Long Title: The mammalian rod synaptic ribbon is essential for Ca\textsubscript{v} channel facilitation and ultrafast synaptic vesicle fusion

Authors

Chad Paul Grabner1-3,* and Tobias Moser1-4

1Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany

2Synaptic Nanophysiology Group, Max Planck Institute of Biophysical Chemistry, 37077 Göttingen, Germany

3Collaborative Research Center 1286 'Quantitative Synaptology', University of Göttingen, Göttingen, Germany

4Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, 37075 Göttingen, Germany

*corresponding author's email: chadgrabner@gmail.com
Abstract

Rod photoreceptors (PRs) use ribbon synapses to transmit visual information. To signal 'no light detected' they release glutamate continually to activate post-synaptic receptors. When light is detected glutamate release pauses. How a rod's individual ribbon enables this process was studied here by recording evoked changes in whole-cell membrane capacitance from wild type and ribbonless (Ribeye-ko) mice. Wild type rods filled with high (10 mM) or low (0.5 mM) concentrations of the Ca$^{2+}$-buffer EGTA created a readily releasable pool (RRP) of 87 synaptic vesicles (SVs) that emptied as a single kinetic phase with a $\tau < 0.4$ msec. The lower concentration of EGTA accelerated Ca$^{2+}$ channel opening and facilitated release kinetics. In contrast, ribbonless rods created a much smaller RRP of 22 SVs, and they lacked Ca$^{2+}$ channel facilitation; however, Ca$^{2+}$ channel-release coupling remained tight. These release deficits caused a sharp attenuation of rod-driven light responses. We conclude that the synaptic ribbon facilitates Ca$^{2+}$-influx and establishes a large RRP of SVs.

Impact statement

The mouse rod-photoreceptor ribbon creates a large number of releasable vesicles with uniform release kinetics.
Introduction

Animals use their sensory systems to interact with and navigate through their environment, and sensory maps are created for this purpose. This is especially true for vision, where perception of a real-world scene invariably asserts the location of objects in space. The building blocks for visual percepts originate from a visual field that is often in motion, and can vary greatly in luminance. Therefore, vertebrates have evolved complex processes that stabilize the eyes on the visual field (Straka and Baker, 2013), focus images on the back of the eye, and transform light of varying intensities into neural signals (Rivlin-Etzion et al., 2018).

The mammalian neural retina lines the concaved inner surface of the eye, and it forms a thin, multi-layered network. The outer most layer is a dense lawn of photoreceptors (PR > 1 \(\times 10^5 \) mm\(^{-2}\)). Each PR has a photosensitive outer segment, and at its opposite pole a single synaptic terminal forms in the first synaptic layer of the retina, the Outer Plexiform Layer (OPL). There are two classes of PRs in the outer retina: rods and cones, which differ in several ways (for review, Grunert and Martin, 2020). For example, rods are \(\sim 10^3 \)-fold more sensitive to light than cones (Cao et al., 2014), they only express rhodopsin while cones express one of multiple types of opsin (Fain et al., 2010), and they outnumber cones at a ratio of 30:1 (Grunert and Martin, 2020). These features allow the outer retina to begin sorting light properties into neural signals. A variety of bipolar cell types carry PR signals to the inner retina (Light et al., 2012; Behrens et al., 2016; Tsukamoto and Omi, 2016), whereupon a plethora of chemical and electrical synapses are assembled into circuits (Demb and Singer, 2015) that serve in visual behaviors like night vision, color perception, and motion detection (Sterling, 2013).

Photoreceptors and bipolars form ‘ribbon synapses’ that are named after the electron-dense plate that projects from the presynaptic AZ into the cytoplasm. A subset of vertebrate sensory neurons express the protein ribeye, which is localized to ribbons (reviews: Lagnado and Schmitz, 2015; Moser et al., 2019). Deletion of the Ribeye gene eliminates synaptic ribbons (Maxeiner et al., 2016), but a unifying role for ribbons in synaptic transmission has not been identified. For instance, paired recordings between ribbonless rod bipolar cells (rbcs) and AII amacrine cells showed that synaptic transmission was greatly reduced without altering Ca\(^{2+}\) currents. The release deficit was reasoned to result from an uncoupling of Ca, channels from SVs (Maxeiner et al., 2016). In contrast, ribbonless hair cells showed a milder impairment in exocytosis (Becker et al., 2018; Jean et al., 2018), and they produced well
defined substitute AZs that were largely capable of compensating for the loss of ribbon AZs (Jean et al., 2018).

More recent investigations into Ribeye-ko mice have used functional assays to probe how the ribbonless retinal circuitry behaves. First, recordings from on-α-ganglion cells showed that on-responses to increments in light were robust in the absence of ribbons; however, significant alterations were also documented (Okawa et al., 2019). Interpreting the results was challenged by the complexity of the retinal circuitry; in particular the overlap in rod and cone pathways (for review, Seilheimer et al., 2020). In a subsequent study, based on electroretinograms Fairless et al. (2020) assigned the deficits in ribbonless circuitry to the rod pathway; however, the defects in the pathway were not identified. Therefore, in the current study we examined how the ribbon influenced transmitter release from mouse PRs, which has not been tested directly; and in addition, relatively little is known about the biophysics of exocytosis from mammalian PRs.

Mammalian rods express a single, large horseshoe-shaped ribbon that surrounds one or two rod bipolar dendrites that are on average ~250 nm away from the ribbon (for mouse; Hagiwara et al., 2018). In the dark rods are maximally depolarized to produce a steady influx of Ca\(^{2+}\) that drives the continual turnover of SVs. This keeps synaptic glutamate high enough to activate the postsynaptic inhibitory mGluR6→TRPM1 pathway in rbc dendrites (Koike et al., 2010), which equates to the 'dark signal'. A weak flux of photons is sufficient to hyperpolarize the rod and momentarily slow exocytosis to create a 'light signal' (for review, Field and Sampath, 2017). Mathematical models have predicted that a rod ribbon needs to achieve a release rate ≥ 40 SVs-sec\(^{-1}\) for the rbc mGluR6 pathway to activate and create a dark signal (Rao-Miroznik et al., 1998; Hasegawa et al., 2006).

In the current study, high resolution measurements of evoked SV exocytosis were made directly from mouse rods. The results demonstrated that the mouse rod ribbon creates multiple, uniformly primed sites for the release of 87 SVs. Their Ca\(_v\)1.4 channels activated rapidly (~200 μsec) and exhibited unique forms of facilitation that influenced ultrafast release. These features were dependent on the ribbon, as ribbonless rods formed a much smaller RRP, and lacked Ca\(_v\) channel facilitation. The study provides experimental results that support longstanding proposals on the function of the rod ribbon synapse, and we discuss how synaptic ribbons contribute to retinal signaling.
Results

Super-resolution readout of SV turnover at an individual rod ribbon

The majority of rod somata reside in the outer nuclear layer (ONL) and send a spindly axon to their singular presynaptic terminal in the OPL, which contains an individual synaptic ribbon (Fig. 1A and B). The minority of rod somata that lack an axon are positioned in the OPL, and they contain the synaptic ribbon within the soma compartment (Fig. 1A). These axonless rods have been described before at the EM level (Li et al., 2016). We have previously reported making whole-cell, voltage-clamp recordings of Ca\(^{2+}\) currents from them (referred to as the rod 'soma-ribbon' configuration) in an attempt to better control the membrane potential about the ribbon AZ (Hagiwara et al., 2018). This point is illustrated here by assessing the membrane time constant for the soma-ribbon configuration. A −10 mV voltage step from a holding potential of −70 mV relative to the AgCl\(_2\) reference electrode, generated a rapidly decaying membrane current with a \(\tau < 30\) \(\mu\)sec (Fig. 1C). Furthermore, the RC time constant calculated from the average access resistance (\(R_a\) ~30 M\(\Omega\)) and whole-cell membrane capacitance (\(C_m\) ~1 pF; Supplementary File 1) produces a \(\tau_{RC} \sim 30\) \(\mu\)sec.

Being able to control and monitor membrane voltage with high temporal precision makes it possible to quantitatively study voltage-dependent Ca\(^{2+}\)-channels (Ca\(_v\)) and Ca\(^{2+}\)-triggered fusion of SVs. A series of voltage-dependent Ca\(^{2+}\)-current (I\(_{Ca}\)) traces, generated with depolarizing voltage steps (\(V_{step}\) to −18 mV for different durations, highlights the tight voltage control of I\(_{Ca}\) (Fig. 1D; 10 mM EGTA in the whole-cell pipette). Next, to assess the extent of Ca\(^{2+}\)-triggered SV fusion associated with each depolarization, the sine wave based, lock-in amplifier method was implemented to measure changes in whole-cell \(C_m\) (Lindau and Neher, 1988). A depolarization evoked increase in \(C_m\) can be attributed to the incorporation of SV membrane, as long as there are no corresponding changes in conductance that can interfere with the estimation of \(C_m\) (see Methods for details). The examples in Figure 2A and 2B illustrate these points. First, the response to a 9 msec step depolarization generated a robust increase in \(C_m\), which remained elevated at a fixed level for the 0.5 sec post-stimulation period captured in Figure 2A. Second, a sequence of evoked responses presented over a longer time span showed a pronounced jump in \(C_m\) following each stimulation, while \(G_m\) and \(G_s\) were not noticeably changed by the stimulations (Fig. 2B). This presentation also shows that subsequent to the evoked \(\Delta C_m\), the membrane was endocytosed in the following ways: linearly, exponentially and/or as abrupt downward steps (Fig. 2B). Rarely were large
(> 2 fF) downward steps in C_m observed, such as the one between the 3 and 9 msec stimulations in Figure 2B (downward arrow). Given the diversity of endocytotic responses, they were not quantified further in the current study.

In contrast to membrane endocytosis, the analysis of evoked membrane exocytosis was straightforward. An overlay of individual C_m traces shows that the magnitude of the evoked ΔC_m responses were similar (Fig. 2C and 2D). To quantify stimulated and baseline changes in C_m, ΔC_m was estimated as indicated in Figure 2E, and then plotted in sequence over the course of the experiment (Fig. 2F). Finally, the evoked ΔC_m was plotted per stimulation (pulse duration). In addition, the number of SVs corresponding to each ΔC_m were plotted on the opposite axis (Fig. 2G), which was calculated by dividing ΔC_m by the C_m of a single SV: 37.6 aF (1 aF = 10^{-18} F; see Methods for estimates of SV C_m); hence, a $\Delta C_m \sim 4$ fF is equivalent to the fusion of 106 SVs.

Ca_{v} channel activation was rapid and exhibited moderate inactivation

The type of voltage-gated calcium channel that supports exocytosis from rod ribbons are L-type, Ca_{v},1.4 channel. A feature that sets Ca_{v},1.4 channels apart from other L-type channels is that their expression is limited to photoreceptor terminals (for review, McRory et al., 2004; Pangrsic et al., 2018). By comparison, other L-type channels, such as Ca_{v},1.2 and 1.3, are expressed throughout the nervous system, and additionally in cardiac, endocrine and neuroendocrine cells, and such prevalence has led to significantly more insight into their biophysical properties (Dolphin and Lee, 2020). Therefore, some of the basic biophysical properties of mouse rod Ca_{v},1.4 channels, which have not been described to our knowledge, are reported next.

The voltage-dependence of Ca^{2+}-current activation was examined over a range of voltage steps when the rods were filled with 10 mM EGTA to minimize Ca^{2+}-activated Cl$^-$-currents (Bader et al., 1982). The depolarization stimulated I_{Ca} showed a steep dependence on voltage (Fig. 3A), and this was quantified by measuring peak-I_{Ca} amplitude (Fig. 3B) and calcium tail-current (I_{Ca}-tail) amplitude (Fig. 3C). Specifically, a depolarizing step (V_{step}) to −40 mV produced a peak-I_{Ca}: −0.89 ± 0.34 pA, and by −10 mV the maximal peak-I_{Ca} was reached: −14.15 ± 0.75 pA (9 cells; Fig. 3D) (liquid junction potential: E_{ij} = 8.9 mV was not subtracted from V_{step}; see Methods). Fitting the peak-I_{Ca} versus V_{step} curve with a Boltzmann equation from −60 to −10 mV (point of maximal I_{Ca}) gave a half-maximal peak-I_{Ca} at a
voltage of \sim28.7 ± 0.4 mV (Supplementary File 3). Next, to better estimate the point when half of the available Ca, channels opened ($V_{1/2}$), a modified Boltzmann I-V equation was used, one that accounted for V_{rev} and G_{max} (see Methods). This approach gave a $V_{1/2} = -23.4 \pm 1.0$ mV (fit presented in Fig. 3D; see Supplementary File 3 for additional statistics). Lastly, I_{Ca}-tail amplitudes were measured to determine the fraction of channels that opened at each V_{step}, and this gave a half-maximal amplitude at approximately -30 mV (dashed line in Fig. 3E). However, fitting the curve with a sigmoidal equation to estimate $V_{1/2}$ was not possible, because the I_{Ca}-tail amplitudes appeared to decrease at V_{step} values positive to -10 mV (Fig. 3E). This behavior may indicate a degree of Ca, channel inactivation within the 10 msec voltage step (see below). Therefore, the best estimate for half-maximal channel activation was derived from the modified Boltzmann I-V equation, and after subtracting E_{Js}, the $V_{1/2}$ is estimated to be ~ -33 mV.

Recordings from salamander rods have demonstrated that I_{Ca} inactivation was absent in the presence of high concentrations (i.e., 10 mM) of intracellular EGTA, demonstrating an absence of voltage-dependent inactivation (VDI); however, lowering intracellular EGTA to \sim0.1 mM gave rise to Ca$^{2+}$-dependent inactivation (CDI) (Corey et al., 1984; Rabl and Thoreson, 2002). To assess the situation in mouse rods, 200 msec steps were examined for signs of I_{Ca} inactivation with 10 mM EGTA in the pipette. Steps from -70 mV to -18 mV, for varying durations, declined in amplitude within the first 30 msec, and after this the steady I_{Ca} was maintained (Fig. 3F). For instance, the 200 msec depolarizations had an initial peak-I_{Ca} = -13.2 ± 0.8 pA, and ended with a mean current I_{Ca} = -9.2 ± 1.2 pA (7 cells). This 31% decay in I_{Ca} had a $\tau = 19.46 \pm 0.01$ msec (7 cells; Fig. 3F). The overlay of I_{Ca} traces shows that the membrane current approached baseline within 1 msec after repolarization (Fig. 3G), which is in accord with Ca, channel deactivation (Fig. 3C), but not Ca$^{2+}$-activated tail-currents (see below). This result is distinct from previous studies on salamander rods that did not find evidence for VDI (Bader et al., 1982; Corey et al., 1984; Rabl and Thoreson, 2002). A notable difference in our study and that by Corey et al. (1984) is that they replaced all intra- and extra-cellular monovalent cations with 100 mM TEA$^+$ to eliminate contributions K, channels (Beech and Barnes, 1989). In contrast, we only used 20 and 35 mM TEA$^+$ inside and outside, respectively (see Methods), which may have been inadequate to fully block K, channel currents. For these reasons, it is tentatively concluded that a fraction of the Ca, channels are sensitive to VDI.
Expanding the Ca$^{2+}$-domain triggers Ca$^{2+}$-activated channels

It has been predicted that by changing intracellular EGTA from 10 to 0.5 mM, the Ca$^{2+}$-domain about the Ca$_v$ channels will expand in size from ~6 to ~210 nm, respectively, during depolarization (Neher, 1986). At ribbon synapses, high intracellular concentrations of EGTA (~10 mM) restrict the domain of evoked, free Ca$^{2+}$ to the base of the ribbon where the L-type Ca$_v$ channels are located (Zenisek et al., 2003; Neef et al., 2018; for review, Moser et al., 2019). A potential consequence of elevating intracellular Ca$^{2+}$ is that the Ca$^{2+}$-dependent Cl$^-$ currents ($I_{Cl(Ca)}$) will be activated (Bader et al., 1982). The TMEM16A/B channels are localized to mouse rod terminals (Stohr et al., 2009; Caputo et al., 2015), and are thought to underlie Ca$^{2+}$-dependent Cl$^-$ currents in salamander PRs ($I_{Cl(Ca)}$) (Mercer et al., 2011). The above measurements made with 10 mM EGTA in the pipette did not exhibit a current resembling $I_{Cl(Ca)}$ (Fig. 3F), which concurs with earlier studies on salamander and porcine rods that concluded $I_{Cl(Ca)}$ was blocked with high concentrations of EGTA (Bader et al., 1982; Cia et al., 2005). In contrast, when the intracellular concentration of EGTA was lowered to 0.5 mM, two new features appeared. First, an outward-current slowly developed during the 10 msec voltage step depolarizations (presumed Cl$^-$ influx). Second, at the end of the voltage step when the rod was repolarized to −70 mV, a unique inward tail-current appeared (presumed Cl$^-$ efflux), which slowly deactivated over the course of several milliseconds (Fig. 4A-B). These features are indicative of a Ca$^{2+}$-dependent Cl$^-$ current (Bader et al., 1982; Cia et al., 2005).

If $I_{Cl(Ca)}$ is indeed Ca$^{2+}$-dependent, then it should follow the voltage-dependence of I_{Ca}. To evaluate this, first peak-I_{Ca} had to be measured over the range of V_{step}, under the condition of low intracellular EGTA. The results show that peak-I_{Ca} values were virtually identical for the two intracellular EGTA concentrations (Fig. 4C; see Supplementary File 2); however, differences in activation kinetics were apparent (described below). Next, the peak-$I_{Cl(Ca)}$-tail currents were measured as a function of V_{step}. Since the $I_{Cl(Ca)}$-tail amplitudes were measured at −70 mV (V_{rest}), regardless of the preceding V_{step}, the $I_{Cl(Ca)}$-tail amplitudes should be proportional to the number of TMEM16 channels opened; whereas, the amount of Ca$^{2+}$ entering depended on the V_{step}. The results show that peak-$I_{Cl(Ca)}$-tail and peak-I_{Ca} currents followed a similar voltage-dependence (Fig. 4C and D). This is best illustrated in the overlay of the normalized currents versus V_{step}, and here the $I_{Cl(Ca)}$-tail amplitudes scaled in proportion to I_{Ca} over the entire range of V_{step} values (Fig. 4E; see Supplementary File 4 for Boltzmann
fits). This demonstrates that the Ca\(^{2+}\)-dependent current activated in proportion to the amplitude of peak-Ca\(^{2+}\). In summary, 10 mM EGTA blocked activation of the Cl\(^{-}\)-channels in mouse rods, as has been described previously in studies on salamander rods (Bader et al., 1982; Cia et al., 2005; Mercer et al., 2011), which suggests the Ca\(^{2+}\)-activated Cl\(^{-}\)-channels are not localized within nanometers of the Ca\(_v\) channels.

Reducing intracellular EGTA accelerated Ca\(_v\) channel activation kinetics

It is known that cytoplasmic Ca\(^{2+}\) can facilitate the opening of Ca\(_v\) channels (Lee et al., 2000; Nanou and Catterall, 2018). This behavior has been documented at rat inner hair cell (IHC) ribbon synapses (Grant and Fuchs, 2008; Goutman and Glowatzki, 2011) and at central synapses (Borst and Sakmann, 1998), but it is not known if mammalian photoreceptors support similar channel dynamics. Interestingly, when comparing results from experiments with 0.5 and 10 mM EGTA in the pipette, the activation kinetics were slowed to a greater extent at negative voltages when 10 mM EGTA was used. Specifically, with 10 mM EGTA the time constant for I\(_{Ca}\) activation (\(\tau_{\text{activ}}\)) was lengthened 6-fold when changing the \(V_{\text{step}}\) from 0 to \(-30\) mV (0.18 ± 0.03 to 1.09 ± 0.15 msec, respectively; 9 cells; Fig. 4F), compared to the 3.4-fold lengthening of \(\tau_{\text{activ}}\) when 0.5 mM EGTA (0.16 ± 0.03 to 0.55 ± 0.03 msec, respectively; 8 cells; Fig. 4F). Furthermore, in the physiological range for Ca\(_v\) channel activation, \(\tau_{\text{activ}}\) was 2-fold faster at \(-30\) mV (\(-40\) mV after correction for \(E_{ij}\)) when 0.5 mM EGTA was used (\(p: 0.003\); Fig. 4F). Comparison of activation kinetics for low (0.5 mM) and high (10 mM) EGTA shows that they converged at more depolarized voltages (Fig. 4F; see Supplementary File 2). Assuming basal intracellular Ca\(^{2+}\) was higher when less EGTA was used, then the results can be interpreted as Ca\(^{2+}\)-dependent facilitation of Ca\(_v\) channel activation kinetics (Borst and Sakmann, 1998); but not peak-I\(_{Ca}\) amplitude (Fig. 4C). The results bare some resemblance to the behavior of Ca\(_v\)1.3 channels found in rat IHCs (Goutman and Glowatzki, 2011), in that time to peak-Ca\(^{2+}\) current is shortened when residual Ca\(^{2+}\) is elevated; however, current onset delay was shortened in the case of IHCs.

The readily releasable pool of SVs is primed for ultrafast release

As outlined earlier in Figure 1, evoked \(\Delta C_m\) can be related to the number of SVs that fused with the plasma membrane. We first used this approach to determine how many SVs were
near Ca$_v$ channels and ready for release (Mennerick and Matthews, 1996; Moser and Beutner, 2000; Singer and Diamond, 2003; Thoreson et al., 2004; Graydon et al., 2011). This was achieved by using 10 mM EGTA in the pipette to restrict the evoked Ca$^{2+}$-domain to within nanometers of the Ca$_v$ channels, and a series of brief depolarizing voltage steps were given to map out the initial phase of release ($V_{\text{rest}} = -70$ mV, and $V_{\text{step}} = -18$ mV; ordering of steps: 0.5, 1, 3, 9, 15 and 30 msec; 8 sec of rest between stimulations). Inspection of the plot of \(\Delta C_m \) versus step duration shows that the greatest change occurred within the first 3 msec of depolarization (Fig. 5A). This point is documented in a couple ways. First, the \(\Delta C_m \)
generated with 3 msec steps reached 86% the amplitude of responses evoked with a 30 msec step (2.99 ± 0.48 vs. 3.54 ± 0.50 fF; p: 0.033, paired sample t-test; 7 cells; Fig. 5A). The second approach involved making a comparison of exponential fits (\(\tau_{\text{depletion}} \)) to the average \(\Delta C_m \) versus step duration over different ranges of stimulations. Specifically, a fit from 0.5 to 9 msec gave a \(\tau_{\text{depletion}} = 348 \mu \text{sec} \) and an amplitude = 3.27 fF (adjusted R-square = 0.999), which was similar to the result attained when the fit was extended out to 30 msec: \(\tau_{\text{depletion}} = 383 \mu \text{sec} \) and amplitude = 3.43 fF (adjusted R-square = 0.992; 7 to 15 cells per step duration; Fig. 5A). This suggests the initial kinetic release phase, referred to here as the fusion of the readily releasable pool (RRP) of SVs, expired with a time constant < 0.4 msec and amounted to 3.27 fF (~ 87 SVs). It is worth noting that only slightly more time was needed to empty the RRP than indicated by \(\tau_{\text{depletion}} \). The 0.5 msec steps produced negligible changes in \(\Delta C_m \) (0.14 ± 0.19 fF ~4 SVs; 8 cells); whereas, the 1 msec steps released ~70% of the RRP (\(\Delta C_m \): 2.11 ± 0.74 fF ~56 SVs; 14 cells). This indicates a fusion delay of ~0.5 msec, involving Ca$_v$ channel activation kinetics and Ca$^{2+}$-dependent activation of SV fusion, which was followed by ultrafast depletion of the RRP in under a millisecond. Similarly rapid depletion of the RRP of SV formed at goldfish Mb1 bipolar terminals (Mennerick and Matthews, 1996; Palmer et al., 2003) and rodent calyces of Held (Schneggenburger et al., 2002) have been reported when using strong step depolarizations.

Before advancing to the next set of results, a description of the experimental design is given. The first expectation was that the RRP of SVs refilled in < 8 sec, which was the inter-stimulus interval used in the short step duration protocols. The second assumption was that evoked responses adapted over the cumulative time course of the experiment. To the first point, AMPA receptor mediated EPSCs recorded from ground squirrel cb2 bipolars, paired to either a presynaptic rod or green-cone, recovered from paired-pulse depression within 0.3 sec (Li et al., 2010). However, longer recovery times of ~1 sec have been reported for green-
cones paired to cone bipolars that express a majority of kainate receptors (DeVries, 2000).

Lastly, presynaptic release (ΔC_m) measured from green-cones recovered from paired-pulse depression in 0.7 sec (Grabner et al., 2016). Without additional studies on mammalian PRs to point to, we note that salamander rods and cones recovered from paired-pulse depression (assayed as EPSCs or ΔC_m) with $\tau_{\text{recovery}} \sim 1$ sec or less (Rabl et al., 2006; Innocenti and Heidelberger, 2008). On this backdrop, one can assume that 8 sec was enough time for mouse rods to recover their RRP of SVs. Furthermore, the data plotted in Figure 5A: ΔC_m versus step duration, show a drastic difference between the first two stimulations given at 0.5 to 1 msec, but the subsequent longer duration stimulations (3 to 30 msec) showed only a modest incremental increase in ΔC_m. This is interpreted as depletion of a finite pool of primed SVs (Mennerick and Matthews, 1996). Based on the literature and data, a stimulation interval < 8 sec would be justified; however, we also had to accommodate experiments on Ribeye-ko mice, described below, that may need more time to recover from stimulation. In addition, experiments with an intracellular concentration of 0.5 mM EGTA may need more time to clear intracellular Ca$^{2+}$ between stimulations (Van Hook and Thoreson, 2015).

To address the second concern: time-dependent adaptation after whole-cell entry, the overall experimental time was minimized. This effort entailed starting stimulations ~35 sec after gaining whole-cell access, and the protocol was circumscribed to mapping out the RRP of SVs (from shortest to longest duration, totaling 6 stimulations, 1 every 8 sec). This window of time amounted to less than 2 min from the time of entry. An infusion time of 35 sec was sufficient to affect Ca$^{2+}$-buffering, because Ca$^{2+}$-activated currents only appeared when 0.5 mM EGTA was in the pipette (Fig. 4A versus 3F). This conclusion was reinforced in the experiments presented in Figure 6A and B, and described below. These features suggest that rod terminals were adequately infused. For reference, a comparison to experiments performed on mouse rod bipolar cells (rbc) is made. The rbc forms a single axon that is ~60 µm long, and it branches into multiple terminal synapses. Singer and Diamond (2003) showed that after gaining whole-cell access via the rbc soma, synaptic terminals were filled with exogenous Ca$^{2+}$-buffers within 2 min (Singer and Diamond, 2003).

Lowering the intracellular Ca$^{2+}$-buffer expedited release onset

To assess whether primed SVs resided outside the spatially constrained Ca$^{2+}$-domain formed with 10 mM EGTA, as has been proposed to occur at goldfish bipolar AZs (Burrone et al.,
2002), rods were filled with 0.5 mM EGTA and given a series of short depolarizing steps (as described above). Figure 5B plots ΔC_m versus step duration for experiments carried out with either 0.5 or 10 mM EGTA in the pipette, and the results show a high degree of overlap within the range from 1 to 30 msec steps. In contrast, responses to 0.5 msec step depolarizations generated a ΔC_m that was over 10-fold > the responses measured from rods filled 10 mM EGTA (1.51 ± 0.36 vs. 0.14 ± 0.19 fF; p: 0.006; n: 6 and 8 cells; Fig. 5C). This is also illustrated in the plots of individual C_m traces measured in response to 0.5 msec steps (Fig. 5D). The results show that the size of the RRP of SVs was comparable under high and low Ca^{2+}-buffering, but the RRP emptied faster with less intracellular EGTA. The fixed size of the RRP with 0.5 or 10 mM EGTA in the pipette is compatible with studies on mouse rod bipolars (Singer and Diamond, 2003); whereas, the accelerated rate of release was highly reminiscent of goldfish bipolars (Burrone et al., 2002). To better understand this, we next considered whether the Ca^{2+}-currents were differentially impacted by the two Ca^{2+}-buffering conditions.

Facilitation of Ca_v channel activation kinetics expedited release onset

From the I_Ca traces used to profile the voltage-dependence of Ca_v channel activation kinetics (Fig. 3B and 4B), and those associated with evoked release experiments (Fig. 6A and 6B), a delay of ~300 μsec existed prior to the onset of the I_Ca. Hence, in instances where 0.5 msec voltage steps were delivered to evoke release, only ~200 μsec were available for the I_Ca to develop before the voltage step ended. Given that τ_{activ} at −20 mV for low and high EGTA were 310 versus 489 μsec, respectively (Fig. 4F, and Supplementary File 2), it is expected that more channels opened with less Ca^{2+}-buffering during the 0.5 msec steps. The results from evoked release show that the average I_Ca-tail resulting from 0.5 msec steps to −18 mV were approximately two-fold larger when less EGTA was used (0.5 vs 10 mM EGTA: −12.5 ± 1.7 vs. −7.4 ± 0.7 pA; p: 0.008 from 6 and 9 cells; Fig. 6A and 6C). In contrast, the 1 msec steps produced comparable I_Ca-tail amplitudes under the two intracellular EGTA conditions (Fig. 6A-C), because the step duration was > τ_{activ}. Likewise, step depolarizations for 3 msec and longer gave similar peak-I_Ca amplitudes that ranged from −11 to −13 pA in both low and high Ca^{2+}-buffering (Fig. 6C). Since the Ca^{2+}-buffering conditions used to evoke exocytosis differentially facilitated Ca^{2+}-entry within the timeframe of Ca_v channel activation, the next analysis evaluated ΔC_m as a function of the amount of Ca^{2+} that entered.
First, a plot of ΔC_m versus the integral of I_{Ca} (Q_{Ca}) was made from a combination of experiments with low and high intracellular EGTA (11 and 15 cells, respectively). The outcome was a continual, single exponential process that reached an amplitude of 3.31 fF (RRP ~ 88 SVs; Fig. 6D and E), and 63% of the RRP was depleted (1/e) when Q_{Ca} reached 4.66 fC = 12,263 Ca$^{2+}$ ions (1 Ca$^{2+}$ ion = 3.8×10^{-19}C) (Fig. 6D). A limitation here was that Q_{Ca} was not calculated for steps > 3 msec when 0.5 mM EGTA was used, because $I_{Cl(Ca)}$ interfered with determination of Q_{Ca}. The second comparison made here was ΔC_m versus I_{Ca} amplitude. This is an alternative to Q_{Ca} for indexing Ca$^{2+}$ entry, and since peak-I_{Ca} does not appear to be impacted by $I_{Cl(Ca)}$ (Fig. 4C), all of the peak-I_{Ca} amplitude data points from experiments with low EGTA were included. In Figure 6F, a combination of I_{Ca}-tail (from 0.5 and 1 msec steps) and peak-I_{Ca} (steps ≥ 3 msec) were plotted against ΔC_m. A simple linear or exponential process was not realized; but instead, the data points were scattered into groups. The steps ≥ 3 msec were grouped within a range of ΔC_m values between 3 to 4 fF (equivalent to the RRP), and with a peak-I_{Ca} of approximately −12 pA (Fig. 6F). The remaining data points were generated with 0.5 and 1 msec steps, and they produced a broad range of ΔC_m values (0.2 to 2 fF) and I_{Ca}-tail amplitudes (−7.5 to −18 pA) that suggest ΔC_m scaled with I_{Ca}-tail amplitude (Fig. 6F).

In summary, plotting ΔC_m against step duration demonstrates ultrafast depletion of an RRP of ~90 SVs in response to a moderate amount of Ca$^{2+}$ entry (~10,000 ions). These features point to a critical role for Caν channel activation kinetics, and can be interpreted as a primed SV fusing once its neighboring channel(s) opens (Jarsky et al., 2010). To this point, our experiments with low intracellular EGTA led to the majority of Caν channels activating in ~0.6 msec (I_{Ca} onset delay: 300 µsec plus the τ_{activ}: 310 µsec; Fig. 4C,6A and 6B; Supplementary File 2). This length of time was all that was needed to fuse the majority of the RRP of SVs (Fig. 5B and C). Since 10 mM EGTA slowed Caν channel activation kinetics, we propose that the small time delay in Ca$^{2+}$ entry is what produced a delay in exocytosis. For comparison, changing intracellular EGTA levels has been shown to accelerate the onset of Ca$^{2+}$-entry and in turn accelerate release kinetics (Borst and Sakmann, 1998; Goutman and Glowatzki, 2011). However, it is also expected that the different EGTA levels will significantly alter the size of the Ca$^{2+}$-domain formed about Caν channels. This raises the possibility that a larger Ca$^{2+}$-domain might access additional releasable SVs, which release at different rates (Neher and Brose, 2018); however, the size of the RRP was not influenced by the two intracellular EGTA concentrations used in our study. For these reasons we conclude
that rods form a Ca^{2+}-nano-domain that tightly couples Ca_v channels and SVs (reviewed here: Moser et al., 2019).

Since high resolution immuno-fluorescence imaging showed that Ca_v channel were concentrated at the base of the rod ribbon (Dembla et al., 2020), we assume that this is where the SVs are docked. From electron microscopy (EM) studies on mouse rod ribbons, the number of SVs estimated to be docked at the base of the ribbon range from 60 to 86 (Zampighi et al., 2011; Cooper et al., 2012; Grabner et al., 2015); thus, approximately the size of the RRP of SVs. An additional 300 SVs reside near the plasma membrane along the synaptic ridges (Zampighi et al., 2011; for review, Moser et al., 2019), which significantly exceeds the size of the RRP SVs.

Ribbonless rods support only marginal evoked exocytosis

An earlier EM study, which introduced the Ribeye-ko mice, showed that ribbonless rod AZs maintained 60 % fewer SVs than wild type rod ribbon AZs (Maxeiner et al., 2016). This former study did not measure release from rods; therefore, we tested whether the loss of SVs from the AZ would affect the size of the RRP of SVs. The measurements were first performed with 10 mM EGTA in the pipette. The evoked responses recorded from ribbonless rods given 1 and 3 msec V_{step} to -18 mV amounted to 0.21 ± 0.20 and $0.68 \pm 0.34 \text{ fF}$, respectively (Fig. 7A; 7 and 8 cells). These responses were 10- and 5-fold smaller than wt ΔC_m evoked with 1 and 3 msec steps: 2.12 ± 0.20 and 3.22 ± 0.31 fF (Fig. 7B), respectively (p-values < 0.0001 for wt vs. ko; 14 and 15 cells). Responses from ribbonless rods elicited with longer step durations (out to 30 msec) did not exceed the ΔC_m elicited by 3 msec steps (Fig. 7A). Fitting ΔC_m versus step duration with a single exponential equation gave a $\tau_{\text{depletion}} = 560 \mu\text{sec}$ and a ΔC_m amplitude = 0.84 fF (RRP ~ 22 SVs; 8 cells), which is approximately 24 % the size of that measured in wt rods (ΔC_m: 3.43 fF; Fig. 7A).

To further investigate if the reduction in exocytosis measured from ribbonless rods reflected a reduction in the number of SVs available for release or an impairment in the coupling of Ca^{2+} influx to SVs, as concluded to occur at ribbonless retinal bipolar cells (Maxeiner et al., 2016), the concentration of intracellular EGTA was lowered. Ribbonless rods filled with 0.5 mM EGTA and given 1 and 3 msec stimulations produced ΔC_m values that averaged 0.70 ± 0.16 and 0.86 ± 0.67 fF, respectively (Fig. 7B; 12 cells for each group). In contrast, wt rods filled with 0.5 mM EGTA given 1 and 3 msec stimulations averaged ΔC_m...
of 2.44 ± 0.31 and 3.24 ± 0.43 fF respectively, (Fig. 7B; 11 cells in each group); thus, ribbonless rods generated evoked ΔC_m that were < 30% the size of wt responses (p-values for wt vs. ko, for 1 and 3 msec: 0.00016 and 0.00023). Overall, the results from the different Ca^{2+}-buffering conditions indicate that the RRP formed by ribbonless rods was only ∼22 SVs. Interestingly, the different EGTA concentrations did not significantly influence RRP size within either genotype, nor were the kinetics of depletion altered. Thus, these results suggest that the coupling of Ca^{2+} influx to exocytosis was not noticeably different between genotypes, but rather the number of release ready SVs distinguished wt from ribbonless rods.

Deleting the ribbon altered Ca, channel properties

Previous work had indicated the density of Ca_v1.4 (α1F subunit) staining was altered in ribbonless rods (Maxeiner et al., 2016; Dembla et al., 2020). More to the point, the ribbon-shaped profile that Ca_v1.4 channels adhere to in wt rods was reduced in length by 50% in ribbonless rod terminals; however, protein levels of the Ca_v1.4 α1F subunit examined with Western blots were found to be similar in wt and ko retina (Maxeiner et al., 2016). To test if these changes affected the behavior of Ca_v1.4 channels, a comparison of Ca^{2+} currents from wt and ribbonless rods was made. Results derived from 10 msec voltage steps showed a significant overall reduction in the ribbonless rods peak-I_{Ca} over the range of V_{step}'s from −30 to +30 mV (Fig. 7C, and see Supplementary File 2 and 3). Specifically, with 10 mM EGTA in the pipette, the peak-I_{Ca} amplitude was approximately 35% smaller in ko rods than in wt rods (p < 0.001 or smaller, depending on V_{step}; 9 wt and 5 ko cells), and when 0.5 mM EGTA was used the amplitudes were 20% smaller than in wt controls (p < 0.05 or less; 8 wt and 7 ko cells; Fig. 7C, and Supplementary File 3). Additional biophysical values were derived from Boltzmann fits to the I-V curves. This analysis shows that ko rods had a maximal conductance ∼ 34% smaller than wt values, and this was true for experiments performed with high and low intracellular EGTA concentrations (p: 0.024 and 0.029, respectively; Supplementary File 3); however, V_{1/2} for peak-I_{Ca} amplitude was not significantly changed with high or low EGTA (p ~ 0.17; 8 and 7 cells; Fig. 7C and see Supplementary File 3). The final comparison made from the voltage steps was I_{Ca} activation kinetics. Currents activated at similar rates, except for wt rods filled with 10 mM EGTA, which exhibited much slower I_{Ca} activation kinetics (Fig. 7D and Supplementary File 3).
The reduction in peak-I_{Ca} was also observed in recordings that depolarized rods to -18 mV for different durations with 10 mM EGTA in the intracellular solution (Fig. 7E-G); however, over time the difference faded as Ca$_{\text{v}}$ channels in wt rods inactivated more rapidly. Specifically, 30 msec steps had an initial peak-I_{Ca} that was 35% larger in wt rods (-13.3 ± 0.43 pA vs. -8.7 ± 0.8 pA; $p: 0.0002$; 7 per genotype; Fig. 7D), but by the end of the 30 msec step the wt and ribbonless I_{Ca} were no longer statistically different (-8.7 ± 0.8 pA vs. -7.4 ± 1.1 pA, $p: 0.35$; 7 cells each; Fig. 7F). In the case of recordings with 0.5 mM EGTA in the pipette, the 3 msec depolarizations also produced slightly smaller I_{Ca} amplitudes in the ribbonless rods (Fig. 7H, and see 7I for statistical comparisons). In total, Ca$_{\text{v}}$ channel behavior in ribbonless rods were distinguished from their wt counter parts in one or more of the following ways: they had a lower I_{Ca} density at the onset of depolarization, and they exhibited less current inactivation (or less facilitation at onset).

The influence of peak-I_{Ca} and Q_{Ca} on evoked ΔC_{m} were also summarized. The responses to 1 and 3 msec steps, with low or high intracellular EGTA are plotted for both genotypes in Figure 7J and 7K. These plots show that the ribbon greatly influenced exocytosis.

Ribbonless rods showed a reduction in Ca$^{2+}$-activated currents

Ribbonless rods $I_{\text{Cl(Ca)-tail}}$ amplitudes were 60% smaller than wt rods (Fig. 7-figure supplement 1A; Supplementary File 4). This parallels the observation that the ribbonless rods peak-I_{Ca} amplitudes were significantly smaller than wt rods (Supplementary File 3). Next, the voltage for half-maximal $I_{\text{Cl(Ca)}}$ was reached at more negative membrane voltages than wt rods ($V_{1/2}$ for $I_{\text{Cl(Ca)}}$, wt vs. ko: -20.4 ± 0.5 vs. -22.8 ± 0.6 mV, respectively; $p: 0.016$; Supplementary File 4). In spite of the these differences, the overall Ca$^{2+}$-dependence of $I_{\text{Cl(Ca)}}$ appeared similar for wt and ribbonless rods. This is illustrated in the plot of normalized $I_{\text{Cl(Ca)}}$ and normalized peak-I_{Ca} over V_{step}, which shows the $I_{\text{Cl(Ca)}}-V_{\text{step}}$ curves are bounded by the peak-$I_{\text{Ca}}-V_{\text{step}}$ curves (Fig. 7-figure supplement 1B).

Light responses in ribbonless mice are greatly reduced

The results so far show a stark reduction in the RRP of SVs. In the intact animal, this deficit is expected to preferentially impact rod signaling in the dark, a period when the rate of
glutamate release is the highest. Normally, presenting a dim light flash to a dark-adapted retina will cause a momentary pause in glutamate release from rods, which in turn causes a depolarization (dis-inhibition) of postsynaptic rod bipolar cells (rbc). The magnitude of the light response, as assessed with electroretinogram (erg) recordings, will reflect the extent of rbc depolarization. If Ribeye-ko rods are unable to keep synaptic glutamate levels high enough to inhibit rbc in the dark, then their scotopic-erg light responses should reflect this. To test this hypothesis, ergs were performed on dark adapted mice, under scotopic test conditions (Fig. 8A-B). The erg a-wave reflects phototransduction in the outer segments, which when activated by light will hyperpolarize the rod. Wild type and Ribeye-ko mice had similar a-wave amplitudes across the range of flash intensities (Fig. 8C). In contrast, the erg b-wave amplitudes, that are thought to originate in part from depolarizing rbc, only reached 52 to 38 % of the peak amplitude of wt responses. This difference was significant over two decades of flash intensities (p-values ranging from 0.04 to 0.005; Fig. 8D). Further descriptions of erg kinetics involved comparing the time-to-peak and rate-of-rise for the a- and b-waves. The results show that the time-to-peak for the a- and b-waves were not significantly different (Fig. 8E-F), except for the b-wave at the highest flash intensity had a significantly longer time-to-peak (Fig. 8F). To calculate rate-of-rise, the peak amplitude was divided by time-to-peak for each light flash intensity. The rate-of-rise for a-waves were nearly identical for the two genotypes (Fig. 8G). The wt mice had a b-wave rate-of-rise that rose 2- to 3-fold faster than the Ribeye-ko b-wave (p-values ranging from 0.04 to 0.009; Fig. 8H), which mirrors the difference in b-wave amplitudes. These findings show that the ribbonless retina produced a significantly smaller b-wave under scotopic conditions; however, the kinetics were not significantly affected.

Discussion

In this study we set out to test whether the mammalian rod ribbon created a large RRP of SVs. This hypothesis was made decades earlier, motivated in part by results from electron microscopy studies on cat rod synapses (Rao-Mirotznik et al., 1995); in addition, several quantitative computational studies have modeled how this synapse operates (Rao-Mirotznik et al., 1998; van Rossum and Smith, 1998; Hasegawa et al., 2006). What has been missing from the literature is evidence that the mammalian rod ribbon actually creates a large RRP of SVs. Therefore, the first question addressed was how many SVs were primed for release. High
resolution, whole-cell C_m measurements of evoked release showed that the mouse rod was able to fuse 87 SVs in a single kinetic phase with a $\tau_{\text{depletion}}$ of ~0.4 msec (Fig. 5A). The ultrafast rate of depletion indicated the SVs were highly primed (super-primed) for fusion (Mennerick and Matthews, 1996; Neher and Brose, 2018). The significance of a single-exponential release phase is that the RRP was uniformly primed for fusion, rather than formed from a heterogeneous pool of ultrafast and fast primed states (Grabner and Zenisek, 2013). Furthermore, the size of the RRP of SVs was not altered when intracellular EGTA levels were changed, which is interpreted as proof that the release sites were within a few nanometers from the Ca_v channels. Since the Ca_v1.4 channels are concentrated along the base of the ribbon, this is where the SV release sites are presumed to be located (see schematic in Fig. 9); but, is there enough room to accommodate a RRP of 87 SVs? The base of a mouse rod ribbon has a contour length of 1.6 µm (measured from ribeye profiles, Grabner et al., 2015; 1.7 µm Focused Ion Beam-EM, Hagiwara et al., 2018), and two separate analyses of EM tomograms estimated ~60 (Zampighi et al., 2011) and ~77 (Cooper et al., 2012) SVs were docked in this region. The calculated maximal number of SVs that can be packed at the base of a 1.6 µm ribbon is 86 (Grabner et al., 2015), which is slightly higher than experimental estimates from EM studies, but approximately the same as the estimated RRP of 87 SVs.

To test the proposal that the ribbon contributes to the formation of release sites, ribbonless rods were studied. Here the RRP was whittled down to 22 SVs, representing a 75% reduction from wt (Fig. 7A). This shrinkage in pool size corresponded with previously published studies that described the ribbonless rod AZ as shortened and accompanied by fewer SVs. Specifically, an EM study observed that the density of docked SVs was 60 % less than wt (for definition of docking see Maxeiner et al., 2016), and the rod AZ identified with Ca_v1.4/RIM2 immuno-staining was 50 % shorter in length and rounded in the absence of the ribbon (Maxeiner et al., 2016; Dembla et al., 2020). Interestingly, the altered Ca_v1.4 channel staining, and absence of I_{Ca} facilitation in ribbonless rods (discussed below), did not alter the tight coupling of the SVs with Ca_v channels. Overall a close correspondence between the size of the RRP of SVs (our study) and the number of SVs docked at the AZ (published work) was observed for wt rods. The same can be said for ribbonless rods, but the RRP and number of docked SVs were scaled down significantly (see summary illustration in Fig. 9).

Since the overall anatomical organization of the Ribeye-ko retina was reported to be normal (Maxeiner et al., 2016; Okawa et al., 2019), and the scotopic erg a-waves were unaltered (Fig. 8), the reduction in scotopic b-wave amplitudes is arguably a result of
weakened transmission from rods to rbcs (Fig. 8D) (also see: Fairless et al., 2020). Given the
75 % reduction in evoked ΔCm measured from ribbonless rods, the altered erg b-waves was
likely, if not entirely, caused by the deficit in presynaptic release. Comparing the results from
the erg and Cm measurements suggests that the impairment measured with ΔCm was greater
than that derived from ergs by ~ 15 %, which may reflect an under or over representation of
the ΔCm results. For instance, if in the dark wt rods released more glutamate than the
postsynaptic rbc transduction pathway could encode, then the excess glutamate would not be
registered in the ergs; while, a substantial release deficit may fall within the coding range of
the rbc postsynaptic transduction system. Such a scenario would lead to an under
representation of the deficit when probed with ergs. On the other hand, the non-physiological,
strong stimulation conditions used to evoke ΔCm may have exaggerated the differences
between wt and ribbonless rods.

How does ribbon loss influence retinal function under low light? Normally, synaptic
glutamate concentrations at rod-rbc synapses are elevated in the dark. The consequence of a
release deficit in the dark will be a reduction in synaptic glutamate, which should leave rbcs
depolarized relative to wt rbcs. If true, then the ribbonless circuitry will effectively put rbcs
in an 'on-state' while in the dark, which may impair the ability of the ribbonless circuitry to
encode dim light stimuli (i.e., single photon responses). In the wt mouse retina, the
'primary rod pathway' handles single photon responses, and this pathway consists of the
following sequence of connections (synapse type): 1) rods to rbcs (ribbon synapse), 2) rbcs to
AII s (ribbon synapse), 3) AII s to on-cone bipolar cells (on-cbcs; gap junction), and 4) on-cbcs
to on-α-ganglion cells (on-α-gcs; ribbon synapse) (for review, Seilheimer et al., 2020). To
encode an on-response at the output layer, the rate of excitatory (glutamatergic) input to on-α-
gcs is increased by light increments. When the retina is dark adapted, this pathway encodes
the rate of photons captured by rods (rhodopsin isomerizations: R*) over the following range
of flash intensities: 0.01 to 2 R*/(rod·sec); while, stronger flashes saturate the primary rod
pathway (Dunn et al., 2006; Ke et al., 2014). As long as a dim background luminance is
applied (< 0.5 R*/(rod·sec)) small increments and decrements in light can be encoded by
modulating the rate of tonic excitatory inputs to on-α-gcs (Grimes et al., 2014). However, as
background luminance > 1 R*/(rod·sec), the primary rod pathway rapidly adapts to light
(Dunn et al., 2006). The adaptation is characterized by a withdrawal of tonic excitatory inputs
to on-α-gcs, progressively diminishing the pathways ability to encode light decrements; thus,
with light adaptation the on-α-gc responses become strongly rectified in the direction of light
increments (Grimes et al., 2014; Ke et al., 2014).
On this backdrop, Okawa et al. (2019) addressed how the ribbonless retina responded to sinusoidal-chirp light-stimuli. By making whole-cell voltage-clamp recordings from on-α-gcs, they showed that the ribbonless retina encoded increments in light robustly, but light decrements were poorly encoded; which was interpreted as resulting from a reduction in tonic excitatory inputs to on-α-gcs. This basic outline is comparable to the behavior of a light-adapted primary rod pathway in as far as the responses were rectified in the direction of light increments. However, additional functional deficits indicated the ribbonless circuitry was not functioning as a normal, light adapted retina. For example, rod and cone on-pathways normally collaborate to encode contrast (Ke et al., 2014) and spatial frequency (Grimes et al., 2014) on a background luminance between 10 to 100 R*/(rod·sec), but the ribbonless retina exhibited the greatest deficits in coding these features within this range of luminance (50 R*/(rod·sec); Okawa et al., 2019). To assign the deficits in functional coding to the ribbonless primary rod pathway is tempting given deficits in the rod pathway outlined above; however, Okawa et al. (2019) further showed that a normal frequency of action potentials (using on-cell patch-clamp) was generated by on-α-gcs in response to light steps from dark to 10 R*/(rod·sec) for 0.5 sec. This finding is consistent with their whole-cell voltage-clamp results: robust on-responses, but it illustrates a surprising degree of functional resiliency that likely involved compensatory mechanisms. One possible explanation is that the ribbonless cone pathway, which responded normally to photopic light flashes (Fairless et al., 2020), helped compensate by rerouting rod signals through the secondary rod on-pathway: rods–cones–on-cbcs–on-α-gcs (Seilheimer et al., 2020). A step luminance of 10 R*/(rod·sec) marks the point where the secondary on-pathway is normally just starting to get engaged (Ke et al., 2014); thus, it is hard to imagine this pathway alone could compensate so robustly. Another possibility is that the ribbonless primary rod pathway utilized compensatory mechanisms in the inner retina at the rbc-AII synapse, where light adaption is normally thought to be mediated (Dunn et al., 2006; for review, Demb and Singer, 2015). Whether the primary and/or secondary rod pathway were involved will require further study. For example, by selectively deleting electrical synapses formed between rods and cones, it should be possible to study the ribbonless rod primary on-pathway more directly.

To begin to examine the biophysics of exocytosis in more detail, we first compare results from mouse rods to studies carried out on isolated Mb1 bipolars. The comparisons are rather straightforward to make since SV fusion at Mb1 synaptic terminals has been studied extensively with the whole-cell C_m technique. A subpopulation of Mb1 SVs fuse with a \(\tau_{ultrafast} \sim 0.5 \) msec (Heidelberger et al., 1994; Mennerick and Matthews, 1996; Burrone et al., 2020).
2002), which are rate limited by Ca\textsubscript{v} channel activation kinetics ($\tau \sim 0.6$ msec at -10 mV, Mennerick and Matthews, 1998), and their release is unimpeded by elevated intracellular Ca2+-buffering (5 mM EGTA) (Mennerick and Matthews, 1996). An additional population of SVs are considered to reside at greater distances from Ca\textsubscript{v} channels, because they only enter the RRP when intracellular Ca2+-buffering is reduced (0.1 mM EGTA) (Burrone et al., 2002).

Such heterogeneity in rates of fast release were not apparent in the recordings from mouse rods; however, we find that facilitation of Ca\textsubscript{v} channel activation kinetics occurs on a timescale that can influence the timing of ultrafast release. In response to 0.5 msec steps, the RRP was depleted by 50% with 0.5 mM EGTA, but only 4% of the RRP emptied with 10 mM EGTA (Fig. 5C). The faster release onset is attributed to the acceleration of Ca\textsubscript{v} channel activation kinetics in 0.5 mM EGTA (Fig. 4F, 6A; Supplementary File 2), which enhanced Q\textsubscript{Ca} selectively at 0.5 msec (Fig. 6E). Interestingly, Burrone et al. (2002) showed something very similar with respect to release, specifically a tail-current released 50% of the RRP when the Mb1 bipolars were loaded with 0.1 mM EGTA, but with higher Ca2+-buffering (endogenous) the tail-current released only 5% of the RRP. They attributed the enhanced rate of release to the expansion of the Ca2+-domain, but differences in I\textsubscript{Ca} were not reported.

For comparison to mammalian bipolar cells, mouse rbcs also support ultrafast release (Oltedal and Hartveit, 2010), and this is mediated through tight, nano-domain coupling of SVs to Ca\textsubscript{v} channels (Jarsky et al., 2010).

Auditory hair cells also support a robust form of facilitation when they are pre-conditioned to elevate free, intracellular Ca2+, which was achieved by pre-depolarizing the cells (Goutman and Glowatzki, 2011) and/or lowering intracellular Ca2+-buffering (Cho et al., 2011). Release facilitation was characterized by shorter onset latencies and higher release synchrony (Cho et al., 2011; Goutman and Glowatzki, 2011; Chen and von Gersdorff, 2019). Notably, rat inner hair cells (IHCs) showed facilitation of I\textsubscript{Ca} onset, but without a change in steady-I\textsubscript{Ca} amplitude (Goutman and Glowatzki, 2011); similar to what we report for rods. However, frog HCs did not exhibit a change in I\textsubscript{Ca} onset (Cho et al., 2011). These studies show that mammalian IHCs (Goutman and Glowatzki, 2011) and rods accelerate Ca\textsubscript{v} channel opening (this study), and this in turn expedited release. In contrast, frog HCs (Cho et al., 2011) and Mb1 bipolars (Burrone et al., 2002) accelerate release through a distinct process that may involve a Ca2+-dependent priming step or differences in the spatial coupling between Ca\textsubscript{v} channels and SVs, respectively.
In this study we also found that wt I_{Ca} decayed by a third with a τ of 19 msec, suggestive of Ca_v channel inactivation. This was observed with 10 mM EGTA in the pipette, which is sufficient to block Ca^{2+}-dependent inactivation (CDI) in salamander rods (Corey et al., 1984; Rabl and Thoreson, 2002); however, Ca^{2+} will need to be substitute with Ba^{2+} to more definitively demonstrate the process is CDI. Voltage-dependent inactivation (VDI) may be involved, but this was not observed in salamander rods when 10 mM EGTA was used (Corey et al., 1984; Rabl and Thoreson, 2002); furthermore, VDI was not apparent in recordings from porcine (Cia et al., 2005) or ground squirrel (Li et al., 2010) rods when experiments were performed with 2 mM Ba^{2+} or 10 mM BAPTA. Though we do not have a definitive answer from our recordings on rods, both CDI and VDI have been reported in studies carried out on human $Ca_v1.4$ channels heterologously expressed in HEK cells. The molecular details are being worked out for CDI (Haeseleer et al., 2016; Sang et al., 2016); whereas, VDI has only been described as highly temperature-dependent. For instance, raising the recording temperature from 23ºC to 37ºC increased peak-I_{Ca} amplitude by 3-fold and accelerate VDI by 50-fold (Peloquin et al., 2008, with 20 mM BaCl2). Future studies will need to assess if VDI and/or CDI are involved.

Both of the Ca_v channel gating phenomena observed in wt rods were eliminated in ribbonless rods. I_{Ca} activation kinetics measured with 10 mM EGTA in the pipette showed slower activation kinetics in wt than ribbonless rods (Fig. 7D and Supplementary File 2), and I_{Ca} inactivation was more apparent in wt rods (Fig. 3F and 7F). Given the steady-I_{Ca} amplitude measured from wt and ko rods were similar, there were arguably comparable numbers of open channels at ~30 msec; however, ribbonless rods appeared to lack a transient facilitation in I_{Ca}. To better set the context, it is important to note that normal levels of $Ca_v1.4$ ($\alpha1F$-subunit) protein were reported to be expressed in the retina of Ribeye-ko mice (Maxeiner et al., 2016); nonetheless, immuno-fluorescence staining for $Ca_v1.4$ ($\alpha1F$) and RIM2α revealed the ribbonless AZ was 50% shorter (rounded) (Maxeiner et al., 2016; Dembla et al., 2020). This indicates that ribeye directly influenced the structure of the rod AZ, and either directly or indirectly facilitated the opening of $Ca_v1.4$ channels; additionally, this occurred without leading to a degeneration of OPL organization (Maxeiner et al., 2016). Its stabilization of RIM2 is of interest, because deletion of RIM1/2α selectively from rods significantly reduced I_{Ca}, reduced the frequency of miniature glutamate transporter events, and reduced the evoked ΔC_m, but this did not alter $Ca_v1.4$ ($\alpha1F$) channel or ribeye staining (Grabner et al., 2015). In a separate study on RIM2α-ko, OPL organization and rod ribbon structure were normal, but the rod pathway exhibited impaired scotopic light responses (based
on ergs, and excitatory inputs to horizontal cells) (Lohner et al., 2017). From these studies, perturbation of RIM2α impaired synaptic function (i.e., Caᵥ channel function) without an essential role in shaping rod ribbon size or OPL organization. Loss of ribeye may impair the ability of RIM2α to positively impact synaptic function at rods. Whether ribeye influences other AZ scaffolding proteins has not been thoroughly addressed, but it seems unlikely that loss of ribeye would have greatly impacted CAST/ELKs. When deleted individually as was done in the CAST-ko (tom Dieck et al., 2012), or simultaneously in the CAST/ELKs-dko (Hagiwara et al., 2018), the following deficits were reported: dramatic degeneration of the OPL, diminished photopic- and scotopic-erg responses, shortening of rod ribbon length, and a near elimination of rod IᵥCa (Hagiwara et al., 2018). A similarly dramatic phenotype is observed in the bassoon-ko mice, though bassoon deletion more significantly impacts anchoring the ribbon to the AZ (Dick et al., 2003). Unlike ribeye and RIM2α, CAST/ELKs and bassoon are essential for normal development and maintenance of synapses in the OPL.

Our study provides new insight into the biophysics of SV fusion at the mammalian rod ribbon synapse. The results demonstrate that the rod ribbon creates multiple release sites with similar release probability in response to strong stimulations (summarized in Fig. 9). This is driven by Caᵥ channels that activate at ultrafast rates. The coupling between Caᵥ channels and SVs is on a nano-scale, with no sign of heterogeneity in spatial coupling. Instead release heterogeneity arose from alterations in Caᵥ channel facilitation, which was specific to the timing of release onset. These features were dependent on the synaptic ribbon, as ribbonless rods lacked Caᵥ channel facilitation and the RRP was greatly scaled down. Future studies will need to determine the stoichiometry of a release site, starting with how many Caᵥ channels open to trigger a SV(s) to fuse and what mechanisms impact release probability (i.e., PKA). Better insight into these matters will further our understanding of how rods convert depolarizations into synaptic signals, and ultimately how the mammalian rod pathway helps encode object motion and position.
Materials and Methods

Animal handling. Animals were handled in accord with institutional and German national animal care guidelines. The Ribeye knockout (Ribeye-ko) mice that were first described by Maxeiner et al. (2016), were a kind gift from Frank Schmitz and Stefan Maxeiner (University of Saarland). The Ribeye-ko mice have null mutations in both alleles of the Ribeye gene, and were maintained on a C57BL6/J mouse background. Heterozygous males and females (Ribeye\(^{-/-}\)) were bred, and their wild type and Ribeye-ko offspring littermates (male or female), between 3 and 6 months of age, were used for experiments during the daylight phase of the day/night cycle.

Electrophysiology. Retinae were dissected at an ambient temperature of 18-20\(^\circ\)C and then submersed in mouse extracellular solution (MES) with a low Ca\(^{2+}\) concentration that had the following composition (in mM): 135 NaCl, 2.5 KCl, 0.5 CaCl\(_2\), 1 MgCl\(_2\), 10 glucose, 15 HEPES, and pH adjusted to 7.35 with NaOH and an osmolarity of 295 mOsm. Dissected portions of retina were absorbed onto pieces of nitrocellulose membrane mounted onto glass with the vitreal side the retina contacting the membrane. The sclera and pigment epithelium were removed from the exposed surface of retina and then \(~200\ \mu\text{m}\) thick slices were made with a custom built tissue chopper. Immediately after slicing, the retinal sections (attached to the nitrocellulose membrane) were transferred to the recording chamber and arranged to be viewed in vertical cross section to optimize resolution of the OPL. Slices were washed continually with low Ca\(^{2+}\) MES for approximately 5 minutes as they equilibrated to an ambient temperature of 30\(^\circ\) to 32\(^\circ\)C, and then the Ca\(^{2+}\) was increased to 2 mM.

The intra- and extra-cellular recording solutions have been described previously (Grabner et al., 2015; Grabner et al., 2016), and a few modifications as noted here were made to improve the I\(_{\text{Ca}}\) measurements. To further block a delayed rectifier, outward K\(^{+}\)-current (Cia et al., 2005), the concentration of TEA was increased to 20 mM in the intracellular and 35 mM in the extracellular solutions. As previously, Cs\(^{+}\) replaced intracellular K\(^{+}\). Next the glutamate transporter Cl\(^{-}\)-current was previously blocked with a higher concentrations of DL-TBOA, 350 \(\mu\text{M}\) (Grabner et al., 2016), which is a non-selective EEAT blocker. In the current study we used TFB-TBOA (TOCRIS), which is a high affinity blocker for EEAT1-3, at a concentration of 3 \(\mu\text{M}\). It showed better stability over time, and far greater potency than the DL-TBOA (Grabner et al., 2016). The terminals have an I\(_{\text{h}}\) current (Hagiwara et al., 2018) that was blocked by adding 5 mM CsCl to the extracellular solution (Bader et al., 1982). Finally, as a precaution, extracellular HEPES was elevated to 15 mM to block inhibitory
proton feedback onto Ca_v channels (DeVries, 2001). In the end, the extracellular recording solution had the following reagents (mM): 105 NaCl, 2.5 KCl, 35 TEA-Cl, 5 CsCl, 2 CaCl$_2$, 1 MgCl$_2$, 0.003 TFB-TBOA, 15 HEPES, and pH adjusted to 7.35 with NaOH, and a final osmolarity between 290 to 295 mOsm. The intracellular solution with 10 mM EGTA consisted of the following reagents (mM): 105 CsCH$_3$SO$_4$, 20 TEA-Cl, 1 MgCl$_2$, 5 MgATP, 0.2 NaGTP, 10 HEPES, 10 EGTA, pH adjusted to 7.30 with CsOH to an osmolarity of 285 to 290 mOsm. To balance the osmolarity when EGTA was lowered to 0.5 mM, CsCH$_3$SO$_4$ was raised to 112 mM. The calculated liquid junction potentials (E_{lij}) created between the extracellular recording solution and pipette solution were: 8.9 and 9.6 mV, for 10 and 0.5 mM EGTA, respectively (Neher, 1992). The voltage-clamp data presented in the Results section has not been corrected for E_{lij}; thus, the actual applied voltages are shift by ~ -9 to -10 mV from what is stated in the manuscript.

Whole-cell patch-clamp measurements were made with a HEKA EPC-10 amplifier equipped with Patchmaster software (Lambrecht, Pfalz, Germany). The 'sine+dc' lock-in operation mode was used to monitor changes in membrane capacitance, conductance, and series resistance. Whole-cell electrodes were fabricated from thick-wall glass capillary tubes, and their tip region was coated with Sylgard (Dow Corning). Pipette resistance was 9 to 11 MOhms. The cell's voltage was held at -70 mV, to which a 2 kHz sine wave with a 50 mV peak-to-peak amplitude (-95 to -45 mV) was applied. A higher sine wave frequency was used here than in a previous study on mouse rods (Grabner et al., 2015), because here only the axonless, soma-ribbon terminals were patched. The lock-in outputs were sampled at 20 kHz and filtered online with the low-pass f_c set to 2.9 kHz. The I-V$_{step}$ protocols were sampled at 50 kHz and filtered online with the low-pass f_c set to 10 kHz.

Patch-clamp recordings in this study targeted rod soma in the OPL, which contain the ribbon in the soma compartment, referred to as the 'soma-ribbon' configuration (Hagiwara et al., 2018). Immediately before making the on-cell seal, the extracellular solution was exchanged to an MES with 2.0 mM Ca$^{2+}$ and TEA/Cs/TBOA. After gaining whole-cell access, rods were held at a V_m of -70 mV. The cells were infused for 30 to 40 sec before the evoked release protocols began, which entailed a sequence of 5 or 7 depolarizations with stimulations given at 8 sec intervals. The stimulations used to evoke release were given in the order of shortest to longest duration steps: 0.5 to 30 msec, and always stepping from a V_m of -70 mV (rest) to -18 mV (see the Results section for a detailed explanation of the stimulation protocol used to study ΔC_m as a function of step duration.). Evoked release was studied...
within the first 2 minutes, and then I-V protocols were performed afterwards. The passive electrical properties of the soma-ribbon measured in voltage-clamp were on average as follows, \(R_{\text{series}} = 29.7 \pm 0.6 \) M\(\Omega \) and whole-cell capacitance \(C_m \): 1.02 \pm 0.03 pF; yielding a membrane time constant \(\tau_{RC} \sim 30 \) \(\mu \)sec (see Fig. 1C and Supplementary File 1). Recordings were made at an ambient temperature of 30 to 32\(^\circ \)C. Almost all recordings were made within 30 to 45 minutes after slicing, and typically 1 to 2 successful recordings (cells) per mouse.

Data analysis. The evoked \(\Delta C_m \) was assessed as outlined in Figure 2E. Segments of the \(C_m \) trace, 50 msec in length, before and after depolarization were averaged and the difference equaled the evoked \(\Delta C_m \); \(\Delta G_m \) and \(\Delta G \) were calculated in the same way. Since \(G_m \) is influenced by \(Cl^- \)-currents arising from \(Ca^{2+} \)-activated TMEM16A/B channels and the glutamate transporter, the following precautions were taken. For experiments with 0.5 mM EGTA in the intracellular solution, the post-depolarization segment was averaged after \(I_{Cl(Ca)} \) relaxed, 75 msec after the end of the stimulation. Next, TFB-TBOA was used to block the glutamate transporter tail-currents (concentration described above). Finally, lock-in amplifier outputs were monitored between depolarization episodes, and this was done by taking 100 msec sine wave sweeps (Fig. 2A), and the difference between 10 msec windows averaged at the start (time point: 5 to 15 msec) and end (t: 85 to 95 msec) of the 100 msec sweeps were treated as baseline/between stimulation \(\Delta \) values (see Fig. 2E).

The \(I_{Ca} \) amplitude and activation time constant were determined by fitting the onset of the inward membrane current with a single exponential. When 0.5 or 10 mM EGTA was used, fits started after a 200 to 300 \(\mu \)sec delay from the start of \(V_{\text{step}} \), and the fit ended approximately 3 msec later (see Fig. 3A). The exception was when 0.5 mM EGTA was used and \(V_{\text{step}} \)'s were made more positive than \(-20\) mV, which accelerated \(I_{Cl(Ca)} \) onset (Fig. 4B). This left 1 to 2 msec to fit peak-\(I_{Ca} \) when \(V_{\text{step}} \) was \(-10\) to \(+30\) mV. The calculated \(E_{Cl} \) is \(-51\) mV, and after adding the \(E_{lj} \) (9.6 mV) the \(E_Cj \) is \(-41\) mV. Finally, the I-V relationships were fitted with a Boltzmann equation: \(I=I_{\text{max}}^*(I_{\text{min}}-I_{\text{max}})/(1+\exp((V_m-V_{1/2})/k)) \) from a \(V_{\text{step}} \) \(-60\) mV to the \(V_{\text{step}} \) corresponding to max \(I_{Ca} \) (typically \(-10\) mV). In addition, a modified form of the Boltzmann equation: \(I=G_{\text{max}}^*(V_m-V_{rev})/(1+\exp(-(V_m-V_{1/2})/k)) \), was used to fit the entire range \(V_{\text{step}} \)'s. Notations are as follows: \(I \) is the peak current, \(V_m \) is the membrane voltage, \(V_{1/2} \) is the voltage for half activation, \(V_{\text{rev}} \) is the reversal potential, \(G_{\text{max}} \) is the maximal conductance, and \(k \) is the slope factor. Fitting and statistical analysis were performed with Origin software (OriginLab Corporation). All experimental values are given as mean \pm SE. All p-values were calculated with the un-paired Student t-test.
ERG recordings

Mice were dark adapted overnight. They were anesthetized with an intraperitoneal injection of ketamine (0.125 mg/g) and xylazine (2.5 µg/g), and pupils dilated with 1% atropine sulfate. A AgCl wire ring-electrode was placed on the cornea, and electrical contact was made with a NaCl saline solution, plus methylcellulose to maintain moisture. A needle reference electrode was inserted subcutaneously above the nose, and a ground electrode was inserted near the tail. A custom-designed Ganzfield illuminator with 25 white LEDs was used to deliver 0.1 msec light flashes every 5 sec, which were incrementally increased in intensity from 0.0003 to 0.278 cds/m² (calibrated with a Mavolux, IPL 10530). Recorded potentials were amplified, low-pass filtered at 8 kHz, and sampled at a rate of 24 kHz. Ten responses were averaged per light intensity. The ergs were low-pass filtered using a FFT set to a corner-frequency of 400 Hz or 20 Hz for measurement of a- or b-wave parameters, respectively. All analysis were performed with Origin software (OriginLab Corporation).

Converting ΔCₘ into the number of fusing vesicles. To calculate the capacitance per vesicle we relied on published data. Single SV fusion events measured from mouse inner hair cells have an average Cₘ: 40.2 aF and SV diameter of 36.9 nm (Grabner and Moser, 2018). The average SV diameter, measured in mouse rod terminals, was taken from multiple published studies and yielded a diameter of 34.6 nm (32.4 nm, Spiwoks-Becker et al., 2001; 37.3 nm, Fuchs et al., 2014; 32.5 nm, Grabner et al., 2015; 36 nm, Hirano et al., 2020). The calculated Cₘ per mouse rod SV is 37.6 aF.

activity, associates with a presynaptic protein complex in photoreceptor terminals. The

vesicles contributes to linearity at the rod photoreceptor ribbon synapse. Neuron 42:595-605.

tom Dieck S, Specht D, Strenzke N, Hida Y, Krishnamoorthy V, Schmidt KF, Inoue E, Ishizaki H, Tanaka-
Okamoto M, Miyoshi J, Hagiwara A, Brandstatter JH, Lowel S, Gollisch T, Ohtsuka T, Moser T
(2012) Deletion of the presynaptic scaffold CAST reduces active zone size in rod
photoreceptors and impairs visual processing. The Journal of neuroscience : the official
journal of the Society for Neuroscience 32:12192-12203.

Tsukamoto Y, Omi N (2016) ON Bipolar Cells in Macaque Retina: Type-Specific Synaptic Connectivity
with Special Reference to OFF Counterparts. Frontiers in neuroanatomy 10:104.

Van Hook MJ, Thoreson WB (2015) Weak endogenous Ca2+ buffering supports sustained synaptic
transmission by distinct mechanisms in rod and cone photoreceptors in salamander retina.
Physiological reports 3.

neuroscience 15:809-821.

presynaptic cells. The Journal of neuroscience : the official journal of the Society for
Neuroscience 23:2538-2548.
Acknowledgements.

General: We would like to thank Stefan Thom for excellent technical assistance with the erg recordings. We thank Drs. Erwin Neher and Jakob Neef for critical feedback on the manuscript.

Funding: This work was supported by the Max-Planck-Society (Max-Planck-Fellowship to T.M.) and the following funding from the Deutsche Forschungsgemeinschaft (DFG): Leibniz Award (T.M.); Multiscale Bioimaging Cluster of Excellence, ExC 2067 (T.M.); CRC 1286, project C08 (T.M.).

Competing interests: none

Figures

Figure 1. Example recording from a rod photoreceptor that lacks an axon.

(A) Image of a retinal slice centered on photoreceptor terminals in the outer plexiform layer (OPL) and somata in the outer nuclear layer (ONL). The inset shows a zoomed in view of an axonless rod with a synaptic ribbon in the soma compartment, SVs and rod bipolar cell dendrite drawn into the image for reference.

(B) Illustration of the major components of the rod ribbon synapse. The two images are rotated by 90º relative to the plane of the ribbon. Legend: ribbon (orange), active zone (thick red line), arciform density (green diamond), ribbon flanked by synaptic ridges (thick black lines), horizontal cells (HC, in blue), and rod bipolar cell dendrite (yellow) with mGluR6 receptors (red).

(C) The membrane current (I_m) transient measured from a rod soma-ribbon in response to a brief hyperpolarizing voltage step. Current trace taken prior to compensating whole-cell membrane capacitance (C_m)

(D) Series of Ca^{2+}-currents measured from an individual rod in response to voltage steps for the indicated durations. See Figure 2 for the corresponding evoked release from this rod.

Figure 2. Resolution and analysis of evoked ΔC_m.

(A) The I_m presented at the top of the figure is dominated by the sine-wave voltage protocol used to derive the lock-in amplifier outputs: C_m, G_m and G_s. The protocol consisted of a series of 100 msec sine-wave segments presented in gray, which bracket the stimulation segment depicted in black (arrow points to 9 msec depolarizing voltage step). The I_{Ca} traces for this cell are presented in Figure 1C.

(B) A series of consecutive step depolarizations for the indicated durations are presented at a lower resolution. The approach used to bin the data in A and create the plot in B are illustrated schematically. The G_m and G_s data points filled in black mark the stimulation...
segments. The dashed, downward pointing arrow following the 3 msec stimulation highlights an unusually large endocytotic step (see text).

(C and D) Plots the individual C_m traces for each evoked response. Traces in D were low-pass filtered to a corner frequency (f_c) of 20 Hz, and in C a f_c of 200 Hz was used.

(E) Illustrates how ΔC_m was quantified over both baseline (between stimulation) and stimulation segments (see Methods).

(F) Chronological plot of ΔC_m during baseline and stimulation segments.

(G) Summary plot with two y-axes: 'ΔC_m' and 'equivalent number of SVs', versus step duration (x-axis). The conversion factor for calculating the number of SVs is presented within the figure (see Methods for details).

Figure 3. Voltage-dependence of Ca$^{2+}$-currents.

(A) Presents a subset of individual I_{Ca} traces taken from a rod filled with 10 mM EGTA. The 10 msec voltage steps were delivered in descending order from +30 to −80 mV at −10 mV increments, every 3 s.

(B) Zoomed in view of I_{Ca} activation. Start of the V_{step} is indicated with the vertical solid line, and the onset of I_{Ca} is indicated with a vertical dashed line. An exponential function was used to fit (red lines) each I_{Ca} trace from which $\tau_{activation}$ and peak-I_{Ca} were ascertained.

(C) Overlay of tail currents from A.

(D) Averaged peak-I_{Ca} versus V_{step} fit with a modified Boltzmann I-V equation ($V_{1/2}$: −24.0 ± 1.3, slope (dx): −6.2 ± 0.6 mV/e, V_{rev}: +44.6 ± 2.6 mV, and G_{max}: 0.30 ± 0.02 pA-mV$^{-1}$; 9 cells; see Supplementary File 2 and 3).

(E) Normalized I_{Ca}-tail plotted over V_{step} (4 cells).

(F and G) Overlay of average membrane currents in response to voltage steps from −70 to −18 mV for the indicated durations (averages from 7 to 13 cells). The I_{Ca} associated with the 200 msec step depolarizations (7 cells) were fit as a single exponential decay ($\tau_{inactivation}$). (G) Zoomed in view of the shorter duration voltage steps highlights the rapid return of I_{Ca} to baseline (subsequent to the transient I_{Ca}-tail).

Figure 4. Lowering intracellular Ca$^{2+}$-buffering accelerated Ca\textsubscript{v} channel activation kinetics

(A and B) With 0.5 mM EGTA in the pipette, an outward current developed during the V_{step} (designated as $I_{Cl(Ca)}$), which became an inward current upon repolarization ($I_{Cl(Ca)}$-tails). (B) Expanded view of the activation portion of the current traces from A. Traces from 8 cells were averaged; depolarization protocol described in Fig. 3A.
(C) Overlay of average peak-I_{Ca} plotted over V_{step} made from experiments with an intracellular concentration of either 0.5 (8 cells) or 10 mM EGTA (also presented in Ai(ii)).

(D) Average $I_{\text{Cl(Ca)}}$-tails versus V_{step} (6 cells). Boltzmann I-V fit (blue trace): $V_{1/2}$: -20.4 ± 0.5, slope (dx): -5.6 ± 1 mV/e, V_{rev}: $+35.8 \pm 3.8$ mV and G_{max}: 1.41 ± 0.44 pA-mV$^{-1}$ (6 cells; see Supplementary File 4).

(E) Normalized average $I_{\text{Cl(Ca)}}$ and peak-I_{Ca} (from 0.5 EGTA data in C and D) plotted over V_{step} (error bars excluded).

(F) Plot of $\tau_{\text{activation}}$ versus V_{step} with an intracellular concentration of either 0.5 or 10 mM EGTA (*: $p \leq 0.006$; see Supplementary File 2).

Figure 5. Ultrafast depletion of the RRP of SVs.

(A) Average ΔC_m measured from rods filled with 10 mM EGTA and stimulated with a V_{step} to -18 mV for durations from 0.5 to 30 msec. Single exponential fits to points from 0.5 - 9 msec (red curve), and from 0.5 - 30 msec (dotted curve). Stimulations were delivered in ascending order, and only a single cycle per cell.

(B) Comparison of ΔC_m derived from experiments with 0.5 or 10 mM EGTA in the pipette; voltage step durations: 0.5 to 30 msec.

(C) Highlights the more rapid ΔC_m at the singular time point of 0.5 msec when rods were loaded with 0.5 mM EGTA (*, p: 0.0016; 6 and 8 cells for 0.5 and 10 mM EGTA, respectively).

(D) Summary of lock-in amplifier traces recorded during 0.5 msec step depolarizations with either 0.5 or 10 mM EGTA in the pipette (6 and 8 cells, respectively). Dashed C_m traces represent an overlay of individual recordings (cells; each a different color), and the C_m trace presented in bold font represents the average response. Only an overlay of the average responses in low and high EGTA are presented for G_m and G_s with the blue traces corresponding to 0.5 mM EGTA and black traces corresponding to 10 mM EGTA.

Figure 6. I_{Ca} facilitation expedites depletion of the RRP.

(A and B) Overlay of average I_{Ca} traces in response to step durations of 0.5, 1 and 3 msec (*; sign. diff, p: 0.008). Vertical dashed lines indicate moment of repolarization.

(C) Comparison of average peak-I_{Ca} derived from high and low intracellular EGTA. Only voltage steps for 0.5 msec were statistically different when comparing different EGTA levels (p: 0.008; see text). The 0.5 and 1 msec steps were dominated by their tail-currents, which is why their amplitudes varied from step durations ≥ 3 msec.
Plot of ΔC_m over Q_{Ca}. All data points from experiments with 0.5 and 10 mM EGTA were treated as one group and fit with a single exponential equation (red curve) to estimate the size of the RRP (ΔC_m amplitude) and the amount of Q_{Ca} needed to release 63% (~1/e) of the RRP.

The ΔC_m and Q_{Ca} produced with 0.5 and 1 msec steps. * indicates a significant difference for Q_{Ca} between 0.5 mM vs. 10 mM EGTA; p: 0.04, and 6 and 9 cells, respectively.

Plot of ΔC_m over peak-I_{Ca} for step durations: 0.5 to 30 msec (dashed lines partition data points by step duration). * indicates significant difference which are described in Figure 5C (C) and 6C (I_{Ca}).

Figure 7. Ribbonless rods lack Ca_v channel facilitation and form a small RRP of SVs.

(A) Average ΔC_m measured from ribbonless rods filled with 10 mM EGTA and stimulated with a V_{step} to -18 mV for durations from 0.5 to 30 msec. Single exponential fit to points from 0.5 - 30 msec (red line). Wild type results are presented for comparison (see Fig. 5A).

For details on stimulations, see Figure 5A.

(B) Comparison of all ΔC_m responses that were evoked with 1 and 3 msec steps, with either 0.5 or 10 mM EGTA in the pipette, and for wt and ko rods. All ko responses were significantly smaller than wt values, see text.

(C) The peak-I_{Ca} plotted over V_{step}. Ribbonless rods had significantly smaller peak-I_{Ca} at the indicated V_{step} values (*, p-values < 0.05), with comparisons made between wt vs. ko rods for 0.5 mM EGTA (blue dashed line) and 10 mM EGTA (black dashed line). See Fig. 3A for a description of voltage step protocols and analysis.

(D) I_{Ca} activation kinetics were significantly slower for wt rods filled with 10 mM EGTA (* indicates sig. diff.; see Supplementary File 2).

(E and F) Average I_{Ca} traces measured from rods filled with 10 mM EGTA illustrates the significant differences in peak-I_{Ca} at the onset of depolarization (*; p < 0.004 and 0.03 for 1 and 3 msec steps; n: 13 wt and 7 ko cells). See Supplementary File 3 for related results with 10 msec steps.

(F) wt rods showed a faster rate of I_{Ca} inactivation than ko rods. At the end of the 30 msec steps the I_{Ca} were no longer significantly different (nd; p > 0.3); whereas, at the onset they were different (*; p < 0.008; n: 8 wt and 7 ko). See Supplementary File 3 for results from 10 msec steps.

(G) Summary of average peak-I_{Ca} measured from wt and ko rods filled with 10 mM EGTA. The 1 msec steps were essentially tail-currents, and therefore larger in amplitude than peak-I_{Ca} measured from step durations \geq 3 msec. Only the 9 msec steps did not show a significant difference between wt and ko.

(H and I) Comparison of I_{Ca} recorded with 0.5 mM EGTA in the pipette. Averaged traces presented in H. In I, statistical comparisons show no difference in I_{Ca} amplitudes resulting
from 1 msec steps (nd; p: 0.13; 9 and 11 cells each), while the 3 msec steps were significantly larger for wt (*, p: 0.05; 9 and 12 cells each).

(J and K) ΔC_m in response to 1 and 3 msec steps plotted over peak-I_Ca in J, and over Q_Ca in K. Dashed lines partition data points by step duration. See text for discussion.

Figure 8. Rod driven light responses are depressed in Ribeye-ko mice.

(A) Scotopic-ergs recorded from a dark-adapted wt animal. Light flash intensities are indicated in the graph. The arrow marks the moment of the 0.1 msec light flash. Responses are presented at full band-width, without offline filtering.

(B) Scotopic-ergs recorded from a dark-adapted Ribeye-ko animal.

(C) Summary of erg a-wave amplitudes plotted over the range of light flash intensities shows no significant difference between wt and ko mice (4 ko and 3 wt mice).

(D) Summary of dark-adapted erg b-waves measured from wt and ko mice shows a significant difference in responses at all flash intensities (*, p < 0.04; 4 ko and 3 wt mice), except at the weakest intensity tested.

(E) The a-wave time-to-peak values were not significantly different when comparing genotypes (4 ko and 3 wt mice).

(F) The b-wave time-to-peak values were similar, except the ko responses were significantly slower at the highest flash intensity (*, p: 0.034; 4 ko and 3 wt mice).

(G) The a-wave rate-of-rise values were not significantly different. Average responses in C-G were attained from 4 ko and 3 wt mice.

(H) The wt b-wave rate-of-rise was significantly greater than ko mice across the full range of flash intensities (*; p-values: 0.04 to 0.009; 4 ko and 3 wt mice).

Figure 9. Summary cartoon of a wt rod AZ (A), and (B) a ribbonless rod AZ that contains fewer docked SVs about the AZ. Legend: ribbon (orange), active zone (thick red line), arciform density (green diamond), ribbon flanked by synaptic ridges (thick black lines), horizontal cells (HC, in blue), and rod bipolar cell dendrite (yellow) with mGluR6 receptors (red).

Supplemental Figures

Figure 1-figure supplement 1.

(A) Average I_{Cl(Ca)}-tails versus V_step. Significant difference indicated by dashed line (*; p < 0.05; 5 ko and 6 wt cells). For Boltzmann I-V fits, see Supplementary File 4.
(B) Normalized average $I_{Cl(Ca)}$-tails and peak-I_{Ca} plotted over V_{step} for wt and ko rods (error bars excluded).
A. Rod soma

B. Diagram showing the rod bipolar cell and somata

C. Graph showing the time constant (τ) of 25 µs

D. Graph showing the membrane potential (V_m) and current (I_m) over time
A 100ms sine wave segments

stimulation segment

I_m

100 pA

C_m

1 fF

G_m

5 pS

G_s

5 pS

B

1025

C_m (fF)

1020

3 ms 15 ms 30 ms

stimulation
duration

1025

G_m (nS)

26.5

26

G_s (nS)

8 s

C

\[\Delta C_m = \chi_b - \chi_a \]

D

E

baseline segments

\[\chi_a \]

\[\chi_b \]

\[V_m \]

-18 mV

-70 mV

stimulation
duration

3 ms 9 ms 15 ms 30 ms

F

\[\Delta C_m \] (fF)

G

equivalent number of SVs

step duration (ms)
\[\Delta C_m (fF) \]

\[\tau = 382 \, \mu s \quad A = 3.43 \, fF \]

\[\tau = 348 \, \mu s \quad A = 3.27 \, fF \]

\[0.5 \text{ mM EGTA} \]

\[10 \text{ mM EGTA} \]

\[\Delta C_m (fF) \]

\[\text{step duration (ms)} \]

\[0 \]

\[1 \]

\[2 \]

\[3 \]

\[4 \]

\[5 \]

\[0 \text{ mM EGTAG} \]

\[0.5 \text{ mM EGTA} \]

\[\text{step duration (ms)} \]

\[0 \]

\[1 \]

\[2 \]

\[3 \]

\[4 \]

\[5 \]

\[\tau = 348 \, \mu s \quad A = 3.27 \, fF \]

\[\tau = 382 \, \mu s \quad A = 3.43 \, fF \]

\[\text{V}_m = -70 \text{ mV} \]

\[0.5 \text{ ms step} \]

\[\text{C}_m = 2 \, fF \]

\[\text{G}_m = 10 \, pS \]

\[\text{G}_S = 50 \, pS \]

\[\text{step duration (ms)} \]

\[0 \]

\[1 \]

\[2 \]

\[3 \]

\[4 \]

\[5 \]
A wild type

B ~ 75% reduction in RRP

ribbonless
A)

Tail-current (pA) vs. membrane voltage (mV) for Cl- and Ca channels.

B)

Normalized current vs. membrane voltage (mV) for wild-type (wt) and knockout (ko) Cl-tail and Ca channels.

0.5 mM EGTA