subsequently the

features are aggregated together by simple averaging operations, which is computationally efficient,

to build data-driven atlases.

S1.8 Discussion on previous methods using registration to annotate cells

Qu et al., 2011 and Long et al., 2009 annotate cells in C. elegans images by spatially deforming an

atlas with known cell identities and registering it to the image data. Similar method was proposed
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by Aerni et al., 2013. Here, several other features were used along with location feature such as cell

shape, cell size, fluorophore expression level etc. In Long et al., 2008, C. elegans images were

annotated by comparing each cell’s location in image to cell locations in multiple template images

to generate initial matches. Generated matches were then pruned by checking relative position con-

sistency such as anterior-posterior relationship among cells. Thus, although pairwise positions were

used, they were not systematically optimized to predict cell labels and were only used for enforcing

consistency in post-registration matching. In Scholz, 2018, cell identities were determined by regis-

tering image data to the 2D atlas (Altun and Hall, 2009). Registering 3D data to 2D atlas makes it

difficult to disambiguate the identities along LR axis since the LR neurons are not exactly symmetrical

along that axis. Similarly, registration-based cell annotation was proposed in Toyoshima, 2019; how-

ever, in this case, the authors generated their own atlases by registering several partial atlases with

subset of cells labeled in each atlas. Registration-based cell identification was proposed in

Yemini et al., 2021 as well. Here, additional color information was integrated as a feature for regis-

tration along with spatial location of cells.

S1.9 Registration methods do not consider intrinsic similarity features such
as relative positional relationships

One of the major reasons of higher cell annotation accuracy achieved by our framework (Figure 2C,

D,E, Figure 3B, Figure 4B, Figure 6B, Figure 2—figure supplement 5) is that our model systemati-

cally includes and optimizes pairwise positional relationships between cells to determine cell labels.

In comparison, registration-based methods that predict cell identities by registering image stack to

the atlas maximize the extrinsic similarity between images and atlas (Bronstein et al., 2007). Due to

inherent biological variability, spatial distribution of cells in worms differ significantly (Figure 2—fig-

ure supplement 6A,B) from the positions of cells in atlas while the relative positional relationships

are still preserved (Figure 2—figure supplement 6C,D). Below, we provide a mathematical argu-

ment for why registration-based methods do not include pairwise positional relationships. Further,

we show that how registration information can be included in our model.

Following the description in S2.1, the objective function to be optimized in registration methods

(Myronenko and Song, 2009; Panaganti and Aravind, 2015; Ge et al., 2014; Ma, 2015; Chui and

Rangarajan, 2003) is similar to

E/
X

ik

�cikjjxi�T ðykÞjj
2

S�1

k
þRðT Þ (32)

Here, xi 2R
3 is the coordinate of ith cell in the image, T ykð Þ 2R3 is the registered coordinate of kth

cell with label k in the atlas, cik is the posterior probability that ith cell in image matches to the kth in

cell in atlas, and R Tð Þ is the regularization term on the transformation applied to cells to ensure

smoothness of transformations for non-rigid registration. If only the first term in the energy function

(Equation 4) is kept in our model then energy function can be written as

E y;xð Þ ¼
X

V

i¼1 a

X

lafa k; i;xð Þ

 !

(33)

This model considers only unary (cell specific) features for predicting cell names. Further, if we

consider only one unary feature function in the model based on spatial locations of cells in atlas

defined as below

fa k; i;xð Þ ¼ jjxi �T ykð Þjj2S�1

k
(34)

and substituted back in (Equation 32) then the energy function is equivalent to the objective func-

tion in registration algorithms.

E y;xð Þ ¼
X

V

i¼1 a

X

lajjxi�T ykð Þjj2S�1

k

 !

(35)

Thus, objective function in registration algorithms can be specified using only unary features in
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CRF_ID framework. This shows that registration methods do not account for relative positional rela-

tionship features. Further, it highlights that CRF_ID framework can easily integrate registration infor-

mation, as unary feature term, with relative positional relationship features for predicting cell

identities.

S2: Description of different methods that were compared

Below, we provide a brief description of the different methods that we compared. Each model uses

a different and specific combination of information for predicting cell labels thus helps in dissecting

what information is most useful in predicting cell biological names. Some of these methods consist

of methods proposed previously for cell annotation in C. elegans. Note, for fair comparison, static

3D OpenWorm (Szigeti et al., 2014) atlas or 2D atlas available on wormatlas.org was used as refer-

ence for all methods: absolute positions of cells were used from atlases for registration methods,

positional relationships derived from the same atlases were used for CRF_ID framework.

S2.1 Registration
In this case, detected neurons in image stacks or neurons in synthetic data were registered to the

atlas using a widely used non-rigid registration algorithm (Myronenko and Song, 2009). For syn-

thetic data, the process was repeated ~200 times with new synthetic data generated each time.

Here, we provide a brief description of the registration algorithm method. Two point-sets are regis-

tered by iteratively applying smooth deformation to one of the point-sets. Let two point-sets be X ¼

x1; x2; :::; xm½ �2 R3�m and Y ¼ y1; y2; :::; yn½ �2 R3�n consisting of m and n points respectively. Here, xi
and yi are coordinates of point-sets. In our case, 3D coordinates of nuclei detected in the image

form point set X and cell positions in the atlas form the point-set Y. In CPD, each point in point-set

X is considered to be a random sample drawn from a mixture of gaussian distributions. Further the

point set Y specifies the centroids of gaussian components of this distribution. Thus, the probability

of observing a point xi is given by

P xið Þ ¼
!

m
þ

1�!ð Þ

n

X

n

k¼1

N xi;yk;Skð Þ (36)

Here, ! is outlier ratio. A smooth transformation T yi;Wð Þ:R3 !R
3 is applied to points in point-set

Y given by T yi;Wð Þ ¼ yiþ
P

n

k¼1

G i;kð ÞWk so as to maximize the likelihood of point-set X. Here G2

Rn�n is gaussian kernel matrix defined as G i;kð Þ ¼ exp � yi�ykð Þ2

b2

� �

and Wk is the kth column of parame-

ters matrix W2R3�n. Thus, the transformation T yi;Wð Þ lies in a Reproducible Kernel Hilbert Space

(RKHS) with gaussian kernel. The aim of parameterizing transformation in this way is to ensure the

smoothness of transformation.

Parameters of transformation matrix W are estimated by maximizing the joint likelihood of data X

and n latent variables corresponding to mixture components. This is done using Expectation-Maximi-

zation algorithm. E-step is equivalent to calculating the posterior probability that point xi is gener-

ated from component k, keeping the current parameters W, Sk fixed.

P
k

xi

� �

¼ aik ¼

1�!
n
exp �1=2jjxi �T yk;Wð Þjj2S�1

k

� �

!
m
þ 1�!ð Þ

n

P

n

k¼1

exp � 1

2
jjxi �T yk;Wð Þjj2S�1

k

� �

(37)

Here, jjxi � ykjj
2

S�1

k
¼ xi� ykð ÞTS�1

k xi� ykð Þ. In M-step, component parameters are determined by

maximizing the expected value of complete data log-likelihood L (objective function). Additional

regularization term is added to the objective function to minimize norm of T in RKHS for controlling

the complexity (smoothness) of transformation.

L¼ �
X

m;n

i;k

aikjjxi�T yk;Wð Þjj2S�1

k
�
l

2
trðWGWTÞ (38)
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Prior to registration, cells in image stack and in atlas were aligned by defining the position coordi-

nates of cells in AP, LR, and DV coordinate system (as described in S1.3) to improve the registration

accuracy. Cell identities were predicted based on the correspondences generated by the registra-

tion algorithm. Note that this case does not consider co-dependent features among cells (as dis-

cussed in S1.10) as registration algorithms utilize only absolution positions of cells.

Additionally, we modified the registration method described above to account for missing cells in

images, in a manner similar to the CRF_ID framework and for fair comparison with the CRF_ID anno-

tation method. Identities were predicted iteratively with uniformly and randomly selected cells across

head-ganglion considered missing thus the labels of those cells were removed from the atlas list.

Cells in images were registered to the remaining cells in atlas. This process was repeated ~1000

times to sample multiple combinations of missing cells and identities were predicted by pooling

results across each iteration. We did see an improvement in prediction accuracy with this modifica-

tion compared to the base that does not account for missing cells. Hence all comparisons were per-

formed with this modification and all results shown are for the modified method.

For registration based matching we used a popular registration method (Myronenko and Song,

2010). The parameter settings of the method are below.

Parameter Value Description

opt.method ‘nonrigid’ Non-rigid or rigid registration

opt.beta 1 The width of gaussian kernel (smoothness)

opt.lambda 3 Regularization weight

opt.viz 0 Don’t show any iteration

opt.outliers 0.3 Noise weight

opt.fgt 0 Do not use FGT (fast gaussian transform)

opt.normalize 1 Normalize to unit variance and zero mean before registering

opt.corresp 1 Compute correspondence vector at the end of registration

opt.max_it 100 Max number of iterations

opt.tol 1e-10 tolerance

S2.2 Relative position (Rel. Pos)

In this case, full CRF-based annotation framework as described in Appendix 1–Extended methods S1

was used. We considered only co-dependent features (i.e. pairwise relative positional features as

described in S1.2) between all cells. Optimal labels of cells were predicted using the optimization

procedure described in S1.4. Note that the information used by model in this case is different than

the information used in Registration method as no information about absolute positions of cells is

used. Thus, comparing prediction accuracy across these cases helps in verifying that co-dependent

features are more useful in predicting neuron identities.

S2.3 Registration + Rel position

In this case, we used both cell-specific features (i.e. unary features) and co-dependent features (i.e.

pairwise features) to predict cell labels. Pairwise feature terms were the same as described in S1.2.

Unary feature term was modified in this case as

freg k; i;xð Þ ¼ exp �
jjxi �T ykð Þjj

2

s2
reg

 !

(39)

Here, xi 2R
3 and yk 2R

3 are the coordinates of cell i in image stack and cell k in the atlas, respec-

tively (in AP-LR-DV coordinate system). Thus, cell i in image has a higher potential to take label lk of

cell k in atlas if the distance between registered cell i in image and cell k in atlas is small. Optimal

transformation T ykð Þ was inferred using the non-rigid registration method as described in S2.1.

Here, parameter sreg controls the weight between registration term and CRF-based matching term.

For example if sreg is small then the registered cell i in image strongly prefers matching to the
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nearest cell in atlas. Thus, the relative position features have little influence on altering the cell label

based on relative position consistency criteria. In contrast if sreg is big then the registered cell i has

uniform preference of matching to any cell atlas. This allows more flexibility to CRF_ID method to

pick optimal labels enforcing the consistency criteria. We set sreg ¼ 1 to give equal weightage to the

registration term and other features. Optimal labels of cells were predicted using the optimization

procedure described in S1.4.

S2.4 Color

In this case, only color information was used to identify the names of cells without using position

information of cells at all. This helps in gauging the prediction accuracy that can be attained by using

color information. Further, comparing this case with the cases that combine color information with

position information (described below) helps in gauging the contribution of cell position information

alone in predicting cell names. We describe below, both the baseline (naive) method for building

color atlas and also building ensemble of color atlases with color distributions in training images

aligned to test image.

Baseline color atlas
In this case, color atlas was built by aggregating raw RGB values of cells across images used to build

atlas leaving the test image out. Feature function in this case was defined as the kernelized Mahala-

nobis distance between the colors of cells in image stack and colors of cells in atlas. Note that this is

a unary feature (as it is cell specific)

fcol k; i;xð Þ ¼ exp � Ci �Ckð ÞTS�1

k Ci �Ckð Þ
� �

(40)

Here, Ci 2R
3 is the mean RGB value of the ith cell in test image, Ck 2R

3 is the mean RGB value of

cell with label k in atlas and Sk is the covariance matrix of the RGB values of cell with label k in atlas.

Let rk ¼ r1; . . . ; rN½ � 2R3�N be the observed RGB values of cells with label k in N training images used

to build the color atlas, then Ck ¼ 1=N rk1ð Þ and Sk ¼ rk �Ck1
T

� �

rk �Ck1
T

� �T
where 12RN�1 is a vec-

tor of ones. Thus, this feature specifies that cell i in image has a high potential of taking label k in

atlas if the Mahalonobis distance between the colors of cell i and cell k is small.

Ensemble atlas with aligned color distributions
We found that when baseline color data-driven atlas was combined with positional relationship fea-

tures data-driven atlas to annotate cells, the performance increased marginally over the case when

only positional relationship features were used for annotation (Figure 6—figure supplement 1B).

This implies that color information did not contribute to annotation task. We reasoned that this is

because distributions of color values vary a lot across images thus color distributions in training data

did not reflect the color distribution in test data. This may be due to inherent difference in fluoro-

phore expression across animals, differences in imaging settings across sessions (exposure time,

laser power) etc. The problem of different feature distributions in test data compared to training

data is solved by domain transfer techniques in machine learning. Here we develop a simple two-

step domain transfer method.

First, we align color distributions in training images used to build the atlas to the color distribu-

tion in test image using several methods –

1.
Normalization of each color channel in all images so that pixel values lie between 0 and 1.
Let IR xð Þ denote raw intensity value of red color channel (mNeptune channel) at location x in
image. Then the normalized values are calculated as

InormR xð Þ ¼
IR xð Þ�minðIRðxÞÞ

maxðIR xð ÞÞ�minðIRðxÞÞ
(41)

Similar normalization is performed for CyOFP and BFP channels.
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2. Histogram matching of each color channel in training image to the corresponding channel in
test image. Histogram matching transforms the color distribution in an image so that the color
histogram matches the color histogram of reference image. This was implemented using
‘imhistmatchn’ function in MATLAB.

3. Color invariant transformation of training set images and test image, and subsequent histo-
gram matching of training color invariant images to the test color invariant image. Color invari-
ant transformation transforms the color space of image to remove dependency on lighting
geometry and illumination (Finlayson et al., 1998). The transformation is performed as fol-

lows. Let Ci ¼ rx; gx; bx½ � 2 Rp�3 be the matrix that stores RGB values of all voxels in ith image in
the training set. Here p is the number of voxels in the image. Then the color invariant image is
obtained by sequentially and repeatedly normalizing the rows and columns of Ci for a fixed
number of iterations.

Note that aligning color distribution of training image to test image does not require cell identity

information at all and is performed using all RGB pixel values in the image. After aligning the color

distributions, the color atlas is built similar to the baseline color atlas that is by aggregating the RGB

values of cells across images. However, in comparison to the baseline case, now RGB values come

from the aligned distributions using one of the methods mentioned above.

Second, an ensemble of data-driven color atlases is used for predicting cell identities that is two

data-driven color atlases are used with different color alignment techniques used in each atlas. Fea-

ture function in this case was defined as

fcol k; i;xð Þ ¼
l

X

llexp � Ci�Ck;l

� �T
S�1

k;l Ci�Ck;l

� �

� �

(42)

Here, Ci 2R
3 is the mean RGB value of the ith cell in test image, Ck;l 2R

3 is the mean RGB value

of cell with label k in lth atlas, Sk;l is the covariance matrix of the RGB values of cell with label k in lth

atlas, and ll is the mixing weight of each atlas,
P

l ll ¼ 1. Note that each atlas is built with using RGB

values from all training images.

In practice we used two atlases in the ensemble atlas. The first atlas used method 2 that is histo-

gram matching of raw RGB distribution in training images to the test image. The second atlas used

method 3 that is color invariant transformation was applied to all images (including test image) and

subsequently color histogram of training images was matched to the test image. Mixing weights of

0.2 and 0.8 were selected by cross-validation.

Note that in both cases of color atlas, we do not consider any co-dependent features among cell,

thus predicting cell names in this case is equivalent to minimizing the following energy function

y¼ argmin
y2Y

X

ik

�fcolðk; i;xÞ (43)

This is equivalent to maximum weight bipartite graph match problem and thus we used Hungar-

ian algorithm to find the optimal solution (Kuhn, 1955).

S2.5 Color + registration

In this case, we used both color information and position information of cells to predict cell identi-

ties. The features used in this case were fcol k; i; xð ) and freg k; i; xð Þ as described in S2.1 and S2.4. Note

that in this case too, we do not use co-dependent cell features. Cell labels were predicted by mini-

mizing the following energy function

y¼ argmin
y2Y

X

ik

�fcolðk; i;xÞ� fregðk; i;xÞ (44)

Here again, we used Hungarian algorithm (Kuhn, 1955) to find the optimal solution. By compar-

ing prediction accuracy in this case to the Color only case (S2.4), we can gauge the contribution of

position information of cells on prediction accuracy. Here again, we accounted for missing cells in

images by predicting the identities iteratively (similar to S2.1). In this case too, we observed

improvement in prediction accuracy by accounting for missing cells hence all the comparisons are

shown for modified case.
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Below, we briefly show how the objective function in (Equation 44) naturally arises in registration

algorithms that combine multiple features such as color in spatial registration method

(Danelljan et al., 2016). First, as defined in registration methods (Myronenko and Song, 2009;

Jian and Vemuri, 2005) that use only spatial location feature xi of each cell, the probability of

observing each cell is (as described in S2.1)

P xið Þ ¼
X

n

k¼1

P
xi

zk

� �

P zkð Þ ¼
X

n

k¼1

pkN xi;�k;Skð Þ (45)

Here, zk denotes a spatial mixture component with mean �k and covariance Ss
k. If color is also

available then to maximize complete data log-likelihood using EM method, we need to define the

joint probability of observing both spatial location xi and color feature yi of each cell, p xi;yið Þ. Next,

we will discuss two possible cases as discussed in Danelljan et al., 2016 that differ in the way the

joint-probability p xi;yið Þ is defined.

First case, if the color information is considered to be independent of spatial information then the

joint probability factorizes as

P xi;yi; zi ¼ k;ci ¼ lð Þ ¼ P
xi

zi ¼ k

� �

P
yi

ci ¼ l

� �

P zi ¼ kð ÞP ci ¼ lð Þ ¼N xi;�k;S
s
k

� �

F yi;�lð Þpkpl (46)

Here, zi and ci denote the spatial and color mixture components (latent variables) from which xi

and yi are drawn. Also, pl;�l and F ci; �lð Þ denote the mixture weights, parameters and density of

observing yi from a mixture density. The independence assumption is akin to assuming that distribu-

tion of colors observed in images in different cells is not dependent on spatial location of cells. How-

ever, this assumption is not valid since in NeuroPAL each cell is color coded thus observed color

depends on spatial location of cells.

In second case, dependence of color on spatial location of cell is accounted for. Further, it is

modeled, that for each spatial component (cell), color is drawn from a location specific mixture den-

sity. Thus, the joint probability factorizes as

P xi;yi; zi ¼ k;ci ¼ lð Þ ¼ P
xi

zi ¼ k

� �

P
yi

ci ¼ l; zi ¼ k

� �

P
ci

zi ¼ k

� �

P zi ¼ kð Þ (47)

Next, we need to define P
yi
ci;zi

� �

to define complete data likelihood. For NeuroPAL, this is easy

since each cell is assigned a unique color (Yemini et al., 2021) that is for each spatial component

(cell) the color density mixture has only 1 component. Thus, P yi
ci ;zi

� �

¼ P yi
zi

� �

and P ci
zi

� �

= 1.

With updated definitions, the complete likelihood of data is defined as

P X;Y;Z;Cð Þ ¼
i

Y

P xi;yi; zi;cið Þ ¼
i

Y

P
xi

zi

� �

P
yi

ci

� �

P zið Þ ¼
i

Y

k

Y

p
zik
k N xi;�k;S

s
k

� �zik
F ci;�kð Þzik (48)

Now, if F ci;kð Þ is defined as exp � yi�Ckð ÞTSc
k
�1 yi�Ckð Þ

� �

(as described in S2.4) and expected

complete data log-likelihood is maximized using the EM method then the M-step is equivalent to

maximizing

L¼�
X

i;k

aik xi�T ðmk;WÞk k2Ss
k
�1þðyi�CkÞ

TS
c

k

�1
ðyi�CkÞ

� �

�
l

2
trðWGWTÞ (49)

Thus, it can be seen that the first term in Equation 49 is equivalent to Equation 44.

S2.6 Color + Rel. position

In this case we combined color information of cells with relative position information of cells. Note

that in contrast to S2.5, in this case we use co-dependent features (that is pairwise relative position

features) in combination with color information, whereas in S2.5, the feature was dependent on cell-

specific information (absolute position of cells). The unary feature in this case is same as the Color

only method (S2.4).
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fcol k; i;xð Þ ¼ exp � Ci �Ckð ÞTS�1

k Ci �Ckð Þ
� �

(50)

Pairwise features in this case were the same as described in S1.2. Optimization of the objective

function in this case was performed using Loopy Belief Propagation algorithm as described in S1.4.

Comparing prediction accuracy in this case to the Color + Registration (S2.5) method helps in verify-

ing that the higher accuracy achieved by this method in predicting cell identities is due to co-depen-

dent cell features thus highlighting the importance of such features.

S2.7 Registration + color + Rel. position

In this case, we combined all the cell independent and co-dependent features in one model. Thus,

the unary features in this case were fcol k; i; xð Þ) and freg k; i; xð Þ as described in S2.4 and S2.1, and co-

dependent features were the same as the described in S1.2. Here again, objective function was opti-

mized using Loopy Belief Propagation algorithm as described in S1.4. We simulated this condition

to see if prediction accuracy can be boosted by combining the co-dependent position features with

registration algorithm. However, in most cases, we saw a decrease in prediction accuracy. This is

because the competition between registration term and relative position features term in objective

function decreases accuracy.
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