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Abstract We conducted a controlled before-and-after trial to evaluate the impact of an onsite

urban sanitation intervention on the prevalence of enteric infection, soil transmitted helminth re-

infection, and diarrhea among children in Maputo, Mozambique. A non-governmental organization

replaced existing poor-quality latrines with pour-flush toilets with septic tanks serving household

clusters. We enrolled children aged 1–48 months at baseline and measured outcomes before and

12 and 24 months after the intervention, with concurrent measurement among children in a

comparable control arm. Despite nearly exclusive use, we found no evidence that intervention

affected the prevalence of any measured outcome after 12 or 24 months of exposure. Among

children born into study sites after intervention, we observed a reduced prevalence of Trichuris and

Shigella infection relative to the same age group at baseline (<2 years old). Protection from birth

may be important to reduce exposure to and infection with enteric pathogens in this setting.

Introduction
Rapid urbanization has led to the expansion of informal settlements in many low- and middle-income

countries (LMICs). Such settlements often have very limited sanitation infrastructure (UN-Habi-

tat, 2016). Separation of human waste from human contact can prevent exposure to enteric patho-

gens that cause infection, diarrhea (Liu et al., 2016), and potentially long-term health effects such as
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environmental enteric dysfunction (EED) (Kosek and MAL-ED Network Investigators, 2017), linear

growth deficits (Rogawski et al., 2018), impaired cognitive development (MAL-ED Network Inves-

tigators, 2018), and reduced oral vaccine immunogenicity (Parker et al., 2018). Children living in

densely populated slum areas where fecal contamination is pervasive and sanitation infrastructure is

limited may be at an increased risk of adverse health effects due to frequent exposure to enteric

pathogens (Ezeh et al., 2017; Fink et al., 2014).

Household-level sewerage has demonstrated health benefits (Barreto et al., 2010;

Barreto et al., 2007; Norman et al., 2010) and remains an important long-term goal for many

urban settings despite limited evidence from controlled trials (Norman et al., 2010; Wolf et al.,

2018). Such systems may not be feasible short-term solutions due to cost, space, and logistical con-

straints, challenges that have also impeded their evaluation via randomized trials (Norman et al.,

2010). Further, in densely populated areas, there may not be space for household-level sanitation of

any type. Shared sanitation is a subject of considerable debate but may represent the only near-

term sanitation option in some settings (Evans et al., 2017; Heijnen et al., 2014; Tidwell et al.,

2020). Yet, while shared, onsite systems may fill the growing need for safe sanitation in rapidly

expanding urban areas in LMICs, to date, there has been little evidence of their health impacts in

these settings. Recent large-scale, rigorous evaluations of onsite sanitation interventions and com-

bined water, sanitation, and hygiene (WASH) interventions have demonstrated mixed effects on

health (Clasen et al., 2014; Sanitation Hygiene Infant Nutrition Efficacy (SHINE) Trial Team et al.,

2019; Luby et al., 2018; Null et al., 2018; Patil et al., 2014; Pickering et al., 2015) but all were

conducted in rural areas with household-level interventions, and their findings may have limited gen-

eralizability to urban areas. A recent meta-analysis estimated that non-sewered interventions

reduced the risk of self-reported diarrhea by 16% but did not estimate effects on objective health

outcomes, such as enteric infection (Brown and Cumming, 2020), and could not stratify estimates

by rural versus urban setting given the lack of evidence in urban areas (Wolf et al., 2018). To date,

no controlled trials of urban onsite sanitation have been conducted despite over 740 million urban

residents relying on such technologies (Berendes et al., 2017).

The Maputo Sanitation (MapSan) trial was the first controlled trial to evaluate an onsite, shared

sanitation intervention in an urban setting and the first to use the prevalence of enteric infection, as

detected by molecular methods, as the primary study outcome (Brown et al., 2015). The study was

located in densely populated, low-income, informal neighborhoods of Maputo, Mozambique where

the sanitary conditions are poor and disease burden high (Knee et al., 2018). As of 2017, only half

of urban residents in Mozambique had access to at least basic sanitation infrastructure, 3% had

access to sewerage, and 9% shared sanitation with multiple households, often in poor neighbor-

hoods where space and resources are limited (UNICEF/WHO, 2019). We investigated whether an

engineered, onsite, shared sanitation intervention could reduce enteric infection and diarrhea in

young children living in these low-income, densely populated neighborhoods in Maputo,

Mozambique.

Results
The MapSan trial was a controlled before-and-after (CBA) trial designed to evaluate the impact of an

onsite sanitation intervention on child health after 12 and 24 months of follow-up. The intervention

consisted of pour-flush toilets to septic tanks with soakaway pits to discharge the liquid portion of

the waste. A non-governmental organization (NGO) delivered the intervention to clusters of house-

holds known as compounds, replacing the existing poor-condition shared facilities. Control com-

pounds did not receive the intervention and continued to use their poor-condition sanitation for the

duration of the study. We assessed several measures of child health, including enteric infection mea-

sured via stool-based molecular methods, soil-transmitted helminth (STH) re-infection measured via

Kato-Katz, and diarrhea measured via caregiver report in both intervention and control children dur-

ing three phases: baseline (pre-intervention), 12-month follow-up, and 24-month follow-up. Children

were eligible for baseline enrollment if they were less than 4 years old (1–48 months old). At follow-

up, children were eligible for enrollment if they were less than 4 years old or if they would have been

less than 4 years old during baseline.

We enrolled 987 children in 495 compounds during the baseline phase (February 2015 – February

2016) and collected stool samples (whole stool or diaper samples containing liquid diarrhea) from
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Figure 1. Trial profile. *Eligible for enrollment at baseline and/or 12 months but traveling at time of visit.

†Children removed from 24-month analysis because their compound received an intervention after completion of

the baseline phase. Source files available in Figure 1—source data 1 and Figure 1—source code 1.

Figure 1 continued on next page
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765 children (78%) (Figure 1). During the 12-month follow-up phase (March 2016 – April 2017), we

enrolled or revisited 939 children in 438 compounds and collected 805 stool samples (86%). During

the 24-month follow-up phase (April 2017 – August 2018), we enrolled or revisited 1001 children in

408 compounds and collected stool samples from 922 (90%). To improve the success rate of stool

sample collection during the 12- and 24-month follow-up visits, we collected rectal swabs from chil-

dren who did not provide a whole stool sample after multiple collection attempts. The proportion of

each type of sample (whole stool, diaper sample, and rectal swab) was similar between arms at each

phase (Appendix 1—figure 1). Fewer than 5% of all samples were diapers and approximately 7% of

12-month samples and 25% of 24-month samples were rectal swabs (Appendix 1—table 1). The

NGO delivered interventions to 15 control compounds after baseline and children in those com-

pounds were censored at the time of intervention receipt (Figure 1). Children living in control com-

pounds that independently upgraded their latrines were included in the main analyses. However, as

inclusion of these control children may have diluted the intervention effect, they were excluded from

sensitivity analyses designed to understand the impact of the intervention when compared with con-

trols served by poor-condition sanitation throughout the study. Children in intervention and control

compounds were enrolled at similar rates during each phase (Appendix 1—figure 2). Due to migra-

tion out of the compound, we collected longitudinal data from 62% of children (59% controls, 67%

interventions) between baseline and 12-month and 51% of children (46% controls, 58% interventions)

between baseline and 24-month.

At baseline enrollment, intervention compounds had more residents, households, and on-premise

water taps than controls, though the number of shared latrines was similar (Table 1). Animals were

observed in over half of all compounds. Intervention and control households had similar wealth

scores, though intervention households had more members and were more crowded while control

households more often had walls made of sturdy materials. All households used a municipal water

tap as their primary drinking water source with 78% reporting use of a tap on the compound

grounds. At baseline, latrines used by intervention households more often had pedestals or slabs,

drop-hole covers, and sturdy walls compared with controls. Consistent with previous estimates in

urban Maputo (Satterthwaite et al., 2019), open defecation was rare in our study population with

only one control household reporting open defecation at baseline. Baseline characteristics of inter-

vention and control children were similar: the average age at enrollment was 23 months (SD = 13),

51% were female, and 32% were still breastfeeding (Table 1). The age distributions of intervention

and control children were similar at baseline and both follow-up phases (Appendix 1—figure 3).

We used the Luminex Gastrointestinal Pathogen Panel (GPP), a qualitative multiplex molecular

assay, to simultaneously test for 15 enteric pathogens in stool samples, including nine bacteria, three

protozoa, and three viruses. We detected �1 bacterial or protozoan enteric infection, our pre-

defined primary outcome, in 78% (591/753) of children with stools available at baseline. We mea-

sured our pre-defined secondary outcome, �1 STH re-infection, using the Kato-Katz microscope

method and detected �1 STH in 45% (308/698) of stools at baseline. The prevalences of pre-defined

outcomes, individual pathogens, and pathogen types were similar between the intervention and con-

trol arms at baseline (Table 2). The prevalence of most bacterial, protozoan, and STH infections

increased with age while the prevalence of enteric viruses decreased with age (Appendix 1—table 2

and Appendix 1—figure 4).

The characteristics of children with repeated observations (including baseline) were similar to

characteristics of children measured at baseline only (Appendix 1—table 3 and Appendix 1—table

4) and to characteristics of children measured at 12 month and/or 24 month only with the exception

of age-related characteristics (Appendix 1—table 5 and Appendix 1—table 6). Over half of the chil-

dren enrolled after baseline were born into study sites (336/622 [54%], Figure 1).

Figure 1 continued

The online version of this article includes the following source data and source code for figure 1:

Source code 1. Trial profile.

Source data 1. Trial profile.
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Table 1. Baseline characteristics of enrolled children, households, and compounds.

Control Intervention

N n (%) or mean (SD) N n (%) or mean (SD)

Child level variables

Age at survey, days* 520 700 (405) 441 694 (403)

Sex, female 520 266 (51%) 444 227 (51%)

Child is breastfed with or without complementary feeding 526 169 (32%) 448 143 (32%)

Child is exclusively breastfed 526 49 (9.3%) 448 37 (8.3%)

Child feces reported to be disposed of in a latrine 526 148 (28%) 448 141 (31%)

Child wears diapers 526 342 (65%) 447 294 (66%)

Caregiver completed primary school 528 287 (54%) 451 239 (53%)

Child’s mother is alive 513 503 (98%) 435 426 (98%)

Respondent is child’s mother 519 368 (71%) 443 284 (64%)

Household level variables

Household population 441 5.4 (2.4) 365 6.1 (3.0)

Household wealth score, 0 (poorer) - 1 (wealthier)† 440 0.45 (0.10) 365 0.44 (0.10)

Household crowding, >3 persons/room 440 54 (12%) 365 60 (17%)

Household floor is covered‡ 440 426 (97%) 365 333 (91%)

Household wall made of bricks, concrete, or similar‡ 440 304 (69%) 365 215 (59%)

Household drinking water source inside compound 435 324 (74%) 360 294 (82%)

Latrine used by household has a ceramic or masonry pedestal‡ 432 153 (35%) 359 142 (40%)

Latrine used by household has a drop-hole cover‡ 434 232 (53%) 359 224 (62%)

Compound level variables

Number of compound members 287 14 (6.2) 208 19 (12)

Number of households 287 3.8 (2.1) 208 4.4 (3.7)

Number of water taps in compound 283 0.98 (0.95) 207 1.4 (1.6)

Number of latrines in compound 287 1.0 (0.20) 207 1.1 (0.57)

Number of people sharing a latrine 285 14 (6.2) 197 17 (8.9)

Number of households sharing a latrine 285 3.7 (1.8) 197 4.0 (2.8)

Latrine walls made of brick, concrete or similar‡ 282 72 (26%) 204 67 (33%)

Compound population density, persons/square meter§ 281 0.071 (0.04) 205 0.087 (0.05)

Compound has electricity that normally functions 287 251 (87%) 208 189 (91%)

Compound is prone to flooding 287 184 (64%) 208 120 (58%)

Any animals observed in compound‡ 287 170 (59%) 208 132 (63%)

Dog(s) observed‡ 287 14 (4.9%) 208 14 (6.7%)

Chicken(s) or duck(s) observed‡ 287 40 (14%) 208 30 (14%)

Cat(s) observed‡ 287 149 (52%) 208 116 (56%)

Data are n (%) or mean (standard deviation) and collected by questionnaire unless otherwise noted.
* Age range 32–1819 days, IQR 339–1021 days. Age distributions available in Appendix 1—figure 3.
†Assessed using Simple Poverty Scorecard for Mozambique (http://www.simplepovertyscorecard.com/MOZ_2008_ENG.pdf).
‡Data collected by direct observation.
§Calculated as # of people living in the compound divided by the area of the compound in square meters. Source files available in Table 1—source data

1 and Table 1—source code 1.

The online version of this article includes the following source data for Table 1:

Source code 1. Baseline characteristics.

Source data 1. Baseline characteristics.
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Table 2. Effect of the intervention on bacterial, protozoan, viral, and STH infection and diarrhea at 12 and 24 months post-

intervention.

Prevalence

12-month Prevalence ratio (95% CI),

p-value *

24-month Prevalence ratio (95% CI),

p-value†

Baseline 12 month 24 month Unadjusted Adjusted§ Unadjusted Adjusted§

Any bacterial or protozoan

infection‡

Control 313/392

(80%)

334/395

(85%)

403/459

(88%)

.. .. .. ..

Intervention 278/361

(77%)

347/408

(85%)

392/462

(85%)

1.04 (0.94–1.15),

p=0.41

1.04 (0.94–1.15),

p=0.41

1.00 (0.91–1.10), p=1.0 0.99 (0.91–1.09),

p=0.89

Any STH infection‡

Control 170/360

(47%)

143/283

(51%)

142/253

(56%)

.. .. .. ..

Intervention 138/329

(42%)

150/305

(49%)

136/292

(47%)

1.12 (0.89–1.40),

p=0.33

1.11 (0.89–1.38),

p=0.35

0.94 (0.75–1.17),

p=0.59

0.95 (0.77–1.17),

p=0.62

Diarrhea‡

Control 67/526 (13%) 40/430

(9.3%)

53/390

(14%)

.. .. .. ..

Intervention 59/448 (13%) 59/436

(14%)

53/410

(13%)

1.41 (0.80–2.48),

p=0.24

1.69 (0.89–3.21),

p=0.11

0.92 (0.55–1.54),

p=0.76

0.84 (0.47–1.51),

p=0.56

Any bacteria

Control 271/392

(69%)

285/395

(72%)

345/459

(75%)

.. .. .. ..

Intervention 227/361

(63%)

292/408

(72%)

324/462

(70%)

1.09 (0.95–1.25),

p=0.25

1.09 (0.95–1.26),

p=0.20

1.03 (0.90–1.18),

p=0.69

1.00 (0.87–1.15),

p=0.96

Shigella

Control 179/392

(46%)

204/395

(52%)

269/459

(59%)

.. .. .. ..

Intervention 152/361

(42%)

218/408

(53%)

245/462

(53%)

1.13 (0.91–1.39),

p=0.28

1.12 (0.92–1.38),

p=0.27

0.98 (0.80–1.20),

p=0.86

0.95 (0.79–1.16),

p=0.64

ETEC

Control 116/392

(30%)

142/395

(36%)

127/459

(28%)

.. .. .. ..

Intervention 110/361

(30%)

143/408

(35%)

126/462

(27%)

0.93 (0.68–1.28),

p=0.66

0.96 (0.69–1.33),

p=0.81

0.95 (0.67–1.35),

p=0.77

0.83 (0.57–1.19),

p=0.31

Campylobacter

Control 39/392

(9.9%)

32/395

(8.1%)

48/459

(10%)

.. .. .. ..

Intervention 21/361

(5.8%)

35/408

(8.6%)

34/462

(7.4%)

1.78 (0.89–3.56),

p=0.10

1.68 (0.82–3.45),

p=0.16

1.20 (0.60–2.39),

p=0.60

1.28 (0.62–2.62), 0.50

C. difficile

Control 22/392

(5.6%)

13/395

(3.3%)

13/459

(2.8%)

.. .. .. ..

Intervention 13/361

(3.6%)

17/408

(4.2%)

11/462

(2.4%)

1.95 (0.71–5.35),

p=0.20

2.09 (0.77–5.64),

p=0.15

1.32 (0.47–3.73),

p=0.60

1.41 (0.46–4.30),

p=0.54

E. coli O157

Control 13/392

(3.3%)

19/395

(4.8%)

25/459

(5.5%)

.. .. .. ..

Intervention 18/361

(5.0%)

14/408

(3.4%)

16/462

(3.5%)

0.48 (0.18–1.27),

p=0.14

0.46 (0.18–1.21),

p=0.12

0.43 (0.15–1.29),

p=0.13

0.52 (0.17–1.59),

p=0.25

STEC

Control 3/392

(0.77%)

9/395 (2.3%) 17/459

(3.7%)

.. .. .. ..

Table 2 continued on next page
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Table 2 continued

Prevalence

12-month Prevalence ratio (95% CI),

p-value *

24-month Prevalence ratio (95% CI),

p-value†

Baseline 12 month 24 month Unadjusted Adjusted§ Unadjusted Adjusted§

Intervention 10/361

(2.8%)

5/408 (1.2%) 15/462

(3.3%)

0.14 (0.03–0.67),

p=0.014

0.15 (0.03–0.70),

p=0.016

0.23 (0.05–1.03),

p=0.055

0.24 (0.05–1.01),

p=0.052

Any protozoa

Control 205/392

(52%)

236/395

(60%)

303/459

(66%)

.. .. .. ..

Intervention 195/361

(54%)

259/408

(63%)

296/462

(64%)

1.04 (0.87–1.24),

p=0.69

1.03 (0.86–1.22),

p=0.76

0.93 (0.78–1.11),

p=0.40

0.91 (0.76–1.09),

p=0.29

Giardia

Control 201/392

(51%)

230/395

(58%)

294/459

(64%)

.. .. .. ..

Intervention 186/361

(52%)

251/408

(62%)

289/462

(63%)

1.06 (0.88–1.27),

p=0.55

1.05 (0.88–1.25),

p=0.58

0.96 (0.80–1.14),

p=0.61

0.93 (0.78–1.11),

p=0.44

Cryptosporidium

Control 8/392 (2%) 8/395 (2%) 14/459

(3.0%)

.. .. .. ..

Intervention 16/361

(4.4%)

15/408

(3.7%)

15/462

(3.3%)

0.89 (0.23–3.43),

p=0.87

0.89 (0.24–3.31),

p=0.86

0.46 (0.11–1.93),

p=0.29

0.53 (0.13–2.14),

p=0.37

Any virus

Control 53/392 (14%) 52/395

(13%)

59/459

(13%)

.. .. .. ..

Intervention 52/361 (14%) 45/408

(11%)

62/462

(13%)

0.77 (0.45–1.32),

p=0.35

0.75 (0.44–1.27),

p=0.29

0.96 (0.55–1.68),

p=0.88

1.03 (0.57–1.86),

p=0.92

Norovirus GI/GII

Control 38/392

(9.7%)

44/395

(11%)

47/459

(10%)

.. .. .. ..

Intervention 39/361 (11%) 37/408

(9.1%)

55/462

(12%)

0.71 (0.38–1.33),

p=0.28

0.68 (0.36–1.27),

p=0.23

1.00 (0.52–1.93),

p=0.99

1.10 (0.55–2.18),

p=0.79

Adenovirus 40/41

Control 13/392

(3.3%)

9/395 (2.3%) 7/459 (1.5%) .. .. .. ..

Intervention 9/361 (2.5%) 9/408 (2.2%) 6/462 (1.3%) 1.34 (0.34–5.23),

p=0.68

1.24 (0.32–4.83),

p=0.76

1.18 (0.23–5.98),

p=0.84

0.97 (0.18–5.19),

p=0.97

Coinfection, �2 GPP pathogens

Control 206/392

(53%)

237/395

(60%)

302/459

(66%)

.. .. .. ..

Intervention 185/361

(51%)

257/408

(63%)

282/462

(61%)

1.08 (0.90–1.29),

p=0.39

1.08 (0.91–1.29),

p=0.37

0.95 (0.80–1.12),

p=0.54

0.93 (0.79–1.10),

p=0.41

Trichuris

Control 139/360

(39%)

116/283

(41%)

124/253

(49%)

.. .. .. ..

Intervention 117/329

(36%)

120/305

(39%)

117/292

(40%)

1.05 (0.82–1.35),

p=0.68

1.01 (0.79–1.28),

p=0.96

0.89 (0.69–1.16),

p=0.40

0.86 (0.67–1.10),

p=0.22

Ascaris

Control 95/360 (26%) 82/283

(29%)

78/253

(31%)

.. .. .. ..

Intervention 68/329 (21%) 87/305

(29%)

56/292

(19%)

1.26 (0.87–1.82),

p=0.22

1.33 (0.92–1.93),

p=0.13

0.80 (0.52–1.21), p=29 0.83 (0.54–1.27),

p=0.39

Coinfection, �2 STH

Control 64/360 (18%) 55/283

(19%)

60/253

(24%)

.. .. .. ..

Intervention 47/329 (14%) 57/305

(19%)

37/292

(13%)

1.16 (0.76–1.77),

p=0.50

1.17 (0.76–1.79),

p=0.49

0.67 (0.40–1.13),

p=0.13

0.63 (0.37–1.07),

p=0.084
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Our main analyses included observations from all eligible children enrolled at baseline (mean sam-

pling age 664 days, SD = 393) and the 12-month (940 days, SD = 498) and 24-month (1137 days,

SD = 603) follow-up visits (Table 2). We used a difference-in-difference (DID) analysis to estimate the

intervention effect and adjust for baseline differences between intervention and control compounds.

We present effect estimates from the DID analyses as prevalence ratios (ratio of ratios). To assess

the validity of the parallel trend assumption, a key assumption of DID analyses, we ran ‘placebo

tests’ by replacing outcomes with variables unrelated to the intervention, such as child age, respon-

dent role, and presence of animals. Placebo tests showed no effect of the intervention on these vari-

ables, suggesting the parallel trend assumption was valid. We found no evidence that the

intervention had an effect on the prevalence of any bacterial or protozoan infection (adjusted PR

1.04, 95% CI [0.94–1.15]), or any STH re-infection (1.11 [0.89–1.38]) 12 months after implementation

(Table 2) despite household respondents reporting almost exclusive use of the intervention latrine

(97%, 404/417). The prevalence of diarrhea remained fairly constant in both arms in all three phases

with the exception of the 12-month measure in the control arm which was lower, resulting in a larger

effect estimate with low precision (1.69 [0.89–3.21]).

The intervention had no meaningful effect at 12 months on the prevalence of infection with any

of the three pathogen types measured by the GPP (bacterial, protozoan, viral), pathogen coinfec-

tion, or on any individual pathogen (Table 2). There was poor precision in the effect estimates for

infrequently detected pathogens, evident from their wide confidence intervals. Therefore, some esti-

mates suggestive of a large protective or detrimental effect (Campylobacter, C. difficile, E. coli

O157, STEC, Norovirus GI/GII, Adenovirus 40/41) may have arisen by chance. While the National

Deworming Campaign (NDC) provided albendazole to all compound members following baseline,

during 12-month visitation only 58% of caregivers (56% control, 60% intervention) confirmed that

their child was dewormed during these visits. A sensitivity analysis restricted to children confirmed

to have been dewormed produced similar results to the main analysis (Appendix 1—table 7). By the

12-month visit, 19 control compounds (19/240 [8.0%]) had independently upgraded their facilities to

pour-flush toilets. Results from sensitivity analyses excluding children living in control compounds

with independently upgraded facilities were consistent with the main results (Appendix 1—table 8).

There was no evidence that the intervention had an effect on the prevalence of any bacterial or

protozoan infection, any STH re-infection, or diarrhea after 24 months among all enrolled children

(Table 2). We also found limited evidence of effect on the prevalence of any pathogen type or coin-

fection with �2 GPP pathogens 24 months after intervention. Results for several individual outcomes

were suggestive of a protective (STEC, E. coli O157, Cryptosporidium, STH coinfection) or adverse

(Campylobacter, C. difficile) effect, but evidence was weak as estimates were accompanied by wide

confidence intervals and chance discoveries were possible given multiple comparisons. At the 24-

month visits, caregivers confirmed baseline and/or 12-month deworming more frequently for inter-

vention children (339/502 [68%]) than for control children (286/499 [57%]). Adjustment for deworm-

ing status or time since deworming had no impact on effect estimates (Appendix 1—table 7).

Excluding children from control compounds which independently upgraded their facilities by the 24-

month visit (35/211 compounds, [17%]) did not impact the results (Appendix 1—table 8).

Prevalence results are presented as (n/N (%)). All effect estimates are presented as prevalence ratios (ratio of ratios) and estimated using generalized esti-

mating equations to fit Poisson regression models with robust standard errors.

*Analysis includes all children measured at baseline and 12-month visits.
†Analysis includes all children measured at baseline and 24 month visits.

‡Outcome was pre-specified in trial registration. All other outcomes are exploratory.
§Pathogen outcomes adjusted for child age and sex, caregiver’s education, and household wealth index. Reported diarrhea was also adjusted for baseline

presence of a drop-hole cover and reported use of a tap on compound grounds as primary drinking water source. Sample sizes for adjusted analyses are

slightly smaller than numbers presented in prevalence estimates due to missing covariate data. Y. enterocolitica, V. cholerae, E. histolytica, and rotavirus

were detected in <2% of samples in each arm at each phase. Descriptive data for these pathogens are available in the Appendix 1—table 2. Source files

available in Table 2—source data 1 and Table 2—source code 1.

The online version of this article includes the following source data for Table 2:

Source code 1. Intervention effect at 12 and 24 months.

Source data 1. Intervention effect at 12 and 24 months.
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Table 3. Effect of intervention on bacterial, protozoan, viral, and STH infection and reported diarrhea in children born into study sites

post-intervention (post-baseline) but by 24-month visit compared with children of a similar age at baseline (<2 years old).

Prevalence (<2 years old) Prevalence ratio (95% CI), p-value

Baseline 24 month, Born-in Unadjusted Adjusted†

Any bacterial or protozoan infection*

Control 158/228 (69%) 79/106 (75%) .. ..

Intervention 129/201 (64%) 71/107 (66%) 0.96 (0.77–1.21), p=0.74 0.99 (0.80–1.22), p=0.92

Any STH infection*

Control 67/205 (33%) 25/68 (37%) .. ..

Intervention 52/183 (28%) 13/75 (17%) 0.52 (0.26–1.05), p=0.069 0.51 (0.27–0.95), p=0.035

Diarrhea*

Control 46/283 (16%) 18/105 (17%) .. ..

Intervention 43/238 (18%) 22/100 (22%) 1.20 (0.57–2.5), p=0.64 1.37 (0.47–4.03), p=0.57

Any bacteria

Control 142/228 (62%) 70/106 (66%) .. ..

Intervention 102/201 (51%) 51/107 (48%) 0.89 (0.66–1.20), p=0.44 0.90 (0.67–1.19), p=0.45

Shigella

Control 67/228 (29%) 36/106 (34%) .. ..

Intervention 49/201 (24%) 15/107 (14%) 0.48 (0.28–0.83), p=0.009 0.49 (0.28–0.85), p=0.011

ETEC

Control 70/228 (31%) 30/106 (28%) .. ..

Intervention 58/201 (29%) 24/107 (22%) 0.84 (0.46–1.52), p=0.56 0.85 (0.48–1.51), p=0.58

Campylobacter

Control 27/228 (12%) 14/106 (13%) .. ..

Intervention 14/201 (7%) 13/107 (12%) 1.75 (0.63–4.87), p=0.29 1.75 (0.61–4.98), p=0.30

C. difficile

Control 20/228 (8.8%) 7/106 (6.6%) .. ..

Intervention 13/201 (6.5%) 7/107 (6.5%) 1.33 (0.36–4.86), p=0.67 1.49 (0.41–5.44), p=0.55

E. coli O157

Control 7/228 (3.1%) 3/106 (2.8%) .. ..

Intervention 9/201 (4.5%) 2/107 (1.9%) 0.45 (0.06–3.66), p=0.46 0.53 (0.07–4.24), p=0.55

STEC

Control 1/228 (0.44%) 2/106 (1.9%) .. ..

Intervention 9/201 (4.5%) 1/107 (0.93%) 0.05 (0.00–1.13), p=0.059 0.05 (0.00–1.26), p=0.070

Any protozoa

Control 82/228 (36%) 47/106 (44%) .. ..

Intervention 74/201 (37%) 43/107 (40%) 0.84 (0.55–1.28), p=0.42 0.90 (0.62–1.30), p=0.58

Giardia

Control 79/228 (35%) 44/106 (42%) .. ..

Intervention 68/201 (34%) 41/107 (38%) 0.90 (0.58–1.39), p=0.63 0.93 (0.64–1.36), p=0.70

Cryptosporidium

Control 7/228 (3.1%) 5/106 (4.7%) .. ..

Intervention 12/201 (6%) 5/107 (4.7%) 0.45 (0.08–2.57), p=0.37 0.64 (0.12–3.51), p=0.61

Any virus

Control 34/228 (15%) 18/106 (17%) .. ..

Intervention 36/201 (18%) 18/107 (17%) 0.83 (0.37–1.83), p=0.64 0.83 (0.37–1.87), p=0.66

Norovirus GI/GII

Table 3 continued on next page
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Point estimates of effect and associated confidence intervals were largely similar in unadjusted

and adjusted models with few exceptions (e.g. ETEC at 24 month) (Table 2). Multivariable models

for GPP outcomes and STH outcomes were adjusted for covariates selected a priori (child age, sex,

caregiver education, and household wealth index). No other variables met our inclusion criteria for

multivariable models, which included being imbalanced between intervention and control at baseline

and meaningfully changing 12-month effect estimates (>10% change in prevalence ratios) (Appen-

dix 1—table 9). While the relationship between age and pathogen prevalence appeared to be non-

linear for many pathogens (Appendix 1—figure 4), the inclusion of a higher order age term (age

squared) did not meaningfully change effect estimates in the main or sub-group analyses (Appen-

dix 1—table 10). Three measures of seasonality were considered for inclusion in multivariable mod-

els to adjust for any difference in seasonal distributions of data collection: (1) a binary variable

defining the ‘rainy’ (November – April) and ‘dry’ seasons (May – October) in Maputo, (2) a measure

of cumulative rainfall (mm) in the 30 days prior to data collection, and (3) sine and cosine terms rep-

resenting dates of sample collection. While there was some imbalance between arms in data col-

lected during the wet and dry seasons at baseline (Appendix 1—table 9), no measure of seasonality

meaningfully changed effect estimates in the 12- and 24-month analyses and seasonality was

excluded from final multivariable models (Appendix 1—table 9 and Appendix 1—table 11). For

Table 3 continued

Prevalence (<2 years old) Prevalence ratio (95% CI), p-value

Baseline 24 month, Born-in Unadjusted Adjusted†

Control 26/228 (11%) 12/106 (11%) .. ..

Intervention 26/201 (13%) 17/107 (16%) 1.24 (0.48–3.17), p=0.66 1.29 (0.49–3.41), p=0.61

Adenovirus 40/41

Control 7/228 (3.1%) 4/106 (3.8%) .. ..

Intervention 7/201 (3.5%) 0/107 (0.0%) ..§ ..§

Coinfection, �2 GPP pathogens

Control 92/228 (40%) 52/106 (49%) .. ..

Intervention 74/201 (37%) 39/107 (36%) 0.82 (0.56–1.21), p=0.33 0.86 (0.59–1.24), p=0.41

Trichuris

Control 48/205 (23%) 18/68 (26%) .. ..

Intervention 41/183 (22%) 5/75 (6.7%) 0.25 (0.09–0.68), p=0.006 0.24 (0.10–0.60), p=0.002

Ascaris

Control 45/205 (22%) 16/68 (24%) .. ..

Intervention 29/183 (16%) 9/75 (12%) 0.70 (0.30–1.64), p=0.42 0.68 (0.30–1.54), p=0.36

Coinfection, �2 STH

Control 26/205 (13%) 9/68 (13%) .. ..

Intervention 18/183 (9.8%) 1/75 (1.3%) 0.13 (0.02–1.08), p=0.059 0.12 (0.01–1.02), p=0.052

Analysis includes children < 2 years old at baseline and children born into the study after baseline and <2 years old at the time of the 24-month visit. Preva-

lence results are presented as (n/N (%)). All effect estimates are presented as prevalence ratios (ratio of ratios) and estimated using generalized estimating

equations to fit Poisson regression models with robust standard errors.

*Outcome was pre-specified in trial registration. All other outcomes are exploratory.
†Pathogen outcomes adjusted for child age and sex, caregiver’s education, and household wealth index. Reported diarrhea was also adjusted for baseline

presence of a drop-hole cover and reported use of a tap on compound grounds as primary drinking water source. Sample sizes for adjusted analyses are

slightly smaller than numbers presented in prevalence estimates due to missing covariate data.
§Models would not converge due to sparse data. Y. enterocolitica, V. cholerae, E. histolytica, and rotavirus were detected in <2% of samples in each arm

at each phase and excluded. Descriptive data for these pathogens are available in the Appendix 1—table 2. Source files available in Table 3—source

data 1 and Table 3—source code 1.

The online version of this article includes the following source data for Table 3:

Source code 1. Intervention effect on children born after implementation.

Source data 1. Intervention effect on children born after implementation.
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diarrhea, two variables in addition to variables selected a priori met our inclusion criteria and were

included in adjusted models: presence of a latrine drop-hole cover at baseline and reported use of a

water tap located within the compound grounds at baseline (Appendix 1—table 9). The magnitude

of effect estimates were larger and confidence intervals wider for diarrhea in adjusted versus unad-

justed models in the 12-month and 24-month analyses (Table 2).

In addition to the main analyses which included all enrolled children, we also performed two sub-

group analyses. The first included children who were born after the intervention was implemented

(or after baseline in control compounds) and present at the 12- and/or 24-month follow-up visit. This

analysis allowed us to evaluate the impact of the intervention on young children who were never

exposed to poor sanitation at baseline. The second sub-group analysis included only children with

repeated measures at baseline and 12- and/or 24-month follow-up.

In sub-group analyses comparing children born into study compounds before the 24-month visit

with children of similar ages at baseline (<2 years old), there was suggestive evidence that the inter-

vention reduced the prevalence of infection with any STH by 49% (n = 522; adjusted prevalence ratio

0.51, [95% CI 0.27–0.95]), Trichuris by 76% (n = 522; 0.24, [0.10–0.60]), and Shigella by 51%

(n = 630; 0.49, [0.28–0.85]) (Table 3). These effects were attenuated in sub-group analyses restricted

to older children (>24 months) who were born before the intervention was implemented and present

at the 24-month phase (Appendix 1—table 12). We did not observe intervention effects among chil-

dren born into the study by the 12-month visit, but the sample size was small, resulting in high uncer-

tainty in effect estimates (Appendix 1—table 13).

Longitudinal sub-group analyses explored the effect of the intervention on children with repeated

measures at baseline and 12 month (for unadjusted analyses: n = 870 data points [435 children with

repeat measures] for GPP outcomes, n = 572 [286] for Kato-Katz outcomes, and n = 1112 [556] for

diarrhea) and at baseline and 24 month (n = 716 (358), n = 402 (201), n = 834 (417)). Effect estimates

were consistent with results from the main analyses (Appendix 1—table 14 and Appendix 1—table

15) but less precise due to the reduced sample numbers.

Discussion
We found no evidence that this urban, onsite shared sanitation intervention was protective against

our pre-specified child health outcomes of enteric infection, STH re-infection, or diarrhea. We also

found no strong evidence that the intervention affected prevalence of any individual pathogen, path-

ogen type, or coinfection with �2 enteric pathogens or STH. In exploratory sub-group analyses, we

found suggestive evidence that the intervention reduced the prevalence of any STH, Trichuris, and

Shigella infections among children born into the study by the 24-month follow-up visit. Studying chil-

dren born into intervention sites after implementation allowed us to examine the effect of the inter-

vention from birth through the first 2 years of life. These results suggest that the intervention

delayed pathogen exposure and the accumulation of enteric infections during early childhood, but

need to be treated with caution as this was an exploratory subgroup analysis.

The trial was neither designed nor powered to detect differences in sub-groups of children such

as those born after the intervention was implemented, potentially limiting our ability to detect small

effects in such analyses. Further, all exploratory sub-group analyses included multiple comparisons,

increasing the likelihood of chance discoveries. However, the magnitude of the effect estimates for

the outcomes of any STH, Trichuris, and Shigella observed among children born into the study by

the 24-month visit, and the directional consistency of effect estimates among most other outcomes

in this sub-group analysis, strengthens the plausibility of these findings.

There are several reasons we observed suggestive evidence of an effect for some outcomes

among this sub-group of young children but not among older children or in the main analyses. Child-

ren’s exposures vary by age, particularly as they become mobile and begin independent exploration

of their environment. It is possible that the intervention reduced exposure via pathways that are

important for very young children but may represent just minor pathways of exposure among older

children (Kwong et al., 2020). Additionally, young children may experience fewer exposures outside

of the compound. Reductions in exposure and subsequent infection early in life may delay or prevent

the development of environmental enteric dysfunction (EED), a subclinical condition that affects the

structure and function of the gut and may increase susceptibility to future infection (Keusch et al.,

2014; Prendergast and Kelly, 2016). Results from the EED sub-study of the WASH Benefits cluster
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randomized controlled trial (cRCT) in Bangladesh suggest that the intervention delayed but did not

prevent the onset of EED (Lin et al., 2019). If this intervention similarly delayed the development of

EED among children born into intervention sites, they may have been less susceptible to infection

than children of a similar age at baseline. Finally, some pathogens, like Giardia and certain STH, can

cause persistent infections that can remain active for months or years if not treated (Else et al.,

2020; Rogawski et al., 2017). The intervention would have no effect on such infections, highlighting

the potentially important role of protection from birth.

Notably, both Shigella and Trichuris are primarily anthroponotic, and infection was strongly age-

dependent in this study population (Knee et al., 2018). These factors may help explain the differing

intervention effects observed both among pathogens and age groups. The intervention was unlikely

to limit exposure to animal feces, reducing the likelihood that it would impact the infection preva-

lence of zoonotic pathogens like Campylobacter or Giardia. The strong positive associations

between age and prevalence for Shigella and Trichuris suggest that exposure increases with age.

This supports the hypothesis that the intervention may have reduced the overall frequency or inten-

sity of exposure enough to impact Shigella and Trichuris infection among young children but not

older children.

Rapid urbanization is expanding informal settlements and out-pacing the expansion of sanitation

services in many cities, widening the gap in sanitation access between the urban rich and poor (UNI-

CEF/WHO, 2019). To our knowledge, MapSan was the first trial to estimate the health impact of an

urban, onsite shared sanitation intervention and the first to use enteric infection as the primary trial

outcome. Most of the urban sanitation literature published to date has evaluated the expansion of

sewerage, an important and ambitious goal that is out of reach for many cities in the near-term

(Norman et al., 2010). Access to sewerage is associated with a 30–60% reduction of diarrheal dis-

ease depending on starting conditions, and an approximately 30% reduction in enteric parasite

detection, though most studies are observational and few controlled trials exist (Barreto et al.,

2010; Norman et al., 2010; Wolf et al., 2018).

Most studies of onsite sanitation interventions have occurred in rural areas. Despite good evi-

dence that onsite sanitation is associated with reductions in diarrheal disease (Freeman et al.,

2017a; Wolf et al., 2018), several recent rural trials of basic sanitation and combined WASH inter-

ventions with good uptake and use reported mixed effects on child health outcomes including diar-

rhea, linear growth, and more recently, enteric infection (Ercumen et al., 2019; Grembi et al.,

2020; Sanitation Hygiene Infant Nutrition Efficacy (SHINE) Trial Team et al., 2019; Lin et al.,

2018; Luby et al., 2018; Null et al., 2018; Pickering et al., 2019; Rogawski McQuade et al.,

2020a).

The Sanitation, Hygiene, Infant Nutrition Efficacy (SHINE) trial in rural Zimbabwe found no impact

of a combined WASH intervention on diarrhea, growth, or the prevalence of a suite of enteric patho-

gens among children aged <12 months old but did report a small reduction in the number of para-

sitic pathogens detected (Sanitation Hygiene Infant Nutrition Efficacy (SHINE) Trial Team et al.,

2019; Rogawski McQuade et al., 2020a).

While the WASH Benefits Bangladesh cRCT reported no effect of any WASH intervention on child

growth, the sanitation, hygiene, and combined WASH study arms reduced the prevalence of diar-

rheal disease from 5.7% to 3.5% (Luby et al., 2018), accompanied by absolute reductions in Giardia

prevalence of 6–9% among children aged 2–3 years in the same arms (Lin et al., 2018). The sanita-

tion arm also reduced the prevalence of T. trichiura among children 2–3 years old (from 5.2% to

3.2%) but had no impact on A. lumbricoides or hookworm, the only other parasites detected fre-

quently enough to estimate effects in that study (Ercumen et al., 2019). In a parallel analysis, only

the water treatment and combined WASH interventions of the WASH Benefits Kenya cRCT reduced

the prevalence of A. lumbricoides, suggesting that the reduction in the combined WASH arm may

be attributable to the water treatment intervention (Pickering et al., 2019). The sanitation-only arm

had no impact on any parasite measured, although T. trichiura was too infrequently detected to esti-

mate effects (Pickering et al., 2019). An evaluation of a comprehensive suite of 34 enteric patho-

gens reported reduced prevalence and quantity of enteric viruses, but not bacteria or parasites,

among children aged 14 months old in the combined WASH arms in the Bangladesh trial

(Grembi et al., 2020). Together with our findings, these results suggest that sanitation and com-

bined WASH interventions can reduce the prevalence of enteric infection in some settings but that

effects may vary by pathogen, child age, intervention, and setting.

Knee et al. eLife 2021;10:e62278. DOI: https://doi.org/10.7554/eLife.62278 12 of 63

Research article Epidemiology and Global Health Medicine

https://doi.org/10.7554/eLife.62278


We previously published two baseline risk factor analyses to identify demographic, environmen-

tal, and WASH-related predictors of infection and environmental fecal contamination in our study

setting prior to the intervention implementation (Holcomb et al., 2020; Knee et al., 2018). Age was

an important predictor of infection, although the direction of its effect varied by pathogen type.

Increasing age was associated with increased risk of bacterial and protozoan infections and

decreased risk of viral infections (Knee et al., 2018). Other socio-demographic predictors of infec-

tion included breastfeeding, which was associated with a decreased risk of any infection (driven by

its strong association with protozoan infection), and female sex which was associated with an

increased risk of viral infection. Few sanitation-related or environmental variables were associated

with infection at baseline and the magnitude of associations were often small. The presence of a

latrine superstructure and drop-hole cover were associated with small reductions in risk of bacterial

or protozoan infection, often only in unadjusted analyses, but other latrine features (e.g. presence of

a cleanable slab) were not. The observation of feces or used diapers around the compound grounds

was associated with increased risk of bacterial and protozoan infection but most other environmental

and sanitary hazards were not (Knee et al., 2018).

Fecal contamination was common among all environmental reservoirs tested (water, soil, food

preparation surfaces) at baseline. We detected one or more microbial markers of contamination in

over 95% of environmental samples (Holcomb et al., 2020). E. coli was the most frequently detected

and abundant marker of contamination among all sample types, and human-associated markers

were most frequently detected in soil (59%) and stored drinking water (17%) samples. Measures of

latrine quality that were associated with small reductions in infection risk (e.g. drop-hole covers,

latrine superstructures) were not associated with decreased odds of fecal contamination in this set-

ting. Overall, we found few consistent relationships between markers of fecal contamination and

environmental, WASH-related, and demographic characteristics at baseline (Holcomb et al., 2020).

While these results suggest WASH-related and environmental risk factors may be poor determi-

nants of child health in this setting, the lack of heterogeneity in WASH conditions at baseline, given

the selection criterion that compounds must share sanitation in ‘poor condition,’ may have limited

our ability to identify strong WASH-related predictors of infection or environmental fecal contamina-

tion. Results from a forthcoming companion study suggests the intervention had mixed effects on

environmental fecal contamination. The intervention may have reduced the concentration of E. coli

by an order of magnitude in soil collected from latrine entrances after 12 months; however, there

was no effect on the prevalence or concentration of indicators of fecal contamination in any other

environmental compartment sampled at that time (Holcomb et al., 2021). It is unlikely that the

observed reductions in fecal contamination in soils alone would be sufficient to impact health out-

comes in this setting. Other studies that have evaluated the impact of sanitation interventions on

fecal contamination of the surrounding environment have found limited evidence of effect

(Clasen et al., 2014; Ercumen et al., 2018a; Ercumen et al., 2018b; Fuhrmeister et al., 2020;

Patil et al., 2014; Pickering et al., 2015; Sclar et al., 2016; Steinbaum et al., 2019).

In this setting, where fecal contamination was pervasive and burden of infection high, even con-

siderable reductions in contamination and exposure may have been insufficient to realize measurable

health gains as the intervention did not address all potential transmission pathways (Briscoe, 1984;

Julian, 2016; Robb et al., 2017). For example, the intervention did not address child feces disposal

practices or handwashing behaviors and it is unlikely that the intervention infrastructure would have

changed these (Cochrane Infectious Diseases Group et al., 2019). Previous studies of sanitation

interventions have found no reduction in hand contamination (Ercumen et al., 2018b), which has

been associated with increased incident diarrheal disease in young children (Pickering et al., 2018).

The intervention may not have reduced exposure via consumption of contaminated food – particu-

larly foods contaminated prior to arrival in the compound – likely an important source of enteric

pathogen transmission in some settings (Julian, 2016; Kwong et al., 2020). Children’s exposure to

animal feces has been documented in rural, peri-urban, and urban settings and could be an impor-

tant, unmitigated source of exposure to enteric pathogens in both intervention and control arms

where animals were frequently observed (Delahoy et al., 2018; Kwong et al., 2020;

Penakalapati et al., 2017). Observation of animals in compounds was examined as a potential con-

founder but did not change effect estimates.

The intervention was delivered at the compound level, not the community level, and was not

designed to achieve any specified threshold of sanitation coverage in the study neighborhoods.
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Previous studies have suggested that achieving a certain level of community sanitation coverage

may be necessary to reduce disease burdens (Barreto et al., 2007; Fuller and Eisenberg, 2016;

Fuller et al., 2016; Harris et al., 2017; Jung et al., 2017; Spears et al., 2013; Wolf et al., 2018).

For example, a study of a large-scale sewerage expansion in urban Brazil found that the intervention

reduced diarrheal disease by 22%, with neighborhood coverage level being the single most impor-

tant explanatory variable (Barreto et al., 2007). We did not measure neighborhood-level sanitation

coverage, but previous estimates show that while coverage is high and open defecation is limited

(1%), only 9% of sanitation systems are safely managed (Satterthwaite et al., 2019). Further, in the

Nhlamankulu district where many of our study sites are located, the majority of households (56%)

rely on private pit latrines, most of which are in poor condition (Devamani et al., 2014;

Satterthwaite et al., 2019). Together with our results, this suggests that both the extent and quality

of community coverage are likely important to reducing overall transmission. Sanitation coverage

and quality may be especially important in urban areas given the proximity of compounds and the

opportunity for person-to-person contact, neighborhood-level exposure, and for external sources of

contamination (e.g. a neighbor’s flooded pit latrine) to influence compound-level exposures

(Barreto et al., 2007). We did not measure neighborhood-level exposures, which may be important

for young children in slum settings (Ezeh et al., 2017; Medgyesi et al., 2019), and their impact on

our health outcomes is unclear. In addition to neighborhood-level exposures, the transience of the

study population meant that trips to and from provinces outside of Maputo, where exposures were

varied and unmeasured, were common.

It is unlikely that our findings are due to poor intervention fidelity or use, a challenge encountered

in some trials of rural sanitation interventions (Clasen et al., 2014; Patil et al., 2014). The use of the

intervention required minimal behavior change as compound members switched from using their

existing latrine in poor condition, which was removed following construction of the intervention

latrine, to using the new hygienic latrine. The results of a forthcoming process evaluation demon-

strate that 96% of intervention latrines were well-maintained 2 or more years after construction, sug-

gesting continued use by compound members (Bick, 2021). Further, only 3% of intervention

compounds (8/270) had a secondary, non-intervention latrine in use after two or more years, indicat-

ing that members of most intervention compounds exclusively used the intervention latrines

(Bick, 2021). It is possible that development in the study neighborhoods, including changes to sani-

tation facilities in control compounds, contributed to the limited effect of the intervention. However,

results from sensitivity analyses that excluded control compounds with upgraded sanitation were

consistent with results from the main analyses.

The two intervention designs we evaluated in this study – communal sanitation blocks and shared

latrines – utilized the same basic sanitation technology but differed in the number of cabins and

amenities available. While it is possible that this heterogeneity in design may have modified the

effect of the intervention, this study was not powered to test this. Moreover, all intervention com-

pounds were encouraged to independently upgrade their facilities by adding features like electricity

and handwashing stations, or by connecting existing handwashing stations to the water supply,

resulting in heterogeneity even within the two broad categories of intervention type.

While the NDC dewormed every study compound annually during the study period, it is possible

that not all study participants received, or took, the medication and that the time between deworm-

ing and subsequent measurement of STH re-infection varied among children. Additionally, single-

dose albendazole can have limited effectiveness against certain STH, notably Trichuris (Moser et al.,

2017). Inadequate or ineffective deworming could have limited our ability to detect an effect on

STH outcomes. Sensitivity analyses adjusting for caregiver-confirmed deworming and for estimated

time between deworming and re-infection measurement produced similar results to the main

analysis.

There are several important limitations of this study. As the intervention was pre-planned and not

implemented by the study team, we could not randomize its allocation, increasing the risk of con-

founding. We assessed potential confounding variables at baseline and used a DID analysis, which

accounts for baseline outcome measures, to limit the effect of unmeasured, residual confounding.

While we attempted to enroll intervention and control compounds with comparable numbers of resi-

dents, the NGO which identified and implemented the intervention selected most of the largest eli-

gible compounds for intervention. This resulted in intervention compounds having a slightly higher

mean number of residents than control compounds (Table 1). Crowding has been identified as a risk
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factor for pathogen transmission and poor health outcomes in other studies (Halpenny et al., 2012;

Rahman et al., 1985; Rogawski McQuade et al., 2020b), although we found limited evidence of

this in our study population at baseline (Knee et al., 2018). Further, we assessed the number of

compound residents as a potential confounder but found that it did not meaningfully change the

DID estimates for our pre-defined outcomes (Appendix 1—table 9). We consider our analysis to be

robust to small differences in study arms at baseline; however, we cannot exclude the possibility of

residual confounding due to such differences, a limitation of non-randomized designs.

It was not possible to mask participants to their intervention status, and our measure of care-

giver-reported diarrhea could be subject to respondent and recall biases. To reduce the risk of

respondent bias, the MapSan field enumerator team and implementation team were different, and

respondents were not informed explicitly that the MapSan team was evaluating the health effect of

the intervention. To limit recall bias, we used a 7-day recall period (Arnold et al., 2013). Our other

pre-specified outcomes were objective measures of pathogen infection and not subject to the same

biases (Brown and Cumming, 2020).

Due to the greater than expected losses to follow-up in both study arms, we were not able to fol-

low all children enrolled at baseline through time as expected, but we still achieved our target

enrollment numbers due to migration and births into study compounds. We conducted the originally

planned longitudinal analysis as a sub-group analysis. It also served as a sensitivity analysis to esti-

mate the impact of migration on our effect estimates. Results from this sub-group analysis were

largely similar to results of the main analysis which treated measures as repeated cross-sections,

although the reduction in sample size led to wider confidence intervals (Appendix 1—table 14 and

Appendix 1—table 15). Measures of outcomes and covariates in children with and without repeated

measures were mostly similar, further limiting the likelihood that changes in the study population

biased our results.

While molecular detection of enteric pathogens in stool is evidence of pathogen exposure, it is

not necessarily evidence of active infection, making its clinical significance less clear (Brown and

Cumming, 2020). We assumed pathogen detection by the GPP indicated infection because the

assay’s limits of detection exceeded the median infectious dose of most pathogens. While the GPP

detects many enteric pathogens recognized as important causes of childhood diarrhea in LMICs,

(Liu et al., 2016) it does not detect all enteric pathogens of importance. Further, qualitative, cross-

sectional analysis of stools does not provide information on the duration or intensity of infection or

pathogen carriage. Quantitative results like those produced by multiplex quantitative PCR panels

can be used to aid identification of etiologic agents of diarrhea, especially in cases of coinfection,

and to differentiate between low-level enteric pathogen detection of unknown clinical relevance and

higher concentration shedding which is more clearly associated with disease (Liu et al., 2014;

Liu et al., 2016; Platts-Mills et al., 2013). Some studies have demonstrated overall good perfor-

mance of the GPP but observed elevated false positive detection rates for the Salmonella targets

(Duong et al., 2016; Kellner et al., 2019). For this reason we removed Salmonella results from our

pre-specified outcome definition. Results from analyses including and excluding Salmonella were

similar. In addition, some studies have observed reduced sensitivity or specificity for some GPP tar-

gets compared with qPCR-based methods, including norovirus, adenovirus, Campylobacter, Yersinia

enterocolitica, ETEC, and Salmonella, although inconsistencies between studies exist and are likely

due to differences in comparator assays or sample storage and processing (Chhabra et al., 2017;

Deng et al., 2015; Duong et al., 2016; Huang et al., 2016; Zhan et al., 2020; Zhuo et al., 2017).

Further, the lack of an adequate reference standard in most comparative studies complicates inter-

pretation (Freeman et al., 2017b).

Our ability to detect an effect on our primary outcome, the prevalence of �1 bacterial or proto-

zoan infection, may have been limited by (1) the extended duration of shedding of some pathogens

following active infection; (2) the overall high burden of disease in our study population, particularly

among older children; and (3) residual confounding by age given the strong observed relationship

between age and infection status (particularly for protozoan pathogens), all of which may have

biased our results toward the null. Further, the intervention may have impacted the concentration of

pathogens shed (Grembi et al., 2020; Lin et al., 2019), but our binary outcome was not sensitive to

such differences The qualitative nature of the GPP did not allow us to interrogate this question.

We analyzed a smaller number of stool samples for STH than for other enteric pathogens due to

requirements of the Kato-Katz method used for STH detection. The Kato-Katz method can only be
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performed on whole, solid stool. Diarrheal samples and rectal swabs, the latter of which were intro-

duced during the 12-month follow-up phase, were not eligible for STH analysis by Kato-Katz. Fur-

ther, when limited stool material was collected, we prioritized the molecular analysis used for the

primary outcome. While the smaller sample size available for the STH analyses may have reduced

our ability to detect small effects, the proportions of whole stool, diarrheal diaper samples, and rec-

tal swabs were similar between arms at each phase (Appendix 1—table 1). This limited the potential

impact that sample type could have on our results.

While the Kato-Katz method performs similarly to other microscope-based and molecular meth-

ods for detection of moderate- to high-intensity infections, it may be less sensitive than molecular

methods in detecting low-intensity infections (Benjamin-Chung et al., 2020; Cools et al., 2019). A

recent study has also suggested reduced specificity of the Kato-Katz method for detection of low-

intensity A. lumbricoides infections (Benjamin-Chung et al., 2020). In settings where low-intensity

infections are common, or where STH may be targeted for elimination, methods with better diagnos-

tic accuracy, like qPCR, may be considered.

We had limited ability to evaluate the impact of seasonality or weather-related trends on our

effect estimates due to drought conditions during the 2015/2016 rainy season. We adjusted models

for cumulative 30-day rainfall, a binary indicator of wet/dry season, and sine/cosine terms of sample

collection date (Stolwijk et al., 1999) but excluded all seasonality terms from final multivariable

models because they did not meaningfully change effect estimates.

Our results demonstrate that access to hygienic, shared onsite sanitation systems was not suffi-

cient to reduce enteric infection or diarrhea in children aged 6 years or younger (�4 at baseline) 12–

24 months after implementation. Results from our sub-group analysis of children born into interven-

tion sites showed a substantial reduction in the prevalence of any STH, Trichuris, and Shigella infec-

tion, suggesting that children may require protection from birth to reduce or delay infection

burdens. Our results do not suggest that shared sanitation is inadvisable in this setting, as we did

not compare against household-level sanitation improvements, nor do they account for the many

non-health-related benefits associated with this intervention or upgraded sanitation generally

(Caruso et al., 2018; Sclar et al., 2018; Shiras et al., 2018).

The need for effective sanitation solutions may be most urgent in densely populated, low-income,

informal communities like our study setting where ubiquitous fecal contamination drives high infec-

tion burdens. Disease transmission in these settings may be driven by multiple interrelated path-

ways, complicated by frequent migration and the diversity of circulating pathogens, and therefore

difficult to interrupt. While decades of research have demonstrated meaningful health gains follow-

ing sanitation improvements, the results of this study and other rigorous trials of sanitation interven-

tions suggest that the relationship between sanitation and health is complex, difficult to measure,

and may not be generalizable across diverse settings and populations.

Materials and methods

Study design and intervention
MapSan was a controlled before-and-after trial, and details of the study design and analysis plan

have been published previously (Brown et al., 2015). We conducted the study in 16 densely popu-

lated, low-income, informal neighborhoods in Maputo, Mozambique. The intervention was delivered

to compounds, typically groups of three to five households (although larger and smaller compounds

exist) often delineated by a wall or barrier, that shared sanitation and outdoor living space. Shared

compound sanitation facilities are not considered public facilities. We collected data in an open

cohort of children in intervention and control compounds at three time-points: baseline (pre-inter-

vention), 12 months post-intervention, and 24 months post-intervention.

The NGO Water and Sanitation for the Urban Poor selected intervention compounds and

designed and built 300 intervention facilities – pour-flush toilets discharging to septic tanks, the liq-

uid effluent of which flows to the soil through soakaway pits (Appendix 1—figure 5 and Appen-

dix 1—figure 6). There were two intervention designs with the same basic sanitation technology:

communal sanitation blocks (CSBs) and shared latrines (SLs) (Appendix 1—figure 7 and Appen-

dix 1—figure 8). The primary difference between CSBs and SLs was size. CSBs (n = 50) included

multiple stalls with toilets and served compounds of 21 or more people with one stall allocated per
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20 residents. CSBs also included rainwater harvesting systems, a municipal shared water connection,

elevated water tanks for storage of municipal water, a handwashing basin, a laundry facility, and a

well-drained area for bathing. Shared piped water connections were part of the municipal water sys-

tem and could be used for drinking in addition to other domestic purposes. Rainwater was intended

for cleaning and flushing but not drinking. Shared latrines (n = 250) were single-stall facilities serving

fewer than 21 people. All septic tanks were sized to require emptying after approximately two

years.

Intervention compounds were located in 11 neighborhoods of the Nhlamankulu and KaMaxakeni

districts of Maputo (Appendix 1—figure 9). The NGO selected intervention compounds using the

following criteria: (1) residents shared sanitation in poor condition as determined by an engineer; (2)

the compound was located in the pre-defined implementation neighborhoods; (3) there were no

fewer than 12 residents; (4) residents were willing to contribute financially to construction costs; (5)

sufficient space was available for construction of the new facility; (6) the compound was accessible

for transportation of construction materials and tank-emptying activities; (7) the compound had

access to a legal piped water supply; and (8) the groundwater level was deep enough for construc-

tion of a septic tank. Intervention compounds were expected to pay approximately 10–15% of the

construction costs (~$64 for shared latrines and ~$97 for CSBs) within one year of construction, with

25% of the total due upfront. Presence of a child was not a selection criterion and therefore not all

intervention sites were included in the study. Opening of newly constructed intervention latrines

occurred between February 2015 and February 2016. The study team used criteria 1, 3, 4, and 7 to

select control sites that had at least one child younger than 48 months old in residence. We enrolled

intervention and control compounds concurrently to limit any differential effects of seasonality or

other secular trends on the outcomes (Appendix 1—figure 2). Additionally, we attempted to enroll

control compounds with similar numbers of residents as intervention compounds. Willingness to pay

for facilities among controls was assessed using hypothetical versions of questions posed to inter-

ventions. Control compounds were located within the 11 intervention neighborhoods and 5 adjacent

but similar neighborhoods due to the limited availability of eligible compounds remaining within

intervention neighborhoods (Appendix 1—figure 9). Intervention selection criteria (5, 6) and (8)

were not used to select control sites as they were deemed to be related to intervention construction

and maintenance and unlikely to influence our outcomes. It was not possible to blind participants or

enumerators to intervention status.

Participants
We enrolled eligible children at three time points: baseline (0 months), 12 months post-intervention,

and 24 months post-intervention. Children aged 1–48 months old were eligible for baseline enroll-

ment if we received written informed consent from a parent or guardian and if the head of the com-

pound provided verbal assent for the compound to be included in the study. Children were eligible

for enrollment at 12- and 24-month visits if they were aged 1–48 months or if they were eligible for

enrollment at baseline but absent during that study visit. Children who moved into the compound

fewer than 6 months before the 12-month or 24-month visit were not eligible for enrollment during

that phase given their limited exposure to their new compound.

Procedures
Trained field enumerators completed consent procedures and surveys in the participant’s preferred

language (Portuguese or Changana) and collected biological sampless from enrolled children

(Appendix 1- Consent procedures, survey administration, and sample collection and analysis). At

baseline we aimed to visit intervention compounds 2 weeks prior to the opening of the new latrines.

We scheduled follow-up visits to be 12 months (±2 weeks) and 24 months (±2 weeks) from the date

compound members began using their new latrines, with visits to control compounds made concur-

rently (±2 weeks).

We collected stool samples independently of reported symptomology. If we were unable to col-

lect a stool sample after multiple attempts, a registered nurse collected a rectal swab after obtaining

written consent for the procedure from a parent or guardian. Stool samples were kept cold and

delivered to the Laboratory of Molecular Parasitology at the Instituto Nacional de Saúde (INS) within

6 hr of collection for analysis and storage at �80˚C.
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Samples were shipped frozen with temperatures monitors to the Georgia Institute of Technology

(Atlanta, USA) where we used the xTAG GPP (Luminex Corp, Austin, USA), a qualitative multiplex

molecular assay, to detect 15 enteric pathogens in stool samples: Campylobacter jejuni/coli/lari;

Clostridium difficile, toxin A/B; enterotoxigenic Escherichia coli (ETEC) LT/ST; Shiga-like toxin pro-

ducing E. coli (STEC) stx1/stx2; E. coli O157; Salmonella; Shigella boydii/sonnei/flexneri/dysenteriae;

Vibrio cholerae; Yersinia enterocolitica; Giardia lamblia; Cryptosporidium parvum/hominis; Ent-

amoeba histolytica; adenovirus 40/41; norovirus GI/GII; and rotavirus. The GPP has been rigorously

tested and extensively used for stool-based enteric pathogen detection (Chisenga et al., 2018;

Claas, 2013; Deng et al., 2015; Duong et al., 2016; Huang et al., 2016; Kellner et al., 2019;

Khare et al., 2014; Navidad et al., 2013; Patel et al., 2014). We analyzed samples according to

manufacturer instructions with the addition of elution steps for the pretreatment of rectal swabs and

diaper material saturated with liquid stool (Appendix 1- Consent procedures, survey administration,

and specimen collection and analysis). Technicians at INS assessed stool samples for the presence of

soil-transmitted helminths (STH) using the single-slide Kato-Katz microscope method (Vestergaard

Frandsen, Lausanne, Switzerland).

Representatives of the National Deworming Campaign (NDC) at the Mozambican Ministério da

Saúde (MISAU) offered single-dose albendazole (400 mg, 200 mg for children aged 6–12 months) to

all eligible members of intervention and control compounds following sample collection activities of

each phase. Eligibility was defined by the NDC and included compound members older than 6

months who were not pregnant.

Outcomes
For the 12-month analysis, we pre-specified the primary outcome as infection with one or more of

the 12 bacterial or protozoan enteric pathogens detected by the GPP and secondary outcomes as

re-infection with one or more STH as detected by Kato-Katz (following albendazole treatment at

baseline), and 7-day period prevalence of caregiver-reported diarrhea. All three outcomes were con-

sidered secondary outcomes in the 24-month analysis. We defined diarrhea as the passage of three

or more loose or liquid stools in a 24 hr period or any stool with blood (Arnold et al., 2013;

Baqui et al., 1991). We excluded viral enteric pathogens from the primary outcome definition. The

intervention may not have interrupted virus transmission due to their low infectious doses, high con-

centration shed in feces and extended period of shedding, environmental persistence, and capability

for direct person-to-person transmission (Julian, 2016). Following reported specificity issues with

the Salmonella target of the GPP, we removed it from our GPP-based outcome definitions

(Duong et al., 2016; Kellner et al., 2019). In addition to the pre-specified outcomes, we evaluated

the effect of the intervention on specific pathogen types (bacterial, protozoan, viral) and on individ-

ual pathogens. The results for other secondary outcomes listed in the trial registration (growth and

environmental enteric dysfunction) will be published separately.

Statistical analysis
Our sample size calculation has been described previously (Brown et al., 2015). We included all

enrolled children at each visit and analysed data as repeated cross-sectional observations. We exam-

ined the effect of the intervention at the 12-month and 24-month phases separately. We conducted

two sets of exploratory sub-group analyses. The first assessed the effect of the intervention on chil-

dren with repeat observations at baseline and 12 months and at baseline and 24 months visits. These

longitudinal analyses also served as sensitivity analyses of the impact of participant migration on

effect estimates. The second sub-group analysis compared children who were born into study sites

after the intervention (or after baseline in controls) but before the 12-month or 24-month visit with

children of a similar age group at baseline. For example, children born after baseline but before the

24-month visit were compared with children aged 2 years old or younger at baseline. These analyses

allowed us to explore whether exposure to the intervention from birth would reduce enteric patho-

gen infection during the first 1–2 years of life.

We used a DID approach to assess the impact of the intervention on all outcomes at the 12- and

24-month visits. We used generalized estimating equations (GEE) to fit Poisson regression models

with robust standard errors. Our GEE models accounted for clustering at the compound level

because it was the highest level of nested data and the level of the intervention allocation
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(Bottomley et al., 2016). We estimated the effect of the intervention as the interaction of variables

representing treatment status (intervention versus control) and phase (pre- or post-intervention).

Therefore, effect estimates from our DID analysis are presented as ratio measures (ratio of preva-

lence ratios) instead of absolute differences. Multivariable models were adjusted for covariates

determined a priori as potentially predictive of our outcomes, including child age and sex, care-

giver’s education, and household wealth. Given the important and potentially non-linear relationship

between age and pathogen prevalence (Appendix 1—figure 4), we also considered inclusion of a

higher order age term (age squared) in our models (Appendix 1—table 10). Additional covariates

(Appendix 1—table 9) were considered for inclusion in multivariable models if they were imbal-

anced between arms at baseline (>0.1 standardized difference in prevalence or mean) and resulted

in a meaningful change in the DID effect estimate (±10% change in 12-month DID prevalence ratio).

We assessed the potential impact of seasonality on our results in three ways: (1) inclusion of binary

indicator of wet (November – April) and dry (May – October) season in multivariable models, (2)

inclusion of a variable representing cumulative rainfall (mm) 30 days prior to sample or survey collec-

tion in multivariable models, and (3) inclusion of sine and cosine functions of sample and survey

dates in multivariable models (Appendix 1—table 9 and Appendix 1—table 11). We used the same

statistical approach for sub-group analyses. All analyses were performed on complete case data,

and a missing data table is presented in Appendix 1 (Appendix 1—table 16). We performed all sta-

tistical analyses with Stata version 16 (StataCorp, College Station, USA).

Registration
The trial was pre-registered at ClinicalTrials.gov (NCT02362932).
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Appendix 1

Consent procedures, survey administration, and specimen collection
and analysis
Enumerators visited households with enrolled children at least twice at each point of follow-up. On

the first visit of each phase, enumerators completed consent procedures, administered child-, house-

hold-, and compound-level surveys, and delivered stool sample collection supplies. The child’s

mother was the target respondent for child and household surveys, although the father or another

guardian was also eligible. For compound-level surveys, the head of the compound or his or her

spouse was the preferred respondent. We sought written, informed consent from the parent or

guardian of each eligible child prior to initial enrollment. We sought verbal assent from parents or

guardians at each follow-up visit. Consent procedures, surveys, and all study-related verbal commu-

nication was performed in Portuguese or Changana as requested by the participant. Written materi-

als were provided in Portuguese.

Enumerators provided each caregiver with stool collection supplies, including disposable diapers,

a plastic potty if the child was no longer wearing diapers, and a pre-labeled sterile sample bag. Enu-

merators returned the next day to collect the samples. If a sample was unavailable during the sched-

uled pickup, caregivers called the field team, using phone credit provided by the study, as soon as

one was available or if fresh collection supplies were needed. If field enumerators were unable to

collect a stool sample after multiple attempts, a registered nurse used an anatomically designed rec-

tal swab (Copan Diagnostics Inc, Murrieta, CA, USA) to collect fecal material. Parents or guardians

were required to complete a separate written consent procedure prior to collection of rectal swabs.

Stool samples and rectal swabs were stored in coolers with cold packs and delivered to the Medical

Parasitology Laboratory at the Mozambican Ministry of Health (MISAU/INS) within 6 hr of collection.

Technicians at INS prepared Kato-Katz slides for soil-transmitted helminth (STH) detection the day of

receipt and read results within 30 min of preparation for hookworm and within 24 hr for other STH.

In addition to STH analysis, laboratory technicians at INS also aliquoted stools into several sterile

tubes and stored them, and any rectal swabs, at �80˚C. If a child produced a liquid stool, lab techni-

cians stored a piece of the saturated diaper material (‘diaper samples’) at �80˚C. Stool samples

were shipped frozen on dry ice with temperature probes to the Georgia Institute of Technology in

Atlanta, Georgia, USA where they were stored at �80˚C until analysis.

We followed manufacturer instructions for the pretreatment, extraction, and analysis of stool sam-

ples by the Luminex Gastrointestinal Pathogen Panel (GPP), with additional elution steps added to

the pretreatment protocol for rectal swabs and diaper samples. We eluted diaper samples in 2.5 mL

of lysis buffer (ASL buffer, Qiagen, Hilden, Germany). We used a sterile 10 mL syringe to facilitate

elution via agitation by taking in and expelling the buffer five times. We used 1 mL of the final eluate

in the pretreatment. We agitated rectal swabs in 1 mL of lysis buffer for 1 min and used the eluate in

the pretreatment. Following pretreatment, we extracted DNA and RNA using the QIAcube HT plat-

form and the QIAamp 96 Virus QIAcube HT Kit (Qiagen, Hilden, Germany). We added MS2, a non-

pathogenic RNA virus, to each sample prior to nucleic acid extraction as an extraction and RT-PCR

inhibition control. We included at least one sample process control (containing only lysis buffer and

MS2) and negative extraction control (containing only lysis buffer) with each set of extractions. Dur-

ing the PCR step we included at least one no-template control, containing molecular grade water

and all PCR reagents with each run. To assess elution and extraction of nucleic acid from swab and

diaper samples, we measured the concentration of double-stranded DNA (dsDNA) present in a sub-

set of extracts using the Qubit High Sensitivity dsDNA kit (Invitrogen, Carlsbad, CA, USA) and Qubit

4 Fluorimeter (Invitrogen, Carlsbad, CA, USA). The mean concentration of dsDNA recovered from

rectal swabs was 26.3 ng/mL (SD 15.5, n = 195, 25 swabs with measures above assay detection limit)

and from diaper samples was 28.7 ng/mL (SD 16.9, n = 61, 16 diapers with measures above assay

detection limit). The concentration of dsDNA recovered from whole stool exceeded the assay detec-

tion limits in most cases. The mean concentration of dsDNA in the subset of stools with measurable

results was 40.8 ng/mL (SD = 16.5, n = 33, 57 samples had concentrations above the assay detection

limit). Following extraction, we stored all extracts at 4˚C and analyzed them by GPP within 24 hr. For

long-term storage, we archived samples at �80˚C. We extracted and analyzed approximately 10% of

samples in duplicate (biological replicates). If duplicate analyses yielded different results, we
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combined the results from all analyses such that the final result captured all positive detections for a

given sample. If we could not detect a MS2 signal in a given sample, we either re-extracted or

diluted the extract 1:10 in molecular grade water and re-assayed by GPP.

Appendix 1—figure 1. Proportion of each type of sample collected during the baseline, 12-month,

and 24-month phases. Results stratified by study arm. Rectal swabs were not introduced until the

12-month phase of the study.

Appendix 1—table 1. Number and proportion of sample types collected in each arm at each phase.

Baseline 12 month 24 month

Control Intervention Control Intervention Control Intervention

Whole stool 377 (96%) 351 (97%) 361 (91%) 380 (93%) 307 (67%) 333 (72%)

Diarrheal diaper 15 (3.8%) 10 (2.8%) 4 (1.0%) 4 (0.98%) 32 (7.0%) 20 (4.3%)

Rectal swab* 0 (0%) 0 (0%) 30 (7.6%) 24 (5.9%) 120 (26%) 109 (24%)

*Mean concentration of double-stranded DNA recovered from whole stool was 40.8 ng/mL

(SD = 16.5, n = 33 with 57 samples excluded as their concentrations exceeded the upper detection

limit of the assay), diaper samples was 28.7 ng/mL (SD = 16.9, n = 61 with 16 samples excluded as

concentrations exceeded upper detection limit of assay), and rectal swabs was 26.3 ng/mL (SD = 15.5,

n = 195 with 25 samples excluded as concentrations exceeded upper detection limit of assay). Only a

subset of each sample type assayed for dsDNA concentration.
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Appendix 1—figure 2. Enrollment and stool sample collection profile. Graphs depict 4-week rolling

average of the number of intervention and control children enrolled/visited (solid lines) and the

number of stool samples collected (including whole stool, diaper samples, and rectal swabs) during

the baseline, 12-month, and 24-month phases. The overall success of stool sample collection was

78% at baseline, 86% at 12 month, and 90% at 24 month. The increase in success rate was due to

the introduction of rectal swab collection during the 12-month phase.
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Appendix 1—figure 3. Distribution of age (years) of enrolled children at each phase. Results are

presented as kernel density plots and stratified by study arm (intervention=blue, control=green) and

phase: (a) Baseline phase, (b) 12-month follow-up, (c) 24-month follow-up, and (d) All phases

combined.

Appendix 1—table 2. Age stratified baseline prevalence of health outcomes.

Baseline Prevalence

1–11 months 12–23 months 24–48 months

Any bacterial or protozoan infection

All children 108/208 (52%) 179/221 (81%) 277/297 (93%)

Control 57/109 (52%) 101/119 (85%) 143/152 (94%)

Intervention 51/99 (52%) 78/102 (76%) 134/145 (92%)

Any STH infection

All children 30/185 (16%) 89/203 (44%) 171/277 (62%)

Control 17/93 (18%) 50/112 (45%) 94/144 (65%)

Intervention 13/92 (14%) 39/91 (43%) 77/133 (58%)

Diarrhea

All children 37/258 (14%) 52/264 (20%) 36/427 (8.4%)

Control 19/138 (14%) 27/146 (18%) 20/234 (8.6%)

Intervention 18/120 (15%) 25/118 (21%) 16/193 (8.3%)

Any bacterial infection

All children 94/208 (45%) 150/221 (68%) 229/297 (77%)

Continued on next page
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Appendix 1—table 2 continued

Baseline Prevalence

1–11 months 12–23 months 24–48 months

Intervention 53/109 (49%) 89/119 (75%) 117/152 (77%)

All children 41/99 (41%) 61/102 (60%) 112/145 (77%)

Shigella

All children 19/208 (9.1%) 97/221 (44%) 192/297 (65%)

Control 10/109 (9.2%) 57/119 (48%) 101/152 (66%)

Intervention 9/99 (9.1%) 40/102 (39%) 91/145 (63%)

ETEC

All children 47/208 (23%) 81/221 (37%) 90/297 (30%)

Control 25/109 (23%) 45/119 (38%) 43/152 (28%)

Intervention 22/99 (22%) 36/102 (35%) 47/145 (32%)

Campylobacter

All children 22/208 (11%) 19/221 (8.6%) 16/297 (5.4%)

Control 14/109 (13%) 13/119 (11%) 10/152 (6.6%)

Intervention 8/99 (8.1%) 6/102 (5.9%) 6/145 (4.1%)

C. difficile

All children 23/208 (11%) 10/221 (4.5%) 2/297 (0.67%)

Control 13/109 (12%) 7/119 (5.9%) 2/152 (1.3%)

Intervention 10/99 (10%) 3/102 (2.9%) 0/145 (0.0%)

E. coli o157

All children 6/208 (2.9%) 10/221 (4.5%) 15/297 (5%)

Control 4/109 (3.7%) 3/119 (2.5%) 6/152 (4%)

Intervention 2/99 (2%) 7/102 (6.9%) 9/145 (6.2%)

STEC

All children 3/208 (1.4%) 7/221 (3.2%) 3/297 (1%)

Control 0/109 (0.0%) 1/119 (0.84%) 2/152 (1.3%)

Intervention 3/99 (3%) 6/102 (5.9%) 1/145 (0.69%)

Y. enterocolitica

All children 0/208 (0.0%) 1/221 (0.45%) 0/297 (0.0%)

Control 0/109 (0.0%) 0/119 (0.0%) 0/152 (0.0%)

Intervention 0/99 (0.0%) 1/102 (0.98%) 0/145 (0.0%)

V. cholerae

All children 0/208 (0.0%) 0/221 (0.0%) 0/297 (0.0%)

Control 0/109 (0.0%) 0/119 (0.0%) 0/152 (0.0%)

Intervention 0/99 (0.0%) 0/102 (0.0%) 0/145 (0.0%)

Any Protozoa

All children 36/208 (17%) 120/221 (54%) 223/297 (75%)

Control 14/109 (13%) 68/119 (57%) 114/152 (75%)

Intervention 22/99 (22%) 52/102 (51%) 109/145 (75%)

Giardia

All children 28/208 (13%) 119/221 (54%) 219/297 (74%)

Control 12/109 (11%) 67/119 (56%) 113/152 (74%)

Intervention 16/99 (16%) 52/102 (51%) 106/145 (73%)

Cryptosporidium

Continued on next page
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Appendix 1—table 2 continued

Baseline Prevalence

1–11 months 12–23 months 24–48 months

All children 10/208 (4.8%) 9/221 (4.1%) 5/297 (1.7%)

Control 2/109 (1.8%) 5/119 (4.2%) 1/152 (0.66%)

Intervention 8/99 (8.1%) 4/102 (3.9%) 4/145 (2.8%)

E. histolytica

All children 1/208 (0.48%) 0/221 (0.0%) 3/297 (1%)

Control 0/109 (0.0%) 0/119 (0.0%) 0/152 (0.0%)

Intervention 1/99 (1%) 0/102 (0.0%) 3/145 (2.1%)

Any virus

All children 36/208 (17%) 34/221 (15%) 33/297 (11%)

Control 15/109 (14%) 19/119 (16%) 19/152 (13%)

Intervention 21/99 (21%) 15/102 (15%) 14/145 (9.7%)

Norovirus GI/GII

All children 27/208 (13%) 25/221 (11%) 23/297 (7.7%)

Control 12/109 (11%) 14/119 (12%) 12/152 (7.9%)

Intervention 15/99 (15%) 11/102 (11%) 11/145 (7.6%)

Adenovirus 40/41

All children 7/208 (3.4%) 7/221 (3.2%) 8/297 (2.7%)

Control 4/109 (3.7%) 3/119 (2.5%) 6/152 (4%)

Intervention 3/99 (3%) 4/102 (3.9%) 2/145 (1.4%)

Rotavirus A

All children 3/208 (1.4%) 5/221 (2.3%) 2/297 (0.67%)

Control 0/109 (0.0%) 2/119 (1.7%) 1/152 (0.66%)

Intervention 3/99 (3%) 3/102 (2.9%) 1/145 (0.69%)

Coinfection, �2 GPP pathogens

All children 48/208 (23%) 118/221 (53%) 203/297 (68%)

Control 23/109 (21%) 69/119 (58%) 104/152 (68%)

Intervention 25/99 (25%) 49/102 (48%) 99/145 (68%)

Trichuris

All children 20/185 (11%) 69/203 (34%) 150/277 (54%)

Control 10/93 (11%) 38/112 (34%) 82/144 (57%)

Intervention 10/92 (11%) 31/91 (34%) 68/133 (51%)

Ascaris

All children 21/185 (11%) 53/203 (26%) 81/277 (29%)

Control 12/93 (13%) 33/112 (29%) 47/144 (33%)

Intervention 9/92 (9.8%) 20/91 (22%) 34/133 (26%)

Coinfection, �2 STH

All children 11/185 (6%) 33/203 (16%) 60/277 (22%)

Control 5/93 (5.4%) 21/112 (19%) 35/144 (24%)

Intervention 6/92 (6.5%) 12/91 (13%) 25/133 (19%)

Number of GPP infections

All children 0.94 (1.1) 1.8 (1.2) 1.9 (0.95)

Control 0.88 (1.1) 1.8 (1.1) 2 (0.93)

Intervention 1 (1.1) 1.7 (1.3) 1.9 (0.98)

Continued on next page
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Appendix 1—table 2 continued

Baseline Prevalence

1–11 months 12–23 months 24–48 months

Number of STH infections

All children 0.23 (0.55) 0.61 (0.75) 0.86 (0.76)

Control 0.24 (0.54) 0.64 (0.78) 0.9 (0.76)

Intervention 0.23 (0.56) 0.57 (0.72) 0.8 (0.76)

Data presented n/N (%) or mean (standard deviation). All bacterial, protozoan, and viral pathogens

were measured using the Luminex Gastrointestinal Pathogen panel. STH were measured using the

Kato-Katz method. Diarrhea was measured via caregiver report in household surveys.
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Appendix 1—figure 4. Prevalence of pathogens by age at baseline, 12-month, and 24-month

phases. Results are smoothed averages stratified by study arm with 95% confidence intervals

represented by shaded areas.
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Appendix 1—table 3. Baseline enrollment characteristics of children with and without repeated

measures at the 12-month phase.

Results are presented for all children combined and stratified by study arm.

All children Control Intervention

BL and
12M*

BL
only†

Std.
diff.‡

BL and
12M BL only

Std.
diff.

BL and
12M BL only

Std.
diff.

Outcomes

Diarrhea 83/609
(14%)

43/365
(12%)

0.06 38/310
(12%)

29/216
(13%)

0.03 45/299
(15%)

14/149
(9.4%)

0.17

Any bacterial or protozoan
infection

376/485
(78%)

215/268
(80%)

0.07 184/234
(79%)

129/158
(82%)

0.08 192/251
(76%)

86/110
(78%)

0.04

Any GPP infection 390/485
(80%)

225/268
(84%)

0.09 188/234
(80%)

135/158
(85%)

0.14 202/251
(80%)

90/110
(82%)

0.03

Any bacterial infection 311/485
(64%)

187/268
(70%)

0.12 157/234
(67%)

114/158
(72%)

0.11 154/251
(61%)

73/110
(66%)

0.10

Shigella 200/485
(41%)

131/268
(49%)

0.15 101/234
(43%)

78/158
(49%)

0.12 99/251
(39%)

53/110
(48%)

0.18

ETEC 147/485
(30%)

79/268
(29%)

0.02 68/234
(29%)

48/158
(30%)

0.03 79/251
(31%)

31/110
(28%)

0.07

Campylobacter 37/485
(7.6%)

23/268
(8.6%)

0.03 22/234
(9.4%)

17/158
(11%)

0.05 15/251
(6%)

6/110
(5.5%)

0.02

C. difficile 23/485
(4.7%)

12/268
(4.5%)

0.01 15/234
(6.4%)

7/158
(4.4%)

0.09 8/251
(3.2%)

5/110
(4.5%)

0.07

E. coli O157 19/485
(3.9%)

12/268
(4.5%)

0.03 9/234
(3.9%)

4/158
(2.5%)

0.07 10/251
(4%)

8/110
(7.3%)

0.14

STEC 7/485
(1.4%)

6/268
(2.2%)

0.06 1/234
(0.43%)

2/158
(1.3%)

0.09 6/251
(2.4%)

4/110
(3.6%)

0.07

Any protozoan infection 257/485
(53%)

143/268
(53%)

0.01 126/234
(54%)

79/158
(50%)

0.08 131/251
(52%)

64/110
(58%)

0.12

Giardia 247/485
(51%)

140/268
(52%)

0.03 122/234
(52%)

79/158
(50%)

0.04 125/251
(50%)

61/110
(55%)

0.11

Cryptosporidium 20/485
(4.1%)

4/268
(1.5%)

0.16 7/234
(3%)

1/158
(0.63%)

0.18 13/251
(5.2%)

3/110
(2.7%)

0.13

E. histolytica 2/485
(0.41%)

2/268
(0.75%)

0.04 0/234
(0.0%)

0/158
(0.0%)

. .** 2/251
(0.80%)

2/110
(1.8%)

0.09

Any viral infection 66/485
(14%)

39/268
(15%)

0.03 31/234
(13%)

22/158
(14%)

0.02 35/251
(14%)

17/110
(15%)

0.04

Adenovirus 40/41 14/485
(2.9%)

8/268
(3%)

0.01 8/234
(3.4%)

5/158
(3.2%)

0.01 6/251
(2.4%)

3/110
(2.7%)

0.02

Norovirus GI/GII 50/485
(10%)

27/268
(10%)

0.01 23/234
(9.8%)

15/158
(9.5%)

0.01 27/251
(11%)

12/110
(11%)

0.00

Rotavirus A 5/485
(1%)

5/268
(1.9%)

0.07 1/234
(0.43%)

2/158
(1.3%)

0.09 4/251
(1.6%)

3/110
(2.7%)

0.08

Coinfection, �2 GPP infections 251/485
(52%)

140/268
(52%)

0.01 126/234
(54%)

80/158
(51%)

0.06 125/251
(50%)

60/110
(55%)

0.10

Any STH infection 202/447
(45%)

106/242
(44%)

0.03 106/218
(49%)

64/142
(45%)

0.07 96/229
(42%)

42/100
(42%)

0.00

Ascaris 109/447
(24%)

54/242
(22%)

0.05 65/218
(30%)

30/142
(21%)

0.20 44/229
(19%)

24/100
(24%)

0.12

Trichuris 170/447
(38%)

86/242
(36%)

0.05 85/218
(39%)

54/142
(38%)

0.02 85/229
(37%)

32/100
(32%)

0.11

Coinfection,�2 STH infections 77/447
(17%)

34/242
(14%)

0.09 44/218
(20%)

20/142
(14%)

0.16 33/229
(14%)

14/100
(14%)

0.01

Number of GPP infections 1.6 (1.1) 1.7 (1.1) 0.07 1.6 (1.1) 1.6 (1.1) 0.02 1.6 (1.1) 1.7 (1.2) 0.14
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Appendix 1—table 3 continued

All children Control Intervention

BL and
12M*

BL
only†

Std.
diff.‡

BL and
12M BL only

Std.
diff.

BL and
12M BL only

Std.
diff.

Number of STH infections 0.64
(0.77)

0.58
(0.73)

0.08 0.7
(0.79)

0.59
(0.73)

0.14 0.59
(0.75)

0.57
(0.73)

0.03

Child-, household-, compound-level characteristics

Child sex, female 319/614
(52%)

174/350
(50%)

0.04 169/312
(54%)

97/208
(47%)

0.15 150/302
(50%)

77/142
(54%)

0.09

Child breastfed 206/609
(34%)

106/365
(29%)

0.10 107/310
(35%)

62/216
(29%)

0.13 99/299
(33%)

44/149
(30%)

0.08

Child exclusively breastfed 51/609
(8.4%)

35/365
(9.6%)

0.04 27/310
(8.7%)

22/216
(10%)

0.05 24/299
(8%)

13/149
(8.7%)

0.03

Child age at survey, days 697
(409)

697
(396)

0.00 698
(409)

703
(400)

0.01 696
(409)

689
(391)

0.02

Child age at sampling, days 668
(399)

656
(382)

0.03 661
(397)

655
(395)

0.02 674
(402)

657
(364)

0.04

Child wears diapers 402/609
(66%)

234/364
(64%)

0.04 209/310
(67%)

133/216
(62%)

0.12 193/299
(65%)

101/148
(68%)

0.08

Child feces disposed in latrine 173/609
(28%)

116/365
(32%)

0.07 79/310
(25%)

69/216
(32%)

0.14 94/299
(31%)

47/149
(32%)

0.00

Caregiver completed primary
school

333/614
(54%)

193/365
(53%)

0.03 163/312
(52%)

124/216
(57%)

0.10 170/302
(56%)

69/149
(46%)

0.20

Mother alive 576/590
(98%)

353/358
(99%)

0.07 295/301
(98%)

208/212
(98%)

0.01 281/289
(97%)

145/146
(99%)

0.16

Respondent is child’s mother 414/605
(68%)

238/357
(67%)

0.04 222/307
(72%)

146/212
(69%)

0.08 192/298
(64%)

92/145
(63%)

0.02

Household floors covered 575/615
(94%)

349/368
(95%)

0.06 300/313
(96%)

211/217
(97%)

0.08 275/302
(91%)

138/151
(91%)

0.01

Household walls made of sturdy
material

399/615
(65%)

243/368
(66%)

0.02 216/313
(69%)

154/217
(71%)

0.04 183/302
(61%)

89/151
(59%)

0.03

Latrine has drop-hole 359/604
(59%)

193/364
(53%)

0.13 169/307
(55%)

109/214
(51%)

0.08 190/297
(64%)

84/150
(56%)

0.16

Latrine has vent-pipe 93/605
(15%)

44/364
(12%)

0.10 21/308
(6.8%)

12/214
(5.6%)

0.05 72/297
(24%)

32/150
(21%)

0.07

Latrine has ceramic or concrete
slab or pedestal

224/602
(37%)

133/363
(37%)

0.01 101/305
(33%)

80/213
(38%)

0.09 123/297
(41%)

53/150
(35%)

0.13

Latrine has sturdy walls 193/605
(32%)

110/363
(30%)

0.03 84/306
(27%)

58/215
(27%)

0.01 109/299
(36%)

52/148
(35%)

0.03

Water tap on compound grounds 468/606
(77%)

285/364
(78%)

0.03 224/308
(73%)

162/214
(76%)

0.07 244/298
(82%)

123/150
(82%)

0.00

Household crowding,�3 persons/
room

122/615
(20%)

45/368
(12%)

0.21 55/313
(18%)

22/217
(10%)

0.22 67/302
(22%)

23/151
(15%)

0.18

Compound electricity normally
functions

556/615
(90%)

331/372
(89%)

0.05 272/313
(87%)

195/220
(89%)

0.05 284/302
(94%)

136/152
(89%)

0.17

Standing water observed in
compound

44/605
(7.3%)

26/363
(7.2%)

0.00 7/306
(2.3%)

7/215
(3.3%)

0.06 37/299
(12%)

19/148
(13%)

0.01

Leaking or standing wastewater
observed in compound

371/605
(61%)

233/363
(64%)

0.06 214/306
(70%)

149/215
(69%)

0.01 157/299
(53%)

84/148
(57%)

0.09

Any animal observed 395/615
(64%)

226/372
(61%)

0.07 189/313
(60%)

129/220
(59%)

0.04 206/302
(68%)

97/152
(64%)

0.09

Dog observed 51/615
(8.3%)

23/372
(6.2%)

0.08 18/313
(5.8%)

10/220
(4.5%)

0.05 33/302
(11%)

13/152
(8.6%)

0.08

Chicken or duck observed 94/615
(15%)

36/372
(9.7%)

0.17 43/313
(14%)

27/220
(12%)

0.04 51/302
(17%)

9/152
(5.9%)

0.35
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Appendix 1—table 3 continued

All children Control Intervention

BL and
12M*

BL
only†

Std.
diff.‡

BL and
12M BL only

Std.
diff.

BL and
12M BL only

Std.
diff.

Cat observed 341/615
(55%)

205/372
(55%)

0.01 167/313
(53%)

120/220
(55%)

0.02 174/302
(58%)

85/152
(56%)

0.03

Faeces or used diapers observed
around compound

276/605
(46%)

177/363
(49%)

0.06 166/306
(54%)

116/215
(54%)

0.01 110/299
(37%)

61/148
(41%)

0.09

Compound floods during rain 377/615
(61%)

226/372
(61%)

0.01 211/313
(67%)

137/220
(62%)

0.11 166/302
(55%)

89/152
(59%)

0.07

Number of household members 6.4 (3.3) 5.6 (2.6) 0.27 6 (3) 5.2 (2.1) 0.33 6.8 (3.5) 6.3 (3.1) 0.18

Household wealth score, 0–1 0.43
(0.1)

0.44
(0.099)

0.10 0.44
(0.1)

0.45
(0.097)

0.15 0.43
(0.1)

0.43
(0.1)

0.01

Number of households in
compound

5.2 (4.6) 4.7 (4.4) 0.11 4.4 (2.9) 3.8 (1.7) 0.21 6.1 (5.6) 6 (6.4) 0.02

Compound population 21 (15) 19 (14) 0.18 17 (8.1) 15 (6.1) 0.22 26 (18) 24 (20) 0.11

Number of water taps in
compound

1.5 (2.2) 1.2 (1) 0.22 1 (1.1) 0.97
(0.83)

0.04 2.1 (2.8) 1.4 (1.2) 0.30

Number of latrines/drop-holes in
compound

1.1
(0.63)

1.1
(0.65)

0.00 1 (0.24) 1 (0.2) 0.04 1.2
(0.86)

1.3
(0.97)

0.03

Compound population density 0.084
(0.046)

0.078
(0.045)

0.13 0.076
(0.04)

0.07
(0.039)

0.14 0.092
(0.051)

0.089
(0.05)

0.06

Results are presented as prevalence (n/N (%)) or mean (standard deviation) at baseline.

*Prevalence (or mean (SD)) for children with repeated observations at baseline and 12-month visits.
†Prevalence (or mean (SD)) for children with observations at baseline visit and not the 12-month visit.
‡Standardized mean difference between observations of children with and without repeated meas-

ures at baseline and 12-month visits.
§ Could not be calculated.

Appendix 1—table 4. Baseline enrollment characteristics of children with and without repeated

measures at the 24-month phase.

Results are presented for all children combined and stratified by study arm.

All children Control Intervention

BL and
24M*

BL
only†

Std.
Diff.‡

BL and
24M BL only

Std.
Diff.

BL and
24M BL only

Std.
Diff.

Outcomes

Diarrhea 75/504
(15%)

51/470
(11%)

0.12 35/244
(14%)

32/282
(11%)

0.09 40/260
(15%)

19/188
(10%)

0.16

Any bacterial or protozoan
infection

310/394
(79%)

281/359
(78%)

0.01 144/183
(79%)

169/209
(81%)

0.05 166/211
(79%)

112/150
(75%)

0.09

Any GPP infection 322/394
(82%)

293/359
(82%)

0.00 148/183
(81%)

175/209
(84%)

0.07 174/211
(82%)

118/150
(79%)

0.10

Any bacterial infection 251/394
(64%)

247/359
(69%)

0.11 120/183
(66%)

151/209
(72%)

0.14 131/211
(62%)

96/150
(64%)

0.04

Shigella 158/394
(40%)

173/359
(48%)

0.16 74/183
(40%)

105/209
(50%)

0.20 84/211
(40%)

68/150
(45%)

0.11

ETEC 115/394
(29%)

111/359
(31%)

0.04 53/183
(29%)

63/209
(30%)

0.03 62/211
(29%)

48/150
(32%)

0.06

Campylobacter 31/394
(7.9%)

29/359
(8.1%)

0.01 18/183
(9.8%)

21/209
(10%)

0.01 13/211
(6.2%)

8/150
(5.3%)

0.04

Continued on next page
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Appendix 1—table 4 continued

All children Control Intervention

BL and
24M*

BL
only†

Std.
Diff.‡

BL and
24M BL only

Std.
Diff.

BL and
24M BL only

Std.
Diff.

C. difficile 18/394
(4.6%)

17/359
(4.7%)

0.01 10/183
(5.5%)

12/209
(5.7%)

0.01 8/211
(3.8%)

5/150
(3.3%)

0.02

E. coli O157 17/394
(4.3%)

14/359
(3.9%)

0.02 7/183
(3.8%)

6/209
(2.9%)

0.05 10/211
(4.7%)

8/150
(5.3%)

0.03

STEC 6/394
(1.5%)

7/359
(1.9%)

0.03 2/183
(1.1%)

1/209
(0.48%)

0.07 4/211
(1.9%)

6/150
(4%)

0.12

Any protozoan infection 214/394
(54%)

186/359
(52%)

0.05 96/183
(52%)

109/209
(52%)

0.01 118/211
(56%)

77/150
(51%)

0.09

Giardia 204/394
(52%)

183/359
(51%)

0.02 92/183
(50%)

109/209
(52%)

0.04 112/211
(53%)

74/150
(49%)

0.08

Cryptosporidium 20/394
(5.1%)

4/359
(1.1%)

0.23 7/183
(3.8%)

1/209
(0.48%)

0.23 13/211
(6.2%)

3/150
(2%)

0.21

E. histolytica 2/394
(0.51%)

2/359
(0.56%)

0.01 0/183
(0.0%)

0/209
(0.0%)

..§ 2/211
(0.95%)

2/150
(1.3%)

0.04

Any viral infection 55/394
(14%)

50/359
(14%)

0.00 22/183
(12%)

31/209
(15%)

0.08 33/211
(16%)

19/150
(13%)

0.09

Adenovirus 40/41 14/394
(3.5%)

8/359
(2.2%)

0.08 7/183
(3.8%)

6/209
(2.9%)

0.05 7/211
(3.3%)

2/150
(1.3%)

0.13

Norovirus GI/GII 42/394
(11%)

35/359
(9.8%)

0.03 15/183
(8.2%)

23/209
(11%)

0.10 27/211
(13%)

12/150
(8%)

0.16

Rotavirus A 3/394
(0.76%)

7/359
(1.9%)

0.10 1/183
(0.55%)

2/209
(0.96%)

0.05 2/211
(0.95%)

5/150
(3.3%)

0.17

Coinfection,�2 GPP infections 206/394
(52%)

185/359
(52%)

0.02 97/183
(53%)

109/209
(52%)

0.02 109/211
(52%)

76/150
(51%)

0.02

Any STH infection 156/362
(43%)

152/327
(46%)

0.07 80/171
(47%)

90/189
(48%)

0.02 76/191
(40%)

62/138
(45%)

0.10

Ascaris 85/362
(23%)

78/327
(24%)

0.01 50/171
(29%)

45/189
(24%)

0.12 35/191
(18%)

33/138
(24%)

0.14

Trichuris 128/362
(35%)

128/327
(39%)

0.08 63/171
(37%)

76/189
(40%)

0.07 65/191
(34%)

52/138
(38%)

0.08

Coinfection,�2 STH infections 57/362
(16%)

54/327
(17%)

0.02 33/171
(19%)

31/189
(16%)

0.08 24/191
(13%)

23/138
(17%)

0.12

Number of GPP infections 1.6 (1.1) 1.6 (1.2) 0.04 1.6 (1.1) 1.7 (1.1) 0.10 1.6 (1.1) 1.6 (1.2) 0.01

Number of STH infections 0.61
(0.75)

0.64
(0.76)

0.04 0.67
(0.78)

0.65
(0.75)

0.03 0.55
(0.72)

0.63
(0.77)

0.10

Child-, household-, compound-level characteristics

Child sex, female 260/503
(52%)

233/461
(51%)

0.02 124/241
(51%)

142/279
(51%)

0.01 136/262
(52%)

91/182
(50%)

0.04

Child breastfed 172/504
(34%)

140/470
(30%)

0.09 87/244
(36%)

82/282
(29%)

0.14 85/260
(33%)

58/188
(31%)

0.04

Child exclusively breastfed 35/504
(6.9%)

51/470
(11%)

0.14 19/244
(7.8%)

30/282
(11%)

0.10 16/260
(6.2%)

21/188
(11%)

0.18

Child age at survey, days 698
(403)

696
(405)

0.01 689
(400)

709
(410)

0.05 707
(406)

675
(398)

0.08

Child age at sampling, days 675
(406)

651
(379)

0.06 666
(403)

652
(390)

0.04 682
(409)

650
(364)

0.08

Child wears diapers 343/504
(68%)

293/469
(62%)

0.12 171/244
(70%)

171/282
(61%)

0.20 172/260
(66%)

122/187
(65%)

0.02

Child feces disposed in latrine 138/504
(27%)

151/470
(32%)

0.10 57/244
(23%)

91/282
(32%)

0.20 81/260
(31%)

60/188
(32%)

0.02

Continued on next page
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Appendix 1—table 4 continued

All children Control Intervention

BL and
24M*

BL
only†

Std.
Diff.‡

BL and
24M BL only

Std.
Diff.

BL and
24M BL only

Std.
Diff.

Caregiver completed primary
school

274/507
(54%)

252/472
(53%)

0.01 131/245
(53%)

156/283
(55%)

0.03 143/262
(55%)

96/189
(51%)

0.08

Mother alive 474/486
(98%)

455/462
(98%)

0.07 232/236
(98%)

271/277
(98%)

0.03 242/250
(97%)

184/185
(99%)

0.20

Respondent is child’s mother 337/500
(67%)

315/462
(68%)

0.02 173/241
(72%)

195/278
(70%)

0.04 164/259
(63%)

120/184
(65%)

0.04

Household floors covered 469/507
(93%)

455/476
(96%)

0.13 233/245
(95%)

278/285
(98%)

0.13 236/262
(90%)

177/191
(93%)

0.09

Household walls made of sturdy
material

337/507
(66%)

305/476
(64%)

0.05 184/245
(75%)

186/285
(65%)

0.22 153/262
(58%)

119/191
(62%)

0.08

Latrine has drop-hole 294/497
(59%)

258/471
(55%)

0.09 133/239
(56%)

145/282
(51%)

0.08 161/258
(62%)

113/189
(60%)

0.05

Latrine has vent-pipe 80/497
(16%)

57/472
(12%)

0.12 18/239
(7.5%)

15/283
(5.3%)

0.09 62/258
(24%)

42/189
(22%)

0.04

Latrine has ceramic or concrete
slab or pedestal

184/494
(37%)

173/471
(37%)

0.01 77/236
(33%)

104/282
(37%)

0.09 107/258
(41%)

69/189
(37%)

0.10

Latrine has sturdy walls 165/501
(33%)

138/467
(30%)

0.07 67/240
(28%)

75/281
(27%)

0.03 98/261
(38%)

63/186
(34%)

0.08

Water tap on compound grounds 389/498
(78%)

364/472
(77%)

0.02 171/239
(72%)

215/283
(76%)

0.10 218/259
(84%)

149/189
(79%)

0.14

Household crowding,�3 persons/
room

114/507
(22%)

53/476
(11%)

0.31 45/245
(18%)

32/285
(11%)

0.20 69/262
(26%)

21/191
(11%)

0.40

Compound electricity normally
functions

454/507
(90%)

433/480
(90%)

0.02 214/245
(87%)

253/288
(88%)

0.02 240/262
(92%)

180/192
(94%)

0.08

Standing water observed in
compound

39/501
(7.8%)

31/467
(6.6%)

0.04 7/240
(2.9%)

7/281
(2.5%)

0.03 32/261
(12%)

24/186
(13%)

0.02

Leaking or standing wastewater
observed in compound

308/501
(61%)

296/467
(63%)

0.04 164/240
(68%)

199/281
(71%)

0.05 144/261
(55%)

97/186
(52%)

0.06

Any animal observed 337/507
(66%)

284/480
(59%)

0.15 156/245
(64%)

162/288
(56%)

0.15 181/262
(69%)

122/192
(64%)

0.12

Dog observed 49/507
(9.7%)

25/480
(5.2%)

0.17 17/245
(6.9%)

11/288
(3.8%)

0.14 32/262
(12%)

14/192
(7.3%)

0.17

Chicken or duck observed 71/507
(14%)

59/480
(12%)

0.05 32/245
(13%)

38/288
(13%)

0.00 39/262
(15%)

21/192
(11%)

0.12

Cat observed 294/507
(58%)

252/480
(53%)

0.11 143/245
(58%)

144/288
(50%)

0.17 151/262
(58%)

108/192
(56%)

0.03

Feces or used diapers observed
around compound

218/501
(44%)

235/467
(50%)

0.14 120/240
(50%)

162/281
(58%)

0.15 98/261
(38%)

73/186
(39%)

0.03

Compound floods during rain 310/507
(61%)

293/480
(61%)

0.00 166/245
(68%)

182/288
(63%)

0.10 144/262
(55%)

111/192
(58%)

0.06

Number of household members 6.7 (3.4) 5.5 (2.6) 0.39 6.3 (3) 5.2 (2.2) 0.42 7.1 (3.6) 6.1 (3) 0.31

Household wealth score, 0–1 0.43
(0.11)

0.44
(0.097)

0.12 0.44
(0.1)

0.45
(0.095)

0.10 0.42
(0.11)

0.43
(0.1)

0.11

Number of households in
compound

5.3 (4.7) 4.7 (4.3) 0.13 4.4 (3.1) 3.9 (1.8) 0.21 6.1 (5.7) 5.9 (6.2) 0.03

Compound population 22 (15) 18 (14) 0.26 17 (8.1) 15 (6.5) 0.27 27 (18) 23 (19) 0.18

Number of water taps in
compound

1.6 (2.2) 1.2 (1.3) 0.24 1 (1) 0.99
(0.92)

0.02 2.2 (2.8) 1.4 (1.8) 0.31

Number of latrines in compound 1.1
(0.62)

1.1
(0.65)

0.01 1 (0.25) 1 (0.19) 0.04 1.2
(0.82)

1.3
(0.99)

0.08

Compound population density 0.084
(0.049)

0.079
(0.042)

0.13 0.072
(0.038)

0.075
(0.04)

0.05 0.096
(0.055)

0.084
(0.044)

0.23
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Results are presented as prevalence (n/N (%)) or mean (standard deviation) at baseline.

*Prevalence (or mean (SD)) for children with repeated observations at baseline and 24-month visits.
†Prevalence (or mean (SD)) for children with observations at the baseline visit and not the 24-month

visit.
‡Standardized mean difference between observations of children with and without repeated meas-

ures at baseline and 24-month visits.
§Could not be calculated.

Appendix 1—table 5. Balance of characteristics measured at 12-month visits between children with

repeat observations at baseline and 12-month and children with observations at the 12-month phase

only.

All Children Control Intervention

BL and
12M*

12M
only†

Std.
Diff.‡

BL and
12M

12M
only

Std.
Diff.

BL and
12M

12M
only

Std.
Diff.

Std. Diff.
Control v.
Interv.§

Child sex, female 319/
614
(52%)

156/
313
(50%)

0.04 169/
312
(54%)

73/155
(47%)

0.14 150/
302
(50%)

83/158
(53%)

0.06 0.11

Child breastfed 27/562
(4.8%)

161/
305
(53%)

1.25 13/280
(4.6%)

76/151
(50%)

1.19 14/282
(5%)

85/154
(55%)

1.31 0.10

Child exclusively
breastfed

3/562
(0.53%)

38/305
(12%)

0.50 2/280
(0.71%)

16/151
(11%)

0.44 1/282
(0.35%)

22/154
(14%)

0.56 0.11

Caregiver completed
primary school

305/
614
(50%)

144/
309
(47%)

0.06 156/
312
(50%)

62/153
(41%)

0.19 149/
302
(49%)

82/156
(53%)

0.06 0.24

Child wears diapers 83/563
(15%)

194/
305
(64%)

1.16 40/281
(14%)

92/151
(61%)

1.10 43/282
(15%)

102/
154
(66%)

1.21 0.11

Respondent is child’s
mother

365/
563
(65%)

236/
305
(77%)

0.28 188/
281
(67%)

121/
151
(80%)

0.30 177/
282
(63%)

115/
154
(75%)

0.26 0.13

Household floors
covered

584/
615
(95%)

305/
321
(95%)

0.00 299/
313
(96%)

155/
163
(95%)

0.02 285/
302
(94%)

150/
158
(95%)

0.03 0.01

Household walls made
of sturdy material

398/
615
(65%)

189/
321
(59%)

0.12 212/
313
(68%)

101/
163
(62%)

0.12 186/
302
(62%)

88/158
(56%)

0.12 0.13

Household
crowding,�3 persons/
room

210/
615
(34%)

106/
321
(33%)

0.02 111/
313
(35%)

54/163
(33%)

0.05 99/302
(33%)

52/158
(33%)

0.00 0.00

Compound electricity
normally functions

575/
615
(94%)

304/
324
(94%)

0.01 286/
313
(91%)

152/
164
(93%)

0.05 289/
302
(96%)

152/
160
(95%)

0.03 0.10

Any animal observed 505/
611
(83%)

275/
324
(85%)

0.06 235/
309
(76%)

131/
164
(80%)

0.09 270/
302
(89%)

144/
160
(90%)

0.02 0.29

Dog observed 134/
611
(22%)

81/324
(25%)

0.07 57/309
(18%)

37/164
(23%)

0.10 77/302
(26%)

44/160
(28%)

0.05 0.11

Chicken or duck
observed

77/611
(13%)

42/324
(13%)

0.01 34/309
(11%)

18/164
(11%)

0.00 43/302
(14%)

24/160
(15%)

0.02 0.12

Cat observed 469/
611
(77%)

249/
324
(77%)

0.00 218/
309
(71%)

118/
164
(72%)

0.03 251/
302
(83%)

131/
160
(82%)

0.03 0.24
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Appendix 1—table 5 continued

All Children Control Intervention

BL and
12M*

12M
only†

Std.
Diff.‡

BL and
12M

12M
only

Std.
Diff.

BL and
12M

12M
only

Std.
Diff.

Std. Diff.
Control v.
Interv.§

Compound floods
during rain

220/
615
(36%)

119/
324
(37%)

0.02 132/
313
(42%)

64/164
(39%)

0.06 88/302
(29%)

55/160
(34%)

0.11 0.10

Child age at survey,
days

1114
(415)

622
(502)

1.07 1105
(413)

684
(535)

0.88 1122
(417)

560
(461)

1.28 0.25

Child age at sampling,
days

1102
(417)

605
(484)

1.10 1080
(414)

649
(516)

0.92 1122
(420)

563
(450)

1.29 0.18

Number of household
members

6.5 (3.2) 6.3 (3.3) 0.06 6.2 (3) 6.4 (3.5) 0.05 6.8 (3.3) 6.2 (3.2) 0.17 0.05

Household wealth
score, 0–1

0.4
(0.11)

0.39
(0.11)

0.02 0.4
(0.11)

0.39
(0.11)

0.12 0.39
(0.1)

0.4 (0.1) 0.10 0.11

Number of
households in
compound

5.2 (4.7) 5.4 (5.5) 0.04 4.2 (2.9) 4 (2.3) 0.09 6.3 (5.9) 6.9 (7.3) 0.09 0.53

Compound
population

23 (22) 24 (26) 0.04 18 (9.7) 18 (8.7) 0.05 28 (29) 30 (35) 0.07 0.50

Compound
population density

0.086
(0.049)

0.084
(0.051)

0.04 0.08
(0.043)

0.078
(0.044)

0.05 0.091
(0.054)

0.089
(0.058)

0.03 0.22

Results are presented as prevalence (n/N (%)) or mean (standard deviation) at 12-month visit.

*Prevalence (or mean (SD)) for children with repeated observations at baseline and 12-month visits.
†Prevalence (or mean (SD)) for children with observations at the 12-month visit only.
‡Standardized mean difference between observations of children with and without repeated meas-

ures at baseline and 12-month visits.
§Standardized mean difference between observations from control and intervention children mea-

sured at 12-month visit only.

Appendix 1—table 6. Balance of characteristics measured at 24-month visits between children with

repeat observations at baseline and 24-month and children with observations at the 24-month phase

only.

All Children Control Intervention

BL and
24M*

24M
only†

Std.
Diff.†

BL and
24M

24M
only

Std.
Diff.

BL and
24M

24M
only

Std.
Diff.

Std. Diff.
Control v.
Interv.§

Child sex, female 260/
503
(52%)

190/
428
(44%)

0.15 124/
241
(51%)

96/222
(43%)

0.16 136/
262
(52%)

94/206
(46%)

0.13 0.05

Child breastfed 0/418
(0.0%)

129/
381
(34%)

1.01 0/195
(0.0%)

68/194
(35%)

1.04 0/223
(0.0%)

61/187
(33%)

0.98 0.05

Child exclusively
breastfed

0/418
(0.0%)

36/381
(9.4%)

0.46 0/195
(0.0%)

16/194
(8.3%)

0.42 0/223
(0.0%)

20/187
(11%)

0.49 0.08

Caregiver completed
primary school

199/
507
(39%)

164/
427
(38%)

0.02 88/245
(36%)

82/221
(37%)

0.02 111/
262
(42%)

82/206
(40%)

0.05 0.06

Child wears diapers 3/419
(0.72%)

196/
381
(51%)

1.42 1/196
(0.51%)

101/
194
(52%)

1.44 2/223
(0.9%)

95/187
(51%)

1.39 0.03

Respondent is child’s
mother

259/
419
(62%)

298/
381
(78%)

0.36 129/
196
(66%)

161/
194
(83%)

0.40 130/
223
(58%)

137/
187
(73%)

0.32 0.24
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Appendix 1—table 6 continued

All Children Control Intervention

BL and
24M*

24M
only†

Std.
Diff.†

BL and
24M

24M
only

Std.
Diff.

BL and
24M

24M
only

Std.
Diff.

Std. Diff.
Control v.
Interv.§

Household floors
covered

484/
507
(95%)

459/
467
(98%)

0.16 237/
245
(97%)

234/
239
(98%)

0.07 247/
262
(94%)

225/
228
(99%)

0.24 0.06

Household walls made
of sturdy material

352/
507
(69%)

296/
467
(63%)

0.13 180/
245
(73%)

157/
239
(66%)

0.17 172/
262
(66%)

139/
228
(61%)

0.10 0.10

Household
crowding,�3 persons/
room

137/
507
(27%)

108/
467
(23%)

0.09 74/245
(30%)

66/239
(28%)

0.06 63/262
(24%)

42/228
(18%)

0.14 0.22

Compound electricity
normally functions

485/
507
(96%)

472/
494
(96%)

0.01 230/
245
(94%)

237/
254
(93%)

0.02 255/
262
(97%)

235/
240
(98%)

0.04 0.23

Any animal observed 384/
507
(76%)

359/
494
(73%)

0.07 162/
245
(66%)

182/
254
(72%)

0.12 222/
262
(85%)

177/
240
(74%)

0.27 0.05

Dog observed 70/507
(14%)

78/494
(16%)

0.06 30/245
(12%)

40/254
(16%)

0.10 40/262
(15%)

38/240
(16%)

0.02 0.00

Chicken or duck
observed

63/507
(12%)

52/494
(11%)

0.06 22/245
(9%)

32/254
(13%)

0.12 41/262
(16%)

20/240
(8.3%)

0.23 0.14

Cat observed 360/
507
(71%)

340/
494
(69%)

0.05 154/
245
(63%)

174/
254
(69%)

0.12 206/
262
(79%)

166/
240
(69%)

0.22 0.01

Compound floods
during rain

182/
507
(36%)

184/
494
(37%)

0.03 89/245
(36%)

107/
254
(42%)

0.12 93/262
(36%)

77/240
(32%)

0.07 0.21

Child age at survey,
days

1518
(407)

740
(518)

1.67 1520
(406)

749
(541)

1.61 1516
(408)

731
(494)

1.73 0.04

Child age at sampling,
days

1510
(415)

694
(478)

1.82 1505
(408)

716
(512)

1.70 1516
(422)

672
(439)

1.96 0.09

Number of household
members

6.6 (3.1) 6.3 (3.4) 0.10 6.5 (3) 6.6 (3.8) 0.04 6.7 (3.1) 6 (2.8) 0.26 0.20

Household wealth
score, 0–1

0.41
(0.11)

0.41
(0.11)

0.01 0.41
(0.12)

0.4
(0.11)

0.11 0.41
(0.1)

0.42
(0.097)

0.15 0.19

Number of
households in
compound

5.3 (4.9) 5.5 (5.5) 0.04 4.3 (2.8) 4.4 (3.2) 0.03 6.2 (6.1) 6.6 (6.9) 0.06 0.41

Compound
population

21 (15) 21 (16) 0.04 18 (9.5) 17 (8.9) 0.07 25 (19) 25 (21) 0.00 0.47

Compound
population density

0.08
(0.047)

0.08
(0.047)

0.01 0.074
(0.037)

0.075
(0.042)

0.03 0.087
(0.053)

0.085
(0.052)

0.03 0.22

Results are presented as prevalence (n/N (%)) or mean (standard deviation) at 24-month visit.

* Prevalence (or mean (SD)) for children with repeated observations at baseline and 24-month visits.
†Prevalence (or mean (SD)) for children with observations at the 24-month visit only.
‡Standardized mean difference between observations of children with and without repeated meas-

ures at baseline and 24-month visits.
§Standardized mean difference between observations from control and intervention children mea-

sured at 24-month visit only.
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Appendix 1—table 7. Sensitivity analysis assessing the impact of reported deworming on STH

effect estimates 12 and 24 months after the intervention.

12-month Prevalence ratio 24-month Prevalence ratio

Main
analysis,
all
children*

Adjusted for
reported
deworming †

Restricted to
children
dewormed at
baseline ‡

Main
analysis,
all
children*

Adjusted for
reported
deworming †

Adjusted for
time since
deworming§

n = 1239 n = 1239 n = 1031 n = 1161 n = 1161 N = 1159

Any STH
infection

1.11 (0.89–
1.38)

1.09 (0.87–1.35) 1.06 (0.84–1.33) 0.95 (0.77–
1.17)

0.93 (0.77–1.16) 0.93 (0.75–1.14)

Trichuris 1.01 (0.79–
1.28)

0.98 (0.77–1.24) 0.96 (0.74–1.23) 0.86 (0.67–
1.10)

0.85 (0.66–1.08) 0.86 (0.67–1.09)

Ascaris 1.33 (0.92–
1.93)

1.30 (0.90–1.88) 1.30 (0.87–1.94) 0.83 (0.54–
1.27)

0.84 (0.55–1.29) 0.78 (0.51–1.18)

Coinfection,�2
STH

1.17 (0.76–
1.79)

1.12 (0.73–1.71) 1.16 (0.73–1.85) 0.63 (0.37–
1.07)

0.63 (0.37–1.08) 0.60 (0.35–1.03)

All effect estimates are presented as prevalence ratios (ratio of ratios) with 95% confidence intervals and

estimated using generalized estimating equations to fit Poisson regressionmodels with robust standard

errors. All models adjusted for child age, sex, caregiver education level, and household wealth.

*Analysis includes all children regardless of caregiver-reported deworming status.

†Analysis is adjusted for reported deworming status. Effect estimates at 12 month are adjusted for

baseline deworming confirmation, effect estimates at 24 month are adjusted for baseline and/or 12

month deworming confirmation.

‡Analysis is restricted to children whose caregivers confirmed baseline deworming.

§ Adjusted for time between 12 month deworming and 24 month sample collection, time broken into

three intervals: 0–3 months, 4–6 months, and >6 months. The NDC performed 12 month deworming

activities at the end of the 12 month phase instead of concurrent to 12 month sample collection

resulting in some variation in the amount of time between 12 month deworming and 24 month sam-

ple collection among participants. All samples collected during 12 month phase were collected >6

months after deworming and no adjustment for time since deworming was made.

Appendix 1—table 8. Sensitivity analysis assessing impact of independent upgrading of control

sanitation facilities on effect estimates.

12-month adjusted prevalence ratio 24 month adjusted prevalence ratio

Main analysis,
all children*

Excluding controls with
upgraded sanitation†

Main analysis,
all children*

Excluding controls with
upgraded sanitation†

Any bacterial or
protozoan infection

1.04 (0.94–1.15),
n = 1510

1.05 (0.95–1.16), n = 1491 0.99 (0.91–1.09),
n = 1536

1.00 (0.91–1.10), n = 1502

Any STH infection 1.11 (0.89–1.38),
n = 1239

1.11 (0.89–1.38), n = 1225 0.95 (0.77–1.17),
n = 1161

0.94 (0.76–1.16), n = 1148

Diarrhea 1.69 (0.89–3.21),
n = 1594

1.76 (0.91–3.39), n = 1575 0.84 (0.47–1.51),
n = 1502

0.81 (0.45–1.48), n = 1471

All effect estimates are presented as prevalence ratios (ratio of ratios) with 95% confidence intervals

and estimated using generalized estimating equations to fit Poisson regression models with robust

standard errors. All infection outcomes are adjusted for child age and sex, caregiver’s education, and

household wealth index, and the diarrhea outcome is also adjusted for baseline presence of a drop-

hole cover and reported use of a tap on compound grounds as primary drinking water source.

* Results represent effect estimates for themain analyses which included control children irrespective of

whether their latrines had been independently upgraded (results also presented in Table 2 in main text).

† Results from sensitivity analyses which exclude control children living in compounds that indepen-

dently upgraded their latrines to be similar to the intervention.
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Appendix 1—table 10. Effect estimates (prevalence ratios) for main analyses and all sub-group

analyses adjusted for a priori covariates and age-squared.

Main analysis, all
children†

Sub-group analysis,
children born after
intervention*

Sub-group analysis,
children with
repeated
(longitudinal)
measurements†

Age stratified,
children aged > 24
months old‡

12 month 24 month 12 month 24 month 12 month 24 month 24 month

Any bacterial or
protozoan infection

1.05 (0.96–
1.15),
p=0.29

1.00 (0.92–
1.09),
p=0.97

0.95 (0.64–
1.42),
p=0.81

0.97 (0.79–
1.18),
p=0.73

1.02 (0.91–
1.14),
p=0.73

0.99 (0.89–
1.11),
p=0.89

0.98 (0.91–1.05),
p=0.57

Any STH infection 1.16 (0.93–
1.43),
p=0.18

0.94 (0.77–
1.15),
p=0.54

1.38 (0.35–
5.44),
p=0.65

0.48 (0.26–
0.92),
p=0.026

1.20 (0.91–
1.59),
p=0.20

1.22 (0.85–
1.75),
p=0.27

1.04 (0.83–1.32),
p=0.72

Diarrhea 1.73 (0.91–
3.28),
p=0.094

0.84 (0.46–
1.51),
p=0.55

1.66 (0.32–
8.68),
p=0.55

1.32 (0.45–
3.90),
p=0.61

1.71 (0.79–
3.71),
p=0.17

0.68 (0.31–
1.48),
p=0.33

0.82 (0.36–1.87),
p=0.64

Any Bacteria 1.10 (0.96–
1.26),
p=0.15

1.01 (0.88–
1.16),
p=0.87

1.23 (0.75–
2.02),
p=0.42

0.88 (0.66–
1.16),
p=0.37

1.02 (0.86–
1.20),
p=0.85

1.02 (0.85–
1.22),
p=0.85

0.96 (0.84–1.11),
p=0.61

Shigella 1.14 (0.94–
1.38),
p=0.18

0.97 (0.81–
1.16),
p=0.75

0.87 (0.25–
3.02),
p=0.83

0.48 (0.28–
0.84),
p=0.009

1.09 (0.87–
1.35),
p=0.47

0.96 (0.75–
1.23),
p=0.76

1.02 (0.85–1.23),
p=0.82

ETEC 0.97 (0.70–
1.35),
p=0.86

0.83 (0.57–
1.20),
p=0.32

0.80 (0.33–
1.95),
p=0.63

0.84 (0.47–
1.49),
p=0.55

0.86 (0.58–
1.29),
p=0.47

0.86 (0.52–
1.40),
p=0.53

0.75 (0.47–1.20),
p=0.23

Campylobacter 1.70 (0.83–
3.49),
p=0.15

1.29 (0.63–
2.64),
p=0.49

2.67 (0.59–
12.00),
p=0.2

1.63 (0.59–
4.54),
p=0.35

1.51 (0.60–
3.76),
p=0.38

1.52 (0.60–
3.83),
p=0.38

0.98 (0.30–3.21),
p=0.97

C. difficile 2.06 (0.76–
5.53),
p=0.15

1.38 (0.45–
4.20),
p=0.57

1.42 (0.43–
4.65),
p=0.57

1.45 (0.40–
5.25),
p=0.57

1.35 (0.23–
7.78),
p=0.74

0.23 (0.02–
2.67),
p=0.24

..‡

E. coli O157 0.47 (0.18–
1.23),
p=0.13

0.52 (0.17–
1.59),
p=0.25

0.00 (0.00–
0.01),
p=0.00

0.52 (0.07–
4.14),
p=0.54

0.68 (0.22–
2.07),
p=0.50

0.58 (0.12–
2.86),
p=0.51

0.48 (0.13–1.78),
p=0.27

STEC 0.15 (0.03–
0.71),
p=0.017

0.24 (0.06–
1.03),
p=0.055

..‡ 0.05 (0.00–
1.26),
p=0.069

0.11 (0.01–
1.32),
p=0.082

0.58 (0.07–
5.00),
p=0.62

1.70 (0.14–20.35),
p=0.67

Y. enterocolitica ..‡ ..‡ ..‡ ..‡ ..‡ ..‡ ..‡

V. cholerae ..‡ ..‡ ..‡ ..‡ ..‡ ..‡ ..‡

Any Protozoa 1.05 (0.89–
1.23),
p=0.6

0.92 (0.78–
1.09),
p=0.34

0.42 (0.14–
1.26),
p=0.12

0.86 (0.60–
1.23),
p=0.41

1.20 (0.97–
1.48),
p=0.095

0.92 (0.73–
1.16),
p=0.49

0.94 (0.80–1.10),
p=0.45

Giardia 1.07 (0.91–
1.26),
p=0.43

0.95 (0.80–
1.12),
p=0.51

0.46 (0.15–
1.47),
p=0.19

0.89 (0.62–
1.28),
p=0.52

1.19 (0.96–
1.47),
p=0.11

0.92 (0.73–
1.16),
p=0.47

0.96 (0.81–1.13),
p=0.6

Cryptosporidium 0.89 (0.24–
3.33),
p=0.86

0.53 (0.13–
2.17),
p=0.38

0.33 (0.02–
6.28),
p=0.46

0.51 (0.09–
2.78),
p=0.44

1.46 (0.21–
10.18),
p=0.7

0.59 (0.06–
5.45),
p=0.64

0.20 (0.02–2.28),
p=0.19

E. histolytica ..‡ ..‡ ..‡ ..‡ ..‡ ..‡ ..‡

Any virus 0.75 (0.44–
1.28),
p=0.29

1.03 (0.57–
1.86),
p=0.92

0.37 (0.14–
1.03),
p=0.056

0.79 (0.35–
1.78),
p=0.57

1.09 (0.52–
2.29),
p=0.83

0.95 (0.41–
2.19),
p=0.91

1.44 (0.61–3.38),
p=0.41

Norovirus GI/GII 0.68 (0.36–
1.28),
p=0.23

1.10 (0.55–
2.18),
p=0.79

0.42 (0.12–
1.41),
p=0.16

1.25 (0.47–
3.29),
p=0.66

0.86 (0.37–
2.00),
p=0.73

0.74 (0.29–
1.90),
p=0.53

1.16 (0.45–3.04),
p=0.76

Continued on next page
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Appendix 1—table 10 continued

Main analysis, all
children†

Sub-group analysis,
children born after
intervention*

Sub-group analysis,
children with
repeated
(longitudinal)
measurements†

Age stratified,
children aged > 24
months old‡

12 month 24 month 12 month 24 month 12 month 24 month 24 month

Adenovirus 40/41 1.26 (0.32–
4.95),
p=0.74

0.96 (0.18–
5.20),
p=0.96

0.85 (0.09–
8.30),
p=0.89

..‡ 3.77 (0.48–
29.56),
p=0.21

6.17 (0.51–
75.19),
p=0.15

7.51 (0.72–77.98),
p=0.091

Rotavirus A ..‡ ..‡ ..‡ ..‡ ..‡ ..‡ ..‡

Coinfection,�2
GPP pathogens

1.10 (0.93–
1.30),
p=0.27

0.94 (0.80–
1.11),
p=0.49

0.75 (0.33–
1.71),
p=0.49

0.83 (0.58–
1.17),
p=0.29

1.15 (0.93–
1.42),
p=0.19

0.97 (0.78–
1.21),
p=0.81

0.93 (0.78–1.11),
p=0.44

Trichuris 1.05 (0.83–
1.32),
p=0.68

0.85 (0.67–
1.08),
p=0.17

0.99 (0.23–
4.27),
p=0.98

0.24 (0.10–
0.60),
p=0.002

1.11 (0.80–
1.52),
p=0.54

1.14 (0.76–
1.70),
p=0.54

0.99 (0.77–1.27),
p=0.92

Ascaris 1.38 (0.95–
1.99),
p=0.088

0.83 (0.54–
1.26),
p=0.37

3.11 (0.30–
32.54),
p=0.34

0.65 (0.29–
1.47),
p=0.3

1.20 (0.76–
1.92),
p=0.43

0.86 (0.42–
1.75),
p=0.68

0.86 (0.51–1.44),
p=0.56

Coinfection,�2 STH 1.21 (0.78–
1.85),
p=0.39

0.62 (0.37–
1.06),
p=0.079

1.76 (0.15–
21),
p=0.66

0.12 (0.01–
1.06),
p=0.057

1.01 (0.53–
1.93),
p=0.97

0.70 (0.30–
1.62),
p=0.40

0.72 (0.40–1.29),
p=0.27

All effect estimates are presented as prevalence ratios (ratio of ratios) with 95% confidence intervals

and estimated using generalized estimating equations to fit Poisson regression models with robust

standard errors. All models are adjusted for a priori covariates (age, sex, wealth, caregiver education)

and age squared to assess the impact of the age squared term on effect estimates. †Results from

main analyses examining intervention effects among all enrolled children at 12 month and 24 month

visits. Effect estimates compared with 12 month and 24 month results in Table 2.

*Results from sub-group analyses which compared children born after the intervention was imple-

mented with children of a similar age at baseline. Effect estimates compared with results in Table 3

(24 month sub-group analysis results) and Appendix 1—table 13 (12 month sub-group analysis

results).

† Results from sub-group analyses including children with repeated measures at baseline and the 12

month phase or baseline and the 24 month phase. Effect estimates compared with results in Appen-

dix 1—tables 14 and 15.

‡ Results from sub-group analysis comparing children aged >2 years old at baseline and 24 month

phase. Effect estimates compared with results in Appendix 1—table 12.

Appendix 1—table 11. Comparison of effect estimates (prevalence ratios) at 12- and 24-month

adjusted for a priori covariates only and for a priori covariates and seasonality.

12-month prevalence ratio (95% CI) 24-month prevalence ratio (95% CI)

Adjusted (a priori
only)*

Adjusted +
seasonality†

Adjusted (a priori
only)*

Adjusted +
seasonality†

Any bacterial or protozoan
infection

1.04 (0.94–1.15),
p=0.41

1.05 (0.95–1.15),
p=0.37

0.99 (0.91–1.09),
p=0.89

1.00 (0.91–1.10),
p=0.95

Any STH infection 1.11 (0.89–1.38),
p=0.35

1.12 (0.90–1.39),
p=0.31

0.95 (0.77–1.17),
p=0.62

0.94 (0.76–1.15),
p=0.54

Diarrhea 1.69 (0.89–3.21),
p=0.11

1.67 (0.88–3.17),
p=0.12

0.84 (0.47–1.51),
p=0.56

0.81 (0.44–1.46),
p=0.48

Any bacteria 1.09 (0.95–1.26),
p=0.20

1.10 (0.96–1.26),
p=0.18

1.00 (0.87–1.15),
p=0.95

1.03 (0.89–1.18),
p=0.71

Shigella 1.12 (0.92–1.38),
p=0.27

1.12 (0.91–1.37),
p=0.28

0.95 (0.79–1.16),
p=0.64

0.97 (0.80–1.17),
p=0.72

Continued on next page
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Appendix 1—table 11 continued

12-month prevalence ratio (95% CI) 24-month prevalence ratio (95% CI)

Adjusted (a priori
only)*

Adjusted +
seasonality†

Adjusted (a priori
only)*

Adjusted +
seasonality†

ETEC 0.96 (0.69–1.33),
p=0.81

0.98 (0.70–1.35),
p=0.89

0.83 (0.57–1.19),
p=0.31

0.88 (0.61–1.26),
p=0.47

Campylobacter 1.68 (0.82–3.45),
p=0.16

1.72 (0.84–3.49),
p=0.14

1.28 (0.62–2.62),
p=0.5

1.33 (0.65–2.71),
p=0.43

C. difficile 2.09 (0.77–5.64),
p=0.15

2.17 (0.81–5.86),
p=0.13

1.41 (0.46–4.30),
p=0.54

1.44 (0.48–4.37),
p=0.52

E. coli O157 0.46 (0.18–1.21),
p=0.12

0.48 (0.18–1.26),
p=0.14

0.52 (0.17–1.59),
p=0.25

0.57 (0.19–1.74),
p=0.32

STEC 0.15 (0.03–0.70),
p=0.016

0.15 (0.03–0.74),
p=0.019

0.24 (0.05–1.01),
p=0.052

0.25 (0.06–1.06),
p=0.061

Y. enterocolitica ..‡ ..‡ ..‡ ..‡

V. cholerae ..‡ ..‡ ..‡ ..‡

Any Protozoa 1.03 (0.86–1.22),
p=0.76

1.03 (0.87–1.23),
p=0.72

0.91 (0.76–1.09),
p=0.29

0.91 (0.76–1.09),
p=0.31

Giardia 1.05 (0.88–1.25),
p=0.58

1.06 (0.88–1.26),
p=0.54

0.93 (0.78–1.11),
p=0.43

0.93 (0.78–1.12),
p=0.45

Cryptosporidium 0.89 (0.24–3.31),
p=0.86

0.83 (0.22–3.11),
p=0.78

0.53 (0.13–2.14),
p=0.37

0.46 (0.12–1.73),
p=0.25

E. histolytica ..‡ ..‡ ..‡ ..‡

Any virus 0.75 (0.44–1.27),
p=0.29

0.74 (0.43–1.26),
p=0.26

1.03 (0.57–1.86),
p=0.92

0.97 (0.54–1.75),
p=0.91

Norovirus GI/GII 0.68 (0.36–1.27),
p=0.23

0.67 (0.35–1.27),
p=0.22

1.10 (0.55–2.18),
p=0.79

1.04 (0.53–2.07),
p=0.90

Adenovirus 40/41 1.24 (0.32–4.83),
p=0.76

1.29 (0.33–5.13),
p=0.71

0.97 (0.18–5.19),
p=0.97

1.01 (0.19–5.30),
p=0.99

Rotavirus ..‡ ..‡ ..‡ ..‡

Coinfection,�2 GPP
pathogens

1.08 (0.91–1.29),
p=0.37

1.09 (0.91–1.30),
p=0.35

0.93 (0.79–1.10),
p=0.41

0.94 (0.79–1.12),
p=0.49

Trichuris 1.01 (0.79–1.28),
p=0.96

1.02 (0.81–1.30),
p=0.86

0.86 (0.67–1.10),
p=0.22

0.85 (0.67–1.09),
p=0.21

Ascaris 1.33 (0.92–1.93),
p=0.13

1.35 (0.93–1.95),
p=0.11

0.83 (0.54–1.27),
p=0.39

0.81 (0.53–1.25),
p=0.34

Coinfection,�2 STH 1.17 (0.76–1.79),
p=0.49

1.20 (0.78–1.83),
p=0.40

0.63 (0.37–1.07),
p=0.084

0.62 (0.36–1.06),
p=0.079

All effect estimates are presented as prevalence ratios (ratio of ratios) with 95% confidence intervals

and estimated using generalized estimating equations to fit Poisson regression models with robust

standard errors.

*Models are adjusted for a priori covariates age, sex, caregiver’s education, and wealth and pre-

sented for comparison with seasonality-adjusted models.

†Models are adjusted for a priori covariates and seasonality using sine/cosine terms based on the

date of sample (or survey) collection.
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Appendix 1—table 12. Effect of the intervention on enteric infection and diarrhea in children > 2

years old after 24 months.

Prevalence Prevalence ratio (95% CI), p-value

Baseline, aged > 2
years

24 month, aged > 2
years Unadjusted Adjusted*

Any bacterial or protozoan
infection†

Control 155/164 (95%) 315/340 (93%) .. ..

Intervention 149/160 (93%) 312/344 (91%) 0.99 (0.93–1.07),
p=0.86

0.98 (0.91–1.05),
p=0.60

Any STH infection†

Control 103/155 (66%) 113/175 (65%) .. ..

Intervention 86/146 (59%) 121/208 (58%) 1.03 (0.82–1.30),
p=0.79

1.05 (0.83–1.32),
p=0.69

Diarrhea‡

Control 21/243 (8.6%) 33/273 (12%) .. ..

Intervention 16/210 (7.6%) 31/303 (10%) 0.96 (0.45–2.07),
p=0.93

0.82 (0.36–1.86),
p=0.63

Any Bacteria

Control 129/164 (79%) 267/340 (79%) .. ..

Intervention 125/160 (78%) 266/344 (77%) 1.00 (0.87–1.15),
p=0.98

0.97 (0.84–1.11),
p=0.64

Shigella

Control 112/164 (68%) 227/340 (67%) .. ..

Intervention 103/160 (64%) 223/344 (65%) 1.05 (0.87–1.26),
p=0.63

1.03 (0.85–1.24),
p=0.79

ETEC

Control 46/164 (28%) 93/340 (27%) .. ..

Intervention 52/160 (33%) 100/344 (29%) 0.88 (0.56–1.38),
p=0.58

0.74 (0.46–1.20),
p=0.22

Campylobacter

Control 12/164 (7.3%) 33/340 (9.7%) .. ..

Intervention 7/160 (4.4%) 20/344 (5.8%) 0.97 (0.33–2.90),
p=0.96

1.00 (0.30–3.28),
p=0.99

C. difficile

Control 2/164 (1.2%) 6/340 (1.8%) .. ..

Intervention 0/160 (0.0%) 4/344 (1.2%) ..‡ ..‡

E. coli O157

Control 6/164 (3.7%) 21/340 (6.2%) .. ..

Intervention 9/160 (5.6%) 13/344 (3.8%) 0.39 (0.11–1.40),
p=0.15

0.47 (0.13–1.78),
p=0.27

STEC

Control 2/164 (1.2%) 15/340 (4.4%) .. ..

Intervention 1/160 (0.63%) 13/344 (3.8%) 1.54 (0.12–19.19),
p=0.74

1.73 (0.14–20.75),
p=0.67

Y. enterocolitica

Control 0/164 (0.0%) 0/340 (0.0%) .. ..

Intervention 0/160 (0.0%) 1/344 (0.29%) ..‡ ..‡

V. cholerae

Control 0/164 (0.0%) 0/340 (0.0%) .. ..

Continued on next page
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Appendix 1—table 12 continued

Prevalence Prevalence ratio (95% CI), p-value

Baseline, aged > 2
years

24 month, aged > 2
years Unadjusted Adjusted*

Intervention 0/160 (0.0%) 0/344 (0.0%) ..‡ ..‡

Any Protozoa

Control 123/164 (75%) 250/340 (74%) .. ..

Intervention 121/160 (76%) 245/344 (71%) 0.96 (0.82–1.13),
p=0.66

0.94 (0.80–1.11),
p=0.47

Giardia

Control 122/164 (74%) 244/340 (72%) .. ..

Intervention 118/160 (74%) 240/344 (70%) 0.99 (0.84–1.16),
p=0.86

0.96 (0.81–1.13),
p=0.62

Cryptosporidium

Control 1/164 (0.61%) 9/340 (2.6%) .. ..

Intervention 4/160 (2.5%) 8/344 (2.3%) 0.20 (0.02–2.27),
p=0.19

0.21 (0.02–2.46),
p=0.21

E. histolytica

Control 0/164 (0.0%) 2/340 (0.59%) .. ..

Intervention 3/160 (1.9%) 10/344 (2.9%) ..‡ ..‡

Any virus

Control 19/164 (12%) 39/340 (11%) .. ..

Intervention 16/160 (10%) 43/344 (13%) 1.24 (0.55–2.78),
p=0.6

1.44 (0.61–3.38),
p=0.41

Norovirus GI/GII

Control 12/164 (7.3%) 34/340 (10%) .. ..

Intervention 13/160 (8.1%) 37/344 (11%) 0.96 (0.39–2.34),
p=0.92

1.17 (0.45–3.03),
p=0.75

Adenovirus 40/41

Control 6/164 (3.7%) 2/340 (0.59%) .. ..

Intervention 2/160 (1.3%) 6/344 (1.7%) 11 (0.97–119),
p=0.053

7.5 (0.72–79),
p=0.92

Rotavirus A

Control 1/164 (0.61%) 3/340 (0.88%) .. ..

Intervention 1/160 (0.63%) 1/344 (0.29%) ..‡ ..‡

Coinfection,�2 GPP
pathogens

Control 114/164 (70%) 243/340 (71%) .. ..

Intervention 111/160 (69%) 236/344 (69%) 0.97 (0.82–1.15),
p=0.71

0.93 (0.78–1.12),
p=0.45

Trichuris

Control 91/155 (59%) 102/175 (58%) .. ..

Intervention 76/146 (52%) 110/208 (53%) 1.04 (0.81–1.33),
p=0.78

0.99 (0.77–1.27),
p=0.96

Ascaris

Control 50/155 (32%) 61/175 (35%) .. ..

Intervention 39/146 (27%) 47/208 (23%) 0.78 (0.47–1.29),
p=0.33

0.86 (0.51–1.44),
p=0.57

Coinfection,�2 STH

Control 38/155 (25%) 50/175 (29%) .. ..

Intervention 29/146 (20%) 36/208 (17%) 0.74 (0.42–1.28),
p=0.28

0.72 (0.41–1.29),
p=0.27
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Analysis includes children >2 year old at baseline or the 24 month visit. Prevalence results are pre-

sented as (n/N (%)). All effect estimates are presented as prevalence ratios (ratio of ratios) with 95%

confidence intervals and estimated using generalized estimating equations to fit Poisson regression

models with robust standard errors.

* Pathogen outcomes adjusted for child age and sex, caregiver’s education, and household wealth

index, reported diarrhea also adjusted for baseline presence of a drop-hole cover and reported use

of a tap on compound grounds as primary drinking water source.

† Models did not converge due to sparse data.

Appendix 1—table 13. Effect of intervention on enteric infection and reported diarrhea in children

born into study sites post implementation (post-baseline) and before 12 month visit compared with

children of a similar age at baseline (<1 year old).

Prevalence Prevalence ratio

Baseline,
children < 1 year
old

12 month, children born-in
and <1 year old unadjusted adjusted†

Any bacterial or
protozoan infection

Control 57/109 (52%) 31/48 (65%) .. ..

Intervention 51/99 (52%) 32/55 (58%) 0.89 (0.60–1.33),
p=0.58

0.97 (0.65–1.45),
p=0.90

Any STH infection

Control 17/93 (18%) 3/25 (12%) .. ..

Intervention 13/92 (14%) 4/32 (13%) 1.31 (0.32–5.42),
p=0.71

1.38 (0.35–5.45),
p=0.65

Diarrhea

Control 19/138 (14%) 6/50 (12%) .. ..

Intervention 18/120 (15%) 13/69 (19%) 1.38 (0.47–4.01),
p=0.56

1.80 (0.35–9.31),
p=0.48

Any Bacteria

Control 53/109 (49%) 24/48 (50%) .. ..

Intervention 41/99 (41%) 29/55 (53%) 1.22 (0.75–1.98),
p=0.43

1.28 (0.78–2.10),
p=0.33

Shigella

Control 10/109 (9.2%) 9/48 (19%) .. ..

Intervention 9/99 (9.1%) 9/55 (16%) 0.87 (0.26–2.91),
p=0.82

0.85 (0.26–2.81),
p=0.79

ETEC

Control 25/109 (23%) 12/48 (25%) .. ..

Intervention 22/99 (22%) 11/55 (20%) 0.82 (0.34–1.99),
p=0.66

0.80 (0.33–1.92),
p=0.62

Campylobacter

Control 14/109 (13%) 4/48 (8.3%) .. ..

Intervention 8/99 (8.1%) 5/55 (9.1%) 1.76 (0.38–8.09),
p=0.47

2.68 (0.59–12.2),
p=0.20

C. difficile

Control 13/109 (12%) 7/48 (15%) .. ..

Intervention 10/99 (10%) 9/55 (16%) 1.37 (0.42–4.45),
p=0.60

1.49 (0.46–4.89),
p=0.51

E. coli O157

Control 4/109 (3.7%) 1/48 (2.1%) .. ..

Continued on next page
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Appendix 1—table 13 continued

Prevalence Prevalence ratio

Baseline,
children < 1 year
old

12 month, children born-in
and <1 year old unadjusted adjusted†

Intervention 2/99 (2%) 0/55 (0.0%) 0.01 (0.00–0.19),
p=0.001

..‡

STEC

Control 0/109 (0.0%) 0/48 (0.0%) .. ..

Intervention 3/99 (3%) 1/55 (1.8%) ..‡ ..‡

Y. enterocolitica

Control 0/109 (0.0%) 0/48 (0.0%) .. ..

Intervention 0/99 (0.0%) 0/55 (0.0%) ..‡ ..‡

V. cholerae

Control 0/109 (0.0%) 0/48 (0.0%) .. ..

Intervention 0/99 (0.0%) 0/55 (0.0%) ..‡ ..‡

Any Protozoa

Control 14/109 (13%) 15/48 (31%) .. ..

Intervention 22/99 (22%) 9/55 (16%) 0.35 (0.12–1.02),
p=0.055

0.40 (0.13–1.20),
p=0.10

Giardia

Control 12/109 (11%) 13/48 (27%) .. ..

Intervention 16/99 (16%) 8/55 (15%) 0.41 (0.13–1.24),
p=0.11

0.44 (0.14–1.40),
p=0.17

Cryptosporidium

Control 2/109 (1.8%) 2/48 (4.2%) .. ..

Intervention 8/99 (8.1%) 2/55 (3.6%) 0.25 (0.02–3.70),
p=0.31

0.40 (0.02–7.9),
p=0.55

E. histolytica

Control 0/109 (0.0%) 1/48 (2.1%) .. ..

Intervention 1/99 (1%) 0/55 (0.0%) ..‡ ..‡

Any virus

Control 15/109 (14%) 12/48 (25%) .. ..

Intervention 21/99 (21%) 7/55 (13%) 0.33 (0.12–0.92),
p=0.033

0.37 (0.14–1.03),
p=0.056

Norovirus GI/GII

Control 12/109 (11%) 9/48 (19%) .. ..

Intervention 15/99 (15%) 6/55 (11%) 0.43 (0.13–1.40),
p=0.16

0.44 (0.13–1.47),
p=0.18

Adenovirus 40/41

Control 4/109 (3.7%) 4/48 (8.3%) .. ..

Intervention 3/99 (3%) 2/55 (3.6%) 0.56 (0.06–5.05),
p=0.61

0.91 (0.09–9.49),
p=0.94

Rotavirus A

Control 0/109 (0.0%) 0/48 (0.0%) .. ..

Intervention 3/99 (3%) 0/55 (0.0%) ..‡ ..‡

Coinfection,�2 GPP
pathogens

Control 23/109 (21%) 16/48 (33%) .. ..

Continued on next page
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Appendix 1—table 13 continued

Prevalence Prevalence ratio

Baseline,
children < 1 year
old

12 month, children born-in
and <1 year old unadjusted adjusted†

Intervention 25/99 (25%) 15/55 (27%) 0.73 (0.31–1.71),
p=0.47

0.74 (0.33–1.69),
p=0.48

Trichuris

Control 10/93 (11%) 3/25 (12%) .. ..

Intervention 10/92 (11%) 4/32 (13%) 1.04 (0.21–5.01),
p=0.96

0.98 (0.23–4.29),
p=0.98

Ascaris

Control 12/93 (13%) 1/25 (4%) .. ..

Intervention 9/92 (9.8%) 3/32 (9.4%) 2.87 (0.30–
27.85), p=0.36

3.10 (0.30–32.5),
p=0.35

Coinfection,�2 STH

Control 5/93 (5.4%) 1/25 (4%) .. ..

Intervention 6/92 (6.5%) 3/32 (9.4%) 1.90 (0.16–
22.73), p=0.61

1.76 (0.15–21.0),
p=0.66

Analysis includes children < 1 year old at baseline and children born into the study after baseline

and <1 year old at the time of the 12-month visit. Prevalence results are presented as (n/N (%)). All

effect estimates are presented as prevalence ratios (ratio of ratios) with 95% confidence intervals and

estimated using generalized estimating equations to fit Poisson regression models with robust stan-

dard errors.

*Pathogen outcomes adjusted for child age and sex, caregiver’s education, and household wealth

index, reported diarrhea also adjusted for baseline presence of a drop-hole cover and reported use

of a tap on compound grounds as primary drinking water source.

† Models did not converge due to sparse data.

Appendix 1—table 14. Effect of the intervention on children with repeated observations at baseline

and 12-month visit.

Prevalence Prevalence ratio

Baseline 12 month Unadjusted Adjusted†

Any bacterial or protozoan
infection

Control 161/207
(78%)

187/207
(90%)

.. ..

Intervention 174/228
(76%)

207/228
(91%)

1.02 (0.91–1.16), p=0.70 1.01 (0.90–1.14), p=0.84

Any STH infection

Control 67/132 (51%) 80/132 (61%) .. ..

Intervention 63/154 (41%) 91/154 (59%) 1.22 (0.92–1.61), p=0.17 1.16 (0.87–1.55), p=0.31

Diarrhea

Control 36/277 (13%) 17/277
(6.1%)

.. ..

Intervention 42/279 (15%) 34/279 (12%) 1.71 (0.78–3.77), p=0.18 1.71 (0.79–3.70), p=0.17

Any Bacteria

Control 141/207
(68%)

165/207
(80%)

.. ..

Intervention 142/228
(62%)

170/228
(75%)

1.02 (0.86–1.22), p=0.8 1.01 (0.85–1.20), p=0.92

Continued on next page
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Appendix 1—table 14 continued

Prevalence Prevalence ratio

Baseline 12 month Unadjusted Adjusted†

Shigella

Control 89/207 (43%) 128/207
(62%)

Intervention 90/228 (39%) 142/228
(62%)

1.10 (0.86–1.39), p=0.45 1.08 (0.85–1.37), p=0.54

ETEC

Control 63/207 (30%) 83/207 (40%)

Intervention 71/228 (31%) 79/228 (35%) 0.84 (0.56–1.27), p=0.41 0.85 (0.57–1.28), p=0.44

Campylobacter

Control 20/207
(9.7%)

18/207
(8.7%)

Intervention 13/228
(5.7%)

18/228
(7.9%)

1.54 (0.62–3.80), p=0.35 1.49 (0.60–3.71), p=0.39

C. difficile

Control 15/207
(7.3%)

4/207 (1.9%)

Intervention 8/228 (3.5%) 3/228 (1.3%) 1.39 (0.24–8.00), p=0.71 1.45 (0.25–8.52), p=0.68

E. coli O157

Control 9/207 (4.3%) 15/207
(7.3%)

.. ..

Intervention 9/228 (4.0%) 10/228
(4.4%)

0.67 (0.22–2.03), p=0.48 0.68 (0.22–2.06), p=0.49

STEC

Control 1/207
(0.48%)

6/207 (2.9%) .. ..

Intervention 6/228 (2.6%) 4/227 (1.8%) 0.11 (0.01–1.31),
p=0.081

0.11 (0.01–1.32),
p=0.082

Y. enterocolitica

Control 0/207 (0.0%) 0/207 (0.0%) .. ..

Intervention 1/228
(0.44%)

0/227 (0.0%) ..‡ ..‡

V. cholerae

Control 0/207 (0.0%) 0/207 (0.0%) .. ..

Intervention 0/228 (0.0%) 0/227 (0.0%) ..‡ ..‡

Any Protozoa

Control 109/207
(53%)

130/207
(63%)

.. ..

Intervention 117/228
(51%)

166/228
(73%)

1.19 (0.95–1.48), p=0.13 1.18 (0.94–1.47), p=0.15

Giardia

Control 106/207
(51%)

130/207
(63%)

Intervention 113/228
(50%)

164/228
(72%)

1.18 (0.94–1.48), p=0.15 1.17 (0.93–1.47), p=0.17

Cryptosporidium

Control 6/207 (2.9%) 2/207
(0.97%)

.. ..

Intervention 10/228
(4.4%)

5/227 (2.2%) 1.44 (0.21–9.82), p=0.71 1.45 (0.22–9.71), p=0.7
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Appendix 1—table 14 continued

Prevalence Prevalence ratio

Baseline 12 month Unadjusted Adjusted†

E. histolytica

Control 0/207 (0.0%) 0/207 (0.0) .. ..

Intervention 2/228
(0.88%)

7/228 (3.1%) ..‡ ..‡

Any virus

Control 27/207 (13%) 20/207
(9.7%)

.. ..

Intervention 31/228 (14%) 25/228 (11%) 1.05 (0.50–2.22), p=0.89 1.08 (0.51–2.26), p=0.84

Norovirus GI/GII

Control 20/207
(9.7%)

19/207
(9.2%)

Intervention 23/228 (11%) 19/228
(8.3%)

0.83 (0.36–1.94), p=0.67 0.86 (0.37–1.99), p=0.72

Adenovirus 40/41

Control 7/207 (3.4%) 2/207
(0.97%)

.. ..

Intervention 6/228 (2.6%) 6/228 (2.6%) 3.56 (0.46–27.24),
p=0.22

3.59 (0.46–27.91),
p=0.22

Rotavirus A

Control 1/207
(0.48%)

1/207
(0.48%)

.. ..

Intervention 4/228 (1.8%) 1/228
(0.44%)

..‡ ..‡

Coinfection,�2 GPP pathogens

Control 114/207
(55%)

135/207
(65%)

.. ..

Intervention 115/228
(50%)

156/228
(68%)

1.15 (0.92–1.43), p=0.23 1.14 (0.91–1.42), p=0.25

Trichuris

Control 49/132 (37%) 64/132 (48%) .. ..

Intervention 53/154 (34%) 77/154 (50%) 1.12 (0.81–1.54), p=0.50 1.06 (0.76–1.48), p=0.72

Ascaris

Control 40/132 (30%) 46/132 (35%)

Intervention 35/154 (23%) 49/154 (32%) 1.22 (0.77–1.93), p=0.4 1.17 (0.73–1.86), p=0.51

Coinfection,�2 STH

Control 22/132 (17%) 30/132 (23%) .. ..

Intervention 25/154 (16%) 35/154 (23%) 1.03 (0.55–1.93), p=0.94 0.97 (0.51–1.85), p=0.93

Analysis includes children with complete observations at baseline and 12-month visits. Prevalence

results are presented as (n/N (%)). All effect estimates are presented as prevalence ratios (ratio of

ratios) with 95% confidence intervals and estimated using generalized estimating equations to fit Pois-

son regression models with robust standard errors.

* Pathogen outcomes adjusted for child age and sex, caregiver’s education, and household wealth

index, reported diarrhea also adjusted for baseline presence of a drop-hole cover and reported use

of a tap on compound grounds as primary drinking water source.

† Models would not converge due to sparse data.
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Appendix 1—table 15. Effect of the intervention on children with repeated observations at baseline

and 24-month visit.

Prevalence Prevalence ratio

Baseline 24 month Unadjusted Adjusted†

Any bacterial or protozoan
infection

Control 131/166
(79%)

155/166
(93%)

.. ..

Intervention 151/192
(79%)

175/192
(91%)

0.98 (0.87–1.10), p=0.73 0.98 (0.87–1.10), p=0.70

Any STH infection

Control 48/95 (51%) 65/95 (68%) .. ..

Intervention 38/106 (36%) 62/106 (58%) 1.20 (0.84–1.70), p=0.31 1.25 (0.87–1.78), p=0.23

Diarrhea

Control 25/196 (13%) 20/196 (10%) .. ..

Intervention 34/221 (15%) 20/221
(9.1%)

0.72 (0.33–1.58), p=0.41 0.69 (0.31–1.50), p=0.35

Any Bacteria

Control 109/166
(66%)

138/166
(83%)

.. ..

Intervention 120/192
(63%)

153/192
(80%)

1.00 (0.84–1.21), p=0.96 1.01 (0.83–1.21), p=0.96

Shigella

Control 66/166 (40%) 121/166
(73%)

Intervention 79/192 (41%) 136/192
(71%)

0.93 (0.71–1.22), p=0.60 0.93 (0.71–1.22), p=0.60

ETEC

Control 47/166 (28%) 47/166 (28%)

Intervention 58/192 (30%) 52/192 (27%) 0.90 (0.55–1.46), p=0.66 0.85 (0.52–1.39), p=0.52

Campylobacter

Control 16/166
(9.6%)

12/166
(7.2%)

Intervention 13/192
(6.8%)

14/192
(7.3%)

1.44 (0.56–3.72), p=0.45 1.52 (0.60–3.83), p=0.37

C. difficile

Control 9/166 (5.4%) 4/166 (2.4%) .. ..

Intervention 8/192 (4.2%) 1/192
(0.52%)

0.28 (0.03–2.95), p=0.29 0.26 (0.03–2.59), p=0.25

E. coli O157

Control 7/166 (4.2%) 9/166 (5.4%) .. ..

Intervention 9/192 (4.7%) 8/192 (4.2%) 0.69 (0.14–3.40), p=0.65 0.59 (0.12–2.93), p=0.52

STEC

Control 2/166 (1.2%) 7/166 (4.2%) .. ..

Intervention 3/192 (1.6%) 7/192 (3.6%) 0.66 (0.07–6.20), p=0.72 0.58 (0.07–4.89), p=0.61

Y. enterocolitica

Control 0/166 (0.0%) 0/166 (0.0%) .. ..

Intervention 0/192 (0.0%) 1/192
(0.52%)

..‡ ..‡

Continued on next page
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Appendix 1—table 15 continued

Prevalence Prevalence ratio

Baseline 24 month Unadjusted Adjusted†

V. cholerae

Control 0/166 (0.0%) 0/166 (0.0%) .. ..

Intervention 0/192 (0.0%) 0/192 (0.0%) ..‡ ..‡

Any Protozoa

Control 89/166 (54%) 121/166
(73%)

.. ..

Intervention 109/192
(57%)

138/192
(72%)

0.93 (0.73–1.19), p=0.56 0.90 (0.69–1.15), p=0.39

Giardia

Control 86/166 (52%) 120/166
(72%)

Intervention 104/192
(54%)

135/192
(70%)

0.93 (0.73–1.18), p=0.55 0.89 (0.69–1.15), p=0.38

Cryptosporidium

Control 5/166 (3%) 3/166 (1.8%) .. ..

Intervention 11/192
(5.7%)

4/192 (2.1%) 0.57 (0.06–5.38), p=0.62 0.55 (0.06–4.93), p=0.59

E. histolytica

Control 0/166 (0.0%) 0/166 (0.0%) .. ..

Intervention 2/192 (1%) 8/192 (4.2%) ..‡ ..‡

Any virus

Control 21/166 (13%) 18/166 (11%) .. ..

Intervention 30/192 (16%) 22/192 (11%) 0.86 (0.37–1.97), p=0.72 0.95 (0.41–2.19), p=0.91

Norovirus GI/GII

Control 15/166 (9%) 15/166 (9%) .. ..

Intervention 26/192 (14%) 17/192
(8.8%)

0.65 (0.25–1.69), p=0.38 0.74 (0.28–1.90), p=0.53

Adenovirus 40/41

Control 6/166 (3.6%) 1/166 (0.6%)

Intervention 5/192 (2.6%) 5/192 (2.6%) 6.12 (0.48–78.34),
p=0.16

6.01 (0.49–73.94),
p=0.16

Rotavirus A

Control 1/166 (0.6%) 2/166 (1.2%) .. ..

Intervention 1/192
(0.52%)

1/192
(0.52%)

..‡ ..‡

Coinfection,�2 GPP pathogens

Control 89/166 (54%) 120/166
(72%)

.. ..

Intervention 102/192
(53%)

132/192
(69%)

0.96 (0.77–1.19), p=0.69 0.95 (0.76–1.19), p=0.67

Trichuris

Control 39/95 (41%) 62/95 (65%) .. ..

Intervention 32/106 (30%) 57/106 (54%) 1.11 (0.74–1.67), p=0.60 1.16 (0.77–1.75), p=0.47

Ascaris

Control 27/95 (28%) 34/95 (36%)

Intervention 19/106 (18%) 21/106 (20%) 0.88 (0.43–1.79), p=0.72 0.89 (0.44–1.79), p=0.74

Coinfection,�2 STH

Continued on next page
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Appendix 1—table 15 continued

Prevalence Prevalence ratio

Baseline 24 month Unadjusted Adjusted†

Control 18/95 (19%) 31/95 (33%) .. ..

Intervention 13/106 (12%) 16/106 (15%) 0.71 (0.30–1.70), p=0.44 0.72 (0.31–1.69), p=0.46

Analysis includes children with complete observations at baseline and 24-month visits. Prevalence

results are presented as (n/N (%)). All effect estimates are presented as prevalence ratios (ratio of

ratios) with 95% confidence intervals and estimated using generalized estimating equations to fit Pois-

son regression models with robust standard errors.

* Pathogen outcomes adjusted for child age and sex, caregiver’s education, and household wealth

index, reported diarrhea also adjusted for baseline presence of a drop-hole cover and reported use

of a tap on compound grounds as primary drinking water source.

† Models would not converge due to sparse data.

Appendix 1—table 16. Outcome and covariate descriptions, coding, and % missing.

Baseline,
n = 987

12
month,
n = 939

24
month,
n = 1001

%
missing

%
missing

%
missing

Variable
description Data source

Outcome Data

Enteric infection outcome
data available

24 14 8.0 Binary; 0/1 Based on collection of stool material
and successful analysis by GPP

STH infection outcome
data available

30 37 46 Binary; 0/1 Based on collection of stool material
and successful analysis by Kato-Katz

Caregiver-reported
diarrhea, 7-day recall

1.3 7.8 20 Binary; 0/1 Child Survey

Covariate data

Child sex, female 2.3 1.3 7.0 Binary;
0=male,
1=female

Child Survey

Respondent is child’s
mother

2.5 7.6 20 Binary; 0/1 Child Survey

Caregiver completed
primary school

0.8 1.7 6.7 Binary; 0/1 Child Survey

Child breast feeds with or
without complementary
feeding

1.3 7.7 20 Binary; 0/1 Child Survey

Child exclusively
breastfeeds

1.3 7.7 20 Binary; 0/1 Child Survey

Child wears a diaper 1.4 7.6 20 Binary; 0/1 Child Survey

Child feces is disposed of
in a latrine

1.3 7.1 20 Binary; 0/1 Created from survey questions in Child
Survey

Child age at sampling, days 23 16 17 Integer Created from birthdate (Child Survey)
and date of sampling

Child age at survey, days 2.6 7.5 19 Integer Created from birthdate (Child Survey)
and date of Survey

30-day cumulative rainfall
at sampling

21 14 10 Continuous Created from sample date and data
from data from the National Oceanic
and Atmospheric Administration’s
National Centers for Environmental
Information (https://www.ncdc.noaa.
gov/cdo-web/datatools/findstation)

Continued on next page
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Appendix 1—table 16 continued

Baseline,
n = 987

12
month,
n = 939

24
month,
n = 1001

%
missing

%
missing

%
missing

Variable
description Data source

30-day cumulative rainfall
at survey

1.3 7.1 19 Continuous Created from survey date and data
from data from the National Oceanic
and Atmospheric Administration’s
National Centers for Environmental
Information (https://www.ncdc.noaa.
gov/cdo-web/datatools/findstation)

Sample collection during
rainy season

21 14 10 Binary; 0/1 Created from sample date. Rainy
season defined as November – April.

Survey collection during
rainy season

1.3 7.1 19 Binary; 0/1 Created from survey date. Rainy season
defined as November – April.

Household crowding, >3
persons/room

0.4 0.3 2.7 Binary; 0/1 Created from questions in Household
Survey

Household floor is covered 0.4 0.3 2.7 Binary; 0/1 Observation

Household walls made of
concrete, bricks or similar

0.4 0.3 2.7 Binary; 0/1 Observation

Household population 0.3 0.3 1.6 Integer Household survey

Number of rooms in
household

0.4 0.3 2.3 Integer Created from questions in Household
Survey

Wealth score, 0 (poorest) -
1 (wealthiest), unitless

0.4 0.3 2.7 Continuous Created from questions in Household
Survey using Simple Poverty Scorecard
for Mozambique (http://www.
simplepovertyscorecard.com/MOZ_
2008_ENG.pdf). Questions referencing
latrine removed from 12 month and 24
month score. All scores normalized by
total number of points available.

Household uses tap in
compound as primary
drinking water source

1.7 1.0 2.0 Binary 0/1 Created from drinking water source
question in Household Survey

Latrine has drop-hole cover 1.9 0.0 0.0 Binary; 0/1 Observation

Latrine has a ventpipe 1.8 0.0 0.0 Binary; 0/1 Observation

Latrine has a ceramic, tile,
or concrete pedestal or
slab

2.2 0.1 0.1 Binary; 0/1 Observation

Latrine has sturdy walls
made of concrete, bricks,
or similar

1.9 0.0 0.0 Binary; 0/1 Observation

Compound population 0.0 0.0 0.0 Integer Compound Survey, enrollment
checklists

Number of households in
compound

0.0 0.0 0.0 Integer Compound Survey, enrollment
checklists

Number of latrines present
in the compound

0.1 0.0 0.0 Integer Compound Survey

Persons per latrine 1.8 0.1 0.3 Continuous Created by dividing the compound
population by the number of latrines/
drop-holes

Households per latrine 1.8 0.1 0.3 Continuous Created by dividing the number of
households in the compound by the
number of latrines in the compound

Number of water taps
present in the compound

1.1 0.0 0.0 Integer Compound Survey

Continued on next page
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Appendix 1—table 16 continued

Baseline,
n = 987

12
month,
n = 939

24
month,
n = 1001

%
missing

%
missing

%
missing

Variable
description Data source

Standing water visible
around compound grounds

1.9 0.3 0.0 Binary; 0/1 Observation

Standing or leaking
wastewater visible around
compound grounds

1.9 0.3 0.0 Binary; 0/1 Observation

Faeces or used diapers
observed around
compound grounds or in
solid waste

1.9 0.3 0.0 Binary; 0/1 Observation

Compound floods when it
rains

0.0 0.0 0.0 Binary; 0/1 Compound Survey

Compound has electricity
that normally functions

0.0 0.0 0.0 Binary; 0/1 Compound Survey

Compound-level
population density

2.2 1.5 1.5 Continuous,
persons/m2

Created by dividing the population of
the compound by the measured area of
the compound

Any animal present in the
compound

0.0 0.4 0.0 Binary; 0/1 Observation

Dog(s) present in the
compound

0.0 0.4 0.0 Binary; 0/1 Observation

Chicken(s) and/or duck(s)
present in the compound

0.0 0.4 0.0 Binary; 0/1 Observation

Cat(s) present in the
compound

0.0 0.4 0.0 Binary; 0/1 Observation

Any other animal(s) present
in the compound

0.0 0.4 0.0 Binary; 0/1 Observation
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Appendix 1—figure 5. Schematic of communal sanitation block design from the NGO (Water and

Sanitation for the Urban Poor). Pictured: two latrine stalls, two pour-flush toilets, septic tank,

elevated water storage tank, laundry basin, door. Not pictured: soakaway pit. Source: Water and

Sanitation for the Urban Poor.

Appendix 1—figure 6. Construction of a soakaway pit for discharge of liquid effluent from interven-

tion latrines.
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Appendix 1—figure 7. Photo of communal sanitation block as constructed.

Appendix 1—figure 8. Photo of shared latrine as constructed.

Knee et al. eLife 2021;10:e62278. DOI: https://doi.org/10.7554/eLife.62278 62 of 63

Research article Epidemiology and Global Health Medicine

https://doi.org/10.7554/eLife.62278


Appendix 1—figure 9. Map illustrating locations of intervention (n=208) and control sites (n=287)

compounds.
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