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Abstract Animal genomes are organized into topologically associated domains (TADs). TADs

are thought to contribute to gene regulation by facilitating enhancer-promoter (E-P) contacts within

a TAD and preventing these contacts across TAD borders. However, the absolute difference in

contact frequency across TAD boundaries is usually less than 2-fold, even though disruptions of

TAD borders can change gene expression by 10-fold. Existing models fail to explain this

hypersensitive response. Here, we propose a futile cycle model of enhancer-mediated regulation

that can exhibit hypersensitivity through bistability and hysteresis. Consistent with recent

experiments, this regulation does not exhibit strong correlation between E-P contact and promoter

activity, even though regulation occurs through contact. Through mathematical analysis and

stochastic simulation, we show that this system can create an illusion of E-P biochemical specificity

and explain the importance of weak TAD boundaries. It also offers a mechanism to reconcile

apparently contradictory results from recent global TAD disruption with local TAD boundary

deletion experiments. Together, these analyses advance our understanding of cis-regulatory

contacts in controlling gene expression and suggest new experimental directions.

Introduction
The genomes of many organisms have been shown to adopt a domain-like structure commonly

referred to as topologically associated domains (TADs) (Ibrahim and Mundlos, 2020;

Jerković et al., 2020; McCord et al., 2020; Rowley and Corces, 2018), defined as contiguous

regions of the genome where intra-region 3D proximity is greater than inter-region (Dixon et al.,

2012; Nora et al., 2012). When plotted as a heat map of contact frequency as a function of two

genomic coordinates, TADs appear as boxes on the diagonal at specific genomic coordinates. They

can be detected by a range of distinct techniques, including methods relying on proximity ligation

like 3C/Hi-C (Jerković et al., 2020; Kempfer and Pombo, 2020; McCord et al., 2020; Rowley and

Corces, 2018), ligation-free sequencing methods like GAM (Beagrie et al., 2017) and SPRITE

(Quinodoz et al., 2018), microscopy methods such as ORCA (Bintu et al., 2018; Mateo et al.,

2019), and even live-cell measurements like DAMC (Redolfi et al., 2019). Recent microscopy experi-

ments have shown that TADs are a statistical property that emerges from a population of cells

dynamically exploring multiple conformational states, rather than a static structure found in all cells

(Bintu et al., 2018).

Despite broad agreement on the existence of TADs, their role in transcriptional regulation has

recently become a subject of controversy as different recent results have been interpreted to sup-

port or refute a functional link (Finn and Misteli, 2019a; Ghavi-Helm et al., 2019; Mir et al., 2019).

For example, many TAD boundaries demarcate regions of co-expressed genes and separate differ-

entially expressed genes, suggesting that they play a role in cis-regulatory specificity (Long et al.,

2016; McCord et al., 2020; Spielmann et al., 2018). Opposing this interpretation, it has been

noted that the quantitative difference in interaction frequency is generally small: inter-TAD contacts

often reach only half the frequency of intra-TAD contacts, raising questions of how such small
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differences could explain such clear separation of expression (McCord et al., 2020). The disruption

of TAD boundaries by cis-mutation has been proposed as the causal driver of the substantial altera-

tions in gene expression for a variety of disease conditions, a conclusion supported by animal mod-

els (Dowen et al., 2014; Franke et al., 2016; Hnisz et al., 2016; Lupiáñez et al., 2015) reviewed in

Long et al., 2016; McCord et al., 2020; Spielmann et al., 2018. However, global disruption of TAD

boundaries by depletion of boundary-associated factors led to few substantial changes in gene

expression in cell culture models (Cuartero et al., 2018; Nora et al., 2017; Rao et al., 2017;

Schwarzer et al., 2017; Stik et al., 2020; Zuin et al., 2014), though such depletion does obstruct

the ability of macrophages to respond to inflammatory stimuli (Cuartero et al., 2018; Stik et al.,

2020). Genetic experiments have made it clear that enhancers act on promoters only in cis, suggest-

ing a requirement for physical proximity that would explain the functional role of TADs (Furlong and

Levine, 2018). However, recent microscopy experiments uncovered little correlation between

enhancer-promoter (E-P) proximity and nascent transcription activity at well-studied loci

(Alexander et al., 2019; Mateo et al., 2019) reviewed in Finn and Misteli, 2019b. This surprising

disagreement has led to various speculative explanations, such as action at a distance through con-

densates with diameters of tens of molecules (Alexander et al., 2019; Benabdallah et al., 2019;

Cavalheiro et al., 2021; Heist et al., 2019; Lim and Levine, 2021).

We wondered whether these apparent contradictions can be reasonably reconciled with known

biochemical mechanisms. To answer these questions, we examined simple biophysical models of

proximity-dependent E-P communication grounded in known physical laws (the chemical master

equation [CME]). Here, we identified biochemical mechanisms whose relevance for the spatial orga-

nization of the genome has not previously been considered and showed how the said mechanisms

provide a simple reconciliation of all three apparent contradictions. We discuss the implications for

this revised view of contact-mediated cis-regulation of gene expression for interpreting experimental

results.

Results

A transcriptional response hypersensitive to changes in contact
frequency
To better understand the connection between E-P contact frequency and transcriptional behavior,

we started with a quantitative analysis of recently published super-resolution microscopy data

(Mateo et al., 2019). These experiments used Optical Reconstruction of Chromatin Architecture to

observe the 3D path of chromatin through two neighboring regulatory domains of the Drosophila

Hox genes. The upstream domain contained the gene Ubx and its enhancers, and the downstream

region contained the gene abd-A and its enhancers (Figure 1A). In wildtype Drosophila embryos,

interactions between the two domains were less frequent than within the domains, producing two

clearly distinct TADs in population average data (Figure 1A). Deletion of only a few kilobases of

sequence at the border of these TADs resulted in a clear increase in interaction between the

domains, including between Ubx enhancers and the abd-A promoter. However, interaction fre-

quency increased only by a factor of 1–2.5-fold across the population (Figure 1A). Moreover, while

the structures were easily distinguished at the population level, the structures of single cells were

more variable (Figure 1—figure supplement 1A, B), with 25% of individual wildtype cells showing

some cross-TAD border mixing between the Ubx enhancers and the abd-A promoter compared to

50% of mutant cells (Figure 1—figure supplement 1C). The change in gene expression, as assayed

by single-molecule fluorescent in situ hybridization (smFISH), was hypersensitive to this moderate

change in contact frequency, with an average fivefold increase in mRNA counts of abd-A

(Figure 1B). Similar changes were also seen for Ubx (Figure 1—figure supplement 2). From these

single-cell analyses, we concluded that the quantitative disconnect between weak TAD borders (see

also Figure 1—figure supplement 3) and the large transcriptional effects of border disruption (see

also Figure 1—figure supplement 4) is not an artifact of Hi-C or of population averaging. Instead,

small differences in the frequency of contact appear sufficient to drive large changes in expression,

requiring us to re-examine the textbook picture of E-P regulation (Alberts et al., 2018).
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Modeling nonlinear transcriptional response
We set out to explore theoretical models that can explain how changes in E-P interaction frequency

(3D genome folding) can lead to nonlinear effects on transcription. To do this, we used the chemical

master equation (CME) approach, represented as a continuous-time Markov process (Durrett, 2012;

Strogatz, 2019; Figure 2A), to model the discrete/stochastic nature of enhancer-promoter

interactions.

Nonlinear transcriptional responses have been a subject of intense research, both experimental

and theoretical (Bergmann et al., 2007; Bintu et al., 2005a; Bintu et al., 2005b; Eldar et al., 2002;

Gregor et al., 2007; Haskel-Ittah et al., 2012; He et al., 2010; Manu et al., 2009; Ozbudak et al.,

2004; Sanchez et al., 2011; Ben-Tabou de-Leon and Davidson, 2009; Zinzen and Papatsenko,

2007; Zinzen et al., 2006; Bentovim et al., 2017). While this previous modeling work has focused

on connecting transcriptional output to changes in transcription factor (TF) concentrations and not

to E-P contact, we used it as a starting point to build intuition for how to obtain a hypersensitive

response. Additionally, as CMEs and continuous-time Markov processes may be less familiar to

some readers, we first applied it to a familiar problem: a model of the molecular mechanisms that

render transcription hypersensitive to changes in nucleoplasmic TF concentration. All models in this

work start with the common framework of transcription (more details in Materials and Methods): TFs
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Figure 1. A futile cycle promoter explains super-linear transcriptional responses following subtle changes in enhancer-promoter contact. (A)

Quantification of the minor difference in cross-border contact frequency between the Ubx and abd-A regulatory domains in wildtype and domain-

border-deleted embryos, quantified by Optical Reconstruction of Chromatin Architecture. (B) Quantification of the major change in transcription of

abd-A between wildtype and domain-border-deleted embryos. Raw data taken from Mateo et al., 2019.

Ó 2019, Mateo et al. The inset image in Figure 1A is reproduced with permission from Figure 5B of Mateo et al., 2019. Further reproduction of this

panel would need permission from the copyright holder.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Wildtype cells also exhibit cross-border contacts.

Figure supplement 2. Quantitative effects of topologically associated domain (TAD) border deletion on RNA expression.

Figure supplement 3. Calculation of topologically associated domain (TAD) insulation scores across the genome using Hi-C data.

Figure supplement 4. Compiled data on fold change in expression following deletion or inversion of topologically associated domain (TAD) borders.
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bind an enhancer, the enhancer interacts with a promoter, and the promoter state determines tran-

scriptional output. For simplicity, we assume that E-P interaction and binding of General Transcrip-

tion Factors (GTFs) occur at a much faster rate than TF-enhancer binding, in which case transcription

rate is simply proportional to the fraction of time the enhancer is bound (see Materials and Methods

for a discussion on relaxing this assumption).

Consider first an enhancer with only one TF-binding site for factor A. The enhancer has two

states: unbound and TF-bound (Figure 2B). It transitions from unbound to bound with a probability

per unit time proportional to the number of molecules of A: konA, and transitions from bound to

unbound with fixed probability per unit time koff (Figure 2B). This stochastic process can be com-

pactly expressed by writing down the corresponding stochastic matrix, M, associated with the con-

tinuous-time Markov jump process (Figure 2B). Here, Pij(s,t) is the probability the system is in state i

at time s given that it was in state j at time t. The time evolution of P is governed by the

forward Kolmogorov equation (Figure 2A). Standard probability theorems for Markov processes

enable us to compute the complete stochastic dynamic behavior of this system, frequently through

straightforward matrix operations (Durrett, 2012). While trivial cases like this example may be

solved without this matrix formalism, the formalism will become helpful for more complex models

and the matrix operations will remain identical to those introduced here. Of immediate interest, we

can see a stationary state exists because M is irreducible and recurrent. And by solving for the nor-

malized kernel of M, the stationary probability that the system is in the TF-bound state (state 2) is p2

= A/(koff/kon + A) (Figure 2C). From this result, we see, for any value kon or koff, the probability that

the enhancer is bound (and therefore whether it can activate transcription) exhibits only sublinear

responses to A (i.e., is never hypersensitive) (Figure 2C).

Now consider a minor variation: an enhancer that has two binding sites for factor A (Figure 2D).

For simplicity, let the two sites be identical, so the system can be described with only three states:

(1) no sites bound, (2) either bound, or (3) both bound. If only the state with both sites bound is tran-

scriptionally active, we are interested in the probability the system is in state 3, which at stationary

state is p3 = A2/((koff1koff2)/(kon1kon2) + koff2/kon2A + A2) (the normalized kernel of the matrix M in

Figure 2D). From this equation, we observe that for the special case where koff2/kon2 < koff1/kon1,

this system is hypersensitive to A (Figure 2C). The stronger this difference, the more the system

approaches the behavior of f(A) = An/(cn+An), which is the Hill equation: a sigmoidal curve, starting

at zero and reaching a maximum value of 1 as A increases, with an inflection at A = c (Figure 2C,

Figure 2—figure supplement 1). As n increases, the gentle curve sharpens into a step function,

where A = 0 for A < c and A = 1 for A > c. Thus, the Hill equation provides a convenient way of

parameterizing a sigmoidal response in terms of its critical threshold c and its sensitivity, n (Fig-

ure 2—figure supplement 1).

We next wondered if a simple adaptation of this model, replacing TF interactions with enhancer-

enhancer interactions, could explain the hypersensitive transcriptional response to changes in

genome structure (Figure 2E–F). In this scenario, a small change in the initial interaction frequency

increases slightly the probability that two enhancers interact, much like how a small change in TF

concentration improves the probability two TFs bind the same enhancer (Figure 2G). Mutual affinity

between these enhancers stabilizes their interaction with the promoter, much like mutual affinity

between TFs stabilizes their interaction with an enhancer. In the hypersensitive regime, a minor initial

change in contact frequency (x-fold), due to disruption of the TAD border, leads to a major change

in E-P contact frequency (y-fold > x-fold), due to cooperativity in forming the hub, which could in

turn produce a major change in transcription (Figure 2F, G).

Unfortunately, this model is immediately rejected by available data. Upon perturbation of TAD

boundaries, we (Figure 1A) and others do not observe the appearance or loss of cooperative

enhancer contacts of great enough magnitude to explain the change in transcription (Figure 1B).

These and other recent multi-contact data have revealed the existence of cooperative three-way

interactions (Allahyar et al., 2018; Bintu et al., 2018; Oudelaar et al., 2019, Oudelaar et al.,

2018). Yet even with these cooperative effects, the fold change in measured contact frequency is

not as large as the fold change in transcription before and after TAD border deletion.

Promoter futile cycles and hypersensitive response
We thus sought to identify other mechanisms that could give rise to hypersensitivity to E-P contact

frequency. Inspired by the hypersensitive cell-signaling pathways dependent on futile cycle
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Figure 2. The emergence of hypersensitivity in simple stochastic transcription models. (A) A stochastic model for the evolution of the chemical system,

which specifies how the probability of observing the system in state i at time s given it was in state j at time t evolves in time (the forward Kolmogorov

equation). M is a transition matrix for the continuous-time Markov system. (B) Cartoon illustration of chemical states for the 2-state enhancer model and

the corresponding transition matrix M, as a function of the concentration of transcription factor (TF) activator, A. (C) The probability of TF binding as a

function of molecule count, for the2-state and 3-state systems. The Hill equation with a coefficient n = 2 is shown for comparison. (D) As in (B), but for

the 3-state enhancer model with two potentially cooperative binding sites. (E) Cartoon depiction of state space for the enhancer cooperativity model

and corresponding matrix M for the Markov system/chemical master equation model. The DNA is denoted by a blue polymer, the positions of the

enhancers by green segments, and the promoter region by an orange segment. Contacts form with probability c1 and c2 for enhancers 1 and 2,

respectively, and separate from loop configuration with probability u1 and u2. (F) Probability of being in the two-loop state as a function of the fold

change in loop frequency, for a selection of rate constants chosen to demonstrate the existence of a hypersensitive response. (G) Cartoon depiction of

the expected change in contact frequency according to the cooperativity model presented in (E). Enhancer cooperativity leads to the formation of

specific loop interactions.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Parameterization of the sigmoidal Hill equation.
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competition between phosphatases and kinases (Ferrell, 2012; Huang and Ferrell, 1996;

Qiao et al., 2007), we considered a mechanism in which the promoter is not waiting passively for an

enhancer signal, but rather is engaged in a futile cycle of accumulation and removal of factors that

favor transcription. We propose two chemically explicit realizations of this model to establish con-

crete examples.

The first is the ‘condensate version,’ in which a ubiquitously expressed GTF, such as PolII itself, is

allowed to accumulate at individual promoters. Additional molecules join the condensate and dis-

solve back into the nucleoplasm at rates r and g, respectively. Condensates with n molecules already

at the promoter provide n chances per interaction for a newly arrived molecule to be captured, such

that capture is more likely at larger condensates (Figure 3A, B). For simplicity, we assumed that the

transcription rate of the gene is proportional to the size of the condensate (see

Materials and methods for a discussion on relaxing this assumption). As in other futile cycle signal

transduction systems, these competing processes of addition and removal happen in all cells at all

times—they are not dependent on interactions with an enhancer or the presence of cell-type-specific

TFs. Promoters where condensates dissolve faster than they form will generally be silent, but retain

a non-zero probability of transitioning to the active state. Cell-type-specific/enhancer-dependent

gene activation arises as follows: each time an active enhancer contacts the promoter, a single addi-

tional molecule is transferred to the condensate. We denoted the probability of contact per unit

time as e, which is a property of the 3D structural dynamics of the domain. While enhancer contact

is not explicitly required for promoter activation, we will show that this simple model still exhibits

rapid and relatively homogenous responses to enhancer activation/deactivation. For the moment,

we assumed the enhancer is already activated by the necessary TF binding and requires only looping

to influence transcription, allowing us to focus on the effects of 3D structure. The relevant states in

the chemical master equation are shown in cartoon form in Figure 3B, along with the stochastic

matrix of the corresponding Markov jump process (Figure 3C). In the interest of simplicity, we have

introduced a maximum cluster size as a fixed parameter. The effects of relaxing this assumption are

discussed in Materials and methods.

This simple model version includes a regime in which condensate size (a proxy for transcription) is

hypersensitive to changes in 3D structure, as illustrated by simulations of the Markov jump process

(Figure 3D). (Specific numerical parameters for the simulations shown in Figure 3D and all following

figures may be found in Materials and methods.) In this regime, at low E-P contact frequencies, con-

densates dissolve faster than they form at the promoter, and most of the population has no PolII

bound. As E-P contact frequency approaches the hypersensitive regime, a higher percentage of the

population binds multiple PolII molecules, but most are still unbound (Figure 3D). At this point, the

fold change in contact is still greater than the fold change in transcription, and the system is in a

transcriptional regime largely unaffected by structural change. However, a further increase in the E-P

contact frequency tips the balance, such that most of the population shifts from an unbound to a

mature condensate state. This is the hypersensitive regime—a small (2-fold) increase in e resulted in

a large (10-fold) increase in the average amount of PolII per promoter, and thus on transcription.

Further increases in contact frequency have sublinear effects on transcription output.

To investigate the generality of this hypersensitive regime, we conducted a sweep of model

parameters (Figure 3E–G). Normalizing to association probability per unit time, we characterized

the response as a function of maximum cluster size, cmax, and the dissolution constant, g. We param-

eterized the response by fitting the average condensate size vs. enhancer loop rate to a Hill function

and plotting the sensitivity (n), critical threshold (c), and max value of that function (v) (see Figure 2—

figure supplement 1). We saw that sensitivity increased with cluster size, and hypersensitive behav-

ior required cluster size greater than 2 (Figure 3E). In addition, the PolII off-rate had to be not

too small, or the stability of the off-state was too low to permit hypersensitivity, and not too large,

or the mature condensates were never stable (Figure 3F). A higher dissolution constant resulted in

greater sensitivity up until the point where g was so high that the cluster state was no longer

reached, as can be seen in the max-value plot (Figure 3G). As expected, increasing the max cluster

size linearly increased the cluster size obtained at the maximal E-P looping rate (Figure 3G). The crit-

ical threshold increases as a function of g as well, also to the point where high g prevented the sys-

tem from ever reaching the max cluster size (Figure 3F). For larger cmax, larger values of g can be

used without preventing access to this state, allowing higher critical thresholds and higher sensitivity

(Figure 3E, F).
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Figure 3 continued on next page
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While we have described the condensate model version using PolII as an example, any variety of

GTF (or even combination thereof) could play this role in the cell. Recent experimental work sup-

ports the formation of condensates of GTFs such as PolII, Mediator, and BRD4 at the promoters,

(Chong et al., 2018; Cho et al., 2018; Sabari et al., 2018; Lu et al., 2018), and provides experi-

mental evidence for enhanced capture/reduced release (Chong et al., 2018) as expected for phase

separating condensates. The biological significance for transcription of such condensates remains

disputed.

The second realization of the futile cycle model is the ‘post-translational modification (PTM) ver-

sion’ (Figure 3H). It is based on accumulation of PTMs, ‘tags,’ deposited by constitutively expressed

enzymes in the vicinity of the promoter, and does not require any condensate of molecules to form

(Figure 3H). We assumed that the enzyme can physically interact with deposited tags, which alloste-

rically stimulate its effective addition rate from r0 to r1, r2, . . ., rn, where n is the total number of stim-

ulated states. For simplicity, we focused on the minimal case of n = 2 (i.e., the enzyme has only two

stimulated states). The probabilities of enzyme-tag association and dissociation are proportional to

the amount of tag existing at the promoter, with respective rate constants kn and t n. The promoter

also has an intrinsic rate of tag removal g. Finally, as in the condensate version, cell-type-specific reg-

ulation occurs through physical interaction with an enhancer that happens at rate e, determined by

the 3D chromatin structure. Each E-P interaction adds one tag. The corresponding stochastic transi-

tion matrix is shown in Figure 3I. Note that in enumerating the states of the system we tracked all

possible combinations of enzyme stimulation states and promoter tag levels.

The PTM futile cycle model version can also achieve a hypersensitive regime in which small fold

changes in E-P contact lead to large fold changes in transcription (Figure 3J), around the experimen-

tally observed range (Figure 1A, B). This hypersensitive behavior suggests that the relatively weak

effects of most TAD boundaries (Figure 1—figure supplement 3) may still have important conse-

quences for the control of gene expression. While the higher-dimensional parameter space of the

PTM version is more cumbersome to scan comprehensively and less practical to plot, the minimal

conditions for hypersensitivity can be derived by considering the deterministic limits of the stochastic

system (see Figure 3—figure supplement 1 and Materials and methods).

Thus, the requirements for hypersensitivity to structural change in the PTM version are conceptu-

ally similar to those of the condensate version. The tag-removal rate must be neither too small, or

the system will activate too easily, nor too large, or the system will never be able to fully activate.

This is analogous to the dissolution rate restrictions in the condensate version. The rate of accumula-

tion of tags must be larger for systems with a larger number of tags to start with, which is achieved

when nmax >= 2 and r0 < r1 < r2 in the PTM version. In the condensate version, a conceptually similar

bias is achieved through the larger capture probability of the larger condensates. As long as these

conditions are met, the system admits hypersensitivity E-P loop rate e.

Promoter-specific properties can create an illusion of E-P specificity
We next investigated how differences in promoter-specific rate constants in these model versions

affect E-P responsiveness to TAD boundary removal. We considered two promoters that differ by a

factor of 2 in g (the condensate dissolution or tag removal rate), but are otherwise identical. Both

start the simulation in a low-transcription state and experience the same twofold increase in E-P

interaction at the start of the simulation, simulating the effect of TAD border disruption (Figure 4A).

For both versions of the model, Promoter 1 exhibited a large (greater than twofold) increase in

transcription, yet Promoter 2 remained almost unaffected in response to the twofold perturbation of

Figure 3 continued

Each violin plot represents a single simulation with fixed e. The superlinear regime reflects where fold change in transcription (linearly proportional to

condensate size) is greater than corresponding fold change in e. (E–G) Sensitivity, critical threshold, and maximum value of the GTF system as a

function of condensate dissociation rate and max cluster size. (H–J) Same as in (B), (C), and (D), but for the post-translational modification (PTM) model

version. Numerical differences in model outputs between D and J, reflect primarily differences in parameter choices rather than intrinsic differences

between the model versions, as seen also in the parameter sweeps (E-G, Figure 3—figure supplement 1).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Minimal conditions for hypersensitivity in the futile cycle model.
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the E-P interaction frequency (Figure 4B). Because of its higher intrinsic affinity for the condensate

dissolution or tag removal machinery, Promoter 2 was still in the sublinear, low-transcription-

response regime (Figure 4B). Further increases in E-P interaction would be sufficient to drive it into

a high-transcribing state like Promoter 1 (due to the sigmoidal behavior explored above, Figure 3E–

G). Quantitative differences in the simulation results largely reflect the particular parameter regime

of the model (Figure 4B). Note that ‘low-transcribing state’ and ‘high-transcribing state’ refer to the

qualitatively distinct behavioral modes of the system shown in Figure 4. It is this qualitative switch

and the relative magnitude of the change that is of interest to us, not the numerical values. The total

number of tags or molecules in the condensate between the low and high state may vary between

different simulations without affecting the existence of a hypersensitive regime or the ability for a

single parameter like tag removal to shift the system from the hypersensitive to the sublinear-low or

sublinear-high regimes. These simulations illustrate that the apparent specificity (‘lock and key’) may

be an illusion resulting from different tipping points among promoters, which arise from regulating

accumulation/depletion of TF condensates or promoter-associated PTMs (Figure 4C). The pro-

moter-specific response observed in these simulations follows from sigmoidal sensitivity to E-P con-

tact frequency described above, which exist across a broad range of parameters.
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Figure 4. Differential sensitivity to enhancer-promoter (E-P) contact can lead to an illusion of specificity. (A)

Cartoon depiction of two simulated promoters undergoing the same change in enhancer contact frequency after a

topologically associated domain (TAD)-border deletion. (B) Violin plots of the changes in transcription rates (which

are linearly proportional to promoter tag levels) after a twofold increase in the E-P contact rate for each promoter,

simulating the border deletion depicted in (A). (C) Cartoon representation of the ‘lock and key’ explanation of E-P

specificity, contrasted with the ‘tipping point’ explanation suggested by results in (B).
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Hysteresis in promoter activation leads to a unique response at
different time scales
While experiments that perturb chromatin structure by deleting TAD borders have reported large

(over 8-fold) changes in gene expression (Cavalheiro et al., 2021; McCord et al., 2020; Figure 1—

figure supplement 4), experiments that globally abrogated TADs by depleting cohesin observed

few genes changing expression by more than 2-fold (Rao et al., 2014; Zuin et al.,

2014; Figure 5A, B). As these experiments differ by orders of magnitude in the time scale at which

transcription changes are assessed (due to technical limitations), we wanted to explore the temporal

behavior of the futile cycle promoters by assessing the effect of a TAD boundary deletion/fusion at

an early time point relative to a late time point.

We found that, in addition to exhibiting hypersensitivity, both the condensate and PTM model

versions readily exhibited hysteresis. Hysteresis means that the system has memory such that its

behavior depends not only on its current state but also the preceding states (Figure 5C, D). For

example, the transition from the high-transcribing state to the low-transcribing state occurs at differ-

ent E-P contact frequency depending on whether the system started in the high or low regime ini-

tially (Figure 5C, D). In the continuum limit, as shown with the PTM model version, even at t =

infinity promoters that started in the high-tag (‘ON’) state transitioned to the low-tag (‘OFF’) state at

a different value of e than promoters starting in the low-tag state transition to the high-tag state

(Figure 5—figure supplement 1), making it clear this hysteresis is an emergent property of the

dynamic feedback and not a trivial delay. In the discrete stochastic case, the memory of the starting

state is not permanent. As there is always a finite probability of tag removal or condensate shrink-

age, there is always a finite probability that n such loss events occur consecutively before a gain

event, and in infinite time, such an event is guaranteed to happen, so no promoter will stay active

forever. The length of the memory is determined by the difference in the average rate of gain vs.

the average rate of loss in the respective high and low states. However, because of the hysteresis in

the system, we observed qualitatively distinct sensitivities of the average transcription rate to small

changes in E-P interaction at short time scales than we saw at long time scales (Figure 5E). At short

time scales, the effect of a twofold change in contact frequency was minor across the whole range of

E-P loop frequency compared to the change observed at long time scales in the hypersensitive

regime (Figure 5E).

To explore this further, we examined the distribution of transcription rates in simulation for both

the condensate and PTM model versions for promoters experiencing a twofold change in the E-P

rate (simulating the effect of TAD loss by border deletion or cohesin depletion) (Figure 5F, G). We

chose model parameters that positioned these promoters in the hypersensitive regime at long time

scales (as in Figures 4 and 5; see Materials and methods). As the absolute kinetic rate constants for

these model versions are not known empirically, the units of time in the simulation are arbitrary. We

defined ‘early’ as the amount of simulation time required for a population of active promoters to

transition into the non-transcribing state when the enhancer is deactivated (e.g., bound by repress-

ors). Empirical measures of such time vary substantially among genes, but generally lie on the

minutes-to-hours time scale. This scale corresponds with the time used in the cohesin-degron experi-

ments and is distinct from the many-cell-generations/days required for testing genetic boundary

deletions. We defined ‘late’ time points as one or more orders of magnitude longer than ‘early.’

With these definitions in mind, we examined the difference in simulated transcriptional response at

different times. Both the condensate and the PTM simulations exhibited a weak (less than twofold)

change in transcription in most of the simulated cells of the population by the early time point, even

though this was sufficient for enhancer deactivation to lead most of the population to drop into the

low expressing state (Figure 5F, G). As before, the parameter of interest is the relative change in

transcription rate (tag concentration or condensate size), not the numerical value.

Transcription and E-P contact may be largely uncorrelated in single cells
Having examined the temporal dynamics at the population scale, we turned to the dynamic behav-

iors in single cells. We asked whether a promoter driven by contact-dependent enhancer activity

and futile cycles, as described above, would be expected to show correlation between E-P looping

and transcription at the single-cell level (Figure 6A). From our simulated cells, we computed the

odds ratios for observing transcription in a window of time given observation of contact in that
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Figure 5. Transcriptional effects of contact perturbation depend on experiment time scale. (A) Schematic of global cohesin loop disruption

experiments. (B) Schematic of individual topologically associated domain (TAD) boundary deletion experiments. (C) Violin plots of transcription as a

function of enhancer contact, as in Figure 4. Blue and red violin plots represent cell populations that start in the OFF (blue, zero-molecule condensate)

or ON state (red, condensate of six molecules). Blue and red lines connect the median behavior from the corresponding simulations. (D) Same as in (C)

but for the post-translational modification (PTM) model version (OFF = 0 tags, ON = 30 tags). (E) Median transcription rate for populations starting in

‘OFF’ or ‘ON’ states, observed at different times after initialization of the simulation as indicated by the color legend. (F) Simulation of futile cycle

promoter transcription rate as a function of time under different enhancer perturbations for the general transcription factor (GTF) condensate model

version. As described in the text, ‘early’ is the amount of time it takes for the promoter to switch off following enhancer deactivation, and late is an

order of magnitude or longer later. (G) Same as in (F), but for the PTM model version.

Figure 5 continued on next page
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window of time, in either the condensate (Figure 6B) or PTM (Figure 6C) version of the model.

Across the different regimes of E-P contact frequency, the odds ratios were statistically greater than

1, but only by a small margin of 0–30%, paralleling our recent empirical observation (Mateo et al.,

2019; Figure 6D). These simulations demonstrate that contact-dependent mechanisms of E-P regu-

lation can be still consistent with empirical data in which many transcribing cells lack contacts and

vice versa. Since the frequency of E-P interaction only tips the scales in the existing futile cycles of

promoter modification, rather than acting as a triggering event for transcription, a strong correlation

is not expected. The odds ratio still remains different from 1, however, as promoters that are

experiencing a high frequency of E-P contact are more likely to transcribe, increasing the probability

the two events co-occur.

To further study the relation between E-P contact and transcription, we examined contact fre-

quency in the stochastic models relative to the timing of transcription events. Such temporally

ordered analysis requires live imaging data. Pioneering work by Alexander and colleagues observed

no significant change in E-P distance across any time scale relative to detected transcription bursts,

which was interpreted to refute a contact-dependent model of gene enhancer-mediated regulation

(Alexander et al., 2019; Figure 6E). For a moderate number of simulated bursts (~500), we also

found no detectable increase in proximity at any time scales relative to that of the burst

(Figure 6F, G). This is surprising at first since by construction transcription is dependent on contact.

Because the transition also depends on promoter-intrinsic addition and removal events of tags or

GTFs, which also occur stochastically with variable timing, the dependence was obscured by stochas-

tic noise. Thus, simulations involving a similar number of total cells as experiments also lacked

detectable correlation between the fraction of time spent transcribing and average E-P distance or

contact rate for individual cells, same as observed in the experimental data (Figure 6—figure sup-

plement 1A, B, D, E). Substantially increasing the number of simulated cells (~20,000) uncovered

weak but statistically significant correlations in each of these cases (Figure 6H, I and Figure 6—fig-

ure supplement 1C, F), similar to the observations from the Drosophila data (Figure 6D). Similar

results were observed with either the condensate or PTM version of the futile cycle. Thus, these

models show that enhancers could regulate genes like Sox2 or the Bithorax genes in a purely con-

tact-dependent manner, even without strong correlation between contact events and transcription

at the single-cell level.

Discussion

Paradoxes and apparent contradictions arising from recent
experimental results are reconciled by a minimal model of promoter
activity
Here, we set out to understand one paradox: what molecular mechanisms, if any, could enable sub-

tle changes in chromatin structure to lead to large changes in transcription? We developed a futile

cycle model and described two possible biochemical realizations/versions that both exhibit hyper-

sensitivity and hysteresis: TF condensates and PTM accumulation. These two distinct formulations of

promoter behavior highlight the common features required for a promoter to become hypersensi-

tive to minor changes in E-P contact frequency. Both versions propose the existence of a promoter

that accumulates or loses a molecular species, the abundance of which correlates with transcriptional

activity of the promoter. In both model versions, accumulation and loss proceed in futile cycles,

whether or not the activating signals at the enhancer are present. For a broad range of parameter

values, this futile competition renders the promoter sensitive to the activation state of its associated

enhancer, and in some regimes hypersensitive to small changes in contact frequency with the active

enhancer. While both TF condensates and PTM accumulation have been extensively studied empiri-

cally, their role in 3D transcriptional regulation by enhancers has received less attention in modeling,

hithertofore. Using the two concrete examples, we showed that the general futile cycle model

Figure 5 continued

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Phase portrait exploration of hysteresis.
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Figure 6. Enhancer-promoter (E-P) contact events may exhibit minimal correlation to transcription events in single cells. (A) Schematic of the textbook

expectation of correlation between E-P contact and transcription. (B, C) Odds ratios for observing nascent transcription given E-P proximity, from

simulations of the condensate and post-translational modification (PTM) model versions. (D) As in (B) and (C), but for actual data from recent super-

resolution imaging experiments (Mateo et al., 2019). Error bars show standard error from bootstrapping. (E) Average measured distance between

enhancer and promoter probes relative to the time of transcriptional bursts, reproduced from Figure 6E of Alexander et al., 2019. (F, G) Average E-P

distance from simulations of both versions of the futile cycle model, where 0 represents contact and 1 represents no contact, relative to time

transcription burst, modeled as a tag concentration > 20. Shaded region denotes ± standard error of the mean. (H, I) As in F and G, with sample size

increased to 40-fold.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure 6 continued on next page
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provides an unexpected explanation of three recent, controversial results. Here, we discuss these

three controversies, identify which features of the model offer explanation of the controversy, and

identify experiments which may test these features in the future.

Some promoters may be insensitive to contact perturbations, but still
activate in a contact-dependent manner
The observation that many TADs harbor genes whose spatial-temporal patterns of expression differ

substantially across development poses an obstacle to the hypothesis that 3D chromatin structures

like TADs contribute to regulatory specificity of gene expression (Kvon et al., 2014; Schwarzer and

Spitz, 2014; Symmons et al., 2014). For these patterns to differ, enhancers within the TAD must be

able to regulate some promoters and not others even though all experience a similar frequency of

E-P interaction. A simple and common explanation of these differences is to conclude that contact

frequency differences do not generally play a role in E-P specificity (since two promoters seeing simi-

lar contacts respond the same). Similarly, many enhancers are known to ‘hop over’ intervening pro-

moters (van Arensbergen et al., 2014)—activating expression of more distal genes without notably

affecting the transcription of more proximal ones, such as Shh limb enhancer (Lettice et al., 2003)

and several FGF8 limb enhancers (Marinić et al., 2013) or the snail shadow enhancer in flies

(Perry et al., 2010). In most of these cases, the more distal gene experiences less frequent contact

in available measurements. Such cases have been used to argue that chemical mechanisms deter-

mine E-P specificity, and as a corollary, that structural differences that affect E-P contact frequency

are of little biological relevance (Ghavi-Helm et al., 2019; Kumar et al., 2020; Mir et al., 2019).

Our simulations indicate that such conclusions are premature. A futile cycle promoter exhibits not

just hypersensitive response to contact interactions, but also substantial regimes of sublinear or

insensitive response. Promoter-specific differences in the intrinsic addition or removal of tags (or the

recruitment of GTFs to a promoter condensate) can render one promoter unresponsive to an

enhancer that activates a second promoter, even though the two experience similar absolute interac-

tion frequency. Indeed, the unresponsive one may even experience a higher interaction frequency

(e.g., because it is physically closer). It is thus premature to interpret such results as evidence of bio-

chemical specificity or to dismiss a role for chromatin structure. This is notable since transgene

assays indicate most regulatory elements will promiscuously activate most promoters if placed close

enough (Arnold et al., 2013; Furlong and Levine, 2018; Kvon, 2015; Kvon et al., 2014). We do

not argue either that one should dismiss a role for chemical specificity—several previous experi-

ments suggest that an enhancer that strongly activates one promoter may only weakly activate a dif-

ferent one, and that a second enhancer may have reversed preferences (Haberle et al., 2019;

Hong and Cohen, 2021). However, we do propose that existing data still supports a model in which

3D structure is of critical importance for E-P interactions genome wide. If certain perturbations show

no effect, it may be because the promoter is in the insensitive rather than hypersensitive regime.

The model also suggests further experiments to test this mechanism. In particular, promoters that

exhibit hypersensitive responses to certain perturbations, such as increased contact upon insulator

removal, should be relatively insensitive in other regimes, which could be tested by secondary muta-

tions. For example, increasing the contact frequency between Ubx enhancers and the abd-A pro-

moter following deletion of the border element, by removing some of the 30–60 kb that separates

them, is predicted to have sublinear effects on promoter activity since the hypersensitive regime was

already crossed following the initial deletion.

A more comprehensive test of this prediction of the models would be an experiment that mea-

sured gene expression from a reporter construct, while systematically varying the separation

between an enhancer and promoter across a wide range of distances, from most proximal, until too

far away to have any effect. Here, E-P contact frequency would be proportional to E-P genomic dis-

tance. The models predict that there is a threshold distance, below which the promoter is active and

above which it is inactive. The response around this threshold is thus hypersensitive, and further

Figure 6 continued

Figure supplement 1. Comparison of experimental and simulation results for the post-translational modification (PTM) version of the model on the
correlation between enhancer-promoter (E-P) distance and time spent transcribing.
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changes at either side of the threshold are sublinear. This experiment is predicted to exhibit the sig-

moidal response seen in the models: two sublinear regimes separated by a hypersensitive regime.

Such an experiment has recently been published with Drosophila enhancers, and results are con-

sistent with the model prediction—decreasing E-P contact frequency by increasing E-P distance

within a TAD produced a sharp drop in expression (Yokoshi et al., 2020). Similarly, manipulations of

the Sox9 locus, which progressively increased the contact frequency between Sox9 enhancers and

the adjacent Kcnj2 gene by deleting first the TAD border between them and then further shortening

the distance, also exhibited just such a nonlinear response (Despang et al., 2019). Most notably,

systematic variation of the distance between the Sox2 promoter and one of its enhancers, both

inserted into an ectopic site, reveals a strikingly hypersensitive dependence of transcription on E-P

contact frequency (Zuin et al., 2021).

Understanding global disruption of TADs
Examination of the time sensitivity of the model provided a possible explanation of a second set of

controversial experiments. It was reported in 2017 that rapid removal of cohesin from the genome

substantially altered global contact patterns, removing TADs and so-called ‘loops’ or corner points

from contact maps genome wide (Rao et al., 2017). Surprisingly, this structural perturbation resulted

in few transcriptional changes, with hardly any gene changing nascent transcription levels by more

than a factor of 2. This apparently contradicted results in earlier and concurrent reports, in which dis-

ruption of single TAD boundaries resulted in substantial change in expression to the local genes.

While it is important to note that the experiments were conducted in different cellular backgrounds,

our modeling work demonstrates that a simple explanation may exist. Twofold or smaller differences

in contact frequency in the model show significant hysteresis and will retain their initial transcription

rate for many hours after such perturbation, but this memory is lost on longer time scales. Transcrip-

tion was assayed only hours after the contact changes in the degron experiment, which may explain

why little change was detected. In contrast, experiments that genetically deleted border elements

assayed transcription days and many cell generations later, at which point some promoters saw

major changes in expression.

Notably, TAD boundaries have been globally weakened or removed through a variety of alterna-

tive methods, including degradation of CTCF, deletion of the cohesin-associated factor NIPBL, pro-

tease cleavage of cohesin, and siRNA (Cuartero et al., 2018; Nora et al., 2017; Schwarzer et al.,

2017; Stik et al., 2020; Zuin et al., 2014). A direct comparison between the studies is complicated

by the variations in cell type and genetic background used. Yet, by and large, transcriptional assays

performed at longer intervals after first detection of E-P contact disruption exhibit greater transcrip-

tional changes, consistent with the explanation suggested by these simulations.

How can we connect modeling time scales with the experimental measurements? While too little

is known about the detailed chemical kinetics in vivo to confidently extrapolate these results to abso-

lute time scales, it is clear there is a fast regime and a slow regime, with moderate change looping

rates associated with a slower time scale. Available in vivo data on recruiting epigenetic modifiers to

promoters predominantly shows significant response on the time scale of hours (Braun et al., 2017;

Hathaway et al., 2012; Ho et al., 1996), though subtle responses can be detected with stronger

recruitment in as little as 15 min in some studies (Braun et al., 2017). If the promoter tags of our

PTM model version are realized by such epigenetic mechanisms (discussed below), our results are

consistent with the expectation that a decreased or increased contact frequency over only 6 hr will

be insufficient to change the promoter state, while a substantially longer period such as the multiple

days/generations between deletion and measurement can give the promoter enough time to change

states. Less is known about condensate kinetics, whose very existence and reliable detection in vivo

remain controversial. Nonetheless, studies reporting condensates of GTFs such as Med1, PolII, and

Brd4 indicate a stability that generally exceeds the imaging time (Chong et al., 2018; Cho et al.,

2018; Sabari et al., 2018).

Our model suggests experiments to test the hypothesis that promoters are hysteretic. Deletion

of essential enhancers, such as the Sox2 control region, results in substantial decreases in gene

expression, even though alterations to the interaction frequency do not. If expression were to be

measured within 6 hr of enhancer deletion or inactivation, rather than many cell generations later,

the model predicts the change would be much less dramatic. Though not a trivial experiment to exe-

cute, this could be attempted using CRISPR to induce the deletion in a population (or CRISPRi to

Xiao et al. eLife 2021;10:e64320. DOI: https://doi.org/10.7554/eLife.64320 15 of 27

Research article Chromosomes and Gene Expression Computational and Systems Biology

https://doi.org/10.7554/eLife.64320


silence the enhancer), followed by fixation within a few hours and combined single-molecule RNA

FISH and DNA FISH. RNA FISH would quantify RNA expression per cell, and the DNA FISH would

sort out which cells actually contained the deletion.

Transcription may be dependent on E-P contact even when the two
are not correlated in single cells
It has been widely expected that active promoters should colocalize with their active enhancers,

based largely on bulk population assays such 3C and H3K27ac Hi-ChIP (Bartman et al., 2016;

Deng et al., 2012; Kagey et al., 2010; Mumbach et al., 2017, Mumbach et al., 2016; Rao et al.,

2014; Williamson et al., 2016); for review see Furlong and Levine, 2018. Surprisingly, recent sin-

gle-cell measurements found that cells with close E-P proximity were only slightly more likely to

exhibit nascent transcription than those lacking contact (Finn and Misteli, 2019b; Mateo et al.,

2019). It is possible the correlation between looping and expression is missed in these fixed cell

assays because the loops are transient relative to the rate of transcription, such that loops dissociate

by the time the nascent RNA transcript is detectable. However, recent live-cell imaging experiments

suggest otherwise: live-cell tagging of chromatin proximal to the enhancer and promoter of Sox2

coupled with live-cell measurements of nascent RNA transcription uncovered no significant correla-

tion between E-P proximity and transcription activity (Alexander et al., 2019). These data have sup-

ported speculation that enhancers must be able to influence promoter activity from a distance,

for example, through bridging by large protein condensates (Alexander et al., 2019;

Benabdallah et al., 2019; Heist et al., 2019).

The futile cycle model demonstrates that it is possible for transcription to be regulated by E-P

contact and yet show little temporal correlation, even in live, single-cell time-lapse data. This is

because individual E-P contact events have little impact on promoter state, contributing to only mar-

ginally more promoter tags or larger condensates. However, repeated interaction events, coupled

with promoter-intrinsic feedback to accumulate tags, eventually lead to activation. This explanation

can be directly tested with larger data sets—with sufficient observations, a weak correlation should

be detectable (as seen in the fixed cell data), since cells experiencing a higher frequency of contact

are more likely to have a high level of tag and thus more likely to transcribe, even though it is not a

one-to-one dependency.

A simple test of this could be performed by collecting deeper single-cell live imaging data sets—

a feasible though exceedingly laborious task given the available throughput of live imaging. An

order of magnitude more measurements may allow detection of the expected weak temporal corre-

lation. A yet more direct experiment would be to take single-cell measurements of the protein state

of the promoter, with simultaneous measurement of transcriptional state—for example, monitoring

the level of H3K4me3 or PolII. Of course, this experiment is exceedingly difficult with current tech-

nology, which lacks reliable detection of protein state at individual promoter loci, and is further com-

plicated by the substantial number of candidates to test for promoter accumulation signals. While

dynamic measurements would lead to stronger conclusions, even in fixed cell populations, correlat-

ing promoter state in terms of protein occupancy and abundance to the RNA expression state would

be informative. While out of reach of current technologies, given the rapid improvements in experi-

mental methods for enhanced sensitivity and versatility, it is imaginable that such direct measures

will one day be possible.

Repression also supports hypersensitivity and hysteresis
For simplicity, the futile cycle model presented above assumed that the condensates or the tags

that accumulated at the promoter are activating, such that transcription is proportional to tag level.

However, it is equally plausible that futile cycles of repressive condensates or tags at the promoter

account for hypersensitivity of some promoters. In this case, transcription can be modeled as

inversely proportional to the concentration of the promoter tag; everything else about the analysis

and its conclusions remains unchanged. The distal regulatory element that adds more of the tag

should be termed a silencer rather than an enhancer. In response to increased contact with the

silencer, the promoter would transition through a weakly sensitive ON regime, a hypersensitive

bistable regime, to a weakly sensitive OFF regime. Alternatively, a model in which the enhancer

removes the repressive tag from the promoter would support all three regimes.
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Conclusion
We have described and analyzed a simple futile cycle model of enhancer-contact-dependent pro-

moter activity and presented two concrete realizations for analysis. In this view, the promoter is not

merely an intermediary in the regulation of transcription. It does not only relay the activity state of

the enhancer into transcriptional activity of its target gene, nor function only as an amplifier of

enhancer activity to set the levels of expression. Instead, through accumulation of local tags or GTFs

in a condensate, the promoter is able to integrate its history of interaction with one or more regula-

tory elements and respond in striking nonlinear ways to changes in these signals. In addition to its

core sequence, the accumulation of other factors at the promoter, be they histone modifications or

transcription factors, provides the necessary mechanism for the dynamical system to exhibit

memory.

This view of the promoter as an integrator of signaling by accumulation of molecules is not new

and does not posit the existence of any unknown molecular mechanisms. However, we found that a

minimal model that captures the key features of such promoters can exhibit a much more complex

dependency on chromatin structure than previously acknowledged. Our modeling results offer a sim-

ple explanation to controversies of major importance to the chromatin structure and transcription

community. These include (1) why TAD boundaries can be weak and why insulators only mildly affect

contact frequency and yet be major regulators of transcription; (2) why many genes thought to be

responsive to distal enhancers are insensitive to some structural changes; (3) why global disruption

of structure and acute disruption of structure have been reported to have distinct effects on tran-

scription; and (4) why physical distance between known distal enhancers and their cognate gene

does not show obvious correlation with transcriptional state in single cells.

Materials and methods

Transcriptional framework and terminology
The terms enhancer and promoter have fluid definitions in the literature, with overlapping empirical

criteria. For clarity, we will use the following simplified definitions. Regulated genes are genes acti-

vated by cell-type-specific combinations of transcription factors (TFs), which bind regulatory DNA

sequence elements called enhancers. The enhancer loops to the promoter at some frequency deter-

mined by the genome structure. The promoter is a different regulatory DNA element that contains

the transcription start site (TSS) and binding sites for general transcription factors (GTFs). As they

bind the promoter, GTFs can influence transcription immediately, whereas TFs, which bind

enhancers, only affect transcription when an E-P loop occurs. There is no loss of generality with these

definitions—a TF-binding site that is close to the TSS, rather than being described as part of the

‘promoter,’ is, in this view, part of an enhancer with a high interaction frequency (one which is likely

never rate-limiting). Many informative prior models of transcriptional regulation (Ben-Tabou de-Leon

and Davidson, 2009; Gregor et al., 2007; Manu et al., 2009; Sanchez et al., 2011; Zinzen et al.,

2006; Zinzen and Papatsenko, 2007) assume that the rate of transcription is simply proportional to

TF occupancy. These models are consistent with the general definition we just described, with the

added assumptions that E-P contact and GTF-promoter binding are fast relative to TF binding, and

that transcription itself is proportional to GTF binding. This broader definition will help us see how

genome structure would be expected to impact the behavior of these models.

Nonlinear mathematical frameworks
Two distinct mathematical frameworks have been used to model nonlinear transcriptional systems.

Mass action kinetics models chemical entities using continuous variables representing concentra-

tions. Interaction rates are quantified by on/off rate constants. The mathematical tools of ordinary

differential equations (ODEs) can be used to study the behavior of systems under these assumptions

(Strogatz, 2019). Alternatively, the CME models the chemical species as discrete molecules, which

interact stochastically. The mathematical tools of probability theory, particularly continuous-time

Markov chains, allow analysis of the behavior of such discrete systems (Durrett, 2012). Each chemi-

cal state of the system is enumerated, and transitions between states occur with a finite probability

that depends only on the current state. The CME’s assumptions are less restrictive than the ODE

approach, and it allows the study of variability in stochastic systems. In the limit where the number
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of discrete molecules is large, the master equation is accurately described by the corresponding con-

tinuous ODEs. Stochastic models of transcription have been instructive in understanding promoter

bursting and how different chemical signaling pathways buffer or amplify stochastic variations, which

in turn improves robustness or increases heterogeneity (Ycart and Peccoud 1995, Raj 2006,

Sanchez et al., 2011, Boettiger 2013).

Solutions to the chemical master equation/Markov jump process
Consider a system with n states. Note n is not required to be finite. Let P(t) be a matrix where ele-

ment pi,j(t) indicates the probability the system is in state i at time t given that it started in state j at

time 0. The evolution of P(t) is given by the forward Kolmogorov equation, d/dt P(t) = P(t)M, where

M is the transition probability matrix, shown in each of the model figures (see Figures 2–4).

The stationary distribution of Pp is given by the normalized kernel of M. In the two- and three-

state models shown in Figure 2, we were interested only in the probability the system was in the

fully occupied state, and thus inspect only the last element of p. In other models, like the conden-

sate model, transcription was assumed to be proportional to the size of the condensate, and we

must sum all the elements of p scaled by their corresponding transcription rate for the correspond-

ing condensate size in order to determine the expected distribution of transcription.

It is also instructive to look at solutions not at steady state. This solution is straightforward for

small matrices (see Durrett, 2012), but for large matrices is more efficiently explored by stochastic

simulation of the underlying jump process as discussed below.

Stochastic simulation of the Markov jump process
Stochastic simulations were written in MATLAB 2020a. Executable source code to run these simula-

tions is available here: https://github.com/BoettigerLab/model-transcription-looping (copy archived

at swh:1:rev:8af1e7fcf1fa126908465558c4ef6d127000a9c8), Boettiger, 2021. A detailed table of

parameters values and parameter descriptions is provided at the start of each script. The associated

figure is indicated in the filename and in the header of the corresponding script for each simulation.

Why use stochastic simulations when analytic methods are available? While the matrix formalism

can be used to solve analytically the time-dependent and stationary probability distributions for all

the states of interest in both the PTM mechanism and condensate mechanism flavors of the model,

we find the complexity of the expressions in full variable form does not easily facilitate interpreta-

tion. The analytic solutions in variable form require many pages just to write down, and as such do

not facilitate the mental evaluation of limit behavior as demonstrated with simpler models. By con-

trast, the parametric approximation of the numerical results we find more intuitive.

In brief, these simulations model the chemical master equation in explicit time and discrete time

steps, with discrete transition probabilities for the addition and removal of promoter tags. For sim-

plicity, we equate promoter modification and transcription, reducing the total parameter space with-

out loss of generality.

The number of time steps used in the simulation was explored systematically to benchmark their

effects on model behavior (e.g., see Figure 5E). As can be seen from these simulations and inferred

from the structure of the model, the system asymptotically approaches the stationary distribution,

such that the difference in the distribution of states observed after 104 or after 105 units of simula-

tion time is small. The simulations in Figure 5 explored also the more transient behaviors at shorter

time scales, which were benchmarked against the time it took the simulation to respond to enhancer

deactivation. The initial conditions were selected to have all promoters start in the OFF state with no

tags or condensate molecules, unless indicated as a ‘start on’ simulation. In the latter case, all pro-

moters were initialized with a condensate or tag size equal to that observed on average at stationar-

ity. The specific number of time steps used in each simulation and the specific initialization

conditions are recorded along with the corresponding rate constants used in the supplemental code

provided.
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Model assumptions and justification
The free concentration of high abundance molecular species, like
nucleotides, soluble GTFs, or tags, is unchanged by their accumulation at
the promoter
RNA production consumes ATP to produce multiple mRNA molecules from a DNA template and so

these models do not explicitly conserve energy or mass. This does not violate any laws of physics;

other processes in the cell, not explicitly described in the model, produce (and consume) species

such as ATP in such a way that mass energy in the universe is still conserved. When these compo-

nents are in sufficient excess and produced at a sufficient rate, they are reasonably approximated as

constants.

This assumption can be removed with no observable change to the results, save added complex-

ity in their computation. This follows as the relative effect of a minor depletion of the bulk popula-

tion, from N to N-1, has an effect size of 1/N on the addition rate.

Transcription is proportional to condensate size/tag amount
To keep the parameter list minimal and emphasize the chemical features chiefly responsible for the

hypersensitivity to E-P contact frequency, we assumed transcription is proportional to condensate

size and tag amount. This assumption can be replaced with a variety of more complex, more sto-

chastic models of transcription. As long as transcription is correlated with the accumulated amount

of these factors, the hypersensitivity will remain. The degree of hypersensitivity will be lessened (or

require averaging over many more promoters in order to emerge) if the correlation is weak.

Enhancers are already bound by TFs
It is straightforward to add a more complex model of the enhancer, one, for example, which cooper-

atively binds multiple TFs and thus whose occupancy depends on the concentration of the respective

TF activators and repressors as in Zinzen 2006 and related works. One must decide which TF occu-

pancy configurations are capable of influencing transcription via PTM or condensate recruitment.

The addition then is a function not just of the loop frequency e, but rescaled by the probability the

enhancer is in an active state(s), which is a function of the TF concentrations.

Condensates have a fixed maximum size while promoter PTMs do not
To keep the parameter space small in the condensate model version and facilitate a systematic scan

over parameters, we modeled the system with a fixed maximum condensate size. A more realistic

model would postulate that this value is a stochastic number, determined by the concentration at

which the GTF forming the condensate passes below the solubility critical point and stops condens-

ing. If the concentration is always below this threshold, no condensation will be observed. For sys-

tems with concentration above the critical point, condensates form, and compete to associate out

the extra molecules. Should distinct liquid condensates meet in 3D space, they will fuse, though the

frequency of such events will be dramatically reduced if the condensates are tethered on chromatin

as postulated in our model, as the dense packaging of these long polymer fibers limits their diffusive

mobility. In the tethered regime, condensate size is limited by the competition with other conden-

sates for the limited pool of GTF molecules and the limited lifetime of the processes permissive to

formation at a given site (such as the activity of the enhancer). Importantly, the soluble pool of GTFs

remains large even once condensates have formed, and thus individual GTFs will still leave and fuse

with existing condensates. The tethered condensate model is analogous to beads of dew condens-

ing on a glass window as the air cools, forcing a fraction of water molecules out of the gas phase

and into the liquid phase—the surface tension keeps the beads generally in place, so they do not all

condense into a single droplet. The size of the beads is limited by the amount of water available

above the critical dew point (which depends on the size of the temperature drop and how saturated

the air was to begin with). Individual water molecules in the dew drops continually escape back into

the gas phase, and individual molecules in the air continually join the dew drops, and are preferen-

tially captured by the larger drops. Local variations in temperature of the substrate, much like local

variations in the enhancer activity of different promoters in the model, will cause variations in the

growth and dissolution rates of the different droplets.
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No fixed saturation for the total amount of tag is assumed in the PTM model version. Since tag

removal is proportional to current abundance, for all non-zero removal rates the amount of tag will

always have a finite average. Since an individual promoter can always add one more tag though, the

transition matrix is infinite. As the substrates for common PTMs (phosphates, methyl groups, acetyl

groups) are in high abundance and under rapid turnover in the cell, the addition of a tag to the pro-

moter is not expected to deplete the available pool and so impact the next modification.

Analytic inference of the parameter space of the PTM model
Standard dynamical systems theory (Strogatz, 2019) reveals the continuum limit version of the PTM

mechanism has at most three real, critical points, one unstable and two stable, at high and low tag

levels, respectively, arising from the intersection of a sigmoidal tag production curve, p(a) with a lin-

ear decay d(a) (Figure 3—figure supplement 1). Hypersensitivity in this model arises for parameter

regimes in which a minor increase or decrease in e leads to the loss of either the upper or lower sta-

ble point in a saddle node bifurcation, causing the system to tip into the remaining stable point. The

conditions for the existence and annihilation of these stable points can all be seen from a phase-por-

trait analysis of the shape of the curves p(a) and d(a). The effects of the individual rate constants on

the shape of p(a) and d(a) can be seen from the analytical forms of these equations (Figure 3—fig-

ure supplement 1A, B). The amplitude of p(a) sets the maximal transcriptional difference between

enhancer-induced and -uninduced states. The sensitivity and stability of the response to enhancer

promoter contact is determined by the sensitivity of p(a). When p(a) is a gentle sigmoid, it is possible

for a very small change in e to transition the system from a mono-stable off-state, through the bista-

ble regime, into the monostable on-state (Figure 3—figure supplement 1C). In the corresponding

stochastic regime, the difference in p(a) and d(a) for values of a left of the upper stable point deter-

mines the ultimate stability of the upper stable point. In this stochastic regime, when the difference

between p(a) and d(a) is small, there is a non-zero probability of losing more tags than gained in a

certain time window, even when p(a) is on average greater than d(a). Thus, hypersensitivity to e is

reduced/lost as the Hill coefficient of p(a) approaches 1 or approaches infinity: moderate Hill coeffi-

cients in p(a) produce the most hypersensitivity to e (Figure 3—figure supplement 1C–E). Similarly,

if d(a) becomes too large or too small, it also limits the sensitivity, as can be seen schematically by its

effect on the position of stable points (Figure 3—figure supplement 1F).

Derivation of the continuum limit equations
The ODE model (Figure 3—figure supplement 1A) was derived from the discrete chemical master

equation using mass-action kinetics as described below. The stimulated enzyme example presented

below is only one implementation of the PTM version, but used here because it is the simplest and

most intuitive system that recapitulates the desired quantitative behavior.

Model parameter definitions
Consider a promoter-bound enzyme that attaches molecular tags to a promoter at some basal

rate r0. This enzyme can also associate with n promoter-bound tags up to some number nmax, which

changes the tagging rate to rn. The enzyme-tag association rates kn are dependent on the current

association state (e.g., cooperativity), while dissociation is assumed to be constant (for now, but can

be generalized later). ’Free’ tags not associated with the enzyme but still promoter-bound are

removed from the promoter with a rate constant g.

Reaction and rate equations
For illustrative purposes, we will start with the nmax ¼ 2 case (later, we will show this is sufficient to

capture nonlinear behavior of interest). Then, the enzyme has three ’association states’ (n = 0, 1, or

2):

Stimulation of enzyme activity by tag association:

E þ a*)Ea with rate k1 forward, t 1 backward
Eaþ a*)Ea2 with rate k2 forward, t 2 backward

where E is enzyme and a is tag. In general, there may be up to n different stimulation states:

Ean þ a*)Eanþ1 with rate kn rightward, t n leftward
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Tagging/detagging:

E ! E þ a with rate r0
Ea ! Eaþ a with rate r1
Ea2 ! Ea2 þ a with rate r2
a ! 0 with rate g

In general:

Ean ! Ean þ a with rate rn

Note: The enzyme adds a tag to the vicinity of the promoter by reacting with abundant ambient

substrate or coenzyme (e.g., Acetyl-CoA). As described above, the abundance of this substrate/

coenzyme is assumed to be sufficiently large that its addition to the promoter does not appreciably

change the total abundance, enabling us to reduce the number of necessary parameters by account-

ing for this constant concentration in the production rates rn. In other words, a appears to be cre-

ated ‘from nothing,’ but the requisite material pool actually exists on both sides of each reaction

equation and is simply omitted for readability.

Now we can write out the rate equations:

d E½ �

dt
¼�k1 E½ � a½ �þ t Ea½ � (1)

d Ea½ �

dt
¼ k1 E½ � a½ �� t Ea½ � � k2 Ea½ � a½ �þ t Ea2½ � (2)

d Ea2½ �

dt
¼ k2 Ea½ � a½ �� t Ea2½ � (3)

d a½ �

dt
¼ r0 E½ �þ r1 Ea½ � þ r2 Ea2½ �� g a½ � þ e (4)

where e is the tagging contribution from E-P contact. Assuming the total enzyme number is

constant,

Etot½ � ¼ E½ �þ Ea½ � þ Ea2½ � (5)

Our goal is to find d a½ �
dt

as a function of a½ � and constants, and to study the steady-state behavior of

the system, that is, finding the solutions for a½ � when Equations (1)–(4) are all set to zero. Solving (1)

and (3), then substituting Ea½ � and Ea2½ � into (4) and (5):

d a½ �

dt
¼ r0 E½ � þ r1

k1

t
E½ � a½ �þ r2

k1k2

t 2
E½ � a½ �2�g a½ �þ e (6)

Etot½ � ¼ E½ � þ
k1

t
E½ � a½ �þ

k1k2

t 2
E½ � a½ �2

) E½ � ¼
Etot½ �

1þ k1
t
a½ �þ k1k2

t 2 a½ �2
(7)

Combining (6) and (7):

d½a�

dt
¼ ½Etot �ð

r0þ r1
k1
t
½a�þ r2

k1k2
t 2 ½a�

2

1þ k1
t
½a�þ k1k2

t 2 ½a�
2

Þ� g½a�þ e

¼ ½Etot�ð
r0

t 2

k1k2
þ r1

t

k2
½a�þ r2½a�

2

t 2

k1k2
þ t

k2
½a�þ ½a�2

Þ� g½a�þ� (8)
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The terms with rn represent enzyme tagging, and the term with g is detagging. This nonlinear sys-

tem with n = 2 can be solved explicitly for the steady-state values of a, though the solutions are less

compact than the final equation, and are most easily interpreted in the phase portraits of Equation

(6). Analytic steady-state solutions were calculated in MATLAB using the symbolic algebra package.

Scripts to reproduce these calculations are available on our GitHub site at: https://github.com/Boet-

tigerLab/model-transcription-looping.

Insulation score calculations
Several variations of this metric exist, but we define it as follows: first, the contact frequency map is

normalized relative to linear genomic distance by dividing each off-diagonal row by the sum of the

row. This improves the interpretability of the measure as the inter-domain triangle contains more

interactions further from the diagonal than the intra-domain ones (Figure 1—figure supplement 3).

We then scan the whole genome, computing the average, normalized interaction frequency within

each of the three triangular regions shown in Figure 1—figure supplement 3: upstream (intra-

domain U), downstream, intra-domain D, and between inter-window (domain I) of query point. We

report the ratio of intra-domain to inter-domain interactions for this sliding window as the insulation

score for that genomic position, as indicated in Figure 1—figure supplement 3. This metric can be

computed for a range of sliding window sizes. As long as the window size is smaller than the typical

TAD and large enough not to be sensitive to measurement-error fluctuations associated with over-

binning the data, the distribution of insulation scores does not depend strongly on bin size. A com-

parison of several different computational algorithms for identifying TADs showed greatest agree-

ment across replicates and robustness to data normalization using this metric (Gong et al., 2018;

Lazaris et al., 2017).

Balanced, Hi-C matrices from Rao et al., 2014 were downloaded and exported using Juicebox

(Durand et al., 2016) for manipulation in MATLAB for computing insulation scores.
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