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Abstract Learning and decision-making are interactive processes, yet cognitive modeling of

error-driven learning and decision-making have largely evolved separately. Recently, evidence

accumulation models (EAMs) of decision-making and reinforcement learning (RL) models of error-

driven learning have been combined into joint RL-EAMs that can in principle address these

interactions. However, we show that the most commonly used combination, based on the diffusion

decision model (DDM) for binary choice, consistently fails to capture crucial aspects of response

times observed during reinforcement learning. We propose a new RL-EAM based on an advantage

racing diffusion (ARD) framework for choices among two or more options that not only addresses

this problem but captures stimulus difficulty, speed-accuracy trade-off, and stimulus-response-

mapping reversal effects. The RL-ARD avoids fundamental limitations imposed by the DDM on

addressing effects of absolute values of choices, as well as extensions beyond binary choice, and

provides a computationally tractable basis for wider applications.

Introduction
Learning and decision-making are mutually influential cognitive processes. Learning processes refine

the internal preferences and representations that inform decisions, and the outcomes of decisions

underpin feedback-driven learning (Bogacz and Larsen, 2011). Although this relation between

learning and decision-making has been acknowledged (Bogacz and Larsen, 2011; Dayan and Daw,

2008), the study of cognitive processes underlying feedback-driven learning on the one hand, and

of perceptual and value-based decision-making on the other, have progressed as largely separate

scientific fields. In the study of error-driven learning (O’Doherty et al., 2017; Sutton and Barto,

2018), the decision process is typically simplified to soft-max, a descriptive model that offers no pro-

cess-level understanding of how decisions arise from representations, and ignores choice response

times (RTs). In contrast, evidence-accumulation models (EAMs; Donkin and Brown, 2018;

Forstmann et al., 2016; Ratcliff et al., 2016) provide a detailed process account of decision-making

but are typically applied to tasks that minimize the influence of learning, and residual variability

caused by learning is treated as noise.

Recent advances have emphasized how both modeling traditions can be combined in joint mod-

els of reinforcement learning (RL) and evidence-accumulation decision-making processes, providing

mutual benefits for both fields (Fontanesi et al., 2019a; Fontanesi et al., 2019b; Luzardo et al.,

2017; McDougle and Collins, 2020; Miletić et al., 2020; Millner et al., 2018; Pedersen et al.,

2017; Pedersen and Frank, 2020; Sewell et al., 2019; Sewell and Stallman, 2020; Shahar et al.,

2019; Turner, 2019). Combined models generally propose that value-based decision-making and

learning interact as follows: For each decision, a subject gradually accumulates evidence for each

choice option by sampling from a running average of the subjective value (or expected reward) asso-

ciated with each choice option (known as Q-values). Once a threshold level of evidence is reached,
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they commit to the decision and initiate a corresponding motor process. The response triggers feed-

back, which is used to update the internal representation of subjective values. The next time the sub-

ject encounters the same choice options this updated internal representation changes evidence

accumulation.

The RL-EAM framework has many benefits (Miletić et al., 2020). It allows for studying a rich set

of behavioral data simultaneously, including entire RT distributions and trial-by-trial dependencies in

choices and RTs. It posits a theory of evidence accumulation that assumes a memory representation

of rewards is the source of evidence, and it formalizes how these memory representations change

due to learning. It complements earlier work connecting theories of reinforcement learning and deci-

sion-making (Bogacz and Larsen, 2011; Dayan and Daw, 2008) and their potential neural imple-

mentation in basal ganglia circuits (Bogacz and Larsen, 2011), by presenting a measurement model

that can be fit to, and makes predictions about, behavioral data. Adding to benefits in terms of the-

ory building, the RL-EAM framework also has potential to improve parameter recovery properties

compared to standard RL models (Shahar et al., 2019), and allows for the estimation of single-trial

parameters of the decision model, which can be crucial in the analysis of neuroimaging data.

An important challenge of this framework is the number of modeling options in both the fields of

reinforcement learning and decision-making. Even considering only model-free (as opposed to

model-based, see Daw and Dayan, 2014) reinforcement learning, there exists a variety of learning

rules (e.g. Palminteri et al., 2015; Rescorla and Wagner, 1972; Rummery and Niranjan, 1994; Sut-

ton, 1988), as well as the possibility of multiple learning rates for positive and negative prediction

errors (Christakou et al., 2013; Daw et al., 2002; Frank et al., 2009; Gershman, 2015;

Frank et al., 2007; Niv et al., 2012), and many additional concepts, such as eligibility traces to allow

for updating of previously visited states (Barto et al., 1981; Bogacz et al., 2007). Similarly, in the

decision-making literature, there exists a wide range of evidence-accumulation models, including

most prominently the diffusion decision model (DDM; Ratcliff, 1978; Ratcliff et al., 2016) and race

models such as the linear ballistic accumulator model (LBA; Brown and Heathcote, 2008) and racing

diffusion (RD) models (Boucher et al., 2007; Hawkins and Heathcote, 2020; Leite and Ratcliff,

2010; Logan et al., 2014; Purcell et al., 2010; Ratcliff et al., 2011; Tillman et al., 2020).

The existence of this wide variety of modeling options is a double-edged sword. On the one

hand, it highlights the success of the general principles underlying both modeling traditions (i.e.

learning from prediction errors and accumulate-to-threshold decisions) in explaining behavior, and it

allows for studying specific learning/decision-making phenomena. On the other hand, it constitutes

a bewildering combinatorial explosion of potential RL-EAMs; here, we provide empirical grounds to

navigate this problem with respect to EAMs.

The DDM is the dominant EAM as currently used in reinforcement learning (Fontanesi et al.,

2019a; Fontanesi et al., 2019b; Millner et al., 2018; Pedersen et al., 2017; Pedersen and Frank,

2020; Sewell et al., 2019; Sewell and Stallman, 2020; Shahar et al., 2019), but this choice is with-

out experimental justification. Furthermore, the DDM has several theoretical drawbacks, such as its

inability to explain multi-alternative decision-making and its strong commitment to the accumulation

of the evidence difference, which leads to difficulties in explaining behavioral effects of absolute

stimulus and reward magnitudes without additional mechanisms (Fontanesi et al., 2019a;

Ratcliff et al., 2018; Teodorescu et al., 2016). Here, we compare the performance of different deci-

sion-making models in explaining choice behavior in a variety of instrumental learning tasks. Models

that fail to capture crucial aspects of performance run the risk of producing misleading psychological

inferences. For EAMs, the full RT distribution (i.e. its level of variability and skew) have proven to be

crucial. Hence, it is important to assess which RL-EAMs are able to capture not only learning-related

changes in choice probabilities and mean RT, but also the general shape of the entire RT distribution

and how it changes with learning. Further, in order to be held forth as a general modeling frame-

work, it is important to capture how all these measures interact with key phenomena in the decision-

making and learning literature.

We compare the RL-DDM with two RL-EAMs based on a racing accumulator architecture (Fig-

ure 1). All the RL-EAMs assume evidence accumulation is driven by Q-values, which change based

on error-driven learning as governed by the classical delta update rule. Rather than a two-sided

DDM process (Figure 1A), the alternative models adopt a neurally plausible RD architecture

(Ratcliff et al., 2007), which conceptualize decision-making as a statistically independent race

between single-sided diffusive accumulators, each collecting evidence for a different choice option.
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The first accumulator to reach its threshold triggers motor processes that execute the corresponding

decision. The alternative models differ in how the mean values of evidence are constituted. The first

model, the RL-RD (Figure 1B), postulates accumulators are driven by the expected reward for their

choice, plus a stimulus-independent baseline (c.f. an urgency signal; Miletić and van Maanen,

2019). The second model, the RL-ARD (advantage racing diffusion), uses the recently proposed

advantage framework (van Ravenzwaaij et al., 2020), assuming that each accumulator is driven by

weighted combination of three terms: the difference (‘advantage’) in mean reward expectancy of

one choice option over the other, the sum of the mean reward expectancies, and the urgency signal.

In perceptual choice, the advantage term consistently dominates the sum term by an order of mag-

nitude (van Ravenzwaaij et al., 2020), but the sum term is necessary to explain the effects of abso-

lute stimulus magnitude. We also fit a limited version of this model, RL-lARD, with the weight of the

sum term set to zero to test whether accounting for the influence of the sum is necessary even when

reward magnitude is not manipulated, as was the case in our first experiments. The importance of

sum and advantage terms is also quantified by their weights as estimated in full RL-ARD model fits.

For all models, we first test how well they account for RT distributions (central tendency, variabil-

ity, and skewness of RTs), accuracies, and learning-related changes in RT distributions and accuracies

in a typical instrumental learning task (Frank et al., 2004). In this experiment, we also manipulated

difficulty, that is, the magnitude of the difference in average reward between pairs of options. In two

further experiments, we test the ability of the RL-EAMs to capture key behavioral phenomena in the

decision-making and reinforcement-learning literatures, respectively, speed-accuracy trade-off (SAT),

and reversals in reward contingencies, again in binary choice. In a final experiment, we show that the

RL-ARD extends beyond binary choice, successfully explaining accuracy and full RT distributions

from a three-alternative instrumental learning task that manipulates reward magnitude.
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Figure 1. Comparison of the decision-making models. Bottom graphs visualize how Q-values are linked to accumulation rates. Top panel illustrates the

evidence-accumulation process of the DDM (panel A) and racing diffusion (RD) models (panels B and C). Note that in the race models there is no lower

bound. Equations 2–4 formally link Q-values to evidence-accumulation rates. In the RL-DDM, the difference Dð Þ in Q-values is accumulated, weighted

by free parameter w, plus additive within-trial white noise W with standard deviation s. In the RL-RD, the (weighted) Q-values for both choice options

are independently accumulated. An evidence-independent baseline urgency term, V0 (equal for all accumulators), further drives evidence accumulation.

In the RL-ARD models, the advantages Dð Þ in Q-values are accumulated as well, plus the evidence-independent baseline term V0. The gray icons

indicate the influence of the Q-value sum Sð Þ on evidence accumulation, which is not included in the limited variant of the RL-ARD. In all panels, bold-

italic faced characters indicate parameters. Q1 and Q2 are Q-values for both choice options, which are updated according to a delta learning rule

(Equation 1 at the bottom of the graph), with learning rate a.
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Results
In the first experiment, participants made decisions between four sets of two abstract choice stimuli,

each associated with a fixed reward probability (Figure 2A). On each trial, one choice option always

had a higher expected reward than the other; we refer to this choice as the ‘correct’ choice. After

each choice, participants received feedback in the form of points. Reward probabilities, and there-

fore choice difficulty, differed between the four sets (Figure 2B). In total, data from 55 subjects were

included in the analysis, each performing 208 trials (see Materials and methods).

Throughout, we summarize RT distributions by calculating the 10th, 50th (median), and

90th percentiles separately for correct and error responses. The median summarizes central ten-

dency, the difference between 10th and 90th percentiles summarizes variability and the larger differ-

ence between the 90th and 50th percentiles than between the 50th and 10th percentiles

summarizes the positive skew that is always observed in RT distributions. To visualize the effect of

learning, we divided all trials in 10 bins (approximately 20 trials each), and calculated accuracy and

the RT percentiles per bin. Note that model fitting was not based on these data summaries. Instead,

we used hierarchical Bayesian methods to fit models to the data from every trial and participant
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Figure 2. Paradigms for experiments 1–3. (A) Example trial for experiments 1 and 3. Each trial starts with a fixation

cross, followed by the presentation of the stimulus (until choice is made or 2.5 s elapses), a brief highlight of the

chosen option, and probabilistic feedback. Reward probabilities are summarized in (B). Percentages indicate the

probabilities of receiving +100 points for a choice (with 0 otherwise). The actual symbols used differed between

experiments and participants. In experiment 3, the acquisition phase lasted 61–68 trials (uniformly sampled each

block), after which the reward contingencies for each stimulus set reversed. (C) Example trial for experiment 2,

which added a cue prior to each trial (‘SPD’ or ‘ACC’), and had feedback contingent on both the choice and

choice timing. In the SPD condition, RTs under 600 ms were considered in time, and too slow otherwise. In the

ACC condition, choices were in time as long as they were made in the stimulus window of 1.5 s. Positive feedback

‘Outcome: +100’ and ‘Reward: +100’ were shown in green letters, negative feedback (‘Outcome: 0’, ‘Reward: 0’,

and ‘Too slow!”) were shown in red letters.
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simultaneously. We compared model fits informally using posterior predictive distributions—calculat-

ing the same summary statistics on data generated from the fitted model as we did for the empirical

data—and formally using the Bayesian Predictive Information Criterion (BPIC; Ando, 2007). The for-

mer method allows us to assess the absolute quality of fit (Palminteri et al., 2017) and detect mis-

fits; the latter provides a model-selection criterion that trades off quality of fit with model

complexity (lower BPICs are preferred), ensuring that a better fit is not only due to greater model

flexibility.

We first examine results aggregated over difficulty conditions. The posterior predictives of all

four RL-EAMs are shown in Figure 3, with the top row showing accuracies, and the middle and bot-

tom rows correct and error RT distributions (parameter estimates for all models can be found in
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Figure 3. Comparison of posterior predictive distributions of the four RL-EAMs. Data (black) and posterior predictive distribution (blue) of the RL-DDM

(left column), RL-RD, RL-lARD, and RL-ARD (right column). Top row depicts accuracy over trial bins. Middle and bottom row show 10th, 50th, and 90th

RT percentiles for the correct (middle row) and error (bottom row) response over trial bins. Shaded areas correspond to the 95% credible interval of the

posterior predictive distributions. All data are collapsed across participants and difficulty conditions.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Comparison of posterior predictive distributions of four additional RL-DDMs.

Figure supplement 2. Parameter recovery of the RL-ARD model, using the experimental paradigm of experiment 1.

Figure supplement 3. Confusion matrices showing model separability.

Figure supplement 4. Empirical (black) and posterior predictive (blue) defective probability densities of the RT distributions estimated using kernel

density approximation.

Miletić et al. eLife 2021;10:e63055. DOI: https://doi.org/10.7554/eLife.63055 5 of 32

Research article Neuroscience

https://doi.org/10.7554/eLife.63055


Table 1. Posterior parameter estimates (across-subject mean and SD of the median of the posterior distributions) for all models and

experiments.

For models including st0, the non-decision time is assumed to be uniformly distributed with bounds t0; t0þ st0½ �.

Experiment 1

RL-DDM a a t0 w BPIC

0.14 (0.11) 1.48 (0.19) 0.30 (0.06) 3.21 (1.11) 7673

RL-RD a a t0 V0 w

0.12 (0.08) 2.16 (0.27) 0.10 (0.04) 1.92 (0.42) 3.09 (1.32) 5613

RL-lARD a a t0 V0 wd

0.13 (0.12) 2.05 (0.24) 0.12 (0.05) 2.48 (0.43) 2.36 (0.95) 4849

RL-ARD a a t0 V0 wd ws

0.13 (0.11) 2.14 (0.26) 0.11 (0.04) 2.46 (0.59) 2.25 (0.78) 0.36 (0.79) 4577

RL-DDM A1 a a t0 w vmax

0.14 (0.12) 1.49 (0.20) 0.30 (0.06) 3.01 (0.66) 2.81 (0.72) 7717

RL-DDM A2 a a t0 w sz sv

0.14 (0.11) 1.48 (0.19) 0.30 (0.06) 3.21 (1.12) 1.79e�3 (0.4e�3) 1.8e�3 (0.4e-3) 7637

RL-DDM A3 a a t0 w sz sv st0

0.13 (0.12) 1.13 (0.19) 0.27 (0.06) 5.31 (2.04) 0.00 (0.00) 0.31 (0.13) 0.37 (0.13) 4844

RL-DDM A4 a a t0 w vmax sv sz st0

0.13 (0.12) 1.15 (0.17) 0.27 (0.06) 2.02 (0) 5.16 (1.18) 0.55 (0.24) 1.57e�3 (0) 0.36 (0.13) 4884

RL-ALBA a a t0 V0 wd ws A

0.13 (0.11) 3.53 (0.53) 0.03 (0.00) 3.03 (0.57) 2.03 (0.59) 0.33 (0.78) 1.73 (0.43) 4836

Experiment 2

RL-DDM 1 a aspd/aacc t0 w

0.13 (0.06) 1.11 (0.18)/1.42 (0.23) 0.26 (0.06) 3.28 (0.66) 979

RL-DDM 2 a a t0 wspd/wacc

0.13 (0.05) 3.01 (0.63) 0.26 (0.06) 3.46 (0.79)/3.01 (0.63) 1518

RL-DDM 3 a aspd/aacc t0 wspd/wacc

0.13 (0.06) 1.10 (0.18)/1.44 (0.23) 0.26 (0.06) 3.11 (0.68)/3.48 (0.72) 999

RL-ARD 1 a aspd=aacc t0 V0 wd ws

0.12 (0.05) 1.45 (0.35)/1.82 (0.35) 0.15 (0.07) 2.59 (0.50) 2.24 (0.53) 0.47 (0.34) �1044

RL-ARD 2 a a t0 V0 wd ws mv;spd

0.12 (0.05) 1.83 (0.36) 0.12 (0.07) 2.52 (0.53) 1.83 (0.56) 0.32 (0.26) 1.31 (0.20) �827

RL-ARD 3 a a t0 V0;spd/V0;acc wd ws

0.12 (0.05) 1.83 (0.35) 0.12 (0.07) 3.37 (0.84)/3.37 (0.54) 2.11 (0.52) 0.39 (0.30) �934

RL-ARD 4 a aspd=aacc t0 V0 wd ws mv;spd

0.12 (0.05) 1.04 (0.14)/1.82 (0.35) 0.15 (0.07) 2.59 (0.52) 2.21 (0.51) 0.44 (0.38) 1.04 (0.14) �1055

RL-ARD 5 a aspd/aacc t0 V0;spd/V0;acc wd ws

0.12 (0.05) 1.59 (0.40)/1.83 (0.32) 0.14 (0.06) 2.92 (0.65)/2.52 (0.50) 2.21 (0.50) 0.43 (0.33) �1071

RL-ARD 6 a a t0 V0;spd/V0;acc wd ws mv;spd

0.12 (0.05) 1.86 (0.35) 0.12 (0.07) 4.13 (0.98)/2.40 (0.54) 2.28 (0.53) 0.44 (0.33) 0.84 (0.03) �897

RL-ARD 7 a aspd/aacc t0 V0;spd/V0;acc wd ws mv;spd

0.12 (0.05) 1.61 (0.40)/1.87 (0.32) 0.14 (0.06) 3.66 (0.74)/2.52 (0.50) 2.41 (0.53) 0.48 (0.38) 0.82 (0.08) �1060

RL-DDM A3 1 a aspd/aacc t0 w sz sv st0

0.12 (0.05) 0.81 (0.16)/1.14 (0.17) 0.23 (0.06) 4.46 (0.79) 0.10 (0.01) 0.18 (0.05) 0.26 (0.09) �862

RL-DDM A3 2 a a t0 wspd/wacc sz sv st0

Table 1 continued on next page
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Table 1). The RL-DDM generally explains the learning-related increase in accuracy well, and if only

the central tendency were relevant it might be considered to provide an adequate account of RT,

although correct median RT is systematically under-estimated. However, RT variability and skew are

severely over-estimated. The RL-RD largely overcomes the RT distribution misfit, but it overestimates

RTs in the first trial bins, and while capturing an increase in accuracy over trials, it is systematically

underestimated. The RL-ARD models provide the best explanation of all key aspects of the data:

except for a slight underestimation of accuracy in early trial bins (largely shared with the RL-DDM),

they capture accuracy well, and like the RL-RD, they capture the RT distributions well, but without

overpredicting the RTs in the early trials. The two RL-ARD models do not differ greatly in fit, except

that the limited version slightly underestimates the decrease in RT with learning.

Figure 4 shows the data and RL-ARD model fit separated by difficulty (see Figure 4—figure sup-

plement 1 for equivalent RL-DDM fits, which again fail to capture RT distributions). The RL-ARD

model displays the same excellent fit as to data aggregated over difficulty, except that it underesti-

mates accuracy in early trials in the easiest condition (Figure 4, bottom right panel). Further inspec-

tions of the data revealed that 17 participants (31%) reached perfect accuracy in the first bin in this

condition. Likely, they guessed correctly on the first occurrence of the easiest choice pair, repeated

their choice, and received too little negative feedback in the next repetitions to change their choice

strategy. Figure 4—figure supplement 2 shows that, with these 17 participants removed, the over-

estimation is largely mitigated. The delta rule assumes learning from feedback, and so cannot

explain such high early accuracies. Working memory processes could have aided performance in the

easiest condition, since the total number of stimuli pairs was limited and feedback was quite reliable,

making it relatively easy to remember correct-choice options (Collins and Frank, 2018; Collins and

Frank, 2012; McDougle and Collins, 2020).

Reward magnitude and Q-value evolution
Q-values represent the participants’ internal beliefs about how rewarding each choice option is. The

RL-lARD and RL-DDM assume drift rates are driven only by the difference in Q-values (Figure 5),

and both underestimate the learning-related decrease in RTs. Similar RL-DDM underestimation has

been detected before (Pedersen et al., 2017), with the proposed remedy being a decrease in the

decision bound with time (but with no account of RT distributions). The RL-ARD explains the addi-

tional speed-up through the increasing sum of Q-values over trials (Figure 5C), which in turn

increases drift rates (Figure 5D). In line with observations in perceptual decision-making

Table 1 continued

Experiment 1

0.12 (0.05) 1.03 (0.14) 0.24 (0.06) 18.4 (23.34)/4.44 (0.84) 0.26 (0.07) 0.61 (0.50) 0.28 (0.10) �325

RL-DDM A3 3 a aspd/aacc t0 wspd/wacc sz sv st0

0.12 (0.05) 0.81 (0.16)/1.14 (0.17) 0.23 (0.06) 4.45 (0.83)/4.45 (0.83) 0.07 (0.00) 0.17 (0.04) 0.26 (0.09) �849

Experiment 3

Soft-max a b

0.40 (0.14) 2.82 (1.1) 23,727

RL-DDM a a t0

0.38 (0.14) 1.37 (0.24) 0.24 (0.07) 15,599

RL-ARD a a t0 V0 wd ws

0.35 (0.15) 1.48 (0.34) 0.13 (0.08) 1.86 (0.51) 1.52 (0.63) 0.23 (0.25) 11,548

RL-DDM A3 a a t0 w sz sv st0

0.38 (0.14) 1.15 (0.22) 0.22 (0.07) 2.72 (1.16) 0.21 (0.09) 0.28 (0.15) 0.27 (0.17) 11,659

Experiment 4

RL-ARD (Win-All) a a t0 V0 wd ws

0.10 (0.04) 1.6 (0.33) 0.07 (0.05) 1.14 (0.22) 1.6 (0.36) 0.15 (0.26) 36,512
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(van Ravenzwaaij et al., 2020), the effect of the expected reward magnitude on drift rate is smaller

(on average, ws ¼ 0:36) than that of the Q-value difference (wd ¼ 2:25) and the urgency signal

(V0 ¼ 2:45). Earlier work using an RL-DDM (Fontanesi et al., 2019a) showed that higher reward mag-

nitudes decrease RTs in reinforcement learning paradigms. There, the reward magnitude effect on

RT was accounted for by allowing the threshold to change as a function of magnitude. However, this

requires participants to rapidly adjust their threshold based on the identity of the stimuli, something

that is usually not considered possible in EAMs (Donkin et al., 2011; Ratcliff, 1978). The RL-ARD

avoids this problem, with magnitude effects entirely mediated by drift rates, and our results show

that the expected reward magnitudes influence RTs due to learning even in the absence of a reward
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Figure 4. Data (black) and posterior predictive distribution of the RL-ARD (blue), separately for each difficulty condition. Column titles indicate the

reward probabilities, with 0.6/0.4 being the most difficult, and 0.8/0.2 the easiest condition. Top row depicts accuracy over trial bins. Middle and

bottom rows show 10th, 50th, and 90th RT percentiles for the correct (middle row) and error (bottom row) response over trial bins. Shaded areas

correspond to the 95% credible interval of the posterior predictive distributions. All data and fits are collapsed across participants.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Data (black) and posterior predictive distribution of the RL-DDM (blue), separately for each difficulty condition.

Figure supplement 2. Data (black) and posterior predictive distribution of the RL-ARD (blue), separately for each difficulty condition, excluding 17

subjects which had perfect accuracy in the first bin of the easiest condition.

Figure supplement 3. Posterior predictive distribution of the RL-ALBA model on the data of experiment 1, with one column per difficulty condition.

Figure supplement 4. Data (black) and posterior predictive distribution of the RL-ARD (blue), separately for each difficulty condition.
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magnitude manipulation. Because the sum affects each accumulator equally, it changes RT with little

effect on accuracy.

Speed-accuracy trade-off
Speed-accuracy trade-off (SAT) refers to the ability to strategically trade-off decision speed for deci-

sion accuracy (Bogacz et al., 2010; Pachella and Pew, 1968; Ratcliff and Rouder, 1998). As partici-

pants can voluntarily trade speed for accuracy, RT and accuracy are not independent variables, so

analysis methods considering only one of these variables while ignoring the other can be misleading.

EAMs simultaneously consider RTs and accuracy and allow for estimation of SAT settings. The classi-

cal explanation in the DDM framework (Ratcliff and Rouder, 1998) holds that participants adjust

their SAT by changing the decision threshold: increasing thresholds require a participant to accumu-

late more evidence, leading to slower but more accurate responses.

Empirical work draws a more complex picture. Several papers suggest that in addition to thresh-

olds, drift rates (Arnold et al., 2015; Heathcote and Love, 2012; Ho et al., 2012; Rae et al., 2014;

Sewell and Stallman, 2020) and sometimes even non-decision times (Arnold et al., 2015;

Voss et al., 2004) can be affected. Increases in drift rates in a race model could indicate an urgency

signal, implemented by drift gain modulation, with qualitatively similar effects to collapsing thresh-

olds over the course of a decision (Cisek et al., 2009; Hawkins et al., 2015; Miletić, 2016;

Miletić and van Maanen, 2019; Murphy et al., 2016; Thura and Cisek, 2016; Trueblood et al.,

2021; van Maanen et al., 2019). In cognitively demanding tasks, it has been shown that two distinct

components of evidence accumulation (quality and quantity of evidence) are affected by SAT manip-

ulations, with quantity of evidence being analogous to an urgency signal (Boag et al., 2019b;

Boag et al., 2019a). Recent evidence suggests that different SAT manipulations can affect different

psychological processes: cue-based manipulations that instruct participants to be fast or accurate

lead to overall threshold adjustments, whereas deadline-based manipulations can lead to a collapse

of thresholds (Katsimpokis et al., 2020).

Here, we apply an SAT manipulation to an instrumental learning task (Figure 2C). The paradigm

differs from experiment one by the inclusion of a cue-based instruction to either stress response

speed (‘SPD’) or response accuracy (‘ACC’) prior to each choice (randomly interleaved). Furthermore,

on speed trials, participants had to respond within 0.6 s to receive a reward. Feedback was deter-

mined based on both the choice’s probabilistic outcome (‘+100’ or ‘+0’) and the RT: On trials where

participants responded too late, they were additionally informed of the reward associated with their

choice, had they been in time, so that they always received the feedback required to learn from their

2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

A. Q−values

Trial bin

Q
−

v
a
lu

e
s

2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

B. ∆Q−values

Trial bin

∆
Q

−
v
a
lu

e
s

2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

C. ΣQ−values

Trial bin

Σ
Q

−
v
a
lu

e
s

Difficulty

0.8/0.2

0.7/0.3

0.65/0.35

0.6/0.4

2 4 6 8 10

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

D. Drift rates

Trial bin

D
ri

ft
 r

a
te

s

Figure 5. The evolution of Q-values and their effect on drift rates in the RL-ARD. A depicts raw Q-values, separate for each difficulty condition (colors).
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choices. After exclusions (see Materials and methods), data from 19 participants (324 trials each)

were included in the analyses.

We used two mixed effects models to confirm the effect of the manipulation. A linear model pre-

dicting RT confirmed an interaction between trial bin and cue (b = 0.014, SE = 1.53*10-3, 95% CI

[0.011, 0.017], p < 10-16), a main effect of cue (b = -0.189, SE = 9.5*10-3, 95% CI [-0.207, -0.170], p <

10-16) and a main effect of trial bin (b = -0.015, SE = 1.08*10-3, 95% CI [-0.018, -0.013], p < 10-16).

Thus, RTs decreased with trial bin, were faster for the speed condition, but the effect of the cue was

smaller for later trial bins. A logistic mixed effects model of choice accuracy showed a main effect of

the cue (b = -0.39, SE = 0.13, 95% CI [-0.65, -0.13], p = 0.003) and trial bin (b = 0.42, SE = 0.06, 95%

CI [0.30, 0.53], p = 3.1*10-12), but not for an interaction (b = 0.115, SE = 0.08, 95% CI [-0.05, 0.28], p

= 0.165). Hence, participants were more often correct in the accuracy condition, and their accuracy

increased over trial bins, but there was no evidence for a difference in the increase (on a logit scale)

between SAT conditions.

Next, we compared the RL-DDM and RL-ARD. In light of the multiple psychological mechanisms

potentially affected by the SAT manipulation, we allowed different combinations of threshold, drift

rate, and for the RL-ARD urgency, to vary with the SAT manipulation. We fit three RL-DDM models,

varying either threshold, the Q-value weighting on the drift rates parameter (Sewell and Stallman,

2020), or both. For the RL-ARD, we fit all seven possible models with different combinations of the

threshold, urgency, and drift rate parameters free to vary between SAT conditions.

Formal model comparison (see Table 1 for all BPIC values) indicates that the RL-ARD model com-

bining response caution and urgency effects provides the best explanation of the data, in line with

earlier research in non-learning contexts (Katsimpokis et al., 2020; Miletić and van Maanen, 2019;

Rae et al., 2014; Thura and Cisek, 2016). The advantage for the RL-ARD was substantial; the best

RL-DDM (with only a threshold effect) performed worse than the worst RL-ARD model. The data and

posterior predictive distributions of the best RL-DDM model and the winning RL-ARD model are

shown in Figure 6. As in experiment 1, the RL-DDM failed to capture the shape of RT distributions,

although it fit the SAT effect on accuracy and median RTs. The RL-ARD model provides a much bet-

ter account of the RT distributions, including the differences between SAT conditions. In Figure 6—

figure supplement 1, we show that adding non-decision time variability to the RL-DDM mitigates

some of the misfit of the RT distributions, although it still consistently under-predicted the 10th per-

centile in the accuracy condition. Further, this model was still substantially outperformed by the RL-

ARD in formal model selection (DBPIC = 209), and non-decision time variability was estimated as

much greater than what is found in non-learning contexts, raising the question of its psychological

plausibility.

Both RL-DDM and RL-ARD models tended to underestimate RTs and choice accuracy in the early

trial bins in the accuracy emphasis condition. As in experiment 1, working memory may have contrib-

uted to the accurate but slow responses in the first trial bin for the accuracy condition (Collins and

Frank, 2018; Collins and Frank, 2012; McDougle and Collins, 2020).

Reversal learning
Next, we tested whether the RL-ARD can capture changes in accuracy and RTs caused by a pertur-

bation in the learning process due to reversals in reward contingencies. In the reversal learning para-

digm (Behrens et al., 2007; Costa et al., 2015; Izquierdo et al., 2017) participants first learn a

contingency between choice options and probabilistic rewards (the acquisition phase) that is then

suddenly reversed without any warning (the reversal phase). If the link between Q-values and deci-

sion mechanisms as proposed by the RL-ARD underlies decisions, the model should be able to

account for the behavioral consequences (RT distributions and decisions) of Q-value changes

induced by the reversal.

Our reversal learning task had the same general structure as experiment 1 (Figure 1), except for

the presence of reversals. Forty-seven participants completed four blocks of 128 trials each. Within

each block, two pairs of stimuli were randomly interleaved. Between trials 61 and 68 (uniformly sam-

pled) in each block, the reward probability switched between stimuli, such that stimuli that were cor-

rect during acquisition were incorrect after reversal (and vice versa). Participants were not informed

of the reversals prior to the experiment, but many reported noticing them.

Data and the posterior predictive distributions of the RL-DDM and the RL-ARD models are shown

in Figure 7. Both models captured the change in choice proportions after the reversal reasonably
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well, although they underestimate the speed of change. In Figure 7—figure supplement 1, we

show that the same is true for a standard soft-max model, suggesting that the learning rule is the

cause of this problem. Recent evidence indicates that, instead of only estimating expected values of

both choice options by error-driven learning, participants may additionally learn the task structure,

estimate the probability of a reversal occurring and adjust choice behavior accordingly. Such a

model-based learning strategy could increase the speed with which choice behavior changes after a
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Figure 6. Data (black) and posterior predictive distributions (blue) of the best-fitting RL-DDM (left columns) and the winning RL-ARD model (right

columns), separate for the speed and accuracy emphasis conditions. Top row depicts accuracy over trial bins. Middle and bottom row show 10th, 50th,

and 90th RT percentiles for the correct (middle row) and error (bottom row) response over trial bins. Shaded areas in the middle and right column

correspond to the 95% credible interval of the posterior predictive distribution.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Data (black) of experiment 2 and posterior predictive distribution (blue) of the RL-DDM A3 with separate thresholds for the SAT

conditions, and between-trial variabilities in drift rates, start points, and non-decision times.

Figure supplement 2. Parameter recovery of the RL-ARD model, using the experimental paradigm of experiment 2.

Figure supplement 3. Mean RT (left column) and choice accuracy (right column) across trial bins (x-axis) for experiments 2 and 3 (rows).

Figure supplement 4. Empirical (black) and posterior predictive (blue) defective probability densities of the RT distributions of experiment 2, estimated

using kernel density approximation.

Figure supplement 5. Data (black) and posterior predictive distributions (blue) of the best-fitting RL-DDM (left columns) and the winning RL-ARD

model (right columns), separate for the speed and accuracy emphasis conditions.
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reversal (Costa et al., 2015; Izquierdo et al., 2017; Jang et al., 2015), but as yet a learning rule

that implements this strategy has not been developed.

The change in RT around the reversal was less marked than the change in choice probability.

Once again, the RL-DDM overestimates variability and skew. Both models fit the effects of learning

and reversal similarly, but the fastest responses for the RL-DDM decrease much too quickly during

initial learning and the reduction in speed for the slowest responses due to the reversal is strongly

overestimated. The RL-ARD provides a much better account of the shape of the RT distributions,

and furthermore captures the increase in entire RT distributions (instead of only the median) after

the reversal point. Formal model comparison also very strongly favors the RL-ARD over the RL-DDM

(DBPIC ¼ 4051). Figure 7—figure supplement 2 provides model comparisons to RL-DDMs with

between-trial variability parameters, which lead to the same conclusion.
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Figure 7. Experiment three data (black) and posterior predictive distributions (blue) for the RL-DDM (left) and RL-

ARD (right). Top row: choice proportions over trials, with choice option A defined as the high-probability choice

before the reversal in reward contingencies. Bottom row: 10th, 50th, and 90th RT percentiles. The data are

ordered relative to the trial at which the reversal first occurred (trial 0, with negative trial numbers indicated trials

prior to the reversal). Shaded areas correspond to the 95% credible interval of the posterior predictive

distributions.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Data (black) of experiment 3 and posterior predictive of a standard soft-max learning

model (blue).

Figure supplement 2. Data (black) of experiment 3 and posterior predictive distribution (blue) of the RL-DDM A3

(with between-trial variabilities in drift rates, start points, and non-decision times).

Figure supplement 3. Parameter recovery of the RL-ARD model, using the experimental paradigm of experiment

3.

Figure supplement 4. Empirical (black) and posterior predictive (blue) defective probability densities of the RT

distributions of experiment 3, estimated using kernel density approximation.

Figure supplement 5. Experiment three data (black) and posterior predictive distributions (blue) for the RL-DDM

(left) and RL-ARD (right).
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A notable aspect of the data is that choice behavior stabilizes approximately 20 trials after the

reversal, whereas RTs remain high compared to just prior to the reversal point for up to ~40 trials.

The RL-ARD explains this behavior through relatively high Q-values for the choice option that was

correct during the acquisition (but not reversal) phase (i.e. choice A). Figure 8 depicts the evolution

of Q-values, Q-value differences and sums, and drift rates in the RL-ARD model. The Q-values for

both choice options increase until the reversal (Figure 8A), with a much faster increase for QA. At

the reversal QA decreases and QB increases, but as QA decreases faster than QB increases there is a

temporary decrease in Q-value sums (Figure 8C). After approximately 10 trials post-reversal, QB is

higher than for QA, which flips the sign of the Q-value differences (Figure 8B). However, QA after

the reversal remains higher than the QB before the reversal, which causes the (absolute) Q-value dif-

ferences to be lower after the reversal than before. As a consequence, the drift rates for B after the

reversal remain lower than the drift rates for A before the reversal, which increases RT. Clearly, it is

important to take account of the sum of inputs to accumulators as well as the difference between

them in order to provide an accurate account of the effects of learning.

Multi-alternative choice
Finally, we again drew on the advantage framework (van Ravenzwaaij et al., 2020) to extend the

RL-ARD to multi-alternative choice tasks, a domain where the RL-DDM cannot be applied. As in the

two-choice case, the multi-alternative RL-ARD assumes one accumulator per pairwise difference

between choice options. With three choice options (e.g. 1, 2, 3), there are six (directional) pairwise

differences (1-2, 1-3, 2-1, 2-3, 3-1, 3-2), and therefore six accumulators (see Figure 9). All accumula-

tors are assumed to race toward a common threshold, with their drift rates determined by the

advantage framework’s combination of an urgency, an advantage, and a sum term. Since each

response is associated with two accumulators (e.g. for option 1, one accumulating the advantage 1–

2, and the other accumulating the advantage 1–3), a stopping rule is required to determine when a

commitment to a response is made and evidence accumulation stops. Following Van Ravenzwaaij

et al., we used the Win-All stopping rule, which proposes that the first response option for which

both accumulators have reached their thresholds wins. RT is the first passage time of the slowest of

these two winning accumulators, plus non-decision time.

To test how well the Win-All RL-ARD can explain empirical data, we performed a fourth experi-

ment in which participants were required to repeatedly make decisions between three choice
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Figure 8. The evolution of Q-values and their effect on drift rates in the RL-ARD in experiment 3, aggregated across participants. Left panel depicts

raw Q-values, separate for each difficulty condition (colors). The second and third panel depict the Q-value differences and the Q-value sums over time.

The drift rates (right panel) are a weighted sum of the Q-value differences and Q-value sums, plus an intercept. Choice A (solid lines) refers to the

option that had the high probability of reward during the acquisition phase, and choice B (dashed lines) to the option that had the high probability of

reward after the reversal.
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options (Figure 10). Within each of the four blocks, there were four randomly interleaved stimulus

triplets that differed in difficulty (defined as the difference in reward probability between target stim-

ulus and distractors) and reward magnitude (defined as the average reward probability): 0.8/0.25/

0.25 (easy, high magnitude), 0.7/0.3/0.3 (hard, high magnitude), 0.7/0.15/0.15 (easy, low magni-

tude), and 0.6/0.2/0.2 (hard, low magnitude). This enabled us to simultaneously test whether the RL-

ARD can account for a manipulation of difficulty and mean reward magnitude. Furthermore, we pre-

dicted that the requirement to learn 12 individual stimuli (per block) would interfere with the partici-

pants’ ability to rely on working memory (Collins and Frank, 2012), and therefore expected that the

RL-ARD would provide a better account of accuracy in the early trial bins compared to experiments

1 and 2. After exclusions (see Materials and methods), data from 34 participants (432 trials each)

were included in the analyses.

Data and posterior predictive distributions of the RL-ARD are shown in Figure 11. The top row

represents accuracy, the middle row the RT quantiles corresponding to the correct (target) choice

option, and the bottom row the RT quantiles of the incorrect choices (collapsed across the two dis-

tractor response options). Compared to experiments 1–3, the task was substantially more difficult,

as evidenced by the relatively low accuracies. The RL-ARD model was able to account for all patterns

in the data, including the increase in accuracy and decrease in RTs due to learning, the shape of the

full RT distributions, as well as the difficulty and magnitude effects. Furthermore, there was a

decrease in variance in the error RTs due to learning (the 10th quantile RTs even mildly increased),

which was also captured by the model. Note finally that, contrary to experiments 1 and 2, the model

did not underestimate the accuracy in early bins in the easy conditions, which suggests that the influ-

ence of working memory was, as predicted, more limited than in earlier experiments. A parameter

recovery study (Figure 11—figure supplement 1) demonstrated that the model’s parameters could

be recovered accurately.

Notably, Figure 11 suggests that the effects of the magnitude manipulation were larger in the

hard than in the easy condition. As in previous experiments, we inspected the Q-value evolution
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Figure 9. Architecture of the three-alternative RL-ARD. In three-choice settings, there are three Q-values. The multi-alternative RL-ARD has one

accumulator per directional pairwise difference, hence there are six accumulators. The bottom graph visualizes the connections between Q-values and

drift rates (V0 is left out to improve readability). The equations formalize the within-trial dynamics of each accumulator. Top panels illustrate one

example trial, in which both accumulators corresponding to response option 1 reached their thresholds. In this example trial, the model chose option 1,

with the RT determined by the slowest of the winning accumulators (here, the leftmost accumulator). Decision-related parameters V0;wd ; ws; a; t0 are all

identical across the six accumulators.
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(Figure 12) to understand how this interaction arose. As expected, the high magnitude condition

led to higher Q-values (Figure 12A) than the low magnitude condition, increasing the Q-value sums

(Figure 12C). However, there was a second effect of the increased magnitude: even though the true

reward probability differences were equal between magnitude conditions, the Q-value differences

for the response accumulators (DQT�D; Figure 12B) were larger in the high compared to the low

magnitude condition, particularly for harder choices. As a consequence, both the Q-value sum

(weighted by median ws ¼ 0:15), and the smaller changes in the Q-value difference (weighted by

median wd ¼ 1:6), increased the drift rates for the response accumulators (vT�D; Figure 12D), which

led to higher accuracy and faster responses.

Discussion
We compared combinations of different evidence-accumulations models with a simple delta rein-

forcement learning rule (RL-EAMs). The comparison tested the ability of the RL-EAMs to provide a

comprehensive account of behavior in learning contexts, not only in terms of the choices made but

also the full distribution of the times to make them (RT). We examined a standard instrumental

O B+

X - 70% Y,  V - 15%

Q - 60% X, P - 20%

O - 80% B,  o - 25%

i - 70% M,  g - 30%

+

o

O B
+

o

O B
+

Reward: +100 Reward: +0

Figure 10. Experimental paradigm of experiment 4. (A) Example trial of experiment 4. Each trial started with a

fixation cross, followed by the stimulus (three choice options; until the subject made a choice, up to 3 s), a brief

highlight of the choice, and the choice’s reward was shown. (B) Reward contingencies for the target stimulus and

two distractors per condition. Percentages indicate the probability of receiving +100 points (+0 otherwise).

Presented symbols are examples, the actual symbols differed per block and participant (counterbalanced to

prevent potential item effects from confounding the learning process).
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learning paradigm (Frank et al., 2004) that manipulated the difference in rewards between binary

options (i.e. decision difficulty). We also examined two elaborations of that paradigm testing key

phenomena from the decision-making and learning literatures, speed-accuracy trade-offs (SAT), and

reward reversals, respectively. Our benchmark was the dual threshold Diffusion Decision Model

(DDM; Ratcliff, 1978), which has been used in almost all previous RL-EAM research, but has not

been compared to other RL-EAMs, and has not been thoroughly evaluated on its ability to account

for RT distributions in learning tasks. Our comparison used several different racing diffusion (RD)

models, where decisions depend on the winner of a race between single barrier diffusion processes.

The RL-DDM provided a markedly inferior account to the other models, consistently overestimat-

ing RT variability and skew. As these aspects of behavior are considered critical in evaluating models

in decision-making literature (Forstmann et al., 2016; Ratcliff and McKoon, 2008; Voss et al.,
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Figure 11. Data (black) and posterior predictive distribution of the RL-ARD (blue), separately for each difficulty condition. Column titles indicate the

magnitude and difficulty condition. Top row depicts accuracy over trial bins. Middle and bottom rows show 10th, 50th, and 90th RT percentiles for the

correct (middle row) and error (bottom row) response over trial bins. The error responses are collapsed across distractors. Shaded areas correspond to

the 95% credible interval of the posterior predictive distributions. All data and fits are collapsed across participants.

The online version of this article includes the following figure supplement(s) for figure 11:

Figure supplement 1. Parameter recovery of the multi-alterative Win-All RL-ARD model, using the experimental paradigm of experiment 4.

Figure supplement 2. Empirical (black) and posterior predictive (blue) defective probability densities of the RT distributions of experiment 4, estimated

using kernel density approximation.

Figure supplement 3. Data (black) and posterior predictive distribution of the RL-ARD (blue), separately for each difficulty condition of experiment 4.
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2013), our results question whether the RL-DDM provides an adequate model of instrumental learn-

ing. Furthermore, the DDM carries with it two important theoretical limitations. First, it can only

address binary choice. This is unfortunate given that perhaps the most widely used clinical applica-

tion of reinforcement learning, the Iowa gambling task (Bechara et al., 1994), requires choices

among four options. Second, the input to the DDM combines the evidence for each choice (i.e., ‘Q’

values determined by the learning rule) into a single difference, and so requires extra mechanisms to

account for known effects of overall reward magnitude (Fontanesi et al., 2019a). Although there

are potential ways that the RL-DDM might be modified to account for magnitude effects, such as

increasing between-trial drift rate variability in proportion to the mean rate (Ratcliff et al., 2018), its

inability to extend beyond binary choice remains an enduring impediment.

The best alternative model that we tested, the RL-ARD (advantage racing diffusion), which is

based on the recently proposed advantage accumulation framework (van Ravenzwaaij et al., 2020),

remedied all of these problems. The input to each accumulator is the weighted sum of three compo-

nents: stimulus independent ‘urgency’, the difference between evidence for the choice correspond-

ing to the accumulator and the alternative (the advantage), and the sum of the two evidence values.

The urgency component had a large effect in all fits and played a key role in explaining the effect of

speed-accuracy trade-offs. Although an urgency mechanism such as collapsing bounds

(Boehm et al., 2016; Bowman et al., 2012; Hawkins et al., 2015; Milosavljevic et al., 2010) or

gain modulation (Boehm et al., 2016; Churchland et al., 2008; Ditterich, 2006; Hawkins et al.,

2015) could potentially improve the fits of the RL-DDM, fitting DDMs with such mechanisms is com-

putationally very expensive, usually requiring the researcher to use simulation-based approximations

(e.g. Turner and Sederberg, 2014). This expense becomes infeasible in the case of RL-EAMs since

these models assume different drift rates per trial, requiring the simulation of an entire dataset per

trial in the empirical data (for each iteration of the MCMC sampling process). Furthermore, the origin
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Figure 12. Q-value evolution in experiment 4. Top row corresponds to the low magnitude condition, bottom to the high magnitude condition. Colors

indicate choice difficulty. (A) Q-values for target (QT ) and distractor stimuli (QD). (B) Difference in Q-values, for target – distractor (DQT�D) and between

the two distractors (DQD�D). The Q-value difference DQD�T is omitted from the graph to aid readability (but DQD�T ¼ �DQT�D). (C) Sum of Q-values. (D)

Resulting drift rates for target response accumulators (vT�D), and accumulators for the distractor choice options (vD�T ; vD�DÞ. Note that within each

condition, there is a single Q-value trace per choice option, but since there are two distractors, there are two overlapping traces for DQT�D, SQTþD, and

for all drift rates.
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of the concept of urgency lies in studies using racing accumulator models (Ditterich, 2006;

Mazurek et al., 2003; Reddi and Carpenter, 2000), which was only later incorporated in the DDM

(Milosavljevic et al., 2010); the implementation in the RL-ARD remains conceptually close to the

early proposals.

The advantage component of the RL-ARD, which is similar to the input to the DDM, was strongly

supported over a model in which each accumulator only receives evidence favoring its own choice.

The sum component provides a simple and theoretically transparent way to deal with reward magni-

tude effects in instrumental learning. Despite having the weakest effect among the three compo-

nents, the sum was clearly necessary to provide an accurate fit to our data. It also played an

important role in explaining the effect of reward reversals.

In all our models, we assumed a linear function to link Q-value differences to drift rates. This may

not be adequate in all settings. For example, Fontanesi et al., 2019a showed (within an RL-DDM)

that a non-linear linking function provided a better fit to their data. This could be caused by a non-

linear mapping between objective values and subjective values; the account of perceptual choice

using the advantage framework (van Ravenzwaaij et al., 2020) relied on a logarithmic mapping

between (objective) luminance and (subjective) brightness magnitudes. Prospect Theory (e.g.

Tversky and Kahneman, 1992) also assumes that increasingly large objective values relative to a ref-

erence point lead to increasingly small increases in subjective value. Such non-linear effects only

become evident for sufficiently large differences over an appropriate range. Although in our experi-

ments the RL-ARD was able to explain the data well using a simple linear function, future applica-

tions may need to explicitly incorporate a non-linear value function.

Finally, we showed that the RL-ARD can be extended to multi-alternative choice. In a three-alter-

native instrumental learning experiment, it accurately predicted the learning curves and full RT distri-

butions for four conditions that differed in difficulty and reward magnitude. Furthermore,

examination of Q-value evolution clarified how the reward magnitude manipulation led to the

observed behavioral effects. Notably, the number of choice options only changes the architecture of

the RL-ARD while the number of parameters remains constant, and all accumulators in the model

remain driven by the same three components: an urgency signal, an advantage, and a sum compo-

nent. As a consequence, parametric complexity does not increase with number of choices and the

model remained fully recoverable despite the relatively low number of trials.

It is perhaps surprising that the RL-DDM consistently overestimated RT variability and skewness

given that the DDM typically provides much better fits to data from perceptual decision-making

tasks without learning. The inclusion of between-trial variability in non-decision times partially miti-

gated the misfit but required an implausibly high non-decision time variability, and model compari-

sons still favored the RL-ARD. Previous work on the RL-DDM did not investigate this issue. In many

RL-DDM papers, RT distributions are either not visualized at all, or are plotted using (defective)

probability density functions on top of a histogram of RT data, making it hard to detect misfit, partic-

ularly with respect to skew due to the slow tail of the distribution. One exception is Pedersen and

Frank, 2020, whose quantile-based plots show the same pattern that we found here of over-esti-

mated variability and skewness for more difficult choice conditions, despite including between-trial

variability in non-decision times. In a non-learning context, it has been shown that the DDM overesti-

mates skewness in high-risk preferential choice data (Dutilh and Rieskamp, 2016). Together these

results suggest that decision processes in value-based decision in general, and instrumental learning

tasks in particular, may be fundamentally different from a two-sided diffusion process, and instead

better captured by a race model such as the RL-ARD.

In the current work, we chose to use racing diffusion processes over the more often used LBA

models for reasons of parsimony: error-driven learning introduces between-trial variability in accu-

mulation rates, which are explicitly modeled in the RL-EAM framework. As the LBA includes

between-trial variability in drift rates as a free parameter, multiple parameters can account for the

same variance. Nonetheless, exploratory fits (see Figure 4—figure supplement 3) confirmed our

expectation that an RL-ALBA (Advantage LBA) model fit the data of experiment one well, although

formal model comparisons preferred the RL-ARD. Future work might consider completely replacing

one or more sources of between trial variability in the LBA with structured fluctuations due to learn-

ing and adaption mechanisms.

The parametrization of the ARD model used in the current paper followed the ALBA model pro-

posed by van Ravenzwaaij et al., 2020. This parametrization interprets the influence on drift rates
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in terms of advantages and magnitudes. However, as both the weights on Q-value differences and

sums (wd and ws) are freely estimated parameters, the equations that define the drift rates can be

rearranged as follows:

dx1 ¼ V0 þweQ1 �wiQ2½ �dtþ sW

dx2 ¼ V0 þweQ2 �wiQ1½ �dtþ sW

where we ¼wd þws in the parametrization of Equation 4, and wi ¼wd �ws. This re-parametrization

shows that each drift rate is determined by an excitatory influence we of the Q-value associated with

the accumulator, and an inhibitory influence wi of the Q-value associated with the other accumula-

tor. Turner, 2019 proposed that inhibition plays an important role in learning tasks. Although the

locus of inhibition is different in the two models, there are clear parallels that bear further

investigation.

A limitation of the current work is that we collapsed across blocks in analyzing the data of experi-

ments 2, 3, and 4. However, in more detailed explorations (see Figure 6—figure supplement 3)

there were indications of second-order changes across blocks. In experiment 2, participants were

faster in the first trial bin of the second and third block compared to the first block, suggesting addi-

tional practice or adaptation effects at the beginning of the experiment. In experiment 3, partici-

pants slowed down, and learned the reversal faster, after the first block. This suggests they learned

about the presence of reversals in the first block and applied a different strategy in the later blocks.

Although it is known that participants increase their learning rates in volatile environments

(Behrens et al., 2007), this by itself does not explain a decrease in response speed. Potentially, if

participants understood the task structure after the first block, model-based strategies, such as esti-

mating the probability of a reversal having occurred, also slowed down responses. In experiment 4,

participants were slower (but equally accurate) in the first block compared to the later blocks, sug-

gesting again additional practice or adaptation effects. Future experiments should investigate the

nature of these additional adaptation effects.

Although the account of data provided by the RL-ARD model was generally quite accurate, some

elements of misfit suggest the need for further model development. RT and accuracy were underes-

timated in the initial trials of the easiest condition in experiment 1, in the accuracy emphasis condi-

tion in experiment 2, and prior to reversals in experiment 3. Furthermore, the RL-ARD model

underestimated the speed with which choice probability changed after reversal of stimulus-response

mappings. These misfits point to a limited ability to capture the learning-related changes in behav-

ior. This is to some degree unsurprising, since we used a very simple model of error-driven learning.

Future work might explore more sophisticated mechanisms, such as multiple learning rates

(Daw et al., 2002; Fontanesi et al., 2019a; Gershman, 2015; Pedersen et al., 2017) or different

learning rules (Fontanesi et al., 2019b; Fontanesi et al., 2019a). Furthermore, there is clearly a role

for working memory in some reinforcement learning tasks (Collins and Frank, 2018; Collins and

Frank, 2012), likely explaining the accurate but slow responses we observed in the early trial bins

for easy conditions in experiments 1–3. The multi-alternative choice experiment, with 12 individual

stimuli per block, hampered participants’ ability to employ working memory strategies, so even

early-trial performance was explained by purely error-driven learning.

In summary, we believe that the ARD decision mechanism provides a firm basis for further explo-

rations of the mutual benefits that arise from the combination of reinforcement learning and evi-

dence-accumulation models, providing constraint that is based on a more comprehensive account of

data than has been possible in the past. As it stands, the RL-ARD’s parameter recovery properties

are good even with relatively low trial numbers, making it a suitable measurement model for simulta-

neously studying learning and decision-making processes, and inter-individual differences therein.

Further, the advantage framework extends to multiple choice while maintaining analytical tractability

and addressing key empirical phenomena in that domain, such as Hick’s Law and response-competi-

tion effects (van Ravenzwaaij et al., 2020), enabling future applications to clinical settings, such as

in the Iowa gambling task (Bechara et al., 1994).
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Materials and methods

Experiment 1
Participants
61 participants (mean age 21 years old [SD 2.33], 47 women, 56 right handed) were recruited from

the subject pool of the department of Psychology, University of Amsterdam, and participated for

course credits. All participants had normal or corrected-to-normal vision and gave written informed

consent prior to the experiment onset. They did not participate in the other experiments. The study

was approved by the local ethics committee.

Task
The task was an instrumental probabilistic learning task (Frank et al., 2004). On each trial, the sub-

ject was presented with two abstract symbols (a ‘stimulus pair’) representing two choice options (see

Figure 2A for an example trial). Each choice option had a fixed probability of being rewarded with

points when chosen, with one choice option always having a higher probability of being rewarded

than the other. The task is to discover, by trial and error, which choice options are most likely to

lead to rewards, and thereby to collect as many points as possible.

After a short practice block to get familiar with the task, participants completed one block of 208

trials. Four different pairs of abstract symbols were included, each presented 52 times. Stimulus pairs

differed in their associated reward probabilities: 0.8/0.2, 0.7/0.3, 0.65/0.35, and 0.6/0.4. The size of

the reward, if obtained, was always the same: ‘+100’ (or ‘+0’ otherwise). Reward probabilities were

chosen such that they differed only in the between-choice difference in reward probability, leading

to varying choice difficulties while keeping the mean reward magnitude fixed.

Participants were instructed to earn as many points as possible, and to always respond before the

deadline of 2 s. Feedback consisted of two parts: an ‘outcome’ and a ‘reward’. The outcome corre-

sponded to the probabilistic outcome of the choice, whereas the reward corresponded to the actual

number of earned points. When participants responded before the deadline, the reward was equal

to the outcome. If they were too late, the outcome was shown to allow participants to learn from

their choice, but the reward they received was set to 0 to encourage responding in time. Participants

received a bonus depending on the number of points earned (maximum +0.5 course credits, mean

received +0.24). The task was coded in PsychoPy (Peirce et al., 2019). After this block, participants

performed two more blocks of the same task with different manipulations, which are not of current

interest.

Exclusion
Six participants were excluded from analysis: One reported, after the experiment, not to have under-

stood the task, one reported a technical issue, and four did not reach an above-chance accuracy

level as determined by a binomial test (accuracy cut-off 0.55, corresponding to p<0.05). The final

sample thus consisted of 55 subjects (14 men, mean age 21 years old [SD 2.39], 51 right-handed).

Cognitive modeling
The main analysis consists of fitting four RL-EAMs to the data and comparing the quality of the fits

penalized by model complexity. We compared four different decision models: the DDM (Ratcl-

iff, 1978), a racing diffusion (Boucher et al., 2007; Logan et al., 2014; Purcell et al., 2010;

Turner, 2019) model, and two Advantage Racing Diffusion (ARD; van Ravenzwaaij et al., 2020)

models (see Figure 1 for an overview). Although the former is a two-sided diffusion process, the lat-

ter three models employ a race architecture.

For all models we used the simple delta update rule as a learning model:

Qi;tþ1 ¼Qi;t þa rt � Qi;t

� �

(1)

where Qi;t is the value representation of choice option i on trial t, a the learning rate, and rt the

reward on trial t. The difference between the actual reward and the value representation of the cho-

sen stimulus, rt � Qi;t, is known as the reward prediction error. The learning rate controls the speed
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at which Q-values change in response to the reward prediction error, with larger learning rates lead-

ing to stronger fluctuations. In this model, only the Q-value of the chosen option is updated.

RL-EAM 1: RL-DDM
In the first RL-EAM, we use the DDM (Ratcliff, 1978) as a choice model (Figure 1, left column). The

DDM assumes that evidence accumulation is governed by:

dx¼ vdtþ sW

v is the mean speed of evidence accumulation (the drift rate), and s is the standard deviation of the

within-trial accumulation white noise (W). The RL-DDM assumes that the drift rate depends linearly

on the difference of value representations:

vt ¼w Qt;1 �Qt;2

� �

w is a weighting variable, and Qt;1 and Qt;2 are the Q-values for both choice options per trial, which

change each trial according to Equation 1. Hence,

dx¼w Q1 �Q2ð Þ dtþ sW (2)

The starting point of evidence accumulation, z, lies between decision boundaries a and �a. Here,

as in earlier RL-DDM work (Fontanesi et al., 2019a; Fontanesi et al., 2019b; Pedersen et al.,

2017), we assume an unbiased start of the decision process (i.e., z = 0). Evidence accumulation fin-

ishes when threshold a or �a is reached, and the decision for the choice corresponding to Q1 or Q2,

respectively, is made. The response time is the time required for the evidence-accumulation process

to reach the bound, plus an intercept called the non-decision time (t0). The non-decision time is the

sum of the time required for perceptual encoding and the time required for the execution of the

motor response. Parameter s was fixed to 1 to satisfy scaling constraints (Donkin et al., 2009;

van Maanen and Miletić, 2020). In total, this specification of the RL-DDM has 4 free parameters

(a; w; a; t0).

Furthermore, we fit four additional RL-DDMs (RL-DDM A1-A4) with between-trial variabilities in

start point, drift rate, and non-decision time, as well as a non-linear link function between Q-values

and drift rates (Fontanesi et al., 2019a). RL-DDM A1 uses the non-linear function

vt ¼ 2vmax

1þexp w Qt;1�Qt;2ð Þð Þ � vmax to link Q-values to drift rates (Fontanesi et al., 2019b). For the new vmax

parameter, N 2; 5ð Þ (truncated at 0) and G 1; 1ð Þ were used as priors for the hypermean and hyperSD,

respectively. RL-DDM A2 includes between-trial variabilities in both drift rate sv and start point sz,

with N 0:1; 0:1ð Þ and N 0:1; 0:1ð Þ as priors for hypermeans (respectively, both truncated at 0) and

G 1; 1ð Þ for the hyperSD. Drift rate variability was estimated as a proportion of the current drift rate,

such that sv;t ¼ vt � sv (which allows for higher variability terms for higher Q-value differences, but

retains the ratio v=svÞ. RL-DDM A3 included sv, sz, and also between-trial variability in non-decision

time st0, for which N 0:1; 0:1ð Þ (truncated at 0) and G 1; 1ð Þ were used as priors for the hypermean and

hyperSD, respectively. RL-DDM A4 used all three between-trial variabilities as well as the non-linear

link function. The quality of fits of these additional models can be found in Figure 3—figure supple-

ment 1. Foreshadowing the results, the RL-DDM A3 improved the quality of fit compared to the RL-

DDM, but required an implausibly high non-decision time variability: The across-subject mean of the

median posterior estimates of the t0 and st0 parameters indicate a non-decision time distribution of

[0.27 s, 0.64 s]. The range of 0.37 s is very high in light of the literature (Tran et al., 2021), raising

the question of its psychological plausibility. For this reason, as well as since the RL-DDM is used

most often without st0, we focus on the RL-DDM (without between-trial variabilities) in the main text.

RL-EAM 2: RL-RD
The RL-RD (Figure 1, middle panel) assumes that two evidence accumulators independently accrue

evidence for one choice option each, both racing toward a common threshold a (assuming no

response bias). The first accumulator to hit the bound wins, and the corresponding decision is made.

For each choice option i, the dynamics of accumulation are governed by:

dxi ¼ V0 þwQi½ �dtþ sW (3)
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V0 is a parameter specifying the drift rate in the absence of any evidence, w a weighting parame-

ter, and s the standard deviation of within-trial noise. As such, the mean speed of accumulation (the

drift rate vi) is the sum of two independent factors: an evidence-independent baseline speed V0, and

an evidence-dependent weighted Q-value, wQi. Since V0 is assumed to be identical across accumula-

tors, and governs the speed of accumulation unrelated to the amount of evidence, we interpret this

parameter as an additive urgency signal (Miletić and van Maanen, 2019), with conceptually similar

behavioral effects as collapsing bounds (Hawkins et al., 2015). Similar to the DDM, a non-decision

time parameter accounts for the time for perceptual encoding and the motor response time. Param-

eter s was fixed to 1 to satisfy scaling constraints (Donkin et al., 2009; van Maanen and Miletić,

2020). In total, the RL-RD has 5 free parameters a; w; a; v0; t0ð Þ.
Each accumulator’s first passage times are Wald (also known as inverted Gaussian) distributed

(Anders et al., 2016). In an independent race model, each accumulator’s first passage time distribu-

tion is normalized to the probability of the response with which it is associated (Brown and Heath-

cote, 2008; Turner, 2019).

RL-EAM 3 and 4: RL-ARD
Thirdly, we fit two racing diffusion models based on an advantage race

architecture (van Ravenzwaaij et al., 2020). An advantage race model using an LBA has been shown

to provide a natural account for multi-alternative choice phenomena such as Hick’s law, as well as

stimulus magnitude effects in perceptual decision-making. As in the RL-RD, accumulators race

toward a common bound, but the speed of evidence accumulation vi depends on multiple factors:

first, as in the RL-RD, the evidence-independent speed of accumulation V0; second, the advantage

of the evidence for one choice option over the other (c.f. the DDM, where the difference between

evidence for both choice options is accumulated); and third, the sum of the total available evidence.

Combined, for two accumulators in the RL-EAM framework, this leads to:

dx1 ¼ V0þwd Q1 �Q2ð Þþws Q1 þQ2ð Þ½ �dtþ sW

dx2 ¼ V0þwd Q2 �Q1ð Þþws Q1 þQ2ð Þ½ �dtþ sW
(4)

In the original work proposing the advantage accumulation framework (van Ravenzwaaij et al.,

2020), it was shown that the wd parameter had a much stronger influence on evidence-accumulation

rates than the ws parameter. Therefore, we first fixed the ws parameter to 0, to test whether the

accumulation of differences is sufficient to capture all trends in the data. We term this model the RL-

lARD (l = limited), which we compare to the RL-ARD in which we fit ws as a free parameter.

As previously, parameter s was fixed to 1 to satisfy scaling constraints (Donkin et al., 2009;

van Maanen and Miletić, 2020). The RL-ARD also has a threshold, non-decision time, and learning

rate parameter, totaling five a; wd; a; V0; t0ð Þ and 6 free parameters a; wd; ws; a; V0; t0ð Þ for the

RL-lARD and RL-ARD, respectively. A parameter recovery study (e.g. Heathcote et al., 2015;

Miletić et al., 2017; Moran, 2016; Spektor and Kellen, 2018) was performed to confirm that data-

generating parameters can be recovered using the experimental paradigm at hand. The results are

shown in Figure 3—figure supplement 2.

Bayesian hierarchical parameter estimation, posterior predictive
distributions, model comparisons
We estimated group-level and subject-level posterior distributions of each model’s parameter using

a combination of differential evolution (DE) and Markov-chain Monte Carlo sampling (MCMC) with

Metropolis-Hastings (Ter Braak, 2006; Turner et al., 2013). Sampling settings were default as

implemented in the Dynamic Models of Choice R software (Heathcote et al., 2019): The number of

chains, D, was three times the number of free parameters. Cross-over probability was set to

2:38=
ffiffiffiffi

D
p

at the subject level and U 0; 1½ � at the group level. Migration probability was set to 0.05

during burn-in only. Convergence was assessed using visual inspection of the chain traces and Gel-

man-Rubin diagnostic (Brooks and Gelman, 1998; Gelman and Rubin, 1992) (individual and multi-

variate potential scale factors < 1.03 in all cases).

Hierarchical models were fit assuming independent normal population (“hyper”) distributions for

each parameter. For all models, we estimated the learning rate on a probit scale (mapping [0, 1]

onto the real domain), with a normal prior a ~ F N �1:6; 5ð Þð Þ (Spektor and Kellen, 2018). Prior
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distributions for all estimated hyper-mean decision-related parameters were vague. RL-EAMs, the

threshold parameter a ~ N 3; 5ð Þ truncated at 0, and t0 ~ N 0:3; 0:5ð Þ truncated at 0.025 s and 1 s

(all estimation was carried out on the seconds scale). For the RL-DDM, w ~ N 2; 5ð Þ. For the RL-RD,

w ~ N 9; 5ð Þ, and for the RL-ARD models, wd ~ N 9; 5ð Þ and ws ~ N 0; 3ð Þ. For the hyperSD, a G 1; 1ð Þ
distribution was used as prior. Plots of superimposed prior and posterior hyper-distributions con-

firmed that these prior settings were not influential.

In initial explorations, we also freely estimated the Q-values at trial 0. However, in the RL-EAMs,

the posterior distributions for these Q-values consistently converged on 0, which was therefore sub-

sequently used as a fixed value for all results reported in this paper.

To visualize the quality of model fit, we took 100 random samples from the estimated parameter

posteriors and simulated the experimental design with these parameters. For each behavioral mea-

sure (e.g. RT quantiles, accuracy), credible intervals were estimated by taking the range between the

2.5% and 97.5% quantiles of the averages over participants.

To quantitatively compare the fit of different models, penalized by their complexity, we used the

Bayesian predictive information criterion (BPIC; Ando, 2007). The BPIC is an analogue of the Bayes-

ian information criterion (BIC), but (unlike the BIC) suitable for models estimated using Bayesian

methods. Compared to the deviance information criterion (Spiegelhalter et al., 2002), the BPIC

penalizes model complexity more strongly to prevent over-fitting (c.f. AIC vs. BIC). Lower BPIC val-

ues indicate better trade-offs between fit quality and model complexity.

Experiment 2
Participants
23 participants (mean age 19 years old [SD 1.06 years], 7 men, 23 right-handed) were recruited from

the subject pool of the Department of Psychology of the University of Amsterdam and participated

for course credits. Participants did not participate in the other experiments. All participants had nor-

mal or corrected-to-normal vision and gave written informed consent prior to the experiment onset.

The study was approved by the local ethics committee.

Task
Participants performed the same task as in experiment 1, with the addition of an SAT manipulation

(Figure 2C). The SAT manipulation included both an instructional cue and a response deadline. Prior

to each trial, a cue instructed participants to emphasize either decision speed (‘SPD’) or decision

accuracy (‘ACC’) in the upcoming trial, and in speed trials, participants did not earn points if they

were too late (>600 ms). As in experiment 1, after each choice participants received feedback con-

sisting of two components: an outcome and a reward. The outcome refers to the outcome of the

probabilistic gamble, whereas the reward refers to the number of points participants actually

received. If participants responded in time, the reward was equal to the outcome. In speed trials,

participants did not earn points if they responded later than 600 ms after stimulus onset, even if the

outcome was +100. On trials where participants responded too late, they were additionally informed

of the reward that was associated with their choice, had they been in time. This way, even when par-

ticipants are too late, they still receive the feedback that can be used to learn from their choices.

The deadline manipulation was added because we hypothesized that instructional cues alone

would not be sufficient to persuade participants to change their behavior in the instrumental learn-

ing task, since that task specifically requires them to accumulate points. If the received number of

points was independent of response times, the optimal strategy to collect most points would be to

ignore the cue and focus on accuracy only.

Participants performed 324 trials divided over three blocks. Within each block, three pairs of stim-

uli were shown, with associated reward probabilities of 0.8/0.2, 0.7/0.3, and 0.6/0.4. Speed and

accuracy trials were randomly interleaved. Figure 2C depicts the sequence of events in each trial. As

this experiment also served as a pilot for an fMRI experiment, we added fixation crosses between

each phase of the trial, with jittered durations. A pre-stimulus fixation cross lasted 0.5, 1, 1.5, or 2 s;

fixation crosses between cue and stimulus, between stimulus and highlight, and between highlight

and feedback lasted 0, 0.5, 1, or 1.5 s; and an inter-trial interval fixation cross lasted 0.5, 1, 1.5, 2,

2.5 s. Each trial took 7.5 s. The experiment took approximately 45 min.
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Exclusion
Four participants did not reach above-chance performance as indicated by a binomial test (cut-off

0.55, p<0.05), and were excluded from further analyses. The final sample thus consisted of 19 partic-

ipants (mean age 19 years old [SD 1.16 years], 6 men, 19 right-handed). For one additional partici-

pant, a technical error occurred after the first block. This participant was included in the analyses,

since the Bayesian estimation framework naturally down-weighs the influence of participants with

fewer trials.

Manipulation check and across-block differences in behavior
We expected an interaction between SAT conditions and learning. In the early trials, participants

have not yet learned the reward contingencies, causing a low evidence accumulation rate compared

to later trials. With low rates it takes longer to reach the decision threshold, and small changes in

the threshold settings or drift rates (by means of an additive urgency signal) can cause large behav-

ioral effects. Therefore, we expected the behavioral effects of the SAT manipulation to become

smaller over the course of learning.

To formally test for the behavioral effects of the SAT manipulation in experiment 2, we fit two

mixed effects models (Gelman and Hill, 2007): A linear model with RT as dependent variable, and a

logistic model with accuracy as the dependent variable. As fixed effects, trial bin and SAT condition

were included. Trial bins were obtained by splitting all trials in ten bins (approximately 20 trials each)

per participant. As random effects, only participant was included. For the logistic model using accu-

racy as a dependent variable, we log-transformed trial bin numbers (Evans et al., 2018;

Heathcote et al., 2000), to account for the non-linear relation between accuracy and trial bin (Fig-

ure 6, top row). Mixed effects analyses were done using lme4 (Bates et al., 2015). For all mixed

effects models, we report parameter estimates of the fixed effects, their standard error and confi-

dence interval, as well as a p-value obtained from a t-distribution with the denominator degrees of

freedom approximated using Satterthwaite’s method (Satterthwaite, 1941), as implemented in the

lmerTest package (Kuznetsova et al., 2017) for the R programming language (R Development

Core Team, 2017).

Next, we tested for the across block stability of behavior using two mixed effects models. One

linear mixed effects model was used to predict RT with block number, trial bin, and their interaction,

with a random intercept for participant. A second, logistic mixed effects model was used to test the

effect of block, trial bin (log-transformed, as above), and their interaction on choice accuracy. In

both models, trial bin is expected to influence the outcome variables, but the assumption of across

block stability in behavior is violated if there are main effects of block number and/or interaction

effects between block number and trial bin. Mean RT and accuracy by block is shown together with

the formal test results in Figure 6—figure supplement 3.

Cognitive modeling
We fit three RL-DDMs and seven RL-ARDs. The three RL-DDM models varied either threshold, the

Q-value weighting on the drift rates parameter (Sewell and Stallman, 2020), or both. The seven RL-

ARD allowed all unique combinations of the threshold, urgency, and drift rate parameters free to

vary between the speed and accuracy conditions.

For the accuracy condition, we used the same priors as in experiment 1. In the speed condition,

the parameters that were free to vary were estimated as proportional differences from the accuracy

conditions; specifically: aspd ¼ 1þ ma;spd

� �

� aacc, V0;spd ¼ 1þ mV0;spd

� �

� V0;acc, and

vi;spd ¼ 1þ mv;spd

� �

� vi;acc. The prior used was N 0; 5ð Þ for the hypermean and G 1; 1ð Þ for the hyperSD

of all parameters m, truncated at -1.

As in experiment 1, we performed a parameter recovery study to confirm that the data-generat-

ing parameters can be recovered, using the winning model and a simulation of the paradigm of

experiment 2. The results are shown in Figure 6—figure supplement 2.

Additionally, we performed a second model comparison using three variants of RL-DDM A3 (i.e.,

including between-trial variabilities in start point, drift rate, and non-decision time), which varied the

threshold, the Q-value weighting on the drift rate parameters, and both. The results are shown in

Figure 6—figure supplement 1, and lead to the same conclusions as the RL-DDM.
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Experiment 3
Participants
Forty-seven participants (mean age 21 years old [SD 2.81 years], 16 men, 40 right-handed) were

recruited from the subject pool of the Department of Psychology of the University of Amsterdam

and participated for course credits. Participants did not participate in the other experiments. All par-

ticipants had normal or corrected-to-normal vision and gave written informed consent prior to the

experiment onset. The study was approved by the local ethics committee.

Task
The reversal learning task had the same general task structure as experiment 1. Participants com-

pleted four blocks of 128 trials each, totaling 512 trials. Within each block, two pairs of stimuli were

randomly interleaved, with associated reward probabilities of 0.8/0.2 and 0.7/0.3. Between trials 61

and 68 (uniformly sampled) of each block, the reward probability switched between stimuli, such

that the stimulus with a pre-reversal reward probability of 0.8/0.7 had a post-reversal reward proba-

bility of 0.2/0.3 (and vice versa). Participants were not informed of the reversals prior to the experi-

ment, but many reported noticing them.

In addition to the reversal learning task, the experimental session also contained a working mem-

ory task that is not of current interest. Thirty participants performed the reversal learning task before

the working memory task, and 17 participants afterwards. The entire experiment took approximately

one hour.

Cognitive modeling
We first tested whether a standard soft-max model is able to capture the quick change in choice

behavior after the occurrence of a reversal. Soft-max is given by:

Pi;t ¼
exp bQi;t

P

J

j

exp bQi;t

(5)

where Pi;t is the probability of choosing option i on trial t, J is the total number of choice options,

and b is a free parameter often called the inverse temperature. The inverse temperature is often

interpreted in terms of the exploration/exploitation trade-off (Daw et al., 2006), with higher values

indicating more exploitation. In two-choice settings, Equation 5 can be re-written as:

P2;t ¼
1

1þ expbðQ1;t �Q2;tÞ
(6)

which highlights that the choice probability is driven by the difference in Q-values, weighted by the

inverse temperature parameter. We hierarchically fit the soft-max model using the same parameter

estimation methods as in experiment 1. Priors for the hypermean were set to b~ N 1;5ð Þ truncated at

0, and for the hyperSD G 1;1ð Þ.
Then, the RL-DDM and RL-ARD were fit to the data using the same methods as in experiment 1.

Again, we performed a parameter recovery study, of which the results are shown in Figure 7—figure

supplement 3. Similarly, we also fit RL-DDM A3 to the data. In an initial fit, the MCMC chains for 11

(out of 47) participants got stuck in values for sz of 1 (i.e. sz covered the entire range between both

thresholds), which are implausibly high and moreover led to convergence problems. We re-fit this

model with the prior on sz ~N 0:1; 0:1ð Þ truncated at 0 and 0.5 (i.e. setting the maximum range of

between-trial start point variability to be half the range between the lower and upper threshold),

which did converge. The posterior predictives are shown in Figure 7—figure supplement 2. This

model led to the same overall conclusions as the standard RL-DDM.

Experiment 4
Participants
Forty-three participants (mean age 20 years old [SD 4.29 years], 5 men, 36 right-handed) were

recruited from the subject pool of the Department of Psychology of the University of Amsterdam

and participated for course credits. They did not participate in the other experiments. All
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participants had normal or corrected-to-normal vision and gave written informed consent prior to

the experiment onset. The study was approved by the local ethics committee. Participants per-

formed the task online.

Task
The three-alternative instrumental learning task had the same general task structure as before. Par-

ticipants completed three blocks of 144 trials each, totaling 432 trials. Within each block, four triplets

of stimuli were randomly interleaved. We used a factorial design to manipulate both difficulty

(defined as the difference between the target and distractor reward probability) and reward magni-

tude (defined as the mean probability of reward per triplet): 0.8/0.25/0.25 (easy, high magnitude),

0.7/0.3/0.3 (hard, high magnitude), 0.7/0.15/0.15 (easy, low magnitude), and 0.6/0.2/0.2 (hard, low

magnitude). The entire experiment took approximately 30 min.

Exclusion
Nine subjects did not reach above-chance accuracy and were excluded from analysis (accuracy cut-

off 0.37, corresponding to p<0.05 in a binomial test). The final sample thus consisted of 34 subjects

(three men, mean age 20 years old [SD 4.68 years], 28 right-handed).

Cognitive modeling
A three-alternative RL-ARD with the Win-All stopping rule was fit to the data. The multi-alternative

version of the RL-ARD includes one accumulator per directional pairwise difference between choice

options, leading to a total of six accumulators (1-2, 1-3, 2-1, 2-3, 3-1, 3-2) for the case of three choice

options. Each accumulator is governed by the same evidence-accumulation dynamics as in the two-

alternative RL-ARD:

dx1�2 ¼ V0 þwd Q1�Q2ð Þþws Q1 þQ2ð Þ½ �dtþ sW

dx1�3 ¼ V0 þwd Q1�Q3ð Þþws Q1 þQ3ð Þ½ �dtþ sW

dx2�1 ¼ V0 þwd Q2�Q1ð Þþws Q2 þQ1ð Þ½ �dtþ sW

dx2�3 ¼ V0 þwd Q2�Q3ð Þþws Q2 þQ3ð Þ½ �dtþ sW

dx3�1 ¼ V0 þwd Q3�Q1ð Þþws Q3 þQ1ð Þ½ �dtþ sW

dx3�2 ¼ V0 þwd Q3�Q2ð Þþws Q3 þQ2ð Þ½ �dtþ sW

(7)

Hence, each choice option (e.g. 1) is associated with two accumulators that collect evidence for

the advantage of that option over the other two options (1-2, 1-3). The Win-All stopping rule pro-

poses that a final choice is made when two conditions are satisfied: (1) both accumulators corre-

sponding to that choice reached their thresholds, and (2) for each other choice option at least one

accumulator has not yet reached the threshold. The corresponding response time is the decision

time of the slowest of the two winning accumulators, plus the non-decision time. The probability of

response one at time t is then given by van Ravenzwaaij et al., 2020; derivation in their Appendix:

p1 tð Þ ¼
I 6¼1

X

PDF1�I tð Þ�
J 6¼ 1;I½ �

Y

CDF1�J tð Þ
� �

�
I 6¼1

Y

1�
K 6¼I

Y

CDFI�K tð Þ
� �

where I are choice options {2,3}, J is an option in {2,3} that is not I, and K is an option in {1,2,3} that

is not I. PDF and CDF refer to the probability density and cumulative density function of the Wald

distribution.

Despite the visual complexity of Figure 9, the three-alternative RL-ARD remains highly con-

strained by the linking functions of Equation 7 and the Q-value evolution. As only the architecture

of the linking between Q-values and accumulators was generalized to accommodate the third choice

option, there remains the same number of parameters as in the two-alternative case. Note that the

three-alternative Win-All RL-ARD naturally reduces to the two-choice RL-ARD when one of the

choice options is removed.
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We fit the three-alternative RL-ARD using the same fitting methods (including the same priors) as

in experiment 1. We also performed a parameter recovery study using the same methods as in ear-

lier experiments, the results of which are shown in Figure 11—figure supplement 1.
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