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Anup Khanal1†, Christopher Krasniak1,10, Ines Laranjeira4, Zachary F Mainen4,
Guido Meijer4, Nathaniel J Miska9, Thomas D Mrsic-Flogel9,
Masayoshi Murakami4‡, Jean-Paul Noel2, Alejandro Pan-Vazquez8,
Cyrille Rossant11, Joshua Sanders12, Karolina Socha5, Rebecca Terry11,
Anne E Urai1,13, Hernando Vergara9, Miles Wells11, Christian J Wilson2,
Ilana B Witten8, Lauren E Wool11, Anthony M Zador1

1Cold Spring Harbor Laboratory, New York, United States; 2Center for Neural
Science, New York University, New York, United States; 3Zuckerman Institute,
Columbia University, New York, United States; 4Champalimaud Centre for the
Unknown, Lisbon, Portugal; 5UCL Institute of Ophthalmology, University College
London, London, United Kingdom; 6Wolfson Institute for Biomedical Research,
University College London, London, United Kingdom; 7Department of Molecular
and Cell Biology, University of California, Berkeley, Berkeley, United States;
8Princeton Neuroscience Institute, Princeton University, Princeton, United States;
9Sainsbury-Wellcome Centre for Neural Circuits and Behaviour, University College
London, London, United Kingdom; 10Watson School of Biological Sciences, New
York, United States; 11UCL Queen Square Institute of Neurology, University College
London, London, United Kingdom; 12Sanworks LLC, New York, United States;
13Cognitive Psychology Unit, Leiden University, Leiden, Netherlands

Abstract Progress in science requires standardized assays whose results can be readily shared,

compared, and reproduced across laboratories. Reproducibility, however, has been a concern in

neuroscience, particularly for measurements of mouse behavior. Here, we show that a standardized

task to probe decision-making in mice produces reproducible results across multiple laboratories.

We adopted a task for head-fixed mice that assays perceptual and value-based decision making,

and we standardized training protocol and experimental hardware, software, and procedures. We

trained 140 mice across seven laboratories in three countries, and we collected 5 million mouse

choices into a publicly available database. Learning speed was variable across mice and

laboratories, but once training was complete there were no significant differences in behavior

across laboratories. Mice in different laboratories adopted similar reliance on visual stimuli, on past

successes and failures, and on estimates of stimulus prior probability to guide their choices. These

results reveal that a complex mouse behavior can be reproduced across multiple laboratories. They

establish a standard for reproducible rodent behavior, and provide an unprecedented dataset and

open-access tools to study decision-making in mice. More generally, they indicate a path toward

achieving reproducibility in neuroscience through collaborative open-science approaches.
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Introduction
Progress in science depends on reproducibility and thus requires standardized assays whose meth-

ods and results can be readily shared, compared, and reproduced across laboratories (Baker, 2016;

Ioannidis, 2005). Such assays are common in fields such as astronomy (Fish et al., 2016;

Abdalla et al., 2018), physics (CERN Education, Communications and Outreach Group, 2018),

genetics (Dickinson et al., 2016), and medicine (Bycroft et al., 2018), and perhaps rarer in fields

such as sociology (Camerer et al., 2018) and psychology (Forscher et al., 2020; Frank et al., 2017;

Makel et al., 2012). They are also rare in neuroscience, a field that faces a reproducibility crisis

(Baker, 2016; Botvinik-Nezer et al., 2020; Button et al., 2013).

Reproducibility has been a particular concern for measurements of mouse behavior

(Kafkafi et al., 2018). Although the methods can be generally reproduced across laboratories, the

results can be surprisingly different (‘methods reproducibility’ vs. ‘results reproducibility’,

Goodman et al., 2016). Even seemingly simple assays of responses to pain or stress can be swayed

by extraneous factors (Chesler et al., 2002; Crabbe et al., 1999) such as the sex of the experi-

menter (Sorge et al., 2014). Behavioral assays can be difficult to reproduce across laboratories even

when they share a similar apparatus (Chesler et al., 2002; Crabbe et al., 1999; Sorge et al., 2014).

This difficulty is not simply due to genetic variation: behavioral variability is as large in inbred mice

as in outbred mice (Tuttle et al., 2018).

Difficulties in reproducing mouse behavior across laboratories would hinder the increasing num-

ber of studies that investigate decision making in mice. Physiological studies of decision making are

increasingly carried out in mice to access the unrivaled arsenal of genetic, imaging, and physiological

tools available for mouse brains (Carandini and Churchland, 2013; Glickfeld et al., 2014;

O’Connor et al., 2009). Our collaboration, International Brain Laboratory, 2017, aims to leverage

eLife digest In science, it is of vital importance that multiple studies corroborate the same

result. Researchers therefore need to know all the details of previous experiments in order to

implement the procedures as exactly as possible. However, this is becoming a major problem in

neuroscience, as animal studies of behavior have proven to be hard to reproduce, and most

experiments are never replicated by other laboratories.

Mice are increasingly being used to study the neural mechanisms of decision making, taking

advantage of the genetic, imaging and physiological tools that are available for mouse brains. Yet,

the lack of standardized behavioral assays is leading to inconsistent results between laboratories.

This makes it challenging to carry out large-scale collaborations which have led to massive

breakthroughs in other fields such as physics and genetics.

To help make these studies more reproducible, the International Brain Laboratory (a collaborative

research group) et al. developed a standardized approach for investigating decision making in mice

that incorporates every step of the process; from the training protocol to the software used to

analyze the data. In the experiment, mice were shown images with different contrast and had to

indicate, using a steering wheel, whether it appeared on their right or left. The mice then received a

drop of sugar water for every correction decision. When the image contrast was high, mice could

rely on their vision. However, when the image contrast was very low or zero, they needed to

consider the information of previous trials and choose the side that had recently appeared more

frequently.

This method was used to train 140 mice in seven laboratories from three different countries. The

results showed that learning speed was different across mice and laboratories, but once training was

complete the mice behaved consistently, relying on visual stimuli or experiences to guide their

choices in a similar way.

These results show that complex behaviors in mice can be reproduced across multiple

laboratories, providing an unprecedented dataset and open-access tools for studying decision

making. This work could serve as a foundation for other groups, paving the way to a more

collaborative approach in the field of neuroscience that could help to tackle complex research

challenges.
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these approaches by exploring the neural basis of the same mouse behavior in multiple laboratories.

It is thus crucial for this endeavor that the relevant behavioral assays be reproducible both in meth-

ods and in results.

Studying decision-making requires a task that places specific sensory, cognitive, and motor

demands over hundreds of trials, affording strong constraints to behavior. The task should be com-

plex enough to expose the neural computations that support decision-making but simple enough

for mice to learn, and easily extendable to study further aspects of perception and cognition. More-

over, it can be invaluable to have ready access to the brain for neural recordings and manipulations,

a consideration that favors tasks that involve head fixation.

To meet these criteria, we adopted a modified version of the classical ‘two-alternative forced-

choice’ perceptual detection task. In the classical task, the subject indicates the position of a stimulus

that can be in one of two positions with equal probability (e.g. Carandini and Churchland, 2013;

Tanner and Swets, 1954). In the modified version, the probability of the stimulus being in one posi-

tion changes over time (Terman and Terman, 1972). This change in probability may affect sensory

decisions by directing spatial attention (Cohen and Maunsell, 2009; Liston and Stone, 2008) and

by biasing the decision process (Hanks et al., 2011). It modifies the expected value of the choices,

echoing changes in reward probability or size, which affect perceptual choices (e.g. Feng et al.,

2009; Whiteley and Sahani, 2008) and drive value-based choices (Corrado et al., 2005; Fan et al.,

2018; Herrnstein, 1961; Lau and Glimcher, 2005; Miller et al., 2019).

In the task, mice detect the presence of a visual grating to their left or right, and report the per-

ceived location with a simple movement: by turning a steering wheel (Burgess et al., 2017). The

task difficulty is controlled by varying the contrast across trials. The reward for a correct response is

a drop of sugar water that is not contingent on licking the spout. The probability of stimulus appear-

ance at the two locations is asymmetric and changes across blocks of trials. Mice thus make deci-

sions by using both their vision and their recent experience. When the visual stimulus is evident

(contrast is high), they should mostly use vision, and when the visual stimulus is ambiguous (contrast

is low or zero), they should consider prior information (Whiteley and Sahani, 2008) and choose the

side that has recently been more likely.

We here present results from a large cohort of mice trained in the task, demonstrating reproduc-

ible methods and reproducible results across laboratories. In all laboratories, most mice learned the

task, although often at a different pace. After learning they performed the task in a comparable

manner, and with no significant difference across laboratories. Mice in different laboratories adopted

a comparable reliance on visual stimuli, on past successes and failures, and on estimates of stimulus

prior probability.

To facilitate reuse and reproducibility, we adopt an open science approach: we describe and

share the hardware and software components and the experimental protocols. It is increasingly rec-

ognized that data and techniques should be made fully available to the broader community

(Beraldo et al., 2019; Charles et al., 2020; Forscher et al., 2020; Koscielny et al., 2014;

Poldrack and Gorgolewski, 2014; de Vries et al., 2020). Following this approach, we established

an open-access data architecture pipeline (Bonacchi et al., 2020) and use it to release the >5 million

mouse choices at data.internationalbrainlab.org. These results reveal that a complex mouse behavior

can be successfully reproduced across laboratories, enabling collaborative studies of brain function

in behaving mice.

Results
To train mice consistently within and across laboratories we developed a standardized training pipe-

line (Figure 1a). First, we performed surgery to implant a headbar for head-fixation (IBL Protocol for

headbar implant surgery in mice [The International Brain Laboratory, 2020a]). During the subse-

quent recovery period, we handled the mice and weighed them daily. Following recovery, we put

mice on water control and habituated them to the experimental setup (IBL Protocol for mice training

[The International Brain Laboratory, 2020b]). Throughout these steps, we checked for adverse

effects such as developing a cataract during surgery or pain after surgery or substantial weight loss

following water control (four mice excluded out of 210) (Guo et al., 2014).

Mice were then trained in two stages: first they learned a basic task (Burgess et al., 2017), where

the probability of a stimulus appearing on the left or the right was equal (50:50), and then they
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Figure 1. Standardized pipeline and apparatus, and training progression in the basic task. (a) The pipeline for

mouse surgeries and training. The number of animals at each stage of the pipeline is shown in bold. (b) Schematic

of the task, showing the steering wheel and the visual stimulus moving to the center of the screen vs. the opposite

direction, with resulting reward vs. timeout. (c) CAD model of the behavioral apparatus. Top: the entire apparatus,

Figure 1 continued on next page
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learned the full task, where the probability of stimuli appearing on the left vs. right switched in

blocks of trials between 20:80 and 80:20. Out of 206 mice that started training, 140 achieved profi-

ciency in the basic task, and 98 in the full task (see Appendix 1—table 1d for training progression

and proficiency criteria). The basic task is purely perceptual: the only informative cue is the visual

stimulus. The full task instead invites integration of perception with recent experience: when stimuli

are ambiguous it is best to choose the more likely option.

To facilitate reproducibility, we standardized multiple variables, measured multiple other varia-

bles, and shared the behavioral data in a database that we inspected regularly. By providing stand-

ards and guidelines, we sought to control variables such as mouse strain and provider, age range,

weight range, water access, food protein, and fat. We did not attempt to standardize other variables

such as light-dark cycle, temperature, humidity, and environmental sound, but we documented and

measured them regularly (Appendix 1—table 1a; Voelkl et al., 2020). Data were shared and proc-

essed across the collaboration according to a standardized web-based pipeline (Bonacchi et al.,

2020). This pipeline included a colony management database that stored data about each session

and mouse (e.g. session start time, animal weight, etc.), a centralized data repository for files gener-

ated in the task (e.g. behavioral responses and compressed video and audio files), and a platform

which provided automated analyses and daily visualizations (data.internationalbrainlab.org)

(Yatsenko et al., 2018).

Mice were trained in a standardized setup involving a steering wheel placed in front of a screen

(Figure 1b,c). The visual stimulus, a grating, appeared at variable contrast on the left or right half of

the screen. The stimulus position was coupled with movements of the response wheel, and mice

indicated their choices by turning the wheel left or right to bring the grating to the center of the

screen (Burgess et al., 2017). Trials began after the mouse held the wheel still for 0.2–0.5 s and

were announced by an auditory ‘go cue’. Correct decisions were rewarded with sweetened water

(10% sucrose solution), whereas incorrect decisions were indicated by a noise burst and were fol-

lowed by a longer inter-trial interval (2 s) (Guo et al., 2014, Figure 1—figure supplement 1). The

experimental setups included systems for head-fixation, visual and auditory stimuli presentation, and

recording of video and audio (Figure 1c). These were standardized and based on open-source hard-

ware and software (IBL protocol for setting up the behavioral training rig [The International Brain

Laboratory, 2021a]).

Training progression in the basic task
We begin by describing training in the basic task, where stimuli on the left vs. right appeared with

equal probability (Burgess et al., 2017). This version of the task is purely visual, in that no other

information can be used to increase expected reward.

The training proceeded in automated steps, following predefined criteria (Figure 1d, IBL Protocol

for mice training). Initially, mice experienced only easy trials with highly visible stimuli (100% and

50% contrast). As performance improved, the stimulus set progressively grew to include contrasts of

Figure 1 continued

showing the back of the mouse. The screen is shown as transparent for illustration purposes. Bottom: side view of

the detachable mouse holder, showing the steering wheel and water spout. A 3D rendered video of the CAD

model can be found here. (d) Performance of an example mouse (KS014, from Lab 1) throughout training. Squares

indicate choice performance for a given stimulus on a given day. Color indicates the percentage of right (red) and

left (blue) choices. Empty squares indicate stimuli that were not presented. Negative contrasts denote stimuli on

the left, positive contrasts denote stimuli on the right. (e) Example sessions from the same mouse. Vertical lines

indicate when the mouse reached the session-ending criteria based on trial duration (top) and accuracy on high-

contrast (>=50%) trials (bottom) averaged over a rolling window of 10 trials (Figure 1—figure supplement 1). (f)

Psychometric curves for those sessions, showing the fraction of trials in which the stimulus on the right was chosen

(rightward choices) as a function of stimulus position and contrast (difference between right and left, i.e. positive

for right stimuli, negative for left stimuli). Circles show the mean and error bars show ±68% confidence intervals.

The training history of this mouse can be explored at this interactive web page.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Task trial structure.

Figure supplement 2. Distribution of within-session disengagement criteria.
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25%, 12%, 6%, and finally 0% (Figure 1d, Appendix 1—table 1b-c). Stimuli with contrast >0 could

appear on the left or the right and thus appeared twice more often than stimuli with 0% contrast.

For a typical mouse (Figure 1d), according to this automated schedule, stimuli with 25% contrast

were introduced in training day 10, 12% contrast in Day 12, and the remaining contrasts in Day 13.

On this day the 50% contrast trials were dropped, to increase the proportion of low-contrast trials.

To reduce response biases, incorrect responses on easy trials (high contrast) were more likely to be

followed by a ‘repeat trial’ with the same stimulus contrast and location.

On each training day, mice were typically trained in a single uninterrupted session, whose dura-

tion depended on performance (Figure 1e). Sessions lasted at most 90 min and ended according to

a criterion based on number of trials, total duration, and response times (Figure 1—figure supple-

ment 2). For instance, for the example mouse, session on Day 2 ended when 45 min elapsed

with <400 trials; sessions on Days 7, 10, and 14 ended when trial duration increased to five times

above baseline (Figure 1e). The criterion to end a session was not mandatory: some sessions were

ended earlier (5,316/10,903 sessions) and others ended later (5,587/10,903 sessions). The latter ses-

sions typically continued for an extra 19 ± 16 trials (median ±m.a.d., 5,587 sessions) longer.

To encourage vigorous motor responses and to increase the number of trials, the automated pro-

tocol increased the motor demands and reduced reward volume over time. At the beginning of

training, the wheel gain was high (8 deg/mm), making the stimuli highly responsive to small wheel

movements, and rewards were large (3 mL). Once a session had >200 complete trials, the wheel gain

was halved to 4 deg/mm and the reward was progressively decreased to 1.5 mL (Appendix 1—table

1b-c).

Mouse performance gradually improved until it provided high-quality visual psychometric curves

(Figure 1f). At first, performance hovered around or below 50%. It could be even below 50%

because of no-response trials (which were labeled as incorrect trials in our analyses), systematic

response biases, and the bias-correcting procedure that tended to repeat trials following errors on

easy trials (at high contrast). Performance then typically increased over days to weeks until mice

made only rare mistakes (lapses) on easy trials (e.g. Figure 1f, Day 14).

Animals were considered to have reached proficiency in the basic task when they had been intro-

duced to all contrast levels, and had met predefined performance criteria based on the parameters

of the psychometric curves fitted to the data (Materials and methods). These parameters and the

associated criteria were as follows: (1) response bias (estimated from the horizontal position of the

psychometric curve): maximum absolute value of <16% contrast; (2) contrast sensitivity (estimated

from the slope of the psychometric curve): maximum threshold (1/sensitivity) of 19% contrast; (3)

lapse rates (estimated from the asymptotes of the psychometric curve): maximum of 0.2 for their

sum. These criteria had to be fulfilled on three consecutive training sessions (Figure 1 , Appen-

dix 1—table d). The training procedure, performance criteria, and psychometric parameters are

described in detail in IBL Protocol for mice training (The International Brain Laboratory, 2020b).

Training succeeded but with different rates across mice and
laboratories
The training procedures succeeded in all laboratories, but the duration of training varied across mice

and laboratories (Figure 2). There was substantial variation among mice, with the fastest learner

achieving basic task proficiency in 3 days, and the slowest after 59 days (Figure 2a). Estimates of

contrast threshold did not vary much during training (Figure 2b), with an interquartile range that

slightly decreased from 12–29% during the first 10 training days, and 11–23% thereafter. Likewise,

bias did not vary much, with an interquartile range of �5.2% to 7.1% during the first 10 days to

�5.6% to 6.5% thereafter (Figure 2c). These effects were similar across laboratories (Figure 2e,f).

The average training took 18.4 ± 13.0 days (s.d., n = 140, Figure 2g). The number of days needed

to achieve basic task proficiency was different across laboratories (Figure 2g, p<0.001, Kruskal-

Wallis nonparametric test followed by a post-hoc Dunn’s multiple comparisons test). Some labs had

homogeneous learning rates (e.g. Lab two within-lab interquartile range of 8 days), while other labs

had larger variability (e.g. Lab six interquartile range of 22 days).

These differences in learning rates across laboratories could not be explained by differences in

number of trials per session. To account for these possible differences, we measured training profi-

ciency across trials rather than days (Figure 2—figure supplement 1). For mice that learned the

task, the average training took 10.8 ± 8.6 thousands of trials (s.d., n = 140), similar to the 13
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Figure 2. Learning rates differed across mice and laboratories. (a) Performance for each mouse and laboratory throughout training. Performance was

measured on easy trials (50% and 100% contrast). Each panel represents a different lab, and each thin curve represents a mouse. The transition from

light gray to dark gray indicates when each mouse achieved proficiency in the basic task. Black, performance for example mouse in Figure 1. Thick

colored lines show the lab average. Curves stop at day 40, when the automated training procedure suggests that mice be dropped from the study if

they have not learned. (b) Same, for contrast threshold, calculated starting from the first session with a 12% contrast (i.e. first session with six or more

different trial types), to ensure accurate psychometric curve fitting. Thick colored lines show the lab average from the moment there were three or more

datapoints for a given training day. (c) Same, for choice bias. (d-f) Average performance, contrast threshold and choice bias of each laboratory across

training days. Black curve denotes average across mice and laboratories (g) Training times for each mouse compared to the distribution across all

laboratories (black). Boxplots show median and quartiles. (h) Cumulative proportion of mice to have reached proficiency as a function of training day

(Kaplan-Meier estimate). Black curve denotes average across mice and laboratories. Data in (a-g) is for mice that reached proficiency (n = 140). Data in h

is for all mice that started training (n = 206).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Learning rates measured by trial numbers.

Figure supplement 2. Performance variability within and across laboratories decreases with training.
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thousand trials of the example mouse from Lab 1 (Figure 2a, black). The fastest learner met training

criteria in one thousand trials, the slowest 43 thousand trials. To reach 80% on easy trials took on

average ~7.4 thousand trials.

Variability in learning rates was also not due to systematic differences in choice bias or visual sen-

sitivity (Figure 2b–c). Mice across laboratories were not systematically biased towards a particular

side and the absolute bias was similar across laboratories (9.8 ± 12.1 [s.d.] on average). Likewise,

measures of contrast threshold stabilized after the first ~10 sessions, which was on average 17.8 ±

11.7% on average across institutions.

The variability in performance across mice decreased as training progressed, but it did not disap-

pear (Figure 2—figure supplement 2). Variability in performance was larger in the middle of train-

ing than towards the end. For example, between training days 15 and 40, when the average

performance on easy trials of the mice increased from 80.7% to 91.1%, the variation across mice (s.

d.) of performance on easy trials decreased from 19.1% to 10.1%.

To some extent, a mouse’s performance in the first five sessions predicted how long it would

take the mouse to become proficient. A Random Forests decoder applied to change in performance

(% correct with easy, high-contrast stimuli) in the first five sessions was able to predict whether a

mouse would end up in the bottom quartile of learning speed (the slowest learners) with accuracy

of 53% (where chance is 25%). Conversely, the chance of misclassifying a fast-learning, top quartile

mouse as a slow-learning, bottom quartile mouse, was only 7%.

Overall, our procedures succeeded in training tens of mice in each laboratory (Figure 2h). Indeed,

there was a 80% probability that mice would learn the task within the 40 days that were usually allot-

ted, and when mice were trained for a longer duration, the success rate rose even further

(Figure 2h). There was, however, variability in learning rates across mice and laboratories. This vari-

ability is intriguing and would present a challenge for projects that aim to study learning. We next

ask whether the behavior of trained mice was consistent and reproducible across laboratories.

Performance in the basic task was indistinguishable across laboratories
Once mice achieved basic task proficiency, multiple measures of performance became indistinguish-

able across laboratories (Figure 3a–e). We first examined the psychometric curves for the three ses-

sions leading up to proficiency, which showed a stereotypical shape across mice and laboratories

(Figure 3a). The average across mice of these psychometric curves was similar across laboratories

(Figure 3b). The lapse rates (i.e., the errors made in response to easy contrasts of 50% and 100%)

were low (9.5 ± 3.6%, Figure 3c) with no significant difference across laboratories. The slope of the

curves, which measures contrast sensitivity, was also similar across laboratories, at 14.3 ± 3.8 (s.d.,

n = 7 laboratories, Figure 3d). Finally, the horizontal displacement of the curve, which measures

response bias, was small at 0.3 ± 8.4 (s.d., n = 7, Figure 3e). None of these measures showed a sig-

nificant difference across laboratories, either in median (performance: p=0.63, threshold: p=0.81,

bias: p=0.81, FDR corrected Kruskal-Wallis test) or in variance (performance: p=0.09, threshold:

p=0.57, bias: p=0.57, FDR corrected Levene’s test). Indeed, mouse choices were no more consistent

within labs than across labs (Figure 3—figure supplement 1a).

Variations across laboratories were also small in terms of trial duration and number of trials per

session, even though we had made no specific effort to harmonize these variables. The median time

from stimulus onset to feedback (trial duration, a coarse measure of reaction time) was 468 ± 221

ms, showing some differences across laboratories (Figure 3—figure supplement 2a, p=0.004, Krus-

kal-Wallis nonparametric test). Mice on average performed 719 ± 223 trials per session (Figure 3—

figure supplement 2b). This difference was significant (p<10�6, one-way ANOVA) but only in one

laboratory relative to the rest.

Variation in performance across laboratories was so low that we were not able to assign a mouse

to a laboratory based on performance (Figure 3f). Having found little variation in behavioral varia-

bles when considered one by one (Figure 3c–e), we asked whether mice from different laboratories

may exhibit characteristic combinations of these variables. We thus trained a Naive Bayes classifier

(Pedregosa et al., 2011), with 2000 random sub-samples of eight mice per laboratory, to predict

lab membership from these behavioral variables. First, we established a positive control, checking

that the classifier showed the expected behavior when provided with an informative variable: the

time zone in which animals were trained. If the classifier was given this variable during training and

testing it performed above chance (Figure 3f, Positive control) and the confusion matrix showed
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clusters of labs located in the same time zone (Figure 3—figure supplement 3b). Next, we trained

and tested the classifier on a null distribution obtained by shuffling the lab labels, and as expected

we found that the classifier was at chance (Figure 3f, Shuffle). Finally, we trained and tested the clas-

sifier on the behavioral data, and found that it performed at chance level, failing to identify the labo-

ratory of origin of the mice (Figure 3f, Mouse behavior). Its mean accuracy was 0.12 ± 0.051, and a

95th percentile of its distribution included the chance level of 0.11 (mean of the null distribution).

The classifications were typically off-diagonal in the confusion matrix, and hence incorrect (Figure 3—

figure supplement 3c). Similar results were obtained with two other classifier algorithms (Figure 3—

figure supplement 3d–i).

This consistency across laboratories was not confined to the three sessions that led to proficiency,

and was observed both in earlier and in later sessions. We repeated our analyses for three sessions

that led to mice achieving a looser definition of proficiency: a single criterion of 80% correct for easy

stimuli, without criteria on response bias and contrast threshold. In these three sessions, which could

be earlier but not later than the ones analyzed in Figure 3, mouse behavior was again consistent

across laboratories: a decoder failed to identify the origin of a mouse based on its behavioral perfor-

mance (Figure 3—figure supplement 4). Finally, we repeated our analysis for sessions obtained
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Figure 3. Performance in the basic task was indistinguishable across laboratories. (a) Psychometric curves across mice and laboratories for the three

sessions at which mice achieved proficiency on the basic task. Each curve represents a mouse (gray). Black curve represents the example mouse in

Figure 1. Thick colored lines show the lab average. (b) Average psychometric curve for each laboratory. Circles show the mean and error bars ± 68% CI.

(c) performance on easy trials (50% and 100% contrasts) for each mouse, plotted per lab and over all labs. Colored dots show individual mice and

boxplots show the median and quartiles of the distribution. (d-e) Same, for contrast threshold and bias. (f) Performance of a Naive Bayes classifier

trained to predict from which lab mice belonged, based on the measures in (c-e). We included the timezone of the laboratory as a positive control and

generated a null-distribution by shuffling the lab labels. Dashed line represents chance-level classification performance. Violin plots: distribution of the

2000 random sub-samples of eight mice per laboratory. White dots: median. Thick lines: interquartile range.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Mouse choices were no more consistent within labs than across labs.

Figure supplement 2. Behavioral metrics that were not explicitly harmonized showed small variation across labs.

Figure supplement 3. Classifiers could not predict lab membership from behavior.

Figure supplement 4. Comparable performance across institutions when using a reduced inclusion criterion (>=80% performance on easy trials).

Figure supplement 5. Behavior was indistinguishable across labs in the first 3 sessions of the full task.
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after the mouse achieved proficiency in the basic task. We selected the first three sessions of the full

task, and again found no significant difference across laboratories: mice had similar performance at

high contrast, similar contrast threshold, and similar response bias across laboratories (Figure 3—fig-

ure supplement 5).

Performance in the full task was indistinguishable across laboratories
After training the mice in the purely sensory, basic task, we introduced them to the full task, where

optimal performance requires integration of sensory perception with recent experience (Figure 4a,

b). Specifically, we introduced block-wise biases in the probability of stimulus location, and therefore

the more likely correct choice. Sessions started with a block of unbiased trials (50:50 probability of

left vs. right) and then alternated between blocks of variable length (20–100 trials) biased toward the

right (20:80 probability) or toward the left (80:20 probability) (Figure 4a). In these blocks, the proba-

bility of 0% contrast stimuli was doubled to match the probability of other contrasts. The transition

between blocks was not signaled, so the mice had to estimate a prior for stimulus location based on

recent task statistics. This task invites the mice to integrate information across trials and to use this

prior knowledge in their perceptual decisions.

To assess how mice used information about block structure, we compared their psychometric

curves in the different block types (Figure 4b,c). Mice incorporated block priors into their choices

already from the first sessions in which they were exposed to this full task (Figure 3—figure supple-

ment 5a). To assess proficiency in the full task, we used a fixed set of criteria (Figure 1—figure sup-

plement 1d). We considered performance in the three sessions in which mice reached proficiency

on the full task (Figure 1—figure supplement 1d). For mice that reached full task proficiency, the

average training from start to finish took 31.5 ± 16.1 days, or 20,494 ± 10,980 trials (s.d., n = 98).

The example mouse from Lab 1 (Figure 2a, black) took 19 days. The fastest learner achieved profi-

ciency in 8 days (4691 trials), the slowest 81 days (61,316 trials). The curves for the 20:80 and 80:20

blocks were shifted relative to the curve for the 50:50 block, with mice more likely to choose right in

the 20:80 blocks (where right stimuli appeared 80% of the time) and to choose left in the 80:20

blocks (where left stimuli appeared 80% of the time). As expected, block structure had the greatest

impact on choices when sensory evidence was absent (contrast = 0%, Figure 4c). In these condi-

tions, it makes sense for the mice to be guided by recent experience, and thus to choose differently

depending on the block prior.

Changes in block type had a similar effect on mice in all laboratories (Figure 4d,e). The average

shift in rightward choices was invariably highest at 0% contrast, where rightward choices in the two

blocks differed by an average of 28.5%. This value did not significantly differ across laboratories any

more than it differed within laboratories (one-way ANOVA F(6) = 1.345, p=0.2455, Figure 4d,e).

An analysis of the psychometric curves showed highly consistent effects of block type, with no sig-

nificant differences across laboratories (Figure 4f–i). Changes in block type did not significantly

affect the contrast threshold (Wilcoxon Signed-Rank test, p=0.85, n = 98 mice, Figure 4f). However,

it did change the lapse rates, which were consistently higher on the left in the 20:80 blocks and on

the right in the 80:20 blocks (Wilcoxon Signed-Rank test, lapse left; p<10�6, lapse right; p<10�7,

Figure 4g,h). Finally, as expected there was a highly consistent change in overall bias, with curves

shifting to the left in 20:80 trials and to the right in 80:20 trials (Wilcoxon Signed-Rank test, p<10�16,

Figure 4i). Just as in the basic task (Figure 3), a classifier trained on these variables could not predict

above chance the origin laboratory of individual mice above chance (Figure 4j). Moreover, neither

choice fractions nor bias shifts showed within-lab consistency that was larger than expected by

chance (Figure 3—figure supplement 1b,c). This confirms that mice performed the full task similarly

across laboratories.

A probabilistic model reveals common strategies across mice and
laboratories
Lastly, we investigated the strategies used by the mice in the basic task and in the full task and asked

whether these strategies were similar across mice and laboratories. Mice might incorporate non-sen-

sory information into their decisions, even when such information is not predictive of reward

(Busse et al., 2011; Lak et al., 2020a). Therefore, even when reaching comparable performance lev-

els, different mice might be weighing task variables differently when making a decision.
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To quantify how different mice form their decisions, we used a generalized linear model

(Figure 5a). The model is based on similar approaches used in both value-based (Lau and Glimcher,

2005) and sensory-based decision making (Busse et al., 2011; Pinto et al., 2018). In the model, the

probability of making a right choice is calculated from a logistic function of the linear weighted sum

of several predictors: the stimulus contrast, the outcome of the previous trial, and a bias term that

represents the overall preference of a mouse for a particular choice across sessions (Busse et al.,

2011). In the case of the full task, we added a parameter representing the identity of the block, mea-

suring the weight of the prior stimulus statistics in the mouse decisions (Figure 5a).
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Figure 4. Mice successfully integrate priors into their decisions and task strategy. (a) Block structure in an example session. Each session started with 90

trials of 50:50 prior probability, followed by alternating 20:80 and 80:20 blocks of varying length. Presented stimuli (gray, 10-trial running average) and

the mouse’s choices (black, 10-trial running average) track the block structure. (b) Psychometric curves shift between blocks for the example mouse. (c)

For each mouse that achieved proficiency on the full task (Figure 1—figure supplement 1d) and for each stimulus, we computed a ‘bias shift’ by

reading out the difference in choice fraction between the 20:80 and 80:20 blocks (dashed lines). (d) Average shift in rightward choices between block

types, as a function of contrast for each laboratory (colors as in 2 c, 3 c; error bars show mean ±68% CI). (e) Shift in rightward choices as a function of

contrast, separately for each lab. Each line represents an individual mouse (gray), with the example mouse in black. Thick colored lines show the lab

average. (f) Contrast threshold, (g) left lapses, (h) right lapses, and (i) bias separately for the 20:80 and 80:20 block types. Each lab is shown as mean +-

s.e.m. (j) Classifier results as in 3 f, based on all data points in (f-i).
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We fitted the model to the choices of each individual mouse over three sessions by logistic

regression. The mean condition number for the basic model was 2.4 and 3.2 for the full model. The

low condition numbers for both models do not suffer from multicollinearity and the coefficients are

therefore interpretable.

The model fit the mouse choices well and captured the relative importance of sensory and non-

sensory information across mice and laboratories (Figure 5b–g). The model was able to accurately

predict the behavior of individual mice, both in the basic task (Figure 5b) and in the full task

(Figure 5e). As expected, visual terms had large weights, which grew with contrast to reach values

above 3 at 100% contrast. Weights for non-sensory factors were much lower (Figure 5c,f, note dif-

ferent scale). Weights for past choices were positive for both rewarded (basic 0.19, full 0.42) and

unrewarded previous trials (basic 0.33, full 0.46), suggesting that mice were perseverant in their

choice behavior (Figure 5d,g; Figure 5—figure supplement 1a). Indeed, previous choices more

strongly influenced behavior in the full task, both after rewarded (t(125) = 10.736, p<10�6) and unre-

warded trials (t(125) = 4.817, p<10�6). Importantly, fitted weights and the model’s predictive accu-

racy (unbiased: 81.03 + 5.1%, biased 82.1 + 5.8%) (Figure 5—figure supplement 2) were similar

across laboratories, suggesting an overall common strategy.

The model coefficients demonstrated that mice were perseverant in their actions (Figure 5d,g;

Figure 5—figure supplement 1a). This behavior can arise from insensitivity to the outcome of
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Figure 5. A probabilistic model reveals a common strategy across mice and laboratories. (a) Schematic diagram of predictors included in the GLM.

Each stimulus contrast (except for 0%) was included as a separate predictor. Past choices were included separately for rewarded and unrewarded trials.

The block prior predictor was used only to model data obtained in the full task. (b) Psychometric curves from the example mouse across three sessions

in the basic task. Shadow represents 95% confidence interval of the predicted choice fraction of the model. Points and error bars represent the mean

and across-session confidence interval of the data. (c-d) Weights for GLM predictors across labs in the basic task, error bars represent the 95%

confidence interval across mice. (e-g), as b-d but for the full task.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. History-dependent choice updating.

Figure supplement 2. Parameters of the GLM model of choice across labs.
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previous trials and from slow drifts in the decision process across trials, arising from correlations in

past choices independently of reward (Lak et al., 2020a; Mendonça et al., 2018). To disentangle

these two factors, we corrected for slow across-trial drifts in the decision process (Lak et al., 2020a).

This correction revealed a win-stay/lose-switch strategy in both the basic and full task, which coexists

with slow drifts in choice bias across trials (Figure 5—figure supplement 1b). Moreover, the depen-

dence on history- was modulated by confidence in the previous trial Figure 5—figure supplement

1c (Lak et al., 2020a; Mendonça et al., 2018). These effects were generally consistent across

laboratories.

Discussion
These results reveal that a complex mouse behavior can be successfully reproduced across laborato-

ries, and more generally suggest a path toward improving reproducibility in neuroscience. To study

mouse behavior across laboratories, we developed and implemented identical experimental equip-

ment and a standard set of protocols. Not only did mice learn the task in all laboratories, but criti-

cally, after learning they performed the task comparably across laboratories. Mice in different

laboratories had similar psychophysical performance in a purely sensory version of the task and

adopted similar choice strategies in the full task, where they benefited from tracking the stimulus

prior probability. Behavior showed variations across sessions and across mice, but these variations

were no larger across laboratories than within laboratories.

Success did not seem guaranteed at the outset, because neuroscience faces a crisis of reproduc-

ibility (Baker, 2016; Botvinik-Nezer et al., 2020; Button et al., 2013) particularly when it comes to

measurements of mouse behavior (Chesler et al., 2002; Crabbe et al., 1999; Kafkafi et al., 2018;

Sorge et al., 2014; Tuttle et al., 2018). To solve this crisis, three solutions have been proposed:

large studies, many teams, and upfront registration (Ioannidis, 2005). Our approach incorporates all

three of these solutions. First, we collected vast amounts of data: 5 million choices from 140 mice.

Second, we involved many teams, obtaining data in seven laboratories in three countries. Third, we

standardized the experimental protocols and data analyses upfront, which is a key component of

pre-registration.

An element that may have contributed to success is the collaborative, open-science nature of our

initiative (Wool and International Brain Laboratory, 2020). Open-science collaborative approaches

are increasingly taking hold in neuroscience (Beraldo et al., 2019; Charles et al., 2020;

Forscher et al., 2020; Koscielny et al., 2014; Poldrack and Gorgolewski, 2014; de Vries et al.,

2020). Our work benefited from collaborative development of the behavioral assay, and from fre-

quent and regular meetings where data were reviewed across laboratories (Figure 6). These meet-

ings helped identify problems at the origin, provide immediate feedback, and find collective

solutions. Moreover, our work benefited from constant efforts at standardization. We took great

care in standardizing and documenting the behavioral apparatus and the training protocol (see

Appendices), to facilitate implementation across our laboratories and to encourage wider adoption

by other laboratories. The protocols, hardware designs and software code are open-source and

modular, allowing adjustments to accommodate a variety of scientific questions. The data are acces-

sible at data.internationalbrainlab.org, and include all >5 million choices made by the mice.

Another element that might have contributed to success is our choice of behavioral task, which

places substantial requirements on the mice while not being too complex. Previous failures to repro-

duce mouse behavior across laboratories typically arose in studies of unconstrained behavior such as

responses to pain or stress (Chesler et al., 2002; Crabbe et al., 1999; Kafkafi et al., 2018;

Sorge et al., 2014; Tuttle et al., 2018). Operant behaviors may be inherently more reproducible

than the assays used in these studies. To be able to study decision making, and in hopes of achiev-

ing reproducibility, we designed a task that engages multiple brain processes from sensory percep-

tion and integration of evidence to combination of priors and evidence. It seems likely that

reproducibility is easier to achieve if the task requirements are substantial (so there is less opportu-

nity to engage in other behaviors) but not so complex that they fail to motivate and engage. Tasks

that are too simple and unconstrained or too arbitrary and difficult may be hard to reproduce.

There are of course multiple ways to improve on our results, for example by clarifying, and if

desired resolving, the differences in learning rate across mice, both within and across laboratories.

The learning rate is a factor that we had not attempted to control, and we cannot here ascertain the
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causes of its variability. We suspect that it might arise partly from variations in the expertise and

familiarity of different labs with visual neuroscience and mouse behavior, which may impede stan-

dardization. If so, perhaps as experimenters gain further experience the differences in learning times

will decrease. Indeed, an approach to standardizing learning rates might be to introduce full auto-

mation in behavioral training by reducing or even removing the need for human intervention

(Aoki et al., 2017; Poddar et al., 2013; Scott et al., 2015). Variability in learning rates may be fur-

ther reduced by individualized, dynamic training methods (Bak et al., 2016). If desired, such meth-

ods could also be aimed at obtaining uniform numbers of trials and reaction times across

laboratories.

It would be fruitful to characterize the behavior beyond the turning of the wheel, analyzing the

movement of the limbs. Here we only analyzed whether the wheel was turned to the left or to the

right, but to turn the wheel the mice move substantial parts of their body, and they do so in diverse

ways (e.g. some use two hands, others use one, and so on). Through videography (Mathis et al.,

2018) one could classify these movements and perhaps identify behavioral strategies that provide

insight in the performance of the task and into the diversity of behavior that we observed across ses-

sions and across mice.

We hope that this large, curated dataset will serve as a benchmark for testing better models of

decision-making. The model of choice that we used here, based on stimuli, choice history, reward

history, and bias, is only a starting point (Busse et al., 2011). Indeed, the ‘perseverance’ that we rep-

resented by the reward history weights can arise from slow fluctuations in decision process over trials

(Lak et al., 2020a; Mendonça et al., 2018) and history-dependence is modulated by confidence in

the previous trial (Lak et al., 2020b; Lak et al., 2020a; Urai et al., 2017). In addition, our data can
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METHODOLOGY: piloted candidate behavioral tasks
METHODOLOGY: standardized licenses and experimental protocols across institutions

SOFTWARE: developed data acquisition software and infrastructure
VALIDATION: maintained and validated analysis code

FORMAL ANALYSIS: analyzed data
INVESTIGATION: built and maintained rigs, performed surgeries, collected behavioral data

RESOURCES: hosted the research
DATA CURATION: curated data and metadata

WRITING - ORIGINAL DRAFT: wrote and curated the appendix protocols
WRITING - ORIGINAL DRAFT: wrote the first version of the paper

WRITING - ORIGINAL DRAFT: wrote the second version of the paper
WRITING - REVIEW AND EDITING: edited the paper

WRITING - REVIEW AND EDITING: revised the paper in response to peer review
VISUALIZATION: created data visualizations

VISUALIZATION: designed and created figures
SUPERVISION: managed and coordinated team

SUPERVISION: supervised local laboratory research
PROJECT ADMINISTRATION: managed and coordinated research outputs

FUNDING ACQUISITION: acquired funding

Figure 6. Contribution diagram. The following diagram illustrates the contributions of each author, based on the CRediT taxonomy (Brand et al.,

2015). For each type of contribution there are three levels indicated by color in the diagram: ’support’ (light), ‘equal’ (medium) and ‘lead’ (dark).
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help investigate phenomena such as the origin of lapses (Ashwood et al., 2020; Pisupati et al.,

2021), the tracking of changes between prior blocks (Norton et al., 2019), the effect of fluctuating

engagement states (McGinley et al., 2015), and the dynamics of trial-by-trial learning (Roy et al.,

2021).

To encourage and support community adoption of this task, we provide detailed methods and

protocols. These methods and protocols provide a path to training mice in this task and reproducing

their behavior across laboratories, but of course we cannot claim that they constitute the optimal

path. In designing our methods, we made many choices that were based on intuition rather than rig-

orous experimentation. We don’t know what is crucial in these methods and what is not.

The reproducibility of this mouse behavior makes it a good candidate for studies of the brain

mechanisms underlying decision making. A reproducible behavioral task can be invaluable to estab-

lish the neural basis of behavior. If different studies use the same task, they can directly compare

their findings. There are indeed illustrious examples of behavioral tasks that serve this role. For

studying decision-making in primates, these include the tactile flutter comparison task (de Lafuente

and Romo, 2005; Romo et al., 2012) and the random dots visual discrimination task (Ding and

Gold, 2013; Newsome et al., 1989; Shadlen and Kiani, 2013). Both tasks have been used in multi-

ple studies to record from different brain regions while enabling a meaningful comparison of the

results. Conversely, without a standardized behavioral task we face the common situation where dif-

ferent laboratories record from different neurons in different regions in different tasks, likely drawing

different conclusions and likely not sharing their data. In that situation it is not possible to establish

which factors determine the different conclusions and come to a collective understanding.

Now that we have developed this task and established its reproducibility across laboratories, the

International Brain Laboratory is using it together with neural recordings, which are performed in dif-

ferent laboratories and combined into a single large data set. Other laboratories that adopt this task

for studies of neural function will then be able to rely on this large neural dataset to complement

their more focused results. Moreover, they will be able to compare each other’s results, knowing

that any difference between them is unlikely to be due to differences in behavior. We also hope that

these resources catalyze the development of new adaptations and variations of our approach, and

accelerate the use of mice in high quality, reproducible studies of neural correlates of decision-

making.

Materials and methods
All procedures and experiments were carried out in accordance with the local laws and following

approval by the relevant institutions: the Animal Welfare Ethical Review Body of University College

London; the Institutional Animal Care and Use Committees of Cold Spring Harbor Laboratory,

Princeton University, and University of California at Berkeley; the University Animal Welfare Commit-

tee of New York University; and the Portuguese Veterinary General Board.

Animals
Animals (all female and male C57BL6/J mice aged 3–7 months obtained from Jackson Laboratory or

Charles River) were co-housed whenever possible, with a minimum enrichment of nesting material

and a mouse house. Mice were kept in a 12 hr light-dark cycle, and fed with food that was 5–6% fat

and 18–20% protein. See Appendix 1—table 1for details on standardization.

Surgery
A detailed account of the surgical methods is in Protocol 1 (The International Brain Laboratory,

2020a). Briefly, mice were anesthetized with isoflurane and head-fixed in a stereotaxic frame. The

hair was then removed from their scalp, much of the scalp and underlying periosteum was removed

and bregma and lambda were marked. Then the head was positioned such that there was a 0

degree angle between bregma and lambda in all directions. The headbar was then placed in one of

three stereotactically defined locations and cemented in place. The exposed skull was then covered

with cement and clear UV curing glue, ensuring that the remaining scalp was unable to retract from

the implant.
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Materials and apparatus
For detailed parts lists and installation instructions, see Protocol 3 (The International Brain Labora-

tory, 2021a). Briefly, all labs installed standardized behavioral rigs consisting of an LCD screen

(LP097Q � 1, LG), a custom 3D-printed mouse holder and head bar fixation clamp to hold a mouse

such that its forepaws rest on a steering wheel (86652 and 32019, LEGO) (Burgess et al., 2017). Sili-

cone tubing controlled by a pinch valve (225P011-21, NResearch) was used to deliver water rewards

to the mouse. The general structure of the rig was constructed from Thorlabs parts and was placed

inside an acoustical cabinet (9U acoustic wall cabinet 600 � 600, Orion). To measure the precise

times of changes in the visual stimulus (which is important for future neural recordings), a patch of

pixels on the LCD screen flipped between white and black at every stimulus change, and this flip

was captured with a photodiode (Bpod Frame2TTL, Sanworks). Ambient temperature, humidity, and

barometric air pressure were measured with the Bpod Ambient module (Sanworks), wheel position

was monitored with a rotary encoder (05.2400.1122.1024, Kubler) connected to a Bpod Rotary

Encoder Module (Sanworks). Video of the mouse was recorded with a USB camera (CM3-U3-13Y3M-

CS, Point Grey). A speaker (HPD-40N16PET00-32, Peerless by Tymphany) was used to play task-

related sounds, and an ultrasonic microphone (Ultramic UM200K, Dodotronic) was used to record

ambient noise from the rig. All task-related data was coordinated by a Bpod State Machine (San-

works). The task logic was programmed in Python and the visual stimulus presentation and video

capture was handled by Bonsai (Lopes et al., 2015) and the Bonsai package BonVision

(Lopes et al., 2021).

Habituation, training, and experimental protocol
For a detailed protocol on animal training, see Protocol 2 (The International Brain Laboratory,

2020b). Mice were water restricted or given access to citric acid water on weekends. The advantage

of the latter solution is that it does not require measuring precise amounts of fluids during the week-

end (Urai et al., 2021). Mice were handled for at least 10 min and given water in hand for at least

two consecutive days prior to head fixation. On the second of these days, mice were also allowed to

freely explore the rig for 10 min. Subsequently, mice were gradually habituated to head fixation

over three consecutive days (15–20, 20–40, and 60 min, respectively), observing an association

between the visual grating and the reward location. On each trial, with the steering wheel locked,

mice passively viewed a Gabor stimulus (100% contrast, 0.1 cycles/degree spatial frequency, random

phase, vertical orientation) presented on a small screen (size: approx. 246 mm diagonal active dis-

play area). The screen was positioned 8 cm in front of the animal and centralized relative to the posi-

tion of eyes to cover ~102 visual degree azimuth. The stimulus appeared for ~10 s randomly

presented at �35˚ (left),+35˚ (right), or 0˚ (center) and the mouse received a reward in the latter case

(3 ml water with 10% sucrose).

On the fourth day, the steering wheel was unlocked and coupled to the movement of the stimu-

lus. For each trial, the mouse must use the wheel to move the stimulus from its initial location to the

center to receive a reward. Initially, the stimulus moved 8˚/mm of movement at the wheel surface.

Once the mouse completed at least 200 trials within a session, the gain of the wheel for

the following sessions was halved, to at 4˚/mm. At the beginning of each trial, the mouse was

required to not move the wheel for a quiescence period of 200–500 ms (randomly drawn from an

exponential distribution with a mean of 350 ms). If the wheel moved during this period, the timer

was reset. After the quiescence period, the stimulus appeared on either the left or right (±35˚ azi-

muth, within the field of binocular vision in mice, Seabrook et al., 2017) with a contrast randomly

selected from a predefined set (initially, 50% and 100%). Simultaneously, an onset tone (5 kHz sine

wave, 10 ms ramp) was played for 100 ms. When the stimulus appeared, the mouse had 60 s to

move it. A response was registered if the center of the stimulus crossed the ±35 deg azimuth line

from its original position (simple threshold crossing, no holding period required) (Burgess et al.,

2017). If the mouse correctly moved the stimulus 35˚ to the center of the screen, it immediately

received a 3 mL reward; if it incorrectly moved the stimulus 35˚ away from the center (20˚ visible and

the rest off-screen), it received a timeout. Reward delivery was therefore not contingent on licking,

and as such licking was not monitored online during the task. If the mouse responded incorrectly or

failed to reach either threshold within the 60 s window, a noise burst was played for 500 ms and the

inter-trial interval was set to 2 s. If the response was incorrect and the contrast was ’easy’ (�50%), a
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‘repeat’ trial followed, in which the previous stimulus contrast and location was presented with a

high probability (see Protocol 2 [The International Brain Laboratory, 2020b]). When in the rig, the

animal was monitored via a camera to ensure the experiment was proceeding well (e.g. lick spout

reachable, animal engaged).

To declare a mouse proficient in the basic task (‘Level 1’) we used two consecutive sets of criteria.

The first set, called ‘1a’, were introduced in September 2018, before training started on the mice

that appear in this paper (January 2019). These criteria were obtained by analyzing the data of

Lak et al., 2020b and were verified on pilot data acquired in 3 of our labs. The second set, called

‘1b’, was introduced shortly afterwards (September 2019) and was applied to 60 of the 140 mice. It

was more stringent, to offset possible decreases in performance that may occur during subsequent

neural recordings. For a thorough definition of the training criteria, see Appendix 2

(The International Brain Laboratory, 2020b) section ‘Criteria to assess learning >Trained’. Briefly,

the 1a/1b criteria called for the mouse to reach the following targets in three consecutive sessions:

200/400 completed trials; performance on easy trials > 80%/90%; and fitted psychometric curves

with absolute bias <16%/10%, contrast threshold <19%/20%, lapse rates < 0.2/0.1. Additionally, the

1b criteria required for median reaction times across the three sessions for the 0% contrast trials to

be <2 s.

Out of the 206 mice that we trained, 66 did not complete Level one for the following reasons: 16

mice died or were culled due to infection, illness or injury; 17 mice could not be trained due to

experimental impediments (e.g. too many mice in the pipeline, experimenter ill, broken equipment);

14 mice did not learn in 40 days of training due to extremely high bias and/or low trial count (n = 9)

or an otherwise low performance (n = 5); 12 mice reached at least the first level within 40 days but

progressed too slowly or were too old. For the remaining seven mice, the reason was

undocumented.

Once an animal was proficient in the basic task, it proceeded to the full task. Here, the trial struc-

ture was identical, except that stimuli were more likely to reappear on the same side for variable

blocks of trials, and counterbiasing ‘repeat’ trials were not used. Each session began with 90 trials in

which stimuli were equally likely to appear on the left or right (10 repetitions at each contrast), after

which the probability of the stimulus appearing on the left alternated between 0.8 and 0.2 for a

given block. The number of trials in each block was on average 51, and was drawn from a geometric

distribution, truncated to have values between 20 and 100.

To declare a mouse proficient in the full task, its performance was assessed using three successive

sessions (Figure 1—figure supplement 1d). For each of the sessions, the mouse had to perform at

least 400 trials, with a performance of at least 90% correct on 100% contrast trials. Also, using a

combination of all the trials of the three sessions, the lapses (both left and right, and for each of the

block types) had to be below 0.1, the bias above 5, and the median reaction time on 0% contrast

over 2 s.

Psychometric curves
To obtain a psychometric curve, the data points were fitted with the following parametric error func-

tion, using a maximum likelihood procedure:

P ¼ gþ 1�g�lð Þ erf
c��

s
þ 1

� �

= 2

Where P is the probability of a rightward choice, c is the stimulus contrast, and the rest are fitted

parameters:

g is the lapse rate for left stimuli
l is the lapse rate for right stimuli
m is the response bias
s is the contrast threshold.

The procedures to fit these curves and obtain these parameters are described in detail in Protocol

2 (The International Brain Laboratory, 2020b).

The International Brain Laboratory et al. eLife 2021;10:e63711. DOI: https://doi.org/10.7554/eLife.63711 17 of 28

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.63711


Classification of laboratory membership
Three different classifiers were used to try to predict in which laboratory a mouse was trained based

on behavioral metrics: Naive Bayes, Random Forest, and Logistic Regression. We used the scikit-

learn implementation available in Python with default configuration settings for the three classifiers.

Some labs trained more mice than others resulting in an imbalanced dataset. This imbalance was

corrected by taking a random subsample of 8 mice from each laboratory 2000 times. The size of the

subsample was chosen because eight mice was the lowest number of mice over all different datasets

for which classification was performed. For each random subsample, lab membership was classified

using leave-one-out cross-validation. Furthermore, a null-distribution was generated by shuffling the

lab labels for each subsample and classifying the shuffled data. The classification accuracy was calcu-

lated as:

accuracy ¼
number of correctlyclassifiedmice

totalnumber of mice
(1)

Here the total number of mice was 56 because eight mice were randomly subsampled from seven

labs.

Probabilistic choice model
To quantify and describe the different factors affecting choices across labs, we adapted a probabilis-

tic choice model Busse et al., 2011 used in a similar task. The model is a binomial logistic regression

model, where the observer estimates the probability of choosing right (p) or left 1� pð Þ from sen-

sory and non-sensory information. In the model, probabilities are obtained from the logistic transfor-

mation of the decision variable z (Equation 2), which in itself is the result of a weighted linear

function of different task predictors (Equation 3 and Equation 4).

p¼
1

1 þ e�z
(2)

For the basic task, in each trial i, the decision variable z is calculated by:

z ið Þ ¼
X

c

WcIc ið Þþ Wrr i� 1ð Þ þ Wuu i� 1ð Þ þ W0 (3)

where Wc is the coefficient associated with the contrast c 2 6:25; 12:5; 25; 50; 100f g, and Ic ið Þ is an

indicator function indicating +1 if the contrast c appeared on the right in trial i, -1 if it appeared on

the left and 0 if that contrast was not presented. The coefficients (Wr and Wu) weigh the effect of

previous choices, depending on their outcome. r i� 1ð Þ is defined as +1 when the previous trial was

on the right and rewarded, -1 when on the left and rewarded, and 0 when unrewarded. Conversely,

u i� 1ð Þ is defined as +1 when the previous trial was on the right and unrewarded, -1 when on the

left and unrewarded and 0 when rewarded. W0 is a constant representing the overall bias of the

mouse.

When modelling the full task we also included the term Wbb ið Þ (Equation 4), which captures the

block identity b ið Þ for trial i. b ið Þ is defined as +1 if trial i is part of an 20:80 block, -1 if part of a

80:20 block and 0 if part of a 50/50 block:

z ið Þ ¼
X

c

WcIc ið Þþ Wrr i� 1ð Þ þ Wuu i� 1ð Þ þ W0 þWbb ið Þ (4)

For each animal, the design matrix was built using patsy (Smith et al., 2018). The model was

then fitted by regularized maximum likelihood estimation, using the Logit.fit_regularized function in

statsmodels (Seabold and Perktold, 2010). For the example animal (Figure 5b,e), 10,000 samples

were drawn from a multivariate Gaussian (obtained from the inverse of the model’s Hessian), and for

each sample the model ‘s choice fraction for each contrast level was predicted. Confidence intervals

were then defined as the 0.025 and 0.975 quantiles across samples.

Data and code availability
All data presented in this paper is publicly available. It can be viewed and accessed in two ways: via

DataJoint and web browser tools at data.internationalbrainlab.org.
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All data were analyzed and visualized in Python, using numpy (Harris et al., 2020), pandas

(Reback et al., 2020) and seaborn (Waskom, 2021). Code to produce all the figures is available at

github.com/int-brain-lab/paper-behavior (copy archived at swh:1:rev:

edc453189104a1f76f4b2ab230cd86f2140e3f63; The International Brain Laboratory, 2021b) and a

Jupyter notebook for re-creating Figure 2 can be found at https://jupyterhub.internationalbrainlab.

com.
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Sonja B Hofer
Zachary F Mainen
Thomas D Mrsic-Flogel
Ilana B Witten
Anthony M Zador

Wellcome Trust 216324 Dora Angelaki
Matteo Carandini
Anne K Churchland
Yang Dan
Michael Häusser
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Balzer A, Barnard M, Becherini Y, Becker Tjus J, Berge D, Bernhard S, Bernlöhr K, Blackwell R, Böttcher M,
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Appendix 1

Standardization

Appendix 1—table 1. Standardization.

a, To facilitate reproducibility we standardized multiple aspects of the experiment. Some variables

were kept strictly the same across mice, while others were kept within a range or simply recorded

(see ‘Standardized’ column). b-c, The behavior training protocol was also standardized. Several task

parameters adaptively changed within or across sessions contingent on various performance criteria

being met, including number of trials completed, amount of water received and proportion of correct

responses.

A

Category Variable Standardized Standard Recorded

Animal Weight Within a
range

18–30 g at
headbar
implant

Per
session

Age Within a
range

10–12 weeks
at headbar
implant

Per
session

Strain Exactly C57BL/6J Once

Sex No Both Once

Provider Two options Charles River
(EU) Jax (US)

Once

Training Handling One
protocol

Protocol 2 No

Hardware Exactly Protocol 3 No

Software Exactly Protocol 3 Per
session

Fecal count N/A N/A Per
session

Time of day No As constant as
possible

Per
session

Housing Enrichment Minimum
requirement

At least
nesting and
house

Once

Food Within a
range

Protein: 18–
20%, Fat: 5–
6.2%

Once

Light cycle Two options 12 Hr inverted
or non-
inverted

Once

Weekend water Two options Citric acid
water or
measured
water

Per
session

Co housing status No Co-housing
preferred,
separate
problem mice

Per
change

Surgery Aseptic protocols One
protocol

Protocol 1 No

Tools/Consumables Required
parts

Protocol 1 No

B

Continued on next page
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Adaptive parameter Initial value

Contrast set [100, 50]

Reward volume 3 mL

Wheel gain 8 deg/mm

C

Criterion Outcome

>200 trials completed in previous
session

Wheel gain decreased 4 deg/mm

>80% correct on each contrast Contrast set = [100, 50, 25]

>80% correct on each contrast after
above

Contrast set = [100, 50, 25, 12.5]

200 trials after above Contrast set = [100, 50, 25, 12.5,
6.25]

200 trials after above Contrast set = [100, 50, 25, 12.5,
6.25, 0]

200 trials after above Contrast set = [100, 25, 12.5, 6.25, 0]

200 trials completed in previous
session and reward volume > 1.5 mL

Decrease reward by 0.1 mL

Animal weight/25 > reward vol/1000
and reward volume < 3 mL

Next session increase reward by 0.1
mL

D

Proficiency level Outcome

‘Basic task proficiency’ - Trained 1a/
1b
For each of the last three sessions:
>200/400 trials completed, and
>80%/90% correct on 100% contrast
and all contrasts introduced and
For the last three sessions
combined: psychometric absolute
bias < 16/10 and psychometric
threshold < 19/20 and psychometric
lapse rates < 0.2/0.1
For 1b only: median reaction time at
0% contrast < 2 s

Training in the basic task achieved:
mouse is ready to proceed to
training in the full task. In some
mice, we continued training in the
basic task to obtain even higher
performance.
(Guideline was to train mice for up
to 40 days at Level 1, and drop mice
from the study if they did not reach
proficiency in this period).

‘Full task proficiency’
For each of the last three sessions:
>400 trials completed, and
>90% correct on 100% contrast and
For the last three sessions
combined: all four lapse rates (left
and right, 20:80 and 80:20 blocks)
<0.1 and bias[80:20] - bias[20:80]>5
and median RT on 0% contrast < 2 s

Training in the full task achieved:
mouse is ready for neural
recordings.
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