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Abstract Coronavirus entry is mediated by the spike protein that binds the receptor and

mediates fusion after cleavage by host proteases. The proteases that mediate entry differ between

cell lines, and it is currently unclear which proteases are relevant in vivo. A remarkable feature of

the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is the presence of a

multibasic cleavage site (MBCS), which is absent in the SARS-CoV spike. Here, we report that the

SARS-CoV-2 spike MBCS increases infectivity on human airway organoids (hAOs). Compared with

SARS-CoV, SARS-CoV-2 entered faster into Calu-3 cells and, more frequently, formed syncytia in

hAOs. Moreover, the MBCS increased entry speed and plasma membrane serine protease usage

relative to cathepsin-mediated endosomal entry. Blocking serine proteases, but not cathepsins,

effectively inhibited SARS-CoV-2 entry and replication in hAOs. Our findings demonstrate that

SARS-CoV-2 enters relevant airway cells using serine proteases, and suggest that the MBCS is an

adaptation to this viral entry strategy.

Introduction
The ongoing coronavirus disease (COVID-19) pandemic is caused by the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), which emerged in central China late 2019 (Zhu et al., 2020).

Within months, this virus spread globally, and as of October 15, 2020, over 38 million cases have

been reported, including over 1 million deaths. Halting SARS-CoV-2 spread has shown to be highly

complex, putting great strain on health systems globally. SARS-CoV-2 is the third zoonotic coronavi-

rus to emerge from animal reservoirs within the past two decades, after SARS-CoV and Middle East

respiratory syndrome coronavirus (MERS-CoV), in 2002 and 2012, respectively (Drosten et al., 2003;

Kuiken et al., 2003; Peiris et al., 2003b; Zaki et al., 2012). In contrast to SARS-CoV-2, SARS-CoV

and MERS-CoV have not attained sustained human-to-human transmission. These coronaviruses

belong to the Betacoronavirus genus (family Coronaviridae, subfamily Orthocoronavirinae), which is

thought to ultimately originate from bats, but can spread to humans via intermediate hosts

(Hu et al., 2015; Lau et al., 2010; Wang et al., 2014).

Currently, it is largely unknown what factors determine coronavirus transmission to and between

humans, but one important determinant may be the coronavirus spike (S) protein, which is the main

glycoprotein incorporated into the viral envelope. Enveloped viruses, including coronaviruses,

deposit their genomes into host cells by coalescing their membranes with the cell. This function is

executed by S protein trimers, which fuse viral and cellular membranes after binding to the entry

receptor (Hulswit et al., 2016). In addition, coronaviruses can spread from cell to cell when
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coronavirus S proteins traffic to the plasma membrane of infected cells and fuse with neighboring

cells, generating multinucleated giant cells (syncytia). Coronavirus S proteins are synthesized in

infected cells in a stable and fusion-incompetent form and are activated through cleavage by host

proteases. Proteolysis controls the timely release of the S protein’s stored energy required to fuse

membranes, which allows virions to be stable in the environment yet fusogenic after contacting entry

receptors on host cell membranes.

Cleavage is essential for coronavirus infectivity and can occur in the secretory pathway of infected

cells or during viral entry into target cells (Hulswit et al., 2016; Millet and Whittaker, 2015). Sev-

eral groups of host proteases, including type II transmembrane serine proteases (hereafter referred

to as serine proteases), proprotein convertases, and cathepsins, can cleave the S protein. Specific

sites in the S protein regulate protease usage and therefore play an important role in determining

cell tropism. Similarly, tropism can be determined by the availability of proteases that can activate

the S protein (Belouzard et al., 2012; Menachery et al., 2020; Millet and Whittaker, 2015;

Yang et al., 2014; Yang et al., 2015). The S protein consists of two domains, the receptor binding

(S1) domain and the fusion (S2) domain. These domains are separated by the S1/S2 cleavage site,

which in some coronaviruses, such as SARS-CoV-2, forms an exposed loop that harbors multiple argi-

nine residues and is therefore referred to as a multibasic cleavage site (MBCS) (Walls et al., 2020;

Wrapp et al., 2020). Cleavage of this site can occur in secretory systems of infected cells by propro-

tein convertases, including furin. S1/S2 cleavage does not directly trigger fusion but may facilitate or

regulate further cleavage (Park et al., 2016). A second proteolysis step takes place at a more C-ter-

minal site within the S2 domain, notably the S20 site. S20 cleavage is thought to occur after the virus

has been released from producing cells and is bound to host cell receptors on receiving cells. The

S20 site is processed by serine proteases on the plasma membrane or by cathepsins in the endo-

some. Whereas S20 cleavage appears to be crucial for coronavirus infectivity, not all coronaviruses

contain a multibasic S1/S2 site and little is known of its function (Hulswit et al., 2016). Until recently,

all viruses within the clade of SARS-related viruses, including SARS-CoV, were found to lack a multi-

basic S1/S2 cleavage site. However, SARS-CoV-2 contains a proline-arginine-arginine-alanine (PRRA)

insertion into the S protein, precisely N-terminally from a conserved arginine, creating a multibasic

RRAR cleavage motif. Exchanging the SARS-CoV-2 S MBCS for the SARS-CoV monobasic site was

recently shown to decrease fusogenicity on a monkey kidney cell line (VeroE6) and infectivity in a

human lung adenocarcinoma cell line (Calu-3) (Hoffmann et al., 2020a; Shang et al., 2020). How-

ever, cancer cells often poorly represent untransformed cells and thus the question remains whether

the MBCS would affect infectivity on relevant airway cells. Another study showed that entry of SARS-

CoV-2 pseudoparticles (PP) into Calu-3 cells could be blocked using a clinically approved serine pro-

tease inhibitor (camostat mesylate) (Hoffmann et al., 2020b). In contrast, in most other cell lines

(including the lung cell line A549), recent CRISPR-Cas9 screens have suggested that SARS-CoV-2

entry in cell lines appears to be mediated by endosomal cathepsins (Daniloski et al., 2020;

Wei et al., 2020a). These discrepancies between human lung cell lines underscore the importance

of using relevant cells, such as human airway organoids (hAOs), to study SARS-CoV-2 entry. Here,

we investigated if the SARS-CoV-2 MBCS affects entry into relevant human airway cells (1), if the

MBCS can alter protease usage during entry (2), and which entry pathway is taken by SARS-CoV-2 in

hAOs (3).

Results

Entry into lung adenocarcinoma cells and hAOs is facilitated by the
SARS-CoV-2 S MBCS
Recently, Hoffmann et al., 2020a showed that the SARS-CoV-2 multibasic cleavage motif increases

entry into Calu-3 cells by exchanging this motif and several N-terminally flanking amino acids with

the monobasic S1/S2 site found in SARS-CoV or in a related bat virus RaTG13 (Hoffmann et al.,

2020a). Building on these observations, we generated several SARS-CoV-2 S protein mutants and

used these to generate vesicular stomatitis virus (VSV)-based PP stocks expressing a green fluores-

cent protein (GFP). Instead of exchanging cleavage sites, we mutated the minimal RXXR multibasic

cleavage motif by deleting the PRRA insertion (Del-PRRA), changing the last arginine to an alanine

(R685A) or to a histidine (R685H) in order to preserve the positive charge at this site (Figure 1A).
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Immunoblotting revealed that wild-type and mutant PPs were produced at similar levels (Figure 1B).

S1/S2 cleavage was observed for the wild-type SARS-CoV-2 PPs and abrogated by the PRRA dele-

tion and the R685A and R685H substitutions, which is in agreement with studies showing that the

SARS-CoV-2 S is cleaved by proprotein convertases, possibly furin (Hoffmann et al., 2020a;

Shang et al., 2020). Next, we assessed the infectivity of these viruses and found that the SARS-2-

Del-PRRA and SARS-2-R685A mutants were 5- to 10-fold more infectious on VeroE6 cells

(Figure 1C). In contrast, on the lung adenocarcinoma cell line Calu-3, the SARS-2-Del-PRRA, SARS-

2-R685A, and SARS-2-R685H PPs were approximately 5- to 10-fold less infectious compared with

the wild-type PPs (Figure 1D). These data show that the PRRA deletion and single point mutations

could functionally destroy the MBCS and suggest that this site enhances airway cell entry. Next, we

assessed the effect of the MBCS in a relevant cell culture system. A 3D airway organoid model that
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Figure 1. The SARS-CoV-2 S multibasic cleavage site mediates entry into human airway organoids. (A) Schematic overview of SARS-CoV-2 S protein

mutants. MBCS residues are indicated in red; amino acid substitutions are indicated in green. Red arrows indicate cleavage sites. The SARS-CoV-2 S

MBCS was mutated to either remove the PRRA motif (SARS-2-Del-PRRA) or substitute the R685 site (SARS-2-R685A and R685H). (B) Comparison of S

cleavage of SARS-CoV-2 PPs and the MBCS mutants. Western blots were performed against S1 with VSV-M silver stains as a production control. (C and

D) PP infectivity of SARS-CoV-2 S and MBCS mutants on VeroE6 (C) and Calu-3 (D) cells. (E) Differentiated hAO cultures were infected with

concentrated SARS-CoV-2 PPs containing a GFP reporter, indicated in green. Scale bar indicates 20 mm. (F) SARS-CoV-2 PP and MBCS mutant

infectivity on bronchiolar hAO cultures. One-way ANOVA was performed for statistical analysis comparing all groups with SARS-CoV-2 PPs. Experiments

were performed in triplicate (B and D, F). Representative experiments from at least two independent experiments are shown (C and D). Combined data

from three independent experiments is shown (F). Error bars indicate SEM. *p<0.05. GFP, green fluorescent protein; hAO, human airway

organoid; MBCS, multibasic cleavage site; PP, pseudoparticles; RBD, receptor binding domain; RBM, receptor binding motif.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. hAO cultures grown at 2D air–liquid interface are well-differentiated and express ACE2 and TMPRSS2.
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allows efficient SARS-CoV-2 replication where infectious virus titers increase over time has not yet

been established, but we previously reported that 2D airway organoid-derived air–liquid interface

differentiated cultures allow efficient SARS-CoV-2 replication (Lamers et al., 2020). In this model,

hAOs (Sachs et al., 2019) are dissociated, seeded onto collagen-coated Transwell inserts, and differ-

entiated at air–liquid interface in Pneumacult ALI medium (Stemcell). After differentiation, cultures

contain ciliated cells, club cells, and goblet cells (Figure 1—figure supplement 1). Moreover, they

express the SARS-CoV-2 entry receptor angiotensin-converting enzyme 2 (ACE2) and transmem-

brane protease serine 2 (TMPRSS2), a serine protease previously shown to mediate SARS-CoV-2

entry when overexpressed (Figure 1—figure supplement 1D,E; Hoffmann et al., 2020b). To set up

a 3D model, we dissociated these 2D air–liquid differentiated cultures into small clumps, infected

these in suspension, and then re-plated the clumps into basement membrane extract (BME), in which

they formed spheroids. SARS-CoV-2 PPs successfully infected these hAOs, as observed by fluores-

cent microscopy (Figure 1E). SARS-CoV-2 PPs were approximately two times more infectious on

these cells compared with the SARS-2-Del-PRRA and SARS-2-R685A mutants, and eight times more

infectious than the SARS-2-R685H mutant (Figure 1F), demonstrating that the SARS-CoV-2 MBCS

facilitates entry into human airway cells.

SARS-CoV-2 enters Calu-3 cells faster than SARS-CoV and entry speed
is increased by the MBCS
As SARS-CoV lacks the MBCS, we compared its infectivity to SARS-CoV-2 and found that both PPs

readily infected Calu-3 cells, indicating that the SARS-CoV S has adaptations other than the MBCS

to facilitate airway cell infection (Figure 2A). Likewise, inserting the PRRA motif into SARS-CoV S

and thereby generating an MBCS did not increase PP infectivity on Calu-3 cells (Figure 2—figure

supplement 1). To investigate this further, we compared the entry route taken by these viruses in

Calu-3 cells. For this purpose, we used inhibitors of two major coronavirus entry pathways

(Hulswit et al., 2016). Serine proteases are known to mediate early coronavirus entry on the plasma

membrane or in the early endosome, whereas cathepsins facilitate entry in late, acidified endo-

somes. Concentration ranges of either a serine protease inhibitor (camostat mesylate; hereafter

referred to as camostat) or a cathepsin inhibitor (E64D) were used to assess the entry route into

Calu-3 cells. Entry of SARS-CoV-2 PPs was not inhibited by E64D, but could be inhibited by camo-

stat, indicating that SARS-CoV-2 exclusively uses serine proteases for entry into these cells

(Figure 2B,C). For SARS-CoV PPs, entry was inhibited slightly by E64D (~10%), but camostat had a

far stronger effect (~90%), indicating that SARS-CoV mainly uses serine proteases to enter Calu-3

cells but that a small fraction of virions enter via cathepsins (Figure 2B,C). Previously, Calu-3 cells

have been suggested to have low levels of cathepsin activity (Park et al., 2016). The observation

that some SARS-CoV PPs use cathepsins suggests that this virus less efficiently uses the surface ser-

ine proteases encountered early during entry, resulting in particles accumulating in the endosome,

where they are cleaved by cathepsins. To test this, we measured the serine protease-mediated entry

rate of SARS-CoV-2 and SARS-CoV by blocking entry on Calu-3 cells at different time points postin-

fection using camostat. Cells were pretreated with E64D to prevent any cathepsin-mediated entry.

Using both PPs and authentic virus (Figure 2D,E), we observed that SARS-CoV-2 entered faster than

SARS-CoV via serine proteases. Next, we assessed whether the presence of an MBCS could increase

the serine protease-mediated entry rate into Calu-3 cells. For this purpose, we used SARS-CoV S

PPs containing the PRRA insertion (SARS-PRRA) (Figure 2F). Immunoblotting revealed that, in con-

trast to SARS-CoV PPs, SARS-PRRA PPs were partially cleaved (Figure 2G). Whereas wild-type

SARS-CoV PPs used cathepsins, SARS-PRRA PPs did not (Figure 2H,I). The serine protease-medi-

ated entry rate of SARS-PRRA PPs on Calu-3 cells was higher compared with SARS-CoV PPs

(Figure 2J), and it was lower for SARS-2-Del-PRRA PPs compared with SARS-CoV-2 PPs (Figure 2K).

These findings show that the SARS-CoV-2 MBCS facilitates serine protease-mediated entry on Calu-

3 cells.

Cell–cell fusion is facilitated by the SARS-CoV-2 MBCS and SARS-CoV-2
is more fusogenic than SARS-CoV on hAOs
Next, we used a GFP complementation cell–cell fusion assay (Figure 3—figure supplement 1A,B)

to determine whether entry rate was associated with fusogenicity. In this assay, S and GFP-11 co-
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Figure 2. SARS-CoV-2 enters faster on Calu-3 cells than SARS-CoV and entry speed is increased by the multibasic cleavage site. (A) SARS-CoV PP and

SARS-CoV-2 PP infectivity on VeroE6 and Calu-3 cells. (B and C) SARS-CoV PP and SARS-CoV-2 PP entry route on Calu-3 cells. Cells were pretreated

with a concentration range of camostat (B) or E64D (C) to inhibit serine proteases and cathepsins, respectively. T-test was performed for statistical

analysis at the highest concentration. *p<0.05. (D and E) SARS-CoV PP, SARS-CoV-2 PP (D) and authentic virus (E) entry speed on Calu-3 cells. T-test

Figure 2 continued on next page
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transfected HEK-293T cells fuse with GFP1-10 expressing Calu-3 cells, resulting in GFP complemen-

tation and fluorescence. In HEK-293T cells, MBCS containing S proteins were more cleaved than S

proteins without this site (Figure 3A). We observed that SARS-CoV-2 S was more fusogenic than

SARS-CoV S on Calu-3 cells (Figure 3B,C), VeroE6 cells, and VeroE6-TMPRSS2 cells (Figure 3—fig-

ure supplement 1C–D and E–F). The expression of TMPRSS2 increased fusion about twofold for

both S proteins (Figure 3—figure supplement 1G). The insertion of the MBCS into SARS-CoV S

increased fusion, whereas mutations in the SARS-CoV-2 S MBCS decreased fusion (Figure 3B,C). To

investigate differences in fusogenicity in a relevant cell system, we infected 2D differentiated hAO

air–liquid interface cultures with SARS-CoV-2 and SARS-CoV and assessed the formation of syncytial

cells at 72 hr postinfection using confocal microscopy. Cells were termed syncytial cells when at least

two nuclei were present within a single viral antigen-positive cell that lacked demarcating tight junc-

tions. SARS-CoV-2 frequently induced syncytia, whereas SARS-CoV-infected cells rarely contained

multiple nuclei (Figure 3D,E for quantification).

The SARS-CoV-2 MBCS increases serine protease usage and decreases
cathepsin usage
The findings above indicate that SARS-CoV-2 S is more fusogenic and mediates faster entry through

serine proteases compared with SARS-CoV, indicating that the MBCS alters protease usage. To

investigate this, cells that contain both serine and cathepsin protease-mediated entry should be

used. Therefore, we focused on VeroE6 cells, which have an active cathepsin-mediated cell entry

pathway, as on these cells both SARS-CoV-2 PP and SARS-CoV PP entry was inhibited by E64D, and

not by camostat (Figure 4A,B). To generate a cell line in which both entry pathways are active, we

stably expressed TMPRSS2 in VeroE6 cells. In these cells, SARS-CoV-2 PP entry was inhibited ~95%

by camostat, whereas SARS-CoV PPs were only inhibited ~35% (Figure 4C,D). In accordance, E64D

did not block SARS-CoV-2 PP entry, while it decreased SARS-CoV PP entry ~30%. These findings

indicate that despite a functional serine protease-mediated entry pathway, a significant part of

SARS-CoV PPs still retained cathepsin-mediated entry, whereas SARS-CoV-2 PPs only used serine

proteases for entry. This phenotype was found to be linked to the MBCS as SARS-CoV-2 PPs con-

taining mutations in this site entered less through serine proteases and more through cathepsins

(Figure 4E,F). In accordance, the introduction of the MBCS into SARS-CoV PPs increased serine pro-

teases usage, while decreasing cathepsin usage (Figure 4G,H).

SARS-CoV-2 entry and replication are dependent on serine proteases in
hAOs
Altogether, our findings show that SARS-CoV-2 preferentially uses serine proteases for entry, when

present, and that the MBCS increases fusogenicity and infection of human airway cells. Hence, serine

protease inhibition could be an attractive therapeutic option. Therefore, we assessed whether camo-

stat could block SARS-CoV-2 entry and replication using hAOs. In these differentiated organoids the

apical side of the cells was facing outwards (Figure 5A,B), facilitating virus excretion into the culture

medium. These cells were infected with SARS-CoV-2 at a high multiplicity of infection (MOI) of 2, but

pretreatment with camostat efficiently blocked virus infection as evidenced by confocal microscopy

on hAOs fixed at 16 hr postinfection (Figure 5A). Cathepsin inhibition did not affect entry. At 24 hr

Figure 2 continued

was performed for statistical analysis at the latest time point. *p<0.05. (F) Schematic overview of SARS-CoV S protein mutants. MBCS residues are

indicated in red. The SARS-CoV-2 PRRA motif was inserted into SARS-CoV PPs (SARS-PRRA). (G) Comparison of S1 cleavage of SARS-CoV PP and the

MBCS mutant. VSV-M silver stains are shown as a production control. (H and I) SARS-CoV PP, SARS-PRRA PP, and SARS-CoV-2 PP entry route on Calu-3

cells. Cells were pretreated with a concentration range of camostat (H) or E64D (I) to inhibit plasma membrane and endosomal entry, respectively. One-

way ANOVA was performed for statistical analysis comparing all groups with SARS-CoV PPs at the highest concentration. *p<0.05. (J and K) Entry

speed on Calu-3 cells of SARS-CoV PPs compared with SARS-PRRA PPs (J) and SARS-CoV-2 PPs compared with SARS-2-Del-PRRA PPs (K). T-test was

performed for statistical analysis at the latest time point. *p<0.05. Experiments were performed in triplicate (A–E, H–K). Representative experiments

from at least two independent experiments are shown. Error bars indicate SD. ANOVA, analysis of variance; MBCS, multibasic cleavage

site; PP, pseudoparticles.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. SARS-CoV PP infectivity into Calu-3 cells is not altered by the insertion of the multibasic cleavage site.
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Figure 3. The SARS-CoV-2 multibasic cleavage site facilitates cell–cell fusion and SARS-CoV-2 is more fusogenic than SARS-CoV on human airway

organoids. (A) Proteolytic cleavage of SARS-CoV-2 S, SARS-CoV S, and S mutants was assessed by overexpression in HEK-293T cells and subsequent

western blots for S1. GAPDH was used as a loading control. Asterisk indicates an unspecific band. (B and C) Fusogenicity of SARS-CoV-2 S, SARS-CoV

S, and S mutants was assessed after 18 hr by counting the number of nuclei per syncytium (B) and by measuring the sum of all GFP+ pixels per well (C).

Statistical analysis was performed by one-way ANOVA on SARS-CoV or SARS-CoV-2 S-mediated fusion compared with its respective mutants. *p<0.05

(C). (D) Differentiated bronchiolar hAO cultures were infected at an MOI of 1 with SARS-CoV or SARS-CoV-2. Seventy-two hours postinfection they were

fixed and stained for nucleoprotein (NP; green) and tight junctions (ZO1; red) to image syncytia. Nuclei were stained with hoechst (blue). Scale bars

indicate 20 mm. Arrows indicate syncytial cells. (E) Percentage of syncytial cells of total number of infected cells per field of 0.1 mm2. Five fields were

Figure 3 continued on next page
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postinfection, SARS-CoV-2 infection spread in hAOs treated with dimethyl sulfoxide (DMSO) or

E64D, but only rare single cells were observed after camostat treatment (Figure 5B). Next, we

tested whether virus replication was affected by camostat pretreatment of the hAOs. After infection

at an MOI of 2, replication was assessed at 2, 24, and 48 hr postinfection by RT-qPCR and live virus

titration. In the control hAOs, SARS-CoV-2 replicated to high titers, while camostat reduced replica-

tion by approximately 90% (Figure 5C–E). We also tested the effect of camostat in 2D differentiated

hAOs at air–liquid interface using a low MOI of 0.1. Here, viral titers in apical washes did not

increase after camostat pretreatment (Figure 5F), whereas replication to moderate titers was

observed in the control wells. These findings indicate that SARS-CoV-2 utilizes serine proteases for

efficient entry into relevant human airway cells and serine protease inhibition decreases replication.

Discussion
SARS-CoV-2 harbors an MBCS in its S protein. Recent findings show that replacing this site with the

SARS-CoV monobasic cleavage site decreases PP infectivity on the adenocarcinoma cell line Calu-3,

suggesting that this motif is a human airway adaptation (Hoffmann et al., 2020a). This raised the

question whether similar findings would be obtained in relevant lung cells. In this study, we found

that the SARS-CoV-2 MBCS alters tropism by increasing infectivity on hAOs. Furthermore, we report

that the MBCS increases S protein fusogenicity, entry rate, and serine protease usage. Blocking ser-

ine proteases, but not cathepsins, in hAOs effectively inhibited SARS-CoV-2 entry and replication,

suggesting that serine protease-mediated entry is the main entry route in vivo.

In contrast to SARS-CoV-2, SARS-CoV does not contain an MBCS, yet infects Calu-3 cells with

similar efficiency. Introducing an MBCS to SARS-CoV S did not increase infectivity, indicating that

the SARS-CoV S has other adaptations to enter airway cells. These data are in agreement with a

study that observed no benefit of furin cleavage on SARS-CoV infectivity (Follis et al., 2006).

Whereas SARS-CoV-2 appears to have adapted to increase fusogenicity and serine protease-medi-

ated S activation for rapid plasma membrane entry, SARS-CoV may have specific adaptations to

enter these cells more slowly. Slower viral dissemination may explain why most SARS-CoV patients

entered the infectious phase of the disease after symptom onset (Cheng et al., 2004; Peiris et al.,

2003a). This could have played a role in the 2003 SARS-CoV epidemic, allowing strict public health

interventions including quarantining of symptomatic people and contact tracing to halt viral spread.

For SARS-CoV-2, however, several studies have reported that individuals can transmit the virus to

others before they become symptomatic (Bai et al., 2020; Huang et al., 2020; Kimball et al., 2020;

Wei et al., 2020b; Wiersinga et al., 2020). Whether differences in entry rate allow SARS-CoV-2 to

spread more efficiently in the human airway compared with SARS-CoV remains to be investigated. It

will be interesting to assess this using authentic SARS-CoV-2 containing MBCS mutations, which

requires a reverse genetic system, not available to this study at present. Whether cell–cell fusion also

plays a role in virus dissemination needs to be determined. In a cell–cell fusion assay and in hAOs

cultured at air–liquid interface, we show that SARS-CoV-2 is more fusogenic than SARS-CoV and

that fusogenicity is increased by the SARS-CoV-2 S MBCS. The role of cell–cell fusion in coronavirus

transmission and pathogenesis has not been investigated in detail, but it could be a strategy to

avoid extracellular immune surveillance and may increase the viral dissemination rate in the airways

in vivo. Whether the MBCS also affects entry into cells of other organs needs to be investigated fur-

ther. Although SARS-CoV-2 symptoms are mainly respiratory, recent reports indicate frequent

extrapulmonary manifestations, including but not limited to thrombotic complications, acute kidney

injury, gastrointestinal symptoms, dermatologic complications, and anosmia (Gupta et al., 2020). Of

note, acute kidney injury was uncommon during the SARS-CoV epidemic (Chu et al., 2005). It is

Figure 3 continued

counted. T-test was performed for statistical analysis. *p<0.05. Experiments were performed in triplicate (C). Representative experiments from at least

two independent experiments are shown. Error bars indicate SEM. hAO, human airway organoids; H p.i., hours postinfection; MOI, multiplicity of

infection; n.d., not detected.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. A GFP complementation based assay for assessing coronavirus fusogenicity.
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Figure 4. The SARS-CoV-2 multibasic cleavage site increases serine protease usage. (A and B) SARS-CoV PP and SARS-CoV-2 PP entry route on VeroE6

cells pretreated with a concentration range of camostat (A) or E64D (B) to inhibit serine proteases and cathepsins, respectively. (C and D) SARS-CoV PP

and SARS-CoV-2 PP entry route on VeroE6-TMPRSS2 cells pretreated with a concentration range of camostat (C) or E64D (D) to inhibit serine proteases

and cathepsins, respectively. T-test was performed for statistical analysis at the highest concentration. *p<0.05. (E and F) Entry route of SARS-CoV-2 PP

Figure 4 continued on next page
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unclear at this moment whether these manifestations are the result of extrapulmonary viral

replication.

Using VeroE6-TMPRSS2 cells that have both active serine protease- and cathepsin-mediated

entry pathways, we show that the MBCS increases serine protease-mediated S activation, while

decreasing cathepsin-mediated S activation. This indicates that the MBCS could be an adaptation to

serine protease-mediated entry. Whether this site improves S activation by any protease or by serine

proteases specifically remains to be tested. Encountering serine proteases first may result in more

plasma membrane entry over endosomal entry. More efficient fusion of multibasic motif containing S

proteins may be caused by increased S2’ cleavage due to higher accessibility of a S1/S2 cleaved S

compared with an uncleaved S. S1/S2 cleavage was recently shown to increase the binding of S to

ACE2 (Wrobel et al., 2020). Recent reports indicate that neuropilins (NRP) may be an additional

entry factor for SARS-CoV-2 (Cantuti-Castelvetri et al., 2020; Daly et al., 2020). This is an interest-

ing hypothesis as ACE2 expression (mRNA and protein) is relatively low in the lungs, whereas NRP

expression appears to be abundant. NRP1 binds peptides with an exposed C-terminal arginine, such

as furin-cleaved proteins, and a SARS-CoV-2 mutant with an altered MBCS did not depend on NRP1

for infectivity (Cantuti-Castelvetri et al., 2020). Therefore, it was concluded that NRP1 may pro-

mote the interaction of the S1/S2-cleaved virus with ACE2. However, Daly and colleagues observed

that NRP1 knockdown did not affect cellular attachment, but did enhance entry and syncytium for-

mation. Therefore, we suggest that NRP1 may facilitate S2’ cleavage by exposing this site or S1 dis-

sociation after S2’ cleavage for timely exposure of the fusion peptide and subsequent fusion.

Structural changes caused by S1/S2 cleavage may affect protease accessibility or protein interactions

at the cell membrane as well as increase subsequent S2’ cleavage.

While mutations in the SARS-CoV-2 MBCS decreased airway cell infectivity, they increased infec-

tivity on VeroE6 cells. Several groups have reported mutations or deletions in or around the SARS-

CoV-2 MBCS that arise in cell culture on VeroE6 cells (Klimstra et al., 2020; Lau et al., 2020;

Ogando et al., 2020), indicating that the lack of an MBCS creates a selective advantage in cell cul-

ture on VeroE6 cells. The mechanism behind this remains unknown. The increased infectivity of

MBCS mutants was not observed by Hoffmann et al., 2020a, but in that study, complete cleavage

motifs including four amino acids N-terminally from the minimal RXXR cleavage site were exchanged

between SARS-CoV-2 and SARS-CoV (Hoffmann et al., 2020a). In contrast, we mutated single sites

or removed/inserted only the PRRA motif. Importantly, a cell culture-adapted virus containing a com-

plete deletion of the MBCS was recently shown to be attenuated in hamsters (Lau et al., 2020).

These studies support our findings that the SARS-CoV-2 MBCS affects tropism, facilitates airway cell

entry, and show that proper characterization of virus stocks is essential.

Entry inhibition has been proposed as an effective treatment option for SARS-CoV-2. Chloroquine

can block SARS-CoV and SARS-CoV-2 entry in vitro into VeroE6 cells (Vincent et al., 2005;

Wang et al., 2020), but does not block entry into cells expressing serine proteases (Calu-3 and

Vero-TMPRSS2) (Hoffmann et al., 2020c). This is expected, as chloroquine acts in the endosome,

while the endosomal entry pathway is not utilized in serine protease expressing cells. As lung cells

express serine proteases, inhibitors that block endosomal entry are likely to be ineffective in vivo.

These findings highlight that drug screens should be performed directly in relevant cells to prevent

wasting resources. Our study shows that SARS-CoV-2 replication in hAOs infected with a high MOI

is inhibited ~90% by camostat, suggesting that this drug may be effective in vivo. Future studies

assessing the efficacy and safety of camostat in animal models should be conducted. For SARS-CoV,

camostat improved survival to 60% in a lethal mouse model (Zhou et al., 2015). In the same study,

inhibition of cathepsins using a cysteine protease inhibitor was ineffective, supporting a critical role

for serine proteases in viral spread and pathogenesis in vivo. In Japan, camostat has been clinically

Figure 4 continued

and MBCS mutants on VeroE6-TMPRSS2 cells pretreated with a concentration range of camostat (E) or E64D (F) to inhibit serine proteases and

cathepsins, respectively. One-way ANOVA was performed for statistical analysis comparing all groups to SARS-CoV-2 PPs at the highest concentration.

*p<0.05. (G and H) Entry route of SARS-CoV PPs and SARS-PRRA PPs on VeroE6-TMPRSS2 cells pretreated with a concentration range of camostat (G)

or E64D (H) to inhibit serine proteases and cathepsins, respectively. One-way ANOVA was performed for statistical analysis comparing all groups to

SARS-PRRA PPs at the highest concentration. *p<0.05. ANOVA, analysis of variance; MBCS, multibasic cleavage site; PP, pseudoparticles.

Representative experiments in triplicate from at least two independent experiments are shown. Error bars indicate SD.
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Figure 5. SARS-CoV-2 entry and replication are dependent on serine proteases in human airway organoids. (A and B) Differentiated bronchiolar (A) or

bronchial (B) hAO cultures were infected at an MOI of 2. Sixteen hours (A) or 24 hr (B) postinfection they were fixed and stained for viral nucleoprotein

(red). Nuclei were stained with hoechst (blue) and actin was stained using phalloidin (white). AcTub stains ciliated cells (green). Scale bars indicate 200

mm in (A) and 50 mm in (B). Representative images are shown from two independent experiments. (C–E) Replication kinetics of SARS-CoV-2 in

Figure 5 continued on next page
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approved to treat chronic pancreatitis and thus represents a potential therapy for respiratory corona-

virus infections.

We demonstrate that SARS-CoV-2 enters hAOs using serine proteases, but not using cathepsins,

clarifying existing discrepancies between human cell lines and suggesting that serine-protease-medi-

ated entry is the main entry route in vivo. In addition, our findings indicate that the multibasic cleav-

age motif in the SARS-CoV-2 S protein is an adaptation to this viral entry strategy, and can guide

the design of entry inhibitors to combat COVID-19.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

VeroE6 cells
(Cercopithecus
aethiops)

Monkey kidney
cell line

ATCC CRL 1586TM

Vero cells
(Cercopithecus
aethiops)

Monkey
kidney cell line

WHO RCB 10-87

Calu-3
(Homo sapiens)

Lung
adenocarcinoma
cell line

ATCC HTB 55

SARS-CoV-
2 BavPat1

SARS-CoV-2 Dr. Christian
Drosten

European Virus
Archive Global
#026V-03883

SARS-CoV
HKU39849

SARS-CoV Dr. Malik Peiris N/A

Airway tissue
for organoids
(Homo sapiens)

Airway
organoids

This study This study

Aloxistatin E64D MedChemExpress Cat# HY-100229

Camostat
mesylate

Camostat Sigma Cat# SML0057

Hexadimethrine
bromide

Polybrene Sigma 107689-10G

Polyethylenimine
linear

Polyethylenimine Polysciences Cat# 23966

Hygromycin B Hygromycin B Invitrogen Cat# 10843555001

G418, Geneticin Geneticin Invitrogen Cat# 10131035

Opti-MEM I (1�) +
GlutaMAX

Opti-MEM I
(1�) + GlutaMAX

Gibco Cat# 51985-042

Advanced
DMEM/F12

Advanced
DMEM/F12

Thermo
Fisher scientific

Cat# 12634-010

AO medium AO medium Sachs et al., 2019 N/A

Pneumacult
ALI medium

Pneumacult
ALI medium

Stemcell Cat # 05001

Continued on next page

Figure 5 continued

bronchiolar hAO cultures pretreated with camostat or carrier (DMSO). (C and D) TCID50 equivalents (eq.) per mL are shown in culture medium (C) and

lysed organoids (D). Circles indicate DMSO-treated organoids, whereas squares indicate camostat-treated organoids. (E) Live virus titers (TCID50/mL) in

lysed organoids. Dotted line indicates limit of detection. (F) Replication kinetics of SARS-CoV-2 in 2D tracheal air–liquid interface airway cultures

pretreated with camostat or carrier (DMSO). TCID50 eq./mL in apical washes are shown. Two-way ANOVA was performed for statistical analysis. Error

bars indicate SEM. *p<0.05. DMSO, dimethyl sulfoxide; hAO, human airway organoid; H p.i., hours postinfection; MOI, multiplicity of infection.
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

TryplE TryplE Thermo Fisher
Scientific

Cat# 12605010

Cultrex Basement
Membrane Extract,
Type 2

Basement
membrane
extract

R&D Systems Cat# 3533-005-02

12 mm Transwell
with 0.4 mm Pore
Polyester
Membrane Insert,
Sterile

Transwell inserts Corning Cat# 3460

Collagen Type I,
High concentration
Rat tail

Collagen Corning Cat# 354249

0.45 mm low
protein binding
filter

0.45 mm low
protein binding
filter

Millipore Cat# SLHV033RS

Recombinant
DNA reagent

pCMV-S (CUHK-W1) Sino Biological Cat# VG40150-G-N Encoding S of
isolate CUHK-W1;

Recombinant
DNA reagent

pCAGGS-S (CUHK-W1) This study This study Encoding S of
isolate CUHK-W1;

Recombinant
DNA reagent

pCAGGS-S
(Wuhan-Hu-1)

This study This study Encoding S of
isolate Wuhan-
Hu-1

Recombinant
DNA reagent

pQXCIN Clontech Cat# 631516 Retro-X Q vector set

Recombinant
DNA reagent

pQXCIH Clontech Cat# 631516 Retro-X Q vector set

Recombinant
DNA reagent

pQXCIP-GFP1-10 Addgene Cat# 68715 GFP1-10

Recombinant
DNA reagent

pCDNA-
TMPRSS2-FLAG

Genscript OHu13675D Human
TMPRSS2 cDNA

Recombinant
DNA reagent

pCAGGS-b-Actin-
7xGFP11-P2A-BFP

This study This study b-Actin-
7xGFP11-P2A-BFP

Recombinant
DNA reagent

pBS-gag-pol Addgene Cat# 35614 gag-pol

Recombinant
DNA reagent

pMD2.G Addgene Cat# 12259 VSV-G

Recombinant
DNA reagent

pVSV-eGFP-dG Addgene Cat# 31842 VSV delta G
genomic plasmid

Recombinant
DNA reagent

pCAG-VSV-P Addgene Cat# 64088 P protein

Recombinant
DNA reagent

pCAG-VSV-L Addgene Cat# 64085 L protein

Recombinant
DNA reagent

pCAG-VSV-N Addgene Cat# 64087 N protein

Recombinant
DNA reagent

pCAGGS-T7Opt Addgene Cat# 65974 T7 polymerase

Antibody Mouse-anti-
SARS-CoV NP
(monoclonal)

Sino Biological Cat# 40143-MM05 IF (1:400)

Antibody Rabbit-anti-
SARS-CoV NP
(polyclonal)

Sino Biological Cat# 40143-T62 IF (1:400)

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody Goat anti-
ACE2 (polyclonal)

R&D Systems Cat# AF933 IF (1:200)

Antibody Mouse anti-
TMPRSS2
(monoclonal)

Santa Cruz Cat# sc-515727 IF (1:200)

Antibody Rabbit-anti-goat Dako Cat# P0160 IF (1:400)

Antibody Goat-anti-mouse Dako Cat# P0260 IF (1:400)

Antibody Mouse anti-VSV
(monoclonal)

Absolute
Antibody

Cat# EB0010 Pseudoparticle
production
(1:50,000)

Antibody Goat anti-rabbit
IgG (H+L) Alexa
Fluor Plus 488

Invitrogen Cat# A32731 IF (1:400)

Antibody Goat anti-mouse
IgG (H+L) Alexa
Fluor Plus 488

Invitrogen Cat# A11029 IF (1:400)

Antibody Goat anti-mouse
IgG (H+L) Alexa
Fluor Plus 594

Invitrogen Cat# A21125 IF (1:400)

Antibody Mouse anti-double
stranded RNA
IgG2A (monoclonal)

Scicons J2 clone IF (1:500)

Antibody Mouse-anti-ZO1
IgG1 (monoclonal)

Invitrogen Cat# 33-9100 IF (1:200)

Antibody Mouse-anti-CC10
IgG1 Alexa
Fluor 594
(monoclonal)

Santa Cruz
Biotechnology

Cat# sc-
390313 AF594

IF (1:100)

Antibody Mouse-anti-AcTub
IgG2A Alexa
Fluor 488
(monoclonal)

Santa Cruz
Biotechnology

Cat# sc-23950 AF488 IF (1:100)

Antibody Mouse
anti-MUC5AC
(monoclonal)

Invitrogen Cat# MA5-12178 IF (1:100)

Antibody Mouse-anti-FOXJ1
IgG1 (monoclonal)

eBioscience Cat# 14-9965-82 IF (1:200)

Antibody Rabbit anti-SARS-
CoV S1 (polyclonal)

Sino Biological Cat# 40150-T62 WB (1:1000)

Antibody Mouse anti-
GAPDH (monoclonal)

Santa Cruz
Biotechnology

Cat# sc-32233 WB (1:1000)

Pierce Silver
Stain for
Mass
Spectrometry

Silver stain Pierce Cat# 24600

TO-PRO-
3 Iodide

TO-PRO3 ThermoFisher Cat# T3605

Phalloidin
CruzFluor 647
Conjugate

Phalloidin Santa Cruz Cat# ec-363796

Hoechst
33342,
Trihydrochloride,
Trihydrate

Hoechst ThermoFisher Cat# H1399

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

4� Laemmli
Sample Buffer

Laemmli Bio-Rad Cat# 1610747

Odyssey CLx Odyssey CLx Licor

Amersham
Typhoon
Biomolecular
Imager

Amersham
Typhoon
Biomolecular Image

GE Healthcare

Amersham
Imager 600

Amersham
Imager 600

GE Healthcare

LSM700
confocal
microscope

LSM700
confocal
microscope

Zeiss

Carl ZEISS
Vert.A1

Carl ZEISS
Vert.A1

Zeiss

ZEN software ZEN Zeiss

ImageQuant
TL 8.2

ImageQuant
TL 8.2

GE Healthcare

Studio Lite
Ver 5.2

Studio Lite
Ver 5.2

Licor

GraphPad
PRISM 8

GraphPad
PRISM 8

GraphPad

Adobe
Illustrator

Illustrator Adobe Inc

Viruses and cells
Vero, VeroE6, and VeroE6 stable cell lines were maintained in Dulbecco’s modified Eagle’s medium

(DMEM, Gibco) supplemented with 10% fetal calf serum (FCS), HEPES (20 mM, Lonza), sodium bicar-

bonate (0.075%, Gibco), penicillin (100 IU/mL), and streptomycin (100 IU/mL) at 37˚C in a humidified

CO2 incubator. Calu-3 and Calu-3-stable cell lines were maintained in Eagle’s minimal essential

medium (ATCC) supplemented with 20% FCS, penicillin (100 IU/mL), and streptomycin (100 IU/mL)

at 37˚C in a humidified CO2 incubator. HEK-293T cells were cultured in DMEM supplemented with

10% FCS, sodium pyruvate (1 mM, Gibco), non-essential amino acids (1�, Lonza), penicillin (100 IU/

mL), and streptomycin (100 IU/mL) at 37˚C in a humidified CO2 incubator. TMPRSS2 and GFP1-10

overexpression cells were maintained in medium containing hygromycin (Invitrogen) and geneticin

(Invitrogen), respectively. SARS-CoV-2 (isolate BetaCoV/Munich/BavPat1/2020; European Virus

Archive Global #026 V-03883; kindly provided by Dr. C. Drosten) and SARS-CoV (isolate HKU39849)

were propagated on Vero cells in Opti-MEM I (1�) + GlutaMAX (Gibco), supplemented with penicil-

lin (100 IU/mL) and streptomycin (100 IU/mL) at 37˚C in a humidified CO2 incubator. Vero, VeroE6,

and Calu-3 cells were purchased from ATCC. Cultures were routinely tested for mycoplasma. The

SARS-CoV-2 isolate was obtained from a clinical case in Germany, diagnosed after returning from

China. Stocks were produced by infecting cells at an MOI of 0.01 and incubating the cells for 72 hr.

The culture supernatant was cleared by centrifugation and stored in aliquots at �80˚C. Stock titers

were determined by preparing 10-fold serial dilutions in Opti-MEM I (1�) + GlutaMAX. Aliquots of

each dilution were added to monolayers of 2 � 104 VeroE6 cells in the same medium in a 96-well

plate. Plates were incubated at 37˚C 5% CO2 for 5 days and then examined for cytopathic effect.

The TCID50 was calculated according to the method of Spearman and Ka€rber. All work with infec-

tious SARS-CoV and SARS-CoV-2 was performed in a Class II Biosafety Cabinet under BSL-3 condi-

tions at Erasmus Medical Center.

Cloning
Codon-optimized SARS-CoV (isolate CUHK-W1; VG40150-G-N) S expression plasmids (pCMV) were

ordered from Sino-Biological and subcloned into pCAGGS using the ClaI and KpnI sites. The last 19
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amino acids containing the Golgi retention signal of the SARS-CoV S protein were deleted to

enhance PP production. Codon-optimized cDNA encoding SARS-CoV-2 S glycoprotein (isolate

Wuhan-Hu-1) with a C-terminal 19 amino acid deletion was synthesized and cloned into pCAGSS in

between the EcoRI and BglII sites. S expressing pCAGGS vectors were used for

GFP complementation fusion assays, and equivalent S proteins with the C-terminal deletion were

used for the production of PPs, as described in Material and methods. The cDNA encoding GFP1-10

was obtained from Addgene and was subcloned into pQXCIN (Clontech) in between BamHI and

EcoRI to obtain the pQXCIN-GFP1-10 vector. The cDNA encoding human TMPRSS2 (NM_005656;

OHu13675D) was obtained from Genscript. The cDNA fused to a C-terminal HA tag was subcloned

into pQXCIH (Clontech) in between the NotI and PacI sites to obtain the pQXCIH-TMPRRS2-HA vec-

tor. A synthetic DNA construct of b-actin-7xGFP11-P2A-BFP was ordered from GenScript and subcl-

oned into pGAGGS using EcoRI and BglII. SARS-CoV and SARS-CoV-2 S protein mutations (SARS-

PRRA, SARS-2-Del-PRRA, SARS-2-R685A, SARS-2-R685H) were generated by subcloning synthetic

DNA constructs (Genscript) containing the desired mutations into the pCAGGS-S vectors or by

mutagenesis PCR.

Isolation, culture, and differentiation of human airway stem cells
Adult lung tissue was obtained from residual, tumor-free material obtained at lung resection surgery

for lung cancer. The Medical Ethical Committee of the Erasmus MC Rotterdam granted permission

for this study (METC 2012–512). Isolation, culture, and differentiation were performed as described

previously (Lamers et al., 2020) according to a protocol adapted from Sachs et al., 2019. Differenti-

ation time on air–liquid interphase was 10–11 weeks. For this study, we used carefully dissected out

bronchial material for the generation of human bronchial airway organoids. Bronchiolar organoids

were generated from distal lung parenchymal material. Tracheal stem cells were collected from tra-

cheal aspirates of intubated preterm infants (<28 weeks gestational age) (Hiemstra et al., 2020) and

cultured as described before (Sachs et al., 2019). For the tracheal aspirates, informed consent was

obtained from parents, and approval was given by the Medical Ethical Committee (METC no. MEC-

2017–302). All donor materials were completely anonymized.

Authentic virus infection of primary airway cells
To assess differences in syncytium formation, 2D air–liquid interface differentiated airway cultures

were washed three times with 500 mL advanced DMEM/F12 (AdDF+++, Gibco) before inoculation

from the apical side at an MOI of 1 in 200 mL AdDF+++ per well. Next, cultures were incubated at

37˚C 5% CO2 for 2 hr before washing four times in 500 mL AdDF+++. Cultures were washed daily

from the apical side with 300 mL AdDF+++ to facilitate virus spread. At 72 hr postinfection, cells

were fixed for immunofluorescent staining.

To determine the effect of camostat on SARS-CoV-2 entry, we incubated bronchial or bronchiolar

cultures that were differentiated at air–liquid interface for 10–11 weeks with 100% dispase in the

basal compartment of a 12 mm Transwell insert. After a 10 min incubation step at 37˚C 5% CO2, dis-

pase was removed and cold 500 mL AdDF+++ was pipetted onto the apical side of the Transwell to

dislodge the pseudostratified epithelial layer, which was subsequently mechanically sheared by

pipetting using a P1000 tip. The resulting epithelial fragments were washed twice in 5 mL AdDF+++

before treatment with 10 mM camostat, 10 mM E64D, or carrier (DMSO) in Pneumacult (PC) ALI

medium (Stemcell) on ice for 1 hr. Next, fragments were infected at an MOI of 2 for 2 hr at 37˚C 5%

CO2 in the presence of inhibitors or DMSO. Subsequently, fragments were washed three times in 5

mL cold AdDF+++ before being embedded in 30 mL BME (Type 2; R and D Systems) per well in a

48-well plate. Approximately 200,000 cells were plated per well. After solidification of the BME, 200

mL PC was added per well and plates were incubated at 37˚C 5% CO2.

To assess SARS-CoV-2 replication in the presence of camostat, bronchiolar airway organoids, or

2D air–liquid interface differentiated tracheal airway cultures were infected as described above. For

organoids, culture medium was collected at the indicated time points and frozen at �80˚C. After cul-

ture medium collection, BME droplets containing organoids were resuspended in 200 mL AdDF+++

and samples were frozen at �80˚C to lyse the cells. To assess 2D air–liquid interface differentiated

airway culture replication kinetics, apical washes were collected at the indicated time points by add-

ing 200 mL AdDF+++ apically, incubating for 15 min at 37˚C 5% CO2, and collecting the sample

Mykytyn, Breugem, et al. eLife 2021;10:e64508. DOI: https://doi.org/10.7554/eLife.64508 16 of 23

Research article Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.64508


before storage at �80˚C. For virus titrations using RT-qPCR (Lamers et al., 2020) or TCID50 deter-

mination, samples were thawed and centrifuged at 500 � g for 3 min. For TCID50 determination, six

replicates were performed per sample.

Fixed immunofluorescence microscopy and immunohistochemistry
Transwell inserts were fixed in formalin, permeabilized in 70% ethanol, and blocked for 60 min in

10% normal goat serum or 3% bovine serum albumin in phosphate-buffered saline (PBS) (blocking

buffer). For organoids, 0.1% triton X-100 was added to the blocking buffer to increase antibody pen-

etration. Cells were incubated with primary antibodies overnight at 4˚C in blocking buffer, washed

twice with PBS, incubated with corresponding secondary antibodies Alexa488- and 594-conjugated

secondary antibodies (1:400; Invitrogen) in blocking buffer for 2 hr at room temperature, washed

two times with PBS, incubated with indicated additional stains (TO-PRO3, phalloidin-633 [SC-

363796, Santa Cruz Biotechnology], Hoechst), washed twice with PBS, and mounted in Prolong Anti-

fade (Invitrogen) mounting medium.

SARS-CoV-2 and SARS-CoV were stained with mouse-anti-SARS-CoV nucleoprotein (40143-

MM05, 1:400, Sino Biological) or rabbit-anti-SARS-CoV nucleoprotein (40143-T62, 1:400,

Sino Biological). Tight junctions were stained using mouse-anti-ZO1 (ZO1-1A12, 1:200, Invitrogen).

Club cells and goblet cells were stained with mouse-anti-CC10 (sc-390313 AF594, 1:100, Santa Cruz

Biotechnology) and mouse anti-MUC5AC (MA5-12178, 1:100, Invitrogen), respectively. Ciliated cells

were stained with mouse-anti-FOXJ1 (14-9965-82, 1:200, eBioscience) and mouse-anti-AcTub (sc-

23950 AF488, 1:100, Santa Cruz Biotechnology). For lineage marker stainings, formalin-fixed inserts

were paraffin-embedded, sectioned, and deparaffinized as described before prior to staining

(Rockx et al., 2020). Samples were imaged on an LSM700 confocal microscope using ZEN software

(Zeiss). Representative images were acquired and shown as Z-projections, single slices, or XZ cross

sections.

Immunohistochemistry was performed as described previously (Rockx et al., 2020) on formalin-

fixed, paraffin-embedded Transwell inserts. ACE2 and TMPRSS2 were stained using goat-anti-

hACE2 (AF933, 1:200, R and D Systems) and mouse-anti-TMPRSS2 (sc-515727, 1:200, Santa Cruz

Biotechnology) and visualized with rabbit-anti-goat (P0160, 1:200, Dako) and goat-anti-mouse

(P0260, 1:100, Dako) horseradish peroxidase-labeled secondary antibody, respectively. Samples

were counterstained using hematoxylin.

Generation of stable cell lines expressing GFP1-10 and TMPRSS2
VeroE6 GFP1-10, VeroE6-TMPRSS2 cells, VeroE6-TMPRSS2 GFP1-10 cells, and Calu-3 GFP1-10 cells

were generated by retroviral transduction. To produce the retrovirus, 10 mg pQXCIH-TMPRRS2-HA

or pQXCIN-GFP1-10 was co-transfected with polyethylenimine (PEI) with 6.5 mg pBS-gag-pol (Addg-

ene #35614) and 5 mg pMD2.G (Addgene #12259) in a 10 cm dish of 70% confluent HEK-293T cells

in Opti-MEM I (1�) + GlutaMAX. Retroviral particles were harvested at 72 hr post-transfection,

cleared by centrifugation at 2000 � g, filtered through a 0.45 mm low protein binding filter (Milli-

pore), and used to transduce designated cells. Polybrene (Sigma) was added at a concentration of 4

mg/mL to enhance transduction efficiency. Transduced cells were selected with hygromycin B (Invi-

trogen) for TMPRSS2 cells and/or geneticin (Invitrogen) for GFP1-10 cells.

GFP complementation fusion assay
HEK-293T cells were grown in six-well format to 70–80% confluency and were transfected with 1.5

mg pGAGGS-spike (all coronavirus S variants described above) DNA and pGAGGS-b-Actin-P2A-

7xGFP11-BFP DNA or empty vector DNA with PEI in a ratio of 1:3 (DNA:PEI). Beta-actin was tagged

with 7xGFP11 expressed in tandem and blue fluorescent protein (BFP). The two genes were sepa-

rated by a P2A self-cleaving peptide. Two variants of this construct were used. One variant con-

tained a GSG linker located N-terminally from the P2A site to improve self-cleavage and this

construct was used in qualitative confocal microscopy experiments. A variant lacking the GSG linker

was less efficiently cleaved as indicated by both cytoplasmic and nuclear localized GFP, but this gen-

erated an equal distribution of GFP throughout the cell and therefore it was used for all fusion assays

in which the sum of all GFP+ pixels was calculated. Transfected HEK-293T cells were incubated over-

night at 37˚C 5% CO2. GFP1-10 expressing cells were seeded in a 12-well plate to achieve 90–100%
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confluency after overnight incubation at 37˚C 5% CO2 and medium was refreshed with Opti-MEM I

(1�) + GlutaMAX. HEK-293T cells were resuspended in PBS by pipetting to generate a single-cell

suspension and added to GFP1-10 expressing cells in a ratio of 1:80 (HEK-293T cells: GFP1-10

expressing cells). Fusion events were quantified by detecting GFP+ pixels after 18 hr incubation at

37˚C 5% CO2 using Amersham Typhoon Biomolecular Imager (channel Cy2; resolution 10 mm; GE

Healthcare). Data was analyzed using the ImageQuant TL 8.2 image analysis software (GE Health-

care) by calculating the sum of all GFP+ pixels per well. For nuclear counting fluorescence micros-

copy images were obtained with a Carl ZEISS Vert.A1 microscope paired with an AxioCam ICm1

camera and Colibri seven laser (469/38 nm for GFP and 365/10 nm for BFP) using ZEN analysis soft-

ware (20� magnification). Nuclei per syncytia were calculated by counting BFP-positive nuclei after

18 hr incubation at 37˚C 5% CO2. Confocal microscopy images were taken on an LSM700 confocal

microscope using ZEN software. Representative images were acquired and shown as single slices.

VSV delta G rescue
The protocol for VSV-G PP rescue was adapted from Whelan et al., 1995. VSV rescue plasmids

pVSV-eGFP-dG (#31842), pMD2.G (#12259), pCAG-VSV-P (#64088), pCAG-VSV-L (#64085), pCAG-

VSV-N (#64087), and pCAGGS-T7Opt (#65974) were ordered from Addgene. Briefly, a 70% conflu-

ent 10 cm dish of HEK-293T cells was transfected with 10 mg pVSV-eGFP-dG, 2 mg pCAG-VSV-N

(nucleocapsid), 2 mg pCAG-VSV-L (polymerase), 2 mg pMD2.G (glycoprotein, VSV-G), 2 mg pCAG-

VSV-P (phosphoprotein), and 2 mg pCAGGS-T7Opt (T7 RNA polymerase) using PEI at a ratio of 1:3

(DNA:PEI) in Opti-MEM I (1�) + GlutaMAX. Forty-eight hours post-transfection, the supernatant was

transferred onto new plates transfected 24 hr prior with VSV-G. After a further 48 hr, these plates

were re-transfected with VSV-G. After 24 hr the resulting PPs were collected, cleared by centrifuga-

tion at 2000 � g for 5 min, and stored at �80˚C. Subsequent VSV-G PP batches were produced by

infecting VSV-G transfected HEK-293T cells with VSV-G PPs at an MOI of 0.1. Titers were deter-

mined by preparing 10-fold serial dilutions in Opti-MEM I (1�) + GlutaMAX. Aliquots of each dilu-

tion were added to monolayers of 2 � 104 Vero cells in the same medium in a 96-well plate. Three

replicates were performed per PP stock. Plates were incubated at 37˚C overnight and then scanned

using an Amersham Typhoon scanner. Individual infected cells were quantified using ImageQuant TL

software. All PP work was performed in a Class II Biosafety Cabinet under BSL-2 conditions at Eras-

mus Medical Center.

Coronavirus S pseudotyped particle production
For the production of SARS-CoV and SARS-CoV-2 S PPs, as well as MBCS mutant PPs, HEK-293T

cells were transfected with 15 mg S expression plasmids. Twenty-four hours post-transfection, the

medium was replaced for Opti-MEM I (1�) + GlutaMAX, and cells were infected at an MOI of 1 with

VSV-G PPs. Two hours postinfection, cells were washed three times with Opti-MEM I (1�) + Gluta-

MAX and replaced with medium containing anti-VSV-G neutralizing antibody (clone 8G5F11; Abso-

lute Antibody) at a dilution of 1:50,000 to block remaining VSV-G PPs. The supernatant was

collected after 24 hr, cleared by centrifugation at 2000 � g for 5 min, and stored at 4˚C until use

within 7 days. Coronavirus S PPs were titrated on VeroE6 cells as described above.

Entry route assay
VeroE6, Calu-3, and VeroE6-TMPRSS2 cells were seeded in 24-well plates and kept at 37˚C 5% CO2

overnight to achieve 80–100% confluency by the next day. Cells were pretreated with a concentra-

tion range of camostat, E64D, or DMSO (with all conditions containing equal concentrations of

DMSO) in Opti-MEM I (1�) + GlutaMAX for 2 hr before infecting with on average 1000 PPs per well.

Plates were incubated overnight at 37˚C 5% CO2 before scanning for GFP signal as described

above.

Entry speed assay
Calu-3 cells were seeded as for entry route assays and pretreated with 10 mM E64D. After 1 hr, PPs

were added per well to achieve 1000 infected cells in the control well. At the same time as addition

of PPs, 10 mM camostat was added into the first set of wells (t = 0). DMSO was added to controls.
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The same inhibitor was added in the next sets of wells in triplicate 2, 4, and 6 hr postinfection. Plates

were incubated overnight at 37˚C 5% CO2 before scanning for GFP signal as described above.

Authentic virus entry speed was performed in the same manner, by infecting Calu-3 cells with 1 �

104 TCID50 SARS-CoV-2 and 5 � 104 TCID50 SARS-CoV. After 12 hr, plates were fixed and blocked

as above for transwell inserts. Cells were incubated with mouse-anti-double stranded RNA (Clone

J2, 1:500, Scicons) in blocking buffer for 2 hr at room temperature or overnight at 4˚C. Cells were

washed twice with PBS and stained with Alexa488 conjugated secondary antibody (1:500, Invitrogen)

in blocking buffer for an hour at room temperature. Finally, cells were washed twice with PBS and

scanned in PBS on the Amersham Typhoon as described above.

Coronavirus S pseudotyped particle concentration
PPs were concentrated on a 10% sucrose cushion (10% sucrose, 15 mM Tris–HCl, 100 mM NaCl, 0.5

mM EDTA) at 20,000 � g for 1.5 hr at 4˚C. Supernatant was decanted, and pellet was resuspended

overnight at 4˚C in Opti-MEM I (1�) + GlutaMAX to achieve 100-fold concentration. PPs were

titrated and aliquots were lysed in 1� Laemmli buffer (Bio-Rad) containing 5% 2-mercaptoethanol

for western blot analysis.

PP infection of primary airway cells
To determine the effect of MBCS mutations on SARS-CoV-2 entry, we obtained airway culture frag-

ments from 2D differentiated bronchiolar cultures as described above. Next, fragments were

infected with 40 mL of concentrated wild-type and MBCS mutant PPs for 2 hr at 37˚C 5% CO2. Sub-

sequently, the supernatant was replaced with 30 mL BME and plated in a 48-well plate. Approxi-

mately 200,000 cells were plated per well. After solidification of the BME, 200 mL PC was added per

well and plates were incubated at 37˚C 5% CO2. After overnight incubation, the amount of infected

cells and organoids per five fields were counted and images taken using a Carl ZEISS Vert.A1 micro-

scope paired with an AxioCam ICm1 camera and Colibri seven laser (469/38 nm for GFP) using ZEN

analysis software.

Spike protein western blot
Concentrated PPs diluted in 4� Laemmli loading buffer were boiled for 30 min at 95˚C. S transfected

HEK-293T cells were lysed using IP Lysis Buffer (Pierce). Cell lysate was rotated for 30 min and centri-

fuged for 10 min at 15,000 � g. Supernatant was used for subsequent protein expression analysis.

Lysates were diluted in 4� Laemmli loading buffer containing 20% 2-mercaptoethanol and boiled

for 30 min at 95˚C. PPs and cell lysates were used for sodium dodecyl sulfate (SDS)–polyacrylamide

gel electrophoresis analysis using precast 10% TGX gels (Bio-Rad). Gels were run in Tris–glycine–SDS

buffer at 50 V for 30 min and subsequently at 120 V for 90 min. Transfer was performed at 300 mA

for 55 min onto 0.45mm Immobilon-FL PVDF membranes in Tris–glycine buffer containing 20% meth-

anol. Spike was stained using polyclonal rabbit-anti-SARS-CoV S1 (1:1000, Sino Biological) followed

by infrared-labeled secondary antibodies (1:20,000, Licor). All cell lysate western blots are stained

for GAPDH using a monoclonal mouse-anti-GAPDH antibody (sc-32233, 1:1000, Santa Cruz Biotech-

nology) followed by infrared-labeled secondary antibodies. Western blots were scanned on an Odys-

sey CLx and analyzed using Image Studio Lite Ver 5.2 software.

Silver staining
All PP western blots had corresponding silver stains performed to assess the quality of the PP preps

and for the detection of VSV-N. Samples boiled in Laemmli buffer for western blot analysis were also

ran on a 10% w/v gel at 50 V for 30 min followed by 120 V for 90 min before transferring gel into

ultrapure water. Silver stains were performed per manufacturer’s instructions using the Silver Stain

for Mass Spectrometry Kit (Pierce). Colorimetric images were taken on the Amersham AI600 (GE

Healthcare).

Statistical analysis
Statistical analysis was performed with the GraphPad Prism 5 and 8 software using a t-test, one-way

ANOVA, or two-way ANOVA followed by a Bonferroni multiple-comparison test.
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