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novel host directed therapy module for 
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Abstract A prolonged therapy, primarily responsible for development of drug resistance by 
Mycobacterium tuberculosis (Mtb), obligates any new TB regimen to not only reduce treatment 
duration but also escape pathogen resistance mechanisms. With the aim of harnessing the host 
response in providing support to existing regimens, we used sertraline (SRT) to stunt the pro-
pathogenic type I IFN response of macrophages to infection. While SRT alone could only arrest 
bacterial growth, it effectively escalated the bactericidal activities of Isoniazid (H) and Rifampicin 
(R) in macrophages. This strengthening of antibiotic potencies by SRT was more evident in condi-
tions of ineffective control by these frontline TB drug, against tolerant strains or dormant Mtb. 
SRT, could significantly combine with standard TB drugs to enhance early pathogen clearance from 
tissues of mice infected with either drug sensitive/tolerant strains of Mtb. Further, we demonstrate 
an enhanced protection in acute TB infection of the highly susceptible C3HeB/FeJ mice with the 
combination therapy signifying the use of SRT as a potent adjunct to standard TB therapeutic regi-
mens against bacterial populations of diverse physiology. This study advocates a novel host directed 
adjunct therapy regimen for TB with a clinically approved antidepressant to achieve quicker and 
greater control of infection.

Editor's evaluation
Host-directed therapies have the potential to improve the management of tuberculosis by short-
ening the duration of chemotherapy and promoting recovery of respiratory sufficiency. In this useful 
study, the authors investigate the utility of sertraline as a potential host-directed therapy. They 
provide solid evidence that sertraline potentiates the activity of anti-tubercular drugs in macro-
phages as well as in the murine model of tuberculosis infection. The study will be of interest to 
tuberculosis researchers and infectious disease specialists.

Introduction
The current TB therapy regimen ranging between 6 months for pulmonary and 1–2 years for extra 
pulmonary infections, is often associated with severe drug-induced toxicity in patients. Moreover, its 
failure to completely eradicate the pathogen from the host, forms an ideal platform for the emer-
gence of drug-resistant strains (Blumberg et al., 2003; Sharma et al., 2017). It is not surprising that 
these strains have emerged at an alarming rate in the population and are imposing serious impedi-
ments to TB control programs globally (Falzon et al., 2017; Singh et al., 2020). Introduction of newer 
modalities like host directed therapy (HDT) with the potential to reduce duration of therapy and not 
be affected by pathogen resistance mechanisms offer significant advantages in this scenario (Hancock 
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et al., 2012; Munguia and Nizet, 2017). Effective molecular entities like antibodies, cytokines, cell-
based therapies, repurposed drugs have been tested against bacterial and viral infections (Parida 
et al., 2015; Li et al., 2019; Foster, 2010; Zakaria et al., 2018; Fedson et al., 2015; Skerry et al., 
2015; Scanlon et al., 2015; Yedery and Jerse, 2015; Jiménez de Oya et al., 2018). Several facets 
of infection response ranging from enhancing pathogen clearance to augmenting host metabolism or 
nutrition have been tapped to develop novel host targeted interventions strategies against complex 
bacterial infections (Lange et al., 2019; Phelan et al., 2018; Oh et al., 2006; Cusumano et al., 2011; 
Berube and Bubeck Wardenburg, 2013; Blum et al., 2015).

Mtb infection invokes several mechanisms of pathogen clearance in host cells involving, the induc-
tion of pro-inflammatory response, metabolic stress, phago-lysosomal lysis programs, apoptosis/auto-
phagic mechanisms (Benmerzoug et al., 2018; de Martino et al., 2019; Shi et al., 2019). On the 
other hand, by virtue of its long standing association with humans, Mtb has evolved complex and 
intricate mechanisms to survive and establish optimal infection in the host (Liu et al., 2017; Padhi 
et al., 2019; Dey et al., 2017; Gupta et al., 2017; Brites and Gagneux, 2015; Lin et al., 2016; Smith 
et al., 2019; Mehta and Singh, 2019). While attempts to boost the host immune mechanisms for 
better control of the pathogen are promising, efforts have focused on the development of counter-
measures against pathogen mediated subversion of cellular clearance mechanisms (Salahuddin et al., 
2013; Suárez-Méndez et al., 2004; Singhal et al., 2014; Naftalin et al., 2018; Lachmandas et al., 
2019; Rayasam and Balganesh, 2015).

We hypothesized that neutralizing a prominent pathogen-beneficial response would indirectly 
supplement host immunity facilitating better pathogen control. The early, robust, type I IFN response 
of phagocytes to intracellular bacterial infections including Mtb, is often associated with a detrimental 
effect on host immune activation and survival (Dorhoi et al., 2014; Watson et al., 2015; Donovan 
et al., 2017; Shankaran et al., 2019). We sought to offset this response by using sertraline (SRT) 
– a previously identified antagonist of poly I:C mediated type I IFN signaling, in macrophages and 
evaluate Mtb infection dynamics (Zhu et al., 2010). We demonstrate that SRT, effectively inhibited 
infection induced IFN that manifested as growth arrest of Mtb in macrophages. Interestingly, SRT 
could augment mycobacterial killing in the presence of INH (H) and rifampicin (R), two of the frontline 
TB drugs in macrophages by effectively lowering the concentration of antibiotics required to achieve 
clearance. Remarkably, the combination proved effective even against dormant bacilli or antibiotic 
tolerant Mtb strains. Addition of SRT to TB drugs – HR or HRZE (HR +pyrazinamide, ethambutol) 
significantly protected infected mice from TB-related pathology both by enhancing bacterial clear-
ance and host survival, implying on the usefulness of this combination therapy in both the inten-
sive and continuation phases of anti TB therapy (ATT). Taken together, we report a novel adjunct TB 
therapy module by repurposing the FDA-approved antidepressant – sertraline.

Results
Sertraline augments control of Mtb by frontline TB drugs in the 
macrophage model of infection
Macrophages respond to Mtb infection by elaborating an array of signaling cascades and effector 
functions with the nucleic acid driven type I IFN response as an active and dominant response to 
during infection in macrophages (Shankaran et al., 2019; Liu et al., 2017; Xu et al., 2014; Petit-
Jentreau et al., 2017; Wassermann et al., 2015; Wiens and Ernst, 2016; Moreira-Teixeira et al., 
2018). With its proven benefit to the pathogen, we hypothesized that suppressing the type I IFN 
response in cells would alter macrophage infection dynamics. The FDA-approved antidepressant – 
SRT, previously identified to suppress TLR-mediated IRF signaling in macrophages, controlled Mtb-
induced type I IFN response in a dose-dependent manner (Figure 1A). While extremely low doses 
up to 0.5 μM did not alter the response, doses of 1 μM and higher were significantly inhibitory. Even 
at 1 µM, SRT inhibited the response by 1.5–2 folds that increased to 35 and 43%, at 5 μM and 10 μM 
of SRT, respectively (Figure 1A). At 20 µM, the observed fivefold decrease in RLU SRT reflected as 
complete loss of IFNβ secretion by Mtb infected macrophages (Figure 1B). Moreover, while naive 
macrophages were permissive for Mtb growth to 10-folds of input by day 6, 20 µM of SRT, despite its 
minimal activity on Mtb in vitro (inhibiting Mtb growth by ~30–40% by days 8–11 of culture), efficiently 
restricted growth in infected macrophages (Figure 1C).

https://doi.org/10.7554/eLife.64834
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This observed bacterial stasis in SRT-treated macrophages prompted us to analyze the effect of 
this treatment in conjunction with standard TB drugs. Decreased portioning of potent antibiotics to 
regions of bacterial presence in the center of granulomas remains a major cause for the improper 
clearance of bacteria from infected tissues (Cicchese et al., 2020; Prideaux et al., 2015). In addition, 
Mtb is endowed with the inherent propensity to enter into a drug-tolerant, non-replicating dormant 
state associated with drug tolerance and antibiotic failure (Sarathy et al., 2018). In order to mimic 
conditions of reduced effective drug concentrations, we tested the effect of SRT across three different 
concentrations of frontline TB drugs – isoniazid (H) and rifampicin (R). As expected, a gradual reduction 
in antibiotic effectivity was observed with decreasing doses; while C1 (200 ng/ml INH and 1000 ng/ml 
Rifampicin) was able to reduce bacterial numbers drastically (~62-fold by day 3 and ~92-fold by day 
5), a 10-fold lower dose of C2 (20 ng/ml INH and 100 ng/ml Rifampicin) was less effective resulting in 
with 2–3 folds lower numbers and bacteriostasis in cells treated with the 2.5-fold lower dose -C3-8 ng/
ml INH and 40 ng/ml Rifampicin (similar to input values) (Figure 1D and E). Addition of SRT efficiently 
boosted the bactericidal properties of antibiotics at all concentrations tested. Even at the highly effec-
tive HR concentration, addition of SRT further reduced bacterial numbers by 2–3 folds (Figure 1D). 
Surprisingly, the ability of SRT to boost antibiotic properties was evident at lower doses- at the C2 

Figure 1. Sertraline inhibits Mtb-induced Type I IFN response and restricts intra-macrophage Mtb growth. (A) IRF-dependent luciferase activity in 
THP1 Dual macrophages following infection with Mtb at a MOI of 5. Cells were left untreated or treated with increasing concentrations of SRT for 24 hr 
in culture and the luminescence in culture supernatants was measured and is represented as mean ± SEM from three independent experiments with 
triplicate wells each. (B) Levels of IFNβ in cell supernatants of Mtb infected or naïve THP1 macrophages after 24 hr of infection. Cells were left untreated 
or treated with SRT for 24 hr and cytokine levels were measured by ELISA and is represented as mean ± SEM from three independent experiments with 
triplicate wells each. (C–H) Intracellular bacterial numbers in THP1 Dual macrophages following infection with Mtb at MOI5 for 6 hr and then either left 
untreated (NT) or treated with, Sertraline (SRT/ S), HR or a combination of all three (HRS), data represents mean± SEM from N=3 replicate experiments. 
(C) counts (CFU) at day 3 and day 5 post infection in untreated or SRT-treated macrophages, (D) Growth in cells treated with HR at 200ng/ml INH and 
1000ng/ml Rif (C1). The relative bacterial counts at day 3 and day 5 post infection with respect to day 0 (6hp.i.) is represented. (E) Growth of Mtb in 
cells treated with 20ng/ml INH and 100ng/ml Rif [C2] or with 8ng/ml INH and 40ng/ml Rif [C3] is represented as mean CFU± SEM of N=3 independent 
experiments. (F) Mtb growth in primary human M1- differentiated MDMs from PBMC of seven individuals is represented as CFU relative to day 0. 
Macrophages were infected at a MOI of 5 for 6 hr and treated with SRT, HR, HRS or left untreated. Each symbol represents one individual, the relative 
growth at day 3 with respect to day 0 is depicted. (G–H) Growth in THP1 macrophages treated with Vit. (C) for 24 hr post infection (G) or with 200 µM 
Oleic acid for 48 hr prior to infection (H) and treatment with HR at C2 concentration with and without SRT. Except for E, paired t-test comparing ratios, 
other datasets were compared with unpaired t-test; **p<0.01, ***p<0.001.

https://doi.org/10.7554/eLife.64834
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dose, SRT lowered numbers by 8 at day 3 and 50 folds by day 5. Even at the lowest dose of C3, SRT 
substantially enhanced bacterial killing by 6- and 20-folds at days 3 and 5 post infection, respectively, 
in comparison to HR (Figure 1E).

This ability of SRT was also observed in primary macrophages (human monocyte derived macro-
phages) from seven healthy individuals. Although Mtb growth varied across samples, the antibiotic 
potentiating effect of SRT was preserved (Figure 1F). Across different individuals, while SRT and HR 
individually showed minimal but highly variable bacterial control, SRT universally synergized with anti-
biotics to further reduce bacterial numbers by 10–15 folds supporting a more general adjunct activity 
of SRT to frontline TB drugs.

For further test of the combination in conditions that reflect reduced antibiotic availability, we 
used two recently established models of Mtb infection that would mirror this in vivo situation– (1) the 
recently reported model of vitamin-C-treated THP1 macrophages associated with Mtb dormancy and 
loss of HR efficacy (Sikri et al., 2018) and (2) lipid-rich conditions that restrict entry of frontline TB 
drugs in vivo (Dartois, 2014; Jaisinghani et al., 2018). Again, while HR efficacy was completely nulli-
fied in macrophages with vitamin C pretreatment, inclusion of SRT resulted in 10–12-fold lower bacte-
rial numbers after 4 days of treatment (Figure 1G). In order to mimic lipid rich conditions in ex vivo 
studies, we treated THP1 macrophages with 200 µM oleic acid and observed significant lipid loading 
in cells without any alteration in cellular morphology. However, the combination of H and R showed 
poor efficacy in controlling infection, from and found poor efficiency of HR in these cells, addition of 

Figure 2. Augmentation property of SRT is due to its ability to inhibit IFN signaling. (A) Bacterial growth in macrophages treated with HR at C2 
and different concentrations of SRT as indicated. Values represented are mean relative CFU at day 5w.r.t day 0 ± SEM of triplicate assays from N=3 
independent experiments (B) IRF-dependent luciferase activity in THP1 dual macrophages 24 hr after treatment with varying doses of BX795 along 
with infection with Mtb at MOI of 5. (C, D) Bacterial growth in macrophages left untreated or treated with 10μM BX795. Relative growth of Mtb in 
macrophages treated with HR and HR+BX795 (HRB) for 3 days (C), The percentage relative growth of intracellular bacterial numbers in HR or HRB 
groups with respect to untreated samples is depicted (D). (E, F) Bacterial growth in murine RAW 264.7 derived macrophages ISG (WT), cGAS-/-, STING-/- 
that were left untreated or treated with HR for 3 days is shown as mean CFU ± SEM for triplicate wells of N=2 (E) and mean ± SEM for (F) of N=2/3 
experiments. Statistical significance by unpaired t-test- *p<0.05, ***p<0.001 is indicated.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Bacterial growth in macrophages treated with HR alone or in combination with low doses of SRT as indicated.

Figure supplement 2. Effect of sertraline on in vitro Mtb cultures with and without HR.

https://doi.org/10.7554/eLife.64834
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SRT led to more than 10-fold reduction in bacterial loads, further substantiating the increased bacte-
ricidal properties of the combination (HRS) in conditions of decreased antibiotic efficacy (Figure 1H).

Sertraline-mediated increase in anti-microbial effect of TB drugs is 
dependent on attenuation attenuates Mtb-induced type I IFN signaling 
in macrophages
Similar to the type I IFN response restriction, SRT was found to increase HR efficiency in a dose 
dependent manner with doses lower than 1 µM failing to alter the growth of Mtb in macrophages 
(Figure 2—figure supplement 1). At concentration of 1–20 µM, SRT, could effectively synergize with 
antibiotics and inhibit bacterial numbers by ~5–70 folds, respectively, in the treated macrophages 
(Figure 2A). However, SRT along with HR does not significantly inhibit growth in vitro, even 6 μM SRT 
failed to impact Mtb growth either alone or in combination with 3 concentrations of HR (Figure 2—
figure supplement 2), alluding to an indirect mode of SRT in enhancing the ability of macrophages 
to control bacteria rather than a direct action on bacteria. Our observation that SRT controlled Mtb 
induce type I IFN responses argued for further evaluation of this axis as a plausible mechanism. We first 
evaluated the impact of BX795, a specific inhibitor of type I IFN signaling, on bacterial growth control 
in our model of infection (Figure 2B–D). We first established the efficacy of BX795 in abrogating 
Mtb-induced type I IFN in THP1 macrophages at different concentrations. Treatment of macrophages 
with BX795 at concentrations as low as 1.2 μM completely nullified the infection induced type I IFN 
response in macrophages (Figure 2B). Again, similar to SRT, BX795 alone resulted in bacteriostasis 
with bacterial numbers maintained at input levels in these cells in similar to SRT treated macrophages 
(Figure 2C). Again, addition of BX795 to HR enhanced bacterial control by 4–5 folds by day 3 of infec-
tion as compared to the antibiotics alone (Figure 2D). Given our observation of increased antibiotic 
efficacy by IFN inhibition (by SRT and BX795), we reasoned that a similar effect of increased antibiotic 
efficacy would be visible in IFN signaling deficient macrophages. To test this, we compared the intra-
cellular bacterial numbers in cGAS-/- and STING-/- macrophages with WT cells after 3 days of treatment 
with HR. As expected, Mtb was restricted in its growth in these macrophages. Nearly 2–3 folds lower 
bacterial numbers were observed in cGAS-/- (Figure 2E) with a much stronger inhibition (40–50 folds) 
in STING-/- macrophages (Figure 2F) in comparison to the corresponding IFN-sufficient cells.

Activation of host cell inflammasome is critical for sertraline-mediated 
increase of antibiotic efficacy
Elaboration of a pro-inflammatory response is one of the potent responses with activation of anti-
mycobactericidal activities in macrophages. Our results hinted at the reciprocal effect of IFN signaling 
on macrophage infection control as has been demonstrated earlier (Teles et  al., 2013). Further 
support for this was observed in the macrophages preactivated with IFNγ and treated with HR or 
HRS. While IFNγ treatment resulted in two- to threefold lower bacteria in combination with HR alone 
(Figure 3—figure supplement 1), we found a similar enhancement in IFNγ mediated control in SRT-
treated macrophages (Figure 3A). Analysis of the pro-inflammatory response in SRT-treated infected 
macrophages also lend credence to this hypothesis. Gene expression profiles showed reduction in 
the expression of TNF and IL1β after 18 hr of treatment with SRT consistent with reported literature 
(Figure 3B–E; Sitges et al., 2014). In comparison to HR, while TNF expression was reduced slightly 
in the HRS-treated macrophages (Figure 3B), negligible levels of TNF was observed in the cell super-
natants in SRT-treated cells (SRT, HRS), contrasting with the high levels of TNF (between 500pg- 1 ng/
ml) in the case of Mtb infected cells with or without treatment with HR (Figure 3C). Surprisingly, while 
expression levels of IL1β were 2–3 folds lower in HRS-treated macrophages by 18 hr (Figure 3D), the 
amount of secreted cytokine was significantly elevated (>2–3 folds) in macrophages treated with SRT/ 
HRS from 18 hr until 66 hr (Figure 3E). These data strongly indicated potential activation of the host 
cell inflammasome by SRT. With several studies supporting inverse regulation of type I IFN and inflam-
masome activation (Szałach et al., 2019; Ruiz-Grosso et al., 2020), we tested the efficacy of SRT to 
potentiate antibiotic mediated killing in the presence of inflammasome inhibitors- isoliquiritigenin (I) 
and MCC950. Isoliquiritigenin did not show any significant effect on macrophages that were untreated 
or treated with HR or SRT alone (Figure 3F, inset). However, while addition of SRT to HR significantly 
reduced bacterial numbers in macrophages by more than 10–20 folds, pretreatment of cells with the 
isoliquiritigenin, completely nullified this boosting effect of SRT on antibiotic efficacy (Figure 3G). 

https://doi.org/10.7554/eLife.64834
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Figure 3. Important role for inflammasome activation in antibiotic potentiation by SRT. (A) Growth of Mtb in macrophages pre-treated with IFNγ for 16 
hr, infected with Mtb for 6 hr and then left untreated or treated with SRT for 3 days. Mean CFU values for triplicate assay wells from two independent 
experiments (N=2) ± SEM is shown. The relative expression of inflammatory cytokines in macrophages treated with HR or HRS. Data in B and D depict 
fold expression (transcript abundance) relative to HR alone as mean ± SEM from two independent experiments with duplicate wells each at 18 hr post 
treatment. (C) and (E) depict secreted cytokines at indicated time points post treatment. (C) Average values ± SEM of TNF at 18, 42, and 66 hr post 
treatment of two independent experiments of triplicate wells (N=2). (E) IL1 β levels in cell supernatants at 18, 42, and 66 hr of triplicate wells (n=3). (F, 
G) Growth of Mtb in macrophages in the presence of inflammasome inhibitors. Macrophages were infected with Mtb for 6 hr and then left untreated 
(NT) or treated with HR and HRS with and without - isoliquiritigenin-I (F) or MCC950 (G) for 5 days. Bacterial growth in macrophages treated with I alone 
is shown in the inset. Mean CFU / well ± SEM of N=3 assays in triplicate wells are depicted. (H) IRF-dependent luciferase activity at 24 hr in Mtb infected 
THP1 dual macrophages (MOI –5) and treated with Nigericin (N) to activate or MCC950 (M) to inhibit inflammasomes. Mean RLU ± SEM of triplicate 
assays of three independent experiments is shown. Data is represented as mean ± SEM for two to three independent experiments containing triplicate 
wells per assay. Statistical significance by unpaired t-test- *p<0.05, ***p<0.001 is indicated.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Bacterial growth in naive macrophages or pre-treated with IFNγ.

https://doi.org/10.7554/eLife.64834
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Treatment with a NLRP3-specific inhibitor- MCC950 also resulted in a reversal of enhanced bacterial 
control in HRS in infected macrophages without altering the effect of antibiotics alone on the bacteri-
cidal properties validating the involvement of inflammasome in the ability of SRT to enhance bacterial 
control by frontline antibiotics. In line with previous studies (Labzin et al., 2016; Yu et al., 2018), we 
also observed a significant decrease in Mtb-induced type I IFN in macrophages following treatment 
with inflammasome activation (Figure 3H). While treatment with SRT and HR significantly reduced this 
response in macrophages, pretreatment with the inflammasome inhibitor- MCC950 partially reversed 
this decline again arguing for an important role for inflammasome activation in the type I IFN modu-
lating effect of SRT.

Sertraline augments frontline drugs in acute model of Mtb infection
The antibiotic escalating properties of SRT in macrophages prompted testing of this combination 
regimen in vivo. We reasoned that the survival of Mtb infected C3HeB/FeJ mice would provide an 
optimal platform for a fast readout of comparative drug efficacies of standard TB drugs and the 
adjunct regimen with SRT. Given the inherent heterogeneity of infection dynamics across animals 
of this mouse strain (Dawa et  al., 2021), we opted for the higher dose of Mtb Erdman infection 
(500 cfu/ animal) to achieve acute infection in all animals. The adjunct effect of SRT was tested at 
effective-C1(1 x) and ineffective doses - C2 (0.1 x) and C3 (0.01 x) of INH and Rifampicin ad libitum in 
drinking water. To facilitate disease progression prior to treatment initiation, treatment with antibiotics 
was initiated after 2 weeks of infection (Figure 4A). Aerosol delivery at this dose resulted in precipi-
tous disease with rapid killing of untreated (NT) animals by day 31 of infection (Figure 4B). SRT alone 
was effective in delaying the disease progression in animals as the mean survival time (MST) increased 
from 31 days for untreated animals to 38 days. HR at the lowest concentration (C3), similar to SRT, 
deferred animal mortality with MST of 41 days while the higher doses of HR (C2 and C1) increased 
MST significantly to 85 and >90, respectively. Given the higher susceptibilities of female mice to infec-
tion observed in our study, we decided to differentially tally the gender-based effects of SRT treat-
ment in these animals. The combination of HRC3 and SRT, nearly doubled the MST of both female and 
male mice to 78 days and 100 days from 41 and 45 days respectively (Figure 4C). This benefit of SRT 
was similar to that observed for a 10-fold higher concentration of HR alone (MST of 85 for HRC2). The 
advantage of SRT inclusion with HR was evident in the gross lung pathology by 30 days of infection. 
Both NT and HRC3 treated lungs showed extensive progressive granulomas, contrasting with a signif-
icant amelioration of pathology seen in HRC3 +S treated animals (scale bars of 0.1mm) (Figure 4D).

Further, we wanted to explore temporal benefits of the combination regimen after withdrawal of 
a limited-term treatment (Figure 4E). In this model, 100% of animals survived after treatment with 
HR(C1) at 16 weeks post infection (Figure 4F). A 7 week ad libitum treatment with the 10-fold lower 
dose of HR (HRC2) (Figure 4F) significantly decreased the MST of animals to 85 days with 100% 
mortality by 16 weeks. In contrast, 40% of HRC2S-treated animals, survived with a MST of 112 days for 
the group (Figure 4F and G). All animals with the highest dose of HR (HRC1) either alone or with SRT 
survived the infection. Despite, the significant heterogeneity of treatment response in male and female 
mice, with a relatively lower response as evidenced by the greater number of lesions in lungs of male 
animals, a co-operative effect of SRT inclusion was evident as a significant improvement in TB asso-
ciated lung pathology (Figure 4H, Figure 4—figure supplement 1). Small macroscopic lesions were 
observed in lungs of 60% of the female mice treated with HRC1 that showed as multiple, well-defined 
granuloma in the H&E-stained sections by the 16th week post infection. In contrast, mice treated with 
SRT and HRC1 showed negligible involvement of the lung tissue in granulomatous cellular accumula-
tion. Even in tissues of male mice, animals receiving the adjunct therapy showed fewer macroscopic 
and significantly lower numbers of microscopic granuloma in lung sections in comparison to animals 
treated with the antibiotics alone.

Addition of sertraline increases bacterial control by frontline TB drugs
TB treatment in the intensive phase involves the use of 4 frontline TB drugs- HRZE for a period of 2 
months and HR for an additional 4 months. Further to test the efficacy of SRT in combination with 
HRZE in an acute model of disease, Mtb infected C3HeB/FeJ mice were treated either with the estab-
lished dose of HRZE or in combination with SRT (Figure 5A) and evaluated TB associated pathology of 
the lungs at 16 weeks of infection. Male (Figure 5B) and female (Figure 5C) animals treated with the 4 

https://doi.org/10.7554/eLife.64834
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Figure 4. Adjunct SRT improves host survival in a susceptible mouse model of infection. (A) Schematic of Mtb 
infection and drug treatment in C3HeB/FeJ mice. (B) Survival curves of Mtb infected C3HeB/FeJ mice (5) left 
untreated (red) or treated with SRT alone (blue) or with different concentrations of H and R (green lines or boxes- 
HRC1- 1x: H-100μg/ml, R-40μg/ml, HRC2-0.1x, HRC3-0.01x) alone or along with SRT (10μg/ml)- black lines / 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.64834
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drugs for 7 weeks harbored 105–106 bacteria in their lungs, respectively. Addition of SRT appreciably 
improved drug efficacy, reducing the lung bacterial loads by a further 5–7 folds (Figure 5B and C). The 
drugs efficiently lowered tissue pathology as evidenced by the macroscopic lesions seen in the lungs 
of infected mice (Figure 5D). While both female and male mice showed small macroscopic lesions in 
lungs on treatment with HRZE, despite the heterogeneity between the genders, the combination of 
SRT and HRZE sufficiently decreased the extent of tissue involvement in TB associated pathology (Fig.

boxes. (C) Median survival time of different treatment groups of mice (5 each of males and females). (D) Gross 
tissue morphology of lungs of uninfected animals (UI) and indicated groups at 30 days post infection with Mtb. 
(E) Schematic of infection and antibiotic treatment in C3HeB/FeJ with HRC2 and HRC1. (F–G) Survival (F) and 
MST (G) of C3HeB/FeJ mice treated with HRC2 or HRC2S. (H) Gross lung morphology at the end of 16 weeks and 
histological sections of lungs with H&E staining of C3HeB/FeJ mice either treated with HRC1 or in combination 
with SRT.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Quantitation of macroscopic lesions in left caudal lobe of lungs of animals infected with 
Mtb and treated with HR, HRZE or in combination with SRT.

Figure 4 continued

Figure 5. In vivo potentiation of SRT-mediated antimycobacterial activity. (A) Schematic of infected C3HeB/FeJ mice (10) and treated with HRZE 
HRC1- 1x: H-100μg/ml, R-40μg/ml, Z-150μg/ml, E-100μg/ml or in combination with SRT (10μg/ml). Animals were euthanized at the end of 16 weeks 
and extent of infection was determined by estimating bacterial numbers (CFU) in lungs of female (B) and male (C) mice. (D) Gross lung morphology 
and histochemical sections of lungs with H&E staining of C3HeB/FeJ mice infected with Mtb and treated either with HRZE or in combination with SRT. 
Statistical significance by unpaired t-test-*p<0.05, ***p<0.001 is indicated.

https://doi.org/10.7554/eLife.64834
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S1D). This difference was more evident in tissue sections, wherein animals treated with HRZES were 
devoid of granulomatous infiltrates in contrast to the HRZE treated animals which had significantly 
higher numbers of granulomas in the lungs (Scale bars of 0.1mm)(Figure 5D).

Sertraline aids in faster clearance of infection in vivo
To evaluate the adjunct regimen for early bacterial clearance rates, we infected C57BL/6 mice with 
500 CFU of Mtb and enumerated bacterial burdens upto 8 weeks post treatment according to the 
schedule shown in Figure 6A. Bacterial numbers in the lungs reached ~107 CFU by 4 weeks of infec-
tion (day 0 of treatment) and remained steady over the 6-week period in untreated animals. While 
treatment with HRZE was efficient in steadily reducing these numbers by ~100 folds, addition of SRT to 
the regimen significantly enhanced control by a further 2–3 folds. Moreover, the adjunct regimen was 
efficient in controlling the infection in spleens of infected mice (Figure 6B). Although HRZE reduced 
splenic bacterial numbers significantly by 6–7 folds, HRZES was more potent reducing bacterial 
numbers further by ~20 folds (60–70% vs ~2–5%) by 21 days of treatment (Figure 6B, inset). A similar 
degree of enhanced bacterial control (4–6 folds lesser bacteria) was observed in lungs and spleens 
of Balb/c mice treated with SRT as an adjunct to conventional 4 drug-therapy (Figure  6—figure 
supplement 1). Untreated animal lungs showed a gradual consolidation of the tissue with increasing 
amounts of granulomatous cellular infiltration by 6 weeks of infection. Treatment with HRZE was effi-
cient in reducing this infiltration significantly by the 6th week of infection with nearly 1/6th of the tissue 
showing signs of cellular infiltration (Figure 6C). Lungs of mice receiving the combination showed 
better resolution of granulomas with significantly smaller regions of cellular collection by 3 weeks 
dispersed across the tissue, that was more or less absent from the tissues of mice by the 6th week of 
treatment. Treatment with HRZE for up to 8 weeks did not effectively clear the bacterial from the lungs 
of infected mice (scale bar of 0.1mm). While untreated animals harbored close to 106 bacilli in the 
lungs, all treated mice had between 40 and 640 bacteria in the lungs (Figure 6D). In contrast addition 
of SRT, resulted in the absence of countable bacteria in lungs of 4/5 mice with one animal having 40 
bacteria, similar to the animal with the best resolution of infection by the HRZE treated animals. Even 
the spleens of animals receiving the combination treatment did not show any detectable bacteria as 
opposed to the frontline TB drugs alone substantiating the ability of SRT to impart early bacterial 
clearance from animal tissues in comparison to the standard 4 TB drugs (Figure 6D, inset). Further 
evidence of faster clearance was evident at 9 weeks post treatment and even at lower doses of SRT. 
While Mtb persisted in animals given HRZE showing countable colonies in both lungs and spleen (2 
out of 3 animals), the combination of SRT was successful in eliminating bacteria from animal tissues 
at the doses of 3 mg/kg and 2 mg/kg (Figure 6E). Interestingly SRT doses as low as 0.125 mg/kg was 
sufficient to clear bacterial loads in spleen from animals (Figure 6E, inset), the bacterial numbers in 
the lungs were more or less similar to the numbers in the HRZE group. Even at doses of 0.5mgkg and 
1mgkg, SRT was more effective in controlling bacteria in the spleens and lungs of mice as compared 
to the HRZE group, again validating that the combination imparted faster in vivo bacterial clearance.

Addition of sertraline improves control of tolerant bacteria in vivo
We then tested the efficacy of the adjunct therapy against a drug tolerant Mtb strain in cellular and 
murine models of infection. Previously, we had demonstrated that N73- a clinical Mtb strain belonging 
to the L1 ancient lineage showed increasing tolerance to INH and Rifampicin as opposed to the 
modern L3 and L4 lineage strains by virtue of expressing the complete MmpL6 operon (Arumugam 
et al., 2019). In THP1 cells infected with Mtb, HR at C2 concentration supported stasis and failed to 
decrease of bacterial numbers (Figure 7A). The combination of HR with SRT, significantly controlled 
infection and reduced bacterial numbers by ~10–15 folds by 3 days and ~100 folds by day5. The 
pattern of significantly greater bacterial control was also observed in primary human macrophages; 
again, a combination of HR and SRT reduced intracellular bacterial numbers by 5–50 folds in compar-
ison to the drugs alone (Figure 7B). With a strong indication of SRT’s ability to boost the efficacy of 
frontline TB drugs against tolerant Mtb, we tested its in vivo activity in the acute model of C3HeB/ 
FeJ mouse infection in combination with HR (Figure 7C). As expected, the drugs were not efficient in 
controlling infection induced lesions in the lungs reducing bacterial numbers by fivefolds (Figure 7D). 
However, lungs of HRS treated animals harbored ~5–8 folds lower bacterial numbers than HR treated 
animals. The effect of the combination was again better in controlling bacterial numbers in spleens 

https://doi.org/10.7554/eLife.64834
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Figure 6. SRT initiates early bacterial clearance in mice. (A) Schematic of Mtb infection and drug treatment in 
C57BL6 mice. Mice were infected with Mtb and treated with HRZE or HRZES (HRC1- 1X: H-100μg/ml, R-40μg/ml, 
Z-150μg/ml, E-100μg/ml, SRT 10μg/ml) treatment. Lung CFU post 1 and 3 weeks (B) and 3-week spleen CFU (inset) 
is represented as mean CFU ± SEM of N=3, (C) Gross lung morphology and H&E staining of tissue sections after 
treatment for the indicated number of weeks. (D) Lung and spleen CFU in Mtb infected C57BL6 mice (N=5), left 
untreated (NT) or treated with HRZE or HRZES for 8 weeks. (E) Lung and spleen CFU in Mtb infected C57BL6 mice 
(N=3) left untreated (NT) or treated with HRZE alone (+) or with HRZES (SRT at 6 concentrations (0.125mg/kg-S1, 
0.25mg/kg-S2, 0.5mg/kg-S3, 1mg/kg-S4, 2mg/kg-S5 and 3mg/kg-S6)) for 9 weeks. Each individual dot represents 
an animal, nd- CFU not detected. Statistical significance by unpaired t-test-*p<0.05, ***p<0.001 is indicated.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Balb/c mice were infected with Mtb and the treated with HRZE or HRZES (HRC1- 1 X: H-
100μg/ml, R-40μg/ml, Z-150μg/ml, E-100μg/ml, SRT 10 μg/ml).

https://doi.org/10.7554/eLife.64834
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of treated mice wherein HR did not reduce CFU in contrast to the six- to eightfold lower bacterial 
numbers with the combination.

Discussion
Despite consistent efforts in identifying novel pathogen targeted interventions and streamlined phar-
maceutical drug development control processes, fewer drugs have been accepted for clinical use in 
TB over the last 40 years (Goel, 2014). Repositioning existing drugs with established safety in humans 
is one of the quickest modes of developing effective control of infections that reduce the timeframe 
of regimen development. The need for an effective, short and pathogen-sterilizing regimen to tackle 
the growing problem of Mtb drug resistance and dormant bacterial populations has intensified efforts 
toward the development of host targeted therapies (Palucci and Delogu, 2018; Mishra et al., 2019; 
Fatima et al., 2020; Dara et al., 2019).

We and several other groups have identified type I IFN as an early response of host macrophages 
to infection with Mtb strains (Donovan et al., 2017; Shankaran et al., 2019; Moreira-Teixeira et al., 
2018; McNab et al., 2014). With recent evidences implicating type I IFN as a pathogen beneficial 
response, we hypothesized that attenuating this axis would prove beneficial in controlling bacteria 
in macrophages. In line with this idea, we observed that the previously reported TLR3 antagonist 
– sertraline (SRT) could effectively stunt Mtb-induced type I IFN response in macrophages and also 
inhibit bacterial growth in macrophages.

SRT, along with other weak bases like fluoxetine, has been reported to moderately restrict intra-
cellular Mtb replication in macrophages due in part to its weak basic nature without affecting the 
host cell viability (Schump et al., 2017). An important role for the acidic environment of bacteria 
resident vesicles (pH dependence) in the mycobactericidal properties of these drugs was demon-
strated in this study. We also observed similar effects of SRT alone in our study – a moderate level of 
bacterial control in macrophages with minimal host cell death by treatment of SRT to infected macro-
phages. Additionally, several studies have indicated a direct action of SRT and other selective sero-
tonin reuptake inhibitors on host immune response pathways: from enhancing the anti-inflammatory 
response (Hannestad et al., 2011), augmenting NK and CD8 cell response (Benton et al., 2010) and 
to inhibition of acid-sphingomyelinase (Kouznetsova et al., 2014), an essential component of the viral 
trafficking into NPC1 +endosomes in cells. Activation of host cell inflammasome and its antagonistic 
effect on the type I IFN response of cells has now been realized as important factors for controlling 

Figure 7. Addition of SRT helps better control of drug tolerant Mtb in vivo. (A) Intracellular bacterial growth in THP1 macrophages infected with HR 
tolerant Mtb strain at a MOI of 5 for 6 hr. Following this, cells were left untreated (NT) or treated with SRT, HR, or HRS for 3 or 5 days. Bacterial numbers 
were enumerated and is represented as average log10 CFU ± SEM from two independent experiments with triplicate wells each. (B) Bacterial numbers 
at day 3 of primary monocyte derived macrophages (M1) from seven independent donors. After 6h of infection, the macrophages were treated with 
HR and HRS for 3 days. The ratio of intracellular bacterial numbers in HR or HRS groups with respect to untreated samples is represented as relative 
growth with median values indicated by the horizontal line. (C) Schematic of Mtb infection and drug treatment in C3HeB/FeJ mice infected with Mtb 
for 2 weeks followed by treatment with 0.1X HR alone or with SRT (HRS) or 8 weeks. (D) Bacterial numbers (CFU) in lungs and spleen at the end of the 
experiment. Statistical significance by unpaired t-test -*p<0.05, ***p<0.001 is indicated.

https://doi.org/10.7554/eLife.64834
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bacterial infections (Novikov et al., 2011; Ji et al., 2019). A direct effect on activating eicosanoids 
which control type I IFN following infection was identified as a key bacterial clearance mechanism 
of infected cells (Hawn et al., 2015; Mayer-Barber et al., 2014). Consistent with this observation, 
targeted therapy toward elevating PGE2 activity protected mice from acute infection-induced fatality 
(Mayer-Barber et al., 2014). In line with these observations, we also describe the ability of SRT to 
potentiate antibiotic-mediated killing by altering the inflammasome-type I IFN axis. Our results also 
highlight this cross-regulation between two important innate response pathways with SRT boosting 
the macrophage pathogen control program by repressing a pro- pathogenic and activating the host 
beneficial response. In line with this observation, treatment with inflammasome inhibitors reversed 
the ability of SRT to enhance the effects of HR in macrophages. While our work points toward the 
type I IFN antagonism-mediated inflammasome activation as a key mechanism in providing synergy 
to anti-TB therapy, identifying the exact molecular target of SRT in this process remains an important 
future challenge.

SRT combination with front-line anti-TB drugs provided early bacterial control with improved reso-
lution of pathology and enhanced host survival, thereby being a strong candidate for host directed 
therapy. SRT provides additional benefits as an adjunct modality. The pharmacological properties 
of SRT with excellent PK-PD, safety and tolerance for long term usage in the human population has 
been well established (Sheehan and Kamijima, 2009; Ronfeld et al., 1997; Mandrioli et al., 2013). 
Interestingly, two patients undergoing TB therapy with INH given SRT as an anti- depressant, did 
not show any deleterious effects on long-term use of the combination, auguring well for safety in 
the human population (Malek-Ahmadi et al., 1996; Judd et al., 1994). In addition, these studies 
combined with the enhanced protective capabilities of the combination therapy in pre-clinical animal 
models (our data), indirectly rule out any possibility of negative drug-drug interactions between SRT 
and ATT on prolonged usage. It is logical to expect that SRT with its wide use as an anti-depressant 
in adults and children may be beneficial in efficiently with a combination regimen of frontline TB 
drugs and SRT.

A recent clinical trial with SRT as an adjunct regimen with fluconazole for asymptomatic crypto-
coccal antigenemia demonstrated SAEs (non-fatal) in 4 out of 10 participants (3 with psychosis and 
aggressive behavioral changes, 1 with serotonin syndrome) as opposed to 3 out of 10 (1 fatal) SAEs 
in the control placebo group (Boulware et al., 2020). While such concerns cannot be overlooked for 
use of SRT as an adjunct TB therapy, it would be prudent to weigh the advantages of the tackling the 
dual problem of severe drug induced depression in TB patients (invisible co-morbidity) (Sweetland 
et al., 2017; Trenton and Currier, 2001) in future detailed studies on the effective dose and duration 
of therapy needs to be undertaken. Our studies with lower doses of sertraline showing greater effi-
cacy would be of immense use in future clinical studies for testing this adjunct regimen. However, the 
collective properties of a SRT adjunct TB therapy – faster bacterial control, enhanced host survival and 
capacity to target drug tolerant/ dormant bacterial populations augurs well for the highly constrained 
national/ global economy combating the TB pandemic.

Materials and methods
Bacterial Strains and Growth Conditions—Mtb strains were cultured in Middlebrook 7H9 broth with 
4% ADS or in 7H10/7H11 agar (BD Biosciences, USA) with 10% OADC (HiMedia laboratories, India).

Reagents
THP1 Dual Monocytes was obtained from InvivoGen (Toulouse, France). The integrity of the 
cells were tested by STR profiling with routine mycoplasma testing. HiglutaXL RPMI-1640 and 
10% Fetal Bovine Serum (HIMedia laboratories, Mumbai, India), PMA (Phorbol 12-Mysristate 
13-acetate- P8139, Sigma Aldrich, USA), BX795 (tlrl-bx7, Invivogen) were used for culture of cells. 
The following reagents were procured from Sigma Aldrich, USA: Vit C (L- ascorbic acid, A5960), 
oleic acid albumin (O3008), Isoniazid (I3377), Pyrazinamide carboxamide (P7136), Ethambutol 
dihydrochloride (E4630) and Sertraline hydrochloride (S6319). Rifampicin (CMS1889, HIMEDIA 
laboratories, Mumbai, India) and commercially available SRT (Daxid, Pfizer Ltd, India) was used for 
mouse studies.

https://doi.org/10.7554/eLife.64834
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Macrophage infection
THP1 Dual reporter monocytes were grown in HiglutaXL RPMI-1640 containing 10% FBS and differ-
entiated to macrophages with 100 nM PMA for 24 hr. Following a period of rest for 48 hr, cells were 
infected with single cells suspensions (SCS) of Mtb at a MOI of 5 for 6 hr. For analyzing the Interferon 
(IRF pathway) activation levels, supernatants from Mtb infected THP1 Dual macrophages were assayed 
for stimulation by measuring luminescence as per manufacturer’s recommendations. For IFNβ ELISA, 
an MOI of 10 was used for infection of THP1 cells continuously for a period of 24 hr. Cell supernatants 
were then used for ELISA as per recommended protocols (Human IFN-beta Duoset, R&D systems).

Monocyte-derived macrophage culture
PBMCs were isolated from fresh blood obtained from healthy donors in accordance with Institutional 
human ethics committee approval (Ref no: CSIR-IGIB/IHEC/2017–18 Dt. 08.02.2018). Briefly, 15–20 ml 
blood was collected in EDTA containing tubes and layered onto HiSep (HIMedia laboratories, Mumbai, 
India) and used for isolation of PBMCs according to the recommended protocols. Post RBC lysis, cells 
were seeded at a density of 3x105 cells/ well and differentiated into monocyte derived macrophages 
with 50 ng/ml GMCSF for 7 days and then used for infection with Mtb.

Analysis of response parameters
For analysis of different parameters of cellular response to infection, qRTPCR based gene expres-
sion analysis and cytokine ELISA in culture supernatants were performed according to manufacturer’s 
recommendations.

Analysis of gene expression by qRTPCR
Total RNA was isolated from macrophages suspended in Trizol by using the recommended protocol. 
cDNA was prepared from 1 µg of RNA by using the Verso cDNA synthesis kit and was used at a 
concentration of 10 ng for expression analysis by using the DyNAmo Flash SYBR Green qPCR Kit 
(Thermo Fisher Scientific Inc, USA).

Analysis of cytokine secretion by ELISA
Culture supernatants at different time intervals post infection/ treatment were filtered through a 0.2μ 
filter and subjected to ELISA by using the eBioscience (Thermo Fisher Scientific Inc USA) ELISA kit as 
per recommended protocols.

Bacterial survival in macrophages
For determining intra cellular survival of Mtb strains macrophages were seeded in 48well plates and 
infected with Mtb at MOI 5 for 6 hr. SRT (20 µM), BX795 (10 µM) and TB drugs C1, C2, C3: (C1- INH-
200ng/ml, Rifampicin-1000ng/ml, -C2 and C3:10- and 25-fold dilutions of C1) and used for treatment 
of macrophages at the appropriate concentrations. At specific days post infection macrophages were 
lysed with water containing 0.05% of tween80. Dilutions of the intracellular bacterial numbers were 
made in PBS with 0.05% of tween80 and plated on 7H10 agar plates. The VitC induced model of anti-
biotic tolerance in macrophages was developed as described earlier with cells treated with 2 mM Vit 
C for 24 hr and then with Isoniazid and rifampicin for a further 3 days (Sikri et al., 2018). For testing 
in lipid rich macrophages, cells were treated with oleic acid at 200 µM concentration after PMA differ-
entiation for 2 days, infected with Mtb for 6 hr, followed by treatment for 5 days and enumeration of 
bacterial numbers.

Mouse infection and antibiotic treatment
(6–10 weeks old) C3HeB/FeJ/ C57BL6/Balbc animals were infected with Mtb clinical isolate at 500 CFU 
per animal through aerosol route. Two/4 weeks post infection animals were started on antibiotics H 
(100 mg/l), R (40 mg/l) (Vilchèze et al., 2018), Z (150 mg/l), E (100 mg/l) (Lanoix et al., 2016) and SRT 
(10 mg/l, human equivalent dose of 3.3 mg/kg/day), as required treatment by giving all of the drugs ad 
libitum in their drinking water for 7 weeks which was changed twice every week. For survival, animals 
were monitored regularly and euthanized at a pre-determined end point according to the Institutional 
animal ethics approval. For estimating tissue bacterial burdens, lungs and spleen of infected animals 
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were collected in sterile saline, subjected to homogenization and used for serial dilution CFU plating 
on 7H11 agar plates containing OADC as supplement. Colonies were counted after incubation of the 
plates at 37 °C for 3–5 weeks and recorded as CFU/tissue.

All statistical analysis was performed by using student’s t-test for significance, p values of<0.05 was 
considered significant.
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