
THE NATURAL HISTORY OF MODEL ORGANISMS

Neurogenomic insights into the
behavioral and vocal
development of the zebra finch
Abstract The zebra finch (Taeniopygia guttata) is a socially monogamous and colonial opportunistic

breeder with pronounced sexual differences in singing and plumage coloration. Its natural history has

led to it becoming a model species for research into sex differences in vocal communication, as well

as behavioral, neural and genomic studies of imitative auditory learning. As scientists tap into the

genetic and behavioral diversity of both wild and captive lineages, the zebra finch will continue to

inform research into culture, learning, and social bonding, as well as adaptability to a changing

climate.
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Introduction
The zebra finch Taeniopygia guttata is the most

intensively studied species of bird that is main-

tained in captivity in large numbers despite not

being a species bred for its meat or eggs, like

the chicken or the quail (reviewed in

Zann, 1996). It became popular as a pet bird in

the 19th century because it bred well in captivity,

and was adopted for scientific study in the third

quarter of the 20th century, initially for research

into sexual behaviors (Morris, 1954; Immel-

mann, 1972). Later, the zebra finch was used in

studies of the de novo evolution of vocal culture

(e.g. Fehér et al., 2009; Diez and MacDougall-

Shackleton, 2020), the neuroethology of imita-

tive vocal learning (Terpstra et al., 2004;

Vallentin et al., 2016; Yanagihara and Yazaki-

Sugiyama, 2019), the neural mechanisms of sen-

sorimotor learning (Mandelblat-Cerf et al.,

2014; Okubo et al., 2015; Mackevicius et al.,

2020; Sakata and Yazaki-Sugiyama, 2020), and

the role of early acoustic experience on the

song-based preferences of female mate choice

(Riebel and Smallegange, 2003; Chen et al.,

2017; Woolley, 2012; see the following video

for a mating display in zebra finches: https://

www.youtube.com/watch?v=TaC6D1cW1Hs).

Due to the pronounced sexual differences in

singing and plumage coloration found in the

zebra finch (Figure 1), earlier research quickly

focused on when and how males learn to copy

and produce a tutor(-like) song (e.g. Eales, 1987;

Brainard and Doupe, 2002; Figure 2A), and

then eventually on how females learn from their

(foster) fathers to prefer particular male vocal

displays (Braaten and Reynolds, 1999; Rie-

bel, 2000). This allowed for the characterization

and testing of the functions of male song and its

female perception in the context of acoustic sex-

ual dimorphism at the behavioral, endocrine,

and neurophysiological levels (reviewed in Rie-

bel, 2009; Hauber et al., 2010).

The zebra finch was the second avian species

to have its genome sequenced (Warren et al.,

2010), after the domestic fowl (Gallus gallus;

International Chicken Genome Sequencing

Consortium, 2004). Soon after the appearance

of transgenic lines of domestic fowl and the Jap-

anese quail Cortunix japonica (reviewed

by Sato and Lansford, 2013), the first genera-

tions of transgenic zebra finches become avail-

able (e.g. Agate et al., 2009; Abe et al., 2015;

Liu et al., 2015). The proven feasibility of

genome editing in both developing zebra

finches (e.g. Ahmadiantehrani and London,
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2017) and adult poultry (reviewed in

Woodcock et al., 2017), means that this bird

may also be used as both a basic and an applied

(i.e., biomedical) model for development and for

human health and disease (e.g. Han and Park,

2018; London, 2020).

Studies of zebra finch natural history in Aus-

tralia have been essential to establish and con-

firm the rationale for studying this species as a

model for acoustic communication (Zann, 1990;

Elie et al., 2010), social behavior

(McCowan et al., 2015; Brandl et al., 2019a;

Brandl et al., 2019b), reproductive physiology

(Perfito et al., 2007), life-long pair bonding

(Mariette and Griffith, 2012), and adaptations

to heat (Cade et al., 1965; Cooper et al.,

2020a; Cooper et al., 2020b). Specifically, by

understanding the natural history of the zebra

finch, research in captivity can capitalize on the

manipulation of the behavioral, neuroendocrine,

and epigenetic bases of the bird’s phenotype,

including conspecific brood parasitism, parent-

offspring conflict, and sibling rivalry.

Finally, with Australia experiencing increas-

ingly extreme climatic events and fluctuations,

field studies of the zebra finch are also paving

the way to understanding how this opportunisti-

cally breeding species is adapting to accelerat-

ing climate change. For example, recent wild

studies have revealed the zebra finch’s extensive

behavioral and physiological plasticity to with-

stand extreme temperatures of over 40˚C (e.g.

Cooper et al., 2020a; Cooper et al., 2020b;

Funghi et al., 2019). In turn, studies of captive

zebra finches in controlled temperature condi-

tions have already tested the effects of cool vs.

hot climates on parental investment

(Nord et al., 2010), parent-offspring embryonic

communication (Mariette and Buchanan, 2016),

offspring development (Wada et al., 2015),

tutor choice for song learning (Katsis et al.,

2018), adult phenotype (e.g. body size:

Andrew et al., 2017), the level of DNA methyla-

tion (Sheldon et al., 2020), and the effect of

heat waves on sperm (Hurley et al., 2018).

Figure 1. Adult zebra finches in the wild. Four female and nine male adult zebra finches in the wild in Australia.

As the species experiences increasingly extreme climatic fluctuations, future field studies of the zebra finch should

also advance our understanding how opportunistically breeding species are able to adapt to accelerating climate

change (photo credit: Simon C Griffith).
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By tapping into the existing genetic and

behavioral diversity of wild and captive lineages

in zebra finches (e.g. Forstmeier et al., 2007;

Knief et al., 2015) to perform comparative avian

genomic analyses (Jarvis et al., 2014;

Feng et al., 2020), interspecific hybridization

studies (Woolley and Sakata, 2019;

Wang et al., 2019), and direct genetic manipu-

lations (Liu et al., 2015; London, 2020), the

zebra finch shall continue to serve as a focal sub-

ject of integrative research into human lan-

guage-like vocal culture (Hyland Bruno et al.,

2021), auditory learning (Theunissen et al.,

2004), acoustically-mediated social bonding

(Tokarev et al., 2017), and genetic

(Balakrishnan et al., 2010) and behavioral (e.

g. song) variability (Lansverk et al., 2019; see

Box 1).

An evolutionary history of the
zebra finch
The zebra finch is endemic to Australasia, and

evolved there as part of the Australian grass

finch radiation within the Estrildidae (Olsson and

Alström, 2020). The species shares a common

ancestor with Poephila finches (long-tailed P.

acuticauda; black-throated P. cincta; and

masked finch P. personata), diverging around

2.9 million years ago (Singhal et al., 2015). For-

merly, the zebra finch was placed in a genus

with the double-barred finch (Taeniopygia biche-

novii), but in fact these two lineages diverged

around 3.5 million years ago (Singhal et al.,

2015).

Two subspecies of the zebra finch are recog-

nized, with the continental Australian taxon (T.

guttata castanotis) having no clear genetic struc-

ture and apparently mating randomly within its

breeding population (Balakrishnan and

Edwards, 2009). The other subspecies is the

Timor zebra finch (T. g. guttata), found to the

north of Australia. The genetic divergence

between the two lineages suggests that the lat-

ter taxon colonized the Lesser Sunda Islands

around 1 million years ago and has a reduced

diversity and genetic distance driven by found-

ing effects and selection, relative to the conti-

nental subspecies (Balakrishnan and Edwards,

2009). The insular subspecies has also been

occasionally studied in captivity, and it differs

from the continental Australian subspecies in

morphological and behavioral traits, including

song rate and mate choice (Clayton, 1990;

Clayton et al., 1991).

The two subspecies of the zebra finch are

physically isolated from one another in the wild,

but they can readily hybridize and be back-

crossed in captivity to examine a range of ques-

tions in classical genetics and functional devel-

opmental biology. To date, this approach has

seen limited application, with just one study

looking at the divergence in gene regulation

between the two subspecies (Davidson and

Balakrishnan, 2016). Whilst this direction could

provide an extremely valuable new research

opportunity, a major logistical challenge to over-

come will be the capture and export of birds

from Indonesia, or the continued maintenance of

distinct (non-hybrid) domesticated populations

of T. g. guttata in captivity.

Figure 2. Timeline and brain pathways of auditory and vocal learning in the zebra finch. (A)

Timeline of sensory (auditory learning) and sensory-motor (vocal self-assessment and song-

production) critical periods in zebra finch song development. (B) Brain nuclei of male zebra

finches for auditory learning (CN: cochlear nucleus; MLd: mesencephalicus lateralis pars

dorsalis; OV: nucleus ovoidalis; field L: primary auditory forebrain input area; NCM:

caudomedial nidopallium; CMM: caudomedial mesopallium; VTA: ventral tegmental area;

and AIV: ventral portion of the intermediate arcopallium), vocal learning (HVC, Area X: basal

ganglia; LMAN: lateral magnocellular nucleus of the anterior nidopallium; DLM: nucleus

dorsolateralis anterior thalami, pars medialis), and vocal production (HVC, and RA: robust

nucleus of the arcopallium).

Hauber et al. eLife 2021;10:e61849. DOI: https://doi.org/10.7554/eLife.61849 3 of 19

Feature Article The Natural History of Model Organisms: Insights into the behavioral and vocal development of the zebra finch

https://doi.org/10.7554/eLife.61849


A model species for the analysis of
sex differences in vocal learning
and production?
Zebra finches have a relatively short generation

time for altricial birds (those that are underde-

veloped at the time of hatching): they become

sexually mature at between 90 and 100 days of

age in captivity, at which point they are ready to

form pair bonds, build nests, and breed

(Zann, 1996). They are highly social and can be

kept at great densities in shared housing with a

relative absence of highly antagonistic behav-

iors. This is likely to be related to the level of

sociality and the highly fluid flock-wide social

relationships seen in the wild (McCowan et al.,

2015; Brandl et al., 2019a), as individuals con-

gregate around food and water, and nest in

close proximity in loose colonies for apparent

social benefits (Brandl et al., 2019b).

Provided with sufficient water, nesting sites,

and nest materials, and one (or more) mate(s) of

the opposite sex, zebra finches can successfully

reproduce on a predominantly seed-based diet,

simplifying husbandry, even during the nestling

stage. Indeed, under a broad range of environ-

mental and social conditions in captivity, when

given the infrastructure (e.g. nesting platform or

cavity and materials) to breed, most pairs will

breed successfully within a short time frame

(Griffith et al., 2017), and the life history can be

followed across many generations in a relatively

short period of time (e.g. Briga et al., 2019).

With a clutch size of between 2 and 9 eggs

(mode: 5), and with brood reduction rates that

can be less than 30%, each reproductive bout is

typically rapid and productive. In the wild, zebra

finches pair for life, and partners are found in

close proximity during both the breeding and

non-breeding periods (Mariette and Griffith,

2012; McCowan et al., 2015). In captivity, this

strong pair bond is preceded by rapid pairing,

with singletons forming pair bonds within days

or weeks when introduced into a new cage or

aviary (Rutstein et al., 2007; Campbell et al.,

2009). The strength of the pair bond, the high

levels of affiliative behaviors, and the relative

absence of antagonism between partners also

allow zebra finches to be kept in

easily monitored single-pair cages, rather than in

communal aviaries (Zann, 1996).

However, it was not just ease of breeding in

captivity that turned the zebra finch into a popu-

lar model for studying the development of sex-

ual dichromatism and vocal dimorphism. Rather,

an initial interest in the distinct plumage and the

vocal differences between adult female (drab-

ber, non-singing) and male (more colorful, sing-

ing) zebra finches resulted in several, now

classic, developmental studies. Some of these

studies concentrated on the role of early life

experience, through chromatic and vocal sexual

imprinting, on females choosing attractive males

as mates, while others focused on

song production and song preference learning

by male and female zebra finches (e.g. Clay-

ton, 1987; Eales, 1987). For example, cross-

Box 1. Outstanding questions in zebra finch research.

. Female zebra finches do not sing but have a diverse repertoire of cooperative calls and
other social behavioral displays. What is the neurogenomic and ontogenetic basis of
this lack of singing in females?

. Can gene editing become standard practice in both ontogenetic and adult-onset
manipulations of the genomic architecture and gene activational basis of focal zebra
finch traits, including imitative song learning and auditory feedback in the maintenance
of crystallized song production?

. What is the genomic and transcriptomic mechanism of hair-cell regeneration in the
songbird inner ear and can it be transferred to human hearing loss treatments?

. What is the genomic and physiological basis of aseasonal reproduction in nomadic
zebra finches?
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fostering zebra finch chicks with the ‘universal

estrildid foster species’, the Bengalese finch

(Lonchura striata vars. domestica;

Sonnemann and Sjölander, 1977), revealed that

both visual and acoustic cues of social parents

are learned during early development and used

by young zebra finches of both sexes in mate

preference following maturity (ten Cate, 1987;

Campbell and Hauber, 2009; Verzijden et al.,

2012). This occurs through a two-stage process

of sexual imprinting (ten Cate, 1985; ten Cate

and Voss, 1999).

These ontogenetic, physiological, and behav-

ioral studies since the last quarter of the 20th

century (e.g. Price, 1979) have become increas-

ingly coupled with the rapid advances of neuro-

anatomical and neurophysiological imaging,

genome sequencing, and transcriptomic and

epigenetic analyses of the neural circuitries of

song production in the forebrains of songbirds

(reviewed in Mooney, 2009; Mooney, 2014)

and song perception (reviewed in Louder et al.,

2019). For instance, neurophysiological

(Hauber et al., 2013), neuroanatomical

(Lauay et al., 2005), immediate-early gene

(Tomaszycki et al., 2006), and transcriptomic

analyses (Louder et al., 2018) performed on

zebra finch females that were reared either in

isolation from any male birdsong or in the pres-

ence of a different songbird species have con-

firmed the critical role of early life experience in

generating adaptive cognitive-behavioral

(Price, 1979), neurogenomic (Louder et al.,

2018) and neurophysiological (Moore and

Woolley, 2019) responses to conspecific songs.

Similarly, the known upregulation of stress

responses of formerly pair-bonded, but then

separated captive zebra finches (Remage-

Healey et al., 2003), is also reported to impact

the epigenomic status of similarly treated birds

(George et al., 2020).

Despite the earlier prominence of the domes-

tic canary (Serinus canaria) in the neurobiological

study of song learning, two other research

themes have also benefited significantly from

follow-up studies of captive zebra finches. First,

adult-onset neurogenesis, accompanying sea-

sonal changes in song behavior, or damage to

the underlying neural circuitry, was initially

extensively studied in the canary (e.g. Notte-

bohm, 1981), but with ongoing critical contribu-

tions also coming from experiments on zebra

finches (e.g. Walton et al., 2012; reviewed in

Pytte, 2016). For example, when adult male

zebra finches’ RA- (robust nucleus of the arco-

pallium) and Area X-projecting HVC neurons

(Figure 2B) were experimentally ablated, only

the RA-projecting neurons were regenerated

(Scharff et al., 2000). In turn, a new social envi-

ronment (e.g. through the exposure to novel avi-

ary mates: Barnea et al., 2006, and/or ongoing

auditory experiences: Pytte et al., 2010) may

also contribute to the diminished apoptosis of

newly generated caudomedial nidopallium

(NCM) neurons (Figure 2B) in the forebrains of

adults.

Second, hair cell regeneration following a

loud noise or antibiotic treatment in both Ben-

galese (Woolley and Rubel, 2002) and zebra

finches (Dooling and Dent, 2001) occurs rap-

idly, as it does in other, non-oscine birds

(Stone and Rubel, 2000) and in some other ver-

tebrate lineages (e.g. fish: Monroe et al., 2015).

Research into such auditory system regeneration

abilities in birds and other animals had strongly

promised, but has thus far evaded, broadly

applicable biomedical solutions for curing cell-

death based hearing losses in humans

(Brigande and Heller, 2009; Menendez et al.,

2020).

Differences in captive vs. wild
zebra finches and comparisons
with northern hemisphere
songbirds
Most of the populations of zebra finches in

research laboratories around the world have

been founded with birds held by aviculturists for

over a hundred generations (Zann, 1996;

Griffith et al., 2017). These populations have

therefore been subject to both direct and indi-

rect forms of natural and artificial selection, as

well as founding effects, genetic drift, and

inbreeding (Forstmeier et al., 2007;

Knief et al., 2015). It has long been known that

birds of the domesticated stocks are up to 30%

larger in body size than their wild counterparts

(Zann, 1996), but reassuringly they appear to be

similar with respect to several life history trade-

offs, including, for example, slow juvenile feather

development and low adult song rates when

nestlings are raised in large brood sizes (e.g.

Tschirren et al., 2009). Captive birds are also

similar to their wild counterparts in respect to

the genomic architecture underlying complex

traits (Kim et al., 2017; Knief et al., 2016;

Knief et al., 2017a), although some caution still

needs to be applied, for instance, to known dif-

ferences in linkage disequilibrium patterns within

the genomes of captive and wild populations

(Knief et al., 2017b).
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The pattern of zebra finches being quite dif-

ferent from many of the species of small passer-

ines that are well studied by researchers in the

northern hemisphere may be of greater signifi-

cance than the differences between captive and

wild populations of zebra finches. The zebra

finch is an estrildid (Sorenson et al., 2004;

Olsson and Alström, 2020), a family that is

endemic to the tropics, and found across Africa,

Southern Asia, and Australasia – with the whole

lineage having evolved far from the ecological

and evolutionary pressures of the temperate

northern hemisphere. One of the almost ubiqui-

tous characteristics of the estrildid family is the

interseasonal strength of the socially monoga-

mous pair-bond and biparental care for the

young (Payne, 2010).

Prior breeding experience enhances the suc-

cess of subsequent breeding bouts by female

zebra finches through increased output and

shorter times between clutches, even when

breeding with a new male in this otherwise life-

time pair-bonded species (Adkins-Regan and

Tomaszycki, 2007; Smiley and Adkins-Regan,

2016; Hurley et al., 2020). Relatively high

within-pair sexual fidelity and cooperation in

nest building, incubation, and provisioning also

allow for the directed breeding of known pairs

both in large aviaries and in small single-pair

cages. Nevertheless, in socially housed groups,

both conspecific brood parasitism – inducible by

simulated nest predation in captivity (Shaw and

Hauber, 2009) and accounting for 5 to 11% of

offspring (Griffith et al., 2010) – as well as

extra-pair paternity – accounting for around 30%

of offspring in aviaries (Forstmeier et al., 2011)

– can partially confound social parentage,

although extrapair paternity is almost entirely

absent in the wild (accounting for ~1% of off-

spring; Griffith et al., 2010).

A major effort of laboratory-based work on

the zebra finch has focused on females’ mate

choices (especially with respect to beak color

and learned song; Griffith and Buchanan,

2010a). However, despite considerable variance

in the reproductive success of individuals even in

captive populations (Griffith et al., 2017;

Wang et al., 2017), one of the most compre-

hensive studies examining the consequence of

mate choice on fitness found no evidence that

either males or females are targeting this varia-

tion in individual quality when they choose a

partner (Wang et al., 2017). This finding sup-

ports the idea that the strength of a partnership

is of greater value than the intrinsic quality of

the individuals involved.

In this respect, zebra finches may differ from

similarly-sized well studied small passerines of

the northern hemisphere temperate zone. Since

adult zebra finches are likely to live between 3

and 5 years in the wild (Zann, 1996) and can

breed continuously throughout the year if condi-

tions are favorable (Griffith et al., 2017), they

can potentially accrue considerable experience

as part of the sexual-parental partnership. The

reproductive benefits of better physiological and

behavioral coordination between partners (e.g.

Adkins-Regan and Tomaszycki, 2007;

Smiley and Adkins-Regan, 2016; Hurley et al.,

2020) may outweigh the benefits of frequent

and repeated partner switching and genetic infi-

delity (Griffith, 2019). In turn, the value of the

partnership may promote selection for diverse

affiliative and cooperative traits, not always seen

in the widely studied passerines of the more sea-

sonally constrained northern hemisphere, where

most individuals breed just once or twice in a

lifetime (Griffith, 2019). Rather, these traits are

reminiscent of the long-term cooperative breed-

ing partnerships formed (and the fitness costs

paid following divorce or mate loss) by long-

lived biparental seabirds (e.g. Ismar et al.,

2010).

Indeed, the strength of the pair bond in the

wild zebra finch is seen in the expression of

acoustic communication throughout the year,

and high levels of coordinated duetting between

the male and female (Elie et al., 2010). This

close, and regular vocal interaction between the

members of a pair also perhaps plays a role in

individual vocal recognition in this species

(Levréro et al., 2009; Elie and Theunissen,

2018; Yu et al., 2020).

Highly coordinated acoustic interactions

between female and male partners are a charac-

teristic of the earliest passerine lineages as they

had evolved in Australia (Odom et al., 2014).

The continuously high level of overall acoustic

activity in the zebra finch, which has made it

such an attractive model system for neurobiol-

ogy, sets it apart from many other well studied

passerines in the northern hemisphere. This

serves to remind us that although most of the

laboratory work is conducted in the northern

hemisphere, the zebra finch is, in many respects,

different from most of the short-lived highly sea-

sonally breeding passerines native to the tem-

perate zone of the northern hemisphere.

Indeed, it is important to understand that the

species’ adaptations to the highly unpredictable

Australian climate and ecology – while making it

so easy to maintain and breed in captivity – also
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set it apart from most other northern hemi-

sphere lineages that could not be used in labo-

ratories to anywhere near the same extent.

Genes and brains for vocal
learning
The process through which developing young

memorize the acoustic communication signals of

adults in humans and songbirds has been a criti-

cal research rationale and funding source sup-

porting zebra finch studies. The learning of adult

male songs by juveniles is particularly strong

during early sensory periods, when embryos

(Antonson et al., 2021), nestlings (Rivera et al.,

2019), and juveniles (Brainard and Doupe,

2000) likely form a sensory representation of the

’tutor song’ (Figure 3). Just as juvenile females

develop long-term song-type preferences used

for mate choice based on early experiences with

their own fathers (Riebel, 2000; Chen et al.,

2017), young males also learn and then actively

practice to produce songs that match their

paternal (tutor) songs (Tchernichovski et al.,

2001; Figure 3). Tutors even alter their song

structure when singing near young tutees, which

influences the song learning process for young

zebra finches, analogous to humans changing

their speech when speaking to infants

(Chen et al., 2016; Carouso-Peck and Gold-

stein, 2019).

However, even in the case of strong social

environmental impact upon song learning during

the sensitive period, the genetic make-up of

individuals may contribute to the resulting song

preferences and vocal production patterns

through gene-by-environment interactions

(Mets and Brainard, 2019). Accordingly, in

zebra finches, males preferentially learn to sing

from song tutors of the same species over those

of another species when given equal access

(Clayton, 1988), and both song-naı̈ve and cross-

fostered females show greater neuronal spike

rates in response to unfamiliar conspecific over

an unfamiliar third species’ songs (Hauber et al.,

2013). Similarly, the species-specific typical pat-

tern of socially learned song structure can cultur-

ally evolve across of just a handful of

generations in initially naı̈ve zebra finch popula-

tions (Fehér et al., 2009; Diez and MacDougall-

Shackleton, 2020).

In adulthood, male and female zebra finches

can quickly memorize individual vocal character-

istics and recognize the identity of others for at

least a month without reinforcement (Yu et al.,

2020), likely relying on the perception of

extremely small differences in calls and songs

(Prior et al., 2018). However, experiences with

other songs in adulthood do not affect the crys-

tallized songs of males. Given the parallels with

language acquisition and speech development

in humans, zebra finches have thus long served

as an important model for studying the neural

mechanisms that control how vocal signals are

memorized and copied (Doupe and Kuhl,

1999).

Initial research in the neurobiology of song-

birds, primarily with canaries, has revealed the

components and plasticity of the neural loops

and circuits responsive to learning and produc-

ing songs (Figure 2B). Over time, studies of the

zebra finch (a species that crystallizes its specific

song once and does not deviate from it unless

experiencing trauma or training) have become

increasingly more instructive in the pursuit of

identifying where in the forebrain the auditory

memories are stored and how this representa-

tion directs both vocal learning in males and

mate choice preferences in females (reviewed in

Hauber et al., 2010). Accordingly, following the

presentation of tape-recorded songs of conspe-

cifics, the expression level of an immediate-early

gene, egr-1 (also known as ZENK), which is asso-

ciated with neural activation, increases within

the zebra finch auditory forebrain, as found in

other songbird species (Mello et al., 1992;

Louder et al., 2016).

Furthermore, neural responses within the

NCM, a subregion of the auditory forebrain, are

selective for tutor songs (Yanagihara and

Yazaki-Sugiyama, 2016) and song-induced

expression of neural transcription factors (again,

ZENK) also positively correlate with the

increased similarity of the bird’s copied song to

that of the tutor (Bolhuis et al., 2000), which

together suggest that this region may hold the

tutor song’s memory. Accordingly, NCM lesions

in adult male zebra finches reduce their ability to

recognize songs, but not to produce them

(Gobes and Bolhuis, 2007). In female zebra

finches, on the other hand, behavioral preferen-

ces for conspecific versus heterospecific songs

can be eliminated by damaging the nearby

CMM nucleus (caudomedial mesopallium) (Mac-

Dougall-Shackleton et al., 1998).

Overall, the zebra finch remains the best

model system to characterize the neural circuitry

involved in vocal learning and production, with

an often-stated research aim to better under-

stand the capacity of imitative speech learning in

humans (e.g. Lipkind et al., 2013). Juvenile

male zebra finches mimic the tutor song while
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females only produce non-learned ‘calls’ (Fig-

ure 3). In turn, several regions in the zebra finch

brain associated with song production are dra-

matically larger in male zebra finches, a result of

neurons in some of these regions atrophying in

females while increasing in size and connections

in males (Figure 2B; Konishi and Akutagawa,

1985). Several of these regions selectively

respond to the ‘bird’s-own-song’ in anesthetized

males (Doupe and Konishi, 1991), which initially

suggested a specialized function for this circuit

in producing songs; however, the role of such

own-song specific auditory responses is no lon-

ger clear, as they are gated by behavioral states

(Hessler and Doupe, 1999) and much less pro-

nounced in awake birds (Schmidt and Konishi,

1998).

The premotor circuit for song production

receives input from auditory nuclei via the HVC,

which then projects to the RA, and subsequently

connects to the brainstem motor nuclei and syr-

inx (Figure 2B). This ‘motor pathway’ is crucial

during the learning process (Aronov et al.,

2008) to generate stereotyped adult songs

(Simpson and Vicario, 1990). In turn, while sing-

ing, neurons in the HVC that connect to the

robust nucleus of the arcopallium (RA) perform

time-locked bursts of firing, coincident with pre-

cise sequences during the song

(Hahnloser et al., 2002). HVC neurons also

ontogenetically shift their spike rates to become

increasingly sparser while producing the male’s

song (Okubo et al., 2015), whereas the spike

trains of RA neurons lock into the timing of

song’s note identity (Ac and Margoliash, 2008).

By altering the local temperature of specific

brain nuclei, Long and Fee, 2008 demonstrated

that the temporal match between HVC, but not

RA, and the song‘s timing pattern is a causal

link, as cooling the HVC, but not the RA, slows

down the song without affecting its frequency

content. This demonstrates how and which ele-

ments of this forebrain circuit are critical to con-

trolling the temporal structure of male songs

and, in the Bengalese finch, their syntax, too

(Zhang et al., 2017). By contrast, the anterior

Figure 3. Spectrograms of zebra finch songs and calls. Spectrogram of tutor and tutee adult male zebra finch

songs, and undirected contact calls of adult females and males. Spectrograms represent time (x-axes) and pitch (y-

axes) with greater amplitude as increasing brightness. Note the similarity of the tutor (typically social father) and

tutee (son) song pair of male zebra finches and the distinct sexual differences of the calls.
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forebrain pathway (AFP), homologous to the

mammalian basal ganglia–thalamocortical path-

way, is required for vocal learning in juvenile

male zebra finches, but not the production of

stereotyped adult song (Bottjer et al., 1984). In

this pathway, Area X and the lateral magnocellu-

lar nucleus of the anterior nidopallium (LMAN)

are involved in producing song variability in juve-

nile birds during vocal learning (Woolley and

Kao, 2015; Figure 2B).

Specifically, both theoretical modelling

(including in humans) and experimental studies

of this pathway (in zebra finches) have pointed

to the critical role of vocal motor variability as

the substrate upon which trial-and-error learning

through reinforcement mechanisms may operate

to shape vocal production ontogeny

(Dhawale et al., 2017). In turn, the AFP is also

involved in auditory-feedback based acoustic

correction signaling for the motor pathway, in

that inactivation of LMAN in young male zebra

finches regresses experimentally induced,

recently learned changes in the subjects’ song

pitch (Andalman and Fee, 2009). Finally, gene

expression patterns, including genes associated

with speech in humans such as the transcription

factor FOXP2, are highly expressed in the ante-

rior forebrain pathway during sensitive periods

for song learning, indicating potential genetic

parallels of vocal plasticity in birds and humans

(Haesler, 2004; Pfenning et al., 2014).

How the memorized tutor song instructs

vocal pathways remains unclear. However,

research in the zebra finch points to the involve-

ment of nuclei within and outside of the anterior

forebrain pathway. Auditory feedback, in which

self-uttered and self-heard vocalizations are

compared to a memorized song pattern, is nec-

essary for the development of song in juveniles

and the maintenance of song in adult zebra

finches (Price, 1979; Nordeen and Nordeen,

1992; Leonardo and Konishi, 1999). Dopami-

nergic neurons of the ventral tegmental area

(VTA) that project to the anterior forebrain path-

way through Area X encode perceived errors in

song performance from auditory feedback

(Gadagkar et al., 2016; Figure 2B). The VTA

receives error signals from auditory feedback

through the AIV, which receives connections

from the auditory forebrain (Kearney et al.,

2019). Furthermore, neurons within the auditory

forebrain also demonstrate sensitivity to errors

in auditory feedback (Keller and Hahnloser,

2009). Such developments, for example regard-

ing error sensitivity, also illustrate how ongoing

research and continued breakthroughs in zebra

finch neuroscience hold promise to further iden-

tify and understand the neural basis of vocal

learning and production in general.

Following the widespread use of immediate

early gene studies (see above), some of the

research efforts aiming to characterize the genes

that regulate zebra finch vocal and auditory

behaviors, in particular genes related to vocal

production in the brain, were based on utilizing

DNA microarrays (Wada et al., 2006). Then, in

2010 an international consortium sequenced,

assembled, and annotated the first zebra finch

genome (Warren et al., 2010), only the second

avian genome presented. This effort revealed

the sequences of over 17,000 predicted protein-

coding genes, as well as many regulatory

regions and non-coding RNAs. More impor-

tantly, the annotated genome enhanced the

next decade’s analyses into identifying the

genes and regulatory networks that are involved

in social behavior, including genome-wide inves-

tigations into vocal learning, such as auditory-

experience induced RNA expression

(Louder et al., 2018), microRNA expression

(Gunaratne et al., 2011), and epigenetically

regulated genes associated with developmental

song learning (Kelly et al., 2018). Furthermore,

the initial genome helped researchers to identify

and map the expression patterns of ~650 candi-

date genes within the brain of zebra finches,

resulting in an online atlas database that pro-

vides an opportunity to link behavior, neuroanat-

omy, and molecular function (Lovell et al.,

2020).

A recent high quality, second generation

genome of the zebra finch, presented as part of

the Vertebrate Genomes Project, improves the

accuracy of the reference genome assembly and

annotation (Rhie et al., 2021). Leveraging recent

technological advances, such as long-read

sequencing (up to 100 Kbp) and approaches to

detect how DNA interacts across genomic loci

(up to 100 Mbp), the latest updated zebra finch

genome thus resolves numerous regions with

repetitive elements and enhanced gene annota-

tion from the first assembly.

In parallel with genomic advances, a suite of

new neurobiological techniques available for

zebra finches will only continue to increase the

ability to understand the development of vocal

learning and behavior. Questions regarding the

activity of specific neurons can now be tackled

using multi-electrode arrays (e.g. Lim et al.,

2016; Tanaka et al., 2018) or wireless neurote-

lemetry (Ma et al., 2020) able to simultaneously

record the activity of numerous neurons in
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awake and freely-behaving birds. Imaging the

neural connections between distant brain

regions is now also possible with tissue clearing

and light-sheet microscopy (Rocha et al., 2019).

The experimental regulation of the expres-

sion of candidate genes in targeted areas of the

zebra finch brain has also recently become avail-

able. Existing or new gene constructs can be

inserted into neonatal (hatchling) zebra finches

via electroporation-based gene construct deliv-

ery to study the genetics of vocal learning as

songs are memorized, practiced, and first

expressed by young males

(Ahmadiantehrani and London, 2017). Similarly,

genetically modified constructs of nonpatho-

genic viruses injected in the brain, such as

adeno-associated virus (AAV), are able to drive

the expression of certain genes.

Viral constructs were developed to control

the expression of FOXP2 (e.g. Heston and

White, 2015; Norton et al., 2019), which is

expressed in the song control regions within the

male zebra finch forebrain and associated with

inherited speech and language disorder in

humans (Fisher and Scharff, 2009). Viral con-

structs have also been useful in imaging, such as

expressing a genetically encoded calcium indica-

tor (GCaMP6s) for calcium imaging of neuron

populations with 2-photon microscopy

(Picardo et al., 2016) or the expression of green

fluorescent protein (GFP). Recent applications of

viral constructs have also enabled researchers to

control neurons with light (optogenetics), such

as ‘implanting’ artificial song memories into the

zebra finch brain (Zhao et al., 2019), or control-

ling the firing of specific neurons, such as the

VTA neurons that project to Area X (Xiao et al.,

2018; Kearney et al., 2019). Harnessing these

new techniques enables us to tackle how genetic

pathways are linked to vocal learning and motor

control circuits.

However, the utility of the zebra finch as a

neurogenetic model laboratory species has been

somewhat inhibited by the low success rate in

the development of transgenic lines that would

enable direct experimental modification of the

gene expression patterns in the relevant vocal-

production and vocal-perception circuits. This

may be due to the unique immune function of

oscine birds inhibiting full viral delivery of gene

constructs (London, 2020). Nevertheless, the

last decade has already seen the successful inno-

vation of lentiviral delivery (e.g. Norton et al.,

2019) of, for example, human Huntington’s Dis-

ease genes into zebra finch lineages, to causally

demonstrate reduced vocal imitation and output

consistency as a result of the treatment

(Liu et al., 2015). However, to date neither a

TALEN nor a CRISPR/Cas9 vector-based gene

editing approach has taken off in avian (chicken

or songbird) lineages (Woodcock et al., 2017;

but see Cooper et al., 2018). With additional

research, the zebra finch could be further

explored as to which gene delivery and genomic

editing methods will be widely and effectively

applicable to this species.

The importance of studying
female zebra finches
Female zebra finches only slowly and partially

assumed a role in some of the earlier behavioral

and developmental studies on sexual imprinting

(e.g. Collins et al., 1994), but now maintain a

co-lead position. This is because mate choice is

mutual in this species and females participate in

the ever-important initial pair-bonding decisions,

as well as in all aspects of collaborative biparen-

tal care (Riebel, 2009). As such, females make a

critical contribution to the phenotype of their

offspring through their investments into eggs,

and the care of dependent offspring

(Griffith and Buchanan, 2010b). Still, in study-

ing the neurobiological basis of species and

mate recognition, and the relevant funding and

publications, female-focused research took a

secondary role during the earlier decades when

much of the work focused on the developing

and adult sensory-motor circuitries of the male

zebra finch forebrain.

In the last two decades, however, there has

been a definite upsurgence of studies focusing

on female zebra finches, both from the perspec-

tive of the neurosensory-ontogenetic processes

of conspecific (Theunissen et al., 2004;

Woolley et al., 2010), mate (Lauay et al., 2004;

Tokarev et al., 2017), and individual recognition

(Vignal et al., 2004; D’Amelio et al., 2017;

Yu et al., 2020) by and of females. It is becom-

ing clear that female visual and acoustic displays

serve an important role in the development and

fine-tuning of male vocalizations during sensitive

periods (Benichov et al., 2016; Carouso-

Peck and Goldstein, 2019) and that male vocal

and/or visual displays serve in the activation of

auditory forebrain regions in adult females

(Avey et al., 2005; Day et al., 2019).

For example, the reduced volume of the song

control system that exists in the female zebra

finch brain is likely not at all vestigial

(Shaughnessy et al., 2019) and may be even

more functional than previously thought,
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enabling plasticity in the vocal timing of calls in

social interactions (Benichov et al., 2016). In

turn, female (and male) parental vocal communi-

cation with embryos in ovo in the nest have also

been discovered to shape not only the functional

neurogenomic responses of the embryos them-

selves (Rivera et al., 2019) but also the acoustic

tutor choice of young male zebra finches

(Katsis et al., 2018), as well as adult behavioral

phenotypes and reproductive success

(Mariette and Buchanan, 2016).

Finally, the behavioral, the neurophysiological

and gene-activational bases of perceptual learn-

ing of conspecific song features appear to be

both species-specific in song-naı̈ve (mother-only

parent raised) female zebra finches and depen-

dent on early social experience with con- or

cross-fostered heterospecific male songs

(Hauber et al., 2013; Louder et al., 2018).

Some of these latter discoveries in females have

been made possible through cross-fostering nes-

tling zebra finches with estrildid finch tutors of

other species (e.g. Clayton, 1987). Critically, the

results from females have now also been both

replicated and advanced in cross-fostered males.

Specifically, the extent of heterospecific song

learning in males can be directly measured by

the altered songs that they produce following

experimental manipulation of early song expo-

sure, and compared with the extent of neuro-

physiological response selectivity for conspecific

(innate) vs. heterospecific (learned) tutor songs

and their contributory bioacoustic features in the

brain (Moore and Woolley, 2019). In turn,

cross-fostered males singing the foster species’

song famously show an inability to copy the tem-

poral pattern of heterospecific songs, discov-

ered to be due to a lack of ontogenetic

flexibility in the neurons that encode heterospe-

cific song-gap (silent period between song

bouts) perception again within field L of the

auditory forebrain (Araki et al., 2016).

Conclusions
The zebra finch was not originally brought into

the laboratory as a model system, nor champ-

ioned as such by early research pioneers. From

the 1950s onwards, the species has been pro-

gressively adopted as a useful focus of study in

an increasing set of research fields, largely due

to its accessibility and the ease with which it can

be held and bred in captivity. In contrast, wild

passerine birds have long been the focus of eco-

logical and evolutionary research in the northern

hemisphere. When studies of free-living study

populations were unable to achieve the neces-

sary manipulative rigor, the zebra finch, found

commonly in pet shops throughout Europe and

North America, became widely adopted as a

surrogate captive experimental model. In paral-

lel with its use in early ethological research, the

zebra finch became established as an easier

model than the canary for studying the neural

basis of song, which in turn saw the former spe-

cies adopted as a model for genomics, neurosci-

ence, and developmental biology.

The zebra finch has provided great insights

into diverse fields in biology and has travelled a

long path from its natural habitat in arid Aus-

tralia. It is important to be mindful that the traits

that have contributed to its utility and adoption

as ‘the’ avian laboratory model species for basic

and biomedical research set it aside from most

other avian species. The zebra finch evolved in

an austral ecological setting that is profoundly

different from those in the many geographic

regions where most of this laboratory work takes

place.

The zebra finch remains almost uniquely

suited as a model system for research and the

path ahead is likely to be productive and insight-

ful in established and new areas of research. The

late Richard Zann’s excellent monograph of the

species (1996), whilst already over two decades

old, still provides an excellent overview into the

natural history of the species, and is never far

from our desks, for the insight that it brings. We

encourage future adopters of the zebra finch as

a research model to use this book to guide their

planning and to help interpret their results. The

zebra finch is the most widely researched labora-

tory songbird in the world because of its unique-

ness, and not as a result of any advocacy.
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