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Abstract Sensorimotor learning adapts motor output to maintain movement accuracy. For

saccadic eye movements, learning also alters space perception, suggesting a dissociation between

the performed saccade and its internal representation derived from corollary discharge (CD). This is

critical since learning is commonly believed to be driven by CD-based visual prediction error. We

estimate the internal saccade representation through pre- and trans-saccadic target localization,

showing that it decouples from the actual saccade during learning. We present a model that

explains motor and perceptual changes by collective plasticity of spatial target percept, motor

command, and a forward dynamics model that transforms CD from motor into visuospatial

coordinates. We show that learning does not follow visual prediction error but instead a postdictive

update of space after saccade landing. We conclude that trans-saccadic space perception guides

motor learning via CD-based postdiction of motor error under the assumption of a stable world.

Introduction
Saccade motor control and visual space perception are inherently linked. We explore visual space

via saccadic eye movements and, vice versa, adapt saccadic eye movements via visuospatial feed-

back. If a saccade falls repeatedly short of a target, the saccade vector gradually lengthens over sev-

eral trials until the eyes land closer to the target again (McLaughlin, 1967; Deubel et al., 1986;

Wallman and Fuchs, 1998; Havermann and Lappe, 2010; Cassanello et al., 2019). This plasticity

guarantees saccade accuracy in the light of changing muscle dynamics, like short-term muscle

fatigue, or physiological long-term changes during growth, aging, or disease (Hopp and Fuchs,

2004; Pélisson et al., 2010).

To understand the mechanism behind this remarkable capacity, a central question is which error

signal drives learning. Early research focussed on the visual error, that is, the retinal distance of the

post-saccadic target from the fovea. This appears to make sense because minimizing visual error

would assure that the eye lands on target. However, saccades usually undershoot their target by 5–

10% (Robinson, 1973; Henson, 1979; Becker, 1989) and do not fully compensate for intra-saccadic

target shifts (Deubel et al., 1986; Straube et al., 1997; Wallman and Fuchs, 1998; Noto et al.,

1999), the technique often used in studies of saccadic adaptation. This suggests that the oculomotor

system tolerates some systematic visual error. Moreover, recent studies showed that saccades

become shorter when the target is artificially shifted closer to the fovea during the saccade — thus

increasing visual error during learning (Wong and Shelhamer, 2011) — and that saccadic adaptation

occurs even for microscopic saccades in which the target never leaves the fovea and the visual error

is always zero (Havermann et al., 2014).

More recent studies proposed that, instead of minimizing visual error, learning minimizes visual

prediction error (Bahcall and Kowler, 2000; Wong and Shelhamer, 2011; Collins and Wallman,

2012). Visual prediction error is the deviation of the post-saccadic visual error, that is, the post-sac-

cadic retinal target position, from an internally predicted visual error, that is, an error that the oculo-

motor system expects to occur.
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For saccadic eye movements, learning from post-saccadic spatial feedback is critical since visual

input is suppressed during the movement such that saccades can neither be tracked nor corrected

by visual feedback online (Volkmann et al., 1968; Bridgeman et al., 1975; Li and Matin, 1990).

Moreover, saccades are so brief that latencies in the visual system postpone any visual input to after

the saccade. Hence, the predicted visual error is supposed to rely on an update of the pre-saccadic

target position by internal information about the upcoming saccade. This information is derived

from a copy of the motor command, known as corollary discharge (Duhamel et al., 1992;

Umeno and Goldberg, 1997; Crapse and Sommer, 2008b; Melcher and Colby, 2008; Crapse and

Sommer, 2009). It informs visual areas about the eye movement in order to support our percept of

a stable external world (von Helmholtz, 1867; Sperry, 1950; von Holst and Mittelstaedt, 1950;

Bridgeman and Stark, 1991; Wurtz, 2008; Zimmermann et al., 2018). The corollary discharge is

assumed to be processed via several pathways. The most prominent pathway extends from superior

colliculus (SC) via MD thalamus to the frontal eye fields (FEF; Sommer and Wurtz, 2002;

Sommer and Wurtz, 2004a; Sommer and Wurtz, 2004b; Sommer and Wurtz, 2006;

Cavanaugh et al., 2020). Other pathways extend from SC via the thalamic pulvinar to parietal and

occipital cortex (Wurtz et al., 2011; Berman et al., 2017), from the cerebellum via the ventrolateral

thalamus to frontal cortex (Middleton and Strick, 2000; Gaymard et al., 2001; Zimmermann et al.,

2015) and back from FEF through the basal ganglia to SC (Sommer and Wurtz, 2008;

Wurtz, 2008).

Along these pathways, the information provided by the corollary discharge needs to be trans-

formed by a forward dynamics model from motor to visual coordinates before it can be used by

vision (Bays and Wolpert, 2007; Sommer and Wurtz, 2008; Crapse and Sommer, 2008b;

Franklin and Wolpert, 2011). To accurately estimate the visual effect of the saccade, that is, to com-

pute the displacement of visual space due to the saccade, this transformation should rely on the cur-

rent dynamics of the eye muscles, for example whether the eye muscles are fatigued or strong

(Bays and Wolpert, 2007; Shadmehr et al., 2010; Franklin and Wolpert, 2011). We thus need to

distinguish between the corollary discharge signal in motor coordinates, abbreviated as CDM , which

provides the input into the forward dynamics model, and the computed displacement of visual

space, abbreviated as CDV , which is the output of the forward dynamics model and describes the

expected effect of the saccade on visual coordinates. CDV is believed important for trans-saccadic

visual localization, the estimate of the post-saccadic position of a target that was seen before the

saccade (Bahcall and Kowler, 1999; Sommer and Wurtz, 2008; Wurtz, 2008; Cavanaugh et al.,

2016; Wurtz, 2018; Binda and Morrone, 2018). If the forward dynamics model does not ade-

quately transform CDM into CDV , that is, if the transformation has non-unity gain, errors in trans-sac-

cadic localization appear.

Studies have indicated that not only the saccade vector but also visual localization changes during

learning. This occurs (a) during fixation (Moidell and Bedell, 1988; Collins et al., 2007;

Hernandez et al., 2008; Schnier et al., 2010; Zimmerman and Lappe, 2010; Gremmler et al.,

2014) and (b) even stronger after adapted saccades (Bahcall and Kowler, 1999; Collins et al.,

2007; Zimmermann and Lappe, 2009; Schnier et al., 2010; Klingenhoefer and Bremmer, 2011).

First, (a) suggests that changes in the saccade vector combine adaptation of visual target position

and adaptation of the visual-to-motor transformation, that is, the inverse model that derives the

motor command. Second, the discrepancy in target localization between (a) and (b) suggests that

CDV , that is, the computed displacement of visual space due to the saccade — estimated by the for-

ward dynamics model — might become biased during learning. If CDV were accurate, the post-sac-

cadic target should be predicted exactly where it was perceived before the saccade in external

space, and no bias should occur. The bias in trans-saccadic target perception is known from other

studies apart from saccadic learning, namely when some stage of the CD pathway is lesioned

(Ostendorf et al., 2010) or experimentally perturbed (White and Snyder, 2007; Prime et al., 2010;

Ostendorf et al., 2012; Cavanaugh et al., 2016). For example, Cavanaugh et al., 2016 showed

that inactivation of MD thalamus in the macaque monkey causes a shift in target localization after

saccade landing – consistent with a deficient CDV and an erroneous prediction of post-saccadic reti-

nal target location. Third, (b) questions whether actual and predicted visual error match in the

adapted steady state, that is, when learning reaches saturation. If learning were driven by visual pre-

diction error, actual and predicted visual error were expected to match.
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In the present study, we hypothesize that saccadic motor learning relies on multiple plasticity

within the visuomotor circuitry – comprising adaptation of visual target position, of the inverse

model (i.e. the visual-to-motor transformation to derive the motor command), and of the forward

dynamics model (i.e. the motor-to-visual transformation to derive the the computed displacement of

visual space, CDV , resulting form the eye movement). We estimate the state of CDV during learning

by comparing pre-and post-saccadic target localization. We then examine which learning rule

explains this plasticity – comparing a model that minimizes visual prediction error with a model fol-

lowing a novel learning approach which we term postdictive motor error learning. According to this

framework, the visuomotor system learns from a postdictive update of pre-saccadic target position

based on CDV . We show, first, that visual target position and forward dynamics model (i.e. CDV ) col-

lectively learn from error together with the inverse model (i.e. the motor command) and, second,

that this error relies on a postdictive update of space after movement completion. Initially, CDV was

hypometric, consistent with saccade hypometry. During learning, CDV dissociated from the saccade,

consistent with incomplete motor compensation. Our results reveal that learning occurs under the

explicit assumption of a stable world and not in response to its violation.

Experimental methods
In order to provide a broad database for the modeling we measured four different learning condi-

tions that are known to produce different amounts of change in the saccade vector and in visual

localization. Each learning condition consisted of 280 saccade trials requiring a reactive saccade to a

13˚ rightward target (Figure 1). In two conditions with constant target step (abbreviated as CTS con-

ditions; McLaughlin, 1967), the target was shifted either 3˚ inward (opposite to saccade direction,

CTSin) or outward (in saccade direction, CTSout) during saccade execution. In two conditions with

constant visual error (abbreviated as CVE conditions; Robinson et al., 2003; Havermann and

Lappe, 2010; Zimmerman and Lappe, 2010), the target was shifted to the position that is 3˚ inward

(CVEin) or outward (CVEout) of the post-saccadic gaze direction. Every 70 saccade trials, we quanti-

fied the state of the visuomotor system with a probe block measuring the saccade vector, the locali-

zation of a target during fixation (referred to as pre-saccadic localization) and the localization of a

pre-saccadically presented target after saccade landing (referred to as post-saccadic localization;

probe block 1 before learning, probe blocks 2–4 during learning, probe block 5 after learning).

Learning direction (inward, outward) and paradigm (CTS, CVE) were varied to ensure the gener-

alizability of our modeling results. Our model should be applicable to both learning directions,

for example capturing more learning in the saccade vector to be expected for inward compared to

outward target steps (Kojima et al., 2004; Panouillères et al., 2009; Zimmerman and Lappe,

2010; Pélisson et al., 2010). Moreover, besides the classical CTS paradigm, our model should

explain why changes in saccade vector and target localization converge even if the visual error can-

not be reduced in the CVE paradigm (Robinson et al., 2003; Havermann and Lappe, 2010;

Zimmerman and Lappe, 2010). In either paradigm, the target step manipulates the visual position

of the post-saccadic target (visual error) that is used in preparing the error signal that supports learn-

ing. Learning in our model is driven by error reduction and aims for steady states with zero error.

This is the aim in both paradigms – whether the visual error can be reduced by learning in the CTS

conditions or whether the visual error cannot be reduced by learning in the CVE conditions. A target

step of 3˚ (23% of the pre-saccadic target distance in the CTS paradigm) was chosen to ensure a suf-

ficient amount of learning in the saccade vector (McLaughlin, 1967; Deubel et al., 1986;

Umeno and Goldberg, 1997; Havermann and Lappe, 2010).

Subjects
Data were recorded from two samples of each N = 18 healthy subjects (36 subjects in total). All sub-

jects had normal or corrected-to-normal vision and were naı̈ve to the objectives of the experiment.

Sample 1 performed the inward conditions (CTSin and CVEin, 21.2 ± 2.8 years, two male) and sample

2 performed the outward conditions (CTSout and CVEout, 24.7 ± 6.7 years, four male). One subject

was excluded from sample 1 because pre- and post-saccadic localizations consistently deviated

more than five standard deviations from the mean over subjects. All subjects gave written informed

consent prior to participation. The experiment was approved by the ethics committee of the Depart-

ment of Psychology and Sport Science of the University of Münster.
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Setup
Subjects were seated with a distance of 62 cm in front of an Eizo FlexScan F930 monitor (Eizo, Haku-

san, Japan; 800 � 600 pixels, 120 Hz) with a visual field of 32.8˚ � 25.8˚ (40 cm �30 cm). Their head

was restrained with a chin rest, forehead support and a head belt. The room was completely dark

with all sources of light eliminated to avoid the use of visual references in the localization tasks

(room luminance below 0.01 cd/m2). The monitor was covered with a dark gray foil that reduced

luminance by two log units. This was done to prevent visibility of monitor background light and con-

trast to the surroundings (remaining background luminance below 0.01 cd/m2) and to reduce effects

of phosphor persistence (Georg and Lappe, 2009; Zimmermann and Lappe, 2009;

Zimmerman and Lappe, 2010; Schnier et al., 2010). To report perceived locations, subjects oper-

ated a mouse cursor via a multi-touch trackpad (Apple Inc, Cupertino, CA) with their right index

finger.

The position of the right eye was recorded at 1000 Hz using an Eyelink 1000 (SR Research,

Ontario, Canada). Calibration was performed with a white nine-point grid on black background. For

online detection of saccade onset, position threshold was set to 2.5˚ and velocity threshold to 22
�

s
.

We chose this rather liberal velocity threshold in order to perform peri-saccadic stimulus changes as

early as possible to avoid any afterglow at saccade landing. The display change occurred 23.3 ± 1.5

ms after the offline detected saccade onset and 31.3 ± 6.3 ms before the offline detected saccade

offset (mean and SD across subject means). This timepoint was determined from the Eyelink EDF

data files that received an event message command from the Matlab script after the display change

was performed. Saccade landing was detected online as soon as saccade velocity fell below 30
�

s
.

This threshold allowed the best temporal and spatial accuracy of the post-saccadic target with

fixation point / 

target indicating to  

follow by saccade

500-1200 ms

40-50 ms

16.7 ms

650 ms

500-1200 ms

until saccade 
onset

500 ms

Block 1:  
Baseline

Block 2-9:  
Learning

Saccade trial Pre-sac. localization trial Post-sac. localization trial

☀

until click

500-1200 ms

16.7 ms
☀

40-50 ms

until saccade 
onset

500 ms

until click

gaze location fixation point  

indicating to fixate
flash☀

Figure 1. Experimental tasks. In the saccade trials, subjects performed a reactive saccade to a 13˚ rightward target. During saccade execution from

block 2 onwards, the target was shifted to a new location depending on the learning condition, e.g. 3˚ inward as shown here (CTSin). In the pre-saccadic

localization trials, subjects hold their gaze at the fixation point while localizing a white 16.7 ms flash with a gray dot cursor. In the post-saccadic

localization trials, subjects performed a saccade as in the saccade trials but hold their gaze after saccade landing and report the location of the pre-

saccadic flash that had appeared 40–50 ms after target onset. The yellow circle illustrates gaze location but was not present at the stimulus monitor.
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respect to saccade landing time and position in the CVE conditions. The experimental procedure

was controlled by a Matlab script (Mathworks, Natick, MA) using the Psychophysics Toolbox.

Design
Each condition contained three trial types arranged in nine blocks (Figure 1). The even block num-

bers 2, 4, 6, and 8 induced visuomotor learning (saccade trials) while the odd block numbers 1, 3, 5,

7, and 9 probed the current state of saccade vector, pre-and post-saccadic localization. The probe

blocks were interspersed with saccade trials to preserve the current learning state (similar to

Bahcall and Kowler, 1999, no target step in block 1). Each trial began with a fixation point pre-

sented 6.5˚ left of the screen center, measuring 0.5˚ in diameter. Its color indicated whether subjects

needed to perform a saccade (red, saccade trials and post-saccadic localization trials) or to keep fix-

ation on the fixation point (green, pre-saccadic localization trials). The trial was initiated by disap-

pearance of the fixation point if the subject had fixated it for a randomly selected time interval

drawn from a uniform distribution between 500 and 1200 ms, using a position threshold of 2.5˚. This

liberal threshold was chosen because in complete darkness, the detection of vertical gaze location

can be very sensitive to small changes in pupil size as light incidence varies with stimulus presenta-

tion. Please note that drifts of gaze position due to changes in pupil size appear mainly in vertical

direction and less in horizontal direction (Drewes et al., 2014; Choe et al., 2016).

Saccade trials
Simultaneous with fixation point offset, a red target of 0.5˚ diameter appeared 13˚ to the right of the

fixation point. Subjects were instructed to look at it as fast and as accurately as possible. In the CTS

conditions, the target was stepped 3˚ inward (CTSin) or outward (CTSout) of the initial target position

as soon as saccade onset was detected. In the CVE conditions, the target was deleted with saccade

onset (to avoid afterglow at saccade landing) and reappeared 3˚ inward (CVEin) or outward (CVEout)

of the saccade landing position as soon as saccade landing was detected. The target was shown for

500 ms after saccade landing. As an exception, the target stayed at its initial position in probe block

1 (baseline). These trials were aimed to prevent the typical saccade vector decline in the absence of

a post-saccadic target. Hence, probe block 1 was equal between all learning conditions.

Post-saccadic localization trials
The post-saccadic localization trials started with the same target as the saccade trials. Then, 40–50

ms after target onset, a white dot was flashed for 16.7 ms (two monitor refreshes, 2˚ above the tar-

get, 0.5˚ in diameter). The flash was presented with the same constant horizontal eccentricity as the

saccade target such that its horizontal localization judgement could be matched to the visual target

localization. Please note that any variation of the flash position from the target position on the hori-

zontal axis would have implied localization transfer to a different horizontal eccentricity and, hence,

would likely have diminished the effects in the pre-saccadic localization which are usually rather small

and difficult to measure (Moidell and Bedell, 1988; Collins et al., 2007; Hernandez et al., 2008;

Schnier et al., 2010; Zimmerman and Lappe, 2010; Gremmler et al., 2014). The target was extin-

guished as soon as the saccade onset was detected. Subjects were instructed to aim their gaze at

the target as fast and as accurately as possible and to stay fixated in the dark at the saccade landing

location. If gaze deviated from the saccade landing location more than 4˚, a beep tone was pre-

sented until gaze position returned to the accepted fixation area. On average, a beep tone occurred

in 23.4 ± 15.3% of trials, consistent with the fixation in darkness being a demanding task. A gray dot

cursor appeared 500 ms after saccade landing (0.7˚ in diameter at a random position drawn from a

uniform distribution between 15.9˚ and 20.9˚ rightward from the fixation point and 4˚ above the

lower monitor border). Subjects clicked the cursor at the perceived flash position while still fixating

at the saccade landing location. On average, subjects started the saccade with a latency of

218.9 ± 23.8 ms and a duration of 55.7 ± 5.3 ms and clicked at the perceived position 2320 ± 571 ms

after saccade landing (mean and SD over subjects). In case they did not perceive the flash, they were

asked to click at the lowest position possible (the invisible lower screen border).
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Pre-saccadic localization trials
A green fixation point indicated that subjects needed to stay fixated at the fixation point location in

the dark even after fixation point offset. If gaze deviated from the fixation point location more than

4˚, a beep tone was presented until gaze position returned to the accepted fixation area. On aver-

age, this was the case in 20.7 ± 12.3% of trials. Analogous to the post-saccadic localization trials, a

white dot was flashed 40–50 ms after fixation point offset. A gray dot cursor appeared 710 ms after

fixation point offset. Subjects had to click the cursor at the perceived flash position (or at the lowest

position possible if they had not perceived the flash) while remaining fixated at the invisible fixation

point location. On average, they performed the cursor click 2460 ± 420 ms after flash offset. Flash

and dot cursor parameters were the same as in the post-saccadic localization trials. As the fixation

point turned off before flash onset and the cursor appeared after flash offset, there were no visual

references that could affect the perceived flash position.

At the start of each session, subjects practiced every trial type (saccade trials without target step)

until they felt confident with the task and successfully hold their gaze in the dark in the localization

trials. Each learning block consisted of 70 saccade trials, resulting in 4*70 = 280 trials in total (refresh

saccade trials of the probe blocks excluded). The probe blocks contained a repeated sequence of a

pre-saccadic localization trial, a refresh saccade trial, a post-saccadic localization trial and another

refresh saccade trial. In the first and the last probe block (block 1 and 9), the sequence was repeated

21 times minus the last refresh saccade trial, resulting in 4*21–1 = 83 trials, containing 21 pre- and

21 post-saccadic localization trials. To avoid a long interruption of the ongoing learning process, the

other probe blocks (blocks 3, 5, and 7) consisted of nine sequence repetitions minus the last refresh

saccade trial, resulting in 4*9–1 = 35 trials, containing nine pre- and nine post-saccadic localization

trials. In sum, each session comprised 4*70 + 2*83 + 3*35 = 551 trials with an inter-trial interval of

800 ms within the blocks. Sessions took around 45 min each and were counterbalanced across par-

ticipants. The two different sessions for each participant were recorded at least 14 days apart to pre-

vent carryover effects from the first to the second session. Testing for carryover effects via t-tests

(first vs. second session) separately for baseline saccade amplitudes, pre- and post-saccadic localiza-

tions did not reveal any significant effects.

Data processing
Data analysis was performed offline in Matlab R2017a (Mathworks, Natick, MA). From the post-sac-

cadic localization and saccade trials, we selected the rightward primary saccades with a latency

between 100 and 400 ms (reactive saccades) and a horizontal saccade vector of at least 5˚. Saccade

start and end point were detected by a combined velocity and acceleration criterion and were visual-

ized for inspection together with the position trace. The saccade vectors of the saccade trials were

plotted to monitor the course of saccade vector learning but only the saccade vectors of the post-

saccadic localization trials were used for further analysis.

Pre- and post-saccadic localizations were quantified as the distance of the cursor click from the

fixation point. Post-saccadic localizations were accepted in case of a valid primary saccade that did

not start earlier than 100 ms after flash offset. This was done to avoid localization errors due to peri-

saccadic compression (Ross et al., 1997; Lappe et al., 2000). Moreover, post-saccadic localizations

were only accepted if, after the saccade, gaze was successfully held at the position of saccade land-

ing. Pre-saccadic localizations were accepted if no saccade was performed within the first 400 ms

after flash onset. Pre- and post-saccadic localizations of trials in which subjects had clicked within the

lower 30% of the display or deviated from fixation (at the fixation point in pre-saccadic localizations

and at the saccadic landing point in post-saccadic localizations) for more than 1400 ms were omitted

from analysis. Based on these criteria, 89.2 ± 5.3% of the pre-saccadic localization trials and 76.7 ±

14.3% of the post-saccadic localization trials (saccade vector and post-saccadic localizations) were

used for further analysis.

For each of the five probe blocks within a session, we calculated the median saccade vector,

median pre- and median post-saccadic localization, excluding outliers with more than three scaled

median absolute deviations from the median. In contrast to the saccade vectors within the learning

blocks, we did not observe any systematic changes of saccade vectors, pre- or post-saccadic local-

izations within the probe blocks. Hence, for model fitting, we considered the median of each probe
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block to reflect the current state of the system at trials n = [1, 71, 141, 211, 281] of 281 pure saccade

trials in total.

Model
The modeling was aimed to determine, first, the degree to which plasticity of the visual gain, the

motor gain (inverse model) and the CD gain (forward dynamics model) contributes to the mainte-

nance of visuomotor consistency and oculomotor control and, second, the nature of the error signal

that is used. Therefore, we set up two state-space models that describe the saccadic circuitry with

the same basic visuomotor transformations but differ in the error signal that drives learning. How-

ever, in order to formalize multiple plasticity for the specific motor system of saccades, we first

explain our general model conception as a basis for the subsequent model equations for the respec-

tive error signals before we provide details on the implementation.

Model conception
The basis of our modeling approach is that visuospatial and motor signals are represented in differ-

ent coordinate systems which are interconnected via sensorimotor transformations from one coordi-

nate system to the other (Figure 2). Learning relies on synaptic plasticity and is hence supposed to

be driven by changes in sensorimotor transformations (synaptic gains; Shadmehr et al., 2010;

Wolpert et al., 2011). As spatial target errors indicate a mismatch between motor behavior and per-

ceived space, learning for error reduction relies on recalibration of these sensorimotor transforma-

tions (Hopp and Fuchs, 2004; Bays and Wolpert, 2007; Franklin and Wolpert, 2011). This

recalibration aims to minimize error and should ideally proceed until the error is nullified, in which

case the sensorimotor transformations correctly represent the environment (spatial target positions)

and the internal state of the motor system (the current eye dynamics). We are interested in deter-

mining the potential contribution of plasticity at all stages of the transformation. For simplicity we

will model these changes simply as changes of gain, that is, as single scalar values by which the

eccentricity or amplitude of the respective signal is scaled. Three sensorimotor gains are allowed to

learn from error in the model - a visual gain !v to transform retinal input into target position on the

spatial map, a motor gain !m to transform spatial target position into a motor command (inverse

model), and a CD gain !cd to transform the corollary discharge CDM of the motor command into

CDV , the computed displacement of visual space due to the saccade (forward dynamics model). We

describe the motivation for and use of each gain in the following.

Modeling visual and motor gains
Plasticity of the visual gain !v occurs as perception of the pre-saccadic target localization changes

during learning (Moidell and Bedell, 1988; Collins et al., 2007; Hernandez et al., 2008;

Schnier et al., 2010; Zimmerman and Lappe, 2010; Gremmler et al., 2014). Hence, it reflects a

recalibration of the mapping of the retinal target input onto the perceived spatial target location

when errors are assigned to an internal failure of spatial target representation (Collins et al., 2007;

Zimmerman and Lappe, 2010; Gremmler et al., 2014).

Plasticity of the motor gain !m occurs if the saccade vector requires a different motor command,

depending on the current dynamics of the eye muscles. In the brain, the visual-to-motor transforma-

tion from spatial target percept to motor command is performed by a dynamic inverse model that

needs to be highly plastic (Bays and Wolpert, 2007; Franklin and Wolpert, 2011). For example, if

the eye muscles fatigue such that the saccade falls short, the inverse model increases the motor gain

!m to increase the saccade vector and better aim for the pre-saccadic target localization. We will use

the pre-saccadic target localization as the definition of the saccade goal. While spatial target locali-

zation and saccade landing roughly match in baseline saccades (Müsseler et al., 1999; Lappe et al.,

2000; Stork et al., 2010), they have been found to diverge during learning from peri-saccadic target

steps (Moidell and Bedell, 1988; Collins et al., 2007; Hernandez et al., 2008; Schnier et al., 2010;

Zimmerman and Lappe, 2010; Gremmler et al., 2014).

During learning, the spatial target code remains roughly constant in the lateral intraparietal area

(LIP; Goldberg et al., 2002; Steenrod et al., 2013) and the motor map of the superior colliculus

(SC; Frens and Van Opstal, 1997; Edelman and Goldberg, 2002; Quessy et al., 2010). Therefore,

changes in saccade vector with respect to spatial target percept likely reflect downstream changes
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Figure 2. Model framework. (A) The visual pre-saccadic target V1 (i.e. the perceived location of a physical target P1) is transformed into the motor

command M. Before saccade execution, a forward dynamics model transforms a copy of the motor command CDM into a computed displacement of

visual space CDV , a visual estimate of the saccade vector. Hence, the forward outcome model predicts the visual post-saccadic target to appear at

position V̂2. After saccade execution, the visual post-saccadic target appears at position V2. According to prediction-based learning, the visuomotor

system detects an error if the visual post-saccadic target deviates from its prediction (Epre), experiencing a violation of spatial stability. According to

postdiction-based learning, the visuomotor system assumes the world to remain stable during the saccade. Hence, a backward outcome model

postdicts the visual post-saccadic target back to pre-saccadic space (V̂1) in order to retroactively evaluate the motor command (Epost ). (B) Computation

of visual prediction error Epre and postdictive motor error Epost . In prediction-based learning, the predicted visual error V̂2 is derived from the visual pre-

saccadic target V1 and the CDV signal in pre-saccadic space (V̂2 ¼ V1 � CDV ) and is then compared to the actual visual error in post-saccadic space

(Epre ¼ V2 � V̂2). In postdiction-based learning, the visual error V2 is obtained in post-saccadic space and postdicted back to pre-saccadic space based

on the CDV signal (V̂1 ¼ V2 þ CDV ). It is then compared to the original motor command to calculate postdictive motor error (Epost ¼ V̂1 �M).
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of the motor command, for example in the cerebellum (Bays and Wolpert, 2007; Franklin and Wol-

pert, 2011; Taylor and Ivry, 2014). This means that the saccade error is assigned to internal motor

failure, that is, to a change in eye dynamics reflected by the motor gain !m. Such credit assignment

to muscle dynamics is essential for motor learning in saccades – during fatigue in natural saccades or

with an unperceived peri-saccadic target step in the laboratory (Volkmann et al., 1968;

Bridgeman et al., 1975; Li and Matin, 1990). This is a crucial difference between saccade learning

and other motor learning tasks. For example, in manual motor learning target perturbations do not

remain undetected (Shadmehr et al., 2010; Michel et al., 2018) and the spatial movement goal and

the movement vector may change synchronously.

Modeling CD gain
The need for plasticity of the CD gain !cd in the forward dynamics model directly results from the

plasticity of the motor gain !m. The CD gain describes the transformation in the forward dynamics

model of CDM , the copy of the motor command, into CDV , the computed displacement of visual

space. This transformation depends on an internal model of the current eye dynamics as it aims to

predict how much visual space is going to change when the current saccade is performed. The trans-

formation is necessary before corollary discharge information can be used by the visual system

(Bays and Wolpert, 2007; Sommer and Wurtz, 2008; Crapse and Sommer, 2008a; Franklin and

Wolpert, 2011). For example, in response to muscle fatigue that produces an outward error, the

motor gain of the inverse model which provides the visual-to-motor transformation increases in

order to keep the saccade on target. To compensate for the increased motor gain, the CD gain of

the forward dynamics model must decrease in order not to overestimate the saccade vector from

the now stronger motor command (Crapse and Sommer, 2008a; Thier and Markanday, 2019).

Indeed, CD gain can be plastic and deviate from the actual oculomotor behavior (Haarmeier and

Thier, 1996; Haarmeier et al., 1997). If the decrease of the CD gain does not exactly mirror the

increase of the motor gain, CDV deviates from the outcome of the motor command.

For our model, we quantify the CD gain from the difference between pre- and post-saccadic

localization with respect to the saccade vector. For example, if the CD gain underestimates the sac-

cade vector, the post-saccadic localization will be further outward than the pre-saccadic localization.

If the CD gain correctly reflects the saccade vector, the target will be reported at the same location

before and after the saccade in external space. This is nearly the case in baseline saccades, pointing

toward a roughly intact CD gain under natural viewing conditions (Collins et al., 2009;

Zimmerman and Lappe, 2010; Collins, 2014). It has been argued that during learning the CD signal

continues to reflect the baseline saccade, although the actual saccade adapts, such that post-sac-

cadic target localization appears shifted in learning direction (Bahcall and Kowler, 1999;

Collins et al., 2009). However, the CDV signal does not need to either stay at baseline level or cor-

rectly reflect the actual saccade. It can as well reflect an intermediate state, which we quantify in our

model based on the trans-saccadic target localization data and which we describe by the CD gain.

Modeling plasticity as a continuous error minimization process in
visuomotor function
In order to serve an accurate calibration of motor performance with spatial perception, we assume

that the error is calculated after every single saccade and adaptive processes are continuously active

to reduce error (Srimal et al., 2008; Herzfeld et al., 2018; Cassanello et al., 2019; Wolpert et al.,

2011). This implies that a steady state is reached when the error is nullified. We assume that this is

the case in baseline saccades and after learning has fully converged. Hence, we aim to explain cali-

bration of baseline visuomotor behavior and learning by a unified account that allows a flexible tran-

sition of the visuomotor system to a new steady state if errors occur, for example in response to a

peri-saccadic target step. Current models often describe motor learning as a deviation from a pre-

set baseline state, including a trial-by-trial decay rate that pulls behavior back to the baseline level

(Chen-Harris et al., 2008; Xu-Wilson et al., 2009; Albert and Shadmehr, 2018). In this case, a

steady state is reached if learning and decay are in balance but error minimization remains incom-

plete. Such models need to specify how and with what gains the baseline level is determined. In the

special case of saccades, where the target step in the double-step experiments is not perceived

(Volkmann et al., 1968; Bridgeman et al., 1975; Li and Matin, 1990), it is unclear how learning of
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motor and perceptual gains should be restrained by a pre-defined baseline state. It seems implausi-

ble that the visuomotor system encompasses an innate status quo of sensorimotor transformations.

Instead, for our model, we assume that learning serves optimal motor behavior and proceeds until

error nullification. Thus, we explicitly search for an error signal that provides a universal explanation

for visuomotor steady states without the need for a pre-defined status quo. Hence, this error serves

to continuously optimize the alignment of motor performance with visual perception

(Zimmerman and Lappe, 2010; Havermann et al., 2014; Zimmermann and Lappe, 2016).

Modeling different types of error
In our modeling, we compare two error signals that relate the post-saccadic visual error to the pre-

saccadic scene based on the CDV signal. One of them is the visual prediction error (Bahcall and

Kowler, 2000; Wong and Shelhamer, 2011; Collins and Wallman, 2012), that is, the difference

between the predicted and the actual location of the target on the retina after the saccade. This

error aims to minimize discrepancies between outcome and prediction, rather than aiming to bring

the eye on target. The other is a novel proposal which we term the postdictive motor error. Postdic-

tion describes a backward modeling process that transforms the post-saccadic visual target into pre-

saccadic coordinates using the CDV signal. Hence, postdiction updates the internal representation

about where the pre-saccadic target actually appeared. The postdictive motor error compares this

position to the performed motor command, aiming to bring the eye close to the target while also

keeping vision, motor control, and CD processing in register with each other. Figure 2 presents the

rationale of the basic model as well as the computation of visual prediction error Epre (prediction

model) and postdictive motor error Epost (postdiction model).

One may also consider the pure post-saccadic visual error, that is, the distance of the post-sac-

cadic target from the fovea after the saccade. However, several critical observations in the literature

show that the visual error alone cannot drive learning. First, learning is driven by error reduction and

aims for steady states with error nullification. However, it was repeatedly shown that the visuomotor

system accepts a remaining amount of visual error at steady state (saccades tend to undershoot their

target by 5-10%, Robinson, 1973; Henson, 1979; Becker, 1989) and after learning from peri-sac-

cadic target shifts (saccade gain adaptation does usually not fully reach the target; Deubel et al.,

1986; Straube et al., 1997; Wallman and Fuchs, 1998; Noto et al., 1999). Second, minimization of

visual error would predict the visuomotor system to learn until the saccade lands on the post-sac-

cadic target in the CTS paradigm. However, learning converges at an earlier stage (Moidell and

Bedell, 1988; Deubel et al., 1986; Straube et al., 1997; Wallman and Fuchs, 1998; Schnier et al.,

2010). Third, minimization of visual error would predict endless learning in the CVE paradigm, in

which the target is shifted with a constant distance to the post-saccadic gaze location, thus keeping

the visual error constant. Instead, learning converges at some stage even in this paradigm

(Robinson et al., 2003; Zimmerman and Lappe, 2010; Havermann and Lappe, 2010). Fourth, if

saccades purposely undershoot their target by means of accepting a certain amount of visual error,

this undershoot should be actively maintained during learning. However, learning from inward step-

ping targets converges with a remaining visual error in opposing direction of the primary saccade

(Kojima et al., 2004; Panouillères et al., 2009). To help a better intuition for why a visual error

model cannot explain learning, please see the simulations of a visual error model in Appendix 1 sub-

section 1.1 and Appendix 1—figure 1.

Detailed model description
In this section, we give a detailed account of the implementation of the models. We begin by

describing the basic processes and the different gains and then proceed to the learning rule and

error types.

Basic processes and gains
We describe the perceived visual position V1ðnÞ of the pre-saccadic target with the visual gain !vðnÞ:

V1ðnÞ ¼ P1!vðnÞ; (1)

where n is the trial number and P1 is the physical eccentricity of the target (Figure 2A-1). The per-

ceived position of the pre-saccadic target on the visual map accurately reflects the physical
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eccentricity if !vðnÞ = 1. Different values of !vðnÞ would reflect mislocalizations that have been

observed in localization during fixation (Müsseler et al., 1999; Lappe et al., 2000; Stork et al.,

2010) and after saccadic adaptation (Moidell and Bedell, 1988; Collins et al., 2007;

Hernandez et al., 2008; Schnier et al., 2010; Zimmerman and Lappe, 2010; Gremmler et al.,

2014). In model fitting, V1ðnÞ corresponds to the pre-saccadic target localization with !vðnÞ being

allowed to plastically learn from error with the learning rate av.

In the visual-to-motor transformation of the inverse model (Figure 2A–2), the visual pre-saccadic

target position V1ðnÞ is mapped onto a motor command MðnÞ with the motor gain !mðnÞ:

MðnÞ ¼ V1ðnÞ!mðnÞ ¼ P1!vðnÞ!mðnÞ (2)

If !mðnÞ = 1, the motor command is accurate such that the saccade lands at the spatial position

V1ðnÞ. In model fitting, MðnÞ corresponds to the saccade vector (primary saccade to the target) with

!mðnÞ being allowed to plastically learn from error with the learning rate am, reflecting learning of

the inverse model (the visual-to-motor transform) in response to an assumed motor failure.

The motor command MðnÞ is copied into CDMðnÞ:

CDMðnÞ ¼MðnÞ (3)

and routed into the CD pathway.

Before saccade onset, the motor-to-visual transformation of the forward dynamics model

(Figures 2A–3) maps the corollary discharge of the motor command CDMðnÞ into the CDVðnÞ signal,

that is, the computed displacement of visual space, an estimate of the saccade vector in visual

coordinates:

CDV ðnÞ ¼CDMðnÞ!cdðnÞ ¼ P1!vðnÞ!mðnÞ!cdðnÞ (4)

If the CD gain !cdðnÞ = 1, the forward dynamics model is accurate such that CDV ðnÞ matches the

actual saccade vector. To fit the model to a possible imbalance between actual saccade and CDV ðnÞ

induced by learning, the CD gain !cdðnÞ is allowed to plastically learn from error with the learning

rate acd. Please note that !cdðnÞ captures the explicit recognition that the motor-efferent CDMðnÞ sig-

nal needs to be transformed into visuospatial coordinates, that is, CDV ðnÞ, before it can be used by

vision.

The computed displacement of visual space CDV ðnÞ, is then routed into a forward outcome model

that maps the visual pre-saccadic target position V1ðnÞ into a prediction about where the post-sac-

cadic target will appear on the retina after the saccade:

V̂2ðnÞ ¼ V1ðnÞ�CDV ðnÞ ¼ P1!vðnÞð1�!mðnÞ!cdðnÞÞ (5)

Thus, V̂2ðnÞ is the predicted visual error (Figures 2A–4). It corresponds to the post-saccadic target

localization with respect to the post-saccadic gaze position, that is, the gaze position after the pri-

mary saccade was performed.

The motor command, when executed, produces the performed saccade vector (Figures 2A–5):

PMðnÞ ¼MðnÞþ �mðnÞ ¼ P1!vðnÞ!mðnÞþ �mðnÞ (6)

Here, �mðnÞ describes random motor noise in saccade execution. For the model fitting, we will set

�m(n) = 0. Since the models are not fitted to trial-by-trial data but to averages over probe trials dur-

ing learning, the noise will be canceled out in the fits. Hence, PMðnÞ = MðnÞ. We have, however,

checked that the basic model performance is robust to the inclusion of motor noise.

In our double-step paradigms, the target is shifted during the saccade. Thus, after saccade land-

ing, the shifted target is displayed with the distance Ps either with respect to the pre-saccadic target

position (CTS conditions) or with respect to the post-saccadic gaze position (CVE conditions). Hence,

the trans-saccadic target displacement resulting from the imposed target shift and the motor execu-

tion noise becomes:

CTS : PdðnÞ ¼ Ps� �mðnÞ (7)
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CVE : PdðnÞ ¼ PMðnÞþPs�P1 � �mðnÞ ¼ P1ð!vðnÞ!mðnÞ� 1ÞþPs (8)

Thus, after saccade landing, the post-saccadic target appears at the retinal position (Figures 2A–

6):

V2ðnÞ ¼ P1þPdðnÞþ �mðnÞ�PMðnÞ ¼ P1ð1�!vðnÞ!mðnÞÞþPdðnÞ (9)

V2ðnÞ is the actual visual error that the system receives after the saccade.

Learning rule
Learning in our model is based on the delta rule that reflects the principle of error-based learning in

the sensorimotor system (Widrow and Hoff, 1960; Widrow and Stearns, 1985). According to the

delta rule of error-based learning, the system estimates the gradient of the directional error with

respect to every gain of the visuomotor circuitry, thereby deriving whether the error will increase or

decrease as the gain will be increased or decreased (Wolpert et al., 2011). The system then follows

an internal estimate of the gradient to minimize the error as a function of its gains (Doya, 1999;

Wolpert et al., 2011; Taylor and Ivry, 2014). Hence, the visuomotor gains

!ðnÞ ¼
!v

!m

!cd

0

@

1

AðnÞ

are adapted after each trial in the direction in which the error jEj2 decreases most rapidly:

!ðnþ 1Þ ¼ !ðnÞ�a
qjEj2ðnÞ

q!ðnÞ
(10)

The learning rates

a¼
av 0 0

0 am 0

0 0 acd

0

@

1

A

determine the speed of learning across trials. If any of the three gains is plastic, its learning rate

will be significantly different from zero. If EðnÞ = 0, the system has reached a steady state in which

the saccade vector and the visual target representations are stable except for random noise

fluctuations.

Learning from visual prediction error
In the prediction model (Figures 2A–7; Figure 2B, left), the visuomotor system encodes the error

signal as the deviation of the visual post-saccadic target location V2ðnÞ from the predicted location

V̂2ðnÞ:

EpreðnÞ ¼ V2ðnÞ� V̂2ðnÞ ¼ P1ð1þ!vðnÞð!mðnÞð!cdðnÞ� 1Þ� 1ÞÞþPdðnÞ (11)

Hence, EpreðnÞ denotes the amount of visual error that stems from the target step or that was not

correctly predicted by the CD gain (Figure 2A).

According to the delta rule, the visuomotor gains are adapted after each trial in the direction in

which jEprej
2 decreases most rapidly:

!ðnþ 1Þ ¼ !ðnÞ�a
qjEprej

2ðnÞ

q!ðnÞ
(12)

¼ !ðnÞ� 2aEpreðnÞ
qEpreðnÞ

q!ðnÞ
(13)

¼ !ðnÞ� 2aEpreðnÞ

P1ð!mðnÞð!cdðnÞ� 1Þ� 1Þ

P1!vðnÞð!cdðnÞ� 1Þ

P1!vðnÞ!mðnÞ

0

B

@

1

C

A
(14)
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If EpreðnÞ = 0, the post-saccadic target will appear at the retinal position where it was predicted to

appear. At that point the system has reached a steady state in which the saccade vector and the

visual target representations are stable except for random noise fluctuations.

Learning from postdictive motor error
In the postdiction model, the visuomotor system combines the visual post-saccadic target position

V2ðnÞ and CDV ðnÞ to postdictively update the target position in a pre-saccadic frame of reference:

V̂1ðnÞ ¼ V2ðnÞþCDV ðnÞ ¼ P1ð1þ!vðnÞ!mðnÞð!cdðnÞ� 1ÞÞþPdðnÞ (15)

Analogous to the forward outcome model that predicts the post-saccadic target position

(Figures 2A–4), we denote this transformation as the backward outcome model as it postdicts the

pre-saccadic target position (Figures 2A–8; Figure 2B, right).

On this basis, the postdictive motor error EpostðnÞ is computed as the error of the motor command

with respect to the postdicted pre-saccadic target position (Figures 2A–9; Figure 2B, right):

EpostðnÞ ¼ V̂1ðnÞ�MðnÞ ¼ P1ð1þ!vðnÞ!mðnÞð!cdðnÞ� 2ÞÞþPdðnÞ (16)

The sensorimotor gains adapt after each trial to reduce jEpostj
2 via the delta rule:

!ðnþ 1Þ ¼ !ðnÞ�a
qjEpostj

2ðnÞ

q!ðnÞ
(17)

¼ !ðnÞ� 2aEpostðnÞ
qEpostðnÞ

q!ðnÞ
(18)

¼ !ðnÞ� 2aEpostðnÞ

P1!mðnÞð!cdðnÞ� 2Þ

P1!vðnÞð!cdðnÞ� 2Þ

P1!vðnÞ!mðnÞ

0

B

@

1

C

A
(19)

Hence, V̂1ðnÞ is a postdictive update of the pre-saccadic desired state to retroactively evaluate

the motor command in its native reference frame. This appears appropriate if CDV ðnÞ is still available

after saccade landing (Cavanaugh et al., 2016) and the visuomotor system trusts post-saccadic tar-

get vision more than the more peripheral pre-saccadic target vision. The postdiction model reaches

a steady state if the saccade lands at the postdicted pre-saccadic target position such that EpostðnÞ =

0.

Model fitting and analysis
Analysis of visuomotor plasticity
Before fitting the models to the data on the basis of the respective error types (Epre or Epost), we

derived the state of CDV and the visuomotor gains ! at the five probe blocks based on the basic

model rationale. This allowed us to examine our first question ‘Which gains are plastic?’ indepen-

dently from our second question ‘Which error signal drives this plasticity?’. Based on the pre-sac-

cadic target localization (V1), the saccade vector (M) and the post-saccadic target localization with

respect to the saccade landing position (V̂2), we derive:

CDV ¼ V1 � V̂2 (20)

!v ¼
V1

P1

(21)

!m ¼
M

V1

(22)

!cd ¼
CDV

CDM

(23)

To evaluate the plasticity of each gain, we tested each gain change D! from probe block 1 to 5
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against zero with a two-sided one-sample t-test. T-tests between gain changes were corrected for

the direction of gain change.

Model fitting and comparison between models
As the error gradient predefines the direction of learning, the models can produce a good fit to the

data only if the measured changes in pre-saccadic target localization, saccade vector and post-sac-

cadic target localization occur in the direction of error reduction. If this is not the case, model fitting

will not produce a good fit to the data. To test which model produces a good fit and hence, can

explain learning, we fitted the models to the individual subject data separately for each condition

(P1 = 13˚, Ps = �3˚ for inward, Ps = +3˚ for outward). This allowed us to compare the models on the

basis of the most optimal fits in four learning conditions. Starting from the baseline median saccade

vector (Mð1Þ), pre-saccadic localization (V1ð1Þ) and post-saccadic localization (with respect to the

landing point of the primary saccade, V̂2ð1Þ) of the first probe block, we fitted the learning rates a

for which the weighted sum of squared errors (SSE) at trials n = [1, 71, 141, 211, 281] (derived from

the medians of the five probe blocks) was minimized:

afit ¼ argmin
X

n¼1;71;141;211;281

hðnÞ ððV1ðnÞ�V1;predictedðnÞÞ
2 þðMðnÞ�MpredictedðnÞÞ

2

þðV̂2ðnÞ� V̂2;predictedðnÞÞ
2Þ

Thereby, hðnÞ is the weight according to the number of trials within the probe block to account

for the certainty of the data (h(1,281)=1.52, h(71,141,211)=0.65). Please note that we did not fit the

model to the trial-by-trial data but to the averages of each probe block during learning. This was

done because we could obtain pre-saccadic target localization, saccade vector and post-saccadic

target localization only from the combination of trials within probe blocks. As localizations and sac-

cade vectors did not systematically change within a probe block, the average of each probe block is

considered the best measure of the current state of the visuomotor system during learning.

The lower bound for a was restricted to 0 to ensure that the system learned in gradient direction.

The upper bound was set to 9*10�5 to prevent MðnÞ from taking a strong exponential shape without

an emerging asymptote.

Since both models have the same free parameters (the three visuomotor gains) and hence, exhibit

the same amount of model complexity, model selection was based on paired t-tests on the residual

standard error RSE between subject prediction and postdiction model fits:

RSE¼

ffiffiffiffiffiffiffiffiffiffiffi

SSE

l� 1

r

(24)

with l = 15 as the number of data points used for RSE calculation (five probe blocks each with pre-

saccadic localization, saccade vector and post-saccadic localization). Afterwards, we fitted the post-

diction model to both conditions, choosing the shared learning rate a that minimizes the SSE

summed over the CTS and the CVE condition of each subject.

The error that drives learning is expected to be zero in visuomotor steady states when no system-

atic changes occur. This should be the case in baseline saccades and when learning has converged.

To test error nullification we computed the model’s baseline error without target step (CTS with Ps =

0), using the gains ! of the first trial, as well as the final error at the last trial and the percentage of

error decline from the first trial (with target step) to the last trial.

We extracted the baseline error Epreð1Þ and Epostð1Þ if simulated without target step (CTS with Ps

= 0), the percentage of error decline from trial 1 to trial 281 and the final error Epreð281Þ and

Epostð281Þ of the prediction and the postdiction model fits. Moreover, we computed the CDV error

CDV �M for baseline saccades and for saccades at the end of the CTS conditions. Since the final

error of the model fits cannot become >0 in inward learning and not <0 in outward learning, statisti-

cal tests against zero were performed on the Epostð281Þ and Epreð281Þ errors derived directly from the

data.
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Stability analysis
We performed stability analysis of the postdiction model to examine the steady states to which the

visuomotor gains can converge. The trial-by-trial gain change of the postdiction model is described

by a system of three-dimensional nonlinear partial differential equations:

D!ðnÞ ¼�a
qjEpostj

2ðnÞ

q!ðnÞ
(25)

We set D!ðnÞ ¼ 0 to extract the fixed points to which the postdiction model can converge. The

stability of the fixed points was evaluated based on the trace t , the determinant det and t

2 � 4det

extracted from the Jacobian matrix of D!ðnÞ

JðD!ðnÞÞ ¼

qD!vðnÞ

q!vðnÞ

qD!vðnÞ

q!mðnÞ

qD!vðnÞ

q!cdðnÞ

qD!mðnÞ

q!vðnÞ

qD!mðnÞ

q!mðnÞ

qD!mðnÞ

q!cdðnÞ

qD!cdðnÞ

q!vðnÞ

qD!cdðnÞ

q!mðnÞ

qD!cdðnÞ

q!cdðnÞ

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

(26)

in which the fixed point equations were inserted.

Statistical analysis
A mixed analysis of variance (ANOVA) was computed each for the saccade vector, pre- and post-sac-

cadic localization changes (learning direction inward/outward as between-subject factor, paradigm

CTS/CVE as a within-subject factor, Greenhouse-Geisser corrected). As a mixed ANOVA on gain

changes (learning direction as between-subject factor, paradigm and gain type as within-subject fac-

tors) revealed significant main effects of paradigm and gain as well as a significant interaction

between direction and paradigm, we performed a repeated measures one-way ANOVA over gain

change for each learning condition. To compare two groups of data or fitted parameters or to test

one group of data against zero, two-sided t-tests or alternatively, two-sided Wilcoxon signed-rank

tests were applied if normal distribution was violated. Tests were performed with a significance level

of 0.05 except for Bonferroni-corrected post-hoc t-tests.

Results

Learning induces changes in saccade amplitude, pre- and post-saccadic
localization
We first wanted to determine the states of the different aspects of the visuomotor transform during

learning from the experimental data irrespective of the error model. We collected data on the sac-

cade vector and on the pre- and post-saccadic localization of visual targets during a double-step

task with four different target shift conditions. In the CTSin condition the target stepped a constant

3˚ against the saccade direction in each trial, leading to a constant inward target shift. In the CTSout
condition, the target stepped a constant 3˚ in the saccade direction in each trial, leading to a con-

stant outward target shift. In the CVE conditions, the target stepped to a location 3˚ from the land-

ing point of the saccade, either against saccade direction in the CVEin condition or in saccade

direction in the CVEout condition, each time leading to a constant visual error (inward and outward,

respectively). In each of the four conditions, we calculated the CD gain according to the basic model

rationale from the difference between post-saccadic localization, pre-saccadic localization and the

saccade vector.

Figure 3A shows the mean data across subjects for all four conditions and Figure 3B shows the

data of an example subject in the CTSout condition (for all individual subject data see Appendix 1—

figures 3–6). Consistent with previous studies we found large changes in saccade vector (McLaugh-

lin, 1967; Miller et al., 1981; Wallman and Fuchs, 1998; Bahcall and Kowler, 1999;

Panouillères et al., 2009; Ethier et al., 2008a; Havermann and Lappe, 2010) and post-saccadic

localization (Bahcall and Kowler, 1999; Collins et al., 2007; Zimmermann and Lappe, 2009;

Schnier et al., 2010; Klingenhoefer and Bremmer, 2011) that were significant in all learning
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conditions (p<0.001, see Table 1 for detailed statistical analysis). As expected from other studies,

these changes were larger in the CVE paradigms than in the CTS paradigms (main effect of para-

digm F1;31 = 31.95, p<0.001 for saccade vectors, F1;31 = 24.60, p<0.001 for post-saccadic localiza-

tions, both post-hoc t-tests p<0.001, see Table 1, Robinson et al., 2003; Havermann and Lappe,

2010; Zimmerman and Lappe, 2010). Also in accordance with previous work, the changes in pre-

saccadic localization were small, but were significantly different from zero in the CVE conditions (p �

0.046, Moidell and Bedell, 1988; Collins et al., 2007; Hernandez et al., 2008; Schnier et al.,

2010; Zimmerman and Lappe, 2010; Gremmler et al., 2014).

In both CTS conditions, the saccade vector at the end of the session appears to be converged to

a new steady state (saccade vector from probe block 4 to 5 vs. zero, CTSint16 = 0.787, p=0.443;

CTSout t17 = 1.75, p=0.097). In the CVE conditions, in contrast, the saccade vector did not appear to
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Figure 3. Experimental data and gain changes. (A) Experimental data averaged across subjects. Each panel shows saccade vectors, pre- and post-

saccadic localizations and CDV of the five probe blocks for a specific learning condition. Error bars indicate standard error of the mean. Asterisks at the

right edge of each panel indicate significant change from probe block 1 to 5 with ***p<0.001, **p<0.01, *p<0.05 and n.s. p�0.05. Blue asterisks within

the panel indicate significant change from probe block 4 to 5 showing that learning was completed at the end of the CTS conditions but still in

progress at the end of the CVE conditions. (B) Experimental data of an example subject for the CTSout condition. Saccade vectors, pre- and post-

saccadic localizations were measured within five probe blocks across learning. As saccade vectors needed to be related to post-saccadic localizations,

only the saccade vectors of the post-saccadic localization trials (dark blue) were used for the analysis. (C) Gain changes from the first to the last trial for

the four learning conditions, averaged across subjects. Asterisks indicate significant difference from zero with ***p<0.001, **p<0.01, *p<0.05 and n.s.

p�0.05.
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reach a steady state and might further adapt with more trials (CVEin t16 = �3.67, p=0.002; CVEout
t17 = 4.70, p<0.001). For model fitting, this means that the error signal should be nullified at the end

of the CTS conditions but not at the end of the CVE conditions as, here, learning is still in progress.

Plasticity is reflected in gains of visual target percept, motor command
and CDV

Before fitting the models to the data on the basis of the respective learning rules (Epre or Epost learn-

ing), we derived the gain changes D! and deduced the state of CDV at the five probe blocks based

on the basic model rationale. This allowed us to examine which visuomotor gains are plastic (first

question, basic model) independently from the question of which error signals can explain this plas-

ticity (second question, model fitting to the learning rules). The time course of CDV is presented in

the red lines in Figure 3A. The gain changes D! of the three signals (vision, motor and CD gain) are

shown in Figure 3C. These visuomotor gain changes describe the plasticity of the respective signal

with respect to the other signals. Hence, if a signal is plastic, the respective gain change should sys-

tematically differ from zero across subjects.

In the case of the visual gain !v, changes directly result from the pre-saccadic target localization.

Hence, the visual gain changed in the direction of the target step which was significant in the CVE

conditions (CVEin t16 = �2.19, p=0.046; CVEout t17 = 2.44, p=0.026) but not in the CTS conditions

(CTSin t16 = �1.49, p=0.159; CTSout t17 = 0.30, p=0.766). For the CVE conditions, this suggests that

the visual gain is adapted in response to error, as the error might result from a deficient pre-saccadic

target localization on the spatial map.

In the case of the motor gain !m, changes result from the saccade vector with respect to the pre-

saccadic target localization. In all conditions, the motor gain significantly changed during learning

(CTSin t16 = �6.10, p<0.001; CTSout t17 = 8.08, p<0.001; CVEin t16 = �8.24, p<0.001; CVEout

t17 = 7.28, p<0.001). This suggests that the inverse model adapts its transformation from visual tar-

get percept to the motor command in response to a presumed change in eye dynamics.

A key question of our study is how the CD gain of the forward dynamics model develops during

learning. It has been argued that CDV remains fixed at baseline level such that the visual system is

completely unaware of the ongoing motor changes (Bahcall and Kowler, 1999) or, at least, that the

CDV signal might not correctly reflect the motor changes during learning (Collins et al., 2009). In

this case, CDV would deviate from the performed saccade vector and, in turn, produce post-saccadic

mislocalization. In contrast, if the CD gain correctly reflects the motor changes, it should accurately

Table 1. Analysis of the experimental data.

Here, we report mean and standard deviation of changes in saccade vector, pre- and post-saccadic localization from probe block 1 to

5. T-values are derived from two-sided t-tests against zero. F-values are derived from 2 � 2 mixed ANOVAs for saccade vector, pre-

and post-saccadic localization changes (corrected for direction) with paradigm (CTS/CVE) as within-subject factor and direction (in/out)

als between-subject factor. Changes in saccade vector were significant in all conditions but higher for inward than outward learning

(within the CVE conditions, post-hoc t-test t33 = 3.68, p<0.001) and higher for CVE than CTS learning (within the inward conditions,

post-hoc t-test t32 = 4.94, p<0.001, CVEin vs. CTSout t33 = �5.13, p<0.001, all other post-hoc tests p�0.126, bonferroni-corrected signif-

icance level 0.008). Changes in post-saccadic localization were significant in all conditions but higher for CVE than CTS learning (within

the outward conditions, post-hoc t-test t34 = �4.23, p<0.001, CVEout vs. CTSin t33 = �4.48, p<0.001, CVEout vs. CVEin t33 = �2.42,

p=0.021, all other post-hoc tests p�0.163, bonferroni-corrected significance level 0.008). Changes in pre-saccadic localization were

small but significant in the CVE conditions.

Pre-saccadic localization Saccade vector Post-saccadic localization

CTSin �0.31 ± 0.85˚, t16 = �1.48, p = 0.159 �1.89 ± 0.61˚, t16 = �12.69, p < 0.001*** �0.82 ± 0.65˚, t16 = �5.24, p < 0.001***

CTSout +0.04 ± 0.62˚, t17 = 0.30, p = 0.766 +1.79 ± 0.71˚, t17 = 10.80, p < 0.001*** +0.88 ± 0.67˚, t17 = 5.57, p < 0.001***

CVEin �0.42 ± 0.80˚, t16 = �2.17, p = 0.046* �3.37 ± 1.08˚, t16 = �12.88, p < 0.001*** �1.20 ± 0.87˚, t16 = �5.66, p < 0.001***

CVEout +0.35 ± 0.62˚, t17 = 2.44, p = 0.026* +2.19 ± 0.80˚, t17 = 11.59, p < 0.001*** +1.85 ± 0.70˚, t17 = 11.17, p < 0.001***

paradigm F1;31 = 3.48, p = 0.071 F1;31 = 31.95, p < 0.001*** F1;31 = 24.60, p < 0.001***

direction F1;31 = 0.56, p = 0.462 F1;31 = 8.24, p = 0.007** F1;31 = 2.94, p = 0.096

interaction F1;31 = 0.76, p = 0.390 F1;31 = 10.75, p = 0.002** F1;31 = 4.75, p = 0.036*
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describe the saccade vector during learning, accurately compute the displacement of visual space

for this saccade, and produce no post-saccadic mislocalization. Note that, in the mathematical for-

malization of our model, !cd = 1 means that the forward dynamics model transforms the corollary

discharge of the motor command CDM into an accurate computed displacement of visual space

CDV . Hence a deviation between CDV and the performed saccade vector, as proposed by

Bahcall and Kowler, 1999 and Collins et al., 2009, formally corresponds to a change of CD gain in

our model.

Figure 3C shows the change in the CD gain D!cd, revealing significant differences from zero in all

learning conditions (CTSin t16 = 2.72, p=0.015; CTSout t17 = �3.70, p=0.001; CVEin t16 = 2.70,

p=0.016; CVEout t17 = �5.61, p<0.001). This suggests that the CDV signal does not correctly reflect

the adapting saccade vector during learning (Bahcall and Kowler, 1999; Collins et al., 2009). With

respect to the visuomotor transformations in the brain, this means that the forward dynamics model

adapts its transformation from CDM to CDV , that is, the CD gain. The changes in CD gain occur in

the opposite direction of motor gain changes (Figure 3C), reflecting the opposing dynamics

between inverse and forward dynamics model as if the system associates the error with a change in

eye dynamics.

Figure 3A also illustrates how much the computed displacement of visual space CDV (red line)

dissociates from the actual saccade vector (blue line) during learning (remember that the dissociation

between pre- and post-saccadic target localization determines the size of the CDV with respect to

the actual saccade vector). The CD gain does not correctly reflect the saccade vector since D!cd sig-

nificantly differs from zero. However, it also does not remain fixed at the baseline level during learn-

ing (DCDV significantly differs from zero, CTSin t16 = �5.99, p<0.001; CTSout t17 = 3.99, p<0.001;

CVEin t16 = �8.94, p<0.001; CVEout t17 = 2.39, p=0.029). Instead, the CD gain reflects saccade

changes in the direction of the target step but underestimates the size of the saccade change.

Finally, we wanted to compare plasticity between gains in order to determine which signals pro-

vide strong or weak contributions to the learning effect. We performed a repeated measures one-

way ANOVA for each condition, revealing a main effect of gain type (!v, !m or !cd) in each condition

(F2;32 = 7.14, p=0.003 for CTSin, F2;34 = 19.81, p<0.001 for CTSout, F2;32 = 19.66, p<0.001 for CVEin

and F2;34 = 10.98, p<0.001 for CVEout). In all conditions, the motor gain change D!m was larger than

the CD gain change D!cd (post-hoc t-tests p�0.019) which was larger than the visual gain change

D!v in the outward conditions (post-hoc t-tests p�0.044, corrected for the direction of gain change).

To summarize the plastic changes in the gains before we turn to the modeling, we found most

plasticity within the saccadic motor command and within the CDV signal, and small but significant

plasticity within the pre-saccadic target percept in the CVE conditions. Illustrations of the role of

each individual gain in the learning process are presented in Appendix 1 subsection 1.2 and Appen-

dix 1—figure 2.

Postdictive motor error drives learning
After revealing that all three visuomotor gains are plastic, we examined which learning rule can

explain this plasticity. We compare the minimization of visual prediction error Epre with the minimiza-

tion of postdictive motor error Epost. We fitted both models to the data of the pre-saccadic target

localizations (V1), saccade vectors (M) and post-saccadic target localizations (with respect to the sac-

cade landing position, V̂2). A model will only fit well if error reduction is consistent with the measured

changes in pre-saccadic target localization, saccade vector and post-saccadic target localization.

Figure 4 shows the fits of the prediction model (A) and the postdiction model (B) to the data.

Please note that the lines represent the model fit and hence, appear smooth compared to the mean

over subjects represented by the lines in Figure 3A. In Figure 4, the shaded areas in the back-

ground represent the measured data of pre-saccadic target localization (green, fitted by V1), saccade

vector (blue, fitted by M), and post-saccadic target localization (dashed orange line, second row, fit-

ted by V̂2Þ.

The fit of the prediction model (Figure 4A) was not able to capture the data, neither for the

motor performance (blue lines) nor for the observed perceptual effects (green lines in top panels,

orange dashed lines in second panels). The reason for the failure of the prediction model can directly

be seen in the data. The visual prediction error is the difference between the predicted post-sac-

cadic target position V̂2 (dashed orange line in second panel) and the actual post-saccadic target
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position V2 (continuous orange line in second panel). Clearly, these two lines do not converge and

often the predicted post-saccadic target position is in the opposite direction from the actual post-

saccadic target position. This is even true at the end of the CTSin condition when the saccade vector

data (blue dashed area in top row) are in an asymptotic steady state and the error that drives motor

learning should be zero. Clearly, this is not the case for the visual prediction error (bottom row). This
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Figure 4. Prediction model fits and postdiction model fits to the experimental data. Each column shows the fit for a specific learning condition. Fits are

shown by lines. Data (subject means ± standard error) are shown by shaded areas. Please note that due to the model fit, the lines appear smooth

compared to the mean over subjects represented by the lines in Figure 3A. First row: Visual pre-saccadic target V1 (fitted to pre-saccadic retinal

localizations, green shade), motor command M (fitted to saccade vectors, blue shade), computed displacement of visual space CDV , postdicted pre-

saccadic target V̂1 in the postdiction model. Second row: Predicted post-saccadic target V̂2 (fitted to post-saccadic retinal localizations, orange shade),

visual post-saccadic target V2. Third row: Visual gain !v, motor gain !m, CD gain !cd . (A) Last row: Visual prediction error Epre ¼ V2 � V̂2. To nullify Epre,

the model requires CDV to learn in the opposite direction of M. As this is not in line with the data, the prediction model does not adequately fit the

data. Fitted learning rates are: CTSin a = (4.9*10�6; 5.0*10�5; 3.8*10�17), CVEin a = (4.6*10�6; 5.0*10�5; 3.4*10�17), CTSout a = (2.1*10�6; 5.0*10�5;

2.3*10�6), CVEout a = (2.9*10�6; 5.0*10�5; 4.0*10�6). (B) Last row: Postdictive motor error Epost ¼ V̂1 �M. At the end of the CTS conditions, Epostð281Þ» 0

so that the system is appears to be converged to a steady state while at the end of the CVE conditions learning is still in progress. Fitted learning rates

are: CTSin a = (5.2*10�6; 3.5*10�5; 1.8*10�5), CVEin a = (1.9*10�6; 1.3*10�5; 5.4*10�6), CTSout a = (8.4*10�8; 1.5*10�5; 6.3*10�6), CVEout a = (2.0*10�6;

9.9*10�6; 8.0*10�6).
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shows that the measured changes in pre-saccadic target localization, saccade vector and post-sac-

cadic target localization are not consistent with minimization of visual prediction error Epre.

The postdiction model (Figure 4B) fits well to the data, reflecting the respective visuomotor gain

changes (third row) and the reduction of the postdictive motor error Epost (bottom row). The postdic-

tive motor error is the difference between the postdicted target position V̂1 (dashed green line in

top row) and the motor command M (blue line in top row). The postdictive motor error reduces as

these lines converge closer together. The convergence is faster in the CTS conditions, consistent

with the data.

Figure 5A presents the residual standard error for both models. Since both models have the

exact same free parameters, that is, the three learning rates for the gains, the residual standard error

allows a direct comparison of the fit quality. In all conditions, residual standard errors were smaller

for the postdiction model fit than for the prediction model fit (CTSin t16 = 5.30, p<0.001; CTSout
t17 = 3.76, p=0.002; CVEin t16 = 5.84, p<0.001; CVEout t17 = 3.42, p=0.003). After model comparison

on the basis of the separately fitted conditions, we also fitted the learning rates av, am and acd that

minimize SSE summed over the CTS and the CVE condition of each subject. Here, again, the residual

standard error was smaller in the postdiction model fit than in the prediction model fit in all condi-

tions (p � 0.015). For the postdiction model, the residual standard error when fitting shared learning

rates was 0.54 ± 0.19˚ for CTSin, 0.45 ± 0.12˚ for CTSout, 0.58 ± 0.18˚ for CVEin and 0.49 ± 0.14˚ for

CVEout.

In sum, the postdiction model well describes learning of the saccade vector and the pre-and

post-saccadic localization data, including a dissociation of CDV from the saccade in the sense of an

underestimation of saccade changes in learning direction. In contrast, the prediction model fails to

capture perceptual and saccadic data.

Postdictive motor error explains visuomotor steady states
In this section, we derive some essential properties of the steady states of the postdiction model

that relate to properties of saccades, saccadic adaptation, and trans-saccadic perception.

In designing our model, we aimed to find a learning rule that can explain continuous calibration

of motor performance and spatial perception without the need for a pre-defined baseline state that

restrains learning. Instead, we propose that visuomotor steady states are achieved when the error

signal is nullified, that is, when no systematic changes occur except for random noise fluctuations.

This should first be the case in baseline saccades (without a peri-saccadic target step) and, second,

when plasticity has converged after learning with a peri-saccadic target step. We analyzed whether

the postdictive motor error fulfils this criterion. First, we examined whether the postdictive motor

error is nullified at baseline and in converged adapted steady states. Second, we investigated via

dynamical systems stability analysis how these steady states are formed.

Subject means of baseline error and medians of final error and error decline are depicted in

Figure 5B–D (median is depicted for skewed distributions). Baseline Epost was nullified in all learning

conditions (p�0.323). By contrast, baseline Epre was not nullified in the outward conditions (CTSout
t17 = 2.73, p=0.014; CVEout t17 = 4.25, p<0.001). Hence, the postdiction model can explain the

steady state in baseline saccades.

Especially interesting is the end state in the CTS conditions for which the saccade vector data

show asymptotic convergence toward the end of the measurement (Figure 3A, CTSin and CTSout).

This means that learning had reached a steady state in the CTS conditions. Consistent with this, final

Epost was nullified in these conditions (CTSin t16 = �1.36, p=0.193; CTSout t17 = 1.51, p=0.150;

Figure 5C). This was different in the CVE conditions in which learning was still in progress at the end

of the measurement (Figure 3A CVEin and CVEout). Consistent with this observation, Epost was still

different from zero at that time (CVEin t16 = �9.31, p<0.001; CVEout t17 = 4.78, p<0.001). The predic-

tion model produced final Epre values that were not nullified in any condition (p<0.001), inconsistent

with the CTS data. Moreover, the absolute final Epost was consistently smaller than the absolute final

Epre across all learning conditions (all conditions p<0.001). As the final error of the model fits cannot

become >0 in inward learning or <0 in outward learning, statistical tests against zero were per-

formed on the final Epre and Epost derived directly from the data of the last probe block. Epost was

reduced more than Epre across all learning conditions (Wilcoxon signed-rank tests, all conditions
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Figure 5. Residual standard error and visuomotor steady states. (A) Residual standard error of the prediction and the postdiction model fit (subject

means ± standard error). (B) Baseline Epre and baseline Epost if no target step occurs (CTS with Ps = 0, subject means ± standard error). The baseline

error should be close to zero as the system is assumed to be in a steady state. (C) Final Epre of the prediction model fit and final Epost of the postdiction

model fit (subject medians with 25% and 75% quantiles). The final error should be close to zero if the system converged to a new steady state. (D)

Figure 5 continued on next page
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p<0.001; Figure 5D). In sum, only the postdiction model explains visuomotor steady states in base-

line saccades and after learning has converged.

Because our model contains learning of three different gains, it is possible that different combina-

tions of theses gains comprise steady states. To examine the steady states to which the visuomotor

gains can converge, we performed stability analysis of the postdiction model. The trial-by-trial

change of the three visuomotor gains ends with D!ðnÞ ¼ 0 when EpostðnÞ ¼ 0. Assuming !vðnÞ 6¼ 0, we

derived a plane of stable fixed points for the CTS conditions with:

!mðnÞ ¼�
P1 þPs

P1!vðnÞð!cdðnÞ� 2Þ
(27)

For the CVE conditions, we derived a plane of stable fixed points with:

!mðnÞ ¼�
Ps

P1!vðnÞð!cdðnÞ� 1Þ
(28)

Figure 5E depicts the steady state curves along with vector fields of the gradient descent learn-

ing directions for baseline saccades (without target step) and for the four learning conditions with

target step (on a !m�!cd plane for simplicity). As described by the steady state equations above,

the pre-saccadic target position P1 and the target step Ps (with respect to P1 in the CTS conditions

and with respect to the saccade landing position PM in the CVE conditions) define a plane of visuo-

motor gains at which the system is at steady state. With Ps = 0 this is the case in the baseline situa-

tion (Figure 5E, CTS with Ps = 0). If a target step is introduced, the plane of steady states is shifted

in visuomotor gain space depending on Ps. Then, the visuomotor gains adapt to one of these new

steady states during learning, depending on the initial condition of visuomotor gains (previous

steady state, that is, the baseline of our experiment) and the learning rates a which define the skew-

ness of the depicted vector field. Figure 5E shows that learning is close to steady state at the end of

CVEout but is expected to progress further in CVEin.

CDV hypometry explains saccade hypometry
A long-standing question in saccade research is why saccades usually undershoot their target by 5–

10% (Robinson, 1973; Henson, 1979; Becker, 1989) and why saccadic adaptation does not fully

compensate for peri-saccadic target steps (Deubel et al., 1986; Straube et al., 1997; Wallman and

Fuchs, 1998; Noto et al., 1999). We can also phrase this question as: Why does the system accept

a remaining visual endpoint error in baseline and adapted saccades? In the postdiction model, the

steady states are characterized by EpostðnÞ ¼ V̂1ðnÞ �MðnÞ ¼ V2ðnÞ þ CDV ðnÞ �MðnÞ ¼ 0. From this, it

follows that V2ðnÞ ¼ MðnÞ � CDV ðnÞ in steady state. Thus, the amount of visual endpoint error that

the visuomotor system accepts with respect to the post-saccadic target is determined by the accu-

racy of CDV with respect to the actual saccade. In other words, the accuracy of the CDV signal

shapes the accuracy of the saccade.

Figure 5F compares the visual endpoint error V2 to the CDV error in the baseline situation and at

the end of the CTS conditions. For easier comparison, �ðCDV �MÞ is plotted instead of CDV �M

since CDV �M is in the opposite direction of V2. In baseline saccades, CDV is nearly accurate but

shows the tendency to underestimate the saccade (t-test of !cd(1) against 1, t34 = �1.67, p=0.052)

which, by means of the above, predicts the amount of baseline target undershoot (t-test V2ð1Þ vs.

Figure 5 continued

Percentage of Epre decline of the prediction model fit and Epost decline of the postdiction model fit from the first trial (including target step) to the last

trial (subject medians with 25% and 75% quantiles). Black asterisks indicate significant difference between prediction and postdiction model values,

colored asterisks for baseline and final error indicate significant difference from zero. (E) Vector fields depict non-isolated fixed points for the baseline

situation without target step and the four learning conditions (in the !m � !cd plane for simplicity). Subject median !v of the first trial (for baseline) and

the last trial (for learning in the respective condition) and median a from the respective learning conditions were chosen to draw the vector field.

Subjects were at visuomotor steady state in the baseline and learned in the direction of the shifted fixed points during learning. (F) The CDV error

determines how much visual endpoint error (visual post-saccadic target eccentricity) is left in the baseline adapted steady state of the CTS conditions

(subject means ± standard error). Please note that �ðCDV �MÞ, not þðCDV �MÞ, is depicted for easier comparison to V2. Black asterisks indicate

significant difference from zero with ***p<0.001, **p<0.01, *p<0.05 and n.s. p�0.05.
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�ðCDV ð1Þ �Mð1ÞÞ; t34 = 4.12, p=0.678). Hence, CDV hypometry (with respect to the saccade)

prompts the visuomotor system to stabilize with saccade hypometry (with respect to the target) to

keep postdictive motor error nullified. This provides a new explanation for the long-known saccade

undershoot based on visuomotor learning.

A dissociation between saccade and CDV explains incomplete saccade
learning from artificial target steps
The relation between motor performance and CDV signaling also explains the second part of the

above question — why saccadic adaptation does not fully compensate for peri-saccadic target steps

(Deubel et al., 1986; Straube et al., 1997; Wallman and Fuchs, 1998; Noto et al., 1999).

Figure 5F depicts the visual endpoint error V2 and the CDV error at the end of the CTS conditions,

that is, when the system has reached a steady state. Like in the baseline situation, V2 and CDV error

did not significantly differ at that point (CTSin condition: t16 = �1.36, p=0.194; CTSout condition:

t17 = 1.51, p=0.150). We can interpret this in the notion of the postdiction model as follows: To mini-

mize the postdictive motor error, visual and motor gains adapt such that the saccade lands succes-

sively closer to the post-saccadic target, thereby automatically reducing the amount of visual

endpoint error V2 after the saccade. Simultaneously, plasticity of the CD gain in the forward dynam-

ics model dissociates the CDV signal from the actual saccade vector, depending on the direction of

the target step. Learning converges when the current dissociation of the CDV signal from the sac-

cade corresponds to the currently remaining visual endpoint error. In sum, according to postdictive

motor error, learning remains incomplete because the CDV signal dissociates from the saccade.

The dissociation between saccade and CDV produces differences
between inward and outward learning
Another central question in studies of saccade learning is why saccade amplitude adapts more to

inward target steps than to outward target steps (Kojima et al., 2004; Panouillères et al., 2009;

Pélisson et al., 2010). Our experimental data is consistent with this literature as the remaining visual

endpoint error V2 is larger after outward learning than after inward learning (Figure 5F). We can

now examine how the postdiction model explains this difference.

The CD gain !cd increases during CTSin learning and decreases during CTSout learning by an

equal amount (Figure 3C, t-test of D!cd between CTS conditions, corrected for direction,

t33 = 0.498, p=0.622). However, learning of the CD gain started from CDV hypometry in the baseline

situation in both conditions (Figure 5F). Thus, the visuomotor system converged to a steady state

with a relatively strong CDV hypometry in the CTSout condition (�ðCDV ð281Þ �Mð281ÞÞ =

0.98 ± 1.12˚) and a relatively small CDV hypermetry in the CTSin condition (�ðCDV ð281Þ �Mð281ÞÞ =

�0.22 ± 1.22˚, t-test between CTSin and CTSout corrected for direction t33 = 2.01, p=0.052). Accord-

ing to postdiction-based learning, this corresponds to a relatively large visual endpoint error in sac-

cade direction after CTSout learning (1.42 ± 0.63˚) and a relatively small visual endpoint error against

saccade direction after CTSin learning (�0.61 ± 0.37˚, t-test between CTSin and CTSout corrected for

direction t33 = 4.56, p<0.001). This characteristic difference is often observed between learning from

inward vs. learning from outward target steps and directly follows from the postdiction learning

dynamics. A consequence of this is that the internal estimate of the saccade (the CDV signal in

Figure 3A) matches the true saccade better in the inward learning conditions and dissociates more

strongly in the outward learning conditions. In sum, differences between inward and outward learn-

ing may result from the hypometry of CDV in baseline saccades.

Discussion
We have presented a model of visuomotor learning that explains many essential properties of sac-

cadic adaptation and visual localization by optimizing visuomotor function to minimize an error sig-

nal that takes saccade accuracy and visual accuracy simultaneously into account. A crucial aspect of

this model is the plasticity in the CD gain, the gain which the forward dynamics model uses to derive

the computed displacement of visual space (denoted as CDV ) given the corollary discharge in motor

coordinates (denoted as CDM ) provided by saccade motor control structures. We hence model visual

and motor plasticity via three visuomotor gains: First, a visual gain that maps retinal target input

onto a spatial map, second, a motor gain that transforms spatial target distance into a motor
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command (inverse model), and third, a CD gain that re-transforms a corollary discharge of the motor

command into a computed displacement of visual space, that is, the CDV signal (forward dynamics

model).

Our study addressed the questions which visuomotor representations are affected during sac-

cadic learning, and which error signal can explain this plasticity. We found, firstly, that spatial target

perception and CDV collectively learn from error together with the motor command and, secondly,

that this error relies on a postdictive update of space after saccade landing. Accordingly, CDV accu-

racy shapes saccade accuracy which provides an emergent explanation for the long-known, yet unex-

plained observation that saccades typically undershoot their targets and do not fully compensate for

peri-saccadic target steps. Third, CDV was initially hypometric, consistent with saccade hypometry.

Fourth, during learning, CDV dissociated from the saccade, consistent with incomplete motor com-

pensation. Fifth, CDV underestimated the saccade after learning from outward target steps and

overestimated the saccade after learning from inward target steps.

The corollary discharge pathway contributes to visuomotor learning
Our study provides the first direct evidence on how corollary discharge is integrated via the CDV sig-

nal into space perception in order to guide trans-saccadic motor learning. That CDV contributes to

saccade control and trans-saccadic perception has been consensus since the experimental inactiva-

tion of the CD pathway was shown to affect the execution of rapid saccade sequences (Sommer and

Wurtz, 2002; Sommer and Wurtz, 2004a; Sommer and Wurtz, 2004b; Sommer and Wurtz, 2006;

Wurtz, 2018). Hence, CDV information is essential for a predictive update of the spatial map before

post-saccadic visual feedback is available. However, motor learning explicitly relies on post-saccadic

feedback and occurs in response to systematic feedback change. How CDV is combined with post-

saccadic feedback for error evaluation and whether it correctly reflects saccade changes has

remained a question under debate (Bahcall and Kowler, 1999; Collins et al., 2007; Collins et al.,

2009; Zimmermann and Lappe, 2009; Schnier et al., 2010). Supporting Cavanaugh et al., 2016,

our results suggest that CDV is available after saccade landing and is integrated with post-saccadic

feedback to learn from errors.

Decoupling of CDV and saccade in response to artificial target steps
Our results show that CDV decouples from the saccade during learning from double-step trials, such

that it does not match the truly performed saccade (Bahcall and Kowler, 1999; Collins et al.,

2009). Thus, the forward dynamics model that transforms the copy of the motor command (CDM )

into the displacement of visual space (CDV ) must operate with a non-unity CD gain, suggesting plas-

ticity of the forward dynamics model during learning. One possibility is that the transformation is

always performed with a gain that keeps CDV at baseline level, regardless of adaptation, as pro-

posed by Bahcall and Kowler, 1999 and Collins et al., 2009. However, this would predict that the

change in visual localization would strictly follow the change in saccade amplitude. This is not the

case in our present data, nor in that of previous studies (Bahcall and Kowler, 1999; Awater et al.,

2005; Collins et al., 2007; Collins et al., 2009; Zimmermann and Lappe, 2009; Schnier et al.,

2010). Instead, our postdiction model proposes that the CD gain in the forward dynamics model is

learned in conjunction with the motor and visual gains with the overall goal to keep the error as

small as possible. The decoupling of CDV and saccade is a consequence of this learning regime.

CDV accuracy explains saccade accuracy
Our findings show that CDV accuracy shapes saccade accuracy in visuomotor steady states. This

means that systematic inaccuracies of saccades stem from inaccuracy of internal movement repre-

sentations. Saccade hypometry (with respect to the target; Robinson, 1973; Henson, 1979;

Becker, 1989) is consistent with CDV hypometry (with respect to the saccade) in natural saccades.

That the CD gain in the forward dynamics model is less than one is supported by studies on passive

eye rotation (Bridgeman and Stark, 1991), visual afterimages (Grüsser et al., 1987), and trans-sac-

cadic apparent motion perception (Szinte and Cavanagh, 2011; Zimmermann et al., 2018). The

hypometry of saccades has long been considered a puzzling phenomenon, given that we perform

more than 100,000 saccades every day and should have had ample opportunity to learn to get sac-

cades on target. It has been argued that saccades purposefully undershoot their target because
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corrective saccades require less effort if executed in the same direction as the primary saccade (Har-

ris, 1995). If this were the case, the visuomotor system should actively maintain this undershoot. Yet,

learning from inward stepping targets converges at an earlier stage when the visual endpoint error

and hence, the corrective saccade, are in opposing direction of the primary saccade (Kojima et al.,

2004; Panouillères et al., 2009). Postdiction-based learning provides a global explanation for visuo-

motor steady states, both for the hypometry in natural saccades and for the early convergence after

learning from experimentally induced target steps.

Visuomotor learning and spatial stability
Our experimental data were clearly inconsistent with the hypothesis that saccade learning is driven

by visual prediction error (Bahcall and Kowler, 2000; Wong and Shelhamer, 2011; Collins and

Wallman, 2012). Visual prediction error indicates either the amount by which the world moved, and

hence, by which visual stability was violated, or the amount by which the target was unintentionally

missed because of some failure in the visuomotor process. The first interpretation fails to explain

why peri-saccadic object displacements remain undetected (Volkmann et al., 1968;

Bridgeman et al., 1975; Li and Matin, 1990). Indeed, there is cumulative evidence that violations

between the post-saccadic percept and the prediction are sacrificed to the assumption of trans-sac-

cadic stability of the world (Deubel et al., 1996; Collins et al., 2009; Atsma et al., 2016;

Jayet Bray et al., 2016). The second interpretation would predict that the baseline saccade hypo-

metry is restored during learning. However, the visual endpoint error differs between baseline and

adapted saccades which is, in turn, well explained by postdiction-based learning.

Postdiction-based learning implies that the visuomotor system assumes trans-saccadic stability as

a null hypothesis (see also Deubel et al., 1996; Sommer and Wurtz, 2008; Wurtz, 2008; Burr and

Morrone, 2012). Hence, errors are always internally attributed, for example to a deficient motor

command in the light of changing eye dynamics or to inaccuracies in the visual target localization.

Postdiction is a backward modeling process that transforms the post-saccadic visual input into pre-

saccadic coordinates using the CDV signal. Postdiction from post-saccadic input is suitable to update

pre-saccadic target location only if the world is assumed stable across the saccade. This assumption

makes sense: If the target appears stable in the pre- and the post-saccadic viewing periods, a trans-

saccadic target shift is more likely due to internal physiological or neuronal disruptions than to sud-

den target movement only within the 30–50 ms duration of a saccade. Hence, postdiction-based

learning is consistent with saccadic suppression of displacement (SSD; Volkmann et al., 1968;

Bridgeman et al., 1975; Li and Matin, 1990) and can keep motor behavior well calibrated as long

as the stability assumption is not a fallacy.

Visuomotor learning and saccadic suppression of displacement
As spatial stability and the question of credit assignment in visuomotor learning are closely linked, it

appears interesting to further examine what implications our modeling approach may have for sac-

cadic suppression of displacement (SSD). One of the most prominent findings in the literature is that

SSD is abolished, and hence peri-saccadic displacement is correctly detected, if the peri-saccadic

target step is blanked for around 250 ms after saccade landing (Deubel et al., 1996; Deubel et al.,

2004; Collins et al., 2009; Srimal and Curtis, 2010). Thus, information about the target displace-

ment must be available to the visual system in principle but is not used for displacement detection

immediately after the saccade. At the same time, saccadic motor learning declines with the introduc-

tion of a blanking interval (Bahcall and Kowler, 2000; Fujita et al., 2002; Srimal and Curtis, 2010;

Collins, 2014). Thus, as speculated above, when the post-saccadic target is used for postdiction

after saccade landing, its deviation from the predicted position is sacrificed to a stability assumption

for the purpose of fast learning, and lost to perception (Niemeier et al., 2003; Collins et al., 2009).

Since learning from postdictive motor error involves simultaneous updates to motor, visual and CDV

representations, overall consistency of this process may override perception of displacement. Then,

the post-saccadic target is taken to be the true target and used to postdictively update the pre-sac-

cadic target position. Blanking would interrupt this process: As the post-saccadic target is not readily

available, no learning can occur, perception of the pre-saccadic target position is left as it was, and

later comparison to the delayed post-saccadic target becomes possible and displacement visible. It

would seem likely, however, that learning may break down if large post-saccadic errors are observed
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that are unlikely to be credited to own visuomotor failure (Wei and Körding, 2009). Such large

errors would also exceed the threshold for displacement detection in SSD experiments.

In our model, CDV dissociates from the actually performed saccade during learning. This dissocia-

tion may constrain SSD in the course of learning. SSD is assumed to be driven by CDV , for example

via a pathway from SC superficial layers to the inferior pulvinar, parietal cortex and MT

(Robinson and Petersen, 1985; Thiele et al., 2002; Wurtz et al., 2011). If in the course of outward

learning, the forward dynamics model underestimates the actually performed saccade along these

pathways, the probability to detect the target step may increase. Experiments measuring displace-

ment detection in post-saccadic blanking conditions after saccadic adaptation appear consistent

with a learning-based shift of the point of subjective equality for SSD (Collins et al., 2009). However,

a dissociation between CDV and saccade may also limit the amount of adaptation. An increasing

probability to detect the target step during outward learning may reduce the learning progress.

Optimizing the saccade vs. optimizing visual predictions
The two learning rules that we compared differ in regard to the error function they aim to minimize

during learning. Minimization of visual prediction error aims to optimize visual predictions. This aim

is reached when the saccade lands in the expected location, even if that location is different from

the saccade target. Hence, it is not robust against distortions within the motor system. For instance,

if parts of the inverse model fail because of injury, the saccade may vastly miss the target. However,

as long as the forward dynamics model stays accurate and correctly predicts the saccade, there is no

need for adjusting the saccade vector since the post-saccadic visual error was correctly predicted.

Hence, by its nature the prediction model is not aiming to reach the target. The postdiction model,

in contrast, evaluates the error in reaching the original target, estimated by combining CDV with the

post-saccadic error. The postdicted target position correctly indicates the position of the target such

that the inverse model adapts to reverse the injury effect.

On a more global level, the visual prediction error leaves open the question what the goal of the

saccade is, that is, to which location the gaze should be directed. It only aims to minimize the mis-

match between prediction and outcome. Thus, models based on visual prediction error often include

an undershoot term, that is, a target location away from the physical target location to account for

the observed data. The postdiction model, in contrast, uses internal prediction and post-saccadic

error to retroactively evaluate the location that the gaze should have aimed for and sets that as the

goal of future saccades. Thus, it predicts where the target should be seen, where the saccade should

be aimed and which post-saccadic error should be expected in conjunction with each other.

Neurophysiological implementation of CDV plasticity
We argue that the plasticity of CDV occurs in the transformation of the corollary discharge of the

motor command (CDM ) by a forward dynamics model from motor to visual coordinates before it can

be used by vision (Crapse and Sommer, 2008a; Wurtz, 2018). This transformation may be imple-

mented at several stages of the CD pathways:in the FEF (Umeno and Goldberg, 1997; Crapse and

Sommer, 2008b; Crapse and Sommer, 2009; Sommer and Wurtz, 2008; Zimmermann and

Lappe, 2016), parietal or occipital cortex (Berman et al., 2017; Wurtz et al., 2011), thalamic nuclei

(Middleton and Strick, 2000; Gaymard et al., 2001; Zimmermann et al., 2015), the cerebellum

(Wolpert et al., 1998; Chen-Harris et al., 2008; Ishikawa et al., 2016), or in the basal ganglia

(Sommer and Wurtz, 2008; Wurtz, 2008).

The perceptual effects that we found during learning are similar to those obtained from perturba-

tion of the CD pathway from SC via MD thalamus to the FEF. A bias in trans-saccadic target percep-

tion occurs when MD thalamus is inactivated (Cavanaugh et al., 2016), lesioned (Ostendorf et al.,

2010), or when the FEF are stimulated via TMS (Prime et al., 2010; Ostendorf et al., 2012) or sub-

threshold microsimulation (White and Snyder, 2007). The forward dynamics model may be estab-

lished as the CD information is transmitted via the SC-MD-FEF pathway. Since SC activity stays

roughly unaltered during saccadic learning (Frens and Van Opstal, 1997; Edelman and Goldberg,

2002; Quessy et al., 2010), the forward dynamics model is likely implemented at a later stage, for

example in the FEF (Sommer and Wurtz, 2008; Crapse and Sommer, 2008a; Gerardin et al.,

2012). Beyond that, several cortical areas have been identified to be involved in saccadic learning

(Blurton et al., 2012; Guillaume et al., 2018), which could thus mediate plasticity of the forward
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dynamics model. It is also possible that plasticity occurs subcortically in MD thalamus. It was recently

shown that MD thalamus is not a passive relay station but actively assembles SC inputs before CD

information is transmitted to the FEF (Cavanaugh et al., 2020).

Besides the SC-MD-FEF pathway, forward modeling of CD also occurs in the cerebellum

(Wolpert et al., 1998; Ishikawa et al., 2016) to enable feedforward saccade control (Chen-

Harris et al., 2008; Ethier et al., 2008a; Xu-Wilson et al., 2009; Albert and Shadmehr, 2018). The

cerebellum is the main station of oculomotor plasticity and saccadic adaptation (Kitazawa et al.,

1998; Barash et al., 1999; Golla et al., 2008; Xu-Wilson et al., 2009; Herzfeld et al., 2015;

Panouillères et al., 2015; Herzfeld et al., 2018; Thier and Markanday, 2019). Hence, a plasticity

mechanism for CDV may also be plausible in the cerebellum. The cerebellum is also a source of a

second CD pathway to frontal cortex via the ventrolateral (VL) thalamus (Middleton and Strick,

2000). This pathway conveys information from the cerebellum to frontal eye fields and parietal cor-

tex and is involved in saccade learning (Gaymard et al., 2001; Zimmermann et al., 2015) and spa-

tial updating (Bellebaum et al., 2005; Peterburs et al., 2013; Zimmermann et al., 2020). Forward

model computations could also be implemented along that pathway.

Implications for natural visuomotor behavior
The aim of our study was to broaden the framework of pure motor-based saccadic learning to a

framework that also takes changes in perceptual localization into account. In the natural situation,

motor errors usually occur due to changes in the eye plant, for example during eye muscle fatigue,

ageing or disease. In the laboratory, we simulate the occurrence of motor error by a physical manip-

ulation of the outside world, namely an artificial peri-saccadic target step. We conducted our study

in a completely dark laboratory, a visually poor environment, to ensure that any visual references for

post-saccadic comparison to the stepped target are eliminated. Our results suggest that the manip-

ulation in the laboratory was successful such that inverse model and forward dynamics model adapt

as if the error is inaccurately attributed to own visuomotor failure. In case of an outward target step,

the inverse model increases its gain to produce a stronger motor command that compensates for

eye muscle fatigue, and the forward dynamics model decreases its gain in order not to overestimate

the saccade from the stronger motor command.

However, in the laboratory stetting of our study, the saccade has actually lengthened such that

the output of the forward dynamics model, that is, CDV , decouples perception from the actually per-

formed saccade. For the natural situation, when a change in visual feedback is truly due to changing

eye dynamics, the plasticity of the forward dynamics model serves to keep CDV accurate such that it

matches the actually performed saccade. The forward dynamics model simulates muscle dynamics to

transform motor-efferent copies into visuospatial coordinates. Its adaptability to changing muscle

dynamics is highly functional to generate spatially accurate movement representations in natural set-

tings (Bays and Wolpert, 2007; Shadmehr et al., 2010; Franklin and Wolpert, 2011). In accor-

dance with Shadmehr et al., 2010, we argue that the forward dynamics model is only useful if it

produces accurate predictions, and thus needs to be plastic. Our results reveal that this plasticity

exists. Beyond that, our results suggest that the discrepancy between actual and perceived space in

the laboratory is a result of the manipulation in physical space and may not occur during natural sac-

cadic learning. In this regard, oculomotor learning may be fundamentally different from manual

motor learning, for example in reaching adaptation, where forward dynamics models remain well cal-

ibrated despite manipulation of visuospatial feedback in the laboratory (Shadmehr et al., 2010;

Michel et al., 2018). However, manipulation of visuospatial feedback in manual learning paradigms

is not coupled to saccades and hence, does not typically remain undetected (Shadmehr et al.,

2010; Wolpert et al., 2011).

The participants of our study learned across saccades that were always directed to the same tar-

get, that is, of the same retinal distance and direction. In the natural situation, of course, our gaze

rather scans across different locations of the outside world. Hence, on the one hand, it will take lon-

ger to adapt in response to fatigue or other perturbations in certain directions than in the labora-

tory. But on the other hand, perturbations in natural viewing should be rather small, or at least,

occur gradually over a longer timescale. However, as learning in natural viewing as well as in the lab-

oratory needs to follow a cost function that is minimized, we think that the plasticity that we found in

the visuomotor transformations and the coding scheme of the error are well applicable to natural

visuomotor learning. Moreover, it has been shown that learning effects for a specific target location
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partially transfer to neighbouring target locations and directions (Frens and van Opstal, 1994; Deu-

bel, 1987; Noto et al., 1999; Collins et al., 2007; Schnier et al., 2010). In addition, learning has

produced particularly strong effects in a global adaptation paradigm in which targets were displaced

across saccades in random directions (Rolfs et al., 2010). It would be interesting to examine poten-

tial mechanisms of the transfer to other target locations and directions in future extensions of our

model.

Implications for patients with schizophrenia
The specific role of CD information for accurate visuomotor calibration may provide new insights

into visuomotor abnormalities in patients with schizophrenia. For example, it was proposed that CD

impairments could be the reason for the difficulties that patients with schizophrenia present in dis-

criminating between their own actions and those of others (Feinberg, 1978; Frith, 1987;

Ford et al., 2001). According to our model, deficits in CD signaling would disturb predictive updat-

ing for trans-saccadic target localization as well as postdictive updating for accurate visuomotor

learning. Hence, it should cause impairments in baseline saccadic behavior as well as in learning

from peri-saccadic target steps. Indeed, studies of patients with schizophrenia have reported deficits

in predictive updating (Rösler et al., 2015; Thakkar et al., 2015; Thakkar et al., 2017;

Bansal et al., 2018), instability in saccade control (Lencer et al., 2017), and slowness of saccadic

adaptation (Picard et al., 2009; Coesmans et al., 2014; Lencer et al., 2017). However, rate of

adaptation (Coesmans et al., 2014; Lencer et al., 2017) and effects of adaptation on perceptual

localization appeared normal in patients (Lencer et al., 2017).

Model predictions
Our modeling approach conveys three central results that carry concrete predictions for future test-

ing. Firstly, our model explains baseline and adapted visuomotor steady states via a unique mecha-

nism, that is, minimization of postdictive motor error. This means that the visuomotor system can

flexibly adapt to error via transition to a new steady state. Our model executes this transition without

a separate, built-in mechanism of decay to a pre-defined baseline state. Thus, de-adaptation in

extinction trials without target step would just be another adaptation. Hence, it would be interesting

to test whether the learning rates of usual inward adaptation can successfully predict visuomotor

behavior during de-adaptation after outward adaptation, and vice versa.

Secondly, and relatedly, our model suggests that there is a manifold of stable states for any given

target step (Figure 5E). Hence, different combinations of visual, motor and CD gain exist at which

the postdictive motor error is nullified. The combination of learning rates for visual, motor and CD

gain determines to which of these possible steady states the visuomotor system converges. This

could explain why saccades sometimes do not fully revert to the initial baseline steady state during

de-adaptation. For example, in a study by Gremmler and Lappe, 2019, subjects first adapted to an

inward stepping target (100 trials) and then de-adapted while the target stayed at its pre-saccadic

position (again 100 trials). During de-adaptation, motor behavior reverted back but appeared to

converge at an earlier state that was different from the initial baseline state. Hence, it seems worth-

while to test whether the de-adapted gains lie within the plane of possible steady states without tar-

get step, and to examine further parameters that determine the transition between these steady

states.

In addition, minimization of postdictive motor error can further be tested during error-clamp trials

in which the error is artificially set to zero. Ongoing adaptation should get bogged down if the post-

dictive motor error is clamped. In contrast, if the visual error is clamped (usual ‘error-clamp trials’),

visuomotor behavior should adapt until CDV and the actual saccade vector are realigned.

Thirdly, it appears promising to search for further behavioral signatures of the decoupling of CDV

from the saccade during learning. For example, in a memory-guided double-step task, if a first sac-

cade is executed to the just adapted target, the landing point of the memory-guided second sac-

cade should be biased because the spatial position of the second target is erroneously updated by

the CDV of the first saccade. Neurophysiologically, it would be interesting to test whether CDV -sac-

cade decoupling is reflected in neurons with spatiotopic receptive fields in response to the adapted

target position. Spatiotopically tuned neurons have been found in specific areas of associative cor-

tex, including V6 (Galletti et al., 1993) and the ventral intraparietal area (VIP; Duhamel et al.,
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1997). Beyond that, CDV -saccade decoupling could also be reflected in a change of spatial updating

before the saccade, like in the FEF, LIP, V2, and V3 (Walker et al., 1995; Nakamura and Colby,

2002; Tolias et al., 2001).

Model choices and limitations
Our model is based on the minimization of an error function. Consistent with basic principle of error-

based learning in the sensorimotor system (Doya, 1999; Wolpert et al., 2011; Taylor and Ivry,

2014), we used the gradient descent approach of delta-rule learning (Widrow and Hoff, 1960;

Widrow and Stearns, 1985) to derive the directions and the dependencies of the trial-by-trial

updates of the gain values. It is possible to derive similar learning processes and results using sim-

pler approaches. For example, gains in each step can be simply increased or decreased depending

on the direction and size of the error. However, according to the perceptual data the forward

dynamics model must learn in opposing direction of the inverse model to minimize the error. This

characteristic of learning directions is captured by the error gradients. Hence, our present approach

has the advantage of a firm mathematical basis.

Current models of motor adaptation often include two learning processes with different time

scales, a slow and a fast process (Smith et al., 2006; Kording et al., 2007; Ethier et al., 2008b;

Cassanello et al., 2019). While these models produce many essential aspects in motor adaptation

they do not consider parallel learning processes that can explain the effects of adaptation on visual

perception. Our model is currently designed as a single process model for reasons of simplicity. It is

easily conceivable to extend the model to two processes with different timescales. Indeed, multiple

simultaneous processes have also been proposed to account for some aspects of adaptation-

induced perceptual localization effects (Awater et al., 2005; Collins et al., 2007; Hernandez et al.,

2008; Zimmerman and Lappe, 2010; Schnier et al., 2010; Gremmler et al., 2014;

Zimmermann and Lappe, 2016). Such an extension to a two-process approach might allow a more

fine-grained investigation of the interdependencies between motor, visual, and CD changes during

learning.

Post-saccadic use of CDV and proprioceptive signals
The postdiction model proposes the use of CDV after the saccade to retroactively estimate (postdict)

the location of the saccade target in a pre-saccadic reference frame. CDV , thereby, informs the learn-

ing process about the planned saccade vector while the post-saccadic visual error informs the learn-

ing process about how much the saccade vector missed the target. A further source of information

about the the saccade vector may come from proprioceptive eye position signals. The computation

of an estimate of the saccade vector from proprioceptive feedback builds up slowly within 150–300

ms after the saccade (Fuchs and Kornhuber, 1969; Wang et al., 2007; Morris et al., 2012;

Zimmermann et al., 2013), but it can supplant CDV -based information over time (Ziesche and

Hamker, 2011; Ziesche and Hamker, 2014) and establish a spatiotopic representation of saccade

targets (Zimmermann and Lappe, 2011; Burr and Morrone, 2012; Zimmermann et al., 2013).

Because of the slow build-up of proprioceptive information, CDV -based postdiction might serve spa-

tial perception within the first hundreds of milliseconds after saccade landing, allowing a fast feed-

back loop on motor error. As fixation durations in natural viewing barely exceed this time period, a

use of CDV for error computation seems plausible to enable continuous visuomotor learning. How-

ever, we might speculate that for longer fixation periods, proprioceptive feedback could update

error computation with a more reliable estimate of the performed saccade (Gremmler and Lappe,

2019).

From a predictive to a postdictive update of space across saccades
In the broader scope, predictions are essential to overcome feedback delays in the sensorimotor sys-

tem, especially in saccades where visual feedback is not available until after movement completion.

Thus, prediction of spatial movement outcome is crucial to program rapid subsequent actions,

for example pre-planned corrective saccades (Becker and Fuchs, 1969) or rapid saccade sequences

(Sommer and Wurtz, 2002; Sommer and Wurtz, 2004a; Sommer and Wurtz, 2004b;

Sommer and Wurtz, 2006; Zimmermann et al., 2018). Moreover, spatial prediction enables cere-

bellar feedforward correction of the motor command during saccade execution – a process that is in

Masselink and Lappe. eLife 2021;10:e64278. DOI: https://doi.org/10.7554/eLife.64278 29 of 45

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.64278


turn rapidly adapted by learning from post-saccadic error evaluation (Chen-Harris et al., 2008;

Ethier et al., 2008a; Xu-Wilson et al., 2009; Albert and Shadmehr, 2018). What we propose in our

model is that saccade motor control may encompass a temporal evolution from a predictive to a

postdictive update of space across the saccade. Accordingly, prediction of spatial feedback (for

feedforward motor control) would be superseded by postdiction (for motor learning) when actual

feedback becomes available after movement completion, provided the world is assumed stable

across saccades.
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Collins T, Doré-Mazars K, Lappe M. 2007. Motor space structures perceptual space: evidence from human
saccadic adaptation. Brain Research 1172:32–39. DOI: https://doi.org/10.1016/j.brainres.2007.07.040,
PMID: 17803970

Collins T, Rolfs M, Deubel H, Cavanagh P. 2009. Post-saccadic location judgments reveal remapping of saccade
targets to non-foveal locations. Journal of Vision 9:29.1–29.9. DOI: https://doi.org/10.1167/9.5.29, PMID: 1
9757907

Collins T. 2014. Trade-off between spatiotopy and saccadic plasticity. Journal of Vision 14:28. DOI: https://doi.
org/10.1167/14.12.28, PMID: 25349269

Masselink and Lappe. eLife 2021;10:e64278. DOI: https://doi.org/10.7554/eLife.64278 31 of 45

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.1152/jn.00197.2017
http://www.ncbi.nlm.nih.gov/pubmed/29187548
http://www.ncbi.nlm.nih.gov/pubmed/29187548
https://doi.org/10.1371/journal.pcbi.1004766
http://www.ncbi.nlm.nih.gov/pubmed/26967730
https://doi.org/10.1152/jn.01013.2003
http://www.ncbi.nlm.nih.gov/pubmed/15843478
https://doi.org/10.1038/23693
http://www.ncbi.nlm.nih.gov/pubmed/10476963
https://doi.org/10.1016/S0042-6989(00)00117-6
http://www.ncbi.nlm.nih.gov/pubmed/10960651
https://doi.org/10.1111/nyas.13686
https://doi.org/10.1523/JNEUROSCI.19-24-10931.1999
https://doi.org/10.1523/JNEUROSCI.19-24-10931.1999
http://www.ncbi.nlm.nih.gov/pubmed/10594074
https://doi.org/10.1113/jphysiol.2006.120121
http://www.ncbi.nlm.nih.gov/pubmed/17008369
http://www.ncbi.nlm.nih.gov/pubmed/2486323
https://doi.org/10.1016/0042-6989(69)90112-6
https://doi.org/10.1016/0042-6989(69)90112-6
http://www.ncbi.nlm.nih.gov/pubmed/5360604
https://doi.org/10.1093/brain/awh474
http://www.ncbi.nlm.nih.gov/pubmed/15758033
https://doi.org/10.1152/jn.00679.2016
http://www.ncbi.nlm.nih.gov/pubmed/28003409
https://doi.org/10.1146/annurev-vision-091517-034317
https://doi.org/10.1152/jn.00682.2011
http://www.ncbi.nlm.nih.gov/pubmed/22170969
https://doi.org/10.1016/0042-6989(75)90290-4
http://www.ncbi.nlm.nih.gov/pubmed/1138489
https://doi.org/10.1016/0042-6989(91)90185-8
http://www.ncbi.nlm.nih.gov/pubmed/1771774
https://doi.org/10.1068/p7392
http://www.ncbi.nlm.nih.gov/pubmed/23513621
https://doi.org/10.1371/journal.pcbi.1006695
http://www.ncbi.nlm.nih.gov/pubmed/31398185
https://doi.org/10.1523/JNEUROSCI.2054-15.2016
http://www.ncbi.nlm.nih.gov/pubmed/26740647
https://doi.org/10.1523/JNEUROSCI.2344-19.2020
https://doi.org/10.1523/JNEUROSCI.2344-19.2020
http://www.ncbi.nlm.nih.gov/pubmed/32680937
https://doi.org/10.1523/JNEUROSCI.5300-07.2008
https://doi.org/10.1016/j.visres.2014.12.018
http://www.ncbi.nlm.nih.gov/pubmed/25578924
https://doi.org/10.1503/jpn.120205
http://www.ncbi.nlm.nih.gov/pubmed/24083457
https://doi.org/10.1016/j.brainres.2007.07.040
http://www.ncbi.nlm.nih.gov/pubmed/17803970
https://doi.org/10.1167/9.5.29
http://www.ncbi.nlm.nih.gov/pubmed/19757907
http://www.ncbi.nlm.nih.gov/pubmed/19757907
https://doi.org/10.1167/14.12.28
https://doi.org/10.1167/14.12.28
http://www.ncbi.nlm.nih.gov/pubmed/25349269
https://doi.org/10.7554/eLife.64278


Collins T, Wallman J. 2012. The relative importance of retinal error and prediction in saccadic adaptation. Journal
of Neurophysiology 107:3342–3348. DOI: https://doi.org/10.1152/jn.00746.2011, PMID: 22442574

Crapse TB, Sommer MA. 2008a. Corollary discharge circuits in the primate brain. Current Opinion in
Neurobiology 18:552–557. DOI: https://doi.org/10.1016/j.conb.2008.09.017, PMID: 18848626

Crapse TB, Sommer MA. 2008b. The frontal eye field as a prediction map. Progress in Brain Research 171:383–
390. DOI: https://doi.org/10.1016/S0079-6123(08)00656-0

Crapse TB, Sommer MA. 2009. Frontal eye field neurons with spatial representations predicted by their
subcortical input. Journal of Neuroscience 29:5308–5318. DOI: https://doi.org/10.1523/JNEUROSCI.4906-08.
2009, PMID: 19386927

Deubel H, Wolf W, Hauske G. 1986. Adaptive gain control of saccadic eye movements. Human Neurobiology 5:
245–253. PMID: 3818374

Deubel H. 1987. Adaptivity of gain and direction in oblique saccades. In: O’Regan J. K, Levy-Schoen A (Eds). Eye
Movements From Physiology to Cognition. Elseiver. p. 181–190. DOI: https://doi.org/10.1016/0042-6989(96)
89627-1

Deubel H, Schneider WX, Bridgeman B. 1996. Postsaccadic target blanking prevents saccadic suppression of
image displacement. Vision Research 36:985–996. DOI: https://doi.org/10.1016/0042-6989(95)00203-0, PMID:
8736258

Deubel H, Bridgeman B, Schneider WX. 2004. Different effects of eyelid blinks and target blanking on saccadic
suppression of displacement. Perception & Psychophysics 66:772–778. DOI: https://doi.org/10.3758/
BF03194971, PMID: 15495902

Doya K. 1999. What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural
Networks 12:961–974. DOI: https://doi.org/10.1016/S0893-6080(99)00046-5, PMID: 12662639

Drewes J, Zhu W, Hu Y, Hu X. 2014. Smaller is better: drift in gaze measurements due to pupil dynamics. PLOS
ONE 9:e111197. DOI: https://doi.org/10.1371/journal.pone.0111197, PMID: 25338168

Duhamel JR, Colby CL, Goldberg ME. 1992. The updating of the representation of visual space in parietal cortex
by intended eye movements. Science 255:90–92. DOI: https://doi.org/10.1126/science.1553535,
PMID: 1553535

Duhamel JR, Bremmer F, Ben Hamed S, Graf W. 1997. Spatial invariance of visual receptive fields in parietal
cortex neurons. Nature 389:845–848. DOI: https://doi.org/10.1038/39865, PMID: 9349815

Edelman JA, Goldberg ME. 2002. Effect of short-term saccadic adaptation on saccades evoked by electrical
stimulation in the primate superior colliculus. Journal of Neurophysiology 87:1915–1923. DOI: https://doi.org/
10.1152/jn.00805.2000, PMID: 11929911

Ethier V, Zee DS, Shadmehr R. 2008a. Changes in control of saccades during gain adaptation. Journal of
Neuroscience 28:13929–13937. DOI: https://doi.org/10.1523/JNEUROSCI.3470-08.2008, PMID: 19091981

Ethier V, Zee DS, Shadmehr R. 2008b. Spontaneous recovery of motor memory during saccade adaptation.
Journal of Neurophysiology 99:2577–2583. DOI: https://doi.org/10.1152/jn.00015.2008, PMID: 18353917

Feinberg I. 1978. Efference copy and corollary discharge: implications for thinking and its disorders.
Schizophrenia Bulletin 4:636–640. DOI: https://doi.org/10.1093/schbul/4.4.636, PMID: 734369

Ford JM, Mathalon DH, Heinks T, Kalba S, Faustman WO, Roth WT. 2001. Neurophysiological evidence of
corollary discharge dysfunction in schizophrenia. American Journal of Psychiatry 158:2069–2071. DOI: https://
doi.org/10.1176/appi.ajp.158.12.2069, PMID: 11729029

Franklin DW, Wolpert DM. 2011. Computational mechanisms of sensorimotor control. Neuron 72:425–442.
DOI: https://doi.org/10.1016/j.neuron.2011.10.006, PMID: 22078503

Frens MA, van Opstal AJ. 1994. Transfer of short-term adaptation in human saccadic eye movements.
Experimental Brain Research 100:293–306. DOI: https://doi.org/10.1007/BF00227199, PMID: 7813666

Frens MA, Van Opstal AJ. 1997. Monkey superior colliculus activity during short-term saccadic adaptation. Brain
Research Bulletin 43:473–483. DOI: https://doi.org/10.1016/S0361-9230(97)80001-9, PMID: 9250621

Frith CD. 1987. The positive and negative symptoms of schizophrenia reflect impairments in the perception and
initiation of action. Psychological Medicine 17:631–648. DOI: https://doi.org/10.1017/S0033291700025873,
PMID: 3628624

Fuchs AF, Kornhuber HH. 1969. Extraocular muscle afferents to the cerebellum of the cat. The Journal of
Physiology 200:713–722. DOI: https://doi.org/10.1113/jphysiol.1969.sp008718, PMID: 5765857

Fujita M, Amagai A, Minakawa F, Aoki M. 2002. Selective and delay adaptation of human saccades. Cognitive
Brain Research 13:41–52. DOI: https://doi.org/10.1016/S0926-6410(01)00088-X

Galletti C, Battaglini PP, Fattori P. 1993. Parietal neurons encoding spatial locations in craniotopic coordinates.
Experimental Brain Research 96:221–229. DOI: https://doi.org/10.1007/BF00227102, PMID: 8270019
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Appendix 1

Simpler models that cannot explain learning
Our model minimizes postdicted motor error by plastic changes to visual, motor, and CD gain. In

this section we illustrate why learning cannot be explained by simpler models that are based on min-

imization of visual error or that preclude plasticity of one of the three gains.

Minimization of visual error alone cannot explain learning

Learning occurs in response to visual feedback, that is, to the retinal eccentricity of the post-saccadic

target, often referred to as visual or retinal (endpoint) error. Although it is obvious that the visuomo-

tor system must use visual error to asses the outcome of the saccade, there is consensus in the litera-

ture that the visual error alone cannot drive learning. Learning from visual error alone is inconsistent

with many typical findings in the literature and with our data. First, minimization of visual error aims

for steady states with error nullification. However, it was repeatedly shown that the visuomotor sys-

tem accepts a remaining amount of visual error at steady state. Natural saccades are usually hypo-

metric by means that the target is slightly undershot (Becker, 1989; Henson, 1979;

Robinson, 1973). Second, learning does not fully compensate for peri-saccadic target

steps (Straube et al., 1997; Wallman and Fuchs, 1998; Deubel et al., 1986; Noto et al., 1999).

Third, minimization of visual error would predict the visuomotor system to learn until the saccade

lands on the post-saccadic target in the CTS paradigm. In line with numerous previous

studies (Schnier et al., 2010; Straube et al., 1997; Wallman and Fuchs, 1998; Deubel et al., 1986;

Moidell and Bedell, 1988) our results clearly show that learning converges at an earlier stage.

Appendix 1—figure 1 shows simulations of a model that learns by minimization of visual error. Sim-

ulations are shown by lines and data are shown by shaded areas. The simulations illustrate that learn-

ing does only converge if the visual error is nullified and hence, the saccade lands on the shifted

post-saccadic target (CTS paradigms, columns 1–2).

Fourth, minimization of visual error would predict endless learning in the CVE paradigm where

the target is shifted with a constant distance to the post-saccadic gaze location, thus keeping the

visual error constant (Appendix 1—figure 1, CVE paradigms, columns 3–4). However, even if learn-

ing can be maintained for a longer time in the CVE paradigm (as shown also in our experiment), pre-

vious studies revealed that learning indeed converges at some stage (Zimmerman and Lappe,

2010; Havermann and Lappe, 2010; Robinson et al., 2003). Fifth, if saccades were to purposely

undershoot their target by accepting a certain amount of visual error, this undershoot should be

actively maintained during learning. However, learning from inward stepping targets converges with

a remaining visual error in opposing direction of the primary saccade (Kojima et al., 2004;

Panouillères et al., 2009).

Lastly, and related to section 1.2 below, minimization of visual error alone does not provide any

learning for the CD gain !cdðnÞ because the visual error V2ðnÞ does not depend on CDV ðnÞ, and,

hence, does not depend on !cdðnÞ. In our basic model, the visual error is:

V2ðnÞ ¼ P1þPdðnÞþ �mðnÞ�PMðnÞ ¼ P1ð1�!vðnÞ!mðnÞÞþPdðnÞ (A1)

where n is the trial number, P1 is the physical target eccentricity and PdðnÞ is the trans-saccadic target

displacement resulting from the imposed target shift and the motor execution noise of the saccade

�mðnÞ. PMðnÞ is the physical saccade vector, !vðnÞ is the visual gain and !mðnÞ is the motor gain. Mini-

mization of the visual error according to the delta rule results in the following learning of the visuo-

motor gains:
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Thus, only the visual gain !vðnÞ and the motor gain !mðnÞ learn but the CD gain stays at baseline

level throughout learning as !cdðnþ 1Þ = !cdðnÞ (see Appendix 1—figure 1). The gradient descent

procedure produces zero learning for the CD gain !cdðnÞ as the error signal that is minimized does

not depend on CDV ðnÞ. This is clearly inconsistent with our data. The discrepancy between the small

shift of the pre-saccadic target localization and the larger shift in the post-saccadic target localization

in our data and many other studies (Schnier et al., 2010; Collins et al., 2007; Bahcall and Kowler,

1999; Gremmler et al., 2014; Hernandez et al., 2008) is quantified in the basic model as the plas-

ticity of the CD gain. Hence, irrespective of the learning rule, the basic model equations and the

data necessitate CD gain plasticity. Since the visual error is independent of CDV ðnÞ, the gradient of

post-saccadic visual error learning cannot produce learning of the CD gain. This is, in turn, not in line

with the data. Consequently, as can be seen in Appendix 1—figure 1, there is a large discrepancy

between the visual error learning model and the data with respect to post-saccadic visual localization

V̂2ðnÞ.

Plasticity of all three gains

Our model allows plasticity in three gains, the visual gain (the visual map), the motor gain (the

inverse model) and the CD gain (the forward dynamics model). This section explains why plasticity in

each of those gains is necessary and why models with plasticity in only one or two of those gains

cannot explain the full set of data.

Our study approached the question about which gains are plastic with the most straightforward

approach our model can provide — by testing each gain change against zero (see main article,

Figure 3C). To guide a better intuition why our data argue for plasticity of all three gains !vðnÞ,

!mðnÞ and !cdðnÞ, we will further illustrate the contribution of each gain to the learning process.

Plasticity of the visual gain
Our data reveal small changes in the pre-saccadic target localization that were significant in the CVE

conditions. This confirms several previous studies on localization changes during learning

(Schnier et al., 2010; Moidell and Bedell, 1988; Zimmerman and Lappe, 2010; Collins et al.,

2007; Gremmler et al., 2014; Hernandez et al., 2008). These changes on the visual map are cap-

tured by the visual gain !vðnÞ in our model. Without plasticity of the visual gain, the saccade can

adapt, however, the model could not explain the changes in pre-saccadic target localization in the

CVE conditions, i.e. a condition in which changes in localization occur without making a saccade.

Therefore, although the effects on visual localizations are comparatively small, changes in the visual

gain are necessary since no other gain changes can explain these effects. At the same time, we note

that the most of the other, stronger learning effects rely mostly on plasticity in the other gains.

Plasticity of the motor gain
The need for plasticity of the motor gain !mðnÞ is quite intuitive — it allows the saccade vector to

increase or decrease. Without plasticity of the motor gain, the the saccade vector could only

increase or decrease if the visual gain increases or decreases. This would predict that the visual gain,

and consequently the pre-saccadic target localization, changes as much as the saccade vector.

Clearly, this is not the case, as the change in pre-saccadic localization is much smaller than the

change in the saccade vector in our data and in most studies in the literature (Schnier et al., 2010;
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Appendix 1—figure 1. Simulations of a model that minimizes visual error. Each column shows the simulation for a

specific learning condition. Simulations are shown by lines. Data (means ± standard error) are shown by shaded

areas. First row: Visual pre-saccadic target V1 (and pre-saccadic retinal localization data, green shade), motor

command M (and saccade vector data, blue shade) and computed displacement of visual space CDV . Second row:

Predicted post-saccadic target V̂2 (and post-saccadic retinal localization data, orange shade), visual post-saccadic

target V2 (visual error). Third row: Visual gain !v, motor gain !m, CD gain !cd . Last row: shows again the visual

post-saccadic target V2 (visual error) that is the error signal to be nullified. To nullify V2, the model requires M to

learn until the saccade lands on the post-saccadic target. This is not in line with the data. Instead, learning

converges at an earlier stage with a remaining, non-zero visual error V2. Hence, the visual error model cannot

adequately explain learning. Please note that the CD gain !cd stays stable as the visual error V2 does not depend

on CDV such that the gradient descent procedure produces zero learning of the CD gain.
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Zimmerman and Lappe, 2010; Collins et al., 2007; Gremmler et al., 2014; Hernandez et al.,

2008; Moidell and Bedell, 1988).

Plasticity of the CD gain
The plasticity of the CD gain !cdðnÞ (the forward dynamics model) is a main part of our findings and

a novel conclusion from our study. The plasticity of the CD gain captures the difference between the

pre- and the post-saccadic target localization. This difference reveals a discontinuity in trans-saccadic

spatial perception, suggesting that the internally computed displacement of visual space CDV ðnÞ

does not match the actually performed saccade. Without plasticity of the CD gain, the forward

dynamics model is fixed and would always compute the same displacement of visual space for the

same saccade vector. In that case, the model cannot explain why the post-saccadic target localiza-

tion dissociates from the pre-saccadic target localization during learning.

Appendix 1—figure 2 shows simulations of the postdiction model without plasticity of the CD

gain such that its learning rate acd = 0. It illustrates that firstly, the model does not capture the dis-

continuity in trans-saccadic spatial perception because the predicted post-saccadic target position

V̂2ðnÞ does not match the data (shaded area, second row). Secondly, it illustrates that a fixed CD gain

!cdðnÞ predicts that the saccade vector adapts until the saccade finally lands on the post-saccadic tar-

get. Only in this case is the postdictive motor error EpostðnÞ (first row) nullified. The reason is this: If

!cdðnÞ is not plastic and correctly reflects the adapting saccade vector during learning with !cdðnÞ =

1, the postdicted pre-saccadic target position V̂1ðnÞ is equal to the physical post-saccadic target

position P1 þ PdðnÞ (in pre-saccadic coordinates):

V̂1ðnÞ ¼ V2ðnÞCDV ðnÞ

¼ P1ð1þ!vðnÞ!mðnÞð!cdðnÞ� 1ÞÞþPdðnÞ

¼ P1ð1þ!vðnÞ!mðnÞð1� 1ÞÞþPdðnÞ

¼ P1þPdðnÞ

(A6)

Thus, in this case, minimizing the postdictive motor error EpostðnÞ equals minimizing the visual

post-saccadic error V2ðnÞ because:

EpostðnÞ ¼ V̂1ðnÞ�MðnÞ

¼ P1ð1þ!vðnÞ!mðnÞð!cdðnÞ� 2ÞÞþPdðnÞ

¼ P1ð1þ!vðnÞ!mðnÞð1� 2ÞÞþPdðnÞ

¼ P1ð1�!vðnÞ!mðnÞÞþPdðnÞ

¼ V2ðnÞ

(A7)

This leads to an interesting corollary: Postdictive motor learning without CD gain plasticity is like

visual error learning if the internal estimate of the saccade vector CDV ðnÞ accurately reflects the per-

formed saccade. Postdictive motor learning combines an internal postdiction process via CD with

the aim to reach the target.

Single subject data
Appendix 1—figures 3–6 present the individual saccade vector, pre- and post-saccadic target local-

ization data of all subjects. Subjects 1–17 performed the inward conditions CTSin and CVEin and sub-

jects 18–35 performed the outward conditions CTSout and CVEout.
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Appendix 1—figure 2. Simulations of the postdiction model without plasticity of the CD gain (acd=0). Each

column shows the simulation for a specific learning condition. Simulations are shown by lines. Data (means ±

standard error) are shown by shaded areas. First row: Visual pre-saccadic target V1 (and pre-saccadic retinal

localization data, green shade), motor command M (and saccade vector data, blue shade), computed

displacement of visual space CDV , postdicted pre-saccadic target V̂1. Second row: Predicted post-saccadic target

V̂2 (and post-saccadic retinal localization data, orange shade), visual post-saccadic target V2. Third row: Visual gain

!v, motor gain !m, CD gain !cd . Last row: Postdictive motor error Epost . If the CD gain is not plastic and hence,

stays at baseline level as shown here, CDV almost correctly reflects the saccade vector during learning such that

the post-saccadic target localization matches the pre-saccadic target localization. This can be seen in the

predicted post-saccadic target position V̂2 that, however, does not match the data (second row). Moreover, a non-

plastic CD gain requires the saccade vector to adapt until the saccade lands on the post-saccadic target to nullify

the postdictive motor error Epost . Hence, without CD plasticity the model cannot adequately explain the data.
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Appendix 1—figure 3. Individual subject data for the CTSin condition (subjects 1–17, N = 17). During the saccade, the target was shifted 3º inward

(opposite to saccade direction).
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Appendix 1—figure 4. Individual subject data for the CTSout condition (subjects 18–35, N = 18). During the saccade, the target was shifted 3º outward

(in saccade direction).

Masselink and Lappe. eLife 2021;10:e64278. DOI: https://doi.org/10.7554/eLife.64278 43 of 45

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.64278


0 551
4

7

10

13

16

p
re

-s
a
c
. 
s
p
a
c
e
 [
°
]

Subject 1

0 551
4

7

10

13

16
Subject 2

0 551
4

7

10

13

16
Subject 3

0 551
4

7

10

13

16

p
re

-s
a
c
. 
s
p
a
c
e
 [
°
]

Subject 4

0 551
4

7

10

13

16
Subject 5

0 551
4

7

10

13

16
Subject 6

0 551
4

7

10

13

16

p
re

-s
a
c
. 
s
p
a
c
e
 [
°
]

Subject 7

0 551
4

7

10

13

16
Subject 8

0 551
4

7

10

13

16
Subject 9

0 551
4

7

10

13

16

p
re

-s
a
c
. 
s
p
a
c
e
 [
°
]

Subject 10

0 551
4

7

10

13

16
Subject 11

0 551
4

7

10

13

16
Subject 12

0 551
4

7

10

13

16

p
re

-s
a
c
. 
s
p
a
c
e
 [
°
]

Subject 13

0 551
4

7

10

13

16
Subject 14

0 551
4

7

10

13

16
Subject 15

trial

0 551
4

7

10

13

16

p
re

-s
a
c
. 
s
p
a
c
e
 [
°
]

Subject 16

trial 0 551
4

7

10

13

16
Subject 17

trial

— pre-saccadic target          saccade vector (saccade trials)                         pre-saccadic localization 
!. post-saccadic target                saccade vector (post-saccadic localization trials)            post-saccadic localization  

Appendix 1—figure 5. Individual subject data for the CVEin condition (subjects 1–17, N = 17). During the saccade, the target was shifted to the

position that is 3º inward (opposite to saccade direction) of the post-saccadic gaze direction.
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Appendix 1—figure 6. Individual subject data for the CVEout condition (subjects 18–35, N = 18). During the saccade, the target was shifted to the

position that is 3º outward (in saccade direction) of the post-saccadic gaze direction.
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