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Abstract Older age is a strong shared risk factor for many chronic diseases, and there is

increasing interest in identifying aging biomarkers. Here, a proteomic analysis of 1301 plasma

proteins was conducted in 997 individuals between 21 and 102 years of age. We identified 651

proteins associated with age (506 over-represented, 145 underrepresented with age). Mediation

analysis suggested a role for partial cis-epigenetic control of protein expression with age. Of the

age-associated proteins, 33.5% and 45.3%, were associated with mortality and multimorbidity,

respectively. There was enrichment of proteins associated with inflammation and extracellular

matrix as well as senescence-associated secretory proteins. A 76-protein proteomic age signature

predicted accumulation of chronic diseases and all-cause mortality. These data support the use of

proteomic biomarkers to monitor aging trajectories and to identify individuals at higher risk of

disease to be targeted for in depth diagnostic procedures and early interventions.

Introduction
The elderly population is rapidly growing around the world, and the age group 80 years and older is

expanding faster than any other demographic group (Colby and Ortman, 2015). Advanced age is

one of the most powerful predictors shared by many chronic diseases that are highly prevalent in

the older population and negatively impact function and quality of life. Understanding mechanisms

by which aging increase the risk of chronic morbidity is of utmost importance for the development

of new intervention strategies aimed at improving health-span in the general population.

While, at the population level, the overall risk of pathology increases with chronological age, the

age when pathology first emerges clinically, the rates of pathology development and the age at

death are highly variable between individuals. Hence, two individuals of the same chronological age

may lay on very different health trajectories. While the characterization of risk factors has proven use-

ful for the identification of individuals at high risk of developing specific diseases, there is currently

no robust method to distinguish between individuals at risk of global deterioration of health status.

For example, chronic inflammation is the only biomarker that predicts the development of multimor-

bidity (Fabbri et al., 2015). Thus, the development of biomarkers that can discriminate, at an early

stage, individuals on different health trajectories with aging is a critical challenge in aging research.
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Over the last few years, data from a large number of molecular analytes have been used to screen

biomarkers associated with chronological age, specific chronic diseases and global health in rela-

tively large populations (Horvath, 2013; Tanaka et al., 2018; Sun et al., 2018). Among these

molecular analytes, proteins are particularly attractive because they are direct biological effectors,

and dynamic changes with aging or disease are complex and manifold. Indeed, previous studies on

circulating proteins have already shown great promise as potential biomarker signatures of human

diseases (Tanaka et al., 2018). Past studies have used various proteomic platforms to identify novel

age- and disease-related protein biomarkers in plasma, serum, and cerebral spinal fluid

(Tanaka et al., 2018; Sun et al., 2018; Menni et al., 2015; Baird et al., 2015; Di Narzo et al.,

2017). While several promising candidate biomarkers have been reported, reproducibility of the

findings and the clinical utility of these biomarkers is still uncertain. Highly robust and clinically useful

biomarkers will emerge following repeated studies in genetically and geographically diverse cohorts.

Since aging is a complex process, it is likely that multiple biomarkers are needed to capture the

physiological mechanisms of accelerated aging that eventually lead to the multiplicity of adverse

outcomes that typically occur in older persons. Perhaps the best example is the estimation of ‘epige-

netic clock’ signatures that were developed by examining DNA methylation across a large number

of DNA sites to single out those that in a weighted average reproducibly predict chronological age

(Horvath, 2013; Bocklandt et al., 2011; Human Microbiome Project Consortium, 2012;

Weidner et al., 2014). Positive deviations of the epigenetic clock from chronological age are meant

to estimate biological age acceleration and have, in fact, been shown that they predict pathologic

age-related traits, such as diabetes, cardiovascular disease, cancer, and premature death

(Fauci et al., 2008; Chen et al., 2016a; Levine et al., 2015; Perna et al., 2016). Other epigenetic

biomarkers, still based on DNA methylation, were developed by tuning them against health-related

characteristics, including risk factors of cardiovascular disease, mortality and lifespan (Levine et al.,

2018; Lu et al., 2019). While these tools have clearly demonstrated that the aging process deter-

mines predictable, non-stochastic epigenetic changes, the predictive power of epigenetic bio-

markers are still too limited for extensive clinical use. In addition, the mechanisms for such age-

related changes in DNA methylation and their association with health outcomes is unknown, as it is

challenging to draw conclusions related to functional pathways. Additionally, ideal clinically useful

biomarkers should be directly measurable in highly accessible and non-invasive biological specimens

such as plasma or serum.

Our group recently developed an accurate signature of age using data from 76 plasma proteins

in a population of 240 healthy subjects between 22 and 93 years of age. This proteomic signature of

age was correlated with age-related clinical parameters such as inflammation and adiposity

(Tanaka et al., 2018). A clear advantage of protein biomarkers compared to other biomarkers is

that they are direct biological effectors, and their identification provides important clues to the

underlying biological mechanism involved in their association with age and health outcomes. How-

ever, whether this proteomic clock is associated with clinically relevant aging outcomes could not be

determined because of limited sample size and because the initial study was restricted to extremely

healthy individuals.

To address the limitations of our previous US-based study, here we examined associations

between age and abundances of 1301 proteins measured using an aptamer-based method on a rep-

resentative population sample of 997 participants in the Italy-based InCHIANTI study. We aimed to

identify novel age-associated proteins, as well as confirm previously reported age-associated pro-

teins, and to uncover their relationship with age-related outcomes. By using a genetically and geo-

graphically distinct cohort, we also aimed to crystallize the most robust biomarkers in diverse

populations. We used a Mendelian Randomization (MR) approach to explore genetic evidence of

causal relationship between age-associated proteins with key chronic diseases. We also explored

DNA methylation as an underlying epigenetic mechanism for age-related changes in protein abun-

dance and show that, for some proteins, methylation can partially explain the observed age associa-

tions. We further investigated whether proteomic data can be used to predict chronological age in a

geographically distinct cohort using the algorithm from our previous study (Tanaka et al., 2018).

Moreover, we assessed that the deviation between predicted and observed age may reflect rates of

aging and could be used as a measure of accelerated biological aging.
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Results

Association of protein abundance and chronological age
Plasma proteomic profiling was conducted on 997 individuals (45% men, 55% women) between the

ages of 21–98 years (average 66.3 ± 15.4 years) from the baseline visit of the InCHIANTI study

(Table 1, Table 1—source data 1). A global burden of chronic diseases calculated as the number of

15 common chronic diseases that affected the participants at the time of assessment, hereafter

referred to as multimorbidity, was progressively higher at older ages. The prevalence of all common

diseases except for chronic obstructive pulmonary disease and Parkinson’s disease was higher in the

older age groups (Table 1, Table 1—source data 1). Of the 997 participants, 504 (50.6%) died over

the 18 year follow-up period.

The association of 1301 SOMAmers with chronological age was examined using a linear model.

Of the 1301 proteins tested, 651 proteins (506 overrepresented and 145 underrepresented with

age) were associated with chronological age at Benjamini-Hochberg false discovery rate (B-H FDR)�

0.05 (Figure 1A; Figure 1—source data 1). The percent variation in protein abundances explained

by age ranged from 0.3% to 50.6%. When the analysis was adjusted for the burden of chronic dis-

ease, 537 proteins (82.5%) remained significantly associated with age, with small effects on the

strength of the association. Specifically, the effect size (or beta estimates) of the regression model

changed by 30% or more in only 35 of these proteins (6.5%). These findings suggest that the major-

ity of variance in these proteins was accounted by age ‘per se’ rather than age-related differences of

health status. To validate the finding, we used data from a cohort 240 healthy subjects from the

Table 1. Clinical and demographic characteristics of 997 InCHIANTI subjects at baseline visit.

Overall 20–60 years 60–70 years 70–80 years 80+ years p

n 997 203 285 380 129

Age (yrs) 66.3 (15.4) 40.1 (11.1) 66.4 (2.2) 73.9 (2.7) 84.9 (3.6) <0.001

% Women 549 (55.1) 106 (52.2) 152 (53.3) 207 (54.5) 84 (65.1) 0.097

% Ripoli 517 (51.9) 98 (48.3) 147 (51.6) 192 (50.5) 80 (62.0) 0.084

% death 504 (50.6) 9 (4.4) 109 (38.2) 259 (68.2) 127 (98.4) <0.001

Follow-up time (yrs) 15.0 (4.9) 18.4 (1.6) 16.6 (3.8) 14.1 (4.8) 8.7 (4.0) <0.001

Number of common diseases 1.3 (1.3) 0.3 (0.5) 1.2 (1.1) 1.7 (1.3) 2.3 (1.5) <0.001

Hypertension 375 (37.6) 18 (8.9) 120 (42.1) 168 (44.2) 69 (53.5) <0.001

Depression 183 (18.4) 22 (10.8) 36 (12.6) 88 (23.2) 37 (28.7) <0.001

Cognitive impairment 177 (17.8) 3 (1.5) 29 (10.2) 82 (21.6) 63 (48.8) <0.001

Diabetes 103 (10.3) 4 (2.0) 32 (11.2) 47 (12.4) 20 (15.5) <0.001

Lower extremities joint disease 84 (8.4) 1 (0.5) 18 (6.3) 49 (12.9) 16 (12.4) <0.001

Peripheral artery disease 76 (7.6) 0 (0) 14 (4.9) 39 (10.3) 23 (17.8) <0.001

Anemia 74 (7.4) 10 (4.9) 13 (4.6) 28 (7.4) 23 (17.8) <0.001

Ischemic heart disease 54 (5.4) 0 (0) 16 (5.6) 27 (7.1) 11 (8.5) 0.001

Chronic obstructive pulmonary disease 50 (5.0) 3 (1.5) 18 (6.3) 23 (6.1) 6 (4.7) 0.065

Cancer 48 (4.8) 1 (0.5) 18 (6.3) 24 (6.3) 5 (3.9) 0.008

Stroke 34 (3.4) 1 (0.5) 3 (1.1) 22 (5.8) 8 (6.2) <0.001

Congestive heart failure 28 (2.8) 0 (0) 6 (2.1) 16 (4.2) 6 (4.7) 0.013

Hip fracture 22 (2.2) 0 (0) 3 (1.1) 12 (3.2) 7 (5.4) 0.003

Chronic kidney disease 8 (0.8) 0 (0) 0 (0) 2 (0.5) 6 (4.7) <0.001

Parkinson’s disease 6 (0.6) 0 (0) 2 (0.7) 2 (0.5) 2 (1.6) 0.354

Data represent mean (SD) for continuous variables and n (%) for categorical variable.

The online version of this article includes the following source data for Table 1:

Source data 1. Phenotypic data of the InCHIANTI study.
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Baltimore Longitudinal Study on Aging (BLSA)

and the Genetic and Epigenetic Signatures of

Translational Aging Laboratory Testing

(GESTALT) using in the previous publication

(Tanaka et al., 2018). Of the 651 proteins that

were significantly associated with age in the

InCHIANTI study, 60% (395 proteins) were signifi-

cantly associated with age in the BLSA/GESTALT

study. To identify additional age-associated pro-

teins, a meta-analysis of associations results from

the BLSA-GESTALT and the InCHIANTI study was

performed. There were 735 proteins associated

with age 596 higher abundance with age, 139

lower abundance with age; (Figure 1—figure

supplement 1, Figure 1—source data 2). We

compared these findings with results from the

INTERVAL/LonGenity study using the 3K SOMAs-

can platform, with 1.3K SOMAscan platform used

in the InCHIANTI study. Of the 735 age-associ-

ated proteins, 511 were measured in the INTER-

VAL/LonGenity study and 346 (68%) proteins

were significantly associated with age, and more

importantly for 286 (56%) proteins, the directions

of age association were concordant (Figure 1B).

There were 224 novel age-associated proteins

discovered in the 1.3K platform.

Next, we examined whether association

between protein abundance with age was modi-

fied by sex. Of the 1301 proteins tested, there

were 427 proteins with sex differences in protein

abundance, 328 of which were overrepresented

in women and 99 overrepresented in men

(Figure 2A, Figure 2—source data 1). As

expected, the most significant differences were

observed for proteins with known sex differences

such as PSA (higher in men), and FSH, leptin,

HCG (higher in women) which can be considered

as powerful positive controls. To test the robust-

ness of these association, these results were com-

pared to results from INTERVAL study

(Lehallier et al., 2019). Of the 427 proteins asso-

ciated with sex in the InCHIANTI study, 294

(68.9%) were measured in the INTERVAL study

(Figure 2—source data 1). Of these, 230 pro-

teins (78.2%) were associated with sex in the

same direction with the INTERVAL study, reflect-

ing the robustness of sex-associated proteins.

Next, we tested whether sex modified any of the

associations between age and protein abundan-

ces. Overall, we discovered 50 proteins that

showed significant differences in the association

with age-by-sex (Figure 2B, Figure 2—source

data 1). The most significant sex-difference was

observed for sex hormone-binding globulin, that

showed a strong significant rise with aging in

men but no age-trend in women (Figure 2C).

Figure 1. Age-associated proteins in the InCHIANTI

study. (A) The volcano plot displays the results from the

association of 1301 proteins with chronological age in

the InCHIANTI study (N = 997; Figure 1—source data

1). The figure displays the effect size, or the beta

coefficient for age (bage) from the linear model,

against significance presented as the -log10(P-value).

Of the 1301 proteins, 651 proteins associated were

associated with age. (B) Comparison of the age-

associated proteins discovered using the 1.3K

SOMAscan platform in the INCHIANTI/BLSA/GESTALT

studies (Figure 1—source data 2) with the analysis

using the 3K SOMAscan platform in the INTERVAL/

LONGEVITY study (Lehallier et al., 2019). There were

346 proteins that were significant in both studies, and

286 of these proteins the direction of association with

age were concordant.

The online version of this article includes the following

source data and figure supplement(s) for figure 1:

Source data 1. Results from the association analyses of

1301 proteins with chronological age in the InCHIANTI

study.

Source data 2. Results from the meta-analyses of pro-

tein associations with age in the InCHIANTI and BLSA/

GESTALT study.

Figure 1 continued on next page
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Age–protein association and
mediation by methylation
Several lines of research suggest that DNA

methylation affects gene transcription and by

this mechanism may also affect protein expres-

sion. Given the robust literature indicating that

DNA methylation changes systematically with

aging, we tested whether the association of protein abundance and age can be explained in part by

age-related changes in DNA methylation in circulating white blood cells. In 460 subjects with both

methylation and proteomic data, a mediation analysis was conducted to test the hypothesis that

changes in protein concentrations with aging are mediated by epigenetic regulation, namely

changes in percent methylation in CpG sites located within 10 kb of the protein coding gene. This

was performed in four steps. In the first step, we identified proteins that were associated with age in

the subcohort with both proteomic and methylation data. Of the 651 age-associated proteins in the

full cohort, a subset of 499 proteins were significantly associated with age in this sub-cohort. Of

these 499 age-associated proteins, 485 were expressed by genes on autosomal chromosomes. Since

some of the aptamer probes target protein complexes, those 485 proteins were encoded by 494

genes. In the second step, we identify age-associated CpG loci. Of the 472,138 CpG sites measured,

170,780 were significantly associated with age. There was significant enrichment of age-associated

CpG loci within 10 kb of genes coding for age-associated proteins compared with genes coding for

other proteins assayed by the SOMAscan assay used here (41.8% vs 37.9% respectively, p=0.0001).

In the third step, the existence of a possible mediation effect was tested by regressing protein abun-

dance with age, adjusted for age-associated CpG. For 449 out of the 494 genes, there was at least

one CpG that mediated the association between age and protein abundance (Psobel <0.05;

Supplementary file 1A). On average 7.8% (range 0.3–31.2%) of the age-associated CpG methyla-

tion mediated the association between age and protein abundance. The percent mediation ranged

from 2% to 100%. The most significant mediation was observed for ectonucleotide pyrophospha-

tase/phosphodiesterase 7 (ENPP7), member of the ectonucleotide pyrophosphatase/phosphodies-

terase family implicated in phospholipids and cholesterol metabolism with a CpG cg15739835.

There is a positive association of ENPP7 abundance with age, and this association is attenuated

Figure 1 continued

Figure supplement 1. Results from the meta-analysis

of age-associated proteins in the InCHIANTI and BLSA/

GESTALT studies.

Figure 2. Sex-associated proteins and sex differences in age association of plasma proteins in the InCHIANTI study. (A) Volcano plot displaying the

results from the association of 1301 proteins with sex in the InCHIANTI study (Figure 2—source data 1). There were 427 proteins (black circles) with

differential expression by sex. The figure displays the effect size, or the beta coefficient for sex (bage) where a positive value are proteins with

overrepresentation in women, and a negative value are proteins overrepresented in men. The y-axis show the significance presented as the -log10 (P-

value). (B) Volcano plot displaying the analysis to explore the differences in age association by sex (Figure 2—source data 1). The values represent the

beta estimates for the interaction term between sex and age from the linear model. There were 50 proteins (black circles) with differential

age association by sex. A positive effect size are proteins where the age association is more positive in women, conversely a negative effect size reflect

proteins where the age association is more positive in men. (C) Scatterplot displaying the relationship between protein sex hormone binding globulin

(SHBG) and age stratified by sex. In men, SHBG values were higher in older ages (+) whereas no age association was observed in women (D).

The online version of this article includes the following source data for figure 2:

Source data 1. Results from the association analyses of protein with sex and interactions between sex and age.
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when adjusted for cg15739835 methylation (Figure 3A). There is negative association between

cg15739835 methylation with age, reflecting lower methylation at older age at this CpG site

(Figure 3B). These data suggest that the higher abundance in ENPP7 at older age may be explained

by lower gene silencing since methylation is reduced at older age.

Association of age-related proteins with all-cause mortality
The association of age-associated proteins with all-cause mortality was tested with cox proportional

hazards model. Of the 651 age-associated proteins in the InCHIANTI study, the model for 26 pro-

teins violated the proportional hazards assumption. Of the remaining 625 proteins, 497 proteins

were associated with all-cause mortality and 193 of them remained significantly associated with mor-

tality after adjusting for covariates (age, sex, study site) (Figure 4—source data 1). For the 26 pro-

teins where the proportional hazard assumption was not met, stratified analyses showed that 25 of

the proteins were predictive of all-cause mortality in the first time interval of 10 or 15 years (Fig-

ure 4—source data 2). Among the proteins that were associated with age, there was an enrichment

for inflammatory pathways (TNF-activated receptor activity and chemokine receptor binding), regu-

lation of gene expression (DNA methylation, meiosis, epigenetic regulation of gene expression), and

extracellular matrix (activation of matrix metalloproteinases, basement membrane, extracellular

matrix organization) (Figure 4A). The most frequent pathway annotations among proteins were

interleukin-10 signaling (35.71%), EPH receptor signaling (28.57%), and chemokines (7.14%). Cellular

senescence is widely regarded as a basic aging process that drives numerous pathologies of aging

via the secretion of a protein milieu known as the senescence-associated secretory phenotype

(SASP) (Coppé et al., 2008). Senescent cells and the SASP are a potential source of circulating pro-

aging factors in plasma (Wiley et al., 2019). We previously reported an enrichment of core SASP

factors among plasma biomarkers of healthy aging (Tanaka et al., 2018; Basisty et al., 2020).

Among 175 mortality-associated proteins that increased with age, we identified 13 core SASP fac-

tors, including 3 of the four top core SASP signature proteins recently described (Basisty et al.,

2020) - GDF15, MMP1, and STC1 – and other extensively reported classical SASP factors (IGFBP2

and 4, TIMP1 and 2, and IL-6) (Figure 4B). Chronological age alone was a strong predictor of all-

cause mortality (C-index 0.78). The plasma proteins most predictive of all-cause mortality in a univar-

iate model were GDF15 C-index 0.75IGFBP2 (C-index 0.73), and B2M (C-index 0.72). After adjust-

ment for age, sex and study site (C-index 0.79), the most predictive proteins were GDF15 (C-index

0.80), TFF3 (C-index 0.80), and PI3 (C-index 0.80; Figure 4C). In a multi-protein model, the best

Figure 3. Association of plasma ENPP7 with age and mediation by cg15739835. Mediation analysis in 460 subjects

with DNA methylation and proteomic data was conducted with Baron and Kenny method (Supplementary file

1A). The most significant mediation was observed for ectonucleotide pyrophosphatase/phosphodiesterase 7

(ENPP7). (A) Scatterplot displaying the association of plasma ENPP7 with age (solid line) and attenuation of the

association after adjustment for methylation at cg15739835. (B) Scatterplot displaying the negative association

between methylation at cg15739835 with age.
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Figure 4. Association of age proteins with all-cause mortality. Of the 651 age-associated proteins, 218 was

associated with all-cause mortality (Figure 4—source data 1). (A) Pathway enrichment analysis of age-associated

proteins predictive of all-cause mortality. (B) There were 13 core senescence-associated secretory proteins (SASP)

among the proteins that predict mortality. (C) Scatterplot displaying the performance (c-index) of plasma proteins

that predict all-cause mortality (y-axis) against the proportion of variance in age that is explained by the biomarker

(Rsq) on the x-axis. (D) Forest plot to display the effect of 8 plasma proteins that significantly predicted all-cause

mortality in a multi-protein model.

The online version of this article includes the following source data for figure 4:

Source data 1. Results from association of age-associated proteins with mortality in the InCHIANTI study.
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model is composed of 8 predictors, which includes age and proteins IGFBP2, MMP12, EGFR, NPPB,

GDF15, PI3, and GHR (C-index 0.84, Figure 4D).

Association of age-related proteins with multimorbidity
We next tested the association of age-related proteins with prospective development of 15 common

diseases (see Materials and methods). On average, there was an increase in 0.18 comorbid diseases

per year over a 10 year follow-up period in the study cohort. Of the 651 age-associated proteins,

549 proteins were associated with changes in multimorbidity, and 295 proteins remained signifi-

cantly associated with subsequent rates of change in multimorbidity after adjustment for covariates

(baseline age, sex, study site) (Figure 5—source data 1). Morbidity-associated proteins were

strongly enriched for inflammatory pathways (interleukin-7 signaling, cytokine receptor interaction,

senescence-associated secretory phenotype), regulation of IGF transport and uptake by IGFBPs, reg-

ulation of gene expression (HDMs demethylate histones, meiosis, SIRT1 negatively regulates rRNA,

histone modifications, DNA methylation), and amyloid fiber formation (Figure 5A). However, the

most frequent pathway annotations were cell proliferation (42.4%), receptor regulator activity

(20.3%), and chemotaxis (10.2%). Among 247 multimorbidity-associated proteins that increased with

age, we identified 17 core SASP factors, including three top core SASP proteins - GDF15, MMP1,

and STC1 – and other extensively reported classical SASP factors (IGFBP2, 4, 5, and 7, TIMP1 and 2)

(Figure 5B). Among the SASP, 11 proteins were associated both with mortality and multimorbidity.

As expected, older chronological age was significantly associated with greater increase in the

number of comorbid diseases (b = 0.005 (0.002), p<0.001). The proteins most significantly associ-

ated with prospective rise of multimorbidity were GDF15 (b = 0.072 [0.003], B-H

FDR = 8.64�10�88), NPPB (b = 0.066 [0.003], B-H FDR = 9.27�10�71), and PTN (b = 0.064 [0.003],

p=5.01�10�65). After adjustment for age, sex and study site, the proteins most significantly associ-

ated with prospective rise of multimorbidity were GDF15 (b = 0.044 [0.04], B-H FDR = 4.370.53 �

10�19), NPPB (b = 0.038 [0.004], B-H FDR = 2.78�10�18), and TFF3 (b = 0.033 [0.004], B-H

FDR = 4.90�10�17); Figure 5C. The most predictive multi-protein model included age and proteins

NPPB, GDF15, MMP12, SMOC1, TNFRSF1B, and FSTL3 (Adj-Rsq = 0.43, Figure 5D).

We further investigated whether age-associated proteins can predict development of multimor-

bidity in subjects who were free of disease at baseline (N = 310). On average, there was an increase

in 0.13 comorbid diseases per year over a 10 year follow-up period in these participants. Of the 651

age-associated proteins, 285 proteins were associated with increase in multimorbidity, and 20 pro-

teins were associated independent of age, sex and study site (Figure 5—source data 1). The pro-

teins most significantly associated with prospective rise of multimorbidity were PTN (b = 0.052

[0.01], B-H FDR = 0.004), TNFRSF1A (b = 0.038 [0.004], B-H FDR = 0.004), and ANGPT2 (b = 0.036

[0.009], B-H FDR = 0.007); Figure 5E. The most predictive multi-protein model included age and

proteins PTN, MMP12, CHI3L1, FABP3, and CCDC80 (Adj-Rsq = 0.45, Figure 5F).

Differential protein expression across age-span
Lehallier et al. described important non-linear expression of proteins with age, with distinct waves of

differential expression at the fourth, sixth and eight decade of life (Lehallier et al., 2019). Using the

sliding-window analysis developed by the group, we explored whether similar patterns of proteomic

changes could be observed in our data. Consistent with the results from the study by Lehallier and

colleagues (Lehallier et al., 2019), there was a peak wave of differential expression at 78 years of

age where 635 proteins were differentially expressed using a 20 year age bin (Supplementary file

1B). These findings were confirmed in analyses that used alternative age bins of 10 and 30 years

(Figure 6A). There were no clear peaks at younger decades. Of the proteins identified at older age

(at 78 years), 63% had been already captured using a linear model. To explore the clinical signifi-

cance of the proteins identified using linear models in the sliding-window analysis, we tested

whether there was enrichment of proteins associated with age-related diseases in the ranked list of

age-associated proteins at 78 years, 61 years, and 41 years as well as age-associated proteins from

Source data 2. Results from association of age-associated proteins with mortality considering interactions with

time interval in the InCHIANTI study.
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Figure 5. Association of age proteins with multimorbidity. Of the 651 age-associated proteins, 295 was associated

with all-cause mortality (Figure 5—source data 1). (A) Pathway enrichment analysis of age-associated proteins

predictive of multimorbidity. (B) There were 13 core senescence-associated secretory proteins (SASP) among the

proteins that predict mortality. Scatterplot displaying the proportion of variance (Rsq) of age explained by protein

(x-axis) with relationship (Rsq) with protein with baseline multimorbidity (y-axis) (C) and trajectory of multimorbidity

over 10 years in subjects free of disease at baseline (y-axis) (E). Forest plot to display the effect of six and five

plasma proteins that predict baseline (D) and trajectory of multimorbidity (F).

The online version of this article includes the following source data for figure 5:

Source data 1. Results from association of age-associated proteins with number of diseases in the InCHIANTI study.
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the linear model. There was significant enrichment of proteins associated with all-cause mortality

(Figure 6B) and multimorbidity (Figure 6C) in proteins identified in the linear model and at 61 years

and 78 years but not at 41 years.

Mendelian randomization
To explore causal relationship between genetically determined plasma proteins and age-related

phenotypes, we implemented a MR strategy using genetic variants from previously published pro-

tein quantitative trait loci (pQTL) analyses of plasma proteins for 10 proteins (GDF15, MMP12,

NPPB, GHR, PI3, SMOC1, TNFRSF1B, IGFBP2, EGFR, FSTL3) identified across analyses of multimor-

bidity and mortality (Sun et al., 2018). Aging traits that reflect the diseases in the multimorbidity

index were targeted as outcomes, including hypertension, type 2 diabetes, ischemic heart disease,

myocardial infarction, ischemic stroke, cardioembolic stroke, prostate cancer, lung cancer, ovarian

cancer, Parkinson’s disease, depressive disorder, Alzheimer’s disease, and rheumatoid arthritis as

binary variables, as well as bone mineral density, estimated bone mineral density (BMD), hemoglobin

and blood cell distribution width as continuous traits (Supplementary file 1C). We found that genet-

ically higher NPPB was associated with lower risk of hypertension (OR = 0.974 [0.947, 0.981]);

MMP12 with lower risk of CHD (OR = 0.94 [0.91, 0.98]), MI (OR = 0.94 [0.90, 0.98]), and ischemic

stroke (OR = 0.90 [0.84, 0.96]); PI3 with increased risk of MI (OR = 1.07 [1.00, 1.15]), both ischemic

(OR = 1.12 [1.01, 1.25]) and cardioembolic stroke (OR = 1.26 [1.02, 1.55]), lung cancer (OR = 1.20

[1.06, 1.36]), and rheumatoid arthritis (OR = 1.11 [1.01, 1.23]); SMOC1 with higher eBMD (b = 0.03

[0.01, 0.06]), Hb (b = 0.05 [0.02, 0.07]), lower RDW (b = �0.10 [-0.13,–0.08]); and GHR with lower

eBMD (b = �0.05 [-0.09,–0.01]) (Figure 7A,B). No significant results were observed with genetic

instruments for GDF15 and TNFRSF1B.

Proteomic signatures of age
We show that individual age-related proteins are predictive of both all-cause mortality and accumu-

lation of multimorbidity independent of chronological age. We previously developed proteomic sig-

nature of chronological age based on 76 proteins (Supplementary file 1D; Tanaka et al., 2018).

Recent data suggest that the proteomic clock developed based on the aptamer-based technology is

robust. Interestingly, Lehallier et al developed a parsimonious proteomic clock based on nine pro-

teins using data from the ~3000 protein SOMAscan platform (Lehallier et al., 2019). Of the nine

proteins in this proteomic clock, six proteins were measured by the 1.3K platform used in the

InCHIANTI study, and five out of the six proteins measured are part of the 76-protein signature.

There is high correlation between the predicted age based on the two proteomic clocks (r = 0.88;

Figure 8—figure supplement 1) as well as the measure of age acceleration based on the two clocks

(r = 0.65; Figure 8—figure supplement 1).

Figure 6. Differential protein expression across age-span. (A) Differential expression of protein across different

ages was explored suing a sliding-window analysis using an age window of 10, 20, and 30 years

(Supplementary file 1B). Peak association was observed at age 78 while no clear peaks were observed at younger

ages. Cumulative number of proteins associated with all-cause mortality (A) and multimorbidity (B) was compared

in the ranked age-associated proteins at the different age waves (41, 61 and 78 years) and from the linear models.
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We tested whether the 76-protein signature of age is associated with all-cause mortality and mul-

timorbidity in the InCHIANTI study. The correlation between predicted age (PROage) from the 76-

protein signature and observed chronological age in the InCHIANTI study was 0.87 (Figure 8A).

Since the BLSA/GESTALT cohort included subjects who were free of physical and cognitive diseases,

we applied the same health criteria to the InCHIANTI study. When examining just within the subjects

that met the ‘healthy’ criteria, the correlation between PROage and observed age was 0.91. In the

subjects who did not meet the ‘healthy’ criteria, the correlation was lower at 0.76 (Figure 8A).

Figure 7. Two-sample Mendelian Randomization. A two-sample Mendelian randomization (MR) was conducted for

18 age-related disease and endophenotypes using genetic instrument identified in the INTERVAL study for seven

age-associated proteins (Sun et al., 2018) and (Supplementary file 1C). Forest plot displaying the results from

the two-way MR for age-related disease (A) and endophenotypes (B).
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To determine whether PROage can be used as a measure of ‘biological’ age, we examined its

association with two important age-related phenotypes: number of coexisting chronic diseases (mul-

timorbidity) and all-cause mortality. Both PROage and chronological age were significantly associ-

ated with the number of coexisting diseases (p<0.05). We considered the measure of biological age

as the residuals (PROaccel) from the regression line between PROage and age. Having a positive

PROaccel would indicate that the individual is older than their chronological age based on proteo-

mic data. We categorized the subjects as fast- vs slow-agers based on having positive or negative

PROaccel values, respectively. In subjects over 65 years, there was an average increase of 0.21

Figure 8. Characterization of proteomic signature of age. A proteomic age predictor was created using 76 proteins and a measure of protein biological

age was calculated as the residuals (PROaccel) from the regression model of chronological age with predicted age (PROage; Supplementary file 1D).

(A) Scatter plot of PROage with chronological age. The correlation was higher in subjects free of disease (circle) compared to subject with co-

morbidities (cross). Subjects that were greater PROaccel display greater increase in multimorbidity (B) and in higher risk for all-cause mortality in

subjects older than 65 years of age (C). The proteomic age was compared with existing epigenetic age clocks. The proteomic signature of age was

consistent with other aging clocks including methylation age (Horvath, 2013) (D), GRIMage (Lu et al., 2019) (E), and phenotypic age (Levine et al.,

2015) (F). Age acceleration or measure of biological age based on proteomic signature was not correlated with biological aging measured by

methylation clock (G), but was correlated with biological age based on GRIMage (H) and phenotypic age (I).

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Comparison of proteomic signature of age.

Figure supplement 2. Aging rates with trajectory of chronic disease accumulation in healthy disease-free subjects.
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comorbidities per year. And in subjects who were ‘biologically’ older there was greater increase in

number of comorbidities by 0.03 diseases per year compared to subjects who were biologically

younger (p=1.17�10�5; Figure 8B). The association of PROaccel remained significant and the point

estimate remained at an annual change of 0.03 after account for non-linear effects with the inclusion

of quadratic and/or cubic term for age in the model. We further tested is PROaccel was predictive

of developing chronic diseases in subjects free of disease at baseline. We found that independently

of chronological age, being biologically older was associated with faster accumulation of age-related

diseases by 0.05 diseases per year (p=0.004; Figure 8—figure supplement 2).

Both chronological age (HR = 1.14, 95% CI 1.13–1.16) and PROage (HR = 1.08, 95% CI 1.07–

1.09) were individually associated with all-cause mortality. Independently of chronological age, PRO-

accel was associated with all-cause mortality (HR = 1.03, 95% CI 1.02–1.04). As with multimorbidity,

the effect of PROaccel was only observed in older subjects. Experiencing accelerated aging was

associated with higher risk of mortality in those who were over 65 years (HR = 1.03, 95% CI: 1.02–

1.04, p=9.18�10�8) but no differences were observed in those under 65 years (HR = 1.00, 95% CI:

0.93–1.09, p=0.905; Figure 8C).

To date, several methylation-based measures of biological age have been developed. In a subset

of individuals (N = 459), we had data on both PROage and three methylation age variables: methyla-

tion age (Horvath) (Horvath, 2013), GrimAge (Lu et al., 2019), and phenotypic age developed by

Levine et al., 2018. There was high correlation between PROage and mDNAHORVATH (r = 0.84,

p<0.001, Figure 8D), mDNAGRIM (r = 0.87, p<0.001, Figure 8E), and mDNAPHENO (r = 0.89,

p<0.001, Figure 8F). Age acceleration based on proteomic data (PROaccel) was not correlated with

age acceleration based on the Horvath clock (mDNAHORVATHACCEL, r = 0.03, p=0.487, Figure 8G),

and mildly correlated with mDNAGRIMACCEL (r = 0.20, p<0.001, Figure 8H) and mDNAPHENOACCEL

(r = 0.22, p<0.001, Figure 8I). After adjusting for chronological age, sex and study site, PROaccel

(HRSD = 1.29; 1.11–1.50, p=0.001,cstatistics = 0.781), mDNAPHENOACCEL (HRSD = 1.32; 1.14–1.54,

p=0.0002, cstatistics = 0.782), and mDNAGRIMACCEL (HRSD = 1.44; 1.20–1.74, p=0.0001, cstatis-

tics = 0.781) were associated with all-cause mortality, but mDNAHORVATHACCEL (HRSD = 1.02; 0.88–

1.19, p=0.819) was not. In a multivariate model including the four age acceleration metrics, PROac-

cel (1.17; 1.00–1.38), mDNAPHENOACCEL (1.20; 1.02–1.42), and mDNAGRIMACCEL (1.31; 1.07–1.60)

were significantly predictive of all-cause mortality, but mDNAHORVATHACCEL (0.94; 0.80–1.11) was

not.

Discussion
A proteomic analysis of chronological age was conducted to identify individuals who are experienc-

ing accelerated health deterioration with aging based on their proteomic profile. The proteomic

analysis identified 651 age-associated plasma proteins, many of which had a strong age-relationship

independent of the presence of chronic diseases. Many of these proteins were previously described,

224 additional novel age-associated proteins are reported in the InCHIANTI study. Sex-stratified

analysis showed that for most proteins, age associations were similar in men and women. Proteins

that systematically change with aging are also biomarkers of health longitudinally and risk bio-

markers for mortality and accumulation of multimorbidity over time in all subjects as well in persons

that appear to be healthy by being free of any chronic diseases at the time of the evaluation. Analy-

sis of DNA methylation data showed that methylation is one of the molecular mechanisms of age-

associated differences in protein expression. Exploration of publicly available genetic data to assess

the genetic relationship between age-associated protein and aging disease supported the clinical

importance of these proteins. Finally, age acceleration measure using proteomic signature of age,

which can be interpreted as a proxy measure for biological age, is associated with comorbidity and

predicts future rate of change in multimorbidity as well as all-cause mortality over a 18 year follow-

up period. These data support the notion that circulating proteins are useful biomarkers to monitor

trajectories of health and to identify those individuals who are aging faster than their chronological

age. These individuals may be targeted for in depth diagnostic workup to identify novel opportuni-

ties for prevention of the impending deterioration of health. Not only are plasma proteins ideal clini-

cal aging biomarker candidates as they are easily accessible, proteins are direct biological effectors

and can highlight important mechanisms underlying aging.
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Results from several studies that have investigated the relationship between plasma protein and

age are consistent in their findings (Tanaka et al., 2018; Sun et al., 2018; Menni et al., 2015;

Lehallier et al., 2019). The current study in a general Italian population yielded results highly corre-

lated with those from our previous study in a highly selective healthy population from the US, and

therefore highlighting that this cluster of age-related proteins is not population specific but rather

reflects some general physiological mechanisms of aging, which may have important clinical implica-

tions. In our study, 32.6% of the age-associated proteins were predictive of all-cause mortality and

45.3% were associated with multimorbidity independent of chronological age, suggesting that their

change may reflect a shared biological process between aging and disease. This observation is con-

sistent with the geroscience paradigm that accelerated aging has a causative role in multiple chronic

diseases (Sierra and Kohanski, 2017). The protein most strongly associated with chronological age

in the current study was pleiotrophin (PTN), which is a heparin-binding growth factor involved in

angiogenesis, tumorigenesis, and neuromodulation (Bertram et al., 2019; Souttou et al., 1998). In

our study, PTN was not predictive of either mortality or multimorbidity after adjusting for age. The

second most significant protein in our analysis was growth-differentiation factor 15 (GDF15), a mem-

ber of the transforming growth factor-b cytokine superfamily. GDF15 was the most significant age-

associated protein predictive of mortality and multimorbidity. In humans, GDF15 has been sug-

gested as a biomarker of cardiovascular disease mortality, but more recently associated with all-

cause mortality (Lindholm et al., 2018; ActiFE study group et al., 2019). There is growing evidence

in both human and animal models that GDF15 plays an important role beyond cardiovascular dis-

ease and has been linked to weight homeostasis, fibrosis, diabetes, cardiovascular disease, renal dis-

ease, mobility disability and cancer (Baek and Eling, 2019; Bidadkosh et al., 2017; Daniels et al.,

2011; Ho et al., 2013; Wallentin et al., 2013; Osawa et al., 2020).

More recently, GDF15 has been identified as a highly robust senescence-associated secretory

phenotype (SASP) factor in multiple senescence inducers and cell types (Basisty et al., 2020) as well

as a driver of senescence-associated colon cancer metastasis (Guo et al., 2019). Increase of cellular

senescence burden is hypothesized to be one of the fundamental biological mechanisms underlying

aging, thus confirmation of GDF15 as a SASP factor (Basisty et al., 2020) supports the utility of this

protein as a global biomarker of health and lifespan. We have previously reported an enrichment of

SASP factors among circulating protein biomarkers of aging (Tanaka et al., 2018). Here we have

also identified numerous SASP components or other senescence-associated proteins among bio-

markers of aging, mortality, and multimorbidity. Among the most robust SASP components we iden-

tified 11 proteins in this study - GDF15, MMP1, STC1, IGFBP2, IGFBP4, TIMP1, TIMP2, CST3, CTSB,

CLEC11A, and POSTN – which are both core SASP components (secreted by multiple types of

senescent cells and senescence inducers) and also associated with all-cause mortality and multimor-

bidity. IL-6, a classical SASP factor in multiple senescent cell types (Coppé et al., 2008), was also

associated with all-cause mortality. Several other top SASP components that we identified in plasma

are also previously reported health biomarkers (Basisty et al., 2020). In addition to aging, MMP1 is

a biomarker for several cancers, pulmonary fibrosis and potentially Alzheimer’s disease (Bhat et al.,

2012; Chen et al., 2016b; Rosas et al., 2008), whereas STC1 is a diagnostic and prognostic bio-

marker for cancers, pulmonary fibrosis, renal ischemia/reperfusion injury and Alzheimer’s disease

(Chang et al., 2015; Ohkouchi et al., 2015; Pan et al., 2015; Shahim et al., 2017).

The recent INTERVAL and LonGenity studies show that there were unique non-linear patterns in

the expression proteins across lifespan (Lehallier et al., 2019). More specifically there were three

waves of changes in the proteome in the fourth, sixth and eight decade. Moreover, it was shown

that the proteins that changed in the older decades were associated with age-related diseases while

the proteins that change in the fourth were not. We explored whether similar patterns can be

observed in the InCHIANTI study, and strikingly we found a peak shift in the proteome in the eighth

decade at 78 years of age replicating the same exact timing of the INTERVAL and LonGenity study.

T in the younger ages, however our study may have been limited in identifying a wave in ages before

60 due to the small sample size resulting from the sampling design in the InCHIANTI study. We also

found that the proteins that were associated with age in the older years were associated with both

all-cause mortality and multimorbidity. In our study, the proteins identified through linear modeling

were also enriched in proteins associated with all-cause mortality and multimorbidity thus the linear

models did capture important aging biomarkers. However, these data suggest that more emphasis
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on proteins that change in later years may lead to discovery of clinically important proteomic bio-

markers of age.

MR explores causal relationships between exposure and outcome using the random assortment

of genetic alleles associated with exposures of interest, often described as a ‘natural’ RCT study.

Two sample MR utilizes large databases of genome-wide association study results to infer causal

relationships using genetic data as instrument variables. In this study, we find that genetically ele-

vated brain type natriuretic peptide (NPPB) was protective against hypertension. Circulating NPPB

reduces blood pressure and plasma volume through its effect on the adrenal gland, kidney, brain

and vasculature (Levin et al., 1998). Circulating NPPB levels are found at high concentrations in

patients with heart failure and was shown to be a useful diagnostic tool in an acute setting

(Davis et al., 1994; Gardner, 2003). A genome-wide association study of circulating NPPB identi-

fied a variants in the NPPB locus, and these variants were also associated with lower systolic and dia-

stolic blood pressure as well as lower risk of hypertension (Newton-Cheh et al., 2009). The genetic

instrument for NPPB used in our study is mapped to the same locus as the variants used in the previ-

ous report, and our results are consistent with their findings. We also found genetically higher matrix

metalloproteinase-12 (MMP12) to be protective of coronary heart disease, MI, and ischemic stroke.

MMP12 is a metalloprotease produced primarily by macrophages and is involved in inflammation

and tissue damage (Shapiro et al., 1993). While circulating levels of MMP12 have been linked to

increased risk of cardiovascular disease, genetically increased MMP12 has been linked to reduced

cardiovascular disease risk in the current report as well as others (Sun et al., 2018; Chong et al.,

2019). The apparent discrepant association between the genetic instrument for NPPB and MMP12

with their respective age-associated disease may signify reverse-causation where proteins levels are

altered in response to development of disease or may reflect possible compensatory protein where

protein levels increase with age to protect against development of disease (Bucur et al., 2020). The

discrepancy of the direction of associations should be explored further. We found genetically

increased proteinase inhibitor 3 (PI), or elafin, was associated with increased odds of having MI, both

ischemic and cardioembolic stroke, lunch cancer and rheumatoid arthritis. PI3 is a skin-derived serine

protease inhibitor that plays an important role in hydrolyzing connective tissue components includ-

ing elastin and collagen through the inhibition of elastase (Schalkwijk et al., 1990; Wiedow et al.,

1990). PI3 has also been linked to lung tissue repair and is a candidate biomarker for lung diseases

including acute respiratory lung disease and asthma (Wang et al., 2017; Tsai et al., 2016), as well

as modulator of inflammation through the inhibition of neutrophil derived elastases (Alam et al.,

2012). Our data support the involvement of PI3 in cardiovascular, lung and immunological diseases

through the control of inflammation and tissue repair. We found genetically higher SPARC related

modular calcium binding 1 (SMOC1) to be associated with higher bone mineral density, hemoglobin

and RDW. Our results are consistent with results from genome-wide association studies of bone min-

eral density and osteoporosis, where SMOC1 has been identified as the candidate gene underlying

the signal on chromosome 14 (Zhang et al., 2014; Qiu et al., 2019). Animal studies have shown

that SMOC1 knockout results in disruption of ocular and limb development through reduction in

interdigital apoptosis and disruption in BMP signaling. Interestingly, SMOC1 was identified in a

genome-wide association study of blood traits in mice, however, this locus has not been a major

locus in human genetic studies of blood parameters (Davis et al., 2013). Further studies are needed

to explore the link between SMOC1 and blood traits found in our study. Finally, we find genetically

higher growth hormone receptor (GHR) was associated with bone mineral density. GHR knockout

animals display disproportional bone growth and lower bone mineral density (Sjögren et al., 2000).

In humans, administration of growth hormone has been shown to improve bone mineral density in

postmenopausal women (Joseph et al., 2008).

Our data suggest that the proteomic signature of age (PROage) can be effectively used to assess

an individual’s rate of aging (PROaccel). What was surprising is that the proteomic age signature

developed by our group is strikingly similar to another proteomic age signature created in a geo-

graphically distinct population by Lehallier and colleagues (Lehallier et al., 2019). This suggests that

the circulating age proteome, at least as captured by this aptamer-based platform, is very robust.

Using this proteomic signature, subjects who were predicted to be older than their chronological

age had higher prevalence of comorbidities, more rapid increase in co-morbidities over time, and

higher risk of all-cause mortality. In recent years, several measures of rates of aging have been devel-

oped using methylation data. We compared the proteomic signature with three epigenetic clocks.
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One of the first phase of epigenetic clocks developed by Horvath, 2013, is a multi-tissue methyla-

tion signature (mDNAHORVATH) that was designed to predict chronological age. The second is an epi-

genetic marker for phenotypic age developed by Levine and colleagues (Levine et al., 2018) that

was derived using clinical biomarkers, such as albumin, creatinine, and glucose (mDNAPHENO). Phe-

notype age was designed to predict all-cause mortality, cause-specific mortality, and other aging

measures. The final epigenetic clock is one developed by Ake and colleagues (Lu et al., 2019) based

on biomarkers and risk factors of mortality including smoking, seven biomarkers including GDF15

and PAI-I (mDNAGRIM). Interestingly, aging rate based on proteomic clock (PROaccel) was not corre-

lated with aging rates based on mDNAHORVATH (mDNAHORVATHACCEL), but was moderately corre-

lated with rates based on mDNAPHENO (mDNAPHENOACCEL) and mDNAGRIM (mDNAGRIMACCEL). Since

both PROaccel and mDNAGRIMACCEL both include GDF15, these two biological aging measures may

be capturing similar aging mechanisms. We compared the PROaccel against three methylation age

measures in their ability to predict all-cause mortality. PROaccel performed better than mDNAHORVA-

THACCEL, but was outperformed by mDNAPHENOACCEL and mDNAGRIMACCEL. This would suggest that

creating a proteomic signature of aging phenotypes, rather than chronological age, could result in a

more robust proteomic biomarker for aging and should be explored in future studies. However, our

biomarker panels include many SASP proteins that may be utilized as important benchmarks for clin-

ically assessing senescent cell burden. As the development of drugs that selectively eliminate senes-

cent cells (senolytics) or modify the SASP (senomorphics) has quickly advanced in recent years, with

early trials now in progress, using biomarker panels that include markers of senescence will be an

important step in translating these interventions to the clinic.

There are several limitations to this study. While the associations of individual proteins with age

have been consistent across different populations, the associations of the PROaccel with morbidity

and mortality should be confirmed in additional, larger studies. It would also be important to vali-

date whether PROage measure can be confirmed using proteomic data generated using different

platforms. Since proteomic measurements were only conducted cross-sectionally, we could not

determine whether PROaccel is a sensitive measure of changes in health status over time. Longitudi-

nal measurement of proteomic data will also be useful determining the trajectories of protein abun-

dances, which could be a more sensitive in capturing rates of aging.

In summary, in this study 651 age-associated proteins were identified that are also predictive of

important aging outcomes including all-cause mortality and multimorbidity. Further examination of

the function of these proteins individually or collectively may further shed light to the mechanisms

underlying the aging process. Finally, a proteomic signature of age based on abundances of 76 pro-

teins captures the rate of aging and may be useful in identifying individuals who are aging faster

than their chronological age. These findings should be confirmed in a longitudinal perspective, with

good representation of individual men and women across the lifespan. Finally, clinical studies that

use in depth characterization of physiological and pathologic characteristics of individuals who are

‘older’ compared to those who are ‘younger’ than their chronological aging may confirm whether a

proteomic signature of aging may be a useful tool in clinical practice.

Materials and methods

Subjects and methods
The InCHIANTI study is a community-based cohort study based in the Tuscan region of Italy. This

study was conducted in the ‘Invecchiare in Chianti’ (Aging in the Chianti Area, InCHIANTI) study.

The InCHIANTI study is a population-based epidemiological study aimed at evaluating factors that

influence mobility in the older population living in the Chianti region in Tuscany, Italy. Details of the

study have been previously reported (Ferrucci et al., 2000). Briefly, 1616 residents were selected

from the population registry of Greve in Chianti (a rural area: 11,709 residents with 19.3% of the

population older than 65 years of age) and Bagno a Ripoli (Antella village near Florence; 4704 inhab-

itants, with 20.3% older than 65 years of age). The participation rate was 90% (n = 1453) and sub-

jects’ age ranged between 21 and 102 years. Overnight fasted blood samples were used for

genomic DNA extraction and genotyping. The study protocol (exemption #11976) was approved by

the Italian National Institute of Research and Care of Aging Institutional Review and Medstar
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Research Institute (Baltimore, MD) and approved by the Internal Review Board of the National Insti-

tute for Environmental Health Sciences (NIEHS). All participants provided written informed consent.

Sociodemographic information (age, sex) was obtained during a structured interview. Mortality

data were evaluated for up to 20 years following the baseline visit (1998–2000), assessed using the

mortality general registry maintained by the Tuscany Region and through death certificates submit-

ted to the Registry office of the municipality of residence immediately after death (Zuliani et al.,

2017). Whole blood white blood cell differential count was assessed using a Coulter Counter (LH

750 Hematology Autoanalyzer, Beckman Coulter Inc, Brea, CA). Multimorbidity was ascertained

based on the presence of 15 diseases (hypertension, diabetes, ischemic heart disease, congestive

heart failure, stroke, chronic obstructive pulmonary disease, cancer, Parkinson’s disease, hip fracture,

lower extremities joint disease, anemia, PAD, cognitive impairment, chronic kidney disease, and

depression) as previously described (Fabbri et al., 2015).

Proteomic assessment
Proteomic profiles for 1322 SOMAmers were assessed using the 1.3 k SOMAscan Assay at the

Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), National Institute

of Allergy and Infectious Diseases, National Institutes of Health (Bethesda, MD, USA) using the same

methods as previously published (Tanaka et al., 2018). Out of the 1322 SOMAmer reagents, 12

hybridization controls, four viral proteins (HPV type 16, HPV type 18, isolate BEN, isolate LW123)

and 5 SOMAmers that were reported to be non-specific (P05186; ALPL, P09871; C1S, Q14126;

DSG2, Q93038; TNFRSF25, Q9NQC3; RTN4) were removed, thus leaving 1301 SOMAmer reagents

in the final analysis. There are 46 SOMAmer reagents that target multicomplex proteins of two or

more unique proteins. There are 49 UniProt IDs that are measured by more than one SOMAmer

reagent. Thus, the 1301 SOMAmer reagents target 1297 UniProt IDs. Of note, there are four pro-

teins (P05413; FABP3, P48788; TINNI2, P19429; TINNI3, P01160; NPPA) in the final protein panel

that are rat homologues of human proteins.

The experimental process for proteomic assessment and data normalization has been previously

described (Candia et al., 2017; Cheung et al., 2017). The data reported are SOMAmer reagent

abundance in relative fluorescence units (RFU). The abundance of the SOMAmer reagent represents

a surrogate of protein concentration in the plasma sample. Data normalization was conducted in

three stages. First, hybridization control normalization removes individual sample variance on the

basis of signaling differences between microarray or Agilent scanner. Second, median signal normali-

zation removes inter-sample differences within a plate due to technical differences such as pipetting

variation. Finally, calibration normalization removes variance across assay runs. Furthermore, there is

an additional inter-plate normalization process that utilizes CHI calibrators that allows normalization

across all experiments conducted at the CHI laboratory (Candia et al., 2017; Cheung et al., 2017).

Genome-wide DNA methylation assessment
Details of DNA methylation assessment and QC filtering in the InCHIANTI study have been

described elsewhere (Moore et al., 2016). In brief, genomic DNA was extracted from buffy coat

samples (white blood cells) collected at the baseline visit and methylation status of ~480,000 CpG

were assessed with Illumina Infinium HumanMethylation450 BeadChip (Illumina Inc, San Diego, CA)

using manufacturer’s protocol. Quality filtering (bead count, detection rate) and normalization was

performed using the DASEN method in the watermelon R package (Pidsley et al., 2013). After fil-

tering CpG with cross-reactive probes, on polymorphic position, and on X or Y chromosomes,

472,139 markers in 460 subjects with both proteomic and methylation data were used for analysis.

Statistical analysis
Unless noted otherwise, statistical analysis was performed using R, a language and environment for

statistical computing and graphics. Protein RFU abundances were natural-log transformed and out-

liers outside 4SD were removed. Associations of protein with chronological age were assessed by

linear regression using the lm function adjusting for sex and study site (base model). A second model

was examined with further adjustments for the presence of chronic diseases. The proportion of varia-

tion explained by age was calculated as the difference between the adjusted R-square between a

model with and without age, while adjusting for sex and study site. To test for differences in age-
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protein association by sex, an age-by-sex interaction term was included in the base model. For all

analyses, a Benjamini–Hochberg false discovery rate (FDR) was applied using the p.adjust function to

adjust for multiple testing. Associations were considered significant at FDR < 0.05. A meta-analysis

of results from the BLSA/GESTALT study (Tanaka et al., 2018) and InCHIANTI study was performed

using a fixed effect inverse-variance meta-analysis using the command-line tool METAL

(Willer et al., 2010). Differential expression or non-linear association of proteins with age was con-

ducted using Differential Expression - Sliding-Window ANalysis (DE-SWAN) R package

(Lehallier et al., 2019) using an age window of 10, 20 and 30 years. A q-value threshold of �0.05

was considered significant.

Association of protein with all-cause mortality was analyzed using follow-up time to death as the

time variable. Cox proportional hazard models were assessed adjusting for covariates (age, sex, and

study site) using the coxph function from the survival package. For each fully adjusted model, the

proportional hazards assumption was tested by examining the correlation of scaled Schoenfeld

residuals against time using the cox.zph function. A global p-value�0.05 was considered a violation

of proportional hazard assumption (26 proteins). For these proteins, a stratified analysis was con-

ducted by splitting the follow-up period into two or three intervals and including an interaction term

between protein and time-interval strata in the model. Based on the plots of the Schoenfeld resid-

uals versus transformed time, follow-up time was split into two intervals at the mean follow-up year

(15 years) for 18 proteins, or into 3 intervals at 12 and 18 years (1st and 3rd quarter) for the remaining

eight proteins. To investigate the association of age-related protein with trajectories of multimorbid-

ity, the slope was extracted from a linear mixed model that repeated measurement of number of

multi-morbidities over a 10 year period. The associations between slope and age-related protein lev-

els were modeled using linear regression adjusting for covariates. In addition to the single-protein

model, for both all-cause mortality and multimorbidity, we used the least absolute shrinkage and

selection (LASSO) method (implemented via the glmnet function) to perform variable selection and

construct parsimonious multi-protein models. To compare the effect sizes of each protein on mortal-

ity or multimorbidity, protein abundances were z-transformed to zero mean and unit variance.

Mendelian randomization
To explore the causal relationship between age-related plasma proteins with chronic diseases, we

used a two-sample MR approach. This is accomplished by identifying genetic instrument variable for

the exposure (plasma protein levels) and outcome variable (chronic diseases) the estimating the

causal effect. The plasma proteins that were associated with all-cause mortality and multimorbidity

in the multi-protein models (protein list here) were targeted for MR analysis. Protein quantitative

trait loci (pQTL) for these plasma protein levels were selected from a pQTL analyses conducted in

the INTERVAL study (Sun et al., 2018). For all proteins except GDF15, there was only one genetic

variant that was significantly associated with protein levels; NPPB (rs198389), GDF15 (rs45543339,

rs1227734), MMP12 (rs28381684), PI3 (rs16989763), GHR (rs150036324), TNFRSF1B(rs5746017), and

SMOC1(rs1958078; Table S4). The chronic disease outcomes tested included 18 trait/diseases

(hypertension, type 2 diabetes, ischemic heart disease, coronary heart disease, ischemic heart dis-

ease, cardioembolic stroke, chronic kidney disease, prostate cancer, lunch cancer, ovarian cancer,

Parkinson’s disease, depressive disorder, Alzheimer’s disease, rheumatoid arthritis, spine bone min-

eral density, hemoglobin, bone mineral density, red blood cell distribution width) that reflect the 15

diseases used to ascertain multimorbidity status (Hemani et al., 2018). For genetic instrument with

one genetic variant, the causal effect was estimated using the Wald ratio (Lawlor et al., 2008). For

GDF15, where two genetic variants comprised the genetic instrument, an inverse-variance weighted

(IVW) linear regression was used (Bowden et al., 2015). All analysis was conducted using the two-

sampleMR package in MR-base (Hemani et al., 2018).

Mediation analysis using methylation
Baron and Kenny method was used to test whether age-associated changes in protein levels are

mediated by DNA methylation (Baron and Kenny, 1986) in a subset of 460 individuals with both

proteomic and genome-wide methylation data. The residuals of proteins and methylation values

after adjustment for key covariates were used for this analysis. That is, for protein RFU, residuals

after adjustment for sex and study site, and for methylation residual after adjustment for sex, study
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site, batch, and percentage of neutrophils, lymphocytes, monocytes, eosinophils, and basophils

were used. For all age-associated proteins, DNA methylation site (CpGs) positioned 10 kb within

each gene (cis-CpG) were tested for association with age. Enrichment of age-associated CpG was

tested using fisher’s exact test. The age-associated CpG identified were used in subsequent media-

tion analyses. In the first step, age-associated proteins were identified by regressing protein resid-

uals on age using a linear regression model. In the second step, age-associated CpG methylation

was identified by regressing methylation residuals on age using a linear model. In the final step, a lin-

ear model regressing protein residual on age adjusting for methylation residuals was tested. Signifi-

cance of the mediation effect was tested using the Sobel test (Sobel, 1982). A non-significant direct

effect of age on protein in the final model (adjusted for methylation) was considered as complete

mediation, while a significant direct effect in the final model was considered as partial mediation.

Proteomic signature of age
A predicted proteomic age (PROage) signature was constructed as a linear combination of the

regression coefficients for 76 proteins from the penalized regression model that was previously pub-

lished (Tanaka et al., 2018). A measure of proteomic biological age was calculated as the residuals

from the regression model of chronological age with PROage (PROaccel). Individuals with positive

PROaccel are considered to have accelerated aging, while those with negative PROaccel are consid-

ered to be aging slower. The association of PROaccel with the number of multimorbidity at baseline

was assessed using Poisson regression. The association of PROaccel with all-cause mortality was

assessed using Cox regression.

Pathway enrichment and visualization
Gene set over-representation analyses were performed using the ConsensusPathDB-human tool,

release 34 (15.01.2019) (Kamburov et al., 2013). Curated pathways for enrichment analysis were ref-

erenced from the following databases: Gene Ontology, WikiPathways, and Kegg pathways, and

Reactome. Pathways were required to have a minimum of three observed proteins and a

p-value<0.01. Gene ontology terms were restricted to levels 3–5. For morbidity-associated proteins

(Figure 5A), all pathways with enrichment q-values <0.05 were kept, and the top 25 pathways were

plotted. For mortality-associated proteins (Figure 4A), all pathways with enrichment q-values <0.25

were kept. One duplicate named pathway appearing from multiple source databases was omitted

manually. For background reference, a list of all 1301 proteins measured in the SOMAscan assay

were used. Tables containing the pathways, observed corresponding proteins, reference pathway

annotations, statistics, and source databases are included as a supplementary file

(Supplementary file 1E).

Heatmaps and dot plots were generated in R with the ‘ggplot2’ package (Wickham et al., 2016)

and by comparing with SASP profiles on SASP Atlas (Basisty et al., 2020) (http://www.saspatlas.

com/). Color palettes in R were generated with the ‘RColorBrewer’ package (Neuwirth, 2014).
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