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Abstract Developing neurons form synapses at a high rate. Synaptic transmission is very energy-
demanding and likely requires ATP production by mitochondria nearby. Mitochondria might be 
targeted to active synapses in young dendrites, but whether such motility regulation mechanisms 
exist is unclear. We investigated the relationship between mitochondrial motility and neuronal 
activity in the primary visual cortex of young mice in vivo and in slice cultures. During the first 2 
postnatal weeks, mitochondrial motility decreases while the frequency of neuronal activity increases. 
Global calcium transients do not affect mitochondrial motility. However, individual synaptic trans-
mission events precede local mitochondrial arrest. Pharmacological stimulation of synaptic vesicle 
release, but not focal glutamate application alone, stops mitochondria, suggesting that an uniden-
tified factor co-released with glutamate is required for mitochondrial arrest. A computational model 
of synaptic transmission-mediated mitochondrial arrest shows that the developmental increase in 
synapse number and transmission frequency can contribute substantially to the age-dependent 
decrease of mitochondrial motility.

Introduction
Newborns can interact with their environment soon after birth, without any previous experience of 
sensory input. This ability relies on extensive preparation of the developing nervous system before 
the onset of sensory experience. Young networks are initially established by molecular guidance cues 
and refined by activity-driven synaptic plasticity. Before the onset of sensory processing, developing 
neuronal networks generate neuronal activity spontaneously that strengthens well-targeted synapses 
and weakens others to prepare the brain for sensory processing. Later, learning adjusts synaptic 
circuits to the prevalent environmental conditions (Katz and Shatz, 1996; Sengpiel and Kind, 2002; 
Sanes and Yamagata, 2009; Kilb et al., 2011; Kirkby et al., 2013; Leighton and Lohmann, 2016).

The development of synapses and synaptic transmission are highly energy-demanding processes. 
A substantial amount of this energy is supplied by mitochondria, the main energy providers in neurons 
(Harris et al., 2012). Imaging experiments showed that neuronal mitochondria can be highly motile 
in intact tissue (Misgeld et al., 2007; Plucińska and Misgeld, 2016). For example, mitochondria are 
generated at the soma and transported to distal dendrites and axons via the microtubule network 
(Sheng and Cai, 2012). This motility allows for energy provision at high-energy-demanding sites, in 
particular, synapses. Defects in mitochondrial motility have been shown to lead to impaired neuro-
transmission, further linking mitochondrial motility and synaptic function (Sheng and Cai, 2012). In 
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addition, previous studies reported that experimentally enhancing neuronal activity (with high extra-
cellular potassium, the voltage-gated sodium channel activator veratridine, glutamate, or electrical 
stimulation) stops mitochondria at synapses, whereas blocking action potential firing using tetrodo-
toxin (TTX) increases mitochondrial motility and reduces the number of stationary mitochondria at 
synapses (Rintoul et al., 2003; Li et al., 2004; Chang et al., 2006; MacAskill et al., 2009). MIRO1, 
a calcium-sensitive protein-linking mitochondria to the microtubule network, can mediate mitochon-
drial arrest in dendrites and axons (MacAskill et al., 2009; Wang and Schwarz, 2009): upon calcium 
binding, MIRO1 releases mitochondria from motor proteins (kinesins or dyneins), thus interrupting 
their motility.

In contrast, other evidence suggests that mitochondrial motility in neuronal dendrites is not affected 
by activity (Beltran-Parrazal et al., 2006; Faits et al., 2016). In retinal explants, neither spontaneously 
occurring nor stimulus-evoked activity affect mitochondrial motility (Faits et  al., 2016). Moreover, 
mitochondrial motility remains high in an hyperactive retina with immature synapses (Morrow et al., 
2005; Tran et  al., 2014; Faits et  al., 2016). These observations suggest that high mitochondrial 
motility may not be the consequence of low activity in immature tissue, but rather a characteristic of 
very young neurons (Faits et al., 2016). Thus, activity levels may co-vary with mitochondrial arrest 
rather than causing it.

To address the role of natural activity patterns in mitochondrial arrest, we investigated here whether 
spontaneous activity affects mitochondrial motility in the developing visual cortex both in vivo and in 
organotypic slice cultures. We found that mitochondrial motility decreased over the first 2 postnatal 
weeks while the frequency of spontaneous activity increased. Global spontaneous calcium transients 
did not affect mitochondrial motility; however, spontaneous activity at the synaptic level preceded 
mitochondrial motility arrest and pharmacological stimulation of synaptic vesicle release, but not focal 
glutamate application alone, was sufficient to stop mitochondrial motility. A computational model of 
synaptic activity-mediated control of mitochondrial motility suggests that the developmental increase 
in synapse number and transmission frequency contributes substantially to the age-dependent 
decrease of mitochondrial motility.

Results
We investigated the relationship between spontaneous activity and mitochondrial motility in vivo 
and in organotypic slice cultures of the developing mouse primary visual cortex during the second 
postnatal week before eye opening at postnatal day (P) 14 (Figure 1A). We used in utero electropo-
ration at embryonic day 16.5 to express the calcium indicator GCaMP6s and mitochondrial-DsRed 
in pyramidal neurons of layer II/III (Figure 1B–C). Time-lapse recordings were performed to reveal 
the spatio-temporal relationship between mitochondrial motility and calcium signaling in developing 
dendrites (Figure 1D–E).

Previous studies reported that neuronal activity and calcium signaling reduce mitochondrial motility 
in dendrites in vitro (Li et al., 2004; Chang et al., 2006), but this idea has not been tested in vivo. 
Therefore, we first investigated the interaction between spontaneous network activity and mitochon-
drial motility in neonatal mice. Overall, we observed an anti-correlation between the frequency of 
spontaneous global calcium transients and the percentage of moving mitochondria in awake (unanes-
thetized) animals (Figure 2A). Upon closer inspection, it became clear that these parameters were 
linked systematically to the age of the animal: in older animals (≥  P8) activity levels were consis-
tently higher and mitochondrial motility was low (Figure 2A–D). We observed a similar relationship 
between neuronal activity, mitochondrial motility, and age in anesthetized mice (0.8% isoflurane, 
Figure 2—figure supplement 1A-D). Therefore, we combined both groups for the analyses shown 
below (Figure 2E–G).

Since overall calcium signaling correlated with mitochondrial motility, we asked whether neuronal 
activity could directly affect mitochondrial motility. First, we replicated previous experiments 
performed in cell cultures (DIV14–17) that showed an increase of mitochondrial motility after blocking 
action potential firing (Li et al., 2004; Chang et al., 2006). Application of the sodium channel blocker 
TTX (2 µM) to the surface of the brain (P5–12) abolished global calcium transients (Figure 2E) and, 
as expected, led to a significant increase in mitochondrial motility (Figure 2F, see also Materials and 
methods for an extended discussion on statistics). Furthermore, the effect of TTX on mitochondrial 
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Figure 1. Simultaneous imaging of dendritic calcium transients and mitochondrial motility in vitro and in vivo. (A) 
Timeline of in vivo and in vitro experiments: in utero electroporation (IUE) was performed at embryonic day (E) 
16.5 to deliver GCaMP6s (calcium indicator) and Mito-DsRed (mitochondrial marker) to pyramidal neurons of layer 
II/III in the visual cortex. In vivo experiments: acute imaging of transfected dendrites in pups between postnatal 
day (P) 5 and P12 using a two-photon microscope. In vitro experiments: imaging of transfected dendrites using 
a confocal microscope in organotypic cortical slices cultured for 3–7 days after slice preparation from P5 or P8 
pups. (B) GCaMP6- and Mito-DsRed-expressing layer II/III pyramidal neurons in vivo (P16). (C) GCaMP6- and Mito-
DsRed-expressing layer II/III pyramidal neurons in vitro (P5 + DIV4). (D) Dendrite of layer II/III pyramidal neuron 
in vivo and kymograph (right) representing dendritic calcium transients (green) as well as motile and stationary 
mitochondria (red). Immobile mitochondria appear as horizontal lines (no change in position over time) and 
moving mitochondria as diagonal lines. Below, graphic representation of the percentage of moving mitochondria 
and global calcium transients. The percentage of moving mitochondria was calculated as the number of moving 
mitochondria over the total number of mitochondria, binned for every second. The mean percentage of moving 
mitochondria across the duration of this recording was 8.5%. Vertical green lines show spontaneously occurring 
global calcium transients, most likely resulting from back-propagating action potentials. (E) Dendrite of the layer 
II/III pyramidal neuron shown in C. The mean percentage of moving mitochondria across the duration of the 
recording was 2.4%.

https://doi.org/10.7554/eLife.62091
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Figure 2. Mitochondrial motility and spontaneous activity are anti-correlated during in vivo early postnatal 
development. (A) Anti-correlation between the frequency of spontaneous global calcium transients and the 
percentage of moving mitochondria in imaging experiments of awake pups (n = 13 pups, Spearman’s rank 
correlation; 1192 mitochondria in 131 dendrites). (B) The frequency of spontaneous global calcium transients 
increased until postnatal day (P) 9 (but not significantly for the entire age range, Spearman’s rank correlation) 
and the percentage of moving mitochondria decreased over P6–11 in vivo (Spearman’s rank correlation). (C-D) 
When comparing awake animals younger than P8 to P8 and older, the frequency of spontaneous global calcium 
transients increased (t-test, n = 5 vs. n = 8, p = 0.02) and the percentage of moving mitochondria decreased (t-test, 
n = 5 vs. n = 8, p = 0.045). (E-F) Application of tetrodotoxin (TTX, 2 µM) on the surface of the cortex (n = 7 pups, 
1625 mitochondria in 160 dendrites) completely abolished spontaneously occurring global calcium transients 
(paired t-test, p = 6*10–4) and increased the percentage of moving mitochondria (paired t-test, p = 0.035). (G) 
Higher baseline frequency of spontaneous global calcium transients was correlated with a larger effect of TTX 
on the percentage of moving mitochondria (n = 7 pups, Pearson correlation, r = 0.85, p = 0.015). (H-I): Mean 
mitochondrial motility time-locked to the onset of single global calcium transients. The percentage of moving 
mitochondria did not change significantly between the 2 minutes before and after spontaneously occurring global 
calcium transients in awake animals (n = 136 transients, paired t-test, p = 0.33).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Source data for Figure 2A-D.

Source data 2. Source data for Figure 2E-G.

Source data 3. Source data for Figure 2H.

Source data 4. Source data for Figure 2I.

Figure supplement 1. Relationship between neuronal activity, mitochondrial motility, and age in vivo.

Figure supplement 1—source data 1. Source data for Figure 2—figure supplement 1A-D.

Figure 2 continued on next page
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motility was highly proportional to the frequency of baseline activity (r2 = 0.81; Figure 2G), suggesting 
that natural patterns of neuronal activity efficiently constrain mitochondrial motility.

We then examined whether spontaneously occurring single global calcium transients affected 
mitochondrial motility. We compared mitochondrial motility before and after global calcium transients 
across all recordings by aligning the occurrence of global calcium transients in time and plotting the 
percentage of moving mitochondria around this time point (Figure 2H). We found that spontaneous 
global calcium transients did not precede a change in mitochondrial motility (Figure 2H–I) or mito-
chondrial speed (Figure 2—figure supplement 1E, F). Together, these experiments showed that while 
neuronal activity modulated mitochondrial motility, global calcium transients – most likely reflecting 
single back-propagating action potentials and bursts of back-propagating action potentials – were 
ineffective in doing so. We therefore speculated that synaptic transmission, rather than postsynaptic 
action potential firing, might regulate mitochondrial motility. To address this possibility we aimed at 
analyzing the relationship between synaptic activity and mitochondrial motility. Our in vivo recordings 
showed transmission events at individual synapses (Figure 2—figure supplement 2), but we detected 
these events too rarely to quantify any possible effect of synaptic activity on mitochondrial motility.

Therefore, we moved to organotypic slice culture preparations, which allow higher signal-to-noise 
ratio imaging and more stable recordings to investigate the role of transmission at synapses. We 
obtained cortical slices at P5 or P8 and kept them in culture for at least 3 days before imaging. Slices 
obtained from older animals showed a trend toward higher spontaneous activity levels (Figure 3A, 
Figure  3—figure supplement 1A, B) and significantly lower mitochondrial motility than slices 
obtained from younger animals (Figure 3B, Figure 2—figure supplement 1A, B). As in vivo, spon-
taneous global calcium transients did not precede changes in mitochondrial motility (Figure 3C–D, 
Figure 3—figure supplement 1C, D) or speed (Figure 3—figure supplement 1E, F). Thus, mito-
chondrial motility and its independence of spontaneous global calcium signaling were maintained in 
slice cultures (Figure 3—figure supplement 1A, B). Together, we reproduced our in vivo observations 
on mitochondrial motility in slice cultures and, thus, found them suitable to investigate the role of 
synaptic activity in regulating mitochondrial motility.

In slice cultures, visual cortex layer II/III neurons frequently showed spontaneous calcium transients 
in spines representing synaptic transmission events at excitatory synapses, as shown previously in 
the developing visual cortex and hippocampus (Kleindienst et  al., 2011; Winnubst et  al., 2015; 
Niculescu et al., 2018). In nine cells (P5 + 3–7 DIV), we identified 157 spines of which 71 (45%) showed 
spontaneous synaptic calcium transients (376 transients). We asked whether synaptic activity affected 
the motility of passing mitochondria. We observed that mitochondria typically passed by inactive 
synapses (Figure 3E), but frequently halted when they reached a synapse that had just been active 
(Figure 3F). Therefore, we specifically determined whether synaptic calcium transients affected the 
likelihood that incoming mitochondria stopped at or passed by synapses. To quantify this effect, we 
compared the percentage of approaching mitochondria that stopped at a synapse before and after 
the occurrence of a synaptic calcium transient (Figure 3G–H). When we compared the percentage 
of stopping mitochondria during a 120 s interval before a single synaptic calcium transient occurred 
with an interval of the same duration after that calcium transient, we found that the percentage of 
stopping mitochondria increased significantly after the transient (Figure 3I). To answer whether the 
observed effect size (the difference between the arrest rates before and after a local calcium tran-
sient) was likely to occur by chance or not, we performed a bootstrap analysis where we randomized 
the time points of synaptic calcium transients in our recordings and determined the resulting effect 
size for a total of 1000 runs. We found that the observed effect size was above the 95 percentile of 
the randomized effect size distribution (Figure 3J) demonstrating that this effect was unlikely to be 
observed by chance.

Next, we quantified the effect size for different distances from the synapse and different time 
intervals after a synaptic calcium transient and found that mitochondrial arrest was most prevalent 

Figure supplement 1—source data 2. Source data for Figure 2—figure supplement 1E.

Figure supplement 1—source data 3. Source data for Figure 2—figure supplement 1F.

Figure supplement 2. Synaptic calcium transients in vivo.

Figure 2 continued

https://doi.org/10.7554/eLife.62091
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Figure 3. Mitochondria stop at synapses after synaptic transmission events. (A-B) Frequency of global calcium 
transients and mitochondrial motility in slices obtained from postnatal day (P) 5 and P8 pups. The frequency 
of spontaneous global calcium transients did not change significantly (n = 15 vs. n = 5 cells, Student’s t-test, p 
= 0.37). The percentage of moving mitochondria was significantly decreased in slices from older animals (n = 
15 [252 mitochondria] vs. n = 5 [85 mitochondria], Student’s t-test, p = 0.02), similar to the in vivo results. (C-
D) The percentage of moving mitochondria did not change significantly between the 2 min before and after 
spontaneously occurring calcium transients in P5 (n = 158 transients, paired t-test, p = 0.07) or P8 slices (paired 
t-test, n = 101 transients, p = 0.3). (E) Dendritic segment and kymograph showing a mitochondrion approaching 
and passing an inactive synapse (arrow). (F) Same dendritic segment as in A. A mitochondrion arrived near the 
same synapse (arrow) after a synaptic calcium transient occurred and stopped within its vicinity (Δx: distance to 
synapse, Δt: time after synaptic calcium transient). (G-H) Mitochondria moving toward a synapse can show one 
of two behaviors: they may continue moving (left) or stop near the synapse (right). We compared the percentage 
of approaching mitochondria that stopped within a specific distance range before individual synaptic calcium 
transients occurred (G) with that of mitochondria that reached a synapse after a transient (H) within a specific 
time interval. (I) There was a significant increase in the percentage of stopping mitochondria after a single local 
calcium transient occurred (distance ≤ 1 µm; interval ≤ 120 s; *p = 6*10–5, chi-squared test). (J) We compared the 

Figure 3 continued on next page
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within distances of up to 5 µm around a synapse and for intervals of 80–120 s after the synaptic event 
(Figure 3K and L). On average, synaptic activity was associated with an interruption of mitochondrial 
movement for about 1 min (68 s; Figure 3M). However, this number underestimated the duration 
of arrest, since one-third of the stopping mitochondria were still immobile at the end of a recording 
(mean 131 s at a recording duration of 350 s) preventing an exact estimate of the time point when they 
started moving again. Together, our observations at individual synapses suggested that spontaneous 
synaptic transmission can capture moving mitochondria in postsynaptic dendrites.

To address the potential mechanism of mitochondrial arrest at active synapses, we first tested 
whether membrane depolarization leads to mitochondrial arrest. Consistent with previous studies (Li 
et al., 2004; MacAskill et al., 2009; Faits et al., 2016), we found that an increase of extracellular 
potassium to 50  mM decreased mitochondrial motility by approximately 50% (Figure  4A and B). 
This result demonstrated that long-lasting depolarization arrests mitochondria. However, our finding 
that global calcium transients, which are most likely the consequence of depolarization-induced 
opening of voltage-gated calcium channels, suggest that depolarization alone is insufficient to stop 
mitochondria. To test whether synaptic transmission is sufficient to interrupt mitochondrial motility 
and whether this effect is dependent or independent of action potential firing, we pharmacologically 
triggered synaptic release while action potential generation was prevented with TTX (Figure 3C–E). 
After three baseline recordings we applied TTX (1 µM), which blocked all global calcium transients as 
expected. Next, we stimulated release of synaptic vesicles by applying latrotoxin (Deak et al., 2009) 
to the bath. The molecular mechanism of latrotoxin-induced transmitter release is unknown. Never-
theless, at the concentration used here (1 nM), latrotoxin specifically triggers synaptic vesicle release 
through activation of its receptors latrophilin and neurexin that are located at presynaptic terminals 

effect size of mitochondrial arrest at active synapses to a distribution generated by shuffling the time points at 
which synaptic calcium transients occurred (1000 runs). The observed effect size was within the top 5 percentile of 
those generated from shuffled data for distances ≤ 1 µm and intervals ≤ 120 s. (K) Quantitative estimation of the 
spatio-temporal characteristics of mitochondrial arrest (chi-squared test for each distance/interval pair Bonferroni-
corrected; distance ≤ 1 µm; interval ≤ 80 s, p = 0.0035; interval ≤ 100 s, p = 0.0016; interval ≤ 120 s, p = 0.0025). 
(L) Matrix showing the individual chi-squared test p-values from each distance/interval pair. Roughly, p < 0.05 for 
intervals between 80 and 120 s and distances of up to 5 µm. (Number of observations for K,L: see Figure 3—figure 
supplement 2B.) (M) Distribution of mitochondrial arrest durations after single spontaneous synaptic events. 
Shown in dark gray are underestimated durations for data points where mitochondria remained immotile until the 
end of the recording.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Source data for Figure 3A,B.

Source data 2. Source data for Figure 3C.

Source data 3. Source data for Figure 3D.

Source data 4. Source data for Figure 3I.

Source data 5. Source data for Figure 3J.

Source data 6. Source data for Figure 3K.

Source data 7. Source data for Figure 3L.

Source data 8. Source data for Figure 3M.

Figure supplement 1. Relationship between neuronal activity, mitochondrial motility, and age in organotypic slice 
cultures.

Figure supplement 1—source data 1. Source data for Figure 3—figure supplement 1A,B.

Figure supplement 1—source data 2. Source data for Figure 3—figure supplement 1C.

Figure supplement 1—source data 3. Source data for Figure 3—figure supplement 1D.

Figure supplement 1—source data 4. Source data for Figure 3—figure supplement 1E.

Figure supplement 1—source data 5. Source data for Figure 3—figure supplement 1F.

Figure supplement 2. Number of observations for mitochondrial arrest at individual synapses.

Figure supplement 2—source data 1. Source data for Figure 3—figure supplement 2A.

Figure supplement 2—source data 2. Source data for Figure 3—figure supplement 2B.

Figure 3 continued

https://doi.org/10.7554/eLife.62091
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Figure 4. Mechanism of activity-induced mitochondrial arrest. (A, B) Perfusing layer II/III pyramidal neurons 
(postnatal day [P] 5 + 3–7 DIV) with high-potassium medium [50 mM] triggered a massive influx of calcium and 
significantly reduced mitochondrial motility within 2 min (n = 9 cells; 107 mitochondria, paired t-test, p = 0.04). 
(C-E) Stimulating synaptic vesicle release with latrotoxin (LTX) interrupted mitochondrial motility entirely. (C) 
Example kymographs from recordings during baseline, in the presence of tetrodotoxin (TTX), TTX and LTX, 
and after washout of LTX. Basal calcium levels were elevated and mitochondrial motility was absent during the 
presence of LTX. (D) Averaged time course of mitochondrial motility and GCaMP6 ΔF/F0 for the duration of 
the experiments. Shaded areas and horizontal bars indicate SEMs of values and time points, respectively. (E) 
Percentage of moving mitochondria across all conditions (p = 0.0058, repeated measures ANOVA, *p = 0.028 
(baseline vs. LTX + TTX), *p = 0.022 (TTX vs. TTX + LTX), post hoc t-test with Bonferroni multi-measures correction, 
n = 5 cells, 92 mitochondria). (F-G) Triggering calcium transients with focal application of glutamate (100 µM) in the 
presence of TTX did not affect mitochondrial motility significantly (P5 + 3–7 DIV, n = 74 transients from 13 cells, 146 
mitochondria, paired t-test, before vs. after, 10.32 ± 2.09 vs. 7.12 ± 1.12, p = 0.1).

The online version of this article includes the following source data for figure 4:

Source data 1. Source data for Figure 4B.

Source data 2. Source data for Figure 4D,E.

Source data 3. Source data for Figure 4G.

https://doi.org/10.7554/eLife.62091


 Research article﻿﻿﻿﻿﻿ Neuroscience

Silva et al. eLife 2021;10:e62091. DOI: https://​doi.​org/​10.​7554/​eLife.​62091 � 9 of 19

(Valtorta et  al., 1984; Matteoli et  al., 1988; 
Südhof, 2001). After application of latrotoxin to 
the bath, the intracellular calcium concentration 
increased within a few minutes and mitochondrial 
motility was either entirely suppressed or largely 
inhibited (Figure  3C–E). Mitochondrial motility 
recovered only partly after around 1 hr, whereas 
calcium levels returned to baseline levels within 
15–20 min.

These experiments indicated that single 
synaptic transmission events have the capacity 
to stop mitochondria for 1 to a few minutes and 
that massive synaptic activation interrupts mito-
chondrial motility almost entirely for periods of 
tens of minutes. Finally, we asked whether the 
transmitter glutamate is responsible for presyn-
aptic release-mediated mitochondrial arrest. We 
applied single puffs of glutamate (100 µM) to indi-
vidual dendrites using a pico-spritzer. Focal gluta-
mate delivery triggered calcium increases in the 
dendrite extending 7–59 µm (27 ± 14 µm; mean 
± standard deviation). We analyzed mitochon-
drial motility before and after glutamate appli-
cation in the dendritic stretch that responded 
with a calcium rise. We found that mitochondrial 
motility was slightly, but not significantly, reduced 
after glutamate puffs (Figure 4F and G), demon-
strating that glutamate is not sufficient to cause 
vesicle release-mediated mitochondrial arrest.

While the factor that mediates mitochondrial 
arrest remains unknown, our experiments showed 
that synaptic vesicle release interrupts mitochon-
drial transport locally. Since synaptic density (De 
Felipe et  al., 1997) as well as network activity 
(Rochefort et al., 2009) and thus synaptic vesicle 
release increase dramatically in the cortex during 
the second postnatal week, we hypothesized 
that the temporary recruitment of mitochondria 
to synapses by spontaneous synaptic activity 
could contribute to the overall decrease in mito-
chondrial motility we observed during in vivo 
development.

To investigate this idea, we designed a compu-
tational model for estimating mitochondrial 
motility in a developing dendrite at different 
synaptic input frequencies. Since we established 
a lower bound for the mean duration of immobi-
lization of  approximately 70  s, we modeled the 
effect of synaptic inputs on mitochondrial motility 
for mean arrest durations of 1–5 min using 
Gaussian distributions (µ = 1–5 min, σ = 2.5 min). 
We found that the distributions for 1–3 min were 
comparable with our observed duration distri-
butions (Figure  5A, Figure  3M). The model 
showed that changes in synaptic activity could 

Figure 5. Model of synaptic input-mediated 
modulation of mitochondrial motility. (A) Distribution 
of mitochondrial arrest durations generated by the 
model for mean durations of 1–5 min. (B) Changes of 
mitochondrial motility after onset of simulated synaptic 
inputs for a mean arrest duration of 1 min. Input 
frequencies are given as total synaptic inputs along 
a 100 µm stretch of dendrite. Low input frequencies 
hardly changed overall mitochondrial motility. Higher 
input frequencies reduced motility substantially. 
Steady state was reached after a few minutes. Colored 
lines: individual simulations, black lines: average of 10 
simulations. (C) Relationship between synaptic input 
frequency and mitochondrial motility for different arrest 
durations at steady state. The expected increase of 
synaptic activity from postnatal day (P) 5 to P12 reduced 
mitochondrial motility by 30–60%, depending on the 
actual duration of mitochondrial arrest after synaptic 
transmission.

https://doi.org/10.7554/eLife.62091
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affect mitochondrial motility critically: while low input frequencies (e.g. 0.035 Hz in a 100 µm dendritic 
segment) reduced mitochondrial motility only marginally from the default state (approximately 10%), 
higher input frequencies showed clear effects (Figure 5B). For example, at 0.35 Hz, mitochondrial 
motility was reduced by approximately 50% at steady state. We determined mitochondrial motility 
for increasing input frequencies and different durations of mitochondrial arrest (Figure 5C). To deter-
mine the putative effect of an increase in synaptic activity between the first and the second postnatal 
week on mitochondrial motility, we estimated the frequency of synaptic inputs received by a stretch 
of dendrite of 100 µm length. In our previous in vivo study, we found a mean density of 36 active 
synapses per 100 µm dendrite in visual cortex layer II/III pyramidal neurons at the end of the second 
postnatal week (P10–15) and transmission occurred 0.6 times per minute at each synapse (Winnubst 
et al., 2015). We estimated, therefore, that a 100 µm dendrite receives synaptic inputs at a frequency 
of approximately 0.36 Hz. Anatomical studies showed a 5–10 times increase of synaptic density in 
the developing sensory cortex between P5 and P11 (De Felipe et al., 1997) and we found here that 
neuronal activity doubled from the first to the second postnatal week (Figure 2C). Assuming that 
release probabilities do not change dramatically during this period, synaptic input frequencies should 
be about 0.02–0.04 Hz at P5. Similarly, we find in in vivo patch-clamp and calcium imaging experi-
ments a 16 times increase in synaptic transmission events in dendrites of V1 layer II/III pyramidal cells 
from P8 to P13 (AH Leighton et al. 2021, in preparation). As Figure 5C shows, an increase in synaptic 
input frequency in this range would reduce mitochondrial motility by 30–60% depending on the actual 
arrest times at synapses. Since we observed a 70% decrease in mitochondrial motility between the 
first and second postnatal week, our model showed that temporary immobilization of mitochondrial 
motility through synaptic signaling can mediate a large proportion of this effect. Together, our data 
suggest a primary role of synaptic vesicle release, but not action potential firing, in the reduction of 
mitochondrial motility with dendrite maturation.

Discussion
Mitochondrial motility and positioning are fundamental for axon and dendrite development and 
synaptic plasticity (Courchet et al., 2013; Kimura and Murakami, 2014; Fukumitsu et al., 2015; 
López-Doménech et  al., 2016; Vaccaro et  al., 2017; Divakaruni et  al., 2018). Moreover, mito-
chondrial dynamics are affected in many neurological disorders (Chen and Chan, 2009; Deheshi 
et al., 2013; Misgeld and Schwarz, 2017). Thus, regulation of mitochondrial motility is important 
for neuronal function; however, to what degree neuronal activity determines mitochondrial motility 
in intact neuronal circuits has been unclear. By directly observing mitochondrial motility and neuronal 
activity simultaneously in developing dendrites, we provide evidence that synaptic vesicle release, but 
not postsynaptic action potential firing, constrains mitochondrial motility and stabilizes mitochondria 
with increasing age.

Imaging neuronal activity and dendritic mitochondria in vivo demonstrated a dramatic motility 
reduction of visual cortex layer II/III pyramidal cells during the second postnatal week. Motility reduc-
tion progressed in parallel with a strong increase in overall neuronal activity. Given that dendritic 
mitochondria in retinal explants and axonal mitochondria in the visual cortex show similar decreases 
in motility (Chang and Reynolds, 2006; Faits et al., 2016; Lewis et al., 2016; Smit-Rigter et al., 
2016), our results confirm a general progression towards more stationary mitochondria in intact tissue.

Since there have been conflicting reports on the regulation of mitochondrial motility by natural 
activity patterns, we set out to investigate their relationship directly. We found that global calcium 
transients reflecting back-propagating action potentials were unrelated to changes in mitochondrial 
motility. Considering that manipulations of neuronal action potential firing did trigger changes in 
mitochondrial motility in the present study and many studies in cell cultures (Li et al., 2004; Chang 
et al., 2006; MacAskill et al., 2009; Wang and Schwarz, 2009; but see: Beltran-Parrazal et al., 
2006), this finding was surprising at first (but see below).

As global calcium transients appeared to be ineffective, we studied the role of transmission at indi-
vidual synapses and discovered that the likelihood for a passing mitochondrion to stop at a synapse 
increased significantly when this synapse was active within 2 min before it arrived. That synaptic activa-
tion, but not action potential firing, arrests mitochondrial motility is in fact consistent with the majority 
of observations of activity-dependent regulation of mitochondrial motility in hippocampal and cortical 
neurons (Li et al., 2004; Chang et al., 2006; MacAskill et al., 2009; Wang and Schwarz, 2009). Since 

https://doi.org/10.7554/eLife.62091
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activity manipulations, such as depolarizing neurons by increasing extracellular potassium, blocking 
action potential firing with TTX, and electric field stimulation affect both action potential firing and 
synaptic transmission, it is possible that synaptic release changes, but not firing alone, altered mito-
chondrial motility in these studies.

How can local synaptic activation stop moving mitochondria when their motility is unaffected by 
spontaneously occurring global calcium transients? Our observations that pharmacological activation 
of synaptic vesicle release arrests mitochondria, but that neither spontaneous global activation nor 
focal glutamate application stops moving mitochondria, suggest that a local factor, either by itself or 
together with glutamate, mediates mitochondrial arrest. A possible candidate is ATP: it is present in 
synaptic vesicles and released simultaneously with glutamate at excitatory cortical synapses (Khakh, 
2001; Burnstock, 2007; Lalo et al., 2016). ATP receptors of the P2X and P2Y families are expressed 
in cortical pyramidal cell dendrites (Guzman and Gerevich, 2016), trigger postsynaptic depolariza-
tions (Pankratov et al., 2002) and calcium increases (Lalo et al., 1998; Lalo and Kostyuk, 1998), 
activate CaMKII (Pougnet et al., 2014) and mediate synaptic plasticity (Pankratov et al., 2009; Lalo 
et  al., 2016). Thus, a local factor co-released with glutamate, such as ATP, is most likely required 
for mitochondrial arrest at active synapses. A co-released factor could, in principle, provide single 
synapse specificity by generating or – together with glutamate – boosting a local signal that stops 
mitochondria at active synapses.

Our analysis of changes in mitochondrial motility in relation to spontaneously occurring synaptic 
transmission events allowed us to determine the spatio-temporal characteristics of this effect quanti-
tatively. We found that mitochondrial arrest was restricted to a segment of dendrite of roughly 5–10 
µm distally and proximally from the insertion point of a spine. Mitochondria were stopped when they 
arrived within 2 min after a synaptic transmission event and remained stationary for 1 min on average. 
Interestingly, several molecular signaling cascades at the synapse have been described that act on 
very similar scales in time and space. In particular, several small GTPases become activated within less 
than a minute after single spine stimulation in short stretches of dendrite (5–10 µm) and stay active 
for several minutes (e.g. Ras and RhoA; Harvey et al., 2008; Murakoshi et al., 2011). These and 
other small GTPases, including DRP-1 and Miro-1, which regulate mitochondrial activity and motility, 
are controlled by intracellular calcium rises and CaMKII activation (MacAskill et  al., 2009; Wang 
and Schwarz, 2009; Fukumitsu et al., 2016; Divakaruni et al., 2018). CaMKII expression increases 
dramatically in the visual cortex during the second postnatal week (2008 Allen Institute for Brain 
Science. Allen Developing Mouse Brain Atlas. Available from: https://​developingmouse.​brain-​map.​
org/). Therefore, synaptic transmission-induced CaMKII phosphorylation requiring, for example, ATP 
receptor activation may stop mitochondria more frequently with increasing age by activating small 
GTPases for a few minutes and several micrometers along the dendrite.

To estimate whether mitochondrial arrest through synaptic activity can explain the progressive 
demobilization of mitochondria in dendrites during development, we employed a computational 
model. This model indicates that the estimated increase in synaptic activity from the first to the 
second postnatal week can reduce mitochondrial motility by 30–60%. These numbers are in line with 
our in vivo observation that blocking synaptic activity with TTX increased mitochondrial motility by 
60%. Together, these data show that developmental increases in synaptic activity can explain a large 
proportion of the motility decrease observed during this period. We speculate that the here described 
reduction of mitochondrial motility through synaptic activity with increasing age is complemented by 
a shift in the number of potentially mobile mitochondria toward a pool of stationary mitochondria 
during development. While for example Miro1 controls temporary mitochondrial arrest, there is no 
molecular mechanism known for retaining mitochondria permanently at a location in dendrites. Theo-
retical models suggest that mitochondria are stationary in the absence of Miro1 (MacAskill et al., 
2009); however, in Miro1 knockout neurons mitochondrial motility is only mildly affected (Saotome 
et al., 2008; MacAskill et al., 2009; López-Doménech et al., 2018). Furthermore, to our knowledge 
a reduction in Miro1 expression or function during development has not been reported. Alterna-
tively, increased tethering of mitochondria may reduce the pool of potentially mobile mitochondria 
with increasing age. For example, myosin V anchors mitochondria (Pathak et al., 2010), has been 
proposed to keep mitochondria in a stationary state (Schwarz, 2013; Misgeld and Schwarz, 2017), 
and is enriched in dendrites (Wang et al., 2008; Konietzny et al., 2019).

https://doi.org/10.7554/eLife.62091
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The regulation of mitochondrial motility through synaptic activity we describe here may serve 
developing synapses to efficiently meet their energy demands and calcium handling. In addition, 
synaptic regulation of mitochondrial trafficking can account to a large degree for the reduction of 
mitochondrial motility during development and is probably a fundamental process in wiring the devel-
oping brain.

Materials and methods
Key resources table 

Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain 
background (Mus 
musculus, male/ 
female)

C57Bl/6 J, male and 
female Janvier Labs;

Transfected construct
GCaMP6s (species: 
Rattus norvegicus)

Add gene plasmid 
40753; Douglas Kim RRID:Addgene_40753 Cloned into pCAG vector

Transfected construct

Mitochondrial-DsRed 
(species: Homo 
sapiens)

Gift from Thomas 
Misgeld

Mitochondrial targeting  
sequence from subunit  
VIII of human cytochrome  
c oxidase causing  
mitochondrial localization  
as previously described;  
Rizzuto et al., 1995;  
Li et al., 2004;  
MacAskill et al., 2009  
Cloned into pCAG vector

Chemical compound, 
drug TTX

1078, Bio-Techne, 
Minneapolis, MN

Chemical compound, 
drug LTX

ALX-630–027 C040, 
Enzo Life Sciences 
b.v., Farmingdale, NY

Chemical compound, 
drug Glutamate G1626, Sigma

Software, algorithm MitoMotil This study

https://​github.​com/​annikc/​MitoMotil (copy archived at 
swh:1:rev:a4cfb2b4fd66579f63ea5a150a0f9b1b21b89a83, Yalnizyan-Carson, 
2021)

Software, algorithm MATLAB The MathWorks https://​mathworks.​com

Software, algorithm NormCorre
Flatiron Institute, 
Simons Foundation

https://​github.​com/​flatironinstitute/​NoRMCorre, Pnevmatikakis and 
Giovannucci, 2021

Software, algorithm Python
Python Software 
Foundation https://www.​python.​org/

Software, algorithm Elephant library Human Brain Project https://​elephant.​readthedocs.​io/​en/​latest/

Plasmids
To investigate the relationship between neuronal activity and mitochondria, we used the genetically 
encoded calcium indicator GCaMP6s (Addgene plasmid 40753; Douglas Kim) in combination with 
mitochondrial-DsRed (mitochondrial targeting sequence from subunit VIII of human cytochrome c 
oxidase causing mitochondrial localization as previously described; Rizzuto et al., 1995; Li et al., 
2004; MacAskill et  al., 2009). These plasmids were cloned into pCAGGS, to enable delivery to 
neurons via in utero electroporation.

Animals and in utero electroporation
All experimental procedures were approved by the institutional animal care and use committee of 
the Royal Netherlands Academy of Arts and Sciences. To sparsely deliver the plasmids of interest 
to pyramidal neurons of layer II/III of the visual cortex, pregnant C57Bl/6 J female mice at 16.5 days 
gestation underwent in utero electroporation surgery. Pregnant females were anesthetized using 3% 
isoflurane mixed with 1  l/min oxygen and kept under anesthesia with 1.5–2% isoflurane. A midline 
incision was made and uterine horns were exposed. Plasmid DNA (mitochondrial-DsRed: 0.1 µg/µl, 

https://doi.org/10.7554/eLife.62091
https://identifiers.org/RRID/RRID:Addgene_40753
https://github.com/annikc/MitoMotil
https://archive.softwareheritage.org/swh:1:dir:6b4e1b561ba00d31810a55b66a3e5c4aa8747595;origin=https://github.com/annikc/MitoMotil;visit=swh:1:snp:325ff0346d6eb853ee369ea24850af77ea3fc734;anchor=swh:1:rev:a4cfb2b4fd66579f63ea5a150a0f9b1b21b89a83
https://mathworks.com
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GCaMP6s: 2 µg/µl) was dissolved in 10 mM Tris and 0.05% Fast Green. Approximately 1 µl of this 
mixture was injected through a pulled capillary pipette in the lateral ventricle of each embryo using a 
picospritzer (PLI-100, BTX Harvard Apparatus, Holliston, MA). A custom-made square wave isolated 
pulse generator (voltage of 50 V, 5 pulses, pulse width 50 ms, and 150 ms interval) was used for elec-
troporation. After electroporation, the uterine horns were carefully placed back in the abdomen cavity 
and the abdomen was sutured. During the surgery, embryos were kept moist with warm saline and 
the mothers were kept warm using a euthermic pad. Pregnant females were allowed to recover after 
Lidocaine ointment was applied on the wound for local analgesia and Metacam (1 mg/kg s.c.) was 
administered for post-operative analgesia. Once the pups were born they were checked before P2 for 
expression and targeting of V1.

Organotypic slice cultures
Organotypic slice cultures of transfected visual cortex were prepared as follows: at P5 or P8, animals 
were decapitated quickly, and brains were placed in ice-cold Gey’s balanced salt solution under sterile 
conditions. Coronal slices (400 μm for P5 and 250 μm for P8) were cut using a tissue chopper (McIl-
wain) and incubated with serum-containing medium on Millicell culture inserts (Millipore, Merck, New 
York, NY). Slices were kept in culture for 3–7 days before imaging.

Confocal microscopy of organotypic slice cultures
For confocal imaging, slices were excised from their membrane supports and placed in a flow-through 
chamber. Slices were continuously perfused with heated (35 °C) Hank’s Balanced Salt Solution (HBSS, 
Fisher Scientific, Waltham, MA, supplemented with in mM: 4.2 NaHCO3, 2.6 CaCl2, 0.1 Trolox). Slices 
were imaged on a SP5 Leica confocal microscope with a 63  × objective (0.9 NA, Leica, Wetzlar, 
Germany). For imaging we selected neurons that showed the following characteristics: soma local-
ized in upper layer II, apical dendrite pointing to layer I, low basal GCaMP6s fluorescence as well as 
long and dim mitochondria. Preference was given to isolated cells, to minimize background fluores-
cence. Apical dendrites (at least 50 µm from the soma) were imaged using an argon laser at 488 nm 
and power levels between 0.3% and 1%. Time-lapse image stacks (up to six optical sections, 1.2 µm 
z-spacing), at 0.23 µm per pixel, 350 ms per stack were collected for 350 s, every 10 min, for a total of 
10 times per cell. We observed no changes in fluorescence intensity, cell activity levels, or mitochon-
drial motility levels with time under these conditions. At the end of the experiment, low magnification 
image stacks (0.23 µm pixel size and 1 µm z-spacing) were collected to localize the recorded dendrite 
within the dendritic arborization.

In vivo two-photon microscopy
For in vivo imaging, transfected neonatal mice (P5–12) were pre-anesthetized using 3% isoflurane 
mixed with 1  l/min oxygen and kept under anesthesia with 1–2%  isoflurane. A head bar with an 
opening (4 mm Ø) was attached to the skull above the visual cortex (0–2 mm rostral from lambda and 
0–2 mm lateral from the midline) with superglue (Henkel, Düsseldorf, Germany) and dental cement 
(Heraeus, Hanau, Germany). A small craniotomy above the visual cortex (approximately 1–2 mm Ø) 
was performed with a needle and forceps and care was taken not to damage the dura mater. The 
exposed cortical surface was kept moist with cortex buffer (in mM: 125 NaCl, 5 KCl, 10 glucose, 
10 HEPES, 2 MgSO4, 2 CaCl2, pH 7.4). For additional stability, a thin layer of 1.5% high electroen-
dosmosis agarose (Biomol, Hamburg, Germany) was applied to the cortical surface. Before imaging, 
isoflurane was decreased to 0.8% (under anesthesia condition) or 0% (awake condition). A pulsed 
titanium sapphire laser (Chameleon Vision II, Coherent, Palo Alto, CA) at 900 nm and power up to 
30% was used with a 25 × water-immersion objective (1.10 NA, Nikon). Time-lapse image stacks (up 
to five optical sections, 2 µm z-spacing) were obtained at a pixel size of 0.13–0.17 µm and stack rate 
of 5–10 Hz. Throughout the entire experiment, physiological parameters such as heartbeat and body 
temperature were monitored, and temperature was controlled using a heating pad.

Pharmacological manipulations
High extracellular potassium in vitro: cells were imaged as described above for at least 20 min and 
then the imaging medium was replaced by one supplemented with KCl to a final concentration of 
50 mM. After 20 min of high potassium incubation and imaging, normal medium was restored and 
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cells were imaged for at least 20 more minutes. Cells did not show dendritic blebbing and in most cells 
spontaneous activity reappeared, suggesting that they were healthy until the end of the experiment.

To test the role of presynaptic release on mitochondrial motility in dendrites, we imaged the effects 
of latrotoxin, a synaptic vesicle release stimulator (Deak et al., 2009), on mitochondrial motility and 
calcium levels in slice cultures during the following conditions sequentially: baseline, TTX, TTX+ LTX, 
and after LTX washout. TTX was applied (1078, 1 µM, Bio-Techne, Minneapolis, MN) through the bath 
perfusion. Then LTX (ALX-630–027 C040, 1 nM, Enzo Life Sciences b.v., Farmingdale, NY) was added 
to the bath and the perfusion was stopped for 10 min. Subsequently, perfusion resumed with TTX 
containing solution.

Focal glutamate application: TTX (1  µM; No. 1078, Bio-Techne, Minneapolis, MN) was applied 
through the bath perfusion. A glass pipette with a resistance of approximately 4 MΩ containing gluta-
mate (100 µM) in bath solution was inserted into the slice, approximately 50 µm from the dendrite, 
and glutamate was applied focally with a Picospritzer at 20  psi (PLI-100, BTX Harvard Apparatus, 
Holliston, MA). Pulse duration was chosen between 1 and 20  ms to evoke local calcium transients. 
After placing the glutamate-containing pipette, adjusting the pulse duration and a wait period of at 
least 10 min, 1–3 single pulses were applied during each recording of 350 s duration.

To block action potential firing in vivo, TTX (2 µM) was prepared in cortex buffer and in agarose. 
After baseline imaging, the agarose was carefully removed from the top of the brain and the TTX 
solution in cortex buffer was applied to the surface of the brain for 2 min. Then, this cortex buffer 
was removed and agarose with TTX was applied to the surface of the brain. Imaging continued as 
previously. This procedure blocked neuronal activity for the entire imaging period, while the pups’ 
physiological parameters did not change.

Image analysis
All images were processed using ImageJ software. Images were filtered using a median filter (radius 
one pixel). Maximal intensity projections of image stacks were generated. All stacks recorded at one 
dendrite were corrected for motion artifacts due to drift as well as aligned with respect to each other 
using NoRMCorre (Pnevmatikakis and Giovannucci, 2017).

From the resulting stacks, two-dimensional projections of time (x-axis) vs. displacement (y-axis) 
were generated for individual dendrites to examine spontaneous global calcium transients as well as 
mitochondrial motility. Global calcium transients appeared as vertical lines, as there was an increase in 
intracellular calcium levels throughout the entire dendrite. Immotile mitochondria appeared as hori-
zontal lines, and mitochondrial motility as diagonal lines. The percentage of moving mitochondria was 
calculated as the number of moving mitochondria divided by the total number of present mitochon-
dria, for each second.

For the analysis of local calcium transients, ΔF/F0 images were calculated where F0 was the average 
fluorescence of the first 200 frames without apparent calcium transients of the first recording for each 
cell. Custom-made Matlab scripts aided the manual identification of synaptic events: signals had to 
last for more than the duration of two frames, did not spread from other sites, and were localized to 
the spine head.

Statistics
Calcium transients per minute and percent moving mitochondria per 1 s bins are shown in all figures 
where we compare global calcium transient activity or mitochondrial motility across time or different 
experimental conditions, respectively. Spearman’s rank correlation was used to detect correlations 
across time. For single comparisons t-tests (two-tailed, paired, or unpaired) and for multiple compari-
sons repeated measures ANOVA with post hoc t-tests and Bonferroni multi-measure correction were 
used. Since for the in vivo measurements (Figure 2) the initial percentages of moving mitochondria 
were very low, the observed effect may be susceptible to discretization. To test whether age and TTX do 
indeed affect mitochondrial motility in vivo, we performed additional analyses. The number of moving 
and stable mitochondria were counted in 2 min bins (MacAskill et al., 2009) and then summed across 
all recordings for both conditions, respectively, and the resulting contingency tables (see Source Data 
Tables) were used to perform Fisher’s exact test. We found that the number of observed mitochondria 
moving was significantly decreased in animals that were P8 or older compared to younger animals (p 
< 0.00001) and that TTX increased the number of moving mitochondria significantly (p = 0.0034). To 
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test whether there is a significant relationship between the occurrence of individual synaptic calcium 
transients and the arrest of mitochondria, we used chi-squared tests and performed a bootstrap anal-
ysis as described in the Results section.

Modeling mitochondrial motility modulation by synaptic inputs 
(MitoMotil)
The model of mitochondrial motility was written with Python 3.6 (Python Software Foundation). First, 
a population of mitochondria (n = 500) was generated where each mitochondrion was initialized 
with a recovery time drawn from a normal distribution. We ran simulations varying recovery time 
distribution means over 1–5 min (σ = 2.5 min in each condition). All mitochondria were in the motile 
pool at the beginning of the simulation run. Synaptic transmission events were generated from a 
homogeneous Poisson process (from the Elephant library, https://​elephant.​readthedocs.​io/​en/​latest/) 
with synaptic input frequencies ranging from 0.001 to 0.5 Hz. We ran each simulation for 1500 s to 
allow the percentage of immobile mitochondria to reach steady state. Each synaptic transmission 
event immobilized a variable number of mitochondria randomly selected from the total pool. The 
proportion of affected mitochondria was drawn from a normal distribution (μ = 0.05, σ = 0.01). These 
values were based on our observation that single synaptic transmission events affected approximately 
5–10 μm of a 100 µm stretch of dendrite. This variable proportion of affected mitochondria was used 
to calculate the number of mitochondria from the population for immobilization. Affected mitochon-
dria remained immobilized for the duration of the recovery time variable with which they were initial-
ized. If a mitochondrion was already immobilized and selected from the total pool for immobilization 
by a subsequent event, the immobilization time was extended by the second event.
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