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Supplementary file 1 1 

 2 

Detailed analysis pipeline – methods of U-DNA-Seq data analysis 3 

Supplementary file 1-table 1. Description of the investigated samples. 4 

abbreviation description 

WT wild type HCT116 that is MMR deficient 

NT_UGI non-treated UGI-expressing HCT116 

NT_UGI_MMR non-treated UGI-expressing HCT116, MMR proficient variant 

5FdUR_UGI 5FdUR treated UGI-expressing HCT116 

5FdUR_UGI_MMR 5FdUR treated UGI-expressing HCT116, MMR proficient variant 

RTX_UGI RTX treated UGI-expressing HCT116 

RTX_UGI_MMR RTX treated UGI-expressing HCT116, MMR proficient variant 

NT_UGI_ctr empty bead control for U-DNA-IP in non-treated UGI-expressing HCT116 

5FdUR_UGI_ctr empty bead control for U-DNA-IP in 5FdUR treated UGI-expressing HCT116 

NT_UGI_H3K36me3 ChIP-seq for H3K36me3 in non-treated UGI-expressing HCT116 

RTX_UGI_H3K36me3 ChIP-seq for H3K36me3 in RTX treated UGI-expressing HCT116 

 5 

Supplementary file 1-table 2. Details on the applied tools. 6 

Program 
package 

tool purpose Version Link 

FastQC 
 

Quality checking 0.11.7 https://www.bioinformatics.b
abraham.ac.uk/projects/fast
qc  

Trimmomatic 
 

Adapter and quality trimming 0.36 https://github.com/timflutre/tr
immomatic  (Bolger, Lohse, 
& Usadel, 2014) 

BWA MEM Burrows-Wheeler Aligner 0.7.17 https://github.com/lh3/bwa 
(H. W. Li, 2013) 

samtools view Filtering reads in bam files 1.9 https://github.com/samtools/
samtools  (H. Li et al., 2009) 

merge Concatenating bam files 
sort Sorting reads in a bam file (required by most of the 

downstream application) 
index Indexing bam files (required by most of the downstream 

application) 
idxstats Reporting the numbers of mapped and unmapped reads 

in an indexed bam file along the chromosomes and 
scaffolds in the reference genome 

Picard Tools MarkDuplicates Filtering out reads corresponding to PCR or optical 
duplicates 1.95 http://broadinstitute.github.io

/picard  
deepTools multiBamSummary Genome-wide comparison of multiple bam files regarding 

the read coverage in defined sized bins 3.2.1 https://github.com/deeptools
/deepTools/releases 
(Ramírez et al., 2016) 

 
bamCoverage  Calculating genome scaled read coverage tracks in 

databins and with the option of smoothing resulting in 
bedgaph or bigWig files 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://github.com/timflutre/trimmomatic
https://github.com/timflutre/trimmomatic
https://github.com/lh3/bwa
https://github.com/samtools/samtools
https://github.com/samtools/samtools
http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
https://github.com/deeptools/deepTools/releases
https://github.com/deeptools/deepTools/releases
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bigwigCompare Comparing two bigWig files in many different ways e.g. 
log2 ratio or subtract 

multiBigWigSummary Genome-wide comparison of multiple bw files in defined 
sized bins 

plotCorrelation Calculating and plotting the correlation coefficients from 
the results of multiBigWigSummary or 
multiBamSummary 

bedtools2 merge Merging intervals in files in many different ways 2.28.0 https://github.com/arq5x/bed
tools2 (Quinlan & Hall, 
2010) subtract Subtracting intervals in files in different ways 

complement Taking the complement of an interval file comparing to  a 
reference genome 

intersect Extracting overlapping fractions of interval files in many 
different ways 

jaccard Calculating Jaccard indices (ratio of base numbers in the 
intersect over the union of two interval files) 

annotate Comparing query interval file to a set of database interval 
files, and reporting overlap ratio and/or the number of 
overlapping intervals for each interval in the query bed 
file 

GIGGLE sort_bed A script utilizing also bgzip, to sort and compress bed 
files for giggle search 1.0 https://github.com/ryanlayer/

giggle (Layer et al., 2018) 
 

Index Special indexing  applied for the library of the database 
interval files 

search Scoring colocalization between a query and indexed 
database interval files 

kentUtils bigWigToWig conversion tool from the binary coded bigWig to a text 
format Wiggle file 

 
https://github.com/ucscGeno
meBrowser/kent (Kuhn, 
Haussler, & Kent, 2013) 

bigWigAverageOverBed Averaging scores in a bw files for the intervals given in a 
bed files 

liftOver Converting genomic coordinates in a bed file from one to 
another reference genome version 

MACS2 callpeak Calling peaks of read coverage, standard tool in ChIP-
seq data analysis 2.1.2 https://github.com/taoliu/MA

CS  (Feng, Liu, & Zhang, 
2011; Zhang et al., 2008) 

Segway 
package 

Genomedata load Preparation of genomedata file for the Segway train and 
annotate 

1.4.4 http://noble.gs.washington.e
du/proj/genomedata/ 
(Hoffman, Buske, & Noble, 
2010) 

Segway Learning algorithm to define genomic segments with 
characteristic patterns, performing genome 
segmentation. 

3.0 https://segway.hoffmanlab.o
rg/ (Chan et al., 2017; 
Hoffman et al., 2012)  

Segtools Calculating signal distribution and other features on the 
identified genomic segments, and  preparing heatmaps 
and plots 

1.2.4 http://noble.gs.washington.e
du/proj/segtools (Buske, 
Hoffman, Ponts, Le Roch, & 
Noble, 2011) 

Python Seaborn, Matplotlib, 
Pandas 

Seaborn is a library for making statistical graphics in 
Python. It is built on top of matplotlib and closely 
integrated with pandas data structures. 

0.10.1 https://pypi.org/project/seab
orn/ (Hunter, 2007; 
McKinney & others, 2010) 

R 
 

Environment for statistical computing 3.5.1 https://www.R-project.org/ (R 

Core Team, 2018) 

Linux 
command-line 
utilities 

awk Text pattern scanning and processing tool to handle big 
data in text format in many different ways 4.0.2 Copyright © 2016 Free 

Software Foundation, Inc. 
sort  Sorting information of a text file in many different ways 8.22 

grep Handling and processing big data in text format in many 
different ways 2.20 

https://github.com/arq5x/bedtools2
https://github.com/arq5x/bedtools2
https://github.com/ryanlayer/giggle
https://github.com/ryanlayer/giggle
https://github.com/ucscGenomeBrowser/kent
https://github.com/ucscGenomeBrowser/kent
https://github.com/taoliu/MACS
https://github.com/taoliu/MACS
http://noble.gs.washington.edu/proj/genomedata/
http://noble.gs.washington.edu/proj/genomedata/
https://www.r-project.org/
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Preprocessing 7 

Raw sequencing data for both input and enriched samples were first quality checked (using FastQC) and 8 

trimmed (using Trimmomatic (Bolger et al., 2014)), then aligned to the human reference genome (using 9 

BWA (H. W. Li, 2013)). The GRCh38.d1.vd1 reference genome sequence (basically the 10 

GCA_000001405.15_GRCh38_no_alt_analysis_set (Jensen, Ferretti, Grossman, & Staudt, 2017)) was 11 

selected that contains additional decoy segments (GenBank Accession GCA_000786075) and virus 12 

sequences to help eliminating potential contaminating reads from the core alignment 13 

(https://gdc.cancer.gov/about-data/data-harmonization-and-generation/gdc-reference-files (Gao et al., 14 

2019)). Aligned reads were sorted (using samtools sort (H. Li et al., 2009)), and duplicates were marked 15 

(using Picard Tools) resulting in bam files (raw aligned reads). Reads with MAPQ=0 were removed from 16 

raw bam files using samtools view as follows.  17 

$ samtools view -b -h -q 1 NAME.sorted.dedup.bam -L list_of_chr_bam.bed -o 18 

NAME.MAPQfiltered.bam 19 

# list_of_chr_bam.bed is a 3 column tab delimited text file with indication of the name of chromosomes, 20 

their starts and their ends within the applied reference genome assembly. 21 

Hereafter, all applied command lines are provided in a generalized way, where „NAME” consists of the 22 

following indications: treatments_cellType_replicationNo_sampleType. In this study, „treatments” can be 23 

WT, NT_UGI, RTX_UGI, or 5FdUR_UGI; cellTypes can be HCT116, HCT116MMR (MMR proficient variant 24 

of HCT116) or K562; replicationNo can be rep1, rep2, or merged; sampleType can be IP (=enriched), son 25 

(=input), or combination of these in case of log2 ratio or other files derived from two samples (e.g. 26 

IP_vs_son). Where distinction is necessary, a note is inserted in brackets after the „NAME” (e.g. 27 

NAME(rep1)…), otherwise the command was applied on all of the samples. The names of the files 28 

deposited into the Gene Expression Omnibus (GEO, accession number GSE126822) also follow this 29 

scheme.  30 

Cell type specific blacklists were created by combination of the universal DAC blacklist 31 

(https://www.encodeproject.org/files/ENCFF419RSJ) suggested for general use by ENCODE consortium 32 

(Amemiya, Kundaje, & Boyle, 2019) and a cell type specific blacklist defined based on Ultra High Signal 33 

(UHS) regions and low-mappability regions detected in the input sequencing data (Figure 2-figure 34 

supplement 2). This procedure involves deepTools (Ramírez et al., 2016), some tools from the kentUtils 35 

package of the UCSC (Kuhn et al., 2013), R and linux command-line utilities. The steps are as follows: 36 

Method to define Ultra High Signal (UHS) regions: 37 

(1) Compute coverage tracks without smoothing for input samples only. 38 

$ bamCoverage -b NAME.sorted.dedup.bam -o NAME.bin100bp.no_smooth.RPGC.bw --binSize 39 

100 --verbose --normalizeUsing RPGC --effectiveGenomeSize 2913022398 –p 16 40 

ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_genbank/Eukaryotes/vertebrates_mammals/Homo_sapiens/GRCh38/seqs_for_alignment_pipelines/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA_000786075.2_hs38d1/GCA_000786075.2_hs38d1_genomic.fna.gz
https://gdc.cancer.gov/about-data/data-harmonization-and-generation/gdc-reference-files
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 41 

(2) Compute histogram on coverage signals to define a threshold above which UHS regions are 42 

considered (Figure 2-figure supplement 2C). 43 

$ bigWigToWig NAME.bin100bp.no_smooth.RPGC.bw NAME.bin100bp.no_smooth.RPGC.wig 44 

In R: 45 

> NAME <- read.delim("NAME.bin100bp.no_smooth.RPGC.wig", header=FALSE) 46 

> hist(NAME$V4, breaks = 100) 47 

> hist(NAME$V4, breaks = 3000, xlim = c(-0.2, 400), ylim = c(0, 5000)) 48 

A threshold at coverage signal = 50 was decided. 49 

(3) Compute interval (bed) files describing UHS regions. 50 

# deleting lines that are only for indication the bedGraph sections and then selecting data bins that are 51 

above the threshold 50 52 

$ grep -vwF "bedGraph" NAME.bin100bp.no_smooth.RPGC.wig | awk ' $4 > 50 ' > 53 

NAME.bin100bp.no_smooth.RPGC.UHS.bed 54 

# merging neighboring data bins to a single interval, then sorting, then printing column 1, 2, and 3, and 55 

also the line number in each line of the bed file 56 

$ bedtools merge -i NAME.bin100bp.no_smooth.RPGC.UHS.bed | sort -k1,1 -k2,2n | awk 57 

'{print $1 "\t" $2 "\t" $3 "\t" NR}' > NAME.bin100bp.no_smooth.RPGC.UHS.numbered.bed 58 

# calculating average log2 uracil enrichment value for the intervals in the bed file, it is added to the 59 

column 5 60 

$ bigWigAverageOverBed -bedOut=NAME.bin100bp.no_smooth.RPGC.UHS.scored.bed 61 

NAME.bin100bp.no_smooth.RPGC.bw NAME.bin100bp.no_smooth.RPGC.UHS.numbered.bed DEL.tab 62 

# sorting, then printing again with the right format of the float numbers in the column 5 63 

$ sort -k1,1 -k2,2n NAME.bin100bp.no_smooth.RPGC.UHS.scored.bed | awk '{printf "%s\t", 64 

$1; printf "%s\t", $2; printf "%s\t", $3; printf "%s\t", $4; printf "%f\n", $5}' > 65 

NAME.bin100bp.no_smooth.RPGC.UHS.scored2.bed 66 

 67 

Method to define low-mappability regions: 68 

(1) Compute coverage tracks without smoothing and also without normalizing for the input bam 69 

files, original and filtered ones (in filtered one, the MAPQ=0 reads were removed using 70 

samtools view, see above). 71 

$ bamCoverage -b NAME.sorted.dedup.bam -o NAME.bin100bp.no_smooth.no_norm.bw --binSize 72 

100 --verbose  --effectiveGenomeSize 2913022398 –p 16 73 
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$ bamCoverage -b NAME.MAPQfiltered.bam -o 74 

NAME.MAPQfiltered.bin100bp.no_smooth.no_norm.bw --binSize 100 --verbose  --75 

effectiveGenomeSize 2913022398 –p 16 76 

(2) Compute log2 ratio track of coverage original / filtered (using deepTools/BamCompare for bins 77 

100bp). 78 

$ bigwigCompare -b1 NAME.bin100bp.no_smooth.no_norm.bw -b2 79 

NAME.MAPQfiltered.bin100bp.no_smooth.no_norm.bw -o NAME.original_vs_filtered.log2.bw -80 

of bigwig --binSize 100 --skipZeroOverZero --pseudocount 2 1 -v -p 16 81 

(3) Compute histogram on log2 ratio signals (Figure 2-figure supplement 2D).  82 

$ bigWigToWig NAME.original_vs_filtered.log2.bw NAME.original_vs_filtered.log2.wig 83 

In R (R Core Team, 2018): 84 

> NAME_of <- read.delim("NAME.original_vs_filtered.log2.wig", header=FALSE) 85 

> hist(NAME_of$V4, breaks = 100) 86 

> hist(NAME_of$V4, breaks = 100, xlim = c(-0.2, 4), ylim = c(0, 1500000)) 87 

A threshold at log2 ratio signal = 1.0 was decided, that means that half of the reads in the given bin have 88 

MAPQ=0. 89 

(4) Compute interval (bed) files that describe regions with more than 50% ambiguously mapped 90 

reads considered as low-mappability regions. 91 

$  grep -vwF "bedGraph" NAME.original_vs_filtered.log2.wig | awk ' $4 > 1 ' > 92 

NAME.original_vs_filtered.log2.blackMAPQ.bed 93 

$ bedtools merge -i NAME.original_vs_filtered.log2.blackMAPQ.bed | sort -k1,1 -k2,2n | 94 
awk '{print $1 "\t" $2 "\t" $3 "\t" NR}' > 95 

NAME.original_vs_filtered.log2.blackMAPQ.numbered.bed 96 

$ bigWigAverageOverBed -bedOut=NAME.original_vs_filtered.log2.blackMAPQ.scored.bed 97 

NAME.original_vs_filtered.log2.bw 98 

NAME.original_vs_filtered.log2.blackMAPQ.numbered.bed DEL.tab 99 

$ sort -k1,1 -k2,2n NAME.original_vs_filtered.log2.blackMAPQ.scored.bed | awk '{printf 100 
"%s\t", $1; printf "%s\t", $2; printf "%s\t", $3; printf "%s\t", $4; printf "%f\n", 101 

$5}' > NAME.original_vs_filtered.log2.blackMAPQ.scored2.bed 102 

Cell type specific blacklists were then created by merging the DAC blacklist (ENCFF419RSJ), the UHS and 103 

the low-mappability regions using bedtools merge with the parameter - d500 to avoid 500 bases or shorter 104 

gaps with obviously no biological meaning (cf. purple and black intervals on IGV view at Figure 2-figure 105 

supplement 2B). For HCT116 cell line specific blacklist, all the corresponding input samples were used and 106 

the derived intervals were merged together. 107 

$ cat NAME1.bin100bp.no_smooth.RPGC.UHS.scored2.bed 108 

NAME2.bin100bp.no_smooth.RPGC.UHS.scored2.bed {…} 109 
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NAMEn.bin100bp.no_smooth.RPGC.UHS.scored2.bed | sort -k1,1 -k2,2n > 110 

united_sorted_UHS_HCT116.bed 111 

$ bedtools merge -i united_sorted_UHS_HCT116.bed > UHS_HCT116.bed  112 

$ cat NAME1.original_vs_filtered.log2.blackMAPQ.scored2.bed 113 
NAME2.original_vs_filtered.log2.blackMAPQ.scored2.bed {…} 114 

NAMEn.original_vs_filtered.log2.blackMAPQ.scored2.bed | sort -k1,1 -k2,2n > 115 

united_sorted_blackMAPQ_HCT116.bed 116 

$ bedtools merge -i united_sorted_blackMAPQ_HCT116.bed > blackMAPQ_HCT116.bed  117 

$ cat ENCFF419RSJ.bed UHS_HCT116.bed blackMAPQ_HCT116.bed | sort -k1,1 -k2,2n > 118 

united_sorted_blacklist_HCT116.bed 119 

$ bedtools merge -i united_sorted_blacklist_HCT116.bed -d 500 > blacklist_HCT116.bed  120 

 121 

The effective genome size was calculated by subtracting the blacklisted and the originally masked 122 

regions of the reference genome. 123 

$ bedtools subtract -a list_of_chr_bam.bed -b blacklist_HCT116.bed > 124 

not_blacklisted_HCT116.bed  125 

$ bedtools nuc -fi GRCh38.d1.vd1.fa -bed not_blacklisted_HCT116.bed > 126 

not_blacklisted_HCT116_nuc.bed 127 

$ awk '{(sum1+=$6) (sum2+=$9) (sum3+=$7) (sum4+=$8) (sum5+=$10) (sum6+=$11) 128 
(sum7+=$12)} END {print sum1 "\t" sum2"\t" sum3 "\t" sum4 "\t" sum5 "\t" sum6 "\t" 129 

sum7}' not_blacklisted_HCT116_nuc.bed 130 

825630405 826937345 570444697 570830493 165010872 99 2958853872 131 

# Note that awk will sum up the number from the head line too – so column number has to be subtracted. 132 

number of A   number of T number of C number of G number of N No other   length 133 
825630399 826937336 570444690 570830485 165010862 88 2958853860 134 

Thereby, the effective genome size was calculated for the analysis of the HCT116 samples as 135 

2793842910 (length – number of N – No other). For the MMR proficient HCT116 cells, a separate blacklist 136 

was calculated. Accordingly, the effective genome size has been changed to 2804512581. 137 

GC content for the effective part of the reference genome was found to be 40.85% for both MMR deficient 138 

and proficient HCT116 cells. This was calculated according to the formula: (number of  C + number of G) 139 

/ effective genome size. 140 

 141 

This cell type specific united blacklist was applied in samtools view to BAM files that were also filtered for 142 

MAPQ=0 reads previously. 143 
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$ samtools view -b -h NAME.MAPQfiltered.bam -L blacklist_HCT116.bed -o 144 

NAME.blacklist.bam -U NAME.filtered_blacklisted.bam  145 

$ samtools index NAME.filtered_blacklisted.bam 146 

$ samtools idxstats NAME.filtered_blacklisted.bam > 147 

NAME.filtered_blacklisted.bam.idxstats.csv  148 

 149 

Supplementary file 1-table 3. Number of reads in samples during the pre-processing steps. All 150 
samples and replicates are shown here that were sequenced in the frame of the present publication. 151 
Number of raw reads means read number before starting alignment (the sum of the mapped and unmapped 152 
read numbers). Uniquely mapped read means that MAPQ is not zero. The samples are as follows: non-153 
treated wild-type (WT), non-treated UGI-expressing (NT_UGI), 5FdUR treated UGI-expressing 154 
(5FdUR_UGI), RTX treated UGI-expressing (RTX_UGI) HCT116 cells; non-treated UGI-expressing 155 
(NT_UGI MMR), 5FdUR treated UGI-expressing (5FdUR_UGI MMR), RTX treated UGI-expressing 156 
(RTX_UGI MMR) MMR proficient version of HCT116 cells, and non-treated wild-type K562 cells (K562). 157 
Genomic DNA was isolated and sonicated to about 300 kb fragments (input), uracil-DNA was enriched by 158 
immunoprecipitation via FLAG-tagged U-DNA sensor (enriched). Here, we included K562 data too that was 159 
addressed to have a kind of reference point to the previously published dU-seq data (Shu et al., 2018) with 160 
which detailed comparison is also made in the Appendix 1. 161 

sample replicates 
number of 
raw reads 

number of 
mapped 

reads 

unmapped reads uniquely mapped reads 
uniquely mapped 

reads after blacklisting 

number % number % number % 

WT input 
WT1_son 138283424 138113944 169480 0.12 131604925 95.17 126302380 91.34 

WT2_son 185174607 184959442 215165 0.12 175302618 94.67 168698159 91.10 

WT enriched 
WT1_IP 144612745 144094135 518610 0.36 138611548 95.85 131765827 91.12 

WT2_IP 159514985 159314208 200777 0.13 152796029 95.79 145489972 91.21 

NT_UGI 
input 

NT1_son 164023406 163757733 265673 0.16 156045404 95.14 149734348 91.29 

NT2_son 173254485 173088530 165955 0.10 165373102 95.45 158978819 91.76 

NT_UGI 
enriched 

NT1_IP 260763674 260300247 463427 0.18 251164014 96.32 239327438 91.78 

NT2_IP 136148357 134759365 1388992 1.02 129486254 95.11 123064064 90.39 

5FdUR_UGI 
input 

5FdUR1_son 128706895 128669770 37125 0.03 122476766 95.16 118558597 92.12 

5FdUR1_son 201926203 201560665 365538 0.18 193086643 95.62 184756297 91.50 

5FdUR_UGI 
enriched 

5FdUR1_IP 150596242 150522522 73720 0.05 144554269 95.99 141582874 94.01 

5FdUR2_IP 138651760 138410833 240927 0.17 133200761 96.07 128584894 92.74 

RTX_UGI 
input 

RTX1_son 145920877 145775676 145201 0.10 139168642 95.37 133567232 91.53 

RTX2_son 147882518 147674678 207840 0.14 141097936 95.41 135259752 91.46 

RTX_UGI 
enriched 

RTX1_IP 166544868 166305588 239280 0.14 160567280 96.41 155171205 93.17 

RTX2_IP 151875638 151666578 209060 0.14 146619425 96.54 141987664 93.49 

NT_UGI MMR 
input 

NT1MMR_son 176769886 176519499 250387 0.14 168384253 95.26 162316924 91.82 

NT2MMR_son 158422442 158204670 217772 0.14 150145829 94.78 144327780 91.10 

NT_UGI MMR 
enriched 

NT1MMR_IP 206717745 206322712 395033 0.19 198774470 96.16 189830957 91.83 

NT2MMR_IP 181222656 180978162 244494 0.13 174061142 96.05 167043578 92.18 

5FdUR_UGI 
MMR input 

5FdUR0MMR_son 225701020 225256603 444417 0.20 215868115 95.64 206203797 91.36 

5FdUR1MMR_son 161595292 161314811 280481 0.17 153899974 95.24 147556558 91.31 

5FdUR2MMR_son 168394046 168247239 146807 0.09 160551391 95.34 153742056 91.30 

5FdUR_UGI 
MMR 

enriched 

5FdUR0MMR_IP 163350647 163119913 230734 0.14 156865033 96.03 152306214 93.24 

5FdUR1MMR_IP 165059439 164692746 366693 0.22 157148267 95.21 152505075 92.39 

5FdUR2MMR_IP 161660950 161500117 160833 0.10 154724245 95.71 150031196 92.81 

RTX_UGI 
MMR input 

RTX1MMR_son 182107737 181930877 176860 0.10 173346807 95.19 165477472 90.87 

RTX2MMR_son 216039165 215831688 207477 0.10 204582815 94.70 195579694 90.53 

RTX_UGI 
MMR 

enriched 

RTX1MMR_IP 142816751 142519961 296790 0.21 136944112 95.89 133722720 93.63 

RTX2MMR_IP 166796548 166485737 310811 0.19 159559070 95.66 155107383 92.99 

K562 input K562_son 106137622 105875437 262185 0.25 100326105 94.52 97429855 91.8 

K562 
enriched 

K562_IP 109490393 109306854 183539 0.17 105310296 96.18 102013265 93.17 
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Correlation was calculated among bam files using multiBamSummary and plotCorrelation tools of the 162 

deepTools package (Ramírez et al., 2016). Pearson correlation coefficients were calculated with 5000 163 

bases bin size between uniquely mapped reads of samples after blacklisting as follows:  164 

$ multiBamSummary bins --binSize 5000 -b NAME1.filtered_blacklisted.bam 165 
NAME2.filtered_blacklisted.bam {…} NAMEn.filtered_blacklisted.bam  -o 166 

multiBamSummary_bin5000.npz --scalingFactors 167 

scalingFactors_from_multiBamSummary_bin5000.txt --outRawCounts 168 
raw_counts_from_multiBamSummary_bin5000.csv --ignoreDuplicates --maxFragmentLength 169 

2000 --extendReads -v -p 16 170 

$ plotCorrelation --corData multiBamSummary_bin5000.npz --corMethod pearson --171 

whatToPlot heatmap -o multiBamSummary_bin5000_heatmap.png -T multiBamSummary_bin5000 -172 

-skipZeros --removeOutliers --plotNumbers --colorMap RdPu 173 

Pearson correlation coefficients between replicates were measured as follows: WT enriched: 0.92, input: 174 

0.89; NT_UGI enriched: 0.79, input: 0.82; 5FdUR_UGI enriched: 0.87, input: 0.88; RTX_UGI enriched: 175 

0.97, input: 0.89. NT_UGI_MMR enriched: 0.92, input: 0.84; 5FdUR_UGI_MMR enriched: 0.88, input: 0.78; 176 

RTX_UGI_MMR enriched: 0.95, input: 0.93. All further data processing and analysis steps were done on 177 

the two biological replicates separately, as well as on merged bam files of corresponding replicates. All the 178 

results were in good agreement between replicates, so hereafter, in the main figures, we show results for 179 

the merged data. 180 

Merging replicates were performed at the level of cleaned aligned reads (filtered_blacklisted.bam files) 181 

using samtools merge (H. Li et al., 2009). 182 

$ samtools merge -r -1 -c --threads 16 183 

NAME(merged).filtered_blacklisted.non_sorted.bam NAME(rep1).filtered_blacklisted.bam 184 

NAME(rep2).filtered_blacklisted.bam 185 

$ samtools sort -l1 -o NAME(merged).filtered_blacklisted.bam -O BAM -@16 186 

NAME(merged).filtered_blacklisted.non_sorted.bam 187 

$ samtools index NAME(merged).filtered_blacklisted.bam 188 

Comparison of the samples at the level of merged, filtered and blacklisted bam files (Figure 2-figure 189 

supplement 3) shows clear differences among input and enriched files, as well as treated and non-treated 190 

samples. All input files belong to the HCT116 cell line are quite similar, while the input sample of K562 cells 191 

shows significant difference that is another argument for cell type specific blacklisting. 192 

 193 

Determination of uracil enrichment: log2 ratio track and derived regions versus peaks called by 194 

MACS2 tool. 195 

Uracil enrichment should be determined from the increased coverage of enriched data versus the input 196 

using cleaned aligned reads (filtered_blacklisted.bam files), as it is also recommended by the current 197 
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ENCODE standard (https://www.encodeproject.org/chip-seq/histone/#restrictions). For that, basically two 198 

main ways are available: 1) conventional peak calling algorithms (e.g. MACS2 (Feng et al., 2011; Zhang et 199 

al., 2008)), especially if relatively intense and sharp peaks of enrichment are expected; 2) calculation and 200 

comparison of genome scaled coverage tracks for both enriched and input sequencing data e.g. in the form 201 

of log2 ratio tracks (Figure 3-figure supplement 1). This latter option results in more detailed information on 202 

the enrichment in the format of bedGraph or bigwig (bw). However, such log2 ratio tracks (bw files) can 203 

hardly be used to screen large databases for colocalizing genomic features or factor binding profiles (cf. 204 

Figure 2-figure supplement 1). 205 

In case of the present samples (either non-treated or treated by thymidylate biosynthesis inhibitors), we 206 

found broad genomic regions with elevated log2 signals rather than intense sharp peaks (Figure 3A, Figure 207 

3-figure supplement 1, Figure 4-figure supplement 2). Hence, we decided to derive interval (bed) files from 208 

the log2 ratio tracks (bw) using a threshold reasonable based on log2 ratio signal histograms (cf. Figure 209 

3C, and Figure 3-figure supplement 4). These intervals might be able to describe such broad regions of 210 

uracil enrichment better than the peak calling results (cf. Figure 3-figure supplement 1), and simultaneously 211 

allow efficient screening of large datasets for colocalizing features. 212 

To further access the appropriate approach of data processing and extracting information on genomic uracil 213 

enrichment, we performed both 1) broad peak calling, and 2) extraction of even broader regions based on 214 

log2 ratio tracks. Hereafter, the two terms ’peak’ and ’region’ will be consequently applied for the results of 215 

these two approaches, respectively. 216 

1) Peak calling was performed using broad peak option in MACS2 at two different broad-cutoff 217 

values (grey intervals at Figure 3-figure supplement 1). Note that --cutoff-analysis option can 218 

also be used to estimate the number and length of the peaks at different q and p cutoff values. 219 

$ MACS2 callpeak -t NAME(IP).filtered_blacklisted.bam -c 220 
NAME(son).filtered_blacklis.bam --broad -g 2793842910 --broad-cutoff 0.05 -n NAME.0p05 221 

--outdir {PATH} --nomodel -f BAMPE 222 

$ MACS2 callpeak -t NAME(IP).filtered_blacklisted.bam -c 223 

NAME(son).filtered_blacklis.bam --broad -g 2793842910 --broad-cutoff 0.5 -n NAME.0p5 -224 

-outdir {PATH} --nomodel -f BAMPE 225 

 226 

2) Determination of broad regions based on log2 ratio tracks was performed as follows using 227 

bamCoverage and bigwigCompare tools of deepTools package (Ramírez et al., 2016), some 228 

tools from the kentUtils package of the UCSC (Kuhn et al., 2013), R and linux command-line 229 

utilities. 230 

$ bamCoverage -b NAME.filtered_blacklisted.bam -o NAME.bin100bp.smooth5000.RPGC.bw --231 
binSize 100 --verbose --smoothLength 5000 --normalizeUsing RPGC --effectiveGenomeSize 232 

2793842910 -p 16 --extendReads 233 

https://www.encodeproject.org/chip-seq/histone/#restrictions
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$ bigwigCompare -b1 NAME(IP).bin100bp.smooth5000.RPGC.bw -b2 234 

NAME(son).bin100bp.smooth5000.RPGC.bw -o NAME.bin100bp.smooth5000.RPGC.log2.bw -of 235 

bigwig --binSize 100 -v -p 16 236 

$ bigWigToWig NAME.bin100bp.smooth5000.RPGC.log2.bw 237 

NAME.bin100bp.smooth5000.RPGC.log2.wig  238 

In R (Figure 3C, and Figure 3-figure supplement 4): 239 

> NAME(short) <- read.delim("NAME.bin100bp.smooth5000.RPGC.log2.wig", header=FALSE) 240 

> hist(NAME(short)$V4, breaks = 100, xlim = c(-1.5, 1.5), ylim = c(0, 2500000)) 241 

 242 

The histograms are shown in Figure 3C, and Figure 3-figure supplement 4, and data are provided in the 243 

corresponding source data files. The applied thresholds are shown in Figure 3-figure supplement 2A and 244 

also indicated in the corresponding source data files. 245 

Extraction of the data bins with log2 ratio signal higher than the threshold was done as follows: 246 

# deleting lines that is only for indication the bedGraph sections and then selecting data bins that are above 247 

the threshold (in this example, it is 0.2) 248 

$ grep -vwF "bedGraph" NAME.bin100bp.smooth5000.RPGC.log2.wig | awk ' $4 > 0.2 ' > 249 

NAME.bin100bp.smooth5000.RPGC.log2.0p2.bed 250 

# merging neighboring data bins to a single interval, then sorting, then printing column 1, 2, and 3, and also 251 

the line number in each line of the bed file 252 

$ bedtools merge -i NAME.bin100bp.smooth5000.RPGC.log2.0p2.bed | sort -k1,1 -k2,2n | 253 
awk '{print $1 "\t" $2 "\t" $3 "\t" NR}' > 254 

NAME.bin100bp.smooth5000.RPGC.log2.0p2.numbered.bed 255 

# calculating average log2 uracil enrichment value for the intervals in the bed file, it is added to the column 256 

5 257 

$ bigWigAverageOverBed -bedOut=NAME.bin100bp.smooth5000.RPGC.log2.0p2.scored.bed 258 
NAME.bin100bp.smooth5000.RPGC.log2.bw 259 

NAME.bin100bp.smooth5000.RPGC.log2.0p2.numbered.bed DEL.tab 260 

# sorting, then printing again with the right format of the float numbers in the column 5 261 

$ sort -k1,1 -k2,2n NAME.bin100bp.smooth5000.RPGC.log2.0p2.scored.bed | awk '{printf 262 
"%s\t", $1; printf "%s\t", $2; printf "%s\t", $3; printf "%s\t", $4; printf "%f\n", 263 

$5}'  > NAME.bin100bp.smooth5000.RPGC.log2.0p2.region.bed 264 

# only if top ranked intervals have to be selected: sorting by average log2 uracil enrichment scores in 265 

decreasing order, then selecting the top 50000 intervals (other numbers of top intervals can be defined as 266 

it is desired), then sorting back in alphabetic order (that is required by several possible further applications 267 

e.g. bedtools) 268 

$ sort -k 5 -nr NAME.bin100bp.smooth5000.RPGC.log2.0p2.region.bed | head -n 50000 | 269 

sort -k1,1 -k2,2n > NAME.bin100bp.smooth5000.RPGC.log2.0p2.top50k.bed 270 
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We argue that peak calling using MACS2 is suboptimal for description of distribution of genomic uracil, 271 

even if broad peak calling is applied (Figure 3-figure supplement 1). Based on theoretical expectations 272 

(cf. main text) as well as on the initial processing of the actual U-DNA-Seq data, we recommend to use 273 

the log2 ratio of the genome scaled coverage tracks and the derived regions of uracil enrichment rather 274 

than the peak calling approach.  275 

To further strengthen this choice, we made a detailed comparison on the defined regions of uracil 276 

enrichment (based on log2 ratio tracks) and the peak calling results (Figure 3-figure supplement 2). A 277 

statistics, including the applied thresholds, Jaccard indices between replicates, and the extent of the 278 

regions, are shown for region.bed files derived from the log2 ratio tracks (Figure 3-figure supplement 2A). 279 

Regarding peak calling, we found, that using the same broad-cutoff parameter, the numbers of called peaks 280 

are extremely different (from 35 000 to 250 000) among the samples, even between parallels. This 281 

difference in peak numbers does not seem to correlate with the elevated uracil level in treated samples (cf. 282 

higher number of peaks in WT and NT_UGI samples than in the treated ones). Using the „--cutoff-analysis” 283 

option in MACS2, we tried to harmonize the number of called peaks in different samples using sometimes 284 

very different broad-cutoff parameters (Figure 3-figure supplement 2B). Comparing the two statistics for the 285 

two approaches, the reproducibility of peak calling was still much worse (cf. Jaccard index values between 286 

replicates, in case of peak calling (Figure 3-figure supplement 2B) versus log2 regions of uracil enrichment 287 

(Figure 3-figure supplement 2A)). Lower reproducibility of peak calling results in lower descriptive value for 288 

the uracil distribution, as it is also reflected in comparison of drug-treated and non-treated samples (Figure 289 

3-figure supplement 2D vs C). 290 

Overlapping bases and Jaccard indices were calculated for the interval files by bedtools jaccard tool as 291 

follows: 292 

$ bedtools jaccard -a NAME1.bin100bp.smooth5000.RPGC.log2.0p2.region.bed -b 293 

NAME2.bin100bp.smooth5000.RPGC.log2.0p2.region.bed 294 

 295 

In the QC report of sequencing from Novogene, the GC contents of the sequenced samples were 296 

documented. All samples, except for the non-treated enriched ones, were around 42% characteristic for 297 

the human genome. However, in case of non-treated enriched samples, the GC content was consequently 298 

decreased to around 37%. We were curious, if such difference might occur due to different GC content of 299 

the regions enriched in uracils in the non-treated versus drug-treated samples. Indeed, GC contents of 300 

regions were decreased to around 33% and increased to about 44-46% in case of non-treated and drug-301 

treated samples, respectively (Figure 3-figure supplement 2A). For comparison, GC content of the not 302 

blacklisted and non-masked part of the reference genome was 40.85% ((number of C + number of G) / 303 

effective genome size). 304 
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GC% was calculated for the interval files of each sample using bedtools nuc tool and awk as follows: 305 

$ bedtools nuc -fi GRCh38.d1.vd1.fa -bed 306 

NAME.bin100bp.smooth5000.RPGC.log2.0p2.region.bed | awk '{(sum1+=$8) (sum2+=$11) 307 
(sum3+=$9) (sum4+=$10)} END {print sum1 "\t" sum2"\t" sum3 "\t" sum4}' >> 308 

summary.region.bed.nuc.csv 309 

$ bedtools nuc -fi GRCh38.d1.vd1.fa -bed NAME1.0p05_peaks.broadPeak | awk 310 

'{(sum1+=$12) (sum2+=$15) (sum3+=$13) (sum4+=$14)} END {print sum1 "\t" sum2"\t" sum3 311 

"\t" sum4}' >> summary.peaks.bed.nuc.csv 312 

Based on the comparison reported in Figure 3-figure supplement 2, we decided that log2 ratio tracks and 313 

the derived interval files will be used for further analysis. For visualization, IGV views are shown for all the 314 

samples (replicates were merged) in a selected genomic region (Figure 3A), as well as for all the 315 

chromosomes (Supplementary file 2). 316 

Furthermore, we used multiBigwigSummary and plotCorrelation to show Pearson correlation on log2 ratio 317 

tracks (see the command lines below). Heatmaps for individual replicates (Figure 3-figure supplement 3) 318 

and also for merged replicates (Figure 3B) revealed that the treated and non-treated enriched samples are 319 

well separated in terms of global uracil distribution pattern.  320 

$ multiBigwigSummary bins -b NAME1.filtered_blacklisted.bw 321 

NAME2.filtered_blacklisted.bw {…} NAMEn.filtered_blacklisted.bw -o 322 

mbws_filtered_blacklisted_bw_data.npz -v -p 16 323 

$ plotCorrelation --corData mbws_filtered_blacklisted_bw_data.npz --corMethod pearson 324 
--whatToPlot heatmap -o mbws_filtered_blacklisted_bw_heatmap.png -T 325 

mbws_filtered_blacklisted_bw --skipZeros --removeOutliers --plotNumbers --colorMap 326 

RdPu 327 

 328 

For the negative control IP samples, genome-scaled coverage tracks were also calculated in the same way 329 

as described above. Then the control signal tracks were normalized according to the amounts of the pulled 330 

down DNA (measured by Qubit assay, Figure 1-figure supplement 2A), and were subtracted from their 331 

corresponding U-DNA-IP tracks as follows.  332 

$ bigwigCompare -b1 5FdUR_UGI_IP.bin100bp.smooth5000.RPGC.bw -b2 333 
5FdUR_UGI_ctr.bin100bp.smooth5000.RPGC.bw --operation subtract -o 334 

5FdUR_UGI_IP_subtract_ctr. bin100bp.smooth5000.RPGC.bw -of bigwig --binSize 100 --335 

scaleFactors 1:0.109 -v -p 32 336 

These corrected coverage tracks were then combined with their input to calculate log2 enrichment tracks 337 

(cf. Figure 1-figure supplement 2).  338 

$ bigwigCompare -b1 5FdUR_UGI_IP_subtract_ctr.bin100bp.smooth5000.RPGC.bw -b2 339 
5FdUR_UGI son.bin100bp.smooth5000.RPGC.bw -o 340 

5FdUR_UGI_ctr_subtracted.bin100bp.smooth5000.RPGC.log2.bw -of bigwig --binSize 100 -v 341 

-p 32  342 
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