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Abstract Piwi-interacting RNAs (piRNAs) play essential roles in silencing repetitive elements to

promote fertility in metazoans. Studies in worms, flies, and mammals reveal that piRNAs are

expressed in a sex-specific manner. However, the mechanisms underlying this sex-specific

regulation are unknown. Here we identify SNPC-1.3, a male germline-enriched variant of a

conserved subunit of the small nuclear RNA-activating protein complex, as a male-specific piRNA

transcription factor in Caenorhabditis elegans. SNPC-1.3 colocalizes with the core piRNA

transcription factor, SNPC-4, in nuclear foci of the male germline. Binding of SNPC-1.3 at male

piRNA loci drives spermatogenic piRNA transcription and requires SNPC-4. Loss of snpc-1.3 leads

to depletion of male piRNAs and defects in male-dependent fertility. Furthermore, TRA-1, a master

regulator of sex determination, binds to the snpc-1.3 promoter and represses its expression during

oogenesis. Loss of TRA-1 targeting causes ectopic expression of snpc-1.3 and male piRNAs during

oogenesis. Thus, sexually dimorphic regulation of snpc-1.3 expression coordinates male and female

piRNA expression during germline development.

Introduction
Piwi-interacting RNAs (piRNAs), a distinct class of small noncoding RNAs, function to preserve germ-

line integrity (Batista et al., 2008; Carmell et al., 2007; Cox et al., 1998; Deng and Lin, 2002; Kur-

amochi-Miyagawa et al., 2008; Lin and Spradling, 1997; Wang and Reinke, 2008). In Drosophila,

mutation of any of the three Piwi genes (piwi, aub, ago3) results in rampant activation of transposons

in the germline and severe defects in fertility (Brennecke et al., 2007; Harris and Macdonald,

2001; Lin and Spradling, 1997; Vagin et al., 2006). In Mus musculus, mutation of the Piwi protein

MIWI leads to the misregulation of genes involved in germ cell development, defective gametogen-

esis, and sterility (Deng and Lin, 2002; Zhang et al., 2015b). Caenorhabditis elegans piRNAs can
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be inherited across multiple generations and trigger the transgenerational silencing of foreign ele-

ments such as transgenes. Disruption of this inheritance results in eventual germline collapse and

sterility, known as the germline mortal phenotype (Ashe et al., 2012; Buckley et al., 2012;

Shirayama et al., 2012). Taken together, piRNAs are essential to preserve germline integrity and

ensure the reproductive capacity in metazoans.

Loss of the piRNA pathway can have distinct consequences between the sexes and across devel-

opmental stages. Many species show sex-specific expression of piRNAs (Armisen et al., 2009;

Billi et al., 2013; Williams et al., 2015; Yang et al., 2013; Zhou et al., 2010). Demonstrated by

hybrid dysgenesis, the identity of maternal, but not paternal, piRNAs in flies is important for

fertility of progeny (Brennecke et al., 2008). In contrast, the piRNA pathway in mammals appears to

be dispensable for female fertility (Carmell et al., 2007; Murchison et al., 2007), but distinct sub-

sets of piRNAs are required for specific stages of spermatogenesis (Aravin et al., 2003;

Aravin et al., 2006; Carmell et al., 2007; Di Giacomo et al., 2013; Gainetdinov et al., 2018;

Girard et al., 2006; Grivna et al., 2006; Kuramochi-Miyagawa et al., 2008; Li et al., 2013). In

worms, most piRNAs are uniquely enriched in either the male or female germline (Billi et al., 2013;

Kato et al., 2009). Nevertheless, in all of these contexts, how the specific expression of different

piRNA subclasses is achieved is poorly understood.

piRNA biogenesis is strikingly diverse across organisms and tissue types. In the Drosophila germ-

line, piRNA clusters are found within pericentromeric or telomeric heterochromatin enriched for

H3K9me3 histone modifications. The HP1 homolog Rhino binds to H3K9me3 within most of these

piRNA clusters and recruits Moonshiner, a paralog of the basal transcription factor TFIIA, which, in

turn, recruits RNA polymerase II (Pol II) to enable transcription within heterochromatin

(Andersen et al., 2017; Chen et al., 2016; Klattenhoff et al., 2009; Mohn et al., 2014;

Pane et al., 2011). Two waves of piRNA expression occur in mouse testes: pre-pachytene piRNAs

are expressed in early spermatogenesis and silence transposons, whereas pachytene piRNAs are

expressed in the later stages of meiosis and have unknown functions. While the mechanisms of pre-

pachytene piRNA transcription remain elusive, pachytene piRNAs require the transcription factor

A-MYB, along with RNA Pol II (Li et al., 2013).

In C. elegans, SNPC-4 is essential for the expression of piRNAs in the germline (Kasper et al.,

2014). SNPC-4 is the single C. elegans ortholog of mammalian SNAPC4, the largest DNA binding

subunit of the small nuclear RNA (snRNA) activating protein complex (SNAPc). A complex of

SNAPC4, SNAPC1, and SNAPC3 binds to the proximal sequence element (PSE) of snRNA loci to

promote their transcription (Henry et al., 1995; Jawdekar and Henry, 2008; Ma and Hernandez,

2002; Su et al., 1997; Wong et al., 1998; Yoon et al., 1995). SNPC-4 occupies transcription start

sites of other classes of noncoding RNAs across various C. elegans tissue types and developmental

stages (Kasper et al., 2014; Weng et al., 2019). Furthermore, piRNA biogenesis factors PRDE-1,

TOFU-4, and TOFU-5 are expressed in germ cell nuclei and interact with SNPC-4 at clusters of

piRNA loci (Goh et al., 2014; Kasper et al., 2014; Weick et al., 2014; Weng et al., 2019). These

data suggest that SNPC-4 has been co-opted by germline-specific factors to transcribe piRNAs.

The vast majority of the ~15,000 piRNAs in C. elegans are encoded within two large megabase

genomic clusters on chromosome IV (Das et al., 2008; Ruby et al., 2006). Each piRNA locus enco-

des a discrete transcriptional unit that is individually transcribed as a short precursor by Pol II

(Gu et al., 2012; Cecere et al., 2012; Billi et al., 2013). Processing of precursors yields mature piR-

NAs that are typically 21 nucleotides (nt) in length and strongly enriched for a 50 uracil (referred to

as 21U-RNAs). Transcription of these piRNAs requires a conserved eight nt core motif (NNGTTTCA)

within their promoters (Billi et al., 2013; Cecere et al., 2012; Ruby et al., 2006). piRNAs enriched

during spermatogenesis are associated with a cytosine at the 50 most position of the core motif

(CNGTTTCA); mutation of cytosine to adenine at this position results in ectopic expression of nor-

mally male-enriched piRNAs during oogenesis. In contrast, genomic loci expressing piRNAs enriched

in the female germline show no discernable nucleotide bias at the 50 position (Billi et al., 2013).

While differences in cis-regulatory sequences contribute to the sexually dimorphic nature of piRNA

expression, sex-specific piRNA transcription factors that drive distinct subsets of piRNAs in the male

and female germlines remain to be identified.

Here, we demonstrate that SNPC-1.3, an ortholog of human SNAPC1, is required specifically for

male piRNA expression. Furthermore, TRA-1, a master regulator of sex determination, transcription-

ally represses snpc-1.3 during oogenesis to restrict its expression to the male germline. Taken
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together, our study reports the first example of a sex-specific piRNA transcription factor that drives

the expression of male-specific piRNAs.

Results

SNPC-4 is a component of the core piRNA transcription complex that
drives all piRNA expression
SNPC-4-specific foci are present in both male and female germ cell nuclei (Kasper et al., 2014), but

the role of SNPC-4 in the male germline is not well understood. We hypothesized that SNPC-4 is

required for piRNA biogenesis in both the male and female germline. To test this, we conditionally

depleted the SNPC-4 protein using the auxin-inducible degradation system (Zhang et al., 2015a;

Figure 1—figure supplement 1A). We added an auxin-inducible degron (AID) to the C-terminus of

SNPC-4 using CRISPR/Cas9 genome engineering, and crossed this strain into worms expressing

TIR1 under the germline promoter, sun-1. TIR1 is a plant-specific F-box protein that mediates the

rapid degradation of C. elegans proteins tagged with an AID in the presence of the phytohormone

auxin. Thus, addition of auxin to the snpc-4::aid; Psun-1::TIR1 strain is expected to degrade SNPC-

4::AID, whereas strains with snpc-4::aid alone serve as a negative control; under these conditions,

we examined a panel of spermatogenesis- and oogenesis-enriched piRNAs (Billi et al., 2013) during

spermatogenesis and oogenesis. Unless otherwise stated, spermatogenesis and oogenesis stages

will correspond to time points taken at 48 hr and 72 hr, respectively, post-L1 hatching at 20˚C.

Worms depleted of SNPC-4 showed decreased expression of both spermatogenesis- and oogene-

sis-enriched piRNAs during spermatogenesis and oogenesis time points, respectively (Figure 1A),

confirming that SNPC-4 is a core piRNA transcription factor required for all piRNA expression.

Given that SNPC-4 activates transcription of piRNAs in both sexes, we hypothesized that sex-spe-

cific cofactors might associate with SNPC-4 to regulate sexually dimorphic piRNA expression. To

test this hypothesis, we leveraged genetic backgrounds that masculinize or feminize the germline.

Specifically, we used him-8(-) mutants, which have a higher incidence of males (~30% males com-

pared to <0.5% spontaneous males in the wild-type hermaphrodite population) (Hodgkin et al.,

1979), and fem-1(-) mutants, which are completely feminized when grown at 25˚C (Doniach and

Hodgkin, 1984). We introduced a C-terminal 3xFlag tag sequence at the endogenous snpc-4 locus

using CRISPR/Cas9 genome editing (Paix et al., 2015) and performed immunoprecipitation of

SNPC-4::3xFlag followed by mass spectrometry. PRDE-1 and TOFU-5 co-purified with SNPC-

4::3xFlag in both him-8(-) and fem-1(-) mutants, suggesting that these known piRNA biogenesis fac-

tors exist as a complex in both male and female germlines (Figure 1B,C, Figure 1—figure supple-

ment 1B). While a single worm ortholog, SNPC-4, exists for human SNAPC4, the C. elegans

genome encodes four homologs of human SNAPC1 (worm SNPC-1.1, -1.2, -1.3, and -1.5) and

four homologs of human SNAPC3 (worm SNPC-3.1, -3.2, -3.3, and -3.4, Figure 1B; Li et al., 2004).

From our mass spectrometry analysis, six of the eight C. elegans homologs of SNAPC1 and SNAPC3

co-purified with SNPC-4::3xFlag from both him-8(-) and fem-1(-) genetic backgrounds (Figure 1B,C).

These results revealed that SNPC-4 interacts with both snRNA and piRNA transcriptional machinery.

SNPC-1.3 interacts with the core piRNA biogenesis factor SNPC-4
during spermatogenesis
We also identified proteins that co-purified with SNPC-4::3xFlag from him-8(-), but not fem-1(-)

mutants. We were particularly interested in SNPC-1.3 because of its homology to the mammalian

SNAPC1 subunit of the snRNA transcription complex. We confirmed that SNPC-1.3 interacts with

SNPC-4 by using CRISPR/Cas9 genome editing to generate an endogenously tagged snpc-1.3::ollas

strain. We then crossed snpc-1.3::ollas into the snpc-4::3xflag strain and performed immunoprecipi-

tation with anti-Flag antibodies. In agreement with the mass spectrometry data, SNPC-4::3xFlag and

SNPC-1.3:Ollas interacted robustly during spermatogenesis. The interaction was detectable at a

much lower level during oogenesis (Figure 1D). The reciprocal co-immunoprecipitation of SNPC-

1.3::3xFlag followed by western blotting for SNPC-4::Ollas confirmed this biochemical interaction

(Figure 1—figure supplement 1H), suggesting that SNPC-1.3 forms a complex with the previously

characterized piRNA biogenesis factor SNPC-4.
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Figure 1. SNPC-4 and SNPC-1.3 are part of the male piRNA transcription complex. (A) SNPC-4 is required for both male and female piRNA expression.

Taqman qPCR of male (left) and female (right) piRNAs normalized to U18 small nucleolar RNA in snpc-4::aid (denoted as ‘�’) and snpc-4::aid; Psun-1::

TIR1 (denoted as ‘+’) worms. Both genotypes were placed on auxin, and collected during spermatogenesis (spe., 48 hr) and oogenesis (oog., 72 hr).

Error bars: ± SD from two technical replicates. (B) Schematic highlights the conservation of SNAPc homologs from C. elegans, D. melanogaster, and H.

sapiens and catalogs all SNPC-4 (orange) interacting partners from previous work (Weick et al., 2014; Weng et al., 2019) or from our own analysis.

Known piRNA biogenesis factors (purple), SNPC-1 paralogs (green), and SNPC-3 paralogs (gray) are indicated. (C) SNPC-1.3 interacts with SNPC-4 in

only him-8(-) mutants. Volcano plots showing enrichment values of IP of SNPC-4 over control (control: him-8(-) mutants for top panel or fem-1(-) mutants

for bottom panel) and analogous significance values for proteins that co-purified with SNPC-4::3xFlag from (top) him-8(-) mutants or (bottom) fem-1(-)

mutants (n = 2 biological replicates). piRNA biogenesis factors (purple), SNPC-1 paralogs (green), and SNPC-3 paralogs (dark gray) are labeled in (B).

Figure 1 continued on next page
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SNPC-1.3 is enriched in the male germline
To determine whether SNPC-1.3 expression is restricted to the germline, we first examined snpc-1.3

mRNA levels during early spermatogenesis (36 hr post-L1 hatching) in worms fed glp-1 RNAi, which

abrogates germline development. The mRNA of snpc-4, which is highly expressed in the germline

(Kasper et al., 2014), was used as a control. Knockdown of glp-1 mRNA markedly reduced both

snpc-1.3 and snpc-4 mRNAs. SNPC-1.3::3xFlag protein expression was also reduced in a glp-4 tem-

perature-sensitive mutant, which fails to develop fully expanded germlines at 25˚C (Beanan and

Strome, 1992), suggesting that SNPC-1.3 is predominantly expressed in the germline (Figure 2A).

To examine differential snpc-1.3 expression between the sexes, we measured snpc-1.3 mRNA lev-

els in him-8(-) males and fem-1(-) females. The expression of snpc-1.3 mRNA was greatly enriched in

him-8(-) relative to fem-1(-), while snpc-4 mRNA did not show any differential expression. At the pro-

tein level, SNPC-1.3::3xFlag was also highly enriched in males as compared to females by western

blotting (Figure 2B).

SNPC-4, along with other piRNA factors, such as PRDE-1, localize to one or two foci in each

germline nuclei (Kasper et al., 2014; Weick et al., 2014; Weng et al., 2019). Given that SNPC-1.3

is present in a complex with SNPC-4 (Figure 1D), we hypothesized that SNPC-1.3 might show a sim-

ilar localization pattern to these other piRNA factors. To examine the subcellular localization of

SNPC-1.3, we performed immunofluorescence in snpc-4::3xflag; snpc-1.3::ollas adult males and her-

maphrodites. In the male germline, SNPC-1.3::Ollas colocalized with SNPC-4::3xFlag in the same

nuclear foci (Figure 2C). In contrast, no SNPC-1.3::Ollas signal was detected above background in

hermaphrodites (Figure 2C). Taken together, these data indicate that SNPC-1.3 co-localizes with

SNPC-4 specifically in the male germline.

SNPC-1.3 is required for transcription of male piRNAs
Given the prominent interaction between SNPC-1.3 and SNPC-4 in the male germline (Figure 1D), we

hypothesized that SNPC-1.3 might be required for piRNA expression during spermatogenesis. To test

this hypothesis, we generated a snpc-1.3 null allele by introducing mutations that result in a premature

stop codon located eight amino acids away from the start codon at the snpc-1.3 locus. We examined

spermatogenesis in hermaphrodites and him-8(-) males and examined oogenesis in adult hermaphro-

dites and fem-1(-) females. As a control, we analyzed the loss-of-function mutant of the C. elegans Piwi

protein, prg-1(-), which almost completely lacked male and female piRNAs (Figure 3A), as expected.

Levels of male piRNAs were dramatically reduced in snpc-1.3(-) hermaphrodites during spermatogen-

esis and in him-8(-); snpc-1.3(-) males, whereas female piRNAs were largely unaltered in snpc-1.3(-)

adult hermaphrodites and in fem-1(-); snpc-1.3(-) females (Figure 3A,B). Unexpectedly, female piRNAs

were also moderately upregulated by at least twofold in snpc-1.3(-) mutants undergoing spermato-

genesis and in him-8(-); snpc-1.3(-) males. These findings suggest that, in addition to activating male

piRNAs, SNPC-1.3 suppresses the expression of female piRNAs in the male germline, possibly by pref-

erentially recruiting core factors such as SNPC-4 to male piRNA loci. As SNPC-4 is known to activate

transcription of snRNAs as well as piRNAs (Kasper et al., 2014), we asked whether SNPC-1.3 is also

required for transcribing snRNAs. To test this, we measured U1 snRNA levels in hermaphrodite adults

after RNAi-mediated knockdown of snpc-1.3. In contrast to the reduction of U1 observed in snpc-4

RNAi, U1 levels were not significantly altered when snpc-1.3 was depleted (Figure 3—figure supple-

ment 2A), suggesting that, unlike SNPC-4, SNPC-1.3 is likely specific to the transcription of male piR-

NAs and does not play a role in snRNA transcription.

Figure 1 continued

Although SNPC-3.1 and SNPC-3.2 are reported to have the same amino acid sequence, we have picked up differential peptide coverage in the fem-1(-)

mutant for these two proteins and represented them as two different data points. (D) SNPC-4 interacts with SNPC-1.3. Anti-Flag immunoprecipitation

of SNPC-4::3xFlag and western blot for SNPC-1.3::Ollas during spermatogenesis (spe.) and oogenesis (oog.). PRDE-1::Ollas was used as a positive

control for interaction with SNPC-4::3xFlag (Kasper et al., 2014). g-Tubulin was used as the loading control.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Source data for Figure 1A.

Figure supplement 1. Validation of strains and mass spectrometry.
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Figure 2. SNPC-1.3 is enriched in the male germline. (A) SNPC-1.3 is predominantly germline-expressed. (Left) snpc-1.3 mRNA expression is reduced

upon RNAi-mediated knockdown of glp-1 during early spermatogenesis (36 hr). The housekeeping gene eft-2 was used for normalization. Error bars: ±

SD of two technical replicates. (Right) Western blot and quantification of SNPC-1.3::3xFlag in wild type, glp-4(-), and snpc-1.3(-) (no-Flag control) during

spermatogenesis. Error bars: ± SD of two biological replicates. g-Tubulin was used as the loading control. (B) SNPC-1.3 is more highly expressed in

Figure 2 continued on next page
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To extend these findings, we identified piRNAs enriched during spermatogenesis and oogenesis

by small RNA-seq in wild-type worms. Using a 1.2-fold threshold and false discovery rate (FDR)

of �0.05, a total of 6,368 of 14,714 piRNAs on chromosome IV were differentially expressed

(Figure 3C; Figure 3—figure supplements 1 and 2C; Supplementary file 1). Among these, 4,060

piRNAs were upregulated during spermatogenesis (hereafter referred to as male piRNAs) and 2,308

piRNAs were upregulated during oogenesis, which we define as female piRNAs. We compared this

dataset with our previous study that identified and categorized spermatogenesis- and oogenesis-

enriched piRNAs, as well as piRNAs that were not statistically enriched (NE) either during oogenesis

or spermatogenesis (Billi et al., 2013). Most male piRNAs identified in this study were also identified

in our previous study (82%; 3,316/4,060; Figure 3C). Next, we investigated how loss of snpc-1.3

affects global piRNA expression by performing small RNA-seq in wild type versus snpc-1.3(-)

mutants during spermatogenesis. We identified 3,601 piRNAs that were downregulated in a snpc-

1.3(-) mutant compared to wild type (Figure 3D, Figure 3—figure supplement 2D,

Supplementary file 2). Of these, 3,002 overlapped with spermatogenesis-enriched piRNAs identi-

fied in our previous study (Billi et al., 2013; Figure 3D). Additionally, 85% (3,452/4,060) of male piR-

NAs were depleted in snpc-1.3(-) mutants, suggesting that male piRNAs are regulated by SNPC-1.3

(Figure 3E, Figure 3—figure supplement 2E). Consistent with our Taqman analysis (Figure 3A,B),

73% (1,687/2,308) of oogenesis-enriched piRNAs identified in our study were significantly upregu-

lated in snpc-1.3(-) mutants during spermatogenesis (Figure 3F).

We next analyzed the genomic loci of male piRNAs and snpc-1.3-dependent piRNAs. As

expected, the intersection of these two piRNA subsets displayed strong enrichment for the eight nt

core motif and the 50-most position of this core motif was enriched for cytosine

(CNGTTTCA. Figure 3E; Figure 3—figure supplement 2E). In contrast, the core motif found

upstream of female piRNAs upregulated upon loss of snpc-1.3 displayed a much weaker bias for the

50 cytosine (Figure 3F). These observations validate our previous findings that male and female core

motifs are distinct (Billi et al., 2013). Taken together, these data indicate that SNPC-1.3 is required

for male piRNA expression.

SNPC-1.3 binds male piRNA loci in a SNPC-4-dependent manner
Given that SNPC-1.3 interacts with SNPC-4 and is required for expression of male piRNAs, we

hypothesized that SNPC-1.3 might bind male piRNA loci in association with SNPC-4. To test this, we

performed ChIP-qPCR to investigate SNPC-1.3 occupancy at regions of high piRNA density within

the two large piRNA clusters on chromosome IV; an intergenic region lacking piRNAs served as a

control. To determine whether SNPC-1.3 binding was dependent on SNPC-4, we again used the

auxin-inducible degradation system to deplete SNPC-4 in the snpc-1.3::3xflag strain for 4 hr prior to

our spermatogenesis time point. In the presence of SNPC-4 expression, SNPC-1.3 was enriched at

both piRNA clusters, albeit to a lesser degree at the small cluster, and this enrichment was lost upon

SNPC-4 depletion (Figure 4A, Figure 4—figure supplement 1A). These data indicate that SNPC-

1.3 binds piRNA loci during spermatogenesis in a SNPC-4-dependent manner in vivo.

To examine the genome-wide binding profile of SNPC-1.3 and its dependency on SNPC-4, we

performed ChIP-seq of N2, snpc-1.3::3xflag, and snpc-1.3::3xflag; snpc-4::aid; Psun-1::TIR1 worms

Figure 2 continued

males. (Left) snpc-1.3 mRNA expression is dramatically enriched in him-8(-) males over fem-1(-) females during spermatogenesis, whereas snpc-4 mRNA

expression shows no specific enrichment. eft-2 was used for normalization. Error bars: ± SD of two technical replicates. (Right) Western blot and

quantification of SNPC-1.3::3xFlag in him-8(-) and fem-1(-). Error bars: ± SD of two biological replicates. g-Tubulin was used as the loading control. (C)

SNPC-1.3 colocalizes with SNPC-4 in the male germline. Dissected adult male (top) and hermaphrodite (bottom) germlines stained for DNA, SNPC-

4::3xFlag (magenta) and SNPC-1.3::Ollas (green) in a N2 background. Yellow insets: transition zone. Blue insets: pachytene. Representative image of

three biological replicates is shown (male, n = 21, 18, 15 and hermaphrodite, n = 18, 10, 10). Scale bar, 25 mm.

The online version of this article includes the following source data for figure 2:

Source data 1. Source data for Figure 2A.

Source data 2. Source data for Figure 2A.

Source data 3. Source data for Figure 2B.

Source data 4. Source data for Figure 2B.

Choi, Tay, et al. eLife 2021;10:e60681. DOI: https://doi.org/10.7554/eLife.60681 7 of 35

Research article Chromosomes and Gene Expression Genetics and Genomics

https://doi.org/10.7554/eLife.60681


Figure 3. SNPC-1.3 is required for transcription of male piRNAs. (A) snpc-1.3 is required for male piRNA expression (spe.) but is dispensable for female

piRNA expression during oogenesis (oog.). Taqman qPCR and quantification of representative male (left) and female (right) piRNAs at spermatogenic

and oogenic time points normalized to U18. Error bars: ± SD of two technical replicates. (B) him-8(-); snpc-1.3(-) mutant males exhibit severely impaired

male piRNA expression and enhanced female piRNA expression. snpc-1.3 is not required for male or female piRNA expression in fem-1(-) females.

Figure 3 continued on next page
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during spermatogenesis (Figure 4—figure supplement 1B,C). Consistent with our ChIP-qPCR

results, SNPC-1.3 binds piRNA clusters in a SNPC-4-dependent manner (Figure 4B, Figure 4—fig-

ure supplement 1D). By quantifying the SNPC-1.3 signal over consecutive, non-overlapping 1 kb

bins across the entire genome, we identified 691 1 kb regions within the chromosome IV piRNA clus-

ters that were enriched for SNPC-1.3 in snpc-1.3::3xflag compared to N2 (Figure 4C, Figure 4—fig-

ure supplement 1G). Relative to snpc-1.3::3xflag, worms depleted of SNPC-4 showed loss of SNPC-

1.3 in 749 1 kb regions on chromosome IV piRNA clusters (Figure 4D, Figure 4—figure supplement

1F). Furthermore, SNPC-1.3 enrichment (p<2.2�10�16) and depletion (p<2.2�10�16) were specific

to the piRNA clusters on chromosome IV, and more than half (393/691) of the SNPC-1.3-enriched

regions in snpc-1.3::3xflag worms were depleted upon degradation of SNPC-4 (Figure 4C,D, Fig-

ure 4—figure supplement 1F,G).

To determine whether SNPC-1.3 preferentially binds male piRNA loci, we characterized the

SNPC-1.3 signal around individual 50 nucleotides of mature piRNAs. Again, we classified piRNAs as

male, female, or not significantly enriched (NE) in either sex, based on our small RNA-seq analysis in

wild-type hermaphrodites during spermatogenesis and oogenesis (Figure 3C). SNPC-1.3 binding at

male piRNA loci was most enriched just upstream of the piRNA 50 nucleotide, which overlaps the

conserved core motif (Figure 4E, Figure 4—figure supplement 1E). This binding profile was very

distinct for 1 kb bins that contained only male piRNAs (Figure 4F, Figure 4—figure supplement

1H). Upon depletion of SNPC-4, this peak in male piRNAs was lost (Figure 4E, Figure 4—figure

supplement 1E). Although the binding profiles for individual female piRNAs exhibited more variabil-

ity, there was little evidence for SNPC-1.3 binding and dependency on SNPC-4 at female loci

(Figure 4E, Figure 4—figure supplement 1E). Compared to the binding profile in male piRNA loci,

SNPC-1.3 binding was observed to a lesser extent in non-enriched piRNAs (Figure 4E, Figure 4—

figure supplement 1E). Taken together, these observations indicate that SNPC-1.3 requires the

core piRNA factor SNPC-4 to bind the piRNA clusters during spermatogenesis.

TRA-1 represses snpc-1.3 and male piRNA expression during oogenesis
As male piRNA expression and SNPC-1.3 protein expression are largely restricted to the male germ-

line, we asked how snpc-1.3 mRNA expression is regulated across development. C. elegans her-

maphrodites produce sperm during the L4 stage and transition to producing oocytes as adults. To

understand the mRNA expression profile of snpc-1.3 relative to snpc-4 and other developmentally

regulated genes, we performed qRT-PCR across hermaphrodite development. snpc-4 mRNA is

expressed at low levels during spermatogenesis, but dramatically increases during oogenesis

(Figures 5A and 1D; Figure 1—figure supplement 1H). These data suggest that low levels of

SNPC-4 are sufficient for activating male piRNA biogenesis during spermatogenesis. Consistent with

SNPC-1.3 protein expression (Figure 1D), snpc-1.3 mRNA levels peak in L3 to early L4 stages,

Figure 3 continued

Error bars: ± SD from two technical replicates. (C) piRNAs are differentially expressed during spermatogenesis (spe.) and oogenesis (oog.) in wild-type

worms. (Top) Volcano plot showing piRNAs with �1.2 fold-change and FDR of �0.05 in 48 hr (spe.) versus 72 hr (oog.). piRNAs are colored according to

male and female enrichment scores from Billi et al., 2013. (Bottom) Overlap of male piRNAs (spe.) in wild type at 48 hr with spermatogenesis-enriched

and oogenesis-enriched piRNAs defined in Billi et al., 2013. (D) piRNAs depleted in snpc-1.3(-) comprise mostly of male piRNAs. (Top) Volcano plot

shows piRNAs with �1.2 fold-change and FDR � 0.05 in snpc-1.3(-) mutant versus wild type during spermatogenesis (spe.). piRNAs are colored

according to male and female enrichment scores from Billi et al., 2013. (Bottom) Overlap of snpc-1.3-dependent piRNAs with spermatogenesis- and

oogenesis-enriched piRNAs defined in Billi et al., 2013. (E) Male piRNAs that are depleted in snpc-1.3(-) have a conserved upstream motif with a

strong 50 C bias. (Top) Overlap of snpc-1.3-dependent piRNAs with male piRNAs shown in (C). (Bottom) Logo plot displays conserved motif upstream

of each piRNA. Median position of the C-nucleotide of the identified motif, number of piRNAs, and associated E-value are listed. (F) Female piRNAs

are upregulated in snpc-1.3(-) mutants during spermatogenesis. (Top) Overlap of piRNAs upregulated at 72 hr (oog.) with piRNAs enriched in snpc-1.3(-

) at 48 hr (spe.). (Bottom) Logo plot displays conserved motif upstream of each piRNA. Median position of the C-nucleotide of the identified motif,

number of piRNAs, and associated E-value are listed.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Source data for Figure 3A.

Source data 2. Source data for Figure 3B.

Figure supplement 1. Small RNA-seq analysis pipeline.

Figure supplement 2. Quality control of small RNA-seq and validation analysis.
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Figure 4. SNPC-1.3 binds male piRNA loci in a SNPC-4-dependent manner. (A) SNPC-1.3 binding at the piRNA clusters requires SNPC-4. SNPC-

1.3::3xFlag binding normalized to input (mean ± SD of two technical replicates) on chromosome IV by ChIP-qPCR in N2, snpc-1.3::3xflag, and snpc-

1.3::3xflag; snpc-4::aid::ollas, which undergoes TIR-1-mediated degradation by addition of auxin (snpc-4::aid). Top panel depicts the density of piRNAs

on chromosome IV with piRNAs predominantly found in the small (4.5–7 Mb) and big (13.5–17.2 Mb) clusters. (B) SNPC-1.3 binding profiles across

chromosome IV in N2, snpc-1.3::3xflag, and snpc-1.3::3xflag; snpc-4::aid. The locations of the two piRNAs clusters are highlighted. (C) SNPC-1.3 binding

Figure 4 continued on next page
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during spermatogenesis (Figure 5A). Given that snpc-1.3 expression across development is regu-

lated at the mRNA level, we examined the sequences upstream of the snpc-1.3 coding region to

identify potential cis-regulatory motifs. Less than 200 bp upstream of the snpc-1.3 start codon, we

identified three consensus binding sites for TRA-1 (Figure 5B), a transcription factor that controls

the transition from spermatogenesis to oogenesis (Berkseth et al., 2013; Clarke and Berg, 1998;

Zarkower and Hodgkin, 1993).

In the germline, TRA-1, a Gli family zinc-finger transcription factor, controls the sperm-to-oocyte

decision by repressing both fog-1 and fog-3, which are required for controlling sexual cell fate

(Berkseth et al., 2013; Chen and Ellis, 2000; Lamont and Kimble, 2007; Zarkower and Hodgkin,

1993). Loss-of-function tra-1 hermaphrodites exhibit masculinization of the female germline and

develop phenotypically male-like traits (Hodgkin, 1987). We used RNAi to knock down tra-1 and

observed significant ectopic upregulation of snpc-1.3 mRNA during oogenesis (Figure 5C). How-

ever, this upregulation of snpc-1.3 expression could be an indirect effect of masculinization of the

germline. Therefore, to test whether TRA-1 directly regulates snpc-1.3, we generated strains harbor-

ing mutations at the three TRA-1 binding sites (tbs) in the endogenous snpc-1.3 promoter. Specifi-

cally, we mutated one (1xtbs), two (2xtbs), or all three (3xtbs) consensus TRA-1 binding motifs

(Figure 5B). Disruption of the TRA-1 binding sites led to reduced TRA-1::3xFlag binding upstream

of snpc-1.3 as revealed by ChIP-seq, with the 3xtbs mutant showing the greatest reduction of bind-

ing (Figure 5B, Figure 5—figure supplement 1D). In addition, snpc-1.3 mRNA levels were highly

upregulated when multiple TRA-1 binding sites were mutagenized (Figure 5C), consistent with TRA-

1 directly repressing snpc-1.3 transcription during oogenesis. To confirm that SNPC-1.3 protein

expression was also elevated in TRA-1 binding site mutants, we used CRISPR/Cas9 engineering to

add a C-terminal 3xFlag tag at the snpc-1.3 locus in snpc-1.3 (2xtbs) mutants. Indeed, SNPC-

1.3::3xFlag showed increased expression in the snpc-1.3::3xFlag(2xtbs) mutant during spermatogen-

esis and especially oogenesis (Figure 5C). Taken together, these findings demonstrate TRA-1 binds

to the snpc-1.3 promoter to repress its transcription during oogenesis.

Given that snpc-1.3 is robustly de-repressed during oogenesis in TRA-1 binding site mutants, we

hypothesized that male piRNAs would also be ectopically upregulated during oogenesis. To test

this, we performed small RNA-seq and compared piRNA levels in wild-type and snpc-1.3 (2xtbs)

worms during oogenesis (Supplementary file 3). Using a 1.2-fold threshold and FDR of �0.05, we

observed 1,370 piRNAs in snpc-1.3 (2xtbs) mutants that were upregulated compared to wild type

(Figure 5D). The majority of these upregulated piRNAs overlap with the male piRNAs that we identi-

fied in wild-type hermaphrodites (Figure 5D). We also confirmed this result by Taqman qPCR analy-

sis, which showed that male piRNAs were significantly upregulated in snpc-1.3 (2xtbs) and snpc-1.3

(3xtbs) mutants compared to wild type during oogenesis (Figure 5E). Taken together, these data

suggest that TRA-1 directly binds to tbs sites in the snpc-1.3 promoter to repress its transcription

and consequently, male piRNA expression during oogenesis.

Our data showed that female piRNAs are inappropriately upregulated during spermatogenesis

upon loss of snpc-1.3 (Figure 3A). Consistent with this result, female piRNAs show reduced expres-

sion during oogenesis upon upregulation of SNPC-1.3 expression in snpc-1.3 (2xtbs) and snpc-1.3

(3xtbs) mutants compared to wild type (Figure 5E). We posit that SNPC-1.3 plays a direct role in

Figure 4 continued

is enriched at piRNA clusters on chromosome IV. SNPC-1.3-bound regions are enriched within piRNA clusters compared to regions outside of the

piRNA clusters on chromosome IV (****p�0.0001, Wilcoxon rank sum test). The number of bins analyzed is listed in parentheses. (D) SNPC-1.3

enrichment at piRNA clusters is dependent on SNPC-4. SNPC-1.3-bound regions within piRNA clusters are depleted compared to regions outside of

the piRNA clusters on chromosome IV upon loss of SNPC-4 (****p�0.0001, Wilcoxon rank sum test). The number of bins analyzed is listed in

parentheses. (E) Distribution of SNPC-1.3 reads (mean density ± standard error) around the 50 nucleotide of mature piRNAs at the piRNA clusters. To

resolve SNPC-1.3 binding between male and female piRNAs despite the high density of piRNAs, we selected 1 kb bins with all male (100), female (19),

or non-enriched (279) piRNAs. Heat maps represent ChIP signal in 1 kb bins around the 50 nucleotide of all 100 mature male piRNAs, ranked according

to SNPC-1.3 signal. (F) Examples of SNPC-1.3 binding at two regions containing two male piRNA loci. Regions are anchored on the 50 nucleotide of

each mature male piRNA and show mean read density ± standard error.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Source data for Figure 4A.

Figure supplement 1. SNPC-1.3 ChIP-seq pipeline and quality control and biological replicates for SNPC-1.3 ChIP.
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Figure 5. TRA-1 represses snpc-1.3 and male piRNAs expression during oogenesis. (A) snpc-1.3 mRNA levels peak during early spermatogenesis (spe.)

while tra-1 mRNA levels are highest during oogenesis (oog.). qRT-PCR and quantification of snpc-1.3, snpc-4, and tra-1 mRNA normalized to eft-2

mRNA across hermaphrodite development. Time zero corresponds to the time when synchronized L1s were plated. Error bars: ± SD of two technical

replicates. (B) TRA-1 binds to the snpc-1.3 promoter. Schematic of the three TRA-1 binding sites upstream of the snpc-1.3 locus in wild type (top). Site-

Figure 5 continued on next page

Choi, Tay, et al. eLife 2021;10:e60681. DOI: https://doi.org/10.7554/eLife.60681 12 of 35

Research article Chromosomes and Gene Expression Genetics and Genomics

https://doi.org/10.7554/eLife.60681


activating male piRNA transcription, while indirectly limiting female piRNA transcription by seques-

tering core piRNA transcription factors to male piRNA loci.

SNPC-1.3 is critical for male fertility
Given the global depletion of male piRNAs in snpc-1.3(-) mutants and the progressive fertility

defects seen in prg-1(-) mutants (Batista et al., 2008; Wang and Reinke, 2008), we hypothesized

that snpc-1.3(-) worms might also show fertility defects. Indeed, snpc-1.3(-) hermaphrodites exhib-

ited significantly reduced fertility compared to wild type when grown at 25˚C (Figure 6A). To

address whether this decreased fertility was due to defects during spermatogenesis or oogenesis,

we compared brood sizes from crosses of fem-1(-) females and him-8(-) males with or without snpc-

1.3. Compared to him-8(-) males, him-8(-); snpc-1.3(-) males generated significantly smaller brood

sizes when crossed with fem-1(-) females; in contrast, fem-1(-); snpc-1.3(-) and fem-1(-) females gen-

erated similar brood sizes when crossed with him-8(-) males (Figure 6B). As an orthogonal test, we

crossed hermaphrodites to transgenic males expressing a fluorescent marker to facilitate counting of

cross progeny. These transgenic males encode a reporter gene, Pcol-19::gfp, which drives GFP

expression in the cuticle (Figure 6—figure supplement 1A). All Pcol-19::gfp; snpc-1.3(-) males pro-

duced fewer GFP+ progeny than wild-type Pcol-19::gfp males, whereas wild-type or snpc-1.3(-) her-

maphrodites generated similar numbers of GFP+ progeny when crossed with wild-type Pcol-19::gfp

males (Figure 6—figure supplement 1A). These results suggest that the reduced fertility of snpc-

1.3(-) mutants likely reflect defects during spermatogenesis.

To investigate the cause of snpc-1.3-dependent loss of male fertility, we examined spermiogene-

sis and sperm morphology in snpc-1.3(-) males. After meiotic differentiation in the male germline,

male spermatids are induced by ejaculation and undergo spermiogenesis, a process that converts

immature spermatids to motile sperm with a functioning pseudopod. Spermiogenesis can be

induced in vitro by isolating spermatids directly from males and treating them with pronase

(Shakes and Ward, 1989). Males lacking prg-1 still generate differentiated spermatids, but rarely

produce normal pseudopodia upon activation (Figure 6C,D; Wang and Reinke, 2008). Similar to

prg-1(-) mutants, snpc-1.3(-) spermatids were rarely able to form normal pseudopodia. In contrast,

snpc-1.3 (3xtbs) sperm formed normal pseudopodia at a frequency similar to wild type (Figure 6C,

D). In addition, many of the snpc-1.3(-) spermatids resembled sperm undergoing intermediate

stages of spermiogenesis. Spermiogenesis, in vivo, starts off with spherical spermatids that enter

into an intermediate stage characterized by the growth of spiky protrusions. This stage is then fol-

lowed by fusion of the spiky protrusions into a motile pseudopod (Figure 6E). To understand the

dynamics of snpc-1.3(-) sperm progression through spermiogenesis, we treated spermatids with pro-

nase and observed each activated spermatid over time. Wild-type spermatids spent an average of

6.2 min ± 4.5 min in the intermediate state before polarization and pseudopod development. In con-

trast, snpc-1.3(-) spermatids occupied the intermediate state for a significantly shorter period of time

(2.9 min ± 3.7 min, p<0.05; Student’s t-test) before forming pseudopods. By tracking each individual

spermatid across spermiogenesis, we found most snpc-1.3(-) spermatids were unable to sustain

Figure 5 continued

specific mutations shown in red were made in one, two, or three of the TRA-1 binding sites (gray denotes the mutated motifs). (Bottom) TRA-1 binding

is reduced in TRA-1 binding site mutants assayed by TRA-1 ChIP-seq. (C) TRA-1 represses snpc-1.3 mRNA expression during oogenesis. (Left) snpc-1.3

mRNA expression is drastically upregulated upon RNAi-mediated knockdown of tra-1 and (middle) in strains bearing mutations in two (2xtbs) or three

(3xtbs) TRA-1 binding sites. Error bars indicate ± SD from two technical replicates. (Right) Western blot of SNCP-1.3::3xFlag expression driven under the

wild-type and 2xtbs mutant promoter during spermatogenesis (spe.) (top) and oogenesis (oog.) (bottom). H3 was used as the loading control. (D) A

subset of male piRNAs are ectopically expressed during oogenesis in snpc-1.3 (2xtbs) mutants. (Top) Volcano plot showing differential piRNA

expression between snpc-1.3 (2xtbs) mutants versus wild type during oogenesis (oog.). piRNAs are colored by enrichment scores from Billi et al., 2013.

(Bottom) Overlap of male piRNAs defined in Figure 3C with upregulated piRNAs in snpc-1.3 (2xtbs) mutants. (E) Mutations at two (2xtbs) or three

(3xtbs) TRA-1 binding sites enhance male piRNA expression (top) but attenuate female piRNA expression (bottom) during oogenesis. Error bars

indicate ± SD from two technical replicates.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Source data for Figure 5A.

Source data 2. Source data for Figure 5C,E.

Figure supplement 1. TRA-1 regulation of snpc-1.3 across hermaphrodite development.
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Figure 6. SNPC-1.3 is critical for male fertility. (A) snpc-1.3(-) hermaphrodites exhibit sterility at 25˚C. Circles correspond to the number of viable

progeny from singled hermaphrodites (n = 16). Black bars indicate mean ± SD. Statistical significance was assessed using Welch’s t-test (****p�0.0001).

(B) snpc-1.3 promotes male fertility but is dispensable for female fertility. (Left) Diagram illustrates crosses between strains for mating assays (1.3(-)

denotes snpc-1.3(-)). (Right) snpc-1.3(-); him-8(-) males crossed to fem-1(-) females show severe fertility defects (Cross 3). snpc-1.3; fem-1(-) females

Figure 6 continued on next page
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pseudopod growth. While wild-type spermatids exhibited pseudopod growth and motility for an

average of 24 min ± 10.35 min, snpc-1.3(-) spermatids sustained growth for a significantly shorter

period of time (7.3 min ± 5.7 min, p<0.05; Student’s t-test) before becoming immotile (Figure 6E).

These results indicate that spnc-1.3(-) males have defective spermatogenesis processes and exhibit

similar fertility defects as prg-1(-) mutants.

Discussion
Our data indicate that C. elegans SNPC-1.3, a human SNAPC1 ortholog, functions as a male piRNA

transcription factor. SNPC-1.3 interacts with SNPC-4 in foci in male germ cell nuclei (Figure 2) and,

by preferentially binding male piRNA promoters (Figure 4), is critical for their expression (Figure 3).

SNPC-1.3 expression, reflecting the developmental profile of male piRNAs (Figure 5—figure sup-

plement 1A), is highest during spermatogenesis. We demonstrate that the snpc-1.3 locus itself is

regulated by the sex determination regulator, TRA-1 (Figure 5). During spermatogenesis, tra-1

expression is low, and snpc-1.3 and other male-promoting genes are licensed for expression. In con-

trast, tra-1 expression is upregulated during oogenesis and TRA-1 binds the snpc-1.3 promoter to

repress its transcription, leading to the expression of female over male piRNAs (Figure 7). We pro-

pose that SNPC-1.3, via its interaction with SNPC-4, can direct the specificity of the core piRNA

complex preferentially to male piRNA loci.

How is the expression of male and female piRNAs coordinated?
Given its role as a putative male piRNA transcription factor, we expected that deletion of snpc-1.3

would result in loss of male piRNAs with no consequences to the expression of female piRNAs. How-

ever, loss of snpc-1.3 also results in increased female piRNA expression during spermatogenesis

(Figure 3), whereas ectopic overexpression of snpc-1.3 during oogenesis leads to decreased female

piRNA levels (Figure 5). Taken together, our findings suggest that transcription of male and female

piRNAs is not completely separable from each other and that the balance in expression of the two

piRNA subclasses may be dictated by the allocation of shared core transcription factors such as

SNPC-4.

Similar to multiple gene classes activated by general transcription factors (Levine et al., 2014),

we speculate that male and female promoters compete for access to a limited pool of the core tran-

scription complex, which includes SNPC-4, PRDE-1, TOFU-4, and TOFU-5 (Figure 1). Therefore, we

propose a model in which the expression and binding of SNPC-1.3 to core piRNA factors serves to

‘sequester’ the core complex away from female promoters. Mechanistically, we posit that the core

piRNA transcription complex is specified to female promoters, and that only upon association with

SNPC-1.3 is the core machinery directed to male promoters. We predict that when SNPC-1.3 is

absent, more SNPC-4 and other previously identified cofactors are available to transcribe female

piRNAs. Conversely, overexpression of SNPC-1.3 leads to the disproportionate recruitment of the

core machinery to male promoters, leading to the indirect downregulation of female piRNAs. By

controlling male piRNA expression, SNPC-1.3 is crucial for maintaining the balance between male

and female piRNA levels across development.

Figure 6 continued

crossed to him-8(-) males (Cross 2) show equivalent fertility similar to fem-1(-) females crossed to him-8(-) males (Cross 1). Circles correspond to the

number of viable progeny from cross (n = 16). Black bars indicate mean ± SD. Statistical significance was assessed using Welch’s t-test (ns: not

significant; ****p�0.0001). (C) snpc-1.3(-) spermatids exhibit severe morphological defects. Images of pronase-treated sperm of wild-type, prg-1(-),

snpc-1.3(-), and snpc-1.3 (2xtbs) males. (D) snpc-1.3(-) spermatids exhibit severe sperm maturation defects. (E) (Top) Images depicted at 3 min intervals

of a sperm undergoing activation and maturation. Imaging of spermatid commenced ~3 min after pronase treatment. (Bottom) Graphical display of

individual sperm tracked over time after pronase treatment.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Source data for Figure 6A.

Source data 2. Source data for Figure 6B.

Source data 3. Source data for Figure 6E.

Figure supplement 1. SNPC-1.3 is critical for male fertility.
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While the default specification of the core complex to female promoters presents perhaps the

most parsimonious explanation underlying male and female piRNA expression, we cannot exclude

the possibility that an additional female-specific trans-acting factor may direct the core piRNA com-

plex to female promoters. If true, we speculate that the developmental expression of such a factor

(low during spermatogenesis and high during oogenesis), coupled with the developmental expres-

sion of SNPC-1.3, would coordinate the differential expression of male and female piRNAs. During

spermatogenesis, SNPC-1.3 is more highly expressed such that the core machinery would primarily

be directed to male promoters. In contrast, during oogenesis, SNPC-1.3 expression is low, concomi-

tant with elevated expression of a female factor to license transcription of female piRNAs. This

model, where both factors are present during both spermatogenesis and oogenesis, but in different
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Figure 7. Model illustrating the dynamics of male and female piRNA transcription across C. elegans sexual development. In wild-type worms, male and

female piRNA expression peaks during spermatogenesis and oogenesis, respectively. (Top) In snpc-1.3(-) mutants, male piRNA expression is

abrogated, and female piRNA expression is moderately enhanced across sexual development relative to wild type. In TRA-1 binding site mutants, snpc-

1.3 expression is de-repressed causing ectopic upregulation of male piRNAs and moderate repression of female piRNA expression during oogenesis

relative to wild type. (Bottom) During spermatogenesis, SNPC-1.3 interacts with SNPC-4 at male promoters to drive male piRNA transcription. During

oogenesis, TRA-1 represses the transcription of snpc-1.3 which results in the suppression of male piRNA transcription, thus leading to enhanced

transcription of female piRNAs.
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ratios, would also be consistent with our piRNA expression analysis in snpc-1.3 loss-of-function and

overexpression mutants.

The piRNA pathway co-opts snRNA biogenesis machinery
Our work adds to a growing body of evidence that snRNA machinery has been hijacked at multiple

stages in C. elegans piRNA biogenesis, including transcription (Kasper et al., 2014; Weng et al.,

2019) and termination (Beltran et al., 2019). Investigating potential parallels between snRNA and

piRNA biogenesis may provide useful clues into the role of SNPC-1.3 in the piRNA complex.

The minimal snRNA SNAP complex consists of a 1:1:1 heterotrimer of the subunits SNAPC4,

SNAPC1, and SNAPC3 in humans and SNAP190, SNAP43, and SNAP50 in flies (Henry et al., 1998;

Hung and Stumph, 2011; Li et al., 2004; Ma and Hernandez, 2002; Mittal et al., 1999; Figure 1).

In vitro studies have shown that the trimer must assemble before the complex is able to bind DNA.

Similarly, our data show SNPC-1.3 requires SNPC-4 to bind at the piRNA clusters (Figure 4),

although we cannot formally rule out that loss of SNPC-4 only affects the stability of SNPC-1.3,

rather than directly recruiting SNPC-1.3 to piRNA promoters. We speculate the piRNA complex is

assembled in a similar fashion to the snRNA complex. Based on this model, we expect that SNPC-4

binding at male piRNA loci is abolished in a snpc-1.3 mutant. However, conclusive evidence that

SNPC-4 binding at male piRNA promoters requires SNPC-1.3 is still lacking. Due to the highly clus-

tered nature of C. elegans piRNAs, we anticipate that detecting differences in SNPC-4 binding

between male and female piRNAs in snpc-1.3(-) mutants may not be possible with traditional ChIP-

seq methods, and may require application of higher resolution techniques.

Given that piRNAs have co-opted trans-acting factors from snRNA biogenesis (Kasper et al.,

2014), it would not be surprising if piRNAs also co-evolved cis-regulatory elements for transcription

factor binding from snRNA loci. Recently, Beltran et al., 2019 identified similarity between the 30

end of PSEs of snRNA promoters and the eight nt piRNA core motif in nematodes. In addition, Pol II

and Pol III transcription from snRNA promoters share a common PSE, but are distinguished by the

presence of other unique motifs (Hung and Stumph, 2011). Correspondingly, the canonical Type I

and less abundant Type II piRNAs can be discriminated by the presence or absence of the eight nt

core motif, respectively. Factors such as TOFU-4 and TOFU-5 function in both Type I and II piRNA

expression, whereas PRDE-1 is only required for Type I piRNAs (Kasper et al., 2014; Weng et al.,

2019). Altogether, these observations highlight the importance of cis-regulatory elements in specify-

ing the expression of snRNAs and piRNA classes. In addition to enrichment of cytosine at the 50 posi-

tion in the male core motif (Billi et al., 2013), we hypothesize that as-yet unidentified motifs may

further discriminate male from female piRNA promoters. While we observed SNPC-1.3 binding to

be enriched upstream of male piRNA loci (Figure 4), we cannot definitively conclude that SNPC-1.3

binds to the male-specific core motif, given the limitations of conventional ChIP-seq in resolving the

SNPC-1.3 footprint. Identifying the factors that specifically bind the eight nt core motif and other

potential cis-regulatory elements important for sex-specific piRNA expression will require further

investigation.

What are the functions of male piRNAs in C. elegans?
Our data suggest that SNPC-1.3 is essential for proper spermiogenesis (Figure 6). We hypothesize

the global loss of male piRNAs in a snpc-1.3(-) mutant is responsible for the higher incidence of sper-

miogenesis arrest and subsequent loss in fertility, although it is possible that SNPC-1.3 may have

other or additional effects on male fertility. Characterization of prg-1(-) mutants during spermiogene-

sis agree with our findings that loss of piRNAs in the male germline leads to acute defects directly

responsible for fertility (Wang and Reinke, 2008). Since the initial discovery of piRNA function in the

targeting and silencing of transposons in Drosophila (Vagin et al., 2006; Brennecke et al., 2007),

analyses in other systems have revealed that piRNAs have acquired neofunctions at later points

along the evolutionary time scale (Ozata et al., 2019).

While it is estimated that as much as 45% of the human genome encodes for transposable ele-

ments (Lander et al., 2001), only 12% of C. elegans genome encodes such elements. Furthermore,

nearly all of these regions are inactive in C. elegans (Bessereau, 2006). In contrast to Drosophila

piRNAs that target and silence transposons with perfect complementarity (Brennecke et al., 2007),

C. elegans piRNAs are thought to bind a broad range of endogenously expressed transcripts by
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partial complementarity (Ashe et al., 2012; Shen et al., 2018; Zhang et al., 2018). Together, these

findings suggest that worm piRNAs function in capacities distinct from canonical transposon silenc-

ing. While a recent methodology used crosslinking, ligation, and sequencing of piRNA:target hybrids

(CLASH) to determine that female piRNAs engage with almost every germline transcript

(Shen et al., 2018), how female piRNAs select their targets has yet to be examined. Like piRNAs

characterized in the female germline, male piRNAs may be interfacing with a broad range of targets

to regulate gene expression for proper spermatogenesis. Loss of prg-1 in males causes the downre-

gulation of a subset of spermatogenesis-specific genes (Wang and Reinke, 2008), suggesting male

piRNAs serve a protective function for spermatogenic processes. The characterization of the in vivo

landscape of male piRNA target selection using CLASH may provide insights into piRNA function

during spermatogenesis.

Why are male piRNAs restricted from the female germline?
Sperm and oocytes pass epigenetic information such as noncoding RNAs to the next generation

(Hammoud et al., 2014; Brykczynska et al., 2010; Tabuchi et al., 2018; Kaneshiro et al., 2019).

Recent studies show maternal piRNAs trigger the production of endo-siRNAs, called 22G-RNAs for

their 50 bias for guanine and 22 nt length, to transmit an epigenetic memory of foreign versus

endogenous elements to the next generation (Ashe et al., 2012; Buckley et al., 2012;

Shirayama et al., 2012). We predict that misexpression of male piRNAs during oogenesis may per-

turb the native pool of female piRNAs necessary for appropriate recognition of self versus non-self

elements. This may explain the decrease in fertility we observed in multiple TRA-1 binding site

mutant hermaphrodites (Figure 6—figure supplement 1B). As snpc-1.3 (3xtbs) sperm do not seem

to exhibit significant morphological defects (Figure 6), the fertility defects in the snpc-1.3 (3xtbs)

mutants could be due to problems arising in oogenesis. However, based on our sequencing data in

snpc-1.3 (2xtbs) mutants, we cannot distinguish whether fertility defects during oogenesis are due to

upregulation of male piRNAs, downregulation of female piRNAs, a combination of the two, or mis-

expression of downstream endo-siRNAs triggered by piRNAs. Further study of snpc-1.3 gain-of-

function mutants in oogenesis will enhance our understanding of the physiological consequences of

expressing male piRNAs in the female germline.

The intersection between sex determination and sex specification of
piRNA expression
We speculate that gene duplication of the snpc-1 family of genes occurred early during nematode

evolution and allowed for the acquisition of new functions by snpc-1 paralogs, specifically, from

snRNA to piRNA biogenesis. At least two SNPC-1 paralogs are present within the distantly related

nematode species, Plectus sambesii. Furthermore, we predict that co-opting SNPC-1 paralogs for

piRNA biogenesis may have occurred in parallel with the evolution of the nematode sex determina-

tion pathway. TRA-1 is a sex determination factor that acts to repress male-promoting gene expres-

sion in female germ cells to promote female germ cell fate. While Drosophila sex determination

utilizes different factors than C. elegans, further investigation into the conservation of TRA-1 shows

that it is a common feature in at least the nematode lineage (Pires-daSilva and Sommer, 2004).

Additionally, just as we have shown that TRA-1 represses snpc-1.3 in C. elegans (Figure 5), TRA-1

binding motifs GGG(A/T)GG are present in the putative upstream promoter regions of snpc-1.3

homologs identified in C. briggsae, C. brenneri, and C. nigoni (Figure 6—figure supplement 1C).

Taken together, these analyses point to a conserved link between sex determination and piRNA bio-

genesis pathways among nematodes.

In summary, our work reveals that SNPC-1.3 is specified to the male germline and is essential for

male piRNA expression. We have identified SNPC-1.3 as a major target of TRA-1 repression in the

female germline. Future studies will likely uncover additional factors required to coordinate the

proper balance of sex-specific piRNAs required for proper germline development and animal

fertility.
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Contact for reagent and resource sharing
More details about resources and reagents can be found in the Key Resources Table found in

Materials and methods. Further information and requests for resources and reagents should be

directed to and will be fulfilled by the Lead Contact, John K. Kim (jnkim@jhu.edu).

Experimental model and subject details
C. elegans strains were maintained at 20˚C according to standard procedures (Brenner, 1974),

unless otherwise stated. Bristol N2 was used as the wild-type strain. Except for RNAi and ChIP

experiments, worms were fed E. coli strain OP50. Worms used for ChIP were fed E. coli strain

HB101.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Antibody Mouse monoclonal
anti-Flag

Sigma F1804; RRID: AB_262044 Western – 1:1000; IF – 1:200

Antibody Rabbit polyclonal
anti-H3

Abcam Ab12079; RRID: AB_298834 1:15,000

Antibody Rabbit polyclonal
anti-tubulin

Sigma–Aldrich T1450; RRID:AB_261655 1:5000

Antibody Goat polyclonal
anti-rabbit

Jackson
Laboratories

111035045; RRID:AB_2337938 1:15,000

Antibody Sheep polyclonal
anti-mouse

GE Healthcare NA931; RRID:AB_772210 1:5000

Antibody Rat monoclonal
anti-Ollas

Novus Biologicals NBP1-06713SS Western – 1:8,000; IF – 1:200

Antibody Polyclonal donkey
anti-rabbit,
AlexaFluor 488

ThermoFisher A-21208 1:400

Antibody Polyclonal goat anti-
mouse, AlexaFluor
555

ThermoFisher A-21127 1:400

Antibody Polyclonal goat anti-
mouse IgG (IRDye
800 CW)

LI-COR Biosciences 925–32210; RRID:AB_621842 1:15,000

Antibody Polyclonal goat anti-
rabbit IgG (IRDye
680 RD)

LI-COR Biosciences 925–68071; RRID:AB_2721181 1:15,000

Other DAPI ThermoFisher 62248 0.5 mg/mL

Other Vectashield with
DAPI

Vector Laboratories H-1200; RRID:AB_2336790

Other Roche Blocking
Buffer

Millipore Sigma 11096176001

Other Odyssey Blocking
Buffer (TBS)

LI-COR Biosciences 927–50003

Strain, strain
background (E.
coli)

OP50 Shared
Fermentation
Facility,
The Pennsylvania
State University

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Strain, strain
background (E.
coli)

HB101 Shared
Fermentation
Facility,
The Pennsylvania
State University

Strain, strain
background (E.
coli)

HT115 RNAi clones Kamath and
Ahringer, 2003

Other TriReagent ThermoFisher AM9738

Other Benzonase Sigma–Aldrich E1014 1:1000

Other RNA 50

Polyphosphatase
Illumina RP8092H

Other Multiscribe Reverse
Transcriptase

ThermoFisher 4311235

Other Absolute Blue SYBR
Green

ThermoFisher AB4166B

Other Dimethyl
pimelimidate
dihydrochloride

Sigma–Aldrich D8388

Other Protease inhibitor
cocktail

Roche 4693159001 1:100

Other Purelink RNAse A ThermoFisher 12091021 1:10

Other Pronase E Sigma–Aldrich 7433–2 20 mg/mL

Other TaqMan Universal
PCR Master Mix, No
AmpErase UNG

ThermoFisher 4324018

Sequence-based
reagent

U18 TaqMan probe ThermoFisher 1764 TGGCAGTGATGATCACAAATCCGTGTTTCTGA
CAAGCGATTGACGATAGAAAACCGGCTGAGCCA

Sequence-based
reagent

21UR-1848 TaqMan
probe

ThermoFisher UAAAGGCAGAAUUUUAUCAAC

Sequence-based
reagent

21UR-2502 TaqMan
probe

ThermoFisher UGAAAUUGUAGUAGACUGCUG

Sequence-based
reagent

21UR-4807 TaqMan
probe

ThermoFisher UGGGUGAAUUCUGUCCCGAAC

Sequence-based
reagent

21UR-1258 TaqMan
probe

ThermoFisher UAGACUUGAGUUAGAACGGUU

Sequence-based
reagent

21UR-3142 TaqMan
probe

ThermoFisher GUAGGGUCGUCUCUUGAGAGC

Sequence-based
reagent

21UR-3766 TaqMan
probe

ThermoFisher UGGAAGCUUGAUGGAAAAUGC

Commercial
assay kit

NEBNext Multiplex
Small RNA Library
Prep Set for Illumina

New England
Biolabs

E7330S

Other Small RNA-seq data This study GEO: GSE152831

Other ChIP-seq data This study GEO: GSE152831

Other Mass spec data This study GEO: GSE152831

Strain, strain
background (C.
elegans)

wild-type, Bristol
isolate

CGC N2

Strain, strain
background (C.
elegans)

prg-1(n4357) I CGC SX922

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Strain, strain
background (C.
elegans)

snpc-1.3(xk27)[snpc-
1.3(lof)] V

This study QK171 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

fem-1(hc17) IV CGC BA17

Strain, strain
background (C.
elegans)

him-8(e1489) IV CGC CB1489

Strain, strain
background (C.
elegans)

snpc-1.3(xk28)[snpc-
1.3 (1xtbs)] V

This study QK172 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

snpc-1.3(xk29)[snpc-
1.3 (2xtbs)] V

This study QK173 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

snpc-1.3(xk30)[snpc-
1.3 (3xtbs)] V

This study QK174 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

snpc-4(xk31)[snpc-
4::3xflag] I

This study QK175 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

snpc-4(xk31)[snpc-
4::3xflag] I; fem-1
(hc17) IV

This study QK176 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

snpc-4(xk31)[snpc-
4::3xflag] I; him-8
(e1489) IV

This study QK177 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

snpc-1.3(xk27)[snpc-
1.3(lof)] V; fem-1
(hc17) IV

This study QK178 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

snpc-1.3(xk27)[snpc-
1.3(lof)] V; him-8
(e1489) IV

This study QK179 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

mals105[col-19::
GFP] V

Xantha Karp lab XV33

Strain, strain
background (C.
elegans)

snpc-1.3(xk27)[snpc-
1.3(lof)] V; mals105 V

This study QK180 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

snpc-4(xk31)[snpc-
4::3xflag] I, snpc-1.3
(xk27)[snpc-1.3(lof)]
V

This study QK181 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

snpc-4(xk23) I [snpc-
4::aid::ollas]

This study QK162 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

snpc-4(xk23) I; unc-
11(ed3) III; ieSi38 IV

This study QK163 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

unc-11(ed3) III;
ieSi38 IV [sun-1p::
TIR1::mRuby::sun-1
3’
UTR + Crb-unc-119
(+)] IV

CGC CA1199

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Strain, strain
background (C.
elegans)

glp-4(bn2) I CGC SS104

Strain, strain
background (C.
elegans)

snpc-1.3(xk32)[snpc-
1.3a::3xflag] V

This study QK182 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

glp-4(bn2) I; snpc-
1.3(xk32)[snpc-
1.3a::3xflag] V

This study QK183 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

snpc-1.3(xk33)[snpc-
1.3a::ollas] V

This study QK184 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

snpc-4(xk31)[snpc-
4::3xflag] I, snpc-1.3
(xk33)[snpc-1.3a::
ollas] V

This study QK185 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

prde-1(xk34)[prde-
1::ollas] V

This study QK186 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

snpc-4(xk31)[snpc-
4::3xflag] I; prde-1
(xk34)[prde-1::ollas]
V

This study QK187 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

snpc-4(xk35)[snpc-
4::ollas] I

This study QK188 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

snpc-4(xk35)[snpc-
4::ollas] I; snpc-1.3
(xk32)[snpc-
1.3a::3xflag] V

This study QK189 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

snpc-4(xk31)[snpc-
4::3xflag] I; snpc-1.3
(xk29)[snpc-1.3
(2xtbs)] V

This study QK190 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

snpc-4(xk23) I; unc-
11(ed3) III; ieSi38 IV;
snpc-1.3(xk32)[snpc-
1.3a::3xflag] V

This study QK191 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

snpc-1.3(xk36)[snpc-
1.3a::3xflag(2xtbs)] V

This study QK192 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

tra-1(xk37)[3xflag::
tra-1] III

This study QK193 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

tra-1(xk37)[3xflag::
tra-1] III; snpc-1.3
(xk28)[snpc-1.3
(1xtbs)] V

This study QK194 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

tra-1(xk37)[3xflag::
tra-1] III; snpc-1.3
(xk29)[snpc-1.3
(2xtbs)] V

This study QK195 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Strain, strain
background (C.
elegans)

tra-1(xk37)[3xflag::
tra-1] III; snpc-1.3
(xk30)[snpc-1.3
(3xtbs)] V

This study QK196 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Strain, strain
background (C.
elegans)

snpc-1.3(xk38)
[snpc-1.3b::3xflag] V

This study QK197 For CRISPR/Cas9 reagents and methodology,
see Supplementary file 4 and Method details.

Software,
algorithm

bbmap 38.23 http://jgi.doe.gov/
data-and-tools/bb-
tools

Software,
algorithm

Bowtie 1.1.1 Langmead et al.,
2009

Software,
algorithm

Bowtie2 2.3.4.2 Langmead and
Salzberg, 2012

Software,
algorithm

CASHX 2.3 Fahlgren et al.,
2009

Software,
algorithm

deepTools 3.3.1 Ramı́rez et al.,
2016

Software,
algorithm

DESeq2 1.18.1 Love et al., 2014

Software,
algorithm

DESeq2 1.26.0 Love et al., 2014

Software,
algorithm

FastQC 0.11.7 http://www.
bioinformatics.
babraham.ac.uk/
projects/fastqc/

Software,
algorithm

GraphPad Prism https://www.
graphpad.com

Software,
algorithm

ImageJ ImageJ

Software,
algorithm

MACS 2.1.2 Zhang et al., 2008

Software,
algorithm

MEME suite 5.1.1 Bailey et al., 2009

Software,
algorithm

RStudio 3.4.1 https://www.rstudio.
com

Software,
algorithm

Samtools 1.9 Li et al., 2009

Software,
algorithm

Subread 1.6.3 Liao et al., 2014

Software,
algorithm

Trim Galore! 0.5.0 http://www.
bioinformatics.
babraham.ac.uk/
projects/trim_
galore/

Software,
algorithm

Trimmomatic 0.39 Bolger et al., 2014

Other Dynabeads Protein
G

ThermoFisher 10004D

Other Dynabeads M280
sheep anti-mouse
IgG

ThermoFisher 11202D

Other SuperScript III
Reverse
Transcriptase

ThermoFisher 18080085
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Generations of strains
CRISPR/Cas9-generated strains were created as described in Paix et al., 2015 and are listed in

Supplementary file 4. crRNA and repair template sequences of CRISPR-generated strains are listed

in Supplementary file 4. After initial phenotyping of snpc-1.3a::3xflag and snpc-1.3b::3xflag (Fig-

ure 1—figure supplement 1C�G), snpc-1.3a::3xflag was used for all subsequent experiments (and

is referred to as snpc-1.3::3xflag).

RNAi assays
Bacterial RNAi clones were grown from the Ahringer RNAi library (Kamath and Ahringer, 2003).

Synchronized L1 worms were plated on HT115 bacteria expressing dsRNA targeting the gene inter-

est or L4440 empty vector as a negative control as previously described (Timmons and Fire, 1998).

All RNAi experiments were performed at 20˚C unless otherwise stated.

RNA extraction, library preparation, and sequencing
After hypochlorite preparation and hatching in M9 buffer, snpc-4::aid::ollas and snpc-4::aid::ollas;

Psun-1::TIR1 worms were transferred from NGM plates to plates containing 250 mM auxin 20 hr

before collecting L4 and gravid worms, 48 hr and 72 hr after plating L1 worms at 20˚C, respectively.

Worms were collected in TriReagent (ThermoFisher Scientific) and subjected to three freeze–thaw

cycles. Following addition of 1-bromo-3-chloropropane, the aqueous phase was then precipitated

with isopropanol at �80˚C for 2 hr. To pellet RNA, samples were spun at 21,000 � g for 30 min at 4˚

C. After three washes in 75% ethanol, the pellet was resuspended in water.

RNA concentration and quality were measured using a TapeStation (Agilent Technologies).

We size-selected small RNAs of 16-30 nt in length from 5 mg total RNA on 17% denaturing polyacryl-

amide gels. Small RNAs were treated with 50 polyphosphatase (Illumina) to reduce 50 triphosphate

groups to monophosphates to enable 50 adapter ligation. Small RNA-sequencing libraries were pre-

pared using the NEBNext Multiplex Small RNA Library Prep Set for Illumina (NEB). Small RNA ampli-

cons were size-selected on 10% polyacrylamide gels and quantified using qRT-PCR. Samples for

each developmental time point were pooled into a single flow cell and single-end, 75 nt reads were

generated on a NextSeq 500 (Illumina). An average of 42.01 million reads (range 33.05–50.39 mil-

lion) was obtained for each library.

Quantitative RT-PCR
Taqman cDNA synthesis was performed as previously described (Weiser et al., 2017). Briefly, for

quantification of piRNA levels, TaqMan small RNA probes were designed and synthesized by

Applied Biosystems. All piRNA species assessed by qPCR were normalized to U18 small nucleolar

RNA. Fifty nanograms of total RNA was used for cDNA synthesis. cDNA was synthesized by Multi-

scribe Reverse Transcriptase (Applied Biosystems) using the Eppendorf Mastercycler Pro S6325

(Eppendorf). Detection of small RNAs was performed using the TaqMan Universal PCR Master Mix

and No AmpErase UNG (Applied Biosystems). For quantification of mRNA levels, cDNA was made

using 500 ng of total RNA using Multiscribe Reverse Transcriptase (Applied Biosystems). For quanti-

fication of snRNA levels, cDNA was made using 250 ng of total RNA using SuperScript III Reverse

Transcriptase (ThermoFisher). Assays for mRNA and snRNA levels were performed with Absolute

Blue SYBR Green (ThermoFisher) and normalized to eft-2 using CFX63 Real Time System Thermocy-

clers (Bio-Rad). All qPCR primers used are listed in Supplementary file 4.

Covalent crosslinking of Dynabeads
Protein G Dynabeads (ThermoFisher Scientific, 1003D) were coupled to monoclonal mouse anti-

FLAG antibody M2 (Sigma–Aldrich, F1804). After three washes in 1� PBST (0.1% Tween), Dynabeads

were resuspended with 1� PBST with antibody, for a final concentration of 50 mg antibody per 100

mL beads. The antibody-bead mixture was nutated for 1 hr at room temperature. After three washes

in 1� PBST and two washes in 0.2 M sodium borate pH 9.0, beads were nutated in 22 mM DMP

(Sigma–Aldrich, D8388) in 0.2 M sodium borate for 30 min at room temperature. Following two

washes in ethanolamine buffer (0.2 M ethanolamine, 0.2 M NaCl pH 8.5), beads were nutated for 1

hr at room temperature in the same buffer. Beads were placed into the same volume of ethanol-

amine buffer as the starting bead volume for storage at 4˚C until use.
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Immunoprecipitation for mass spectrometry, co-IP experiments, and
expression
For SNPC-4 IP mass spectrometry, synchronized populations of ~200,000,000 him-8(e1489) L4s

and ~50,000,000 fem-1(hc17) females were grown at 25˚C and collected on OP50. For co-IP

experiments, ~500,000 L4 and ~250,000,000 gravid worms were grown and collected from OP50

plates. Due to low expression of SNPC-1.3 and appearance of background bands, samples examin-

ing SNPC-1.3 expression were subjected to immunoprecipitation before western blotting. For glp-4

(bn2), him-8(e1489), and fem-1(hc17) temperature-shift experiments, worms were grown at 15˚C

before hypochlorite treatment to isolate embryos. Synchronized L1s were then transferred to 25˚C.

For SNPC-1.3 expression in males and females, snpc-1.3::3xflag; him-8(e1489) L4 worms and snpc-

1.3::3xflag; fem-1(hc17) adult worms were collected.

Unless otherwise stated, all samples for mass spectrometry, co-IP, and western blotting used in

this study were subjected to the following procedure. After three washes in M9 and one wash in

water, worms were frozen and ground using the Retsch MM400 ball mill homogenizer for

two rounds of 1 min at 30 Hz. Frozen worm powder was resuspended in 1� lysis buffer used previ-

ously (Moissiard et al., 2014, 50 mM Tris–HCl pH 8.0, 150 mM NaCl, 5 mM MgCl2, 1 mM EGTA,

0.1% NP-40, 10% glycerol) and protease inhibitor cocktail (Roche). After Bradford assay (Thermo-

Fisher Scientific), lysates were normalized using lysis buffer and protease inhibitor. Benzonase

(Sigma–Aldrich, E1014) was added to a final concentration of 1 mL/mL of lysate and nutated for 10

min at 4˚C. After centrifugation for 10 min at 4,000 x g, 1 mL of supernatant was added to 50 mL of

crosslinked Dynabeads and nutated for 15 min at 4˚C. Samples were then washed three times in 1�

lysis buffer with protease inhibitors before 1 hr nutation in 50 mL of 2 mg/mL FLAG peptide (Sigma–

Aldrich, F4799) diluted in 1� lysis buffer. Complete eluate, as well as 5% of crude lysate (after addi-

tion of benzonase), input, pellet, and post-IP samples, were added to 2� Novex Tris–glycine sodium

dodecyl sulfate sample buffer (ThermoFisher Scientific, LC2676) to 1�. Samples were then subjected

to western blotting as described below.

Western blotting
Co-IP samples and SNPC-1.3::3xFlag westerns in snpc-1.3 tbs mutants were run on either 8–16% or

8% Novex WedgeWell Tris–glycine precast gels (ThermoFisher) and transferred to PVDF membrane

(Millipore). Mouse anti-Flag, rat anti-Ollas, rabbit anti-gamma tubulin, and rabbit anti-H3 were used

at 1:1000, 1:8000, 1:5000, and 1:15000, respectively. Anti-mouse and anti-rabbit (for tubulin) anti-

bodies were used at 1:5,000. To blot for H3, anti-rabbit secondary was used at 1:15,000. Anti-rat

antibodies were used at 1:8,000. Antibodies used were Sigma–Aldrich F1804 (mouse anti-Flag),

Novus Biologicals NBP1-06713SS (rat anti-Ollas), Sigma–Aldrich T1450 (rabbit anti-gamma tubulin),

Abcam ab1791 (rabbit anti-H3), GE Healthcare NA931 (sheep anti-mouse), and Jackson Laboratories

111035045 (goat anti-rabbit). Both high-sensitivity Amersham ECL Prime (GE Healthcare, RPN2232)

(for SNPC-1.3 blotting) and regular sensitivity Pierce ECL (ThermoFisher, 32209) were used for expo-

sure in a Bio-Rad ChemiDoc Touch system.

For measuring SNPC-1.3 expression levels in various backgrounds, input (for normalization) and

immunoprecipitation samples were run on 10% Novex WedgeWell Tris–glycine precast gels (Ther-

moFisher). Following transfer, the membrane was dried for 20 min at room temperature. The blot

was then recharged in 100% methanol for 1 min, followed by a water rinse and a wash in TBS for 2

min. Blocking was performed in LI-COR Odyssey Blocking Buffer (TBS). Primary antibodies were

1:1,000 mouse anti-Flag (Sigma–Aldrich F1804) and 1:5,000 rabbit anti-gamma-Tubulin (Sigma–

Aldrich T1450) in LI-COR Odyssey Blocking Buffer with 0.1% Tween. Washes were performed in

TBST (TBS + 0.1% Tween). LI-COR IRDye 800CW goat anti-mouse IgG and 680RD goat anti-rabbit

IgG were used at 1:15,000 in Odyssey Blocking Buffer with 0.1% Tween and 0.01% SDS. After three

washes in TBST, the membranes were incubated in TBS before imaging in the LI-COR Odyssey Fc.

Mass spectrometry and analysis
Proteins were precipitated with 23% TCA and washed with acetone. Protein pellets solubilized in 8

M urea, 100 mM Tris pH 8.5, and reduced with 5 mM Tris (2-carboxyethyl)phosphine hydrochloride

(Sigma–Aldrich, St. Louis, MO, product C4706) and alkylated with 55 mM 2-chloroacetamide (Fluka

Analytical, product 22790). Proteins were digested for 18 hr at 37˚C in 2 M urea 100 mM Tris pH 8.5,
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1 mM CaCl2 with 2 mg trypsin (Promega, Madison, WI, product V5111). Single-phase analysis (in rep-

licate) was performed using a Dionex 3000 pump and a Thermo LTQ Orbitrap Velos using an in-

house built electrospray stage (Wolters et al., 2001). Protein and peptide identification and protein

quantitation were done with Integrated Proteomics Pipeline, IP2 (Integrated Proteomics Applica-

tions, Inc, San Diego, CA; http://www.integratedproteomics.com/). Tandem mass spectra were

extracted from raw files using RawConverter (He et al., 2015) with monoisotopic peak option and

were searched against protein database release WS260 from WormBase, with FLAG-tagged SNPC-

4, common contaminants and reversed sequences added, using ProLuCID (Peng et al., 2003;

Xu et al., 2006). The search space included all fully tryptic and half-tryptic peptide candidates with a

fixed modification of 57.02146 on C. Peptide candidates were filtered using DTASelect (Tabb et al.,

2002).

Using custom R scripts, average enrichment between SNPC-4::3xFlag and no-tag control immu-

noprecipitation experiments were calculated. For each experiment, enrichment was normalized by

dividing the peptide count for each protein by the total peptide count. Adjusted p-values were cal-

culated by applying the Bonferroni method using DESeq2 (Love et al., 2014). Although SNPC-3.1

and SNPC-3.2 are reported to have the same amino acid sequence, we have picked up differential

peptide coverage in the fem-1(-) mutant for these two proteins and represented them as two differ-

ent data points.

Immunofluorescence microscopy
Adult gonads were dissected into egg buffer (25 mM HEPES pH 7.4, 118 mM NaCl, 48 mM KCl, 2

mM EDTA, 0.5 mM EGTA) with 30 mM sodium azide and 0.1% Tween-20, and fixed for 10 s in 1%

formaldehyde in egg buffer followed by 1 min in 100% methanol at �20˚C. All washing and staining

was completed in suspension. Germlines were blocked in normal goat serum or 1� Roche blocking

buffer in PBST (PBS + 0.2% Tween) for 30 min at room temperature. Primary mouse anti-Flag (Sigma

F1804) and rat anti-Ollas (NBP1-06713SS) antibodies were used at 1:200 in blocking agent in PBST.

AlexaFluor 555 goat anti-mouse and AlexaFluor 488 goat anti-rat secondary antibodies (Thermo-

Fisher) were used at 1:400 in blocking agent in PBST. Germlines were stained with 0.5 mg/mL DAPI

and then mounted in Vectashield with DAPI (Vector Laboratories H-1200). Images were acquired at

63x on a Zeiss LSM700 confocal microscope. Publication images were acquired at 100� on a GE

DeltaVision microscope. Image processing was performed using SoftWoRx to collect 3D image

stacks, deconvolve (enhanced ratio, 20 cycles), and compile into a maximum intensity projection.

Composite images were stitched and colored in Fiji using the Stitching plugin (Preibisch et al.,

2009).

Chromatin immunoprecipitation, library prep, and sequencing
Worms were grown in liquid culture as previously described (Zanin et al., 2011). 250 mM auxin was

added to snpc-1.3::3xflag; snpc-4::aid::ollas; Psun-1::TIR1 worms 4 hr before collection at 48 hr post-

L1 at 20˚C. After washing, the gut was cleared for 15 min by nutation in M9, followed by three

washes in M9. Worms were live-crosslinked in 2.6% formaldehyde in water for 30 min at room tem-

perature with nutation. Crosslinking was quenched with a final concentration of 125 mM glycine for

5 min with nutation. After three washes with water, worms were flash-frozen in liquid nitrogen. Fro-

zen worm pellets were ground into powder using the Retsch MM40 ball mill homogenizer for 2

rounds of 1 min at 30 Hz. Frozen worm powder was resuspended in 1� RIPA buffer (1� PBS, 1%

NP-40, 0.5% sodium deoxycholate, 0.1% SDS) for 10 min at 4˚C. Crosslinked chromatin was soni-

cated using a Diagenode Bioruptor Pico for three 3 min cycles, 30 s on/off. We nutated 10 mg

of chromatin overnight at 4˚C with 2 mg of Flag antibody (Sigma–Aldrich, F1804) and then for 1.5 hr

with 50 mL mouse IgG Dynabeads (Invitrogen). Input amount was 10% of IP. Chromatin was de-cross-

linked and extracted as described previously (Weiser et al., 2017). Individual input and IP samples

of each genotype were processed for both sequencing and quantitative PCR.

Libraries were prepared and multiplexed using the Ovation Ultralow Library Systems v2 (NuGEN

Technologies) according to the manufacturer’s protocol. The Illumina HiSeq 4000 platform was used

to generate 50 bp single-end reads for SNPC-1.3 ChIP-seq libraries. The NovaSeq 6000 platform

was used to generate 50 bp paired-end reads for TRA-1 ChIP-seq libraries.
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Quantitative PCR of ChIP samples
ChIP DNA was eluted in 18 mL of 1� TE pH 8.0 and 2 mL of 20 mg/mL RNase A (Invitrogen, Thermo-

Fisher Scientific). For a final reaction volume of 25 mL, each reaction consisted of final 1� Absolute

Blue SYBR Green (ThermoFisher Scientific), 35 nM each of forward and reverse primer, and 2 mL

ChIP eluate. Reactions were performed in technical duplicates in a Bio-Rad CF96 Real Time PCR

thermal cycler.

Hermaphrodite fertility assays
Gravid worms (previously maintained at 20˚C) were subjected to hypochlorite treatment, and their

progeny were plated onto NGM at 25˚C (P0). At the L2 or L3 stage, worms were singled onto indi-

vidual plates and their progeny (F1) counted.

Mating assays
To test male-dependent rescue of fem-1(hc17) fertility, 10–12 hermaphrodites of each strain were

grown at 20˚C and embryos were isolated by allowing egg lay for 2 hr before removal. Embryos

were shifted to 25˚C, and upon reaching the L4 stage (24 hr), ten him-8(e1489) L4 males were trans-

ferred and mated with two fem-1(hc17) females. Brood size was quantified by counting when a

majority of progeny had at least reached the young adult stage (about 3 days after transfer). To test

the fertility of the hermaphrodites upon mating, 10–12 hermaphrodites of each strain were grown at

20˚C and embryos were isolated after egg lay for 2 hr before removal. Embryos were shifted to 25˚C

and 1ten col-19(GFP+) L4-staged males (24 hr) were then transferred with a single hermaphrodite

(36 hr), and the number of live cross progeny was counted after reaching adulthood. Brood size was

quantified by counting when the majority of progeny had at least reached the young adult stage

(about 3 days after transfer).

Sperm activation assay and imaging
To perform sperm activation assays, spermatids were dissected from adult males that were shifted

to 25˚C during the embryo stage, and isolated prior to sexual maturity (about 48 hr post-L1). Dissec-

tion was performed directly on glass slides in sperm medium (50 mM HEPES pH 7.8, 50 mM NaCl,

25 mM KCl, 5 mM CaCl2, and 1 mM MgSO4) supplemented with 20 mg/mL pronase E (Millipore

Sigma). For the characterization of sperm morphology, sperm were imaged 30 min after the addition

of pronase E. Individual sperm were manually categorized into two types: spermatids with normal

pseudopods or spermatids with irregular or no pseudopods (Shakes and Ward, 1989). For

Figure 6E,Z, stacks were imaged in 10 s intervals for 30 min and a representative in-focus stack was

chosen at every 3 min interval. To characterize sperm activation dynamics, sperm were individually

followed across 10 s intervals for 30 min, and the different stages of sperm activation were desig-

nated into four categories based on these morphological changes: (1) undifferentiated spermatid,

(2) spiky intermediate characterized by the presence of spike growth, (3) growing or motile pseudo-

pod by the presence of a pseudopod, and (4) immobile sperm when little movement was observed

either in the sperm body or pseudopod for longer than 30 s. Statistical significance was assessed

using Student’s t-test.

Quantitative and statistical analysis
Unless otherwise stated, all quantitative analyses are shown as mean with standard deviation repre-

sented as error bars. For qRT-PCR, fertility and mating assays, and western blot, at least two inde-

pendent experiments were performed; one representative biological replicate is shown.

Small RNA-seq analysis
Raw small RNA-seq reads were trimmed for Illumina adapters and quality (SLIDING WINDOW: 4:25)

using Trimmomatic 0.39 (Bolger et al., 2014). Trimmed reads were then filtered using bbmap 38.23

(http://jgi.doe.gov/data-and-tools/bb-tools) to retain reads that were 15–30 nt in length. These fil-

tered reads were aligned to the C. elegans WBcel235 (Cunningham et al., 2019) reference genome

using Bowtie 1.1.1 (Langmead et al., 2009) with parameters -v 0 k 5 –best –strata –tryhard. Quality

control of raw and aligned reads was performed using FastQC 0.11.7 (http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/), SAMtools 1.9 (Li et al., 2009), and in-house Python and R scripts.
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Mapped reads were assigned to genomic features using featureCounts from Subread 1.6.3

(Liao et al., 2014), taking into account overlapping and multi-mapping reads (-O -M). Raw counts

were normalized within DESeq2 1.26.0 (Love et al., 2014), and principal component analysis (PCA)

was performed using the regularized log transform of normalized counts within DESeq2 (Figure 5—

figure supplement 1C). In addition, we distributed mapped reads by size and 50 nucleotide identity

to verify the presence of small RNA species such as 22G-RNAs and 21U-RNAs (Figure 3—figure

supplement 2B, Figure 5—figure supplement 1B).

To identify differentially expressed genes, DESeq2 was applied to piRNAs on chromosome IV. In

this study (method 1), we define significant and differentially expressed genes as having an absolute

value of log2(fold-change) � 0.26 and FDR of �0.05 (Benjamini–Hochberg). The log2(fold-change)

threshold and significance level were selected based on benchmarking the differential expression

results against the Taqman piRNA expression assays. At the chosen cutoffs, differential expression

analysis captures the Taqman assays results for the three male piRNAs (21UR-1258, 21UR-3142, and

21UR-3766) and three female piRNAs (21UR-1848, 21UR-2502, and 21UR-4817). Contrasts between

mutant and wild type were designed without independent filtering.

For motif discovery, nucleotide sequences were extracted from the reference genome with 60 nt

upstream of each piRNA and submitted to the MEME suite 5.1.1 (Bailey et al., 2009). Results from

MEME were used to generate the sequence logo plot with the median position of the C-nucleotide

of the identified motif, number of piRNAs, and the associated E-value.

A second, independent small RNA-seq analysis workflow (described in Figure 3—figure supple-

ment 1) was implemented to validate our results. Results produced from this analysis are provided

in Figure 3—figure supplement 2. We parsed - small RNA sequences that were 16-30 nt from

adapters. Reads with >3 nt falling below a quality score of Q30 were discarded. Reads were mapped

to the C. elegans WS230 (Stein et al., 2001) reference genome using CASHX v. 2.3 (Fahlgren et al.,

2009) allowing for 0 mismatches. Custom Perl, Awk, and R scripts were used to count features and

to generate PCA and size distribution plots. Multi-mapping reads were assigned proportionally to

each possible locus. Differential expression analysis was done using DESeq2 v. 1.18.1 (Love et al.,

2014). A reporting threshold was set at an absolute value of log2(fold-change) � 0.26 and a Benja-

mini–Hochberg-corrected p�0.20.

ChIP-seq analysis
De-multiplexed raw ChIP-seq data in FASTQ format were trimmed for adapters and sequencing

quality score > Q25 using Trim Galore! 0.5.0 (http://www.bioinformatics.babraham.ac.uk/projects/

trim_galore/) and aligned to C. elegans reference genome WBcel235 (Cunningham et al., 2019)

using Bowtie2 2.3.4.2 (Langmead and Salzberg, 2012) with default parameters. Post-alignment fil-

tering was then performed to remove PCR duplicates using the MarkDuplicates utility within Picard

2.22.1 (http://broadinstitute.github.io/picard/). In addition, SAMtools 1.9 was applied to remove

unmapped reads and reads that mapped with MAPQ 30 but were not of primary alignment or failed

sequence platform quality checks (SAMtools -F 1804 -q 30) (Li et al., 2009).

To identify and visualize binding sites and peaks for SNPC-1.3 ChIP-seq, filtered SNPC-1.3 ChIP-

seq reads were extended to 200 bp to account for the average length of ChIP fragments. We then

partitioned the genome into consecutive, non-overlapping 1 kb bins and calculated read coverage,

normalized by sequencing depth of each library, based on the total read count in each bin. Bins with

read coverages in the IP sample that fell below the median read coverage of piRNA-depleted bins

on chromosome IV in the relevant input control were excluded from further analysis. Bins containing

only male, female, and non-enriched piRNAs (as defined by small RNA-seq analysis) were then

extracted to generate binding profiles and heatmaps. For this, the bamCompare tool in deepTools

3.3.1 (Ramı́rez et al., 2016) was used to calculate the ratio between read coverage of each ChIP

sample and input control (–scaleFactorsMethod None –normalizeUsing CPM –operation

ratio –binSize 50 –ignoreForNormalization MtDNA –extendReads 200). The ENCODE ce11

blacklist (Amemiya et al., 2019) was also supplied (https://github.com/Boyle-Lab/Blacklist/). The

bamCompare output was then used in deepTools computeMatrix to calculate scores for plotting

profiles and heatmaps with deepTools plotProfile and plotHeatmap.

TRA-1 ChIP-seq peaks were called by callpeak within MACS 2.1.2 (Zhang et al., 2008) (–p-value

0.05) with filtered TRA-1 ChIP-seq reads and relevant input controls. TRA-1 signal tracks were gener-

ated by calculating fold enrichment from read count-normalized genome-wide pileup and lambda
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track outputs by callpeak (bdgcmp in MACS2). The ENCODE ce 11 blacklist (Amemiya et al., 2019)

was supplied in this analysis (https://github.com/Boyle-Lab/Blacklist/). The bamCompare tool in

deepTools 3.3.1 (Ramı́rez et al., 2016) was used to quantify read coverage of each ChIP sample

and input control.

Reproducibility between SNPC-1.3 and TRA-1 ChIP-seq replicates (Figure 4—figure supplement

1C, Figure 5—figure supplement 1E) was assessed by applying deepTools bamCompare, as

described above, and deepTools plotCorrelation to depict pairwise correlations between replicates

and compute the Pearson correlation coefficient.

Data and software availability
The mass spectrometry, small RNA-seq, and ChIP-seq data have been deposited in NCBI under

GEO accession number: GSE152831. Processed data and scripts used for analysis are available at

https://github.com/starostikm/SNPC-1.3; Choi, 2021; copy archived at swh:1:rev:

b23f652341d999150edf5ae9c8de72e9192b2843.
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Ramı́rez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dündar F, Manke T. 2016.
deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Research 44:
W160–W165. DOI: https://doi.org/10.1093/nar/gkw257

Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel DP. 2006. Large-scale sequencing reveals
21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127:1193–1207. DOI: https://
doi.org/10.1016/j.cell.2006.10.040, PMID: 17174894

Shakes DC, Ward S. 1989. Initiation of spermiogenesis in C. elegans: A pharmacological and genetic analysis.
Developmental Biology 134:189–200. DOI: https://doi.org/10.1016/0012-1606(89)90088-2

Shen EZ, Chen H, Ozturk AR, Tu S, ShirayamaM, TangW, Ding YH, Dai SY, Weng Z, Mello CC. 2018. Identification
of piRNA binding sites reveals the argonaute regulatory landscape of the C. elegansGermline. Cell 172:937–951.
DOI: https://doi.org/10.1016/j.cell.2018.02.002, PMID: 29456082

Shirayama M, Seth M, Lee HC, Gu W, Ishidate T, Conte D, Mello CC. 2012. piRNAs initiate an epigenetic
memory of nonself RNA in the C. elegans germline. Cell 150:65–77. DOI: https://doi.org/10.1016/j.cell.2012.
06.015, PMID: 22738726

Stein L, Sternberg P, Durbin R, Thierry-Mieg J, Spieth J. 2001. WormBase: network access to the genome and
biology of Caenorhabditis elegans. Nucleic Acids Research 29:82–86. DOI: https://doi.org/10.1093/nar/29.1.82

Su Y, Song Y, Wang Y, Jessop L, Zhan L, Stumph WE. 1997. Characterization of a Drosophila proximal-sequence-
element-binding protein involved in transcription of small nuclear RNA genes. European Journal of
Biochemistry 248:231–237. DOI: https://doi.org/10.1111/j.1432-1033.1997.t01-1-00231.x, PMID: 9310383

Tabb DL, McDonald WH, Yates JR. 2002. DTASelect and contrast: tools for assembling and comparing protein
identifications from shotgun proteomics. Journal of Proteome Research 1:21–26. DOI: https://doi.org/10.1021/
pr015504q, PMID: 12643522

Tabuchi TM, Rechtsteiner A, Jeffers TE, Egelhofer TA, Murphy CT, Strome S. 2018. Caenorhabditis elegans
sperm carry a histone-based epigenetic memory of both spermatogenesis and oogenesis. Nature
Communications 9:4310. DOI: https://doi.org/10.1038/s41467-018-06236-8

Timmons L, Fire A. 1998. Specific interference by ingested dsRNA. Nature 395:854. DOI: https://doi.org/10.
1038/27579

Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD. 2006. A distinct small RNA pathway silences selfish
genetic elements in the germline. Science 313:320–324. DOI: https://doi.org/10.1126/science.1129333,
PMID: 16809489

Wang G, Reinke V. 2008. A C. elegans Piwi, PRG-1, Regulates 21U-RNAs during Spermatogenesis. Current
Biology 18:861–867. DOI: https://doi.org/10.1016/j.cub.2008.05.009

Weick E-M, Sarkies P, Silva N, Chen RA, Moss SMM, Cording AC, Ahringer J, Martinez-Perez E, Miska EA. 2014.
PRDE-1 is a nuclear factor essential for the biogenesis of Ruby motif-dependent piRNAs in C. elegans. Genes &
Development 28:783–796. DOI: https://doi.org/10.1101/gad.238105.114

Weiser NE, Yang DX, Feng S, Kalinava N, Brown KC, Khanikar J, Freeberg MA, Snyder MJ, Csankovszki G, Chan
RC, Gu SG, Montgomery TA, Jacobsen SE, Kim JK. 2017. MORC-1 integrates nuclear RNAi and
transgenerational chromatin architecture to promote germline immortality. Developmental Cell 41:408–423.
DOI: https://doi.org/10.1016/j.devcel.2017.04.023, PMID: 28535375

Weng C, Kosalka J, Berkyurek AC, Stempor P, Feng X, Mao H, Zeng C, Li W-J, Yan Y-H, Dong M-Q, Morero NR,
Zuliani C, Barabas O, Ahringer J, Guang S, Miska EA. 2019. The USTC co-opts an ancient machinery to drive
piRNA transcription in C. elegans. Genes & Development 33:90–102. DOI: https://doi.org/10.1101/gad.
319293.118

Williams Z, Morozov P, Mihailovic A, Lin C, Puvvula PK, Juranek S, Rosenwaks Z, Tuschl T. 2015. Discovery and
characterization of piRNAs in the human fetal ovary. Cell Reports 13:854–863. DOI: https://doi.org/10.1016/j.
celrep.2015.09.030, PMID: 26489470

Wolters DA, Washburn MP, Yates JR. 2001. An automated multidimensional protein identification technology for
shotgun proteomics. Analytical Chemistry 73:5683–5690. DOI: https://doi.org/10.1021/ac010617e,
PMID: 11774908

Wong MW, Henry RW, Ma B, Kobayashi R, Klages N, Matthias P, Strubin M, Hernandez N. 1998. The large
subunit of basal transcription factor SNAPc is a myb domain protein that interacts with Oct-1. Molecular and
Cellular Biology 18:368–377. DOI: https://doi.org/10.1128/MCB.18.1.368, PMID: 9418884

Xu T, Venable JD, Park SK, Cociorva D, Lu B, Liao L, Wohlschlegel J, Hewel J, Yates JR. 2006. ProLuCID, a fast
and sensitive tandem mass spectra-based protein identification program. Mol. Cell. Proteom 5:S174.

Yang Q, Hua J, Wang L, Xu B, Zhang H, Ye N, Zhang Z, Yu D, Cooke HJ, Zhang Y, Shi Q. 2013. MicroRNA and
piRNA profiles in normal human testis detected by next generation sequencing. PLOS ONE 8:e66809.
DOI: https://doi.org/10.1371/journal.pone.0066809, PMID: 23826142

Yoon JB, Murphy S, Bai L, Wang Z, Roeder RG. 1995. Proximal sequence element-binding transcription factor
(PTF) is a multisubunit complex required for transcription of both RNA polymerase II- and RNA polymerase III-
dependent small nuclear RNA genes. Molecular and Cellular Biology 15:2019–2027. DOI: https://doi.org/10.
1128/MCB.15.4.2019

Zanin E, Dumont J, Gassmann R, Cheeseman I, Maddox P, Bahmanyar S, Carvalho A, Niessen S, Yates JR,
Oegema K, Desai A. 2011. Affinity purification of protein complexes in C. elegans. Methods in Cell Biology
106:289–322. DOI: https://doi.org/10.1016/B978-0-12-544172-8.00011-6, PMID: 22118282

Zarkower D, Hodgkin J. 1993. Zinc fingers in sex determination: only one of the two C. elegans Tra-1 proteins
binds DNA in Vitro. Nucleic Acids Research 21:3691–3698. DOI: https://doi.org/10.1093/nar/21.16.3691

Choi, Tay, et al. eLife 2021;10:e60681. DOI: https://doi.org/10.7554/eLife.60681 34 of 35

Research article Chromosomes and Gene Expression Genetics and Genomics

https://doi.org/10.1093/nar/gkw257
https://doi.org/10.1016/j.cell.2006.10.040
https://doi.org/10.1016/j.cell.2006.10.040
http://www.ncbi.nlm.nih.gov/pubmed/17174894
https://doi.org/10.1016/0012-1606(89)90088-2
https://doi.org/10.1016/j.cell.2018.02.002
http://www.ncbi.nlm.nih.gov/pubmed/29456082
https://doi.org/10.1016/j.cell.2012.06.015
https://doi.org/10.1016/j.cell.2012.06.015
http://www.ncbi.nlm.nih.gov/pubmed/22738726
https://doi.org/10.1093/nar/29.1.82
https://doi.org/10.1111/j.1432-1033.1997.t01-1-00231.x
http://www.ncbi.nlm.nih.gov/pubmed/9310383
https://doi.org/10.1021/pr015504q
https://doi.org/10.1021/pr015504q
http://www.ncbi.nlm.nih.gov/pubmed/12643522
https://doi.org/10.1038/s41467-018-06236-8
https://doi.org/10.1038/27579
https://doi.org/10.1038/27579
https://doi.org/10.1126/science.1129333
http://www.ncbi.nlm.nih.gov/pubmed/16809489
https://doi.org/10.1016/j.cub.2008.05.009
https://doi.org/10.1101/gad.238105.114
https://doi.org/10.1016/j.devcel.2017.04.023
http://www.ncbi.nlm.nih.gov/pubmed/28535375
https://doi.org/10.1101/gad.319293.118
https://doi.org/10.1101/gad.319293.118
https://doi.org/10.1016/j.celrep.2015.09.030
https://doi.org/10.1016/j.celrep.2015.09.030
http://www.ncbi.nlm.nih.gov/pubmed/26489470
https://doi.org/10.1021/ac010617e
http://www.ncbi.nlm.nih.gov/pubmed/11774908
https://doi.org/10.1128/MCB.18.1.368
http://www.ncbi.nlm.nih.gov/pubmed/9418884
https://doi.org/10.1371/journal.pone.0066809
http://www.ncbi.nlm.nih.gov/pubmed/23826142
https://doi.org/10.1128/MCB.15.4.2019
https://doi.org/10.1128/MCB.15.4.2019
https://doi.org/10.1016/B978-0-12-544172-8.00011-6
http://www.ncbi.nlm.nih.gov/pubmed/22118282
https://doi.org/10.1093/nar/21.16.3691
https://doi.org/10.7554/eLife.60681


Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM, Brown M, Li W, Liu
XS. 2008. Model-based Analysis of ChIP-Seq (MACS). Genome Biology 9:R137. DOI: https://doi.org/10.1186/
gb-2008-9-9-r137

Zhang L, Ward JD, Cheng Z, Dernburg AF. 2015a. The auxin-inducible degradation (AID) system enables
versatile conditional protein depletion in C. elegans. Development 142:4374–4384. DOI: https://doi.org/10.
1242/dev.129635

Zhang P, Kang J-Y, Gou L-T, Wang J, Xue Y, Skogerboe G, Dai P, Huang D-W, Chen R, Fu X-D, Liu M-F, He S.
2015b. MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes. Cell Research 25:193–207.
DOI: https://doi.org/10.1038/cr.2015.4

Zhang D, Tu S, Stubna M, Wu W-S, Huang W-C, Weng Z, Lee H-C. 2018. The piRNA targeting rules and the
resistance to piRNA silencing in endogenous genes. Science 359:587–592. DOI: https://doi.org/10.1126/
science.aao2840

Zhou X, Zuo Z, Zhou F, Zhao W, Sakaguchi Y, Suzuki T, Suzuki T, Cheng H, Zhou R. 2010. Profiling sex-specific
piRNAs in zebrafish. Genetics 186:1175–1185. DOI: https://doi.org/10.1534/genetics.110.122234, PMID: 20837
993

Choi, Tay, et al. eLife 2021;10:e60681. DOI: https://doi.org/10.7554/eLife.60681 35 of 35

Research article Chromosomes and Gene Expression Genetics and Genomics

https://doi.org/10.1186/gb-2008-9-9-r137
https://doi.org/10.1186/gb-2008-9-9-r137
https://doi.org/10.1242/dev.129635
https://doi.org/10.1242/dev.129635
https://doi.org/10.1038/cr.2015.4
https://doi.org/10.1126/science.aao2840
https://doi.org/10.1126/science.aao2840
https://doi.org/10.1534/genetics.110.122234
http://www.ncbi.nlm.nih.gov/pubmed/20837993
http://www.ncbi.nlm.nih.gov/pubmed/20837993
https://doi.org/10.7554/eLife.60681

