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Abstract Ligand binding stabilizes different G protein-coupled receptor states via a complex

allosteric process that is not completely understood. Here, we have derived free energy landscapes

describing activation of the b2 adrenergic receptor bound to ligands with different efficacy profiles

using enhanced sampling molecular dynamics simulations. These reveal shifts toward active-like

states at the Gprotein-binding site for receptors bound to partial and full agonists, and that the

ligands modulate the conformational ensemble of the receptor by tuning protein microswitches.

We indeed find an excellent correlation between the conformation of the microswitches close to

the ligand binding site and in the transmembrane region and experimentally reported cyclic

adenosine monophosphate signaling responses. Dimensionality reduction further reveals the

similarity between the unique conformational states induced by different ligands, and examining

the output of classifiers highlights two distant hotspots governing agonism on transmembrane

helices 5 and 7.

Introduction
G protein-coupled receptors (GPCRs) are membrane proteins which activate cellular signaling in

response to extracellular stimuli. This process is controlled by extracellular ligands such as hormones

and neurotransmitters, and the binding of these increases the probability of activating intracellular

partners. GPCRs are vital in many physiological processes and constitute the most common class of

drug targets (Hauser et al., 2017).

Much of the current understanding of GPCR signaling at the molecular level can be attributed to

the progress in GPCR structure determination during the last decade (Cherezov et al., 2007;

Hanson et al., 2008; Masureel et al., 2018; Rasmussen et al., 2011a; Ring et al., 2013;

Wacker et al., 2010). GPCRs interconvert between inactive (R) and active (R*) states, which control

G protein binding to a conserved intracellular domain via conformational rearrangements among the

seven transmembrane (TM) helices (Figure 1a; Manglik and Kruse, 2017). In the absence of a

bound agonist, this process is called basal activity. Ligands can bind to the orthosteric site in the

receptor’s extracellular domain and thereby control conformational rearrangements. Orthosteric

ligands are traditionally classified as either agonists, which promote activation, antagonists, which

bind to the orthosteric site but do not alter basal activity, or inverse agonists that also reduce basal

activity. However, this classical view of ligand efficacy is complicated by the fact that GPCRs can sig-

nal via several intracellular partners; for example, G-proteins or b-arrestins. Most agonists will acti-

vate several signaling pathways, but agonists with the ability to activate one specific intracellular

partner have also been identified, a phenomenon referred to as biased signaling. Based on
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spectroscopy and structure determination studies, conformational changes in the receptor govern

the activation of signaling pathways (Frei et al., 2020; Liu et al., 2012; Masureel et al., 2018),

although the underlying molecular mechanisms remain elusive. Characterization of the allosteric pro-

cess guiding interactions with intracellular partners is a major challenge and can only be fully under-

stood by using a combination of different methodologies.

The term microswitch, or molecular switch, describes local structural changes in the receptor that

contribute to controlling activation and can, for example, involve side chain rotamers, movement of

two domains relative to each other, or a helix twist. Two microswitches implicated in the activation

of class A GPCRs are an outward displacement of the transmembrane helix 6 (TM6) and twist of the

highly conserved N(7.49)P(7.50)xxY(7.53) motif (superscripts notation according to Ballesteros–Wein-

stein numbering; Ballesteros and Weinstein, 1995), which take part in the formation of the intracel-

lular binding site. In the orthosteric site, microswitches are typically less conserved and depend on

the type of ligand recognized by the receptor (Manglik and Kruse, 2017).

Considering the high dimensionality of a protein with over 300 interacting residues, it is difficult

to identify relevant microswitches from the sequence or static experimental structures. Historically,

sequence analysis and mutagenesis experiments (Gregorio et al., 2017; Lamichhane et al., 2020,

Lamichhane et al., 2015; Manglik et al., 2015; Picard et al., 2019) have been used to characterize

motifs important for signaling, but this approach may overlook the role of less conserved residues,

water, and ions in ligand recognition and receptor activation (Chen et al., 2020). Molecular dynam-

ics (MD) simulations can generate trajectories from experimental starting structures, capture the

dynamics of all microswitches and allow us to derive the free energy landscapes governing the equi-

librium between protein states. MD simulations have indeed been used extensively over the last

decade to study GPCR activation (Bhattacharya and Vaidehi, 2010; Dror et al., 2011; Hu et al.,

2019; Kohlhoff et al., 2014; Li et al., 2013; Miao and McCammon, 2016; Niesen et al., 2011;

Shan et al., 2012; Tikhonova et al., 2013). Due to the computational cost of brute-force MD simula-

tions, it is nearly impossible to obtain converged results without enhanced sampling methods,

Figure 1. Structure and microswitches of the b2 adrenergic receptor. (a) A molecular dynamics (MD) snapshot of the b2 adrenergic receptor in complex

with adrenaline in an active-like state (simulation starting from PDB 3P0G). The vignettes show the conformations of residue pairs reflecting important

microswitches in the active and inactive structures 3P0G (color) and 2RH1 (white): the TM5 bulge (red), measured as the closest heavy atom distance

between S207(5.46) and G315(7.41); the connector region’s conformational change (pink), measured as the difference in root-mean-square deviation

(RMSD) between the active and inactive state structure of the residues I121(3.40) and F282(6.44); the Y-Y motif (black), measured as the C-z distance

between Y219(5.58) and Y326(7.53) of the NPxxY motif; and the Ionic lock displacement (orange), measured as the closest heavy atom distance between

E268(6.30) and R131(3.50). (b) Ligands examined in this study: agonists BI-167107 and adrenaline; biased partial agonist salmeterol; antagonists timolol

and alprenolol; and the inverse agonist carazolol. Atoms are colored according to their partial charge.
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although the use of special purpose hardware (Dror et al., 2011) has pushed the boundaries of

what is achievable by conventional MD simulations. Enhanced sampling strategies have emerged as

an alternative, where exploration of the conformational landscape is promoted by the introduction

of a bias in the simulations (Harpole and Delemotte, 2018). In a post-processing step, the bias can

be adjusted for, and it is thus possible to derive theoretically exact results at a fraction of the cost of

unbiased simulations. However, the ever-increasing size of simulation data and diverse conforma-

tions sampled by MD simulations makes it difficult to identify and determine the importance of

microswitches by simple visualization of the conformational ensemble. Data-driven and machine

learning approaches can help to condense the data and reduce human bias in the interpretation of

the results (Fleetwood et al., 2020c; Hu et al., 2019).

In this study, we focus on the prototypical b2 adrenergic receptor (b2AR), which interacts with Gs

proteins to trigger a cyclic adenosine monophosphate (cAMP) response, and arrestins, which control

endocytosis and kinase activation (Jean-Charles et al., 2017). Both pathways are physiologically rel-

evant and are modulated by therapeutic drugs. The b2AR is a drug target for bronchoconstriction

medication and was the first receptor crystallized in complex with a G protein (Rasmussen et al.,

2011a; Rasmussen et al., 2011b). Experimental studies, including crystallography (Masureel et al.,

2018; Rasmussen et al., 2011b; Ring et al., 2013), spectroscopy methods (Gregorio et al., 2017;

Imai et al., 2020; Kofuku et al., 2012; Lamichhane et al., 2020; Liu et al., 2012), and computa-

tional methods (Provasi et al., 2011; Chen et al., 2020; Dror et al., 2011; Kohlhoff et al., 2014;

Tikhonova et al., 2013), have investigated the activation mechanism of the b2AR. Agonists bound in

experimental structures show a key interaction with S207(5.46) (Chan et al., 2016) and an inward

bulge of TM5 in the active state. In the TM domain between the orthosteric site and G protein-bind-

ing site, the connector region (Weis and Kobilka, 2018), partially overlapping with the P(5.50)I(3.40)

F(6.44) motif, undergoes a rotameric change and thereby influences the hydrated cavity surrounding

the conserved D79(2.50) (Imai et al., 2020), which in turn interacts with the conserved NPxxY motif

in TM7 and reorients Y326(7.53) to form water-mediated interaction with Y219(5.58) (the Y–Y motif)

(Latorraca et al., 2017). The combination of several microswitches leads to conformational changes

that promote an outward movement of TM6 and binding of an intracellular binding partner, such as

a G protein or arrestin. Understanding how ligands modulate individual microswitches could aid the

development of biased agonists.

Enhanced sampling techniques have been used to characterize the activation mechanism of

b2AR, from early coarse-grained protocols (Bhattacharya and Vaidehi, 2010; Niesen et al., 2011)

to more refined methodologies involving Gaussian accelerated MD (Tikhonova et al., 2013), meta-

dynamics using path collective variables (CVs) derived from adiabatic biased MD simulations

(Provasi et al., 2011), or adaptive sampling on cloud-based computing resources (Kohlhoff et al.,

2014). Following in these footsteps, we recently introduced a version of the string with swarms of

trajectories method designed to capture the activation pathway and the free energy landscapes

along various microswitches (Fleetwood et al., 2020b).

In this study, thanks to our cost-effective computational approach, we have derived the activation

free energy and characterized the details of the active-like state of the b2AR (Figure 1a) in its ligand-

free state and bound to six ligands with different efficacy profiles (Figure 1b), all of which were

resolved bound to the b2AR (Figure 1b) and several of which are clinically approved drugs

(Woo and Robinson, 2015). The free energy landscapes revealed a stabilization of active-like states

for the receptor bound to agonists and a shift toward inactive-like states for the receptor bound to

antagonists or inverse agonists. Remarkably, we obtained a strong quantitative correlation between

experimentally measured intracellular cAMP responses and the expectation values of the upper and

transmembrane microswitches, highlighting the predictive power of our approach. In a second step,

we introduce an adaptive sampling protocol developed to quantitatively sample the most stabilized

states kinetically accessible from the activated starting structure (which we will refer to as the active-

like state). Using dimensionality reduction techniques, we find that all ligands stabilize distinct recep-

tor states and that ligands with similar pharmacological properties cluster together. Several of the

microswitches considered to be of significance for GPCR activation, such as the NPxxY motif and the

extracellular end of TM5, were automatically identified as important with our protocol. Combined

with the activation free energies, our results show how ligands control the population of states. They

modulate the conformational equilibrium by tuning important allosteric microswitches, in particular

near the G protein-binding site. By inspecting the inter-residue contacts formed for different ligands,
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we identified an allosteric pathway between the two binding sites and a large heterogeneity of TM7

states. Our results thus build on the earlier use of enhanced sampling methods and demonstrate

how such protocols combined with today’s computational capacities and availability of high-resolu-

tion structures in various states can provide insights into the structural basis of allosteric communica-

tion and ligand efficacy profiles, and potentially find use in the design of novel GPCR drug

candidates.

Results

Ligands control efficacy by reshaping microswitches’ probability
distributions
We derived the free energy landscape along the most probable activation pathway of the b2AR

bound to different ligands using the string method with swarms of trajectories (Figure 1b). The set

of ligands studied consisted of the full agonists BI-167107 and adrenaline, the G protein-biased ago-

nist salmeterol, the antagonists alprenolol and timolol (sometimes classified as a partial inverse ago-

nist; Hanson et al., 2008), and the inverse agonist carazolol. After 305 iterations, corresponding to

4 ms of aggregated simulation time per ligand-receptor complex, the activation pathways had con-

verged (Table 1 and Figure 2—figure supplements 1–6). Based on the short swarm trajectories, we

calculated free energy landscapes along different microswitches identified previously

(Fleetwood et al., 2020b; Figure 2a,b and Figure 2—figure supplement 7): (1) the TM5 bulge,

which is an indicator of contraction in the ligand binding site; (2) the connector DRMSD, a rotameric

switch involving residues I121(3.40) and F282(6.44) in the TM region; (3) the ionic lock distance

reflecting the outward movement of TM6, measured as the closest heavy atom distance between

E268(6.30) and R131(3.50); and (4) the Y-Y motif as the C-z distance between Y219(5.58) and Y326

(7.53), which acts as an indicator of the twist of the NPxxY motif and a slight reorientation of TM5.

The free energy landscapes projected along the connector DRMSD (Figure 2a) reveal two states.

In agreement with what could be expected, agonists lower the relative free energy of the active

state (R*) of this microswitch, whereas non-agonists favor the inactive state (R) more. A loose cou-

pling between the orthosteric ligand and G protein-binding site was proposed based on correlated

motions between the two domains in long timescale MD simulations of the BI-167107-bound recep-

tor (Dror et al., 2011). The free energy landscapes projected along the TM5 bulge in the orthosteric

site and the ionic lock distance in the G protein-binding site (Figure 2b) provide a quantitative view

of this correlation and reveal that the activation pathway and the precise conformation of the stabi-

lized states along the pathway depends on the ligand (Tikhonova et al., 2013; Kohlhoff et al.,

2014). In general, the TM5 bulge assumed an outward conformation when TM6 was in its inward,

inactive state. Furthermore, non-agonists favored a conformation with both a fully inactive TM5

bulge and an inactive TM6, whereas agonists favored a more contracted binding site even in the

inactive state of TM6. However, despite the relatively loose coupling, it should be noted that

Table 1. Total simulation time per string of swarm simulation ensemble*.

Ligand
Steered molecular dynamics
simulation time [ms]

#Restrained equilibration
trajectories (30 ps each)

#Swarm
trajectories (10 ps
each)

Total
simulation
time [ms]

Carazolol 0.2 14878 352816 4.17

Alprenolol 0.2 14878 364856 4.29

Timolol 0.2 14878 363808 4.28

Salmeterol 0.2 14878 363232 4.28

Adrenaline 0.2 14878 372936 4.38

* The previously published apo and BI-167107 initiated systems followed a slightly different initialization protocol

with three substrings (Fleetwood et al., 2020b) and have been excluded from the table.
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agonists were generally observed to shift the energy balance to favor active-intermediate receptor

conformations with a TM6 displacement larger than in the inactive state.

It is not straightforward to predict ligand efficacy by visual inspection of a free energy landscape,

since it is the Boltzmann integrals over the basins that determine the relative free energy of the

Figure 2. Ligand-dependent free energy landscapes and expected downstream response. (a) Free energy landscapes for the different ligands

projected along the connector DRMSD microswitch. The inactive and active states are marked by R and R* respectively. (b) Free energy projected onto

the TM5 bulge CV in the orthosteric site and the ionic lock distance (measuring TM6 displacement in the G protein-binding site). (c)–(f) Correlation

between experimental values of downstream cyclic adenosine monophosphate (cAMP) signaling and the expectation value of different microswitches

for the receptor bound to different ligands, (c) for the TM5 bulge, (d) for the connector DRMSD, (e) for the Y-Y motif, and (f) for the ionic lock distance.

The cAMP Emax values for carazolol and BI-167107 (marked with an asterisk), which were not available in the experimental study, are inferred from the

linear regression. Red dashed lines highlight the clustering of the agonist-bound structures.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Strings averaged over different iterations for the carazolol-bound receptor initiated from the active starting structure.

Figure supplement 2. Strings averaged over different iterations for the carazolol-bound receptor initiated from the inactive starting structure.

Figure supplement 3. Strings averaged over different iterations for the alprenolol-bound receptor initiated from the inactive starting structure.

Figure supplement 4. Strings averaged over different iterations for the timolol-bound receptor initiated from the inactive starting structure.

Figure supplement 5. Strings averaged over different iterations for the salmeterol-bound receptor initiated from the inactive starting structure.

Figure supplement 6. Strings averaged over different iterations for the adrenaline-bound receptor initiated from the inactive starting structure.

Figure supplement 7. Free energy landscapes projected along important microswitches.

Figure supplement 8. Correlation between experimental values of downstream cyclic adenosine monophosphate (cAMP) signaling and the relative

free energy of states for the receptor bound to different ligands.

Figure supplement 9. Comparison between the two pathways obtained for the carazolol-bound receptor.

Figure supplement 10. Correlation between experimental values of downstream cyclic adenosine monophosphate (cAMP) signaling and microswitch

expectation value for the receptor bound to different ligands.

Figure supplement 11. Free energy landscapes for the receptor in its apo state (left column), bound to carazolol (center column), and bound to BI-

167107 (right column).
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active and inactive states (DG). To investigate if ligand efficacy could be quantified using our simula-

tion results, we computed expectation values and DG of the microswitches and compared them to

functional experiments measuring the maximal G protein-mediated cAMP production (Emax)

(Figure 2c–f and Figure 2—figure supplement 8; van der Westhuizen et al., 2014). Remarkably,

the expectation values associated with the upper microswitches were strongly correlated to the pre-

viously reported experimental values, in particular the TM5 bulge (Figure 2c; R = �0.95) and the

connector DRMSD (Figure 2d; R = 0.93). Emax values of BI-167107 and carazolol were not available,

and we thus inferred their predicted Emax from the linear correlation obtained for the other ligands:

we predicted BI-167107 to have a cAMP Emax value slightly higher than adrenaline and salmeterol,

and carazolol to have an Emax similar to the values of the ligand free receptor and inverse agonist

timolol (Figure 2c,d). These results are in line with expectations; BI-167107 is indeed a known full

agonist and carazolol an inverse agonist (Manglik et al., 2015; Rasmussen et al., 2011a;

Ueda et al., 2019). Similar results were obtained using the free energy difference of the active and

inactive states, DG (Figure 2—figure supplement 8). These results thus suggest that our simulations

accurately captured the relative stability of states and should therefore be able to provide insights

into how ligands with different efficacy profiles control the conformational ensemble of the receptor.

Moving down the microswitch cascade toward the intracellular region, the cAMP response was less

well correlated with the expectation values and the DG of the Y-Y motif and Ionic lock distance

(Figure 2e; R = �0.75 and Figure 2f; R = 0.58, respectively, and Figure 2—figure supplement 8),

as expected from the looser coupling between these microswitches and the ligand binding sites.

As a control, we converged the activation string for a simulation set initiated from the inactive

state structure, where the starting activation pathway was sampled in the reverse direction (Fig-

ure 2—figure supplements 1–2 and 9a). The TM microswitch expectation values led to a similar

prediction of Emax, accurately classifying carazolol as a non-agonist (Figure 2—figure supplement

10). Inspection of the free energy landscapes (Figure 2—figure supplement 9b–d), on the other

hand, revealed two differences between the carazolol-bound receptors’ active states obtained start-

ing from different initial strings (Figure 2—figure supplement 9c–d): (1) in the 2RH1-initiated sys-

tem, the intracellular domain of TM6 assumed an orientation with the ionic lock residues’ side chains

pointing away from each other (Figure 2—figure supplement 10d), although the backbone distance

between TM6 and TM3 was very similar (Figure 2—figure supplement 9d), and (2) the 2RH1-initi-

ated system sampled a conformation with an inactive TM5 bulge domain and active cytosolic domain

(Figure 2—figure supplement 9c), unlike any conformation captured in experimental structures. We

hypothesize that the conformation obtained starting from the inactive state could be an artifact of

pulling the inverse agonist-bound receptor directly toward its unfavorable active state, without tar-

geting metastable intermediate states along the pathway. Moving forward, we thus favor a protocol

in which the receptor was pulled along a pathway identified by unbiased MD simulations, presum-

ably closer to the most favorable converged activation pathway (Dror et al., 2011;

Fleetwood et al., 2020b).

Although downstream efficacy is an important metric for drug discovery purposes, alternative

methods are required to characterize the molecular basis of receptor activation. Spectroscopy

experiments have proven useful for this purpose (Gregorio et al., 2017; Imai et al., 2020;

Kofuku et al., 2012; Manglik et al., 2015; Ma et al., 2020; Nygaard et al., 2013; Ueda et al.,

2019; Weis and Kobilka, 2018), yet they are often difficult to compare quantitatively to atomistic

simulations due to chemical modifications introduced and/or complex interpretation of measured

signals. 19F-fluorine NMR and double electron-electron resonance (DEER) spectroscopy experiments

have shown that the conformational ensembles of carazolol and the apo receptor have similar TM6

distance distributions (Manglik et al., 2015), in agreement with the similarity in their microswitch

expectation values and free energy landscapes (Figure 2b,f and Figure 2—figure supplement 8e).

It has also been proposed that the inactive receptor exists in two sub-states (Manglik et al., 2015),

one with a formed and one with a broken ionic lock. Our simulations rarely captured a sub-state with

the ionic lock formed, which suggest that the state with a broken ionic lock is of lower free energy,

although modeling of missing residues in the cytosolic domain of TM6 and TM3 may alter the

dynamics of this region (Dror et al., 2009). Nevertheless, the agonists stabilized a state with the

side chains of the ionic lock residues pointing away from each other, while the inverse agonist cara-

zolol favored a state with the side chains pointing toward each other, although the TM6 displace-

ment was too large for the residues to fully form an ionic bond (Figure 2—figure supplement 11a).
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Table 2. String simulations: collective variables.

Residues Importance

F223(5.62)-A271(6.33) 1.0

Q224(5.63)-K227(5.66) 0.97

F223(5.62)-L272(6.34) 0.76

I325(7.52)-R328(7.55) 0.73

F223(5.62)-K227(5.66) 0.72

A226(5.65)-K267(6.29) 0.69

V54(1.53)-C327(7.54) 0.67

L324(7.51)-R328(7.55) 0.67

A134(3.53)-Y141 0.66

I135(3.54)-L272(6.34) 0.6

V222(5.61)-A271(6.33) 0.59

A226(5.65)-E268(6.30) 0.59

Q26(1.25)-D29(1.28) 0.57

I135(3.54)-E225(5.64) 0.57

R131(3.50)-L275(6.37) 0.57

A134(3.53)-A271(6.33) 0.56

C285(6.47)-V317(7.43) 0.56

A76(2.47)-P323(7.50) 0.56

Q26(1.25)-E30(1.29) 0.55

A226(5.65)-A271(6.33) 0.54

I121(3.40)-F208(5.47) 0.53

E338(8.56)-R343 0.53

I334(8.52)-R344 0.52

G50(1.49)-L324(7.51) 0.49

T25-D29(1.28) 0.47

I135(3.54)-A271(6.33) 0.46

T25-E30(1.29) 0.46

W286(6.48)-G315(7.41) 0.45

C285(6.47)-N318(7.45) 0.44

Q27(1.26)-E30(1.29) 0.44

R63-D331(8.49) 0.43

Q197(5.37)-V297(6.59) 0.43

A134(3.53)-E268(6.30) 0.42

P288(6.50)-L311(7.37) 0.42

T281(6.43)-N318(7.45) 0.42

C341(8.59)-R344 0.42

I135(3.54)-P138 0.4

R328(7.55)-R333(8.51) 0.36

L311(7.37)-G315(7.41) 0.36

I135(3.54)-E268(6.30) 0.35

C285(6.47)-I314(7.40) 0.34
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In general, the ligands stabilized active-like states

of different ionic lock displacements (Figure 2b).

As GPCRs only assume their fully active state in

the presence of an intracellular binding partner—

a condition not met in the simulations carried out

in this work—a loose allosteric coupling between

intracellular microswitches and the cellular

response is expected.

b2AR crystal structures reveal a number of

stabilized water molecules in the inactive state,

while this region is dehydrated in the G pro-

tein-bound state (Cherezov et al., 2007;

Rasmussen et al., 2011b). The disruption of

intra-receptor water networks and the formation

of a hydrophobic barrier, a prerequisite of acti-

vation (Trzaskowski et al. 2012), are likely con-

served features of activation

(Venkatakrishnan et al., 2019). Hydration in

the active state may also contribute to the

change in probe environment observed in spec-

troscopy experiments (Lamichhane et al.,

2015). We investigated the hydration near the

intracellular binding site by counting the num-

ber of water molecules within 0.8 nm of L266

(6.28) (Figure 2—figure supplement 11b), and

found that BI-167107 stabilized a partially dehy-

drated active state when TM6 assumed its out-

ward pose. Carazolol and the apo condition, on

the other hand, did not induce dehydration

with TM6 in its active conformation (Figure 2—

figure supplement 11b). This finding shows

that, to fully understand agonist control of

GPCR activation, one needs to combine the

shift in free energy with the conformational dif-

ferences between the states induced by the

ligands.

Data-driven analysis reveals that
ligands stabilize unique states
To pinpoint the molecular basis of signaling,

we reduced the high dimensional datasets to a

more compressed representation using methods

from machine learning (Figure 3). We used

three different methods to analyze all inter-resi-

due contacts: principal component analysis (PCA), multidimensional scaling (MDS), and t-distrib-

uted stochastic neighbor embedding (t-SNE). All these approaches were designed to find a low

dimensional embedding of the high dimensional data, but differ in their underpinnings. PCA

seeks a linear transformation of the input data into an orthogonal basis of principal components

(PCs) and is designed to cover as much of the variance in the data as possible (Figure 3a).

MDS projects the high dimensional space into a low dimensional representation using a non-lin-

ear transformation which preserves the distance between points (Figure 3b). T-SNE is a visualiza-

tion technique which seeks to disentangle a high-dimensional data set by transforming it into a

low-dimensional embedding where similar points are near each other and dissimilar objects have

a high probability of being distant (Figure 3c).

We evaluated two datasets: the equilibrated active-like state ensemble (Figure 3) and the swarm

trajectories from the final iteration of the converged string. For the latter, which represent the

Figure 3. Dimensionality reduction techniques applied

to the active-like simulation ensembles. Each point

represents a simulation snapshot, colored according to

the ligand bound to the receptor. Red dashed lines

highlight regions where agonists cluster. The features

are computed as the inverse closest heavy atom

distances between residues. (a) Principal component

analysis (PCA) projection onto the first two principal

components (PCs), (b) multi-dimensional scaling (MDS)

and (c) t-distributed stochastic neighbor embedding (t-

SNE). (d) The similarity between conformations

sampled when agonist (BI-167107, adrenaline and

salmeterol) and non-agonist ligands are bound,

measured as the average distance between

configurations in the full feature space.

The online version of this article includes the following

figure supplement(s) for figure 3:

Figure supplement 1. Dimensionality reduction of the

activation pathways, applied to the activation paths

derived from the swarms of trajectories method.

Figure supplement 2. Equilibration of single states.

Figure supplement 3. Dimensionality reduction plots

and similarity metrics for the kinetically trapped active-

like states, using three subsets of the simulation frames

in (a)–(c).

Figure supplement 4. State projection onto higher-

order PCs.
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converged activation pathways, the dimensionality reduction techniques created embeddings which

separated snapshots by their progression along the activation path (Figure 3—figure supplement

1). This is expected because unsupervised dimensionality reduction methods tend to emphasize

large scale amplitude motions, such as the displacement of TM6 in the case of GPCR activation

(Fleetwood et al., 2020c). These results confirmed that this feature is shared among all activation

pathways, regardless of which ligand the receptor was bound to.

Whereas the activation path ensembles contained inactive, intermediate, and active-like states for

every ligand–receptor complex, the active-like state ensemble simulations revealed that the confor-

mations sampled in the presence of different ligands differed substantially. Indeed, after eight itera-

tions with an accumulated simulation time of 1.4 ms per ligand (see Materials and methods), the

method for finding single equilibrated states generated trajectories that diffused around the most

stabilized state kinetically accessible from the starting structure (Figure 3—figure supplement 2).

Dividing the dataset into thirds yielded similar results (Figure 3—figure supplement 3), showing

that the states were adequately sampled.

The details of the active state ensemble varied among the ligands (Figure 3a–c). Simulations

with agonists bound tended to be grouped together for all three dimensionality reduction meth-

ods, but each of them generally also led to a distinct conformational ensemble. The simulation

snapshots with the agonist adrenaline bound were generally close to the full agonist BI-167107

and the partial agonist salmeterol. For the other ligands, the receptor explored a different con-

formational space than with agonists, but the ensembles were more diverse. In agreement with

the projections, the similarity matrix based on the average distance between snapshots in the

full feature space (Figure 3d) showed that agonists and non-agonists stabilized significantly dif-

ferent states.

Using PCA, we note that timolol clusters together with the agonist ligands. Thus, the first two

PCs are not sufficient to completely separate the dataset according to the ligands present

(Figure 3a), but including more PCs in the projection leads to a satisfactory separation (Figure 3—

figure supplement 4). The non-linear methods separated the classes well in two dimensions. As

expected, a few points deviated from the other snapshots in the same class due to sampling slightly

outside defined free energy basins. We also note that although t-SNE generates an embedding with

perfect separation between classes, the micro-clusters depend on parametrization of the method

and their exact placement is stochastic (Schubert, 2017).

To summarize, an analysis of the simulations by machine learning shows that ligands share

many overall features of activation, but stabilize unique local states, in agreement with previous

work (Kohlhoff et al., 2014; Tikhonova et al., 2013; Provasi et al., 2011; Liu et al., 2012;

Lamichhane et al., 2020; Frei et al., 2020; Suomivuori et al., 2020). Together with the free

energy landscapes, our findings support that ligands control the relative time a receptor spends

in active-like states, and induces small conformational state-specific signatures throughout the

protein.

Ligands control residues near the G protein-binding site
To capture the important characteristics of receptor activation, we applied PCA on the swarms of

trajectories datasets representing the activation ensemble and extracted important features from

these (Figure 4c). This analysis identified parts of TM6 and TM7 near the G protein-binding site as

particularly important (Figure 4c and Figure 4—figure supplement 1), adding further support for

the importance of these microswitches for activation. To characterize molecular differences between

the active-like states controlled by the different ligands, we applied supervised learning on our data-

set. With this approach, we derived features discriminating between the classes based on inter-resi-

due distances and thereby identified residues which could be important for activation. Importance

profiles were computed for discriminating between agonists and non-agonists (Figure 4a) and to

distinguish all ligands from each other (Figure 4b) using a symmetrized version of the Kullback–Lei-

bler (KL) divergence (Fleetwood et al., 2020c; Kullback and Leibler, 1951). With this approach,

two residues constituting a distance were scored as important if the active-like states formed non-

overlapping distance distributions, corresponding to a high KL divergence. As a control, we also

evaluated the important features learned by a random forest (RF) classifier, a machine learning classi-

fier constructed by an ensemble of decision trees. The importance profiles of the KL and RF feature

extractors were similar, although the RF classifier generated importance profiles with more distinct
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peaks. Since the datasets included a few simula-

tion frames that fluctuated outside the equili-

brated states, the RF classifier probably

suppressed some features to enhance prediction

accuracy for these frames. KL divergence esti-

mated how much the distributions overlapped

along individual features and was therefore less

likely to discard features based on these frames.

Remarkably, both data-driven methods identified

established microswitches as the most important

regions for classification: the NPxxY motif and

the intracellular part of TM6 in the intracellular

binding site (Figure 4a,b and Figure 4—figure

supplement 2).

These results underpin experimental evidence

that differences in these regions are related to

biased signaling (Frei et al., 2020;

Lamichhane et al., 2020, Lamichhane et al.,

2015; Liu et al., 2012; Suomivuori et al., 2020).

The TM5 bulge was particularly important for dis-

criminating between agonists and non-agonists

(Figure 4a). This region does not show up as

important when differentiating between all

ligands (Figure 4b), which means that the TM5

conformations within the two groups of ligands

were so similar that this region could not be used

to, for example, discriminate agonists from each

other. The NPxxY motif, on the other hand,

assumed a unique conformation for each ligand

(Figure 4b).

Spectroscopy experiments have shown that

the agonist BI-167107 stabilizes an intermedi-

ate, pre-active state (Manglik et al., 2015). It

was hypothesized that receptor activation

involves a transition via this state before form-

ing the fully active state together with an intra-

cellular binding partner (Manglik et al., 2015).

The experimental response was too weak to

discern a corresponding pre-active state for

antagonists, but the authors found it likely that

such a state is accessible to all ligands. More-

over, spectroscopy experiments found that dif-

ferent agonists induced different states in the

cytoplasmic domain (Manglik et al., 2015). Our

results provide molecular models for the pre-

active ensemble, and identified the region

around the NPxxY domain a major source of

conformational heterogeneity (Figure 4b and

Figure 4—figure supplements 1–4). In agree-

ment, conformational differences in this domain

have been shown to correlate to efficacy and

biased signaling in 19F NMR and single-mole-

cule fluorescence spectroscopy experiments

(Frei et al., 2020; Lamichhane et al., 2020;

Liu et al., 2012).

Figure 4. Important residues for distinguishing ligand-

dependent activation mechanisms. (a)–(b) Residues

identified to be important for classification of the

equilibrated active-like states. Importance was derived

by computing the Kullback–Leibler (KL) divergence

along all features, followed by averaging per residue.

(a) Comparison of agonists and non-agonists. One

signaling hotspot is located at the

transmembrane 5 (TM5) bulge and another on TM7

close to the NPxxY motif. (b) Important residues to

discriminate between all ligands. The main hotspot is

located near the NPxxY motif. (c) Important residues

for the activation ensemble from the swarms of

trajectories method, extracted with PCA. The

importance per feature was computed as the product

of the PC’s weights and the PC’s projection onto the

input feature. The intracellular end of TM6, which

undergoes a large conformational change upon

activation, is marked as important. Inverse closest

heavy atom distances were used as input features in all

figures. (d) Conceptual model describing allosteric

communication between the hotspots. Ligands exercise

direct control of TM5, which is stabilized in different

states by agonists and non-agonists. In turn, residues

approximately one helical turn below the orthosteric

site, including the connector region, couple to the

conformations in the orthosteric site. This leads to

distinct interaction patterns between TM6 and TM7 in

the TM domain. The importance of TM7 is further

enhanced by direct ligand interactions. By favoring

distinct TM7 states and modulating the probability of

stabilizing TM6 in an active conformation, ligands

control the G protein-binding site.

Figure 4 continued on next page
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Taken together, we arrived at a concep-

tual model to describe how different ligands

control the G protein-binding site

(Figure 4d). Ligands exercise direct control of

TM5, where agonists and non-agonists stabi-

lize different states. In turn, residues approxi-

mately one helical turn below the orthosteric

site—including the connector region, which

was identified as a good predictor of down-

stream response (Figure 2d)—couple to the

conformations in the orthosteric site. This

leads to distinct interaction patterns between

TM6 and TM7 in the TM domain. The impor-

tance of TM7 is further enhanced by direct

ligand interactions, generating a variety of

ligand-specific NPxxY motifs. By favoring dis-

tinct TM7 states and modulating the probability for TM6 to be in an active conformation, ligands

hence control the G protein-binding site. The overall pattern is compatible with observations

made from an MSM analysis of large-scale computations (Kohlhoff et al., 2014). However, since

our simulation protocol achieves conformational sampling at a fraction of the computational cost,

it has allowed us to compute the free energy landscape for a larger ligand dataset and to thus

find the molecular basis for the effect of binding of various agonists, antagonists, and inverse

agonists.

Molecular basis for allosteric transmission from the orthosteric to the
intracellular binding site
To further explore the atomistic basis of our conceptual model (Figure 4), we systematically

inspected the most important features connecting the two hotspots near the TM5 bulge and the

NPxxY motif. As in the previous section, we computed the KL divergence of the inter-residue dis-

tance distributions between the ligands. Distances with a high KL divergence that contributed to the

formation of ligand-specific active-like states were further investigated. Although the identified resi-

due-pairs did not necessarily reflect the causality of molecular interactions driving the conformational

changes, key features of activation were captured by this automated approach.

We first identified features shared between agonists near the orthosteric site. We found that

V206(5.46) could form van der Waals interactions with T118(3.37) only in the presence of agonists

(Figure 5a and b). This interaction is probably caused by hydrogen bonding between S207(5.46),

the TM5 bulge microswitch, and the ligand. In the TM domain, agonists induce a contraction

between L284(6.46) and F321(7.48) (Figure 5a and b) compared to non-agonists. Both of these resi-

dues face the lipid bilayer and are only weakly interacting in the simulations with agonists bound,

but are located in a hotspot region for activation. L284(6.46) is located just above the part of TM6

that kinks upon activation. The identified feature essentially connects the binding site and PIF motif

to the NPxxY motif. F282(6.44) of the PIF motif is close to L284(6.46). T118(3.37), which was identi-

fied as important near the TM5 bulge (Figure 5b), is only one helix turn above I121(3.40) of the PIF

motif in the connector region. Thus, the connector region is likely a driving factor behind the alloste-

ric communication between the ligand and G protein-binding sites, which influences the region sur-

rounding F321(7.48). F321(7.48) is located next to the NPxxY motif, which undergoes a twist upon

activation, and is part of the important hotspot on TM7. In this region, our machine-learning analysis

also identified that the backbone carbonyl of S319(7.46) formed a hydrogen bond with the side

chain of N51(1.50) on TM1 for agonists, whereas this interaction was destabilized for the other

ligands (Figure 5d). N51(1.50) is one of the most conserved residues across class A GPCRs

(Isberg et al., 2014) and stabilizes a water network together with D79(2.50) and Y326(7.53) in the

inactive receptor (Cherezov et al., 2007; Venkatakrishnan et al., 2019). Thus, this agonist-specific

interaction, together with the D79(2.50)-N322(7.49) interaction (Fig. S7c and S8c), may promote

dehydration of the water-filled cavity around conserved residue D79(2.50) and a twist of the NPxxY

motif. Overall, agonists favored contractions between local inter-residue distances compared to

non-agonists. By inspecting the most substantially changing large-scale distances, we also identified

Figure 4 continued

The online version of this article includes the following

figure supplement(s) for figure 4:

Figure supplement 1. Feature importance projected

onto snakeplots.

Figure supplement 2. Comparison between

supervised feature extraction methods.

Figure supplement 3. Important activation features

per ligand identified by applying unsupervised

principal component analyis (PCA) on the activation

paths.

Figure supplement 4. Important features for

equilibrated active-like states.
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a contraction of the entire protein for agonist-bound receptors, as reflected by the decrease in dis-

tance between S203(5.43) and E338(8.56) on helix 8 (H8) and between S207(5.46) and V307(7.33)

across the orthosteric binding site (Figure 5a and c).

Near the NPxxY motif, we found that the agonists stabilized different TM6 and TM7 orientations

(Figure 5d and e). Adrenaline favored the most active-like NPxxY motif, which was also maintained

throughout its activation path (Fig. S7d), with Y326(7.53) closer to L275(6.37) (Figure 5d). Salmeterol

stabilized a distinct NPxxY conformation, which was also observed in the activation path ensemble

Figure 5. Molecular basis for agonists’ control of receptor activation. (a) Molecular basis for agonists’ control of receptor activation. S203(5.43) and S207

(5.46) (red sticks) are part of the transmembrane 5 (TM5) bulge, which forms direct contacts with the ligand. V206(5.46) forms van der Waals interactions

with T118(3.37) (red), which is located above I121(3.40) of the PIF motif in the connector region (pink sticks). TM6 and TM7, highlighted as L284(6.46)

(orange sticks) close to F282(6.44) of the PIF motif and F321(7.48) (orange sticks) above the NPxxY motif, move closer together in the presence of

agonists. Half a helix turn above F321(7.48), S319(7.46) forms a backbone interaction with the side chain of N51(1.50) for agonist-bound receptors,

whereas water molecules interact with these residues for non-agonists. Together with TM7-ligand contacts in the orthosteric site, these interaction

pathways stabilize the second important hotspot on TM7 close to the NPxxY motif (Y326(7.53) shown in black). (b) The T118(3.37)-V206(5.46) distance

near the orthosteric site against the L284(6.46)-F321(7.48) distance in the TM region. Agonists contract both of these regions. (c) The distance across the

orthosteric site between S207(5.461) and V307(7.33) (dark red in [a]) against the S203(5.43)-E338(8.56) distance across the TM domain. Agonists stabilize

more compact receptor conformations. (d) The N51(1.50)-S319(7.46) distance against the L275(6.37)-Y326(7.53) distance. Agonists share the common

feature of stabilizing the N51(1.50)-S319(7.46) backbone interaction, but form different NPxxY orientations, shown as the distance from Y326(7.53) to

L275(6.37). (e) The three agonists stabilize slightly different TM6 and TM7 orientations, here illustrated by the distance between L275(6.37) and Y326

(7.53). Adrenaline (purple) induces an active-like NPxxY motif, whereas BI-167107 (dark blue) stabilizes an inactive-like motif. The salmeterol-bound

receptor (slate gray) adopts a distinct Y326(7.53) orientation.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Three distinct NPxxY conformations stabilized by salmeterol.
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(Figure 5—figure supplement 1), in which Y326(7.53) underwent a rotation, bringing the tyrosine’s

side chain further into the interface between TM6 and TM7. This pose is reminiscent of conforma-

tions suggested by 19F NMR studies on the b1-adrenergic receptor (Frei et al., 2020). BI-167107 sta-

bilized an inactive-like NPxxY motif with Y326(7.53) pointing away from L275(6.37) (Figure 5d).

In general, our data-driven approach automatically identified highly conserved residues involved

in receptor activation (Figure 4). A noteworthy example is the D79(2.50) cavity, which is partially

formed by strongly conserved residues S319(7.46), N51(1.50), and D79(2.50) and N322(7.49)

(Isberg et al., 2014), and mutation of these may lead to non-functional receptors (Chung et al.,

1988). Another example is the identification of V206(5.46), S207(5.46), and the PIF motif as a key

region for allosteric communication. V206(5.46) and S207(5.46) were shown to interact with a

recently discovered negative allosteric modulator that binds in an extrahelical site adjacent to the

PIF motif (Liu et al., 2020). Our results do not only illustrate the usefulness of MD combined with

data-driven analysis; they allow us to identify potential allosteric sites that can be targeted by

ligands, and reveal that, against our expectations, signaling hotspots near the NPxxY motif, far away

from the orthosteric site, experience the largest ligand-induced conformational heterogeneity.

Discussion
Following the progress in GPCR research, it has become evident that a simple two-state model of

activation is an oversimplification with considerable limitations. To explain biased and partial ago-

nism, there is a need for a more comprehensive model. Many ligands have been characterized as

full, partial, or biased agonists (van der Westhuizen et al., 2014). However, a systematic characteri-

zation of the molecular mechanisms which transmit this allosteric communication across the cell

membrane remains elusive. Researchers have successfully managed to discriminate between arrestin

and G protein bias using spectroscopic probes (Lamichhane et al., 2020; Liu et al., 2012), but the

conformational changes and dynamics of many microswitches cannot be captured in a single mea-

surement. MD simulations have the potential to provide additional insights thanks to the atomistic-

level description they enable (Lamim Ribeiro and Filizola, 2019). Whereas the free energy land-

scapes clearly show that ligands influence several microswitches, a direct comparison between free

energy profiles may be misleading if the other orthogonal microswitches are ignored. For example,

the local minima in the connector DRMSD landscapes are located at similar positions for all ligands,

but our analysis clearly shows that the overall conformational ensembles differ (Figure 2a and Fig-

ure 2—figure supplement 7b). Such projections onto single variables can thus obscure major differ-

ences in other microswitches. To address this limitation, we have used data-driven analysis methods,

which are better suited for handling high-dimensional data than mere visual inspection, and found

that there were indeed significant conformational differences in the states stabilized by the different

ligands. Remarkably, this protocol automatically identified both receptor-specific and conserved

motifs considered to be of significance for GPCR activation, such as the TM5 bulge and the NPxxY

motif, as important. The different dimensionality reduction techniques found similar partitioning of

the data, which strongly indicates that the results are not due to fortuitous parameter tuning or

method choice. One of the remaining enigmas in GPCR research is to understand how the same

overall activation mechanism can be conserved in spite of the fact that very different ligands are rec-

ognized by the family. Our machine learning-inspired data analysis protocol provides an unbiased

approach to identify key features of activation for different receptor types.

The derivation of free energy landscapes and the corresponding microswitch expectation values

provide a tool for estimating the stability of activation states, and thus also the relative efficacy of

different ligands. Given the high correlations between microswitch expectation values and experi-

mental data, we anticipate that microswitches located in the orthosteric and connector regions can

be used for future predictions of ligand efficacy. Additionally, an advantage of the methods used in

this study is that results were derived from several simulation replicas, which reduces the statistical

error related to the stochastic nature of MD simulations on short time scales. Since we allow the

strings to diffuse around the converged equilibrium pathway for many iterations, the statistical error

in the microswitch expectation values and energy landscapes is small, although it may be somewhat

underestimated since swarm trajectories launched from the same point are correlated to each other.

The systematic error is likely bigger for reasons related to the choice of force field (Guvench and

MacKerell, 2008). An important limitation is that the string method can only identify one out of
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multiple activation pathways. Our control simulation starting from the inactive crystal structure,

which converged to a different active state, indeed demonstrated this issue and highlights the

importance of starting from a well-chosen input pathway.

Understanding ligand control of receptor activation is of great interest in drug development. The

conformational selection of intracellular binding partners enables the construction of molecules or

nanobodies that have a high binding affinity only in combination with a specific ligand

(Sencanski et al., 2019), which has been utilized in structure determination (Masureel et al., 2018;

Rasmussen et al., 2011a; Ring et al., 2013; Staus et al., 2016). Similarly, a well-designed nanobody

or allosteric modulator could enhance or block the binding of a specific compound (Staus et al.,

2016). However, in this study, the ligands were bound to the receptor throughout the simulations

and no intracellular binding partner was considered. GPCRs only assume their fully active state in

the presence of an intracellular binding partner (Gregorio et al., 2017; Manglik et al., 2015;

Nygaard et al., 2013). The b2AR undergoes a basal activity, where it fluctuates between active-like

and inactive states (Gregorio et al., 2017; Lamichhane et al., 2015), which can be inferred from the

relatively low free energy difference between the basins in the energy landscapes. While extracellu-

lar and TM microswitches only require an agonist to maintain their active state conformations, intra-

cellular microswitches interact with an intracellular binding partner directly and are more affected by

its absence, which is likely why correlations between microswitch expectation value and Emax are

worse for the intracellular microswitches.

Other important aspects of receptor–ligand interactions, such as identifying the binding pose of

novel compounds or estimating a ligand’s binding free energy, cannot be estimated with this

approach. There are other complementary techniques such as free energy perturbation methods

(Cournia et al., 2017; Matricon et al., 2021; Matricon et al., 2017), which can be used to rigor-

ously estimate binding affinity. Combined with enhanced sampling MD, we move toward having a

complete toolkit for in silico drug design for development of high-affinity GPCR ligands with a spe-

cific efficacy.

Despite the increasing number of b2AR structures, the receptor has not been solved in a form

bound to arrestin. However, conformations observed in our simulations share properties with other

arrestin-bound states observed for other receptors. For example, the supervised learning methods

identified the C-terminal and H8 below the NPxxY motif as relatively important (Figure 4a, Fig-

ure 4—figure supplements 1–4). This region is known to be stabilized in ligand-dependent states

for the angiotensin II type 1 receptor (Suomivuori et al., 2020; Wingler et al., 2019). While the

reorganization of H8 may be a secondary effect due to modulation of the NPxxY motif, this region

could be important for arrestin recruitment (Lally et al., 2017; Staus et al., 2018). Salmeterol’s dis-

tinct NPxxY state only formed in combination with a lost interaction between salmeterol and S207

(5.46) and S203(5.43), which is remarkable considering that the two binding sites are believed to be

only loosely coupled (Dror et al., 2011; Fleetwood et al., 2020b). A similar phenomenon has been

reported in a recent structure of b1AR (Lee et al., 2020), where the corresponding serines in the

orthosteric site experienced weakened interactions to the biased agonist formoterol. The fact that Y

(7.53) forms contacts with arrestin for b1AR (Lee et al., 2020) suggests that our derived b2AR confor-

mation may have biased signaling properties.

Our results show that the activation pathways as well as the stabilized states are significantly

altered upon ligand binding, and that ligands with shared efficacy profiles generate similar, albeit

not identical, ensembles of states. It therefore cannot be taken for granted that two ligands which

lead to a similar downstream response necessarily stabilize the same receptor conformations. As we

considered several compounds in this study, similarities and differences between different com-

pound classes emerged. The results in this study provide a good starting point for further analysis

and allowed us to catch a glimpse of the complexity underlying receptor signaling. A thorough

quantification of biased and partial agonism will require studies of ligands that stimulate various sig-

naling pathways to different extents.

Conclusion
In this study, we derived the activation free energy of the b2AR bound to ligands with different effi-

cacy profiles using enhanced sampling MD simulations. We found a strong correlation between cel-

lular response and the computed expectation values of the upper and TM microswitches, which

suggests that our approach holds predictive power. Not only did the results show how ligands
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control the population of states, they also modulate the conformational ensemble of states by tuning

important allosteric microswitches in the vicinity of the G protein-binding site. By inspecting the con-

tacts formed for agonists and non-agonist ligands, we identified an allosteric pathway between the

two binding sites and a large heterogeneity of TM7 states. Our results show how enhanced sampling

MD simulations of GPCRs bound to ligands with various activation profiles, in combination with

a data-driven analysis, provide the means for generating a comprehensive view of the complex sig-

naling landscape of GPCRs. We anticipate that our protocol can be used together with other compu-

tational methods to understand GPCR signaling at the molecular level and provide insights that

make it possible to design ligands with specific efficacy profiles.

Materials and methods

Simulation system configuration
We initiated simulation systems from a nanobody-bound active-state BI-167017-bound structure

(PDB ID: 3P0G) (Rasmussen et al., 2011a) and an inactive carazolol-bound structure (PDB ID: 2RH1)

(Cherezov et al., 2007) in CHARMM-GUI (Lee et al., 2016) with the CHARMM36m force field

(Huang et al., 2017). Since the two structures are missing certain residues and have different ther-

mostabilizing mutations, we used GPCRDB’s (Isberg et al., 2014) improved version of 2RH1,

removed residues not present in 3P0G, and mutated E27(1.26) to Q, a residue frequently found in

the human population (Dallongeville et al., 2003). As a result, the two simulation systems were

identical. Following the protocol of a previous study (Fleetwood et al., 2020b), we reversed the

N187E in the crystallized structures, protonated E122(3.41), and protonated the two histidines H172

(4.64) and H178(4.70) at their epsilon positions. The receptor was embedded in a POPC membrane

bilayer (Klauda et al., 2010) of 180 molecules, then solvated in a 0.15M concentration of neutraliz-

ing sodium and chloride ions with 79 TIP3P water molecules (Jorgensen et al., 1983) per lipid mole-

cule. We performed the MD simulations with GROMACS 2018.6 (Abraham et al., 2015) patched

with PLUMED (Tribello et al., 2014). Ligands present in PDB structures 2RH1 (Cherezov et al.,

2007), 3NYA (Wacker et al., 2010), 3D4S (Hanson et al., 2008), 6MXT (Masureel et al., 2018), and

4LDO (Ring et al., 2013) were inserted into the 3P0G structure after alignment of residues interact-

ing with the ligand. Input files required to run the simulations in this study are available online

(Fleetwood, 2019a).

String method with swarms of trajectories
We used an optimized version of the string method with swarms of trajectories to enhance sampling

and to estimate the free energy along various microswitches (Fleetwood, 2020a; Pan et al., 2008;

Lev et al., 2017). This method finds the most probable transition pathway between two end states

in a high-dimensional space spanned by a set of CVs (in this context synonymous with reaction coor-

dinates). Given the initial guess of points distributed along a string in CV space, in this case the tran-

sition path from the previously published apo simulation, the 3P0G-initiated systems were

equilibrated by running 200 ns steered MD simulations along the string with force constant per CV

of 3366 kJ/mol*nm2 scaled by its estimated importance (more details in the following section). This

was then followed by a 7 ns initial restrained equilibration at every point. Next, a swarm of 10-ps-

long trajectories were launched from the output coordinates of every restrained simulation. The

average drift of the swarm was computed as the mean displacement of the short swarm trajectories

in CV space, which is proportional to the gradient of the free energy landscape. Every swarm con-

sisted of 16–32 trajectories and the exact number was determined adaptively to converge the drift

vector. The points were displaced according to their drift and re-aligned along the string to maxi-

mize the number of transitions between neighboring points. The string was updated iteratively with

30 ps of restrained equilibration per point, followed by a batch of swarms and string reparametriza-

tion. Gradually, the string relaxed into the most probable transition path connecting energetically

stable intermediates between the two endpoints. We ran the simulations for 305 iterations, requiring

an aggregated simulation time of 4.3 ms per ligand.

As a control, we also initiated a string from the carazolol-bound inactive state structure 2RH1.

Steered MD from the inactive to the active state resulted in a slight unfolding of the intracellular

part of TM6. Instead, we followed a slightly different protocol (Lev et al., 2017) and initiated the
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pathway by applying 200 ns targeted MD with a stronger 100 MJ/mol*nm2 force constant on all pro-

tein-heavy atoms. From this pathway, the string with swarms of trajectories was launched using the

same CVs and algorithm as described above.

Convergence is generally reached when the string diffuses around an equilibrium position. Due to

MD simulations’ stochasticity, two strings from subsequent iterations may therefore differ even when

the system has reached equilibrium. To evaluate the convergence we averaged the strings over 60

iterations, and stopped sampling every simulation after 305 iterations, at which point the average

strings for all ligand–receptor complexes had converged.

Kinetically trapped active-like state sampling
In order to quantitatively sample the most stabilized state kinetically accessible from the starting

structure without applying an artificial force on the system, we developed an adaptive sampling pro-

tocol. A single swarm with twenty-four 7.5-ns-long trajectories was launched from the same initial

active configuration as described in the previous paragraph. The swarm’s center point, c, in CV

space was taken as the mean of the trajectories’ endpoint coordinates, xi. Next, we computed the

average distance, d, from the endpoints to the center and assigned every replica, i, a weight, wi(x)

=exp(-(|xi-c| / d) 2). New trajectories were iteratively seeded by extending ni/wi/
P

jwj copies of each

replica, keeping the total number of trajectories fixed to 24. With this approach, only replicas close

to the center were extended and the ensemble of trajectories eventually diffused around a single

equilibrated state.

We evaluated convergence by monitoring the distance between the center point of subsequent

iterations until it converged to a constant value, which occurred within eight iterations for all sys-

tems. To demonstrate the robustness of the results, we split the walkers into three sub-groups for

cross validation analysis.

Collective variable selection
We derived the CVs for the string method with swarms of trajectories in a data-driven manner from

the swarm coordinates of the apo simulation’s final iteration using demystifying (Fleetwood et al.,

2020c), a software which utilizes machine learning tools and dimensionality reduction methods to

identify important features from MD simulation trajectories. As features, we chose inverse inter-resi-

due C-a distances and filtered them to only include those which sampled values in the interval 6–8

Å. We then used the features to train a restricted Boltzmann machine (RBM) (Smolensky, 1986). An

RBM is a single-layer neural network with a number of hidden components (two in this manuscript),

equivalent to a fully connected bipartite graph. Upon training, the network is tuned to fit a certain

statistical model, which maximizes the joint probability between the components in the input layer

and the hidden layer (Pedregosa et al., 2011). The input features were ranked by their importance

using layer-wise relevance propagation, an algorithm originally developed to identify important pix-

els in image classification problems (Montavon et al., 2018). Since we used stochastic solvers, the

results were averaged over the results from 50 independent RBMs. Only CVs with an estimated

importance above 0.33 were included in the final set (Table 2). Every CV was first scaled unitless in

order to keep all values between 0 and 1, then rescaled according to its importance, so that the

restraining force and the drift in the swarms of trajectories method would better emphasize the con-

formational changes along important degrees of freedom. Finally, we derived a new pathway in the

resulting CV space by interpolating between the restrained points of the converged apo simulation.

All string simulations used these CVs and this new pathway as a starting point to launch swarms

except for the previously published apo and BI-167107 systems.

Free energy estimation
Free energy landscapes were estimated during post-processing by discretizing a grid along a chosen

set of variables and constructing a regularized transition matrix from the swarm trajectories’ transi-

tions between bins. We then derived the resulting free energy landscape from the stationary proba-

bility distribution of the transition matrix using Boltzmann inversion (Fleetwood et al., 2020b;

Flood et al., 2019; Lev et al., 2017). To estimate the convergence of the free energy landscapes,

we applied a Bayesian Markov chain Monte Carlo method (Harrigan et al., 2017) to sample 1000

different transition matrices from the dataset, each with a corresponding probability distribution and
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free energy landscape. From these we could estimate standard statistical properties such as the

mean value and sample standard error. Swarm trajectories from a well-sampled equilibrium ensem-

ble with multiple transitions between states will generate a narrower distribution of free energy val-

ues than trajectories drawn from a non-equilibrium process or a poorly sampled system.

Microswitch expectation values and equilibrium between states
To quantify the effect of a ligand on different microswitches, we computed the expectation value

and the relative difference in free energy between the active and inactive state (DG) of individual

microswitches. DG was obtained by integrating the free energy landscape over the active and inac-

tive basins, respectively. We defined approximate state boundaries by visual inspection of the free

energy landscapes and the crystal structures.

We then evaluated the correlation of these two values with experimental measurements of cellu-

lar response to ligand binding (van der Westhuizen et al., 2014) using linear regression in the

python software package SciPy (Enthought Inc, Austin, TX; Millman and Aivazis, 2011). Finally, we

applied the derived linear relationship to predict the efficacy of the two ligands not part of the

experimental dataset, BI-167107 and carazolol, based on their microswitch expectation values.

Supervised and unsupervised feature extraction and learning
We analyzed the trajectories from the last iteration of the adaptive state sampling protocol and the

swarms of trajectories method with various dimensionality reduction methods. To identify conforma-

tional differences induced by the ligands, we performed supervised and unsupervised feature extrac-

tion with the software demystifying (Fleetwood et al., 2020c), and projected important features

onto snake plot templates downloaded from GPCRDB (Isberg et al., 2014). As features, we used

scaled inverse closest-heavy atom distances. Furthermore, we performed unsupervised dimensional-

ity reduction in Scikit-learn (Pedregosa et al., 2011) with PCA (Tipping and Bishop, 1999), MDS

(Borg and Groenen, 2005) with a Euclidean distance metric and t-SNE (van der Maaten and Hin-

ton, 2008 ), and projected the simulation snapshots onto the reduced feature spaces. We con-

structed a similarity metric by taking the average Eucledian distance between all simulation

snapshots in two classes, and normalized the class similarities between 0 and 1, with higher values

representing similar classes.

Moreover, we computed how important individual residues were for discriminating between ago-

nists and non-agonists and to distinguish all ligands from each other, using a symmetrized version of

the KL divergence (Fleetwood et al., 2020c; Kullback and Leibler, 1951). With this approach, two

residues constituting a distance were scored as important if the active-like states formed non-over-

lapping distance distributions, corresponding to a high KL divergence. As a control, we evaluated

the important features learned by a RF classifier (Ho, 1995), a machine learning model constructed

by an ensemble of randomly instantiated decision trees. The importance of inter-residue distances

was computed during training by normalizing the RF’s mean decrease impurity (Breiman et al.,

1984; Pedregosa et al., 2011), which measures how frequently a distance is used to split the deci-

sion trees.

Unsupervised feature extraction was performed with PCA (Tipping and Bishop, 1999), which

transformed the input dataset of distances, F, into to a set of orthogonal variables called PCs. The

PCs are equivalent to the eigenvectors of FTF, and their eigenvalues measure how much of the vari-

ance in F they cover. Thus, by multiplying the PCs with their egeinvalues, and projecting them back

onto the input features, we obtained an estimate of importance corresponding to how much the

individual distances contributed to the variance in F.

Software code to reproduce the results in this manuscript is available online (Fleetwood, 2020a;

Fleetwood, 2019a; Fleetwood, 2019b).
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Vetenskapsrådet 2017-4676 Jens Carlsson

Swedish strategic research
program eSSENCE

Jens Carlsson

Knut och Alice Wallenbergs
Stiftelse

Jens Carlsson
Lucie Delemotte

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Oliver Fleetwood, Conceptualization, Software, Formal analysis, Validation, Investigation, Visualiza-

tion, Methodology, Writing - original draft, Writing - review and editing; Jens Carlsson, Conceptuali-

zation, Supervision, Funding acquisition, Validation, Investigation, Visualization, Writing - review and

editing; Lucie Delemotte, Conceptualization, Formal analysis, Supervision, Funding acquisition, Vali-

dation, Investigation, Visualization, Writing - review and editing

Author ORCIDs

Oliver Fleetwood https://orcid.org/0000-0002-4277-2661

Jens Carlsson https://orcid.org/0000-0003-4623-2977

Lucie Delemotte https://orcid.org/0000-0002-0828-3899

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.60715.sa1

Author response https://doi.org/10.7554/eLife.60715.sa2

Additional files

Supplementary files
. Transparent reporting form

Data availability

The data necessary to reproduce the findings presented in this paper can be found on OSF (DOI

10.17605/OSF.IO/6XPYV). The code used to run and analyze simulations has been deposited on

GitHub (https://github.com/delemottelab/demystifying, https://github.com/delemottelab/gpcr-

string-method-2019 and https://github.com/delemottelab/state-sampling; copies archived at

https://archive.softwareheritage.org/swh:1:rev:e8527b52d5fbe0570cd391921ecda5aefceb797a/,

Fleetwood et al. eLife 2021;10:e60715. DOI: https://doi.org/10.7554/eLife.60715 18 of 22

Research article Structural Biology and Molecular Biophysics

https://orcid.org/0000-0002-4277-2661
https://orcid.org/0000-0003-4623-2977
https://orcid.org/0000-0002-0828-3899
https://doi.org/10.7554/eLife.60715.sa1
https://doi.org/10.7554/eLife.60715.sa2
https://github.com/delemottelab/demystifying
https://github.com/delemottelab/gpcr-string-method-2019
https://github.com/delemottelab/gpcr-string-method-2019
https://github.com/delemottelab/state-sampling
https://archive.softwareheritage.org/swh:1:rev:e8527b52d5fbe0570cd391921ecda5aefceb797a/
https://doi.org/10.7554/eLife.60715


https://archive.softwareheritage.org/swh:1:rev:bc3b7ce2e74e5ac95644d57a1b24f717a7ec74a4/,

https://archive.softwareheritage.org/swh:1:rev:f0f56430ce581f0338771c126da212ecc2f218a0/).

References
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