
Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 1 of 32

Automated annotation of birdsong
with a neural network that
segments spectrograms
Yarden Cohen1*†, David Aaron Nicholson2†, Alexa Sanchioni3‡, Emily K Mallaber3‡,
Viktoriya Skidanova3‡, Timothy J Gardner4*

1Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel;
2Biology department, Emory University, Atlanta, United States; 3Biology department,
Boston University, Boston, United States; 4Phil and Penny Knight Campus for
Accelerating Scientific Impact, University of Oregon, Eugene, United States

Abstract Songbirds provide a powerful model system for studying sensory-motor learning.
However, many analyses of birdsong require time-consuming, manual annotation of its elements,
called syllables. Automated methods for annotation have been proposed, but these methods
assume that audio can be cleanly segmented into syllables, or they require carefully tuning multiple
statistical models. Here, we present TweetyNet: a single neural network model that learns how to
segment spectrograms of birdsong into annotated syllables. We show that TweetyNet mitigates
limitations of methods that rely on segmented audio. We also show that TweetyNet performs well
across multiple individuals from two species of songbirds, Bengalese finches and canaries. Lastly,
we demonstrate that using TweetyNet we can accurately annotate very large datasets containing
multiple days of song, and that these predicted annotations replicate key findings from behav-
ioral studies. In addition, we provide open-source software to assist other researchers, and a large
dataset of annotated canary song that can serve as a benchmark. We conclude that TweetyNet
makes it possible to address a wide range of new questions about birdsong.

Editor's evaluation
Animals create an enormous diversity of sounds. To study the neural basis or behavioral logic of
animal communication, it is first necessary to categorize sounds into distinct types. Here, the authors
create a novel neural network that includes an LSTM to enable automated annotation of massive
birdsong datasets. This widely usable method will have a big impact in the birdsong field and,
more generally, will provide an ascendant generation of scientists with yet another example of how
machine learning methods are revolutionizing the rigorous study of animal behavior.

Introduction
Songbirds are an excellent model system for investigating sensory-motor learning and production
of sequential behavior. Birdsong is a culturally transmitted behavior learned by imitation (Mooney,
2009). Juveniles typically learn song from a tutor, like babies learning to talk. Their songs consist of
vocal gestures executed in sequence (Fee and Scharff, 2010). In this and many other ways, birdsong
resembles speech (Brainard and Doupe, 2002). A key advantage of songbirds as a model system is
that birds sing spontaneously, producing hundreds of song bouts a day. Their natural behavior yields
a detailed readout of how learned vocalizations are acquired during development and maintained
in adulthood. Leveraging this amount of data requires methods for high-throughput automated

TOOLS AND RESOURCES

*For correspondence:
yarden.j.cohen@weizmann.ac.​
il (YC);
timg@uoregon.edu (TJG)
†These authors contributed
equally to this work
‡These authors also contributed
equally to this work

Competing interest: The authors
declare that no competing
interests exist.

Funding: See page 27

Preprinted: 28 August 2020
Received: 09 October 2020
Accepted: 19 January 2022
Published: 20 January 2022

Reviewing Editor: Jesse H
Goldberg, Cornell University,
United States

‍ ‍ Copyright Cohen et al. This
article is distributed under the
terms of the Creative Commons
Attribution License, which
permits unrestricted use and
redistribution provided that the
original author and source are
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.63853
mailto:yarden.j.cohen@weizmann.ac.il
mailto:yarden.j.cohen@weizmann.ac.il
mailto:timg@uoregon.edu
https://doi.org/10.1101/2020.08.28.272088
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 2 of 32

analyses. For example, automated methods for measuring similarity of juvenile and tutor song across
development (Tchernichovski et al., 2000; Mets and Brainard, 2018a) led to important advances
in understanding the behavioral and genetic bases of how vocalizations are learned (Tchernichovski
et al., 2001; Mets and Brainard, 2018b; Mets and Brainard, 2019). However, similarly scaling up
other analyses of vocal behavior is currently hindered by a lack of automated methods.

A major roadblock to scaling up many analyses is that they require researchers to annotate song.
Annotation is a time-consuming process done by hand with graphical user interface (GUI) applica-
tions, for example Praat, Audacity, Chipper (Boersma and Weenink, 2021; Audacity Team, 2019;
Searfoss et al., 2020). To annotate birdsong, researchers follow a two-step process (Thompson et al.,
2012; Kershenbaum et al., 2016). First, they segment song into units, often called syllables, and
second, they assign each syllable a label. Labels correspond to a set of discrete syllable classes that
a researcher defines for each individual bird. Many models and analyses rely on song annotated at
the syllable level, including: statistical models of syntax (Markowitz et al., 2013; Jin et al., 2011;

thr.

correct over segmented under segmented

5
kH

z

B

A

orig.

100 ms

est.

Bengalese Finches

Canaries

am
p.

thr.

segment

label
i a b c d e e f

b b b c c c c c c c c c c c c c c c c ca a a a a

Figure 1. Manual annotation of birdsong. (A) Schematic of the standard two-step process for annotating song by
hand (e.g. with a GUI application). Top axes show a spectrogram generated from a brief clip of Bengalese finch
song, with different syllable types. Middle and bottom axes show the steps of annotation: first, segments are
extracted from song by setting a threshold (’thr.’, dashed horizontal line, bottom axes) on the amplitude and then
finding continuous periods above that threshold (colored regions of amplitude trace, bottom axes). This produces
segments (colored bars, middle axes) that an expert human annotator manually labels (characters above colored
bars), assigning each segment to one of the syllable classes that the annotator defines for each individual bird. (B)
Examples showing how the standard approach of segmenting with a fixed amplitude threshold does not work well
for canary song. Above threshold amplitudes are plotted as thicker colored lines. For a fixed threshold (dotted line,
bottom axes), syllables of type ’b’ are correctly segmented, but syllables of type 'a' are incorrectly segmented into
two components, and syllables of type 'c' are not segmented.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Example of two consecutive canary phrases that differ mostly in inter-syllable gaps.

Figure supplement 2. Comparison of descriptive statistics of birdsong syllables across species.

https://doi.org/10.7554/eLife.63853

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 3 of 32

Berwick et al., 2011; Hedley, 2016); computational models of motor learning (Sober and Brainard,
2009; Sober and Brainard, 2012); and analyses that relate both acoustic features and sequencing of
syllables to neural activity (Leonardo and Fee, 2005; Sober et al., 2008; Wohlgemuth et al., 2010).
As these examples demonstrate, our ability to leverage songbirds as a model system would be greatly
increased if we could automate song annotation.

Many previously proposed methods for automating annotation follow the same two-step process
used when annotating manually. We describe the process in more detail, as illustrated in Figure 1A,
to make it clear how limitations can arise when automating these two steps. First, audio is segmented
into syllables by applying a widely-used simple algorithm. Basically, the algorithm consists of setting
a threshold on amplitude and finding each uninterrupted series of time points above that threshold.
After segmentation, manual annotation proceeds with a researcher assigning labels to syllables (letters
[’i’, ’a’, ’b’,…] in Figure 1A). We emphasize that each individual bird will have a unique song, even
though songs are recognizably similar within a species, and that a researcher chooses an arbitrary set
of labels for each individual’s repertoire of syllables. This means that any automated method must be
capable of reliably classifying these arbitrary classes across individuals and species.

Previous attempts to automate the annotation of birdsong kept the segmentation and labeling
steps separate, and therefore suffered from limitations in each step. Methods such as semi-automatic
clustering (Burkett et al., 2015; Daou et al., 2012), and supervised machine learning algorithms
(Troyer lab, 2012; Tachibana et al., 2014; Nicholson, 2016), can fail when the song of a species is
not reliably segmented using the standard algorithm just described. We illustrate this in Figure 1B
with examples of song from canaries. One reason the standard algorithm does not work is that the
amplitude of canary song varies so greatly that no single threshold reliably segments all syllables. Even
for species where good segmenting parameters can be found, a given individual’s song will often
have one or two syllable classes that require an annotator to clean up its onsets and offsets by hand.
Furthermore, other sounds in the environment, such as beak clicks and movement noise, are inevi-
tably segmented as if they were syllables. Machine learning models operating on segmented audio
will happily assign these segments a syllable class, resulting in false positives. Various other statistical
methods can be used to remove these false positives, such as outlier detection algorithms. In combi-
nation with such methods, supervised machine learning models have been used to successfully anno-
tate large-scale behavioral experiments (e.g. Veit et al., 2021). But these additional clean-up steps
add complexity and require the researcher to perform further tuning and validation.

Automated annotation methods may also face limitations at the step of labeling segments. Many
machine learning models make use of pre-defined, engineered features, that may not reliably discrim-
inate different classes of syllables across individual birds or species. Likewise, features extracted from
single syllables do not capture temporal dependencies, that if taken into account can improve the
classification accuracy (Anderson et al., 1996; Kogan and Margoliash, 1998; Nicholson, 2016). (An
example where temporal features are needed is shown in Figure 1—figure supplement 1.) This issue
with models that do not leverage temporal information becomes particularly important for species
whose song has more variable sequencing (see Figure 1—figure supplement 2), like the Bengalese
finch and canary song we study here. Such issues likely account for why there is no prior work on
algorithms for automated annotation of canary song at the syllable level. Canaries have provided
unique insights into neuronal regeneration, seasonality, interhemispheric coordination, hormones,
and behavior (Goldman and Nottebohm, 1983; Nottebohm, 1981; Suthers et al., 2012; Wilbrecht
and Kirn, 2004; Alvarez-Buylla et al., 1990; Gardner et al., 2005). In spite of this, canary song with
its rich syllable repertoire and complex song syntax (Markowitz et al., 2013; Alonso et al., 2009;
Appeltants et al., 2005; Alliende et al., 2013) remains understudied, as does the similarly complex
song of many other species.

Given the limitations faced by existing methods, we sought to develop an algorithm for automated
annotation of syllables that (1) does not require cleanly segmented audio when predicting labels, (2)
only requires training a single model, and (3) does not rely on hand-engineered features. To meet
these criteria, we developed a deep neural network that we call TweetyNet, shown in Figure 2. Deep
neural network models have the potential to address our criteria, because they can learn features
from the training data itself, and they can be designed to map directly from spectrograms of song
to predicted annotations, eliminating the need to segment audio. Below we test whether TweetyNet
meets our criteria. To do so, we benchmark TweetyNet on Bengalese finch and canary song. We

https://doi.org/10.7554/eLife.63853

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 4 of 32

demonstrate that TweetyNet achieves robust performance across species and individuals, whose song
can vary widely even within a species, and across many bouts of song from one individual, i.e., across
days of song. Using large datasets from actual behavioral experiments, we show that automated
annotations produced by TweetyNet replicate key findings about the syntax of song in both species.

Proposed model
First we describe our approach in enough detail to provide context. As shown in Figure 2, a Twee-
tyNet model takes as input a window from a spectrogram of song, and produces as output a label
for each time bin of that spectrogram window. Because it labels each time bin in a spectrogram,
TweetyNet does not require segmented audio to predict annotations. In order to recover segments
from the network output, we add a ‘background’ class to the set of syllable labels (indicated as ‘Bg.’
in Figure 2A). This class includes the brief quiet intervals between syllables, as well as noises, such as

H
id

de
n

st
at

e

Time

FBRecurrent layer
 (LSTM)

* {
{

Projection

2D conv.

(filters)

Max Pooling

M
ax

.
fil

te
r v

al
ue

s

(weights) (argmax)

syllable
prob. at
time bin ‘t’

X =

Time

Input

Output

A

Time

Fr
eq

.

Time

Sy
lla

bl
e

cla
ss

es

Spectrogram window

25

2

27

majority
vote

minimum
duration

labeled time bins

argmax

segmented syllables

XXXX XXXX

Time

Post processing
O

utput
Input

TweetyNet

B

Convolutional
block

25 25 25 27 272 2 22 2

Figure 2. TweetyNet operation and architecture. (A) TweetyNet takes as input a window from a spectrogram, and produces as output an estimate of the
probability that each time bin in the spectrogram window belongs to a class ‍c‍ from the set of predefined syllable classes ‍C‍. This output is processed
to generate the labeled segments that annotations are composed of: (1) We apply the argmax operation to assign each time bin the class with the
highest probability. (2) We use the ‘background’ class we add during training (indicated as ‘Bg.’) to find continuous segments of syllable class labels. (3)
We post-process these segments, first discarding any segment shorter than a minimum duration (dashed circle on right side) and then taking a majority
vote to assign each segment a single label (dashed circles on left side). (B) TweetyNet maps inputs to outputs through a series of operations: (1) The
convolutional blocks produce a set of feature maps by convolving (asterisk) their input and a set of learned filters (greyscale boxes). A max-pooling
operation downsamples the feature maps in the frequency dimension. (2) The recurrent layer, designed to capture temporal dependencies, is made
up of Long Short Term Memory (LSTM) units. We use a bidrectional LSTM that operates on the input sequence in both the forward (F) and backward
(B) directions to produce a hidden state for each time step, modulated by learned weights in the LSTM units. (3) The hidden states are projected onto
the different syllable classes by a final linear transformation, resulting in a vector of class probabilities for each time bin ‍t‍. For further details, please see
section ‘Neural network architecture’ in Materials and methods.

https://doi.org/10.7554/eLife.63853

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 5 of 32

beak clicks, wing flaps, and non-song calls. When predicting annotations for new data, we use these
time bins classified as ‘background’ to find segmented syllables in the network’s output.

Neural network architecture
The neural network architecture we developed is most closely related to those designed for event
detection, as studied with audio (Böck and Schedl, 2012; Parascandolo et al., 2016) or video (Lea
et al., 2017) data, where the task is to map a time series to a sequence of segments belonging to
different event classes. Like those previous works, TweetyNet’s architecture combines two structural
elements commonly found in neural networks, as shown in Figure 2B. The first element is a convolu-
tional block, used in computer vision tasks to learn features from images (Goodfellow et al., 2016;
Farabet et al., 2013; Krizhevsky et al., 2012). (The term ‘block’ refers to a group of operations.)
The second element is a recurrent layer, often used to predict sequences (Graves, 2012). Specifically,
we use a bidirectional Long Short-Term Memory (LSTM) layer that has been shown to successfully
learn temporal correlations present in speech (Graves, 2012), music, and acoustic scenes (Böck and
Schedl, 2012; Parascandolo et al., 2016). Importantly, we maximized the information available to
the recurrent layer by choosing parameters for the pooling operation in the convolutional blocks
that did not downsample in the temporal dimension. We made this choice based on previous work
on automatic speech recognition (Sainath et al., 2013a; Sainath et al., 2013b). Please see section
‘Neural network architecture’ in Materials and methods for a more detailed description of the network
architecture, parameters, and citations of relevant literature that motivated our design choices.

Post-processing neural network output and converting it to annotations
In the results below, we show that we significantly reduce error by post-processing network outputs
with two simple transformations. So that these results are clear, we now describe how we convert
outputs to annotation, including post-processing. For each window from a spectrogram, the network
outputs a matrix with shape (‍c‍ classes ‍× t‍ time bins) (ignoring the batch dimension). Values along
dimension ‍c‍ are the probabilities that the network assigns to each class label. Along that dimension,
we apply the ‍arg max‍ operation (‘argmax’ in Figure 2A) to produce a vector of length ‍t‍, where the
value in each time bin is the class label that the network estimated had the highest probability of
occurring in that time bin. We recover segments from this vector by finding all uninterrupted runs of
syllable labels that are bordered by bins labeled with the ‘background’ class. We consider each of
these continuous runs of syllable labels to be a segment.

To clean up these segments, we apply two transformations (‘Post processing’ in Figure 2A). First,
we remove any segment shorter than a minimum duration, specified by a user. Second, we then take
a ‘majority vote’ by counting how many times each label is assigned to any time bin in a segment,
and then assigning the most frequently occurring label to all time bins in the segment, overriding any
others. To annotate an entire spectrogram corresponding to one bout of song, we feed consecutive
windows from the spectrogram into a trained network, concatenate the output vectors of labeled time-
bins, and then apply the post-processing. Finally we convert the onset and offset of each predicted
segment back to seconds, using the times associated with each bin in the spectrogram, and we
convert the segment’s integer class label back to the character label assigned by human annotators.

Using the method just described, a single TweetyNet model trained end-to-end can successfully
annotate entire bouts of song at the syllable level. We are aware of only one previous study that takes
a similar approach, from Koumura, 2016. That study evaluated pipelines combining a convolutional
neural network for classifying spectrogram windows with additional models that learn to correctly
predict sequences of labels (e.g. Hidden Markov Models). In contrast, TweetyNet is a single neural
network trained end-to-end, meaning it does not require optimizing multiple models. That previous
study also focused on annotating specific sequences of interest within a song. Here, our goal is to
annotate entire song bouts, not specific sequences, so as to automate the process as much as possible.

Results
We assess performance of TweetyNet in two ways. First, we benchmark TweetyNet as a machine
learning model, adopting good practices from that literature. We use a metric that we call the syllable
error rate, by analogy with the word error rate, the standard metric for automatic speech recognition.

https://doi.org/10.7554/eLife.63853

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 6 of 32

It is an edit distance, meaning its magnitude increases with the number of edits (insertions, deletions,
and substitutions) required to ‘correct’ the predicted sequence of labels so that it matches the ground
truth sequence. (For specifics, see ‘Metrics’ in Materials and methods.) The edit distance is normal-
ized, converting it into a rate, as required to measure performance across sequences of different
lengths. We show syllable error rate as a percentage throughout for readability. Thus, a 1.0% syllable
error rate can be thought of as ‘one edit per every 100 syllable labels’. It should be noted, though, that
the syllable error rate can grow larger than 100%, for example if a predicted sequence has many more
labels than the original. As results below show, this metric is very informative when benchmarking a
model such as ours.

The second way we study TweetyNet’s performance is meant to align with the point-of-view of an
experimentalist, who simply wants to know whether the annotations that TweetyNet produces are
‘good enough’ to answer their research question. To that end, we show that annotations predicted
by trained TweetyNet models recover key findings from behavioral studies in Bengalese finches and
canaries, by fitting statistical models of song syntax to predicted annotations.

TweetyNet avoids limitations that arise from segmenting audio
To show that TweetyNet avoids issues that result from relying on segmented audio (as described
in the 1 Introduction), we compare its performance with a model that predicts labels given engi-
neered acoustic features extracted from segmented audio. Specifically, we use a Support Vector
Machine (SVM) model and pre-defined features adapted from Tachibana et al., 2014 as described in
‘Comparison with a Support Vector Machine model’ in Materials and methods. To compare these two

Canaries
100

50

10.0

7.5

5.0

2.5

0.0

100

50

10.0

7.5

5.0

2.5

0.0

Bengalese Finches

Training set duration (s)

Sy
lla

bl
e

er
ro

r r
at

e
(%

)

120754530
180

480
600

Model

Input to model

SVM

segmented audio, manually cleaned
segmented audio, not cleaned
segmented audio, semi-automated cleaning
spectrogram

TweetyNet

240
300

360
420

480
540

600
660

Figure 3. Comparison of TweetyNet with a support vector machine (SVM) model. Plots show syllable error rate (y
axis) as a function of training set size (x axis, size of training set in seconds). Syllable error rate is an edit distance
computed on sequences of text labels. Here it is measured on a fixed, held-out test set (never seen by the model
during training). Hues correspond to model type: TweetyNet neural network (blue) or SVM (orange). Shaded areas
around lines indicate the standard deviation across song of individual birds, and across model training replicates
(each trained with different subsets of data randomly drawn from a total training set, n = 4 Bengalese finches, 10
replicates per bird;n = 3 canaries, 7 replicates per bird). Line style indicates input to model: spectrogram (solid
line), or segmented audio, processed in three different ways, either manually cleaned by human annotators
(dashed), not cleaned at all (dotted), or cleaned with a semi-automatic approach (dot-dash).

The online version of this article includes the following source data for figure 3:

Source data 1. Data used to generate line plots.

https://doi.org/10.7554/eLife.63853

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 7 of 32

models we generated learning curves, that plot performance as a function of the amount of manually-
annotated training data.

The core question is: how does each model perform when applied to unlabeled data that has
been pre-processed as required, without any additional inspection or arduous manual cleaning from
a human expert? For the SVM, the unlabeled data is pre-processed by segmenting the audio, while
for TweetyNet, the audio files are converted to spectrograms. For both models, data is pre-processed
for prediction with the exact same parameters used to pre-process training data: for example, with
the same amplitude threshold used to segment audio. To simulate this for the SVM, we needed to
re-segment the audio of the test set, because the segments in the ground truth annotations have
been carefully cleaned by expert human annotators. We then obtained SVM predictions for these
‘raw’ segments. For all training set sizes, the syllable error rate of the SVM given ‘raw’ segments was
higher than the syllable error rate of TweetyNet, as can be seen by comparing the dotted orange lines
and the solid blue lines in Figure 3.

This estimate of syllable error rate for the SVM may seem overly pessimistic. For example, an
expert human annotator could remove any non-song noises between song bouts fairly efficiently. To
mimic this simple cleaning step, we removed any segments in the re-segmented audio that did not
occur between the first onset and the last offset in the manually annotated, ground truth data. Our
intent was to remove most of the noises that a human annotator could rapidly identify, while leaving
any mis-segmented syllables that the annotator would need to carefully adjust by hand. In this setting,
with semi-automated clean-up of the segments, the SVM also had a higher syllable error rate than
TweetyNet across all canaries, for all training set sizes (compare dash-dotted orange line in Figure 3
with solid blue lines). For Bengalese finches, syllable error rate of the SVM started out lower than
TweetyNet, but with 10 min of training data, error for TweetyNet was lower, and this difference was
statistically significant (p < 0.001, Wilcoxon signed-rank test). This result indicates that much of the
increased syllable error rate can be attributed to imperfect segmenting of the true syllables and other
noises that take place during song bouts.

We did observe that SVM models could actually achieve a very low syllable error rate, when
provided with audio segments that have been manually cleaned by human annotators. SVM predic-
tions on this perfectly clean data are lower than the syllable error rate of TweetyNet. For models
trained with 10 min of data, this difference was again significant (p < 0.05, Wilcoxon signed-rank test).
However, if applying a machine learning model required human annotators to manually clean the
segments produced from audio by the standard algorithm, it would defeat the purpose of automating
annotation.

Lastly, we observed that there was a much higher standard deviation in error rate, computed across
individuals and training replicates, for SVM models predicting labels for uncleaned or semi-cleaned
segmented audio when compared with TweetyNet (p < 0.001, Levene’s test). The standard deviation
is indicated by the shaded areas in Figure 3. This results shows that TweetyNet performs well across
random samples of each bird’s song, because each replicate was trained on a randomly drawn subset
from a larger pool of training data. Our software ensured that at least one instance of each syllable
class was present in those subsets (please see ’Learning curves’ for details). This result suggests that
experimenters will not need to carefully construct training sets of data to fit TweetyNet models, as
long as they ensure that training sets contain a minimum number of instances of each syllable class.

Tweetynet annotates with low error rates across individuals and
species
The third criterion we set out above is that our model should be capable of learning the unique song
of each individual. Here we show that this criterion is met by our method achieving low error across
individuals and across species. To show this, we carried out further experiments, adding song from
an additional four Bengalese finches from the dataset accompanying Koumura, 2016 (see ‘Annota-
tion of Bengalese finch song’ in Materials and methods for details). This gave us a dataset of song
from 8 Bengalese finches recorded and annotated in two different research groups. In Figure 4, we
show learning curves for the 8 Bengalese finches and the three canaries, this time plotting lines for
each individual, to better understand how the model performs for each bird’s unique song. Here, we
consider the syllable error rate as defined above, and in addition the frame error, which is the fraction
of time bins classified incorrectly, displayed as a percent. Results here and in the next section will

https://doi.org/10.7554/eLife.63853

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 8 of 32

demonstrate why it is important to measure both the frame error and the syllable error rate. Across
all 8 Bengalese finches, the mean syllable error rate obtained by TweetyNet was 0.9%, and the mean
frame error was 1.56%. It can be seen that the model performed well across most birds and training
replicates, although for two birds the syllable error rate exhibited a relatively high standard deviation
for training sets of size 75 s or less. Across all individuals, it appeared that 8–10 min worth of manu-
ally annotated data was the minimal amount needed to train models achieving the lowest observed
syllable error rates. For canaries, with 11 min of training data, the mean syllable error rate was 5.17%,
and the mean frame error was 2.91%. It was unclear from the learning curves for canaries whether
the syllable error rate of TweetyNet had reached an asymptotic value at the largest training set size.

2.91%

1.56%

5.17%

120
120754530

180
180

190
240

300
360

420
480

480
540

600
600

660

0.90%
0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14

0

1

2

3

4

5

6

0

1

2

3

4

5

6

Training Set Duration (s)

Fr
am

e
er

ro
r (

%
)

Sy
lla

bl
e

er
ro

r r
at

e
(%

)

CanariesBengalese Finches

Figure 4. Performance of TweetyNet across songs of 8 Bengalese finches and three canaries. Plots show frame
error (y axis, top row) and syllable error rate (y axis, bottom row) as a function of training set size (x axis, in seconds).
Frame error is simple accuracy of labels the network predicted for each time bin in spectrograms, while syllable
error rate is an edit distance computed on sequences of labels for the segments that we recover from the vectors
of labeled time bins (as described in main text). Thick line is mean across all individuals, thinner lines with different
styles correspond to individual birds (each having a unique song). Shaded areas around lines for each bird indicate
standard deviation of metric plotted across multiple training replicates, each using a different randomly-drawn
subset of the training data. Metrics are computed on a fixed test set held constant across training replicates. Here
hue indicates species (as in Figure 5A below): Bengalese finches (magenta, left column) and canaries (dark gray,
right column).

The online version of this article includes the following source data for figure 4:

Source data 1. Data used to generate plots for Bengalese finches.

Source data 2. Data used to generate plots for canaries.

https://doi.org/10.7554/eLife.63853

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 9 of 32

Because training models on canary song could be computationally expensive, we did not include
larger data sets for these curves. To obtain an estimate of the asymptotic syllable error rate, for each
bird we trained one replicate on a single dataset of 60 minutes of song (instead of training multiple
replicates with randomly drawn subsets of the training data). This produced an estimated asymptotic
mean syllable error rate of 3.1(± 0.2)% for TweetyNet on canary song. Taken together, these bench-
marking results suggest that the syllable error rate of TweetyNet is low enough to enable automated
annotation of large-scale datasets from behavioral experiments. We show this rigorously below, but
first we interrogate more closely how the model achieves this performance.

Simple post-processing greatly reduces syllable error rates
One of our criteria for an automated annotation method was that it should only require training a
single model. Although our approach meets this criterion, there are of course hyperparameters for
training the model that we tuned during our experiments, and there is additional post-processing
applied to the model outputs when converting them to annotations. (The term ‘hyperparameter’
refers to parameters that configure the model, such as the batch size during training or the size of
the spectrogram windows, as opposed to the parameters in the model itself, optimized by training.)
Here, we take a closer look at how post-processing and hyperparameters impact performance, to
understand how TweetyNet works ‘under the hood’, and to provide a starting point for users applying
the model to their own data.

As described above, the post-processing consists of first discarding any segments shorter than a
minimum duration, and then taking a ‘majority vote’ within any consecutive run of labels between time
bins labeled as ‘background’. To understand how this impacts performance, we computed frame error
and syllable error rate with and without post-processing, as shown in Figure 5. We found that post-
processing had little effect on the frame error (compare dashed and solid lines in Figure 5A top row),
but that it greatly reduced the syllable error rates (bottom row). To understand this difference, we
performed further analysis. We found that many of the frame errors could be attributed to disagree-
ments between the model predictions and the ground truth annotations about the onset and offset
times of syllables (see Figure 5—figure supplement 1). These syllable boundaries are naturally vari-
able in the ground truth data, but such mismatches between the model predictions and the ground
truth do not change the label assigned to a segment, and thus do not contribute to the syllable error
rate. We also asked whether the increased syllable error rate might be due to errors that result when
the model sees sequences of syllables that occur with very low probability. We were unable to find
strong evidence that these infrequently-seen sequences caused the model to make errors. Rarely
occurring sequences had little effect even when we limited the performance of our model by shrinking
the size of the hidden state in the recurrent layer (see Figure 5—figure supplement 2). The results
of this further analysis and the difference we observed between frame error and syllable error rate
suggested to us that our post-processing corrects a small number of mislabeled frames peppered
throughout the network outputs, which has a comparatively large effect on the syllable error rate.

Next we sought to understand how the hyperparameters used during training affected the small
number of incorrect frames that inflate the syllable error rate. We focused on two key hyperparam-
eters we considered most likely to affect syllable error rate: the size of windows from spectrograms
shown to the network (measured in the number of time bins), and the size of the hidden state in the
recurrent layer. The window size determines the context the network sees, while the hidden state
size determines the network’s capacity to integrate contextual information across time steps. We ran
further experiments using a range of values for both hyperparameters to determine how they impact
performance. In all cases, we saw that both hyperparameters had little effect on frame error (top row
in Figure 5B and C) but a large effect on syllable error rate (bottom row in Figure 5B and C). This
difference between metrics is again consistent with the idea that the main contributor to the syllable
error rate is a handful of frame errors scattered across the network outputs. These experiments also
confirmed that the values we chose to obtain results in Figures 3 and 4 were close to optimal; smaller
values would have negatively impacted performance, and larger values would have yielded little or
no additional gain. (There is no widely-accepted method to find truly optimal hyperparameters.) In all
cases, the effect of these hyperparameters was clear when looking at the model outputs before post-
processing (orange boxes in Figure 5B and C). We did not see any similar effect when testing other
hyperparameters such as filter size (Figure 5—figure supplement 2) and number (Figure 5—figure

https://doi.org/10.7554/eLife.63853

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 10 of 32

Bengalese Finch

Training set duration

Canary

0

2

Hidden state size

Window size

Max. train dur.

Fr
am

e
er

ro
r (

%
)

@
 m

ax
. t

ra
in

 d
ur

.

Sy
lla

bl
e

er
ro

r r
at

e
(%

)
@

 m
ax

. t
ra

in
 d

ur
.

Fr
am

e
er

ro
r (

%
)

@
 m

ax
. t

ra
in

 d
ur

.

Sy
lla

bl
e

er
ro

r r
at

e
(%

)
@

 m
ax

. t
ra

in
 d

ur
.

Sy
lla

bl
e

er
ro

r r
at

e
(%

)
Fr

am
e

er
ro

r (
%

)

Bengalese Finch

Bengalese Finches
Canaries

Species

Post-processing
With
Without

Post-processing
With
Without

Canary

4

6

0

2

4

6

0

2

4

6

0

10

20

30

0

10

20

30

0

10

20

30

0

40

60

20

80

0

2

4

6

2048
1024

5126464
25616 32

740
370

1859246
352

176884422 23

A B

C

Figure 5. The effect of post-processing and hyperparameters on TweetyNet performance. (A) Mean frame error
(top row) and mean syllable error rate, across all birds and training replicates, as a function of training set duration.
Hue indicates species (Bengalese finches, magenta; canaries, dark gray). Line style indicates whether the metric
was computed with (solid lines) or without (dashed lines) post-processing of the vectors of labeled time bins that
TweetyNet produces as output. (Note solid lines are same data as Figure 4). (B, C). Performance for a range of
values for two key hyperparameters: the size of windows from spectrograms shown to the network (B) and the
size of the hidden state in the recurrent layer (C). Box-and-whisker plots show metrics computed at the maximum
training set duration we used for the curves in A (‘Max. train dur.’, black arrow in A). We chose the maximum
training set durations because at those metrics were closest to the asymptotic minimum approached by the
learning curves. Top row of axes in both B and C shows frame error, and bottom row of axes shows syllable error
rate. Blue boxes are metrics computed with post-processing transforms applied, orange boxes are error rates
without those transforms. Ticks labels in boldface on axes in B and C represent the hyperparameters we used for
results shown in A, and Figures 3 and 4.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Data used to generate line plots in Figure 5A, B, Figure 5—figure supplement 3.

Source data 2. Data used to generate box plots in Figure 5B, C, Figure 5—figure supplement 3.

Figure supplement 1. Most frame errors of trained TweetyNet models are disagreement on syllable boundaries of

Figure 5 continued on next page

https://doi.org/10.7554/eLife.63853

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 11 of 32

supplement 3). In total, these results show that our algorithm is in fact learning something about the
sequences, by leveraging context from the windows that it sees and by storing information it propa-
gates across time steps in its hidden state.

However, our simple post-processing step had a much larger effect on both error metrics, making
the impact of hyperparameters difficult to see when plotted at the same scale (blue boxes in Figure 5B
and C). Therefore, the results also demonstrate that even with well-chosen hyperparameters the
network outputs contain segmenting errors that our post-processing removes. In all cases, we were
able to reduce the syllable error rate by nearly an order of magnitude with post-processing. We return
to this point in the discussion.

Birdsong annotated automatically with TweetyNet replicates key
behavioral findings
We next assessed performance of TweetyNet in a scenario more similar to how an experimentalist
would apply our approach to their data. Specifically, we asked whether we could replicate key findings
from previous behavioral experiments, using annotations predicted by TweetyNet.

TweetyNet annotation of Bengalese finch song replicates statistics of branch
points
Bengalese finch song is known to contain branch points, where one class of syllable can transition to
two or more other classes. An example is shown in Figure 6A and B. Warren et al., 2012 showed that
these transition probabilities are stable across many days. We asked if we could replicate this result
with automated annotation for several full days of recordings, predicted by TweetyNet models trained
on a relatively small set of manually-annotated songs. To do so, we used the dataset from Nicholson
et al., 2017, that contains recordings from 4 Bengalese finches, whose every song was manually anno-
tated across 3–4 days. We verified that in the ground truth annotations from Nicholson et al., 2017
we could replicate the key finding from Warren et al., 2012, that branch point statistics were stable
across several days (Bonferroni-corrected pairwise bootstrap test, n.s. in all cases).

Before testing whether we could recover this finding from annotations predicted by TweetyNet,
we first measured model performance across entire days of song. Using models trained on 10 min
(for experiments in Figures 3 and 4), we predicted annotations for the remainder of the songs. As
shown in Figure 6C, we found that these TweetyNet models maintained low syllable error rates when
measured with entire days of song, without exhibiting large fluctuations across days. The syllable
error rate ranged from 1% to 5% across 3–4 days of song from each of the four birds, comparable to
rates observed in Figure 4. We emphasize that the days of songs we used as test sets here are much
larger than those we used to benchmark models in Figure 4. The mean duration of these test sets was
1528 seconds (s.d. 888.6 s, i.e. 25 min mean, 14 min s.d.), in contrast to Figure 4 where we measured
syllable error rates with a fixed test set of 400 s (6 min 40 s).

Next we asked whether we could recover the behavioral findings using annotations predicted by
TweetyNet. Applying the same analysis from Warren et al., 2012, we found that annotations predicted
by TweetyNet were statistically indistinguishable from the ground truth data (Bonferroni-corrected
pairwise bootstrap test, again n.s. in all cases). This can be seen by overlaying model and ground truth
predictions, as in the representative example in Figure 6D. Summary results for all branch points on
all days in all four birds are shown in Figure 6E, again illustrating that the probabilities estimated from
predicted annotations were quite similar to those estimated from the ground truth.

0–2 time bins.

Figure supplement 2. frame errors in rarely-occurring Bengalese finch sequences.

Figure supplement 3. Filter size experiments.

Figure supplement 4. Filter number experiments.

Figure 5 continued

https://doi.org/10.7554/eLife.63853

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 12 of 32

Source
Ground truth
Model predictions

0.0
1 2 3

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

C

e
f

i

77%

23%

A B

D E

5
kH

z

100 ms

1 432
Day

Day

0

2

4

6

8

Sy
lla

bl
e

er
ro

r r
at

e
(%

)
Tr

an
si

tio
n

pr
ob

ab
ilit

y

Ground truth

M
od

el
 p

re
di

ct
io

ns

Figure 6. Replicating results on branch points in Bengalese finch song with annotations predicted by TweetyNet.
(A) Representative example of a Bengalese finch song with a branch point: the syllable labeled ’e’ can transition
to either ’f’, as highlighted with blue rectangles, or to ’i’, as highlighted with an orange rectangle. (B) Transition
probabilities for this branch point, computed from one day of song. (C) Syllable error rates per day for each bird
from Nicholson et al., 2017. Solid line is mean and shaded area is standard deviation across 10 training replicates.
Line color and style indicate individual animals. TweetyNet models were trained on 10 min of manually annotated
song, a random subset drawn from data for day 1. Then syllable error rates were computed for the remaining
songs from day 1, and for all songs from all other days. (D) Transition probabilities across days for the branch
point in A and B, computed from the ground truth annotations (solid lines) and the annotations predicted by
TweetyNet (dashed lines). Shaded area around dashed lines is standard deviation of the estimated probabilities,
across the 10 training replicates. (E) Group analysis of transition. x axis is probability computed from the ground
truth annotations, and the y axis is probability estimated from the predicted annotations. Dashed line is ‘x = y’, for
reference. Each (color, marker shape) combination represents one branch point from one bird.

The online version of this article includes the following source data for figure 6:

Figure 6 continued on next page

https://doi.org/10.7554/eLife.63853

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 13 of 32

TweetyNet annotation of canary song replicates statistical models of song
structure
Canary songs consist of trills of repeated syllables called phrases (Figure 1B). Markowitz et al.,
2013 examined sequences of phrases of Waterslager canaries and found transitions with different
memory depths. They showed this by describing probability distribution of transition outcomes from

Source data 1. Data used to generate line plot in Figure 6C.

Source data 2. Data used to generate line plot in Figure 6D.

Source data 3. Data used to generate scatter plot in Figure 6E.

Figure 6 continued

B 1764 songs. Training set 19%

1A

FA

JA

QA
RA

IB

AB

1AB
FC

1FC
CFC

CF

FCF

CFCF

MCF

BG

IBG

ABG

FABG

GN

BGN

ABGN

1ABGN

RQ

AR

A

B
CEF

G
H
I
J
K

L
M N P Q

R
T

1 Start

1st element
 frequency

A

0.1

0.1/2

0.1/4

0.1/8
0.1/16

Sequence
frequency (norm)

600 songs. Training set 2.2%

Branch differences in automatic labeling

1A

FA

IB

AB

1AB
FCCF

FCF

RQ
AR

A

B
CF

G
H
I
J
K

L
M N P Q

R

1 Start

E

S

Missed Added

Figure 7. Replicating and extending results about canary syntax dependencies with annotations predicted by TweetyNet. (A) Long-range order found
in 600 domestic canary songs annotated with human proof reader (methods, similar dataset size to Markowitz et al., 2013). Letters and colors indicate
phrase types. Each branch terminating in a given phrase type indicates the extent to which song history impacts transition probabilities following that
phrase. Each node corresponds to a phrase sequence, annotated in its title, and shows a pie chart representing the outgoing transition probabilities
from that sequence (e.g. the pie ’1A’ shows the probabilities of phrases ’B’, ’C’, and ’F’ which follow the phrase sequence ’1→ A’). The nodes are
scaled according to their frequency (legend). Nodes that can be grouped together (chunked as a sequence) without significantly reducing the power
of the model are labeled with blue text. These models are built by iterative addition of nodes up the branch to represent longer Markov chains, or a
transition's dependence on longer sequences of song history. A TweetyNet model was trained using 2.2% of 1,764 songs (9.5% of the data in A). The
PST created from the model’s predicted annotation of the entire dataset is very similar to A (see full comparison in Figure 7—figure supplement 1).
Here, branch differences between the hand labeled and model labeld song are marked by red and blue dashed lines for added and missed branches.
(B) PST created using all 1,764 hand labeled songs. An almost identical PST was created without a human proof reader from a TweetyNet model trained
on 19% of the data (see full comparison in Figure 7—figure supplement 2).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Detailed comparison of syntax structure in 600 hand labeled or TweetyNet-labeled canary songs.

Figure supplement 2. Detailed comparison of syntax structure in 1764 hand labeled or TweetyNet-labeled canary songs.

https://doi.org/10.7554/eLife.63853

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 14 of 32

certain phrases by Markov chains with variable
lengths. This syntax structure is captured parsi-
moniously by probabilistic suffix trees (PST) (Ron
et al., 1996). The root node in these graphical
models, appearing in the middle of Figure 7A
and B, represents the zero-order Markov, or base
rate, frequencies of the different phrases, labeled
in different colors and letters. Each branch,
emanating from the colored letters in Figure 7,
represents the set of Markov chains that end in
the specific phrase type designated by that label.
For example, the ’A’ branch in Figure 7A includes
the first order Markov model ’A’ and the second
order Markov chains ’FA’ and ’1A’ representing
the second order dependence of the transition
from phrase ’A’.

We asked if we could replicate findings about
canary song syntax in a different strain of canaries
using a TweetyNet model trained on a small
manually annotated dataset. Figure 7 demon-
strates that annotations predicted by Twee-
tyNet had sufficient accuracy on domestic canary
song to extract its long-range order. In these
figures, we set parameters of the PST estimation
algorithm to derive the deepest syntax struc-
ture possible without overfitting, following the
approach of Markowitz et al., 2013 that used
about 600 hand-annotated songs of Waterslager
canaries. In this example, using 2.2% of the data
set, about 40 songs, to train a TweetyNet model
and predict the rest of the data reveals the deep
structures shown in Figure 7A, comparable to
using 600 hand annotated songs of the same
bird. With more training data, Tweetynet’s accu-
racy improves as does the statistical strength of the syntax model. In Figure 7B a TweetyNet model
was trained on 19% of the data, about 340 songs, and predicted the rest of the data. The resulting
syntax model can be elaborated to greater depth without overfitting. To validate this deeper model,
we compared it with a PST fit to all 1764 songs from the same bird, manually annotated, and found
that both PSTs were very similar (Figure 7B).

In sum, we find that TweetyNet, trained on a small sample of canary song, is accurate enough to
automatically derive the deep structure that has formed the basis of recent studies (Markowitz et al.,
2013; Cohen et al., 2020).

Larger data sets of annotated canary song add details and limit the memory
of the syntax structure
The increase in syntax detail, presented in Figure 7B, is possible because more rare nodes can be
added to the PST without over-fitting the data. Formally, the PST precision increase in larger data sets
is defined by the decrease in minimal node frequency allowed in the process of building PST models
(Figure 8), as measured in model cross validation (see Materials and methods). In our data set, we
find an almost linear relation between the number of songs and this measure of precision—close to a
tenfold precision improvement.

In Figure 7B, this increased precision allowed reliably adding longer branches to the PST to repre-
sent longer Markov chains (in comparison to Figure 7A). In this example, using a dataset three times
larger revealed a 5-deep branch that initiates with the beginning of song (’1ABGN’), suggestive of a
potential global time-in-song dependency of that transition. The PST in Figure 7B also has branches

10-3 10-2

min prob.

250

songs

4000

2000

1000

500

2

3

4

ne
g.

 lo
g-

lik
el

ih
oo

dA B

25
0

10
00

40
00

Songs

1

10

m
in

 p
ro

b

10-3

Figure 8. Using datasets more than five times larger
than previously explored increases statistical power
and the precision of syntax models. (A) Ten-fold cross
validation is used in selection of the minimal node
probability for the PSTs (x-axis). Lines show the mean
negative log-likelihood of test set data estimated by
PSTs in 10 repetitions (methods). Curves are calculated
for datasets that are sub sampled from about 5000
songs. Red dots show minimal values - the optimum
for building the PSTs. (B) The decrease in optimal
minimal node probability (y-axis, red dots in panel A)
for increasing dataset sizes (x-axis) is plotted in gray
lines for six birds. The average across animals is shown
in black dots and line.

The online version of this article includes the following
source data for figure 8:

Source data 1. Data used to generate lines in
Figure 8A.

Source data 2. Data used to generate dots in
Figure 8A.

Source data 3. Data used to generate lines in
Figure 8B.

https://doi.org/10.7554/eLife.63853

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 15 of 32

that did not ’grow’ compared to Figure 7A when more songs were analyzed (e.g. the ’B’, ’Q’, and ’R’
branches), indicating a potential cutoff of memory depth that is crucial in studying the neural mecha-
nisms of song sequence generation.

The data sets used in Figures 7 and 8, are about 10 times larger than previous studies. To ascer-
tain the accuracy of the syntax models, in creating the data sets we manually proofread annota-
tions predicted by TweetyNet (see ‘Annotation of canary song’ in Materials and methods). Across five
different human proof readers, we compared the time required to manually annotate canary song with
the proof-reading time, and found that using TweetyNet saved 95–97.5% of the labor.

Taken as a whole, results in this section show that TweetyNet makes high-throughput automated
annotation of behavioral experiments possible, greatly reducing labor while scaling up the amount of
data that can be analyzed by orders of magnitude.

Very rare, hard-to-classify vocal behaviors can cause TweetyNet to
introduce errors
Songbird species vary in the degree to which the elements of their song can be categorized into
a set of discrete classes (Thompson et al., 2012; Sainburg et al., 2020). Even for species where
expert annotators can readily define such a set, there will occasionally be periods in song where it is
unclear how to classify syllables. Here, we provide examples of these rare cases to illustrate how even
a well-trained TweetyNet model can introduce errors in annotation when the behavior itself cannot
be cleanly categorized. The examples we present in Figure 9 are from canaries, simply because their
song can be so highly varied. As these examples illustrate, predictions of TweetyNet models are well-
behaved when faced with rare variants, assigning high probability to the most relevant labels, not
to completely unrelated classes of syllables. We emphasize that any standard supervised machine
learning model that assigns only a single label to each segment will be vulnerable to introducing
errors like these. Such errors raise questions about whether and when birdsong can be categorized
into discrete syllable classes, questions that are brought back into focus by methods like ours that
automate the process. As we will now discuss, we see several ways in which future work can address
these questions.

Discussion
Annotating birdsong at the level of syllables makes it possible to answer questions about the syntax
governing this learned sequential behavior (Berwick et al., 2011). Annotating syllables also makes
it possible describe them in physical units like pitch and amplitude that researchers can directly link
to muscular and neural activity (Sober et al., 2008; Wohlgemuth et al., 2010). However, for many
species of songbirds, analyses at the syllable level still require labor-intensive, time-consuming manual
annotation. There is a clear need for a method that can automate annotation across individuals and
species, without requiring cleanly segmented audio, and without requiring researchers to carefully
tune and validate multiple statistical models. To meet this need, we developed a neural network,
TweetyNet (Figure 2): a single model trained end-to-end that learns directly from spectrograms
how to automatically annotate each bird’s unique song. TweetyNet is deliberately designed to avoid
dividing annotation into separate steps of segmentation and labeling, and it leverages the strengths
of deep learning models to learn features for classification from the training data, instead of relying
on pre-defined engineered features. We showed that our approach mitigates issues that result from
the assumption that audio can be cleanly segmented into syllables (Figure 3). TweetyNet performs
comparably to a carefully tuned Support Vector Machine model operating on pre-defined features
extracted from manually cleaned, perfectly segmented audio (Figure 3). This result might suggest
that an alternative to our approach would be to improve the audio segmentation step (e.g. with an
alternative algorithm Tchernichovski et al., 2000) and to use a state-of-the-art non-neural network
model (such as XGBoost Chen and Guestrin, 2016). Because such approaches lack the flexibility
and expressiveness of deep learning models, we believe they will still require additional tuning our
method avoids. For example, one could add classes for background noise to such models, but this
would likely require additional steps to deal with class imbalance. Our model and problem formulation
requires adding an additional ‘background’ class, which results in a more general solution (in much the

https://doi.org/10.7554/eLife.63853

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 16 of 32

same way that object detection models require and benefit from the addition of a background class
Scheirer et al., 2013).

A natural question raised by our results is how TweetyNet integrates the local acoustic structure
within a few time bins of a spectrogram and the global structure of syllable sequences within spec-
trogram windows. To answer this, and gain a deeper understanding of our approach, we carried out
experiments varying two key hyperparameters. The first was the size of spectrogram windows shown
to the network, which determines how much context the network sees, and the second was the size

7 7 7 12 12 12 121 122 22 22 221 11 1 1

30 30 25 2530 30 25 25

100 msec

5
kH

z
La

be
ls

30

Bg.

A

C D E

B

Li
ke

lih
oo

d

0

0.1

Figure 9. Rare variants of canary song introduce segmentation and annotation errors. (A-E) Spectrograms on top
of the time-aligned likelihood (gray scale) assigned by a well-trained TweetyNet model to each of the labels (y-axis,
30 syllable types and the tag ’Bg.’ for the background segments). Green and red vertical lines and numbers on top
of the spectrograms mark the onset, offset, and labels predicted by the model. (A,B) Canary phrase transitions can
contain a vocalization resembling the two flanking syllables fused together. A TweetyNet model trained to split
this vocalization performed very well (A) but failed in a rare variant (B). The network output highlights a general
property: TweetyNet assigned high likelihood to the same flanking syllable types and not to irrelevant syllables. (C)
Syllables produced soft, weak, and acoustically imprecise at the onset of some canary phrases are mostly captured
very well by TweetyNet but, on rare occasions, can be missed. In this example the model assigned high likelihood
to the correct label but higher to the background. (D) Some human annotators, called 'splitters', define more
syllable classes. Others, the 'lumpers', group acoustically-diverse vocalizations under the same label. TweetyNet
models trained on acoustically-close classes assign high likelihood to both labels and, on rare occasions, flip
between them. This example demonstrates that TweetyNet does not use the a-priori knowledge of syllable repeats
hierarchically-forming canary phrases. (E) Canaries can simultaneously produce two notes from their two bronchi.
This occurs in phrase transitions and the spectrogram of the resulting vocalization resembles an overlay of flanking
syllables. While the network output shows high likelihood for both syllables the algorithm is forced to choose just
one.

https://doi.org/10.7554/eLife.63853

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 17 of 32

of the hidden state in the recurrent layer, which determines the network’s capacity to integrate infor-
mation across time steps. The experiments demonstrated that TweetyNet performance depends on
well-chosen values for both hyperparameters (Figure 5). These empirical results support the idea that
TweetyNet learns to recognize local features seen in syllables and learns to leverage sequential infor-
mation across a spectrogram window.

In addition, we showed our approach performs well across multiple individuals from two different
species of songbird, Bengalese finches and canaries (Figure 4). We demonstrated that using auto-
mated annotations produced by TweetyNet, we could replicate key findings from long-term behav-
ioral experiments about the syntax of Bengalese finch (Figure 6) and canary song (Figures 7 and 8).
Overall, these results show that our deep learning-based approach offers a robust, general method
for automated annotation of birdsong at the syllable level.

Ideas and speculation
Our results open up avenues for future research in two directions: development of neural network
algorithms, and applications of those algorithms, once developed. Regarding algorithm develop-
ment, we suggest that future work should test whether networks can be trained to better learn to
segment without post-processing. The experiments in Figure 5 suggested that the post-processing
we applied improves performance by correcting a small number of mislabeled time bins that cause a
large increase in syllable error rate. From this, and from previous related work (Lea et al., 2017), our
sense is that a logical next step will be to incorporate the syllable error rate into the loss function,
minimizing it directly. This would require some modifications to our approach, but may prove more
effective than testing different network architectures.

Another important question for future work is: when it is appropriate to apply supervised learning
algorithms to vocalizations, like ours and related object detection-based models (Coffey et al., 2019;
Fonseca et al., 2021), and when should these algorithms be combined or even replaced with unsu-
pervised algorithms. Recently developed unsupervised models learn helpful, often simpler, repre-
sentations of birdsong and other animal vocalizations (Goffinet et al., 2021; Sainburg et al., 2019,
Sainburg et al., 2020). These advances and the advantages of methods like TweetyNet are not mutu-
ally exclusive, and can be integrated in different ways depending on the needs of researchers. For
example, a TweetyNet model can serve as a front-end that finds and classifies segments, which are
then passed to an unsupervised model. In addition to annotating syllables, we suggest future work
consider two other levels of classification. The first would use TweetyNet to segment audio into just
two classes: ‘vocalization’ and ‘non-vocalization’ periods. Treating segmentation as a binary classifi-
cation problem in this way would make it possible to extend our approach to vocalizations that are
not easily categorized into discrete labels: juvenile birdsong, bat calls (Prat et al., 2017), and rodent
USVs (Tachibana et al., 2020), for example. Another level of classification consists of automatically
annotating higher-level structures in song such as motifs, phrases (Markowitz et al., 2013) or chunks
(Takahasi et al., 2010; Kakishita et al., 2008). TweetyNet could annotate these explicitly defined
higher level structures, that would then be passed to downstream unsupervised models designed for
tasks like similarity measurement (e.g. Goffinet et al., 2021; Sainburg et al., 2019, Sainburg et al.,
2020). A second way that supervised and unsupervised algorithms could be combined would be to
reverse the order, and use the unsupervised model as a front end. For example, models like those of
Sainburg et al., 2020 could be used to automatically generate a candidate set of syllable classes from
a relatively small dataset of cleanly segmented song. A researcher would visually inspect and validate
these candidate classes, and once validated, use them with TweetyNet to bootstrap annotation of a
much larger dataset.

Lastly, we speculate on use of trained TweetyNet models to measure uncertainty and similarity.
These measures can be estimated using either the probabilities that TweetyNet produces as outputs,
or with so-called ‘activations’ within layers of the network that are elicited by feeding inputs through
it. The output probabilities can serve as a metric in syllable space. For example, when predicting new
annotations, researchers could use output probabilities from TweetyNet to flag less confident predic-
tions for subsequent human inspection and post-processing. As shown in Figure 9D, this approach
can highlight rare song variants and may also help annotators identify edge cases where they have
defined syllable classes that are too similar to each other. More generally, a researcher could use a
TweetyNet model trained on a single adult’s song to obtain an estimate of any other song’s similarity

https://doi.org/10.7554/eLife.63853

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 18 of 32

to it, such as the adult’s offspring or even recordings of the same adult’s song as a juvenile. This
could be done using the output probabilities, or activations within the network. Activations in trained
TweetyNet models could also be used to assess the output of unsupervised models that generate
vocalizations (Sainburg et al., 2019), analogous to similar approaches in computer vision (Salimans
et al., 2016; Heusel et al., 2017).

Conclusion
The family of songbirds that learns by imitation consists of over 4500 species. Some of these singers,
such as the canary, produce songs that are much too complex to be automatically annotated with
existing methods, and for these complex singers little is known about the syntax structure and orga-
nization of song. The results we present suggest that our approach makes automated syllable-level
annotation for many of these species possible. By sharing trained models, tutorials, data, and a library
for benchmarking models, we also establish a strong baseline for work building upon ours. We are
confident our method enables songbird researchers to automate annotation of very large datasets of
entire bouts of song, required for analyses that address central questions of sensorimotor learning.

Materials and methods
Data preparation
Segmenting audio files into syllables
Algorithm
For Bengalese finch song, we applied a widely-used simple algorithm to segment audio into syllables,
as described in the Introduction and shown in Figure 1A. The first step of this algorithm consists of
finding all periods (colored line segments, middle and bottom axes of Figure 1A) where the ampli-
tude of song stays above some threshold (dashed horizontal line on bottom axes of Figure 1A).
The resulting segments are further cleaned up using two more parameters. Any periods between
segments that are shorter than a minimum silent interval are removed, merging any syllables neigh-
boring those intervals, and then finally any remaining segments shorter than a minimum syllable dura-
tion are removed. We used the implementation of this audio segmenting algorithm in the evfuncs tool
(Nicholson, 2021c), that correctly replicates segmentation of the (Nicholson et al., 2017) dataset,
which was segmented using Matlab code developed for previous papers (see for example Tumer and
Brainard, 2007).

Estimating segmenting parameters for canary song
As we state in the Introduction, the same algorithm cannot be applied to canary song. In spite of this,
we apply the algorithm to canary song for results in Figure 3, to make very clear the issues that would
results from relying on it. To estimate parameters that would produce the least amount of errors when
segmenting canary song with this algorithm, we wrote a script that found the following for each bird’s
song: (1) the median amplitude at all syllable onsets and offsets in the ground truth data with segmen-
tation adjusted by human annotators, (2) the 10th percentile of syllable durations, (3) and the 0.1th
percentile of silent intervals between syllables. We visually inspected the distributions of these values
extracted from all segments, with our estimated segmenting parameters superimposed, to validate
that we would not artificially create a very large number of errors by using the parameters we found
with this script.

Annotation of Bengalese finch song
Experiments in Figure 4 included song from four birds in the ‘BirdsongRecognition’ dataset (Koumura,
2016). The models in the original study were designed to annotate specific sequences within song,
as described in their methods. The goal of our model is annotate entire bouts of song. To use that
dataset in our experiments, we needed to fully annotate all bouts of song. If we did not label all
syllables, then our model would be unfairly penalized when it correctly annotated syllables that were
present in the original dataset, but were not annotated. Two of the authors (Cohen and Nicholson)
fully annotated the song from four of the birds, employing the same GUI application used to anno-
tate canary song. The vast majority of syllables that we labeled were the low-frequency, high-entropy
‘introduction’ notes that occur at the beginning of some song bouts in varying numbers, that are often

https://doi.org/10.7554/eLife.63853

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 19 of 32

ignored during analysis of zebra finch and Bengalese finch song. For the handful of cases where other
syllables were not labeled, we chose from among the classes present in the already-annotated data to
assign labels to these. In some very rare cases, we found syllables where the category was not clear,
similar to the cases we describe for canary song in Figure 9. We chose to assign a separate class to
these and remove song bouts containing theses classes from both the training and test sets. As we
acknowledge in Figure 9 Discussion, an inability to handle edge cases like these is a limitation of any
standard supervised learning algorithm like ours, that operates at the level of syllables. We removed
these cases so that we could be sure that benchmarking results accurately reflected how well the
model performed on well-classified syllables.

Annotation of canary song
Bootstrapping annotation with TweetyNet
In this manuscript, we used annotated domestic canary datasets an order of magnitude larger than
previously published. To create these datasets we used TweetyNet followed by manual proofreading
of its results. This process, described below, allowed ’bootstrapping’ TweetyNet’s performance. Song
syllables were segmented and annotated in a semi-automatic process:

•	 A set of 100 songs was manually segmented and annotated using a GUI developed in-house
(Cohen, 2022). This set was chosen to include all potential syllable types as well as cage noises.

•	 The manually labeled set was used to train TweetyNet (Nicholson, 2022).
•	 In both the training phase of TweetyNet and the prediction phase for new annotations, data is

fed to TweetyNet in segments of 1 second and TweetyNet's output is the most likely label for
each 2.7 ms time bin in the recording.

•	 The trained algorithm annotated the rest of the data and its results were manually verified and
corrected.

Assuring the identity and separation of syllable classes
The manual steps in the pipeline described above can still miss rare syllable types or mislabel syllables
into the wrong classes because of the human annotator’s mistake or because some annotators are
more likely to lump or split syllable classes. To address this potential variability in canaries, where each
bird can have as many as 50 different syllables, we made sure two annotators agree on the definition
of the syllable classes. Then, to make sure that the syllable classes are well separated, all the spectro-
grams of every instance of every syllable, as segmented in the previous section, were zero-padded
to the same duration. An outlier detection algorithm (IsolationForest) was used to flag and re-check
potential mislabeled syllables or previously unidentified syllable classes.

Segmenting annotated phrases of Waterslager canaries
In Figure 1—figure supplement 2 we include data from waterslager canaries, available from a
previous project in the Gardner lab (Markowitz et al., 2013). To include this data, we needed to break
annotated phrase segments into syllable segments. Songs were previously segmented into phrases,
trilled repetitions of syllables, and not to individual syllables. In each segmented phrase, we separated
vocalization and noise fluctuations between vocalizations by fitting a two-state hidden Markov model
with Gaussian emission functions to the acoustic signal. Putative syllable segments produced by this
procedure were proofread and manually corrected using a GUI developed in-house.

Generating spectrograms
Spectrograms were generated from audio files using custom Numpy (Bengalese finch) or Matlab
(canary) code. For Bengalese finches, the code we used to generate spectrograms is built into the
vak library. For canaries, the code we used to generate spectrograms can be found here (Markowitz,
2022b).

All spectrograms for song from a given species were created with the same parameters, such as
the number of samples in the window for the Fast Fourier Transform (NFFT). For Bengalese finch song,
we used ‍NFFT = 512‍ with a step size of 64. For canaries we used ‍NFFT = 1024‍ with a step size of 119.
This produced spectrograms with a time bin size of 1ms for Bengalese finches, and 2.7ms for canaries.

https://doi.org/10.7554/eLife.63853
https://github.com/yardencsGitHub/BirdSongBout/tree/master/helpers/GUI
https://github.com/yardencsGitHub/tweetynet
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
https://github.com/yardencsGitHub/BirdSongBout/tree/master/helpers/GUI
https://github.com/NickleDave/vak/blob/main/src/vak/spect.py
https://github.com/jmarkow/zftftb/blob/master/zftftb_pretty_sonogram.m

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 20 of 32

We chose spectrogram parameters such that the duration of a time bin was just smaller than the
shortest duration silent gaps between syllables. A larger bin size would have prevented our model
from producing correct segments, whenever one of the true silent gaps was shorter than our bin size.
In initial studies we experimented with even smaller bin sizes, but found that the network tended to
over-segment. Future work could compensate for this oversegmenting by modifying the loss function
as we point out in the Discussion.

Neural network architecture
Here, we provide a detailed description of the TweetyNet neural network architecture. The archi-
tecture that we develop is most directly related to those that have been used for event detection
in audio and video (Böck and Schedl, 2012; Parascandolo et al., 2016) and for phoneme classifi-
cation and sequence labeling (Graves and Schmidhuber, 2005; Graves, 2012). It is also somewhat
similar to deep network models for speech recognition, but a crucial difference is that state-of-the-art
models in that area map directly from sequences of acoustic features to sequences of words (Graves
et al., 2006). The success of these state-of-the-art models is attributed to the fact that they learn this
mapping from speech to text, avoiding the intermediate step of classifying each frame of audio, as
has previously been shown (Graves, 2012). In other words, they avoid the problem of classifying every
frame that we set out to solve.

As described in the introduction, the network takes as input batches of windows from a spectro-
gram (c.f. top of Figure 2) and produces as output a tensor of size (‍m‍ batches ‍×c‍ classes ‍×t‍ time bins).
In Figure 10 we show how networks blocks in that figure above relate to the shapes of tensors, and

Fr
eq

ue
nc

y

Time

Spectrogram

2D conv.

T bins

51
3

bi
ns

[T×513×32]

[T×64×32]
[T×64×64]

[T×8×64]

[T×512×1]

[T×1024×1]

[T×Nsyl.×1]
[T×1×1]

[T×513×1]

Max. pool 2D conv. Max. pool Flatten

Bidirectional
LSTM Projection

argmax(N)

Ti
m

e

W
in

do
w

1s

Freq.

F

B

label at
time bin t

2 Convolutional blocks

p(label=n)
Spectrogram

W 1

W
n

Recurrent
layer (LSTM)

⁕{ {
2D conv. Max. pool

Figure 10. TweetyNet architecture and tensor shapes resulting from each operation in the network.

https://doi.org/10.7554/eLife.63853

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 21 of 32

how those shapes change as the network maps input to output. We refer to this as we give specific
parameters here. Note that we leave out the batch dimension in this description.

Convolutional blocks
The spectrogram window passes through two standard convolutional blocks, each of which consists of
a convolutional layer and a max pooling layer. We use the standard term ‘block’ to refer to a layer that
performs several operations on its inputs. For a convolutional block, the first operation is the convo-
lution operation itself (’2D conv.’ in Figures 2 and 10), as it is defined in the deep learning literature.
This cross-correlation-like operation (asterisk in Figures 2 and 10) between the spectrogram window
and the learned filters (greyscale boxes in Figures 2 and 10) produces a set of feature maps. In both
convolutional blocks, we use filters of size (5 × 5), with a stride of 1. The first block contains 32 filters
and the second contains 64, as shown in Figure 10. We pad the feature maps so that they are the
same size as the input. For a spectrogram window of size (176 time bins x 513 frequency bins), as we
use for Bengalese finch song, this would produce an output of (176 × 513 x 32) from the first convo-
lution, similar to what is shown in Figure 10.

A key advantage of convolutional layers is that they enable ‘weight sharing’, that is, the rela-
tively small number of parameters in each filter is applied to the input via the convolution operation,
instead of needing to have weights for each dimension of the input (e.g. each pixel in an image). We
used a full weight sharing scheme, meaning that each filter was cross-correlated with the entire input
window. Previous work has tested whether performance on tasks related to ours, such as speech
recognition, might be improved by alternate weight-sharing schemes, for instance by restricting filters
to specific frequency ranges within a spectrograms. One previous study did report a benefit for this
limited weight-sharing scheme applied to automatic speech recognition (Abdel-Hamid et al., 2014).
However, this approach has not been widely adopted, and to the best of our knowledge, the common
‘full’ weight-sharing approach that we employ here is used by all state-of-the-art models for speech
recognition for example, (Amodei et al., 2016), as well as the event detection models that we based
our architecture on (Parascandolo et al., 2016; Lea et al., 2017).

Max pooling layer
In both convolutional blocks, we followed the convolutional layer by a max pooling layer. The max
pooling operation (’Pooling’ in Figure 2) downsamples feature maps by sliding a window across the
input (orange bin in Figure 2) and at each point keeping only the element with the maximum value
within the window. We used a window size of (8 × 1) and a stride of (8, 1), with windows oriented so
that the side of size one and the stride of size one were in the temporal dimension. Both the shape
and stride were meant to avoid downsampling in the temporal dimension, under the assumption that
it was important to retain this information. Applying a max pooling operation with these parameters
to the first set of convolutional maps with size (176 × 513 x 32) produces an output tensor with size
(176 × 64 x 32) as shown in as shown in Figure 10.

The max pooling operation is widely used in networks for related tasks like automatic speech
recognition and audio event detection. Previous work has not found any benefit to alternative pooling
operations such as stochastic pooling (Sainath et al., 2013a) and alternatives have not been widely
adopted. To our knowledge most related work also adopts our approach of not down-sampling in
the temporal dimension, and studies have not found any advantage when using larger strides in the
temporal dimension (Sainath et al., 2013a).

Recurrent layer
The output of the second convolutional block passes through a recurrent layer made up of LSTM
units. Before passing it into the recurrent layer, we stack the feature maps: e.g. an output of (176 time
bins x eight down-sampled frequency bins x 64 feature maps) becomes (176 time bins x 512 features)
(indicated as "Flatten" in Figure 10). We specifically use a bidirectional LSTM, meaning the recurrent
network processes the input in both the forward and backward direction. By default we set the size
of the hidden state in the network equal to the ‘features’ dimension, and based on experiments
in Figure 5 this appears to be a reasonable default. The matrix of hidden states for all time steps
become the output that we feed into the final layer. We adopt the standard practice of concatenating

https://doi.org/10.7554/eLife.63853

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 22 of 32

the hidden states from running the sequence in the forward and backward directions, doubling its
size.

Linear layer
The final layer in TweetyNet is a linear projection (‍

−→
Wt,s‍, purple matrix in Figure 2) of the recurrent

layer’s output onto the different syllable classes, ‍s = 1...n‍, resulting in a vector of ‍n‍ syllable-similarity
scores for each spectrogram time bin ‍t‍. The number of classes, ‍n‍, is predetermined by the user. To
segment syllables, the bin-wise syllable-similarity scores are first used to select a single syllable class
per time bin by choosing the label with the highest syllable-similarity score. Since similarity scores can
be normalized, this is akin to maximum a-posteriori (MAP) label selection. Then, the labeled time bins
are used to separate continuous song segments from no-song segments and to annotate each song-
segment with a single label using majority decision across time bins in that segment.

Training and benchmarking
Input data transformations
Windows
As stated above, the input to the network consists of spectrogram windows. We used a window size
of 176 time bins for Bengalese finch song and 370 time bins for canary song, with the exception of
experiments testing the impact of this hyperparameter in Figure 5.

Vectors of labeled time bins
We formulate annotation as a supervised learning problem where each spectrogram window ‍x‍ has a
corresponding vector of labeled time bins ‍y‍, and our goal is to train the network ‍f ‍ to correctly map
a window to this vector of labeled time bins, ‍f(x) −→ y‍. These vectors are generated dynamically
by our software from annotations consisting of segment labels and their onset and offset times.
Each element in the vector ‍y‍ contains an integer label ct corresponding to the syllable class ‍c‍ in
that time bin of the spectrogram window xt. To this set of class labels, we add an additional class
for the ‘background’ time bins that result naturally from gaps between annotated segments (’Bg.’
in Figure 2). This ‘background’ class will include brief quiet periods between syllables, as well as
any other longer periods left unlabeled by the annotator that may contain non-song bird calls and
background noises.

Batches of (window, labeled time bin vector) pairs
During training, we randomly grab a batch of (window, labeled time bin vector) pairs ‍(x, y)‍ from all
possible windows in the dataset X. To achieve this, we developed a torch Dataset class that represents
all such possible windows paired with the corresponding vector of labeled timebins ‍(xi, yi)‍. The class
tracks which windows the network has already seen during any epoch (iteration through the entire
data set), ensuring that we avoid repeating the same windows during training, which could have
encourage the network to memorize the training data.

The choice to randomly present windows also acts as a form of data augmentation that encourages
the network to exhibit translation invariance. That is, because the network sees very similar sequences
repeatedly, but those sequences are randomly shifted forward or backward slightly in time, it learns
to correctly classify all time bins in a window regardless of how the window is presented to the model.

Normalization
Normalization is a standard practice that improves optimization of machine learning models, but is not
always necessary for neural networks.

For Bengalese finch song, we normalized spectrograms; more precisely we standardized by finding
the mean μ and standard deviation ‍σ‍ of every frequency bin across all spectrograms in the training
set, and then for every window ‍x‍ we subtracted off the mean and divided by the standard deviation:

‍xnormalized = x−µ
σ ‍. Note that we achieved this with a SpectrogramScaler class built into the vak library

rather than pre-processing with a script. For canary song we did not apply this normalization, and left
the spectrograms as processed by the Matlab code referenced above. We did not systematically asses
how normalization impacted performance.

https://doi.org/10.7554/eLife.63853

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 23 of 32

Spectrogram thresholding
We did not apply any thresholding to spectrograms, as is often done when visualizing them to increase
contrast between sounds of interest and often quieter background noise. In preliminary experiments,
we did test the effect of thresholding spectrograms, setting any value of the power spectrum less than
the specified threshold to zero. However, we found that this led to a slight increase in error rates, and
also made training more unstable. Our best guess for this effect of thresholding is that it produces
abrupt, large magnitude changes in values in the spectrogram that may affect the gradient computed
during training.

Metrics
We define the metrics we use before describing our training methods, since our methods depend on
these metrics. We measured performance of TweetyNet with two metrics.

Frame error
The first is the frame error, that simply measures for each acoustic frame (in our case, each time bin in
a spectrogram) whether the predicted label matches the ground truth label. Hence the range of the
frame error is between 0 and 1, that is can be stated as a percent, and gives an intuitive measure of a
model’s overall performance. Previous work on supervised sequence labeling, including bidirectional-
LSTM architectures similar to ours, has used this metric (Graves, 2012; Graves and Schmidhuber,
2005).

Syllable error rate
The second metric we used is commonly called the word error rate in the speech recognition litera-
ture, and here we call it the syllable error rate. Because the syllable error rate is key to our results, we
define it here, as shown in Equation 1.

	﻿‍

Syllable Error rate = Edit distance(reference sequence, predicted)
Length(reference sequence)

= Substitutions + Insertions + Deletions
Length(reference sequence) ‍�

(1)

This metric is an edit distance, that counts the number of edits (insertions, deletions, and substitu-
tions) needed to correct a predicted sequence so it matches the ground-truth (‘reference’) sequence.
A common algorithm used to compute the number of edits is the Levenshtein distance that we use
here. The edit distance is normalized by the length of the ground truth sequence, to make it possible
to compare between sequences of different lengths.

Training
We trained all models using the Adam optimizer (Kingma and Ba, 2014) with a learning
rate of 0.001, and other hyperparameters set to the defaults in the torch library:

‍(β1,β2 = (0.9, 0.999), ϵ = 1e − 08, weight decay = 0.0, amsgrad = False)‍.
For all experiments, we used a batch size of 8. We specify a number of epochs in our configura-

tion files (an epoch is one iteration through the entire training dataset) but in practice we found that
the number of windows is so large that we did not complete one entire epoch of training before
network performance on the validation set met the criteria for early stopping, as described in the next
paragraph.

Early stopping
To mitigate the tendency of neural networks to overfit, we employed early stopping. Error rates are
measured on a validation set every val_step training steps, and training stops early if these error rates
do not decrease after patience consecutive validation steps, where val_step and patience are option
values declared by a user in configuration files for the vak library. We chose to specify validation in
terms of a global step instead of epoch, because as just stated the size of the dataset of all possible
windows is so large that training rarely completed an entire epoch. For each bird, the validation data
set was kept separate from the training and test data sets. For Bengalese finches and canaries we
used: ‍(val_step = 250, patience = 4,)‍.

https://doi.org/10.7554/eLife.63853

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 24 of 32

Learning Curves
To estimate how much manually annotated training data is required to achieve a certain level of model
performance, we generated learning curves that plot a metric such as frame error as a function of the
amount of training data, as in the experiments shown in Figures 3 and 4. These experiments followed
standard methods for benchmarking supervised machine learning algorithms, following good prac-
tices (James et al., 2013), such as training multiple replicates on separate subsets of the training data.
Producing these learning curves where the dataset size is measured in duration required extra steps
not needed for other tasks such as image classification. For each individual bird, we fit networks with
training sets of increasing size (duration in seconds) and then measured performance on a separate,
fixed test set. For each training replicate, audio files were drawn at random from a fixed-size total
training set until the target size (e.g. 60 s) was reached. If the total duration of the randomly drawn
audio files extended beyond the target, they were clipped at that target duration while ensuring
that all syllable classes were still present in the training set. After training completed, we computed
metrics such as frame error and syllable error rate on the held-out test set for each bird. As stated,
we chose to use a totally separate fixed-size set, instead of e.g. using the remainder of the training
data set, or generating multiple test sets in a ‍k‍-fold validation scheme. We did this for two reasons:
first, because computing metrics on relatively large test sets can be computationally expensive, and
second, because we wanted to be sure that any variance in our measures across training replicates
could be attributed to the randomly drawn training set, and not to changes in the test set.

In the case of Bengalese finches, we used training sets with durations {30, 45, 75, 120, 180, 480,
600}, training 10 replicates for each duration, with subsets drawn randomly from a total training set
of 900 seconds for each individual bird. The duration of the fixed test set for each bird was 400 s. For
canaries, we used training sets of durations {120, 180, 240, 300, 360, 420, 480, 540, 600, 660}, training
seven replicates for each duration, with subsets drawn randomly from a total training set of 25,000 s
for each bird. The duration of the fixed test set for each bird was 5000 s. For the point estimate of
the model’s asymptotic syllable error rate on canary song, we used a training set of 6000 s and a test
set of 5000 s.

The method for generating learning curves as just described is built into the vak library and can
be reproduced using the learncurve command in the terminal, along with the configuration files we
shared.

Comparison with a support vector machine model
In Figure 3, we compare performance of TweetyNet with a Support Vector Machine (SVM) model.
We trained the model on a set of audio features first described in Tachibana et al., 2014. Feature
extraction code was translated to Python from original Matlab code kindly shared by the author. Based
on previous work (Nicholson, 2016), we used a Support Vector Machine with a radial basis function
(RBF) kernel. To find good values for the kernel coefficient ‍γ‍ and the regularization parameter ‍C‍, we
performed halving random search across a range of values (‍γ‍=(1e-9, 1e-3), ‍C‍=(60,1e10), log uniform
distribution). In initial tests, we found that values of ‍γ‍ larger than 1.0 tended to produce pathological
behavior where the model predicted one class for all features. We chose ranges for hyperparameter
search that avoided this behavior. To carry out hyperparameter search we developed a pipeline in
scikit-learn (Pedregosa et al., 2011; Grisel et al., 2020). In very rare cases, for two of the four birds,
we needed to perform more than one run of the pipeline to find hyperparameters that did not cause
it. To extract features and train models we adapted code from the hybrid-vocal-classifier library (Nich-
olson, 2021b), which provides a high-level interface to scikit-learn, and our pipeline including hyper-
parameter tuning was similarly built with scikit-learn code. All SVM models were trained on the exact
same train-test splits used for training TweetyNet, by using dataset files generated by vak. This meant
that for each training set duration there were 10 replicates trained for Bengalese finch song and seven
replicates for canary song.

Statistics
To compare syllable error rates, we used the Wilcoxon paired signed-rank test, a non-parametric alter-
native to the T-test. We computed the test once for each training set duration, using paired samples:
same number of training replicates that were each trained on a randomly drawn subset of training

https://doi.org/10.7554/eLife.63853

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 25 of 32

data, where the ‘factor’ within each pair of replicates was the model used, TweetyNet or the SVM. To
test for homogeneity of variance, we used Levene’s test.

Additional analysis of model performance
Percentage of errors near boundaries
In ’Simple post-processing greatly reduces syllable error rates‘ we estimate the percentage of errors
near boundaries. By ‘boundaries’ we mean the onset and offset times of syllables when they are manu-
ally annotated. A distribution of syllable durations computed from these onsets and offsets shows that
boundaries are not static. There are two sources of this variation: naturally occurring motor variability
in birdsong, and an additional noise component added by audio segmentation and human annota-
tors. This variance in turn gives rise to frame errors, where the ground truth annotation and a trained
TweetyNet model disagree about which of the time bins should be assigned the ’background’ label.
These frame errors very close to boundaries are likely to have a much smaller impact on the syllable
error rate than frame errors in the middle of syllables, because near the boundary they have no effect
on the sequence of labels produced by segmenting the model output, and only a minor effect on the
estimated onset and offset times. In the main text and in Figure 5—figure supplement 1 we estimate
the percent of all such frame errors occurring at these noisy syllable onset and offset boundaries. To
do so, we computed for every onset and offset the number of frame errors within a fixed distance of
two time bins that specifically involved disagreement between the ground truth annotation and the
trained model on the the ’background’ class.

Errors in rare sequences
For all sequence of Bengalese finch syllables a-b we examined all possibilities for the following syllable
and identified the most frequent sequence, a-b-x. Then, among all sequences a-b-y that are at least
four times less frequent than a-b-x, we measured the frame error during the syllable y. This detailed
analysis showed that there is a very small effect on rare variants. Namely, even if the sequence a-b-y
appears 100–1000 times less frequently than a-b-x it does not incur high error rates in most cases.
We use two statistical tests to quantify this claim. First, we measure the Pearson correlation between
the relative frequency of the rare event (prob(a-b-y) divided by prob(a-b-x)) and the frame error in
the syllable ’y’ (the fraction of spectrogram time bins not labeled ’y’ within that segment). Second, we
divide the rare events to the more rare and more common (relative frequency smaller or larger than
1/8) and measure the fraction of rare events exceeding the median error rate. We use the binomial
z-test to compare the fraction and show that the difference is not significant.

Model output as syllable likelihoods
In Figure 9, we present model outputs one step prior to assigning the most likely label to each spec-
trogram time bin. At that stage, one before the argmax(N) step in Figure 2, the model output for a
given time bin ‍t‍ is a real-valued affinity ‍a(t, s) ∈ R‍ of all predefined syllable classes ‍s‍. In Figure 9 we
convert these numbers to likelihoods by subtracting the minimum value and normalizing separately

for each time bin
‍
L(t, s) = a(t,s)−mins′ a(t,s′)∑

σ[a(t,σ)−mins′ a(t,s′)]‍
. This transformation was done for presentation only.

Applying the commonly-used softmax transform (
‍
x → exp(x)∑

x exp(x)‍
) is equivalent since we only keep the

maximal value.

Analysis of behavioral data and predicted annotations
Bengalese finch branch points
We analyzed the Bengalese finch song in Nicholson et al., 2017 to determine whether we could
replicate key findings about the stability of branch points from Warren et al., 2012 as described in the
main text, and, if so, whether we could recover that results from annotations predicted by TweetyNet.

To analyze statistics of branch points in the Bengalese finch song from Nicholson et al., 2017, we
first identified candidate branch points by visual inspection of each birds’ annotated song. Then, for
each day of a bird’s song, we counted all occurrences of transitions from one syllable class to another,
that is bigrams. We placed these counts in a matrix where rows were the first syllable of the bigram
(‘from’) and the columns where the second syllable (‘to’), and then performed a row-wise normaliza-
tion to produce a first-order Markov transition matrix, where the elements are transition probabilities

https://doi.org/10.7554/eLife.63853

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 26 of 32

from one syllable class to another. We also applied a thresholding so that any elements in the matrix
less than 0.002 were set to 0.

Statistical test
To test whether transition probabilities were stable across days, we used a permutation test, replicating
the analysis of Warren et al., 2012. We took all occurrences of a transition point across two days,
and then for each permutation, swapped the label for which day it belong to, and then computed the
transition probabilities for the permuted days. Using 1000 permutations, we generated a distribution
of diffrences and then asked whether the observed difference was larger than this bootstrapped
distribution.

Analysis of predicted annotations
Before testing whether we could recover the result that branch points were stable from annotations
predicted by TweetyNet, we measured the syllable error rate of the trained models that we would use
to predict annotations. For 1 day of song from one bird (or60yw70), we realized that the manually-
annotated set of songs was even smaller (200 s) than the test sets we used in the benchmarking
section. We removed this day because it is not really an ‘entire day’ of song.

Canary syntax model
Shared template dependence on number of syllables in song
In each bird, we define an upper bound for repeating parts of songs using pairwise comparisons.
For each song we examined all other songs with equal or larger number of syllables and found the
largest shared string of consecutive syllables. The fraction of shared syllables is the ratio between the
number of shared sequence and the number of syllables in the first, shorter, song. Then, we bin songs
by syllable counts (bin size is 10 syllables) and calculate the mean and standard deviation across all
pairwise comparisons. Results are shown in Figure 1—figure supplement 2.

Probabilistic suffix trees
For each canary phrase type, we describe the dependency of the following transition on previous
phrases with a probabilistic suffix tree. This method was described in a previous publication from our
lab (Markowitz et al., 2013, Markowitz, 2022a). Briefly, the tree is a directed graph in which each
phrase type is a root node representing the first order (Markov) transition probabilities to downstream
phrases, including the end of song. The pie charts in Figure 7, Figure 7—figure supplement 1, and
Figure 7—figure supplement 2 show such probabilities. Upstream nodes represent higher order
Markov chains that are added sequentially if they significantly add information about the transition.

Model cross validation to determine minimal node frequency
To prevent overfitting, nodes in the probabilistic suffix trees are added only if they appear more often
than a threshold frequency, ‍Pmin‍. To determine ‍Pmin‍ we replicate the procedure in Markowitz et al.,
2013 and carry a 10-fold model cross validation procedure. In this procedure the dataset is randomly
divided into a training set, containing 90 percent of songs, and a test set, containing 10 percent of
songs. A PST is created using the training set and used to calculate the negative log likelihood of the
test set. This procedure is repeated 10 times for each value of ‍Pmin‍, the x-axis in Figure 8a. For data
sets of different sizes (curves in Figure 8a x-axis in Figure 8b) the mean negative log-likelihood across
the 10 cross validation subsets and across 10 data sets, y-axis in Figure 8a, is then used to find the
optimal value of ‍Pmin‍ - the minimum negative log-likelihood that corresponds to the highest preci-
sion without over-fitting the training set. All PSTs in Figure 7, Figure 7—figure supplement 1, and
Figure 7—figure supplement 2 are created using the cross-validated ‍Pmin‍.

Code Availability
The code implementing the TweetyNet architecture, and code to reproduce experiments and figures
in this paper, are available here (version 0.7.1, 10.5281/zenodo.5823556).

To aid with reproducibility of our experiments, and to make TweetyNet more accessible to
researchers studying birdsong and other animal vocalizations, we developed a software library, vak
(Nicholson and Cohen, 2021), available here.

https://doi.org/10.7554/eLife.63853
https://github.com/yardencsGitHub/tweetynet
https://github.com/NickleDave/vak

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 27 of 32

We also developed Python tools to work with the datasets and their annotation: (Nicholson,
2021a; Nicholson, 2021c; Nicholson, 2021d).

All software was implemented in Python, leveraging the following open-source scientific libraries,
frameworks, and tools: attrs (Schlawack, 2020), dask (Dask Development Team, 2016), jupyter
(Kluyver et al., 2016), matplotlib (Hunter, 2007; Caswell et al., 2020), numpy (van der Walt et al.,
2011; Harris et al., 2020), pandas (pandas development team, 2020), scikit-learn (Pedregosa
et al., 2011; Grisel et al., 2020), scipy (Virtanen et al., 2020), torch (Paszke et al., 2017), torchvi-
sion (Marcel and Rodriguez, 2010), seaborn (Waskom et al., 2020; Waskom, 2021), and tqdm (da
Costa-Luis, 2019).

Data Collection
Use of existing datasets
Bengalese finch song is from two publicly-available repositories. Results in Figures 3, 4 and 6 all make
use of "Bengalese finch Song Repository" (Nicholson et al., 2017). For experiments in Figure 4 we
added song from four Bengalese finches in an additional dataset, (Koumura, 2016), and accompa-
nied the paper (Koumura and Okanoya, 2016). Please see ‘Annotation of Bengalese finch song’
for a description of how we annotated that data. Supplementary figures with descriptive statistics of
song also use datasets of Waterslager canary songs (Markowitz et al., 2013), Bengalese finch songs
(Koumura and Okanoya, 2016) and Zebra finch songs (Otchy et al., 2015) generously shared by
those authors.

Domestic canary song screening
Birds were individually housed in soundproof boxes and recorded for 3–5 days (Audio-Technica
AT831B Lavalier Condenser Microphone, M-Audio Octane amplifiers, HDSPe RayDAT sound card and
VOS games' Boom Recorder software on a Mac Pro desktop computer). In-house software was used
to detect and save only sound segments that contained vocalizations. These recordings were used to
select subjects that are copious singers (‍≥ 50‍ songs per day) and produce at least 10 different syllable
types.

Domestic canary audio recording
All data used in this manuscript was acquired between late April and early May 2018 - a period during
which canaries perform their mating season songs. Birds were individually housed in soundproof
boxes and recorded for 7–10 days (Audio-Technica AT831B Lavalier Condenser Microphone, M-Audio
M-track amplifiers, and VOS games' Boom Recorder software on a Mac Pro desktop computer).
In-house software was used to detect and save only sound segments that contained vocalizations.
Separate songs were defined by silence gaps exceeding 1 second.

Acknowledgements
This study was supported by NIH grants R01NS104925, R24NS098536, and R01NS118424 (TJG) We
thank J Markowitz and TM Otchy for sharing song datasets, and Nvidia Corporation for a technology
grant (YC and Samuel J Sober lab). We also thank the Sober lab for providing compute resources and
feedback on early versions of this work.

Additional information

Funding

Funder Grant reference number Author

National Institute of
Neurological Disorders
and Stroke

R01NS104925 Alexa Sanchioni
Emily K Mallaber
Viktoriya Skidanova
Timothy J Gardner

https://doi.org/10.7554/eLife.63853
https://figshare.com/articles/Bengalese_Finch_song_repository/4805749
https://figshare.com/articles/BirdsongRecognition/3470165

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 28 of 32

Funder Grant reference number Author

National Institute of
Neurological Disorders
and Stroke

R24NS098536 Alexa Sanchioni
Emily K Mallaber
Viktoriya Skidanova
Timothy J Gardner

National Institute of
Neurological Disorders
and Stroke

R01NS118424 Timothy J Gardner

The funders had no role in study design, data collection and interpretation, or the
decision to submit the work for publication.

Author contributions
Yarden Cohen, Conceptualization, Data curation, Formal analysis, Investigation, Methodology,
Resources, Software, Supervision, Visualization, Writing – original draft, Writing – review and editing;
David Aaron Nicholson, Conceptualization, Data curation, Formal analysis, Investigation, Method-
ology, Resources, Software, Validation, Visualization, Writing – original draft, Writing – review and
editing; Alexa Sanchioni, Emily K Mallaber, Viktoriya Skidanova, Data curation; Timothy J Gardner,
Funding acquisition, Project administration, Resources, Writing – original draft, Writing – review and
editing

Author ORCIDs
Yarden Cohen ‍ ‍ http://orcid.org/0000-0002-8149-6954
David Aaron Nicholson ‍ ‍ http://orcid.org/0000-0002-4261-4719
Timothy J Gardner ‍ ‍ http://orcid.org/0000-0002-1744-3970

Ethics
All procedures were approved by the Institutional Animal Care and Use Committees of Boston Univer-
sity (protocol numbers 14-028 and 14-029). Song data were collected from adult male canaries (n =
5). Canaries were individually housed for the entire duration of the experiment and kept on a light-
dark cycle matching the daylight cycle in Boston (42.3601 N). The birds were not used in any other
experiments.

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.63853.sa1
Author response https://doi.org/10.7554/eLife.63853.sa2

Additional files
Supplementary files
•  Transparent reporting form

Data availability
Datasets of annotated Bengalese finch song are available here and here. Datasets of annotated canary
song are available here. Model checkpoints, logs, and source data files are available here. Source data
files for figure are in the repository associated with the paper here (version 0.7.1).

The following datasets were generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Cohen Y 2022 Song recordings and
annotation files of 3
canaries used to evaluate
training of TweetyNet
models for birdsong
segmentation and
annotation

https://​doi.​org/​10.​
5061/​dryad.​xgxd254f4

Dryad Digital Repository,
10.5061/dryad.xgxd254f4

 Continued on next page

https://doi.org/10.7554/eLife.63853
http://orcid.org/0000-0002-8149-6954
http://orcid.org/0000-0002-4261-4719
http://orcid.org/0000-0002-1744-3970
https://doi.org/10.7554/eLife.63853.sa1
https://doi.org/10.7554/eLife.63853.sa2
https://figshare.com/articles/Bengalese_Finch_song_repository/4805749
https://figshare.com/articles/BirdsongRecognition/3470165
https://doi.org/10.5061/dryad.xgxd254f4
http://dx.doi.org/10.5061/dryad.gtht76hk4
https://doi.org/10.5281/zenodo.5823556
https://doi.org/10.5061/dryad.xgxd254f4
https://doi.org/10.5061/dryad.xgxd254f4

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 29 of 32

Author(s) Year Dataset title Dataset URL Database and Identifier

Nicholson D, Cohen Y 2022 Model checkpoints, logs,
and source data files

https://​doi.​org/​10.​
5061/​dryad.​gtht76hk4

Dryad Digital Repository,
10.5061/dryad.gtht76hk4

Nicholson DA 2022 TweetyNet https://​doi.​org/​10.​
5281/​zenodo.​5823556

Zenodo, 10.5281/
zenodo.5823556

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Nicholson D, Queen
JE, Sober JS

2017 Bengalese Finch song
repository

https://​figshare.​com/​
articles/​Bengalese_​
Finch_​song_​
repository/​4805749

figshare, 10.6084/
m9.figshare.4805749.v6

References
Abdel-Hamid O, Mohamed A, Jiang H, Deng L, Penn G, Yu D. 2014. Convolutional Neural Networks for Speech

Recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing 22:1533–1545. DOI: https://​
doi.org/10.1109/TASLP.2014.2339736

Alliende J, Lehongre K, Del Negro C. 2013. A species-specific view of song representation in a sensorimotor
nucleus. Journal of Physiology, Paris 107:193–202. DOI: https://doi.org/10.1016/j.jphysparis.2012.08.004,
PMID: 22960663

Alonso LM, Alliende JA, Goller F, Mindlin GB. 2009. Low-dimensional dynamical model for the diversity of
pressure patterns used in canary song. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics
79:041929. DOI: https://doi.org/10.1103/PhysRevE.79.041929, PMID: 19518278

Alvarez-Buylla A, Kirn JR, Nottebohm F. 1990. Birth of projection neurons in adult avian brain may be related to
perceptual or motor learning. Science 249:1444–1446. DOI: https://doi.org/10.1126/science.1698312, PMID:
1698312

Amodei D, Ananthanarayanan S, Anubhai R, Bai J, Battenberg E, Case C, Casper J, Catanzaro B, Cheng Q,
Chen G. 2016. Deep speech 2: End-to-end speech recognition in english and mandarin. In International
Conference on Machine Learning PMLR. 173–182.

Anderson SE, Dave AS, Margoliash D. 1996. Template-based automatic recognition of birdsong syllables from
continuous recordings. The Journal of the Acoustical Society of America 100:1209–1219. DOI: https://doi.org/​
10.1121/1.415968, PMID: 8759970

Appeltants D, Gentner TQ, Hulse SH, Balthazart J, Ball GF. 2005. The effect of auditory distractors on song
discrimination in male canaries (Serinus canaria). Behavioural Processes 69:331–341. DOI: https://doi.org/10.​
1016/j.beproc.2005.01.010, PMID: 15896531

Audacity Team. 2019. Audacity. Audacity. https://www.audacityteam.org/2019/?p=t
Berwick RC, Okanoya K, Beckers GJL, Bolhuis JJ. 2011. Songs to syntax: the linguistics of birdsong. Trends in

Cognitive Sciences 15:113–121. DOI: https://doi.org/10.1016/j.tics.2011.01.002, PMID: 21296608
Böck S, Schedl M. 2012. Polyphonic Piano Note Transcription with Recurrent Neural Networks. IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). 121–124.
Boersma P, Weenink D. 2021. Doing Phonetics by Computer. 5.3.51. Praat. https://www.fon.hum.uva.nl/praat/
Brainard MS, Doupe AJ. 2002. What songbirds teach us about learning. Nature 417:351–358. DOI: https://doi.​

org/10.1038/417351a, PMID: 12015616
Burkett ZD, Day NF, Peñagarikano O, Geschwind DH, White SA. 2015. VoICE: A semi-automated pipeline for

standardizing vocal analysis across models. Scientific Reports 5:10237. DOI: https://doi.org/10.1038/​
srep10237, PMID: 26018425

Caswell TA, Droettboom M, Lee A, de Andrade ES. 2020. Matplotlib/Matplotlib: REL. V3.3.2. Zenodo. https://​
doi.org/10.5281/zenodo/matplotlib.org/

Chen T, Guestrin C. 2016. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’16. 785–794. DOI: https://doi.org/​
10.1145/2939672.2939785

Coffey KR, Marx RG, Neumaier JF. 2019. DeepSqueak: a deep learning-based system for detection and analysis
of ultrasonic vocalizations. Neuropsychopharmacology : Official Publication of the American College of
Neuropsychopharmacology 44:859–868. DOI: https://doi.org/10.1038/s41386-018-0303-6, PMID: 30610191

Cohen Y, Shen J, Semu D, Leman DP, Liberti WA, Perkins LN, Liberti DC, Kotton DN, Gardner TJ. 2020. Hidden
neural states underlie canary song syntax. Nature 582:539–544. DOI: https://doi.org/10.1038/s41586-020-​
2397-3, PMID: 32555461

Cohen Y. 2022. BirdSongBout. GitHub. https://github.com/yardencsGitHub/BirdSongBout/tree/master/helpers/​
GUI

 Continued

https://doi.org/10.7554/eLife.63853
http://dx.doi.org/10.5061/dryad.gtht76hk4
http://dx.doi.org/10.5061/dryad.gtht76hk4
https://doi.org/10.5281/zenodo.5893592
https://doi.org/10.5281/zenodo.5893592
https://figshare.com/articles/Bengalese_Finch_song_repository/4805749
https://figshare.com/articles/Bengalese_Finch_song_repository/4805749
https://figshare.com/articles/Bengalese_Finch_song_repository/4805749
https://figshare.com/articles/Bengalese_Finch_song_repository/4805749
https://doi.org/10.1109/TASLP.2014.2339736
https://doi.org/10.1109/TASLP.2014.2339736
https://doi.org/10.1016/j.jphysparis.2012.08.004
http://www.ncbi.nlm.nih.gov/pubmed/22960663
https://doi.org/10.1103/PhysRevE.79.041929
http://www.ncbi.nlm.nih.gov/pubmed/19518278
https://doi.org/10.1126/science.1698312
http://www.ncbi.nlm.nih.gov/pubmed/1698312
https://doi.org/10.1121/1.415968
https://doi.org/10.1121/1.415968
http://www.ncbi.nlm.nih.gov/pubmed/8759970
https://doi.org/10.1016/j.beproc.2005.01.010
https://doi.org/10.1016/j.beproc.2005.01.010
http://www.ncbi.nlm.nih.gov/pubmed/15896531
https://www.audacityteam.org/2019/?p=t
https://doi.org/10.1016/j.tics.2011.01.002
http://www.ncbi.nlm.nih.gov/pubmed/21296608
https://www.fon.hum.uva.nl/praat/
https://doi.org/10.1038/417351a
https://doi.org/10.1038/417351a
http://www.ncbi.nlm.nih.gov/pubmed/12015616
https://doi.org/10.1038/srep10237
https://doi.org/10.1038/srep10237
http://www.ncbi.nlm.nih.gov/pubmed/26018425
https://doi.org/10.5281/zenodo/matplotlib.org/
https://doi.org/10.5281/zenodo/matplotlib.org/
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1038/s41386-018-0303-6
http://www.ncbi.nlm.nih.gov/pubmed/30610191
https://doi.org/10.1038/s41586-020-2397-3
https://doi.org/10.1038/s41586-020-2397-3
http://www.ncbi.nlm.nih.gov/pubmed/32555461
https://github.com/yardencsGitHub/BirdSongBout/tree/master/helpers/GUI
https://github.com/yardencsGitHub/BirdSongBout/tree/master/helpers/GUI

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 30 of 32

da Costa-Luis CO. 2019. tqdm: A Fast, Extensible Progress Meter for Python and CLI. Journal of Open Source
Software 4:1277. DOI: https://doi.org/10.21105/joss.01277

Daou A, Johnson F, Wu W, Bertram R. 2012. A computational tool for automated large-scale analysis and
measurement of bird-song syntax. Journal of Neuroscience Methods 210:147–160. DOI: https://doi.org/10.​
1016/j.jneumeth.2012.07.020, PMID: 22890237

Dask Development Team. 2016. Dask: Library for Dynamic Task Scheduling. 0.1. Dask. https://docs.dask.org
Farabet C, Couprie C, Najman L, Lecun Y. 2013. Learning hierarchical features for scene labeling. IEEE

Transactions on Pattern Analysis and Machine Intelligence 35:1915–1929. DOI: https://doi.org/10.1109/TPAMI.​
2012.231, PMID: 23787344

Fee MS, Scharff C. 2010. The songbird as a model for the generation and learning of complex sequential
behaviors. ILAR Journal 51:362–377. DOI: https://doi.org/10.1093/ilar.51.4.362, PMID: 21131713

Fonseca AH, Santana GM, Ortiz GMB, Bampi S, Dietrich MO. 2021. Analysis of ultrasonic vocalizations from
mice using computer vision and machine learning. eLife 10:e59161. DOI: https://doi.org/10.7554/eLife.59161

Gardner TJ, Naef F, Nottebohm F. 2005. Freedom and rules: the acquisition and reprogramming of a bird’s
learned song. Science 308:1046–1049. DOI: https://doi.org/10.1126/science.1108214, PMID: 15890887

Goffinet J, Brudner S, Mooney R, Pearson J. 2021. Low-dimensional learned feature spaces quantify individual
and group differences in vocal repertoires. eLife 10:e67855. DOI: https://doi.org/10.7554/eLife.67855, PMID:
33988503

Goldman SA, Nottebohm F. 1983. Neuronal production, migration, and differentiation in a vocal control nucleus
of the adult female canary brain. PNAS 80:2390–2394. DOI: https://doi.org/10.1073/pnas.80.8.2390, PMID:
6572982

Goodfellow I, Bengio Y, Courville A. 2016. Deep Learning. MIT press.
Graves A, Schmidhuber J. 2005. Framewise phoneme classification with bidirectional LSTM and other neural

network architectures. Neural Networks 18:602–610. DOI: https://doi.org/10.1016/j.neunet.2005.06.042,
PMID: 16112549

Graves A, Fernández S, Gomez F, Schmidhuber J. 2006. Connectionist temporal classification: Labelling
unsegmented sequence data with recurrent neural networks. In Proceedings of the 23rd International
Conference on Machine Learning. 369–376. DOI: https://doi.org/10.1145/1143844.1143891

Graves A. 2012. Supervised sequence labelling. Graves A (Ed). In Supervised Sequence Labelling with Recurrent
Neural Networks. Springer. p. 5–13. DOI: https://doi.org/10.1007/978-3-642-24797-2

Grisel O, Mueller O, Gramfort A, Louppe G. 2020. Scikit-Learn/Scikit-Learn: Scikit-Learn. 0.24.0. Scikit-Learn.
https://scikit-learn.org/stable/

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S,
Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, Del Río JF, Wiebe M, Peterson P,
Gérard-Marchant P, et al. 2020. Array programming with NumPy. Nature 585:357–362. DOI: https://doi.org/10.​
1038/s41586-020-2649-2, PMID: 32939066

Hedley RW. 2016. Complexity, Predictability and Time Homogeneity of Syntax in the Songs of Cassin’s Vireo
(Vireo cassinii). PLOS ONE 11:e0150822. DOI: https://doi.org/10.1371/journal.pone.0150822, PMID: 27050537

Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S. 2017. GANs Trained by a Two Time-Scale Update
Rule Converge to a Local Nash Equilibrium. [arXiv]. https://​arxiv.​org/​abs/​1706.​08500

Hunter JD. 2007. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering 9:90–95. DOI:
https://doi.org/10.1109/MCSE.2007.55

James G, Witten D, Hastie T, Tibshirani R, 2013. . An Introduction to Statistical Learning. Springer. DOI: https://​
doi.org/10.1007/978-1-4614-7138-7

Jin DZ, Kozhevnikov AA, Friston KJ. 2011. A Compact Statistical Model of the Song Syntax in Bengalese Finch.
PLOS Computational Biology 7:e1001108. DOI: https://doi.org/10.1371/journal.pcbi.1001108, PMID:
21445230

Kakishita Y, Sasahara K, Nishino T, Takahasi M, Okanoya K. 2008. Ethological data mining: an automata-based
approach to extract behavioral units and rules. Data Mining and Knowledge Discovery 18:446–471. DOI:
https://doi.org/10.1007/s10618-008-0122-1

Kershenbaum A, Blumstein DT, Roch MA, Akçay Ç, Backus G, Bee MA, Bohn K, Cao Y, Carter G, Cäsar C,
Coen M, DeRuiter SL, Doyle L, Edelman S, Ferrer-i-Cancho R, Freeberg TM, Garland EC, Gustison M,
Harley HE, Huetz C, et al. 2016. Acoustic sequences in non-human animals: a tutorial review and prospectus.
Biological Reviews 91:13–52. DOI: https://doi.org/10.1111/brv.12160, PMID: 25428267

Kingma DP, Ba J. 2014. Adam: A Method for Stochastic Optimization. [arXiv]. https://​arxiv.​org/​abs/​1412.​6980
Kluyver T, Ragan-Kelley B, Pérez F, Granger BE, Bussonnier M, Frederic J, Kelley K, Hamrick JB, Grout J,

Corlay S. 2016. Jupyter Notebooks-a Publishing Format for Reproducible Computational Workflows. ELPUB.
DOI: https://doi.org/10.3233/978-1-61499-649-1-87

Kogan JA, Margoliash D. 1998. Automated recognition of bird song elements from continuous recordings using
dynamic time warping and hidden Markov models: A comparative study. The Journal of the Acoustical Society
of America 103:2185–2196. DOI: https://doi.org/10.1121/1.421364, PMID: 9566338

Koumura T. 2016. BirdsongRecognition. Figshare 1:3470165. DOI: https://doi.org/10.6084/m9.figshare.3470165.​
v1

Koumura T, Okanoya K. 2016. Automatic Recognition of Element Classes and Boundaries in the Birdsong with
Variable Sequences. PLOS ONE 11:e0159188. DOI: https://doi.org/10.1371/journal.pone.0159188, PMID:
27442240

https://doi.org/10.7554/eLife.63853
https://doi.org/10.21105/joss.01277
https://doi.org/10.1016/j.jneumeth.2012.07.020
https://doi.org/10.1016/j.jneumeth.2012.07.020
http://www.ncbi.nlm.nih.gov/pubmed/22890237
https://docs.dask.org
https://doi.org/10.1109/TPAMI.2012.231
https://doi.org/10.1109/TPAMI.2012.231
http://www.ncbi.nlm.nih.gov/pubmed/23787344
https://doi.org/10.1093/ilar.51.4.362
http://www.ncbi.nlm.nih.gov/pubmed/21131713
https://doi.org/10.7554/eLife.59161
https://doi.org/10.1126/science.1108214
http://www.ncbi.nlm.nih.gov/pubmed/15890887
https://doi.org/10.7554/eLife.67855
http://www.ncbi.nlm.nih.gov/pubmed/33988503
https://doi.org/10.1073/pnas.80.8.2390
http://www.ncbi.nlm.nih.gov/pubmed/6572982
https://doi.org/10.1016/j.neunet.2005.06.042
http://www.ncbi.nlm.nih.gov/pubmed/16112549
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1007/978-3-642-24797-2
https://scikit-learn.org/stable/
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pubmed/32939066
https://doi.org/10.1371/journal.pone.0150822
http://www.ncbi.nlm.nih.gov/pubmed/27050537
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1371/journal.pcbi.1001108
http://www.ncbi.nlm.nih.gov/pubmed/21445230
https://doi.org/10.1007/s10618-008-0122-1
https://doi.org/10.1111/brv.12160
http://www.ncbi.nlm.nih.gov/pubmed/25428267
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1121/1.421364
http://www.ncbi.nlm.nih.gov/pubmed/9566338
https://doi.org/10.6084/m9.figshare.3470165.v1
https://doi.org/10.6084/m9.figshare.3470165.v1
https://doi.org/10.1371/journal.pone.0159188
http://www.ncbi.nlm.nih.gov/pubmed/27442240

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 31 of 32

Krizhevsky A, Sutskever I, Hinton GE. 2012. Curran Associates. Advances in Neural Information Processing
Systems. 1097–1105.

Lea C, Flynn MD, Vidal R, Reiter A, Hager GD. 2017. Temporal Convolutional Networks for Action Segmentation
and Detection. 2017 IEEE Conference on Computer Vision and Pattern Recognition. . DOI: https://doi.org/10.​
1109/CVPR.2017.113

Leonardo A, Fee MS. 2005. Ensemble coding of vocal control in birdsong. The Journal of Neuroscience
25:652–661. DOI: https://doi.org/10.1523/JNEUROSCI.3036-04.2005, PMID: 15659602

Marcel S, Rodriguez Y. 2010. Torchvision the machine-vision package of torch the international conference.
Association for Computing Machinery. . DOI: https://doi.org/10.1145/1873951.1874254

Markowitz JE, Ivie E, Kligler L, Gardner TJ. 2013. Long-range order in canary song. PLOS Computational
Biology 9:e1003052. DOI: https://doi.org/10.1371/journal.pcbi.1003052, PMID: 23658509

Markowitz J. 2022a. pst. GitHub. https://github.com/jmarkow/pst
Markowitz J. 2022b. zftftb. GitHub. https://github.com/jmarkow/zftftb/blob/master/zftftb_pretty_sonogram.m
Mets DG, Brainard MS. 2018a. An automated approach to the quantitation of vocalizations and vocal learning in

the songbird. PLOS Computational Biology 14:e1006437. DOI: https://doi.org/10.1371/journal.pcbi.1006437,
PMID: 30169523

Mets DG, Brainard MS. 2018b. Genetic variation interacts with experience to determine interindividual
differences in learned song. PNAS 115:421–426. DOI: https://doi.org/10.1073/pnas.1713031115

Mets DG, Brainard MS. 2019. Learning is enhanced by tailoring instruction to individual genetic differences. eLife
8:47216. DOI: https://doi.org/10.7554/eLife.47216

Mooney R. 2009. Neurobiology of song learning. Current Opinion in Neurobiology 19:654–660. DOI: https://​
doi.org/10.1016/j.conb.2009.10.004, PMID: 19892546

Nicholson D. 2016. Comparison of machine learning methods applied to birdsong element classification. Python
in Science Conference. . DOI: https://doi.org/10.25080/Majora-629e541a-008

Nicholson D, Queen JE, Sober SJ. 2017. Bengalese Finch song repository. Figshare 1:e5. DOI: https://doi.org/​
10.6084/m9.4805749.v5

Nicholson D, Cohen Y. 2021. vak. 0.4.0. Zenodo. https://doi.org/10.5281/zenodo.5809730
Nicholson D. 2021a. crowsetta. 3.1.0. Zenodo. https://doi.org/10.5281/zenodo.5792224
Nicholson D. 2021b. Hybrid-Vocal-Classifier. 2d95256. Github. https://github.com/NickleDave/hybrid-vocal-​

classifier
Nicholson D. 2021c. NickleDave/evfuncs. 0.3.2. Zenodo. https://doi.org/10.5281/zenodo.5810988
Nicholson D. 2021d. NickleDave/birdsong-recognition-dataset. 0.3.0. Zenodo. https://doi.org/10.5281/zenodo.​

5812494
Nicholson D. 2022. TweetyNet. GitHub. https://github.com/yardencsGitHub/tweetynet
Nottebohm F. 1981. A brain for all seasons: cyclical anatomical changes in song control nuclei of the canary

brain. Science (New York, N.Y.) 214:1368–1370. DOI: https://doi.org/10.1126/science.7313697, PMID: 7313697
Otchy TM, Wolff SBE, Rhee JY, Pehlevan C, Kawai R, Kempf A, Gobes SMH, Ölveczky BP. 2015. Acute off-target

effects of neural circuit manipulations. Nature 528:358–363. DOI: https://doi.org/10.1038/nature16442, PMID:
26649821

pandas development team. 2020. pandas. 1.4.1. Zenodo. https://doi.org/10.5281/zenodo.3509134
Parascandolo G, Huttunen H, Virtanen T. 2016. Recurrent neural networks for polyphonic sound event detection

in real life recordings. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing. . DOI:
https://doi.org/10.1109/ICASSP.2016.7472917

Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A. 2017.
Automatic differentiation in PyTorch. 0.1. PyTorch. https://openreview.net/pdf?id=BJJsrmfCZ

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R,
Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. 2011. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research 12:2825–2830.

Prat Y, Taub M, Pratt E, Yovel Y. 2017. An annotated dataset of Egyptian fruit bat vocalizations across varying
contexts and during vocal ontogeny. Scientific Data 4:170143. DOI: https://doi.org/10.1038/sdata.2017.143,
PMID: 28972574

Ron D, Singer Y, Tishby N. 1996. The power of amnesia: Learning probabilistic automata with variable memory
length. Machine Learning 25:117–149. DOI: https://doi.org/10.1023/A:1026490906255

Sainath TN, Kingsbury B, Mohamed AR, Dahl GE, Saon G, Soltau H, Beran T, Aravkin AY, Ramabhadran B. 2013a.
2013 IEEE Workshop on Automatic Speech Recognition & Understanding. IEEEOlomouc 1:6707749. DOI:
https://doi.org/10.1109/ASRU.2013.6707749

Sainath TN, Mohamed AR, Kingsbury B, Ramabhadran B. 2013b. ICASSP 2013 - 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing. IEEEVancouver 1:e6639347. DOI: https://doi.org/10.​
1109/ICASSP.2013.6639347

Sainburg T, Thielk M, Gentner T. 2019. Animal Vocalization Generative Network (AVGN): A method for
visualizing, understanding, and sampling from animal communicative repertoires. In CogSci 1:3563.

Sainburg T, Thielk M, Gentner TQ. 2020. Finding, visualizing, and quantifying latent structure across diverse
animal vocal repertoires. PLOS Computational Biology 16:e1008228. DOI: https://doi.org/10.1371/journal.​
pcbi.1008228, PMID: 33057332

Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X. 2016. Improved Techniques for Training
Gans. Advances in neural information processing systems. 2234–2242.

https://doi.org/10.7554/eLife.63853
https://doi.org/10.1109/CVPR.2017.113
https://doi.org/10.1109/CVPR.2017.113
https://doi.org/10.1523/JNEUROSCI.3036-04.2005
http://www.ncbi.nlm.nih.gov/pubmed/15659602
https://doi.org/10.1145/1873951.1874254
https://doi.org/10.1371/journal.pcbi.1003052
http://www.ncbi.nlm.nih.gov/pubmed/23658509
https://github.com/jmarkow/pst
https://github.com/jmarkow/zftftb/blob/master/zftftb_pretty_sonogram.m
https://doi.org/10.1371/journal.pcbi.1006437
http://www.ncbi.nlm.nih.gov/pubmed/30169523
https://doi.org/10.1073/pnas.1713031115
https://doi.org/10.7554/eLife.47216
https://doi.org/10.1016/j.conb.2009.10.004
https://doi.org/10.1016/j.conb.2009.10.004
http://www.ncbi.nlm.nih.gov/pubmed/19892546
https://doi.org/10.25080/Majora-629e541a-008
https://doi.org/10.6084/m9.4805749.v5
https://doi.org/10.6084/m9.4805749.v5
https://doi.org/10.5281/zenodo.5809730
https://doi.org/10.5281/zenodo.5792224
https://github.com/NickleDave/hybrid-vocal-classifier
https://github.com/NickleDave/hybrid-vocal-classifier
https://doi.org/10.5281/zenodo.5810988
https://doi.org/10.5281/zenodo.5812494
https://doi.org/10.5281/zenodo.5812494
https://github.com/yardencsGitHub/tweetynet
https://doi.org/10.1126/science.7313697
http://www.ncbi.nlm.nih.gov/pubmed/7313697
https://doi.org/10.1038/nature16442
http://www.ncbi.nlm.nih.gov/pubmed/26649821
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1109/ICASSP.2016.7472917
https://openreview.net/pdf?id=BJJsrmfCZ
https://doi.org/10.1038/sdata.2017.143
http://www.ncbi.nlm.nih.gov/pubmed/28972574
https://doi.org/10.1023/A:1026490906255
https://doi.org/10.1109/ASRU.2013.6707749
https://doi.org/10.1109/ICASSP.2013.6639347
https://doi.org/10.1109/ICASSP.2013.6639347
https://doi.org/10.1371/journal.pcbi.1008228
https://doi.org/10.1371/journal.pcbi.1008228
http://www.ncbi.nlm.nih.gov/pubmed/33057332

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Cohen, Nicholson, Sanchioni, et al. eLife 2022;11:e63853. DOI: https://doi.org/10.7554/eLife.63853 � 32 of 32

Scheirer WJ, de Rezende Rocha A, Sapkota A, Boult TE. 2013. Toward open set recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence 35:1757–1772. DOI: https://doi.org/10.1109/TPAMI.2012.256,
PMID: 23682001

Schlawack H. 2020. Attrs. 21.4.0. PYTHON MODULE INDEX. https://www.attrs.org/_/downloads/en/stable/pdf/
Searfoss AM, Pino JC, Creanza N, Zamora‐Gutierrez V. 2020. Chipper: Open‐source software for semi‐

automated segmentation and analysis of birdsong and other natural sounds. Methods in Ecology and Evolution
11:524–531. DOI: https://doi.org/10.1111/2041-210X.13368

Sober SJ, Wohlgemuth MJ, Brainard MS. 2008. Central contributions to acoustic variation in birdsong. The Journal
of Neuroscience 28:10370–10379. DOI: https://doi.org/10.1523/JNEUROSCI.2448-08.2008, PMID: 18842896

Sober SJ, Brainard MS. 2009. Adult birdsong is actively maintained by error correction. Nature Neuroscience
12:927–931. DOI: https://doi.org/10.1038/nn.2336, PMID: 19525945

Sober SJ, Brainard MS. 2012. Vocal learning is constrained by the statistics of sensorimotor experience. PNAS
109:21099–21103. DOI: https://doi.org/10.1073/pnas.1213622109, PMID: 23213223

Suthers RA, Vallet E, Kreutzer M. 2012. Bilateral coordination and the motor basis of female preference for
sexual signals in canary song. The Journal of Experimental Biology 215:2950–2959. DOI: https://doi.org/10.​
1242/jeb.071944, PMID: 22875764

Tachibana RO, Oosugi N, Okanoya K. 2014. Semi-automatic classification of birdsong elements using a linear
support vector machine. PLOS ONE 9:e92584. DOI: https://doi.org/10.1371/journal.pone.0092584, PMID:
24658578

Tachibana RO, Kanno K, Okabe S, Kobayasi KI, Okanoya K. 2020. USVSEG: A robust method for segmentation
of ultrasonic vocalizations in rodents. PLOS ONE 15:e0228907. DOI: https://doi.org/10.1371/journal.pone.​
0228907, PMID: 32040540

Takahasi M, Yamada H, Okanoya K. 2010. Statistical and Prosodic Cues for Song Segmentation Learning by
Bengalese Finches (Lonchura striata var domestica). Ethology: Formerly Zeitschrift Fur Tierpsychologie
116:481–489. DOI: https://doi.org/10.1111/j.1439-0310.2010.01772.x

Tchernichovski O, Nottebohm F, Ho CE, Pesaran B, Mitra PP. 2000. A procedure for an automated measurement
of song similarity. Animal Behaviour 59:1167–1176. DOI: https://doi.org/10.1006/anbe.1999.1416, PMID:
10877896

Tchernichovski O, Mitra PP, Lints T, Nottebohm F. 2001. Dynamics of the vocal imitation process: how a zebra finch
learns its song. Science 291:2564–2569. DOI: https://doi.org/10.1126/science.1058522, PMID: 11283361

Thompson NS, LeDOUX K, Moody K. 2012. A system for describing bird song units. Bioacoustics 5:267–279.
DOI: https://doi.org/10.1080/09524622.1994.9753257

Troyer lab. 2012. SongBrowser. The University of Texas at San Antonio. https://www.utsa.edu/troyerlab/software.​
html

Tumer EC, Brainard MS. 2007. Performance variability enables adaptive plasticity of “crystallized” adult
birdsong. Nature 450:1240–1244. DOI: https://doi.org/10.1038/nature06390, PMID: 18097411

van der Walt S, Colbert SC, Varoquaux G. 2011. The NumPy Array: A Structure for Efficient Numerical
Computation. Computing in Science & Engineering 13:22–30. DOI: https://doi.org/10.1109/MCSE.2011.37

Veit L, Tian LY, Monroy Hernandez CJ, Brainard MS. 2021. Songbirds can learn flexible contextual control over
syllable sequencing. eLife 10:e61610. DOI: https://doi.org/10.7554/eLife.61610, PMID: 34060473

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W,
Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E,
Carey CJ, et al. 2020. Author Correction: SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nature Methods 17:261–272. DOI: https://doi.org/10.1038/s41592-020-0772-5, PMID: 32094914

Warren TL, Charlesworth JD, Tumer EC, Brainard MS. 2012. Variable sequencing is actively maintained in a well
learned motor skill. The Journal of Neuroscience 32:15414–15425. DOI: https://doi.org/10.1523/JNEUROSCI.​
1254-12.2012, PMID: 23115179

Waskom M, Botvinnik O, Gelbart M, Ostblom J, Hobson P, Lukauskas S, Gemperline DC, Augspurger T,
Halchenko Y, Warmenhoven J, Cole JB, Ruiter J, Vanderplas J, Hoyer S, Pye C, Miles A, Swain C, Meyer K,
Martin M, Bachant P, et al. 2020. Mwaskom/seaborn: (Sepetmber 2020). V0.11.0. Zenodo. https://doi.org/10.​
5281/zenodo.4019146

Waskom ML. 2021. seaborn: statistical data visualization. Journal of Open Source Software 6:3021. DOI: https://​
doi.org/10.21105/joss.03021

Wilbrecht L, Kirn JR. 2004. Neuron addition and loss in the song system: regulation and function. Annals of the
New York Academy of Sciences 1016:659–683. DOI: https://doi.org/10.1196/annals.1298.024, PMID:
15313799

Wohlgemuth MJ, Sober SJ, Brainard MS. 2010. Linked control of syllable sequence and phonology in birdsong.
The Journal of Neuroscience 30:12936–12949. DOI: https://doi.org/10.1523/JNEUROSCI.2690-10.2010, PMID:
20881112

https://doi.org/10.7554/eLife.63853
https://doi.org/10.1109/TPAMI.2012.256
http://www.ncbi.nlm.nih.gov/pubmed/23682001
https://www.attrs.org/_/downloads/en/stable/pdf/
https://doi.org/10.1111/2041-210X.13368
https://doi.org/10.1523/JNEUROSCI.2448-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18842896
https://doi.org/10.1038/nn.2336
http://www.ncbi.nlm.nih.gov/pubmed/19525945
https://doi.org/10.1073/pnas.1213622109
http://www.ncbi.nlm.nih.gov/pubmed/23213223
https://doi.org/10.1242/jeb.071944
https://doi.org/10.1242/jeb.071944
http://www.ncbi.nlm.nih.gov/pubmed/22875764
https://doi.org/10.1371/journal.pone.0092584
http://www.ncbi.nlm.nih.gov/pubmed/24658578
https://doi.org/10.1371/journal.pone.0228907
https://doi.org/10.1371/journal.pone.0228907
http://www.ncbi.nlm.nih.gov/pubmed/32040540
https://doi.org/10.1111/j.1439-0310.2010.01772.x
https://doi.org/10.1006/anbe.1999.1416
http://www.ncbi.nlm.nih.gov/pubmed/10877896
https://doi.org/10.1126/science.1058522
http://www.ncbi.nlm.nih.gov/pubmed/11283361
https://doi.org/10.1080/09524622.1994.9753257
https://www.utsa.edu/troyerlab/software.html
https://www.utsa.edu/troyerlab/software.html
https://doi.org/10.1038/nature06390
http://www.ncbi.nlm.nih.gov/pubmed/18097411
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.7554/eLife.61610
http://www.ncbi.nlm.nih.gov/pubmed/34060473
https://doi.org/10.1038/s41592-020-0772-5
http://www.ncbi.nlm.nih.gov/pubmed/32094914
https://doi.org/10.1523/JNEUROSCI.1254-12.2012
https://doi.org/10.1523/JNEUROSCI.1254-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23115179
https://doi.org/10.5281/zenodo.4019146
https://doi.org/10.5281/zenodo.4019146
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://doi.org/10.1196/annals.1298.024
http://www.ncbi.nlm.nih.gov/pubmed/15313799
https://doi.org/10.1523/JNEUROSCI.2690-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20881112

	Automated annotation of birdsong with a neural network that segments spectrograms
	Editor's evaluation
	Introduction
	Proposed model
	Neural network architecture
	Post-processing neural network output and converting it to annotations

	Results
	TweetyNet avoids limitations that arise from segmenting audio
	Tweetynet annotates with low error rates across individuals and species
	Simple post-processing greatly reduces syllable error rates
	Birdsong annotated automatically with TweetyNet replicates key behavioral findings
	TweetyNet annotation of Bengalese finch song replicates statistics of branch points
	TweetyNet annotation of canary song replicates statistical models of song structure
	Larger data sets of annotated canary song add details and limit the memory of the syntax structure

	Very rare, hard-to-classify vocal behaviors can cause TweetyNet to introduce errors

	Discussion
	Ideas and speculation
	Conclusion

	Materials and methods
	Data preparation
	Segmenting audio files into syllables
	﻿Algorithm﻿
	Estimating segmenting parameters for canary song

	Annotation of Bengalese finch song
	Annotation of canary song
	Bootstrapping annotation with TweetyNet
	Assuring the identity and separation of syllable classes

	Segmenting annotated phrases of Waterslager canaries
	Generating spectrograms

	Neural network architecture
	Convolutional blocks
	Max pooling layer
	Recurrent layer
	Linear layer

	Training and benchmarking
	Input data transformations
	Windows
	Vectors of labeled time bins
	Batches of (window, labeled time bin vector) pairs
	Normalization
	Spectrogram thresholding

	Metrics
	Frame error
	Syllable error rate

	Training
	Early stopping

	Learning Curves
	Comparison with a support vector machine model

	Statistics
	Additional analysis of model performance
	Percentage of errors near boundaries
	Errors in rare sequences

	Model output as syllable likelihoods

	Analysis of behavioral data and predicted annotations
	Bengalese finch branch points
	Statistical test
	Analysis of predicted annotations

	Canary syntax model
	Shared template dependence on number of syllables in song
	Probabilistic suffix trees
	Model cross validation to determine minimal node frequency

	Code Availability
	Data Collection
	Use of existing datasets
	Domestic canary song screening
	Domestic canary audio recording

	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Ethics
	Decision letter and Author response

	Additional files
	Supplementary files

	References

