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Abstract The Gram-negative outer-membrane envelops the bacterium and functions as a

permeability barrier against antibiotics, detergents, and environmental stresses. Some virulence

factors serve to maintain the integrity of the outer membrane, including DolP (formerly YraP) a

protein of unresolved structure and function. Here, we reveal DolP is a lipoprotein functionally

conserved amongst Gram-negative bacteria and that loss of DolP increases membrane fluidity. We

present the NMR solution structure for Escherichia coli DolP, which is composed of two BON

domains that form an interconnected opposing pair. The C-terminal BON domain binds anionic

phospholipids through an extensive membrane:protein interface. This interaction is essential for

DolP function and is required for sub-cellular localisation of the protein to the cell division site,

providing evidence of subcellular localisation of these phospholipids within the outer membrane.

The structure of DolP provides a new target for developing therapies that disrupt the integrity of

the bacterial cell envelope.

Introduction
Gram-negative bacteria are intrinsically resistant to many antibiotics and environmental insults, which

is largely due to the presence of their hydrophobic outer membrane (OM). This asymmetric bilayer

shields the periplasmic space, a thin layer of peptidoglycan and the inner membrane (IM). In the

model bacterium Escherichia coli, the IM is a symmetrical phospholipid bilayer, whereas the OM has

a more complex organisation with lipopolysaccharide (LPS) and phospholipids forming an
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asymmetric bilayer containing integral b-barrel proteins (May and Grabowicz, 2018;

Konovalova et al., 2017). The OM is also decorated with lipoproteins (approximately 75 have been

identified in E. coli), many of which, are functional orphans (Leyton et al., 2012; Babu et al., 2006).

Biogenesis of the OM is completed by several proteinaceous systems, which must bypass the peri-

plasmic, mesh-like peptidoglycan (Konovalova et al., 2017; Egan, 2018; Ekiert et al., 2017;

Stubenrauch and Lithgow, 2019). The growth of all three envelope layers must be tightly coordi-

nated in order to maintain membrane integrity. Improper coordination can lead to bacterial growth

defects, sensitivity to antibiotics, and can cause cell lysis (Egan, 2018; Gray et al., 2015).

DolP (division and OM stress-associated lipid-binding protein; formerly YraP) is a nonessential

protein found in E. coli and other Gram-negative bacteria (Goodall et al., 2018). Loss of DolP results

in the disruption of OM integrity, induces increased susceptibility to detergents and antibiotics, and

attenuates the virulence of Salmonella enterica (Morris et al., 2018). Importantly, DolP is a crucial

component of the serogroup B meningococcal vaccine where it enhances the immunogenicity of

other components by an unknown mechanism (Bos et al., 2014). Recently, the dolP gene was con-

nected genetically to the activation of peptidoglycan amidases during E. coli cell division, however

this activity has not been directly confirmed experimentally (Tsang et al., 2017). In contrast, protein

interactome studies suggest DolP is a component of the b-barrel assembly machine (Bam) complex

(Carlson et al., 2019; Babu et al., 2018). While these data suggest that DolP may be involved in

outer-membrane protein (OMP) biogenesis and the regulation of peptidoglycan remodeling, its pre-

cise function in either of these processes remained unclear. Nonetheless, given its roles in these vital

cell envelope processes, and its requirement for virulence and the maintenance of cell envelope

integrity, DolP is a potential target for the development of therapeutics.

In this study, we demonstrate that DolP is an outer-membrane lipoprotein functionally conserved

amongst Gram-negative bacteria, but with a function distinct from other BON (Bacterial OsmY and

nodulation) domain-containing proteins. We solve the NMR solution structure of DolP revealing the

first view of a dual BON-domain fold. Extensive structural and functional analyses define a mem-

brane:protein interface that binds DolP to anionic phospholipids and provides the basis for a new

mechanism for targeting proteins to the cell division site. We show that loss of dolP affects OM fluid-

ity, which perturbs the BAM complex, suggesting an indirect role for DolP in OMP biogenesis. The

insights provided here not only advance our understanding of how DolP functions but provide a

basis for beginning to develop drugs to target it.

Results

DolP belongs to an extensive family of lipoproteins required for OM
homeostasis
In E. coli, the dolP gene is located downstream of the genes encoding LpoA (an activator of PBP1A)

(Typas et al., 2010), YraN (a putative Holiday-Junction resolvase), and DiaA (a regulator of chromo-

somal replication) (Ishida et al., 2004), and two s

E-dependent promoters are found immediately

upstream of the dolP gene (Dartigalongue et al., 2001; Figure 1A). Bioinformatic analyses pre-

dicted that dolP encodes a lipoprotein with two putative domains of unknown function, termed

BON domains (Yeats and Bateman, 2003), as well as a Lol-dependent OM targeting signal

sequence where acylation was predicted to occur on cysteine residue C19. To test the hypothesis

that DolP is localised to the periplasmic face of the OM, we raised an antiserum to the protein to

probe subcellular fractions. DolP was found in the Triton X-100 insoluble fraction of the E. coli cell

envelope along with other OM proteins. As a control for the antiserum, DolP was absent from Triton

X-100 insoluble fractions of cell envelopes harvested from E. coli DdolP (Figure 1—figure supple-

ment 1A). Furthermore, expression of a C19A point mutant, preventing N-terminal acylation, effec-

tively eliminated DolP from the OM fractions (Figure 1—figure supplement 1B). Unlike the

lipoproteins BamC and Lpp, which can be surface localized (Cowles et al., 2011; Webb et al.,

2012), DolP was not accessible to antibody or protease in intact E. coli cells. However, DolP could

be labelled and degraded when OM integrity was compromised (Figure 1—figure supplement 1C,

D), confirming that DolP is predominantly targeted to the inner leaflet of the OM, localizing it within

the periplasmic space.

Bryant, Morris, Knowles, et al. eLife 2020;9:e62614. DOI: https://doi.org/10.7554/eLife.62614 2 of 27

Research article Biochemistry and Chemical Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.62614


Figure 1. DolP is a conserved BON-domain protein with a distinct role in OM homeostasis. (A) In E. coli, dolP is located downstream of diaA and

encodes a lipoprotein with a signal sequence (orange) and two BON domains (red). The signal sequence is cleaved by LspA, the cysteine at position 19

acylated by Lgt and Lnt and finally the protein is targeted to the OM by the Lol system (Figure 1—figure supplement 1). E. coli contains three BON-

domain proteins. DolP shares a similar domain organisation with OsmY, which encodes a periplasmic protein that possesses a signal sequence (green)

which is recognised and cleaved by the signal peptidase LepB. Kbp is more divergent from DolP and OsmY, has no predictable signal sequence and is

composed of BON and LysM domains (Figure 1—figure supplement 2). (B) DolP, OsmY and Kbp are widespread amongst proteobacteria, and cluster

into three distinct groups based on the program CLANS (Frickey and Lupas, 2004) with connections shown for a P value cut-off of <10�2 (Table 4). (C)

Growth phenotypes for mutant isolates lacking DolP (DdolP), wild-type strain (WT) or the complemented mutant (COMP). Strains were grown on LB

agar containing vancomycin (100 mg/ml) or sodium dodecyl sulphate (SDS; 4.8%). (D) DolP from diverse proteobacterial species expressed in an E. coli

DdolP strain restores growth in the presence of vancomycin as assessed by a serial dilution plate growth assay. Plasmids expressing OsmY do not

complement the defect.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure supplement 1. DolP is an OM lipoprotein.

Figure supplement 1—source data 1. Subcellular localisation of DolP.

Figure supplement 2. BON domain (Pfam: PF04972) containing proteins.

Figure supplement 3. DolP has a distinct function from OsmY and Kbp.

Figure supplement 4. Phenotypes of E. coli BW25113 DdolP.

Figure supplement 4—source data 1. Comparison of bacterial growth rates of wild type and yraP mutant.

Figure supplement 5. Localisation of DolP to the OM is required for function.

Figure supplement 5—source data 1. The influence of signal sequences on DolP localisation.
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Further in silico analyses revealed the DolP lipoprotein was conserved across diverse species of

Proteobacteria and is present even in organisms with highly-reduced genomes for example Buch-

nera spp (Table 1 and Supplementary file 1). The genome of E. coli contains three BON-domain-

containing proteins: DolP, OsmY, and Kbp. DolP shares a dual BON-domain architecture and 29.5%

sequence identity with OsmY, which is distinguished from DolP by a canonical Sec-dependent signal

sequence. In contrast, Kbp consists of single BON and LysM domains and lacks a discernible signal

sequence (Figure 1A). Our comprehensive analysis found seven predominant domains co-occurring

with BON in different modular protein architectures across bacterial phyla, suggesting specialised

roles for BON domains (Table 1 and Figure 1—figure supplement 2). Clustering analyses of

sequences obtained by HMMER searches revealed DolP, OsmY and Kbp are distributed throughout

the a, b, and g-proteobacteria and form distinct clusters indicating that DolP has a role that is inde-

pendent of OsmY and Kbp (Figure 1B). Our analyses demonstrated that OsmY and Kbp are not

functionally redundant with DolP and isogenic mutants show distinct phenotypes, therefore confirm-

ing a distinct role for DolP in E. coli (Figure 1—figure supplement 3).

Previously, we demonstrated that loss of dolP in S. enterica conferred susceptibility to vancomy-

cin and SDS, suggesting DolP plays an important role in maintaining the integrity of the OM

(Morris et al., 2018). Further evidence of a role for DolP in maintaining OM integrity is shown by E.

coli DdolP susceptibility to vancomycin, SDS, cholate, and deoxycholate (Figure 1C and Figure 1—

figure supplement 4A). Resistance could be restored by supplying dolP in trans (Figure 1C).

Despite evidence for disrupted OM integrity, the growth rate observed for the dolP mutant strain

was identical to that of the parent, and scanning-electron microscopy revealed no obvious differen-

ces in cell size or shape (Figure 1—figure supplement 4B,C). To determine whether DolP is broadly

required for OM homeostasis, plasmids expressing DolP homologues from S. enterica, Vibrio chol-

erae, Pasteurella multocida, Haemophilus influenza, and Neisseria meningitidis were shown to

restore the OM barrier function of the E. coli DdolP mutant (Figure 1F). Finally, either replacement

of the DolP signal sequence with that of PelB (Tsang et al., 2017), which targets the protein to the

periplasmic space, or mutation of the signal sequence to avoid OM targeting via the Lol system, pre-

vented complementation of the DdolP phenotype (Figure 1—figure supplement 5). Together these

results support a conserved role for DolP in maintenance of OM integrity throughout Gram-negative

bacteria and demonstrate that localisation of DolP to the inner leaflet of the OM is essential to medi-

ate this function.

The structure of DolP reveals a dual BON-domain lipoprotein
To gain further insight into the function of DolP, the structure of full-length mature E. coli DolP was

determined by NMR spectroscopy. To promote native folding of DolP, the protein was over-

expressed in the periplasm using a PelB signal sequence; the N-terminal cysteine was removed to

prevent acylation and provide for rapid purification of the soluble protein. Purified DolP was proc-

essed, soluble and monomeric, as confirmed by analytical ultra-centrifugation and size exclusion

chromatography (Figure 2—figure supplement 1). Using a standard Nuclear Overhauser Effect

(NOE)-based approach, a convergent ensemble was calculated from the 20 lowest-energy solution

structures, revealing two BON domains facing away from each other and offset by ~45˚ (Figure 2A

and Figure 2—figure supplement 2). The individual BON1 (Residues 45–112) and BON2 (Residues

114–193) domains have C-alpha backbone root mean square deviations (RMSDs) of 0.3 and 0.3 Å,

respectively, and an overall global RMSD of 0.5 Å (Table 2). Despite having low sequence identity

(24.7%) each BON domain consists of a three-stranded mixed parallel/antiparallel b-sheet packed

against two a-helices yielding an abbab topology. The two BON domains present high structural

homology and superpose with an RMSD of 1.8 Å over C-alpha backbone (Figure 2—figure supple-

ments 2 and 3). Notably, BON1 is embellished by an additional short a1* helix between BON1:a1

and BON1:b1 (Figure 2A and Figure 2—figure supplements 2 and 3). The N-terminal acylation site

is connected through a 27 amino acid dynamic unstructured linker (Figure 2B). The molecular enve-

lope of full-length DolP calculated by small-angle X-ray scattering (SAXS) accommodated the NMR-

derived structure of DolP and supported the presence of a flexible N-terminal extension. The experi-

mentally determined scattering curve fit the NMR-derived structure with a c (Konovalova et al.,

2017) of 1.263, confirming the accuracy of the NMR-derived structure and an exclusively monomeric

state (Figure 2C and Figure 2—figure supplement 4).
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Figure 2. Structure of DolP. (A) Solution structure and topology of DolP, with a helices, b strands and termini labelled. (B) Backbone model of the 20

lowest-energy solution structures of DolP. The core folded domain is highlighted in red whilst the flexible N-terminal is shown in grey. The dynamic

nature of the linker was demonstrated from S2 order parameter analysis calculated from chemical shift assignments using TALOS+. (C) Small-angle

X-ray scattering curve of DolP with corresponding best fit of the solution structure of DolP. Best fit calculated based on the core DolP solution structure

with flexibility accommodated in residues 20–46, 112–118, and 189–195. The corresponding ab-initio bead model is shown calculated using Dammif

(Franke and Svergun, 2009) based solely on the scattering data. (D) Western blots of total protein extracts show plasmid-mediated expression of DolP

in E. coli DdolP after site-directed mutation of conserved residues. The empty vector (EV) control is labelled and WT represents wild-type DolP. The

presence of the OM lipoprotein BamB was used as a control. Colony growth assays by serial dilution of mutants on 4.8% SDS reveal which residues are

critical for the maintenance of the OM barrier function. (E) Structure of DolP showing position of transposon-mediated insertions. Western blots of total

protein extracts show plasmid-mediated expression of mutant versions of DolP in E. coli DdolP. The empty vector (EV) control is labelled and WT

represents wild-type DolP. Colony growth assays by serial dilution of mutants on 4.8% SDS reveal which insertions abolish DolP function. Blue labels

represent position of non-functional insertions. Orange labels represent position of tolerated insertions. The presence of the OM lipoprotein BamB was

used as a control.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Influence of site directed mutagenesis of DolP of protein production and stability.

Source data 2. S2 order parameter analysis.

Figure supplement 1. DolP is monomeric.

Figure supplement 2. Structural analysis of the DolP BON domains.

Figure supplement 3. Alignment of DolP sequences from diverse proteobacterial species.

Figure supplement 4. Additional SAXS analysis of DolP.

Figure supplement 5. Representation of DolP interdomain interactions highlighting the location of interdomain NOEs identified.

Figure supplement 6. SAXS processing analysis.

Bryant, Morris, Knowles, et al. eLife 2020;9:e62614. DOI: https://doi.org/10.7554/eLife.62614 6 of 27

Research article Biochemistry and Chemical Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.62614


Table 2. Structural statistics of the ensemble of 20 DolP solution structures.

DolP

Completeness of resonance assignments†

Aromatic completeness 74.14%

Backbone completeness 98.42%

Sidechain completeness 84.84%

Unambiguous CH2 completeness 100%

Unambiguous CH3 completeness 100%

Unambiguous sidechain NH2 completeness 100%

Conformationally restricting restraints‡

Distance restraints

Total NOEs 2930 (2762)

Intra residue (i = j) 408 (374)

Sequential (| i – j |=1) 869 (783)

Medium range (1 < | i - j |<5) 773 (741)

Long range (| i – j |�5) 880 (866)

Interdomain 38

Dihedral angle restraints 258

Hydrogen bond restraints 128

No. of restraints per residue 16.6 (20.9)

No. of long range restraints per residue 5.0 (6.5)

Residual restraint violations‡

Average No. of distance violations per structure

0.2 Å-0.5 Å 3.55

>0.5 Å 0

Average No. of dihedral angle violations per structure

>5o 0 (max 4.8)

Model quality‡

Global (residues 46–190)

Rmsd backbone atoms (Å)§ 0.5

Rmsd heavy atoms (Å)§ 0.9

Domain 1 (Residues 46–112)

Rmsd backbone atoms (Å) 0.3

Rmsd heavy atoms (Å) 0.7

Domain 2 (Residues 118–190)

Rmsd backbone atoms (Å) 0.3

Rmsd heavy atoms (Å) 0.8

Rmsd bond lengths (Å) 0.005

Rmsd bond angles (o) 0.6

MolProbity Ramachandran statistics‡.§

Most favoured regions (%) 95.1

Allowed regions (%) 4.3

Disallowed regions (%) 0.7

Global quality scores (raw/Z score)‡

Verify 3D 0.38 /- 1.28

Prosall 0.52 /- 0.54

Table 2 continued on next page
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The two BON domains pack against each other via their b-sheets through contacts mediated

directly by Y75 and V82 in BON1 and T150, G160, L161 and T188 in BON2 with a total of 38 inter-

domain NOEs (Figure 2D, Figure 2—figure supplement 5, Table 3). This interdomain orientation is

consistent with SAXS analysis (Figure 2C) and appears to be essential for function as the mutation

Y75A abolishes function (Figure 2D). Single point mutations (G83V and G160V) of the highly con-

served glycine residues had less effect, however the double mutant was non-functional (Figure 2D

and Figure 2—figure supplement 3). Since the latter protein was not detectable by Western immu-

noblotting this is likely due to structural instability (Figure 2D).

The elements of DolP that are required for function were mapped using an unbiased linker-scan-

ning mutagenesis screen. The resulting DolP derivatives, containing in-frame 5-amino-acid insertions,

were tested for stability by Western immunoblotting. Functional viability was assessed by their

capacity to restore growth of E. coli DdolP in the presence of SDS (Figure 2E). Seven mutants

occurred in the signal sequence and the linker region and were not considered further. Eight inser-

tions were identified in BON1, with insertions at positions L50 (BON1:a1) and V72 (BON1:b1) failing

to complement the DdolP defect whereas the rest were well tolerated. Five insertions were found in

BON2, with those at positions L136, L142, and G160 being well tolerated. The remaining insertions

at positions D125 and W127 occurred in BON2:a1 but failed to complement the DdolP phenotype.

None of these mutations abolished protein expression. These data indicate the importance of

BON2:a1 in maintaining DolP function and OM integrity (Figure 2E).

DolP binds specifically to anionic phospholipids via BON2
Given that OM permeability defects are often associated with the loss or modification of molecular

partners, we sought to identify DolP ligands. Scrutiny of the literature revealed high-throughput pro-

tein:protein interaction data (Carlson et al., 2019; Babu et al., 2018) indicating that DolP co-

located with components of the BAM complex in the OM. As the loss of multiple genes encoding

different components of a single pathway can have additive phenotypes, such as decreased fitness,

we investigated strains with dual mutations in dolP and genes coding the non-essential BAM com-

plex components bamB or bamE. We observed that simultaneous deletion of dolP and bamB or

bamE lead to negative genetic interactions and increased rates of cell lysis (Figure 3—figure sup-

plement 1A,B), suggesting a potential interaction. However, despite these genetic interactions, in

our hands no significant interaction could be detected between DolP and the BAM complex through

immunoprecipitations (Figure 3—figure supplement 1C) and no significant change in overall OMP

Table 2 continued

DolP

Completeness of resonance assignments†

Procheck (phi-psi)d �0.28 /- 0.79

Procheck (all)d �0.75 /- 4.44

Molprobity clash score 47.99 /- 6.71

Model Contents

Ordered residue ranges§ 45–193

Total number of residues 178

BMRB accession number 19760

PDB ID code 7A2D

* Structural statistics computed for the ensemble of 20 deposited structures.

† Computed using AVS software (Moseley et al., 2004) from the expected number of resonances, excluding highly

exchangeable protons (N-terminal, Lys, amino and Arg guanido groups, hydroxyls of Ser, Thr, and Tyr), carboxyls of

Asp and Glu, non-protonated aromatic carbons, and the C-terminal His6 tag.

‡ Calculated using PSVS version 1.5 (Bhattacharya et al., 2007). Average distance violations were calculated using

the sum over r�6.

§ Based on ordered residue ranges [S(j) + S(y)>1.8].

Values in (brackets) refer to the core structured region.
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levels was observed (Supplementary file 2 and Figure 3—figure supplement 1D). Analyses of puri-

fied OM fractions revealed no apparent differences in LPS profiles (Figure 3—figure supplement

2A), or phospholipid content (Figure 3—figure supplement 2B) between the parent and the dolP

mutant. No significant increase in hepta-acylated Lipid A was observed in the absence of DolP, indi-

cating that the permeability defect is also not due to loss of OM lipid asymmetry (Figure 3—figure

Table 3. Interdomain NOE restraints identified by Cyana during automated NOE assignment and

structure calculation.

Proton pair Intensity Distance (Å)

TYR 75 HD1 - THR 188 HA Weak 5.5

TYR 75 HE1 - GLY 160 HA2 Weak 5.4

TYR 108 HE1 - ALA 186 HA Weak 5.5

TYR 108 HE2 - ALA 186 HA Weak 5.5

TYR 108 HE1 - ALA 186 HB Weak 5.1

TYR 75 HD1 - ALA 186 HB Weak 5.2

TYR 75 HE1 - LEU 161 HA Weak 5.2

TYR 75 HE1 - LEU 161 HB3 Weak 5.4

TYR 75 HE1 - LEU 161 HG Weak 5.5

TYR 75 HE1 - LEU 161 HD1 Weak 4.9

TYR 75 HE1 - LEU 161 HD2 Weak 4.9

THR 73 HG2 - ALA 186 HB Weak 5.5

LYS 78 HD2 - PHE 187 hr Weak 5.5

LYS 78 HD3 - PHE 187 hr Weak 5.5

TYR 75 HD1 - HET 159 HA Weak 5.5

TYR 108 HD1 - ALA 186 HB Weak 5.5

GLN 76 HE22 - LEU 161 HB2 Weak 5.2

GLN 76 HE22 - LEU 161 HG Weak 5.1

GLN 76 HE22 - LEU 161 HD1 Weak 4.5

GLN 76 HE22 - LEU 161 HD2 Weak 4.5

TYR 75 HD1 - THR 188 HG2 Weak 4.2

TYR 75 HE1 - LEU 161 hr Weak 4.3

TYR 75 HE1 - VAL 162 hr Weak 5.5

TYR 75 HE1 - LEU 161 HB2 Weak 4.1

TYR 75 HE1 - THR 188 HG2 Weak 4.1

TYR 75 HE1 - THR 188 hr Weak 5.5

TYR 75 HE1 - GLY 160 hr Weak 4.8

TYR 75 HD1 - GLY 160 hr Weak 4.7

THR 73 HG2 - HET 159 HG Weak 4.4

TYR 75 HE1 - LEU 161 HD Weak 4.0

TYR 75 HE2 - LEU 161 HD Weak 5.1

GLN 76 HE21 - LEU 161 HD Medium 3.7

GLN 76 HE22 - LEU 161 HD Medium 3.7

LYS 78 HG - PHE 187 hr Weak 4.9

LYS 78 HD - ALA 186 HB Weak 5.1

LYS 78 HD - PHE 187 hr Weak 4.7

LYS 78 HE - PHE 187 hr Weak 5.3

ARG 112 HA - ARG 182 HB Weak 5.3
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supplement 2C). In contrast, DdolP cells were found to have an increase in membrane fluidity (Fig-

ure 3—figure supplement 2D) as assessed by staining with the membrane intercalating dye pyrene-

decanoic acid (PDA), which undergoes a fluorescence shift upon formation of the excimer, an event

which is directly related to membrane fluidity (Storek et al., 2019). Considering that bamB mutants

are sensitive to increased membrane fluidity (Storek et al., 2019), these data suggest that the

genetic interaction between dolP and bamE or bamB, observed here, is facilitated indirectly through

changes to membrane fluidity on the loss of DolP.

The dolP mutant has changed to membrane fluidity and that BON domains are suggested to

bind phospholipids (Yeats and Bateman, 2003), therefore we sought to test whether DolP interacts

with phospholipids. A set of potential ligands were screened by chemical shift perturbation (CSP)

analysis, including E. coli OM lipids embedded in micelles. DolP bound specifically to micelles con-

taining the anionic phospholipids phosphatidylglycerol (PG) and cardiolipin (CL) but not to micelles

devoid of PG or CL, or those containing the zwitterionic phospholipid phosphatidylethanolamine

(PE) (Figure 3A, Figure 3—figure supplement 3, Figure 4A). Significant CSPs were noted for A74,

G120-I128, K131-R133, Q135-L137, V142-S145, I173, and S178-V180. The perturbed residues were

mapped to the structure, revealing a single extensive binding site centred on BON2:a1 that was suf-

ficiently large to contact several lipid molecules (Figure 3A). A dissociation constant (Kd) of ~100

mM (monomeric DHPG) was measured (Figure 3—figure supplement 4). No lipid interaction was

seen for any BON1 domain residue, emphasising the specialised role of BON2, which not only differs

from DolP BON1, but also from the BON domains of OsmY and Kbp (Figure 2—figure supplement

3). Analysis of the electrostatic surface reveals a large negative surface potential on BON1:a1, which

is absent in BON2:a1 and may act to repel BON1 from PG, whilst BON2:a1 uniquely harbours an

aromatic residue W127 in the observed PG- binding site (Figure 4—figure supplement 1).

As the BON2 domain contained a particularly large PG-specific interaction site, we sought to

resolve the micelle-complexed structure of mature DolP. Intermolecular structural restraints were

obtained from paramagnetic relaxation enhancements (PRE) obtained by incorporating 5-doxyl spin-

labelled phosphatidyl choline (PC) and 1,2-dimyristoyl-sn-glycero-3-phospho-(1’-rac-glycerol)

(DMPG) into a n-dodecylphosphocholine (DPC) micelle and by measuring CSPs. The complexed

structure was calculated using HADDOCK (Dominguez et al., 2003) with 18 PRE distance restraints

and side chains of the 25 chemical shift perturbations, with final refinement in water (Figure 3B). The

amino acids G120-T130 and V132-S139 were observed to insert into the micelle interior based on

the PRE and CSP data. This reveals an unprecedented burial of the BON2:a1 helix, which spans the

entirety of the L119-S139 sequence. The protein-micelle interface buries 1358 ± 316 Å2 and to our

knowledge represents the most extensive structured surface of a membrane:protein interface

resolved to date. The surface forms intimate contacts with at least six proximal phospholipid head-

groups through an extensive network of highly populated hydrogen bonds and electrostatic interac-

tions. Whilst the side chains of residues G120, S123, W127, T130, and S134 intercalate between the

acyl chains, E121, N124, T126, I128, K131, R133, and Q135 buttress the interface (Figure 3B). This

element was also functionally important based on our transposon screen (Figure 2E), and was fur-

ther confirmed as being essential by directed mutagenesis. Mutations within the PG-binding

BON2:a1 disrupt the function of DolP, the most critical of which are W127E and L137E; W127 is

located in the centre of the binding site that penetrates deep into the core of the PG micelle, and

L137 is located at the periphery of the helix (Figure 3B, Figure 4B and Figure 4—figure supple-

ment 2). Not only does mutation of W127 lead to loss of function, but introduction of the W127E

mutation was shown to abolish binding of DolP to PG micelles as observed by a loss of CSPs within

BON2:a1 (Figure 4C). Notably, the BON2:a1 structure presents an extended a-helix when com-

pared to BON1:a1 (Figure 2—figure supplements 2 and 3). The helical extension in BON2:a1 con-

tains the W127 anionic phospholipid-binding determinant of DolP. This further implicates W127,

which is absent in BON1 and OsmY, in specialisation of DolP BON2 for phospholipid binding.

Phospholipid-binding guides DolP localisation to the cell division site
DolP binds anionic phospholipid, which demonstrates sub-cellular localisation to sites of higher

membrane curvature including the cell poles and division site (Oliver et al., 2014; Renner and Wei-

bel, 2011; Mileykovskaya and Dowhan, 2000). To determine if DolP also shows a preference for

such sites, we constructed a plasmid expressing a DolP-mCherry fusion and utilising fluorescence

microscopy we observed DolP localised specifically to the cell division site (Figure 5A). Considering
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that DolP is non-functional when targeted to the IM (Figure 1—figure supplement 5), we investi-

gated if DolP could still localise to the site of cell division when it was mistargeted to the IM; no sep-

tal localisation was observed (Figure 1—figure supplement 5). Next, we tested whether the

phospholipid-binding activity is also required for division site localisation of DolP. We found that

introduction of the W127E mutation, which prevents interaction of DolP with PG/CL micelles, abol-

ished division site localisation of DolP (Figure 5A). Considering that W127E not only abolished PG/

CL binding, but also division site localisation, we concluded that division site localisation of DolP was

Figure 3. DolP BON2:a1 binds phospholipid. (A) DolP ribbon structure highlighting residues exhibiting substantial CSPs (Ddave) upon DHPG micelle

interaction. The histogram shows the normalised perturbations induced in each residue’s amide signal when DHPG (40 mM) was added to DolP (300

mM). Examples of significant CSPs are shown. (B) Histogram showing intensity reductions of HN signals of DolP induced by adding 5-doxyl PC and

DMPG into DPC/CHAPs micelles and the corresponding structure of a representative DolP-micelle complex calculated using CSPs and doxyl restraints

using the program HADDOCK. Only the BON2:a1 helix is observed making contact with the micelle surface. No corresponding interaction of the

BON1:a1 helix is observed. Zoom panels show burial of BON2:a1 into the micelle. The side chains of DolP residues that intercalate between the acyl

chains (G120, S123, W127, T130, and S134) are coloured red. The side chains of residues that buttress the interface (E121, N124, T126, I128, K131, R133,

and Q135) are coloured yellow. DolP is shown in blue and the phospholipid micelle is shown in tan.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Chemical shift perturbations for lipid titration results.

Source data 2. Data for HADDOCK calculations of micelle-DolP interactions.

Figure supplement 1. dolP has genetic interactions with bamB and bamE but no detectable physical interaction.

Figure supplement 1—source data 1. Genetic interactions with DolP.

Figure supplement 2. Loss of DolP affects membrane fluidity, but does not affect membrane lipid profiles.

Figure supplement 2—source data 1. LPS production in a dolP negative background.

Figure supplement 2—source data 2. Phospholipid content of membranes isolated from a dolP mutant.

Figure supplement 2—source data 3. Comparison of hepta- and hexa-acylated LPS levels.

Figure supplement 2—source data 4. Raw data for membrane fluidity assay.

Figure supplement 3. DolP phosphatidylglycerol binding HSQC spectra.

Figure supplement 4. Kd estimation from HSQC titration data.
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dependent upon binding of DolP to anionic phospholipids, which have previously been shown to be

enriched at the division site (Renner and Weibel, 2011; Mileykovskaya and Dowhan, 2000).

To confirm this result we analysed DolP localisation in a strain that lacks all three cardiolipin syn-

thases and is defective for cardiolipin synthesis, which was confirmed by phospholipid extraction and

thin layer chromatography (Figure 5B). We observed that DolP localisation is perturbed in the CL-

strain, with less dividing cells showing localisation of DolP to the septum (Figure 5C). These effects

are further exacerbated in a strain that does not synthesise the major cell anionic phospholipids

phosphatidylglycerol or cardiolipin, as confirmed by phospholipid extraction and thin layer chroma-

tography (Figure 5B). Loss of both phosphatidylglycerol and cardiolipin synthesis worsened the

severity of the localisation defect with less septal localisation and a significant proportion of cells

showing mislocalisation of DolP to patches at the cell poles (Figure 5C). Taken together these data

demonstrate that DolP localisation to the division site is dependent upon interaction with anionic

Figure 4. DolP specifically recognises anionic phospholipid via BON2:a1. (A) Histograms showing the normalised CSP values observed in 15N-labelled

DolP (300 mM) amide signals in the presence of 20 mM 1,2,-dihexanoyl-sn-glycero-3-phosphethanolamine, 20 mM 1,2-dihexanoyl-sn-glycero-3-phospho-

(1’-rac-glycerol) and 5 mM cardiolipin.( B) Mutagenesis of the BON2:a1 helix residues identified by CSPs. The positions of W127 and L137 are indicated

as sticks. Western blots of total protein extracts show plasmid-mediated expression of DolP in E. coli DdolP after site-directed mutation of amino acid

residues. The empty vector (EV) control is labelled and WT represents wild-type DolP. Colony growth assays of E. coli DdolP complemented with DolP

mutants reveal which residues are critical for the maintenance of OM barrier function. The presence of the protein PqiB was used as a control. (C)

Histograms showing the normalised CSP values observed in 15N-labelled DolPWT or DolPW127E mutant (300 mM) amide signals in the presence of 40 mM

1,2-dihexanoyl-sn-glycero-3-phospho-(1’-rac-glycerol).

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Effect of site-directed mutations on DolP function.

Figure supplement 1. Electrostatic analysis of DolP.

Figure supplement 2. Analysis of DolP mutants.
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phospholipid via BON2:a1, and that this interaction and the sub-cellular localisation are required for

DolP function.

Discussion
We have revealed the first structure of a dual-BON-domain protein, a protein architecture that is

widely conserved amongst bacteria and therefore provides insight into a diverse range of proteins

acting in different organisms. We also report the first evidence for direct binding of lipids by BON

domains. We show that DolP BON2 demonstrates specificity for the anionic phospholipids PG and

CL, which have previously been shown to localise to sites of higher membrane curvature including

the cell poles and division site (Oliver et al., 2014; Renner and Weibel, 2011; Mileykovskaya and

Dowhan, 2000). Interestingly, we detected no phospholipid binding for DolP BON1, which lacks the

key W127 phospholipid interaction residue. This key residue is also lacking in the other periplasmic

Figure 5. Phospholipid binding is required for DolP recruitment to division sites. (A) Fluorescence microscopy of DdolP cells expressing either DolPWT::

mCherry or DolPW127E::mCherry from the pET17b plasmid after growth to mid-exponential phase (OD600 ~0.4–0.8). Scale bars represent 2 mM and both

phase contrast and the mCherry channel are shown in greyscale and red respectively. White arrows highlight division site localisation of DolPWT-

mCherry. Demographic representations of the DolPWT-mCherry or DolPW127E-mCherry fluorescence intensities measure along the medial axis of the

cells. Images of >500 cells were analysed using the MicrobeJ software and sorted according to length where the y-axis represents relative cellular

position with 0 being mid-cell and 3 or �3 being the cell poles (Ducret et al., 2016). (B) Thin layer chromatography of phospholipids extracted from

either E. coli BW25113 (WT), DrcsFDlpp, DrcsFDlppDpgsA (referred to as DpgsA) or DclsADclsBDclsC (referred to as DclsABC) strains. The rcsF and lpp

genes must be removed in order to prevent toxic build-up of Lpp on the IM in the pgsA mutant. Phospholipids were separated using chloroform:

methanol:acetic acid (65:25:10) as the mobile phase before staining with phophomolybdic acid and charring.( C) Fluorescence microscopy of DpgsA or

DclsABC cells expressing DolPWTmCherry from the pET17b plasmid after growth to mid-exponential phase (OD600 ~0.4–0.8). White arrows highlight

DolP-mCherry mislocalisation.

The online version of this article includes the following source data for figure 5:

Source data 1. Effect of DolP-anionic phospholipid interactions on DolP localisation.
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BON-domain-containing protein in E. coli, OsmY. Thus, we have demonstrated a specialised role for

DolP in the cell and our data suggests BON domains are not generalist phospholipid-binding

domains, as was suggested previously (Yeats and Bateman, 2003).

Here, we show for the first time that localisation of DolP to the cell division site is dependent

upon recognition of anionic phospholipids by DolP BON2. To our knowledge, this is the only exam-

ple of this mechanism of localisation to the bacterial division site (Laloux and Jacobs-Wagner,

2014). Considering anionic phospholipids also accumulate at the old pole, the question of how DolP

specifically recognises the division site remains. We hypothesise that DolP prefers the site of higher

positive (convex) curvature found only at the inner leaflet of the OM cell division site in vivo and in

the PG micelles used in this study. Previous evidence has shown that inhibition of cell constriction,

by the addition of cephalexin, also prevents DolP localisation to future division sites (Tsang et al.,

2017). This indicates that DolP may require cell constriction for localisation to the division site, there-

fore lending support to the hypothesis that DolP may recognise membrane curvature. An alternative

explanation is that the phospholipid-binding mode of DolP may trigger interaction with some as yet

unidentified division site localised protein partner, but no obvious candidates are offered by pub-

lished envelope interactome data (Carlson et al., 2019; Babu et al., 2018). Nevertheless, these

data reveal that DolP function is dependent on localisation to the division site through phospholipid

binding and localisation to the OM through its N-terminal lipid anchor. The model of DolP localisa-

tion to the cell division site proposed here also provides some evidence that anionic phospholipids

localise to sites of high membrane curvature in the OM. While this has been shown for whole cells

(Oliver et al., 2014; Mileykovskaya and Dowhan, 2000), and the IM through the use of sphero-

plasts (Renner and Weibel, 2011), to our knowledge, no such observation has yet been made for

the OM directly. Considering that the OM is significantly different from the IM and is depleted of

PG and CL by comparison (Lugtenberg and Peters, 1976; Figure 3—figure supplement 2B), the

localisation of these lipids to sites of negative curvature could be further enhanced by the relative

scarcity of these lipids in the OM and this warrants further study.

We have not found a direct mechanism through which DolP maintains OM integrity. No differen-

ces in LPS content or OM asymmetry were observed in a dolP mutant suggesting DolP does not

influence the OM phospholipid recycling Mla pathway or LPS biogenesis. Previous protein:protein

interaction studies captured DolP as a near neighbour of two components of the Bam complex,

BamD and BamE (Carlson et al., 2019; Babu et al., 2018). Consistent with this, dolP shows synthetic

lethality with the gene encoding the periplasmic chaperone SurA, leading to suggestions of a role

for DolP in OMP biogenesis (Onufryk et al., 2005; Yan et al., 2019; Typas et al., 2008). However,

we were unable to demonstrate a direct interaction between DolP and the BAM complex, and no

such interaction has been seen in the extensive studies evaluating the subunit composition and mul-

timeric states of the BAM complex (Wu et al., 2005; Hagan et al., 2010; Gunasinghe et al., 2018;

Knowles et al., 2009) or in similar studies in N. meningitidis (Bos et al., 2014). However, while this

is in agreement with the fact that DolP is localised to the division site, whereas the Bam complex is

uniformly present across the cell surface (Gunasinghe et al., 2018), it does not rule out potential

transient interactions. Previous observations revealed that the OM is a rigid structure (Rojas et al.,

2018) that this membrane rigidity stabilises assembly precincts (Gunasinghe et al., 2018), and that

the activity of the BAM complex is sensitive to increases in membrane fluidity (Storek et al., 2019).

We suggest that the increased membrane fluidity of the dolP cells, demonstrated here, provides a

challenging environment for assembly precincts to be maintained. We hypothesise that DolP, per-

haps through interactions with peptidoglycan amidases (Tsang et al., 2017), might also modulate

peptidoglycan remodeling in such a way as to minimise the clash between the periplasmic compo-

nents of the assembly precinct and the cell wall, which might be exacerbated in regions of high

membrane curvature.

In conclusion, this study reports for the first time the direct binding of lipid by BON domains and

a new mechanism of protein division site localisation. The indirect link between DolP and the general

machinery responsible for outer-membrane biogenesis adds to the recently described role of DolP

in the regulation of cell wall amidases during division, therefore potentially placing DolP at the inter-

face between envelope biogenesis processes (Tsang et al., 2017). The demonstration that loss of

DolP increases sensitivity to antibiotics and membrane disrupting agents, in addition to the decrease

in virulence in vivo, and an increase of the efficacy of the N. meningitidis vaccine, suggests DolP will

provide a useful starting platform for antimicrobial design based on the disruption to regulation of
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multiple envelope biogenesis mechanisms (Morris et al., 2018; Giuliani et al., 2006; Pizza et al.,

2000).

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Strain, strain
background
(Escherichia coli)

BL21(DE3) Invitrogen T7 express,
protein
expression strain

Strain, strain
background
(Escherichia coli)

BW25113 Datsenko and Wanner, 2000 rrnB3 DlacZ4787
DphoBR580
hsdR514
D(araBAD)567
D(rhaBAD)568
galU95 DendA9::
FRT DuidA3::pir
(wt) recA1 rph-1

Strain, strain
background
(Escherichia coli)

BW25113 4dolP This paper BW25113 with
dolP deleted

Strain, strain
background
(Escherichia coli)

BW25113 4lpp,4rcsF This paper BW25113 with
lpp and rcsF
deleted

Strain, strain
background
(Escherichia coli)

BW25113 4lpp,4rcsF,4pgsA This paper BW25113 with
lpp, rcsF and
pgsA genes
deleted

Strain, strain
background
(Escherichia coli)

BW25113 4clsA,4clsB,4clsC This paper BW25113 with
clsA, clsB and
clsC genes
deleted

genetic reagent
(E. coli)

KEIO library Datsenko and Wanner, 2000 Nonessential
genes disrupted
in E. coli
BW25113

Recombinant
DNA reagent

pKD4 Datsenko and Wanner, 2000 Plasmid Template for the
amplification of
a kanamycin
resistance
cassette flanked
by FRT sites.

Recombinant
DNA reagent

pKD46 Datsenko and Wanner, 2000 Plasmid Temperature
sensitive, low
copy number
plasmid
encoding the
Lambda RED
recombinase
genes under the
control of an
arabinose
inducible
promoter

Recombinant
DNA reagent

pCP20 Datsenko and Wanner, 2000 Plasmid Temperature
sensitive
plasmid
encoding the
FLP
recombinase
gene

Continued on next page
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Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Recombinant
DNA reagent

pET17b Novagen Plasmid T7 expression
vector, AmpR

Recombinant
DNA reagent

pET17b dolP This paper Plasmid pET17b with
dolP cloned
between NdeI
and EcoRI

Recombinant
DNA reagent

pET17b dolP TM This paper Plasmid As described
above with the
dolP gene
randomly
disrupted by
Transposon
mutations

Recombinant
DNA reagent

pET17b dolP STm This paper Plasmid pET17b with the
S. typhimurium
dolP gene
cloned between
NdeI and HindIII

Recombinant
DNA reagent

pET17b dolP H.i This paper Plasmid pET17b
encoding a
codon
optimised
Haemophilus
influenza dolP
homolog

Recombinant
DNA reagent

pET17b dolP P.m This paper Plasmid pET17b
encoding a
codon
optimised
Pasteurella
multocida dolP
homolog

Recombinant
DNA reagent

pET17b dolP N.m This paper Plasmid pET17b
encoding a
codon
optimised
Neisseria
meningitidis
dolP homolog

Recombinant
DNA reagent

pET17b dolP V.c This paper Plasmid pET17b
encoding a
codon
optimised Vibrio
cholera dolP
homolog

Recombinant
DNA reagent

pET17b osmY This paper Plasmid pET17b
encoding a
codon
optimised E. coli
K12 osmY

Recombinant
DNA reagent

p(OM)OsmY This paper Plasmid pET17b
encoding a
codon
optimised E. coli
K12 osmY
synthesised with
the dolP signal
sequence and
acylation site in
place of the
osmY signal
sequence

Continued on next page
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Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Recombinant
DNA reagent

pET20b Novagen Plasmid T7 expression
vector, AmpR

Recombinant
DNA reagent

pET20b dolP This paper Plasmid pET20b with
dolP cloned
between NdeI
and EcoRI

Recombinant
DNA reagent

pET20b dolP PM This paper Plasmid pET20b with
dolP cloned
between NdeI
and EcoRI with
site-directed
point mutations
at various sites

Recombinant
DNA reagent

pET20b wbbL This paper Plasmid pET20b with
wbbL gene
cloned between
NdeI and HindIII

Recombinant
DNA reagent

pET20b dolP::mCherry This paper Plasmid pET20b
encoding dolP
fused to a codon
optimised
mCherry gene
via a C-terminal
11-codon
flexible linker
(GGSSLVPSSDP)

Recombinant
DNA reagent

pET26b dolPpelB::mCherry This paper Plasmid pET26b dolP::
mCherry with
the dolP signal
sequence
replaced with
that of pelB

Recombinant
DNA reagent

pET20b dolPIM::mCherry This paper Plasmid pET20b dolP::
mCherry with
codon 20 and 22
of dolP each
mutated to
aspartic acid

Recombinant
DNA reagent

pET20b dolPW127E::mCherry This paper Plasmid pET20b dolP::
mCherry with
codon 127
mutated to
glutamic acid

Bioinformatic analyses
The BON-domain profile was obtained from Pfam http://pfam.sanger.ac.uk/ (Punta et al., 2012)

and used as input for HMMER (hmmsearch version 3.1) (Finn et al., 2011) against the Uniprot data-

base (http://www.uniprot.org, release 06032013) with an inclusion cutoff of E = 1 without heuristic

filters. Sequence redundancy for clustering analysis was minimised using the UniRef100 resource of

representative sequences; clustering was performed with the mclblastline program (Enright et al.,

2002; Hunter et al., 2012) based on the e-value obtained by a BlastP run of all-against-all. Optimal

settings for the mcl clustering were manually determined, clustering was performed at an e-value

cutoff of 1E-2 and an inflation parameter of 1.2 using the scheme seven setting implemented in mcl.

The resulting clusters were matched back to the proteins originally recovered by the HMMER search,

and the number of proteins, as well as the number of matched organisms, are summarised for each

phylum or subphylum in Table 1. UniProt accession numbers of all proteins according to their clus-

ters are given in Supplementary file 1. The domain annotation was obtained from the InterPro data-

base (Hunter et al., 2012). For cluster representation (Figure 1), the program CLANS (Frickey and
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Lupas, 2004) was used under the default settings. Clusterings with CLANS was based on a subset of

OsmY-, DolP- and Kbp-like proteins identified as described above; the respective accession numbers

are given in Table 4. Pairwise alignment similarity values were analysed at the Protein Information

Resource site (PIR; http://pir.georgetown.edu/).

Plasmids, bacterial strains, and culture conditions
Escherichia coli BW25113 was the parental strain used for most investigations. E. coli dolP::kan,

osmY::kan and kbp::kan mutants were obtained from the KEIO library (Baba et al., 2006) and the

mutations transduced into a clean parental strain. E. coli D dolP was created by resolving the KanR

cassette, as previously described (Datsenko and Wanner, 2000). E. coli BW25113 DpgsA was con-

structed first by transfer of the rcsF::aph allele from the Keio library into E. coli BW25113 and

removal of the kanR cassette. The lpp:aph allele was then introduced into the DrcsF strain, and the

cassette removed by the l-Red recombination method of Datsenko and Wanner, due to the pres-

ence of Lpp being toxic in the absence of phosphatidylglycerol (Datsenko and Wanner, 2000;

Kikuchi et al., 2000; Suzuki et al., 2002). Finally, the same method was utilised to create the DpgsA

strain (DrcsF,Dlpp,DpgsA) The genes encoding DolP and OsmY were amplified from E. coli BW25113

and cloned into pET17b to create pDolP and pOsmY. Orthologous sequences from S. enterica, V.

cholera, N. meningitidis, H. influenza and P. multocida were synthesised and cloned into pET17b to

create the plasmids pSe, pVc, pNm, pHi, and pPm, respectively. To create pDolPpelB, the gene

encoding DolP was synthesised but with nucleotides encoding the PelB signal sequence in place of

the native signal sequence and without Cys19 to relieve the possibility of acylation; this plasmid was

constructed in pET26b+ such that the protein had a C-terminal His-tag. In addition, to create p(OM)

OsmY the gene encoding OsmY was synthesised but with nucleotides encoding the native DolP sig-

nal sequence and Cys19 N-terminal acylation site in place of the native OsmY signal sequence. The

latter plasmid was constructed in pET17b. The pET17b-dolP::mCherry plasmid was constructed to

contain an 11 amino acid flexible linker and a codon optimised mCherry gene at the 3’ end of the

dolP gene. Gene synthesis was performed by Genscript. The pet20b+-wbbL plasmid for restoring

O-antigen synthesis in E. coli K-12 was previously described (Browning et al., 2013a). Single point

mutations were generated by using Quickchange II according to manufacturer’s instructions. All con-

structs were confirmed by DNA sequencing. Strains were routinely cultured on LB agar and LB broth.

Linker scanning mutagenesis was performed with an Ez-Tn5 kit (Epicentre) as previously described

(Browning et al., 2013b).

Table 4. Accession numbers for the sequences used for CLANS clustering shown in Figure 1.

Organism OsmY DolP Kbp

Escherichia coli K12 P0AFH8 P64596 P0ADE6

Klebsiella pneumoniae MGH 78578 A6THZ1 A6TEG9 A6T985

Enterobacter cloacae ENHKU01 J7G7C8 J7GHD1 J7GFT3

Salmonella enterica Typhimurium Q7CP68 Q7CPQ6 Q8ZML9

Erwinia billingiae Eb661 D8MMS8 D8MME2 D8MNV6

Serratia proteamaculans 568 A8G9G9 A8GJZ3 A8GFP7

Cronobacter sakazakii ATCC BAA-894 A7MGB6 A7MIQ1 A7MEA9

Pantoea sp. Sc1 H8DPK0 H8DQ90 H8DIH9

Hafnia alvei ATCC 51873 G9Y3J7 G9Y4J4 G9YAM4

Citrobacter rodentium ICC168 D2TRY4 D2TQ24 D2TM58

Shigella flexneri 1235–66 I6F1Q5 I6GLP1 I6HD15

Yersinia enterocolitica 8081 A1JJ93 A1JR75

Yersinia pestis KIM10+ Q7CG58 Q8D1R6

Dickeya dadantii 3937 E0SJX0 E0SHF6
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Analysis of membrane lipid content
Cell envelopes of E. coli were separated by defined sucrose density gradient separation, precisely as

described previously following cell disruption by 3 passes of the C3 emulsiflex (Avestin) (Isom et al.,

2017; Dalebroux et al., 2015). Samples were generated in biological triplicate from three separate

2 L batches of cells grown to an OD6000.6–0.8, with the final volumes for washed membranes being

1 ml, which were stored at �80 ˚C until analysis. Lipids were extracted by the Bligh-Dyer method

(Bligh and Dyer, 1959) from purified membranes as described previously (Isom et al., 2017). Meth-

anol and chloroform were added to the samples to extract the metabolites using a modified Bligh-

Dyer procedure (Wu et al., 2008) with a final methanol/chloroform/water ratio of 2:2:1.8. The non-

polar layer was extracted and dried under nitrogen before being stored at �80 ˚C until analysis.

Samples were re-dissolved in 200 ml chloroform before being separated by thin layer chromatogra-

phy on silica gel 60 plates with the mobile phase as chloroform:methanol:water at the following

ratio: 65:25:10. Lipids were visualised by staining with phosphomolybdic acid. Analysis of lipid sam-

ples by mass spectrometry was completed as described previously (Teo et al., 2019). The differen-

ces were as follows: lipid extracts were diluted 10x or 20x into starting LC solvent the LC-MS/MS run

directly. Normalisation was completed by taking the ion intensity of each phospholipid relative to

the total ion count.

Biochemical analyses
Cellular fractions were prepared as described previously (Parham et al., 2004). Cellular fractions

and purified proteins were electrophoresed on 12 or 15% SDS-PAGE gels and stained with Coomas-

sie blue or transferred to a polyvinylidene difluoride (PVDF) membrane for Western immunoblotting

as previously described (Leyton et al., 2011). Loading consistency was confirmed by immuno-blot-

ting with anti-BamB or anti-PqiB antiserum where possible. Protease shaving assays were described

previously (Selkrig et al., 2012). Proteins were localised by immunofluorescence as described previ-

ously (Leyton et al., 2011). Analytical ultracentrifugation was performed as described previously

(Knowles et al., 2011). For proteomic analysis of OM protein content, OM fractions purified by

defined sucrose gradient centrifugation in biological triplicate and were digested with trypsin using

the FASP method (Wiśniewski et al., 2009). Primary amines in the peptides were then dimethylated

using hydrogenated or deuterated formaldehyde and sodium cyanoborohydride. Labelled peptides

were mixed, separated into 15 fractions by mixed-mode reverse-phase/anion exchange chromatog-

raphy, the fractions lyophilised and each analysed with a 90 min LC-MS/MS run using a Bruker

Impact Q-TOF mass spectrometer. Data was searched against forward and randomised E. coli

sequence databases using MASCOT and filtered at 1% FDR. Quantitation was based on the

extracted ion chromatograms of light/heavy peptide pairs. DolP was investigated for binding part-

ners using immunoprecipitation assays as described previously. Briefly, E. coli DdolP, and isogenic

strains containing pDolPpelB or plasmid containing a His-Tagged version of BamA were grown in LB

media to an OD600 of ~0.6 and harvested by centrifugation. Cells were resuspended in PBS with Tri-

ton X-100 supplemented with lysozyme and Benzonase nuclease. Cells were lysed and clarified by

centrifugation. The lysate was incubated with Ni-NTA agarose (Qiagen) or appropriate antibodies.

Precipitated proteins were analysed by Western immunoblotting.

NMR spectroscopy
Experiments were carried out at 298 K on a Varian Inova 800 MHz spectrometer equipped with a tri-

ple-resonance cryogenic probe and z-axis pulse-field gradients. Isotope labelled DolP (15N 13C) with

its N-terminal cysteine replaced was used at a concentration of 1.5 mM in 50 mM sodium phosphate

(pH 6), 50 mM NaCl and 0.02% NaN3 in 90% H2O/10% D2O. Spin system and sequential assign-

ments were made from CBCA(CO)NH, HNCACB, HNCA, HN(CO)CA, HNCO, HN(CA)CO, H(C)CH

TOCSY and (H)CCH TOCSY experiments (Muhandiram and Kay, 1994). Spectra were processed

with NMRPipe (Delaglio et al., 1995) and analysed with SPARKY (Goddard and Kneller, 2008).

Structure calculations
Interproton distance restraints were obtained from 15N- and 13C-edited NOESY-HSQC spectra

(tmix=100 ms). PRE restraints were obtained by adding 10 mM DPC/3.33 mM CHAPS micelles spiked

with 1 mM DMPG and 0.185 mM 5-doxyl 1-palmitoyl-2-steroyl-sn-glycero-phosphocholine (Avanti,
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Polar Lipids, Alabaster, AL, USA) to 15N-labelled DolP (300 mM) and by standardising amide reso-

nance intensities to those induced by spiking instead with unlabelled dipalmitoyl phosphocholine

(Avanti Polar Lipids). Backbone dihedral angle restraints (f and y) were obtained using TALOS from

the backbone chemical shifts (Cornilescu et al., 1999). Slowly exchanging amides were deduced

from the 1H 15N SOFAST-HSQC (Schanda et al., 2005) spectra of protein dissolved in 99.96% D2O.

The structure was calculated iteratively using CANDID/CYANA, with automated NOE cross-peak

assignment and torsion angle dynamics implemented (Güntert, 2004). A total of 20 conformers with

the lowest CYANA target function were produced that satisfied all measured restraints. Aria1.2 was

used to perform the final water minimisation (Linge et al., 2001). Structures were analysed using

PROCHECK-NMR (Laskowski et al., 1993) and MOLMOL (Koradi et al., 1996). Structural statistics

are summarised in Table 2.

Lipid interactions
Ligand binding to 300 mM 15N- DolP in 50 mM sodium phosphate (pH 6), 50 mM NaCl and 0.02%

NaN3 in 90% H2O/10% D2O was monitored by 1H15N-HSQCs at concentrations of 0–40 mM of either

DHPG or DHPE (c.m.c.,~7 mM). The DPC-DMPG: DolP complex was calculated by HADDOCK

(Dominguez et al., 2003; Dancea et al., 2008). A total of 18 paramagnetic relaxation enhancements

restrained the distances between the micelle centre and the respective NH groups to 0–20 Å, with

CSPs defining the flexible zone. The top 200 models were ranked according to their experimental

energies and statistics derived from the 20 lowest-energy conformers were reported (Table 5).

Small-angle X-ray scattering
Synchrotron SAXS data of DolP were collected at the EMBL X33 beamline (DESY, Hamburg) using a

robotic sample changer. DolP concentrations between 1 and 10 mg/ml were run in 50 mM sodium

phosphate (pH 6), 50 mM NaCl and 0.02% NaN3. Data were recorded on a PILATUS 1M pixel detec-

tor (DECTRIS, Baden, Switzerland) at a sample-detector distance of 2.7 m and a wavelength of 1.5

Å, covering a range of momentum transfer of 0.012 < s < 0.6 Å�1 (s = 4psin(q)/g, where 2q is the

scattering angle) and processed by PRIMUS (Konarev et al., 2003). The forward scattering I(0) and

the radius of gyration (Rg) were calculated using the Guinier approximation (Guinier, 1939; Fig-

ure 2—figure supplement 6). The pair-distance distribution function pR, from which the maximum

particle dimension (Dmax) is estimated, was computed using GNOM (Svergun, 1992; Figure 2—fig-

ure supplement 6). Low resolution shape analysis of the solute was performed using DAMMIF

(Franke and Svergun, 2009). Several independent simulated annealing runs were performed and

the results were analysed using DAMAVER (Volkov and Svergun, 2003). Back comparison of the

DolP solution structure with the SAXS data was performed using the ensemble optimisation method

Table 5. HADDOCK docking statistics for ensemble 20 lowest-energy DolP-DPC micelle solution structures calculated.

Experimental parameters*

Ambiguous distance restraints 19 including NH of I20, G120-T130, V132-Q135, T138, S139, and NHe of W127

Number of flexible residues† 50 (I20-V45 (flexible linker as ascertained by NMR), A74, G120-I128, K131-R133, Q135-L137, V142-S145, I173,S178-
V180)

Atomic pairwise RMSD (Å)

All backbone

Flexible interface backbone

Intermolecular energies (kcal.
mol�1)

Evdw �100.81 ± 7.74

Eelec �231.67 ± 64.14

Erestraints 22.30 ± 4.29

Buried surface area (Å2) 2186.78 ± 133.277

* deduced from intensity reductions observed in presence of 5-doxl derivative.

† according to their surface accessibility and the chemical shift perturbation in presence of DPC/CHAPS.
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(Bernadó et al., 2008) accounting for flexibility between residues 20–46, 112–118 and 189–195. All

programs used for analysis of the SAXS data belong to the ATSAS package (Petoukhov and Sver-

gun, 2005).

Accession codes
Coordinates and NMR assignments have been deposited with accession codes 7A2D (PDB) and

19760 (BMRB), respectively.

Cell imaging
Cultures were grown at 37˚C to OD6000.4–0.5. Cells were harvested by centrifugation at 7000 x g for

1 min before being applied to agarose pads, which were prepared with 1.5% agarose in PBS and set

in Gene Frames (Thermo Scientific). Cells were immediately imaged using a Zeiss AxioObserver

equipped with a Plan-Apochromat 100x/Oil Ph3 objective and illumination from HXP 120V for phase

contrast images. Fluorescence images were captured using the Zeiss filter set 45, with excitation at

560/40 nm and emission recorded with a bandpass filter at 630/75 nm. For localisation analysis and

generation of demographs, the MicrobeJ plugin for Fiji was used and >500 cells were used as input

for analysis (Ducret et al., 2016).

Membrane fluidity assay
Membrane fluidity was measured by use of the membrane fluidity assay kit (Abcam: ab189819) as

was described previously except with minor modifications (Storek et al., 2019). Specific bacterial

strains were grown to stationary phase overnight (~16 hr) after which cells were harvested by centri-

fugation, washed with PBS three times and finally labelled with labelling mix (10 mM pyrenedecanoic

acid and 0.08% pluronic F-127 in PBS) for 20 min in the dark at 25˚C with shaking. Cells were washed

twice with PBS before fluorescence was recorded with excitation at 350 nm and emission at either

400 nm or 470 nm to detect emission of the monomer or excimer respectively. Unlabelled cells were

used as a control to confirm labelling and the E. coli BW25113 DwaaD strain was used as a positive

control for increased membrane fluidity. Following subtraction of fluorescence from the blanks, aver-

ages from triplicate experiments were used to calculate the ratio of excimer to monomer fluores-

cence. These ratios were then expressed as relative to the parent E. coli BW25113 strain.

Genetic interaction analysis
Genetic interaction assay was performed as described in Banzhaf et al., 2020. For each probed

strain, a single source plate was generated and transferred to the genetic interaction plate using a

pinning robot (Biomatrix 6). On each genetic interaction assay plate, the parental strain, the single

deletion A, the single deletion B and the double deletion AB were arrayed, each in 96 copies per

plate. Genetic interaction plates were incubated at 37˚C for 12 hr and imaged under controlled light-

ing conditions (spImager S and P Robotics) using an 18-megapixel Canon Rebel T3i (Canon). Colony

integral opacity as fitness readout was quantified using the image analysis software Iris

(Kritikos et al., 2017). Fitness ratios were calculated for all mutants by dividing their fitness values

by the respective WT fitness value. The product of single mutant fitness ratios (expected) was com-

pared to the double mutant fitness ratio (observed) across replicates. The probability that the two

means (expected and observed) are equal across replicates is obtained by a Student’s two-sample

t-test.

Lipid A palmitoylation assay
Labelling of LPS, Lipid A purification, TLC analysis, and quantification were done exactly as

described previously (Chong et al., 2015). The positive control was exposed to 25 mM EDTA for 10

min prior to harvest of cells by centrifugation in order to induce PagP mediated palmitoylation of

Lipid A (Chong et al., 2015). Experiments were completed in triplicate and the data generated was

analysed as described previously.
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