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Abstract Sleep is essential in maintaining physiological homeostasis in the brain. While the 
underlying mechanism is not fully understood, a ‘synaptic homeostasis’ theory has been proposed 
that synapses continue to strengthen during awake and undergo downscaling during sleep. This 
theory predicts that brain excitability increases with sleepiness. Here, we collected transcranial 
magnetic stimulation measurements in 38 subjects in a 34  hr program and decoded the relation-
ship between cortical excitability and self-report sleepiness using advanced statistical methods. By 
utilizing a combination of partial least squares regression and mixed-effect models, we identified 
a robust pattern of excitability changes, which can quantitatively predict the degree of sleepiness. 
Moreover, we found that synaptic strengthen occurred in both excitatory and inhibitory connections 
after sleep deprivation. In sum, our study provides supportive evidence for the synaptic homeostasis 
theory in human sleep and clarifies the process of synaptic strength modulation during sleepiness.

Introduction
During sleep, brains undergo profound neurophysiological changes that restore the decline in cogni-
tive functions associated with sleepiness (Harrison and Horne, 2000; Tononi and Cirelli, 2006). While 
this homeostatic process provides an important opportunity in studying the modulation of cognitive 
states, the key features of neural circuits underlying wakefulness, sleepiness, and sleep remain to 
be poorly understood. A synaptic homeostasis theory has been proposed to describe the biophys-
ical change of neural circuits during sleep: wakefulness associates with strengthening of the synaptic 
connection, while sleep initiates synaptic weight downscaling and facilitates homeostasis (Tononi and 
Cirelli, 2006; Tononi and Cirelli, 2003). This theory reasons that constant learning and memory activ-
ities during awake lead to synaptic potentiation, thus prolonged awake period causes hyperactivity in 
the neural circuit, enhancing the noise among neural communications and disrupting cognitive func-
tions (Tononi and Cirelli, 2003). It follows that the sleep pressure may be correlated to the degree 
of this hyperactivity. As increasing noise in the circuits adds barriers for information processing, the 
organism inevitably falls in sleep to restore the synaptic balance. In a prolonged sleep-deprived state 
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(>24 hr), this hyperactivation may be partially restored, together with the subjective feeling of sleepi-
ness, by circadian modulation (Borbély et al., 2016; Frank and Cantera, 2014).

In agreement with this synaptic homeostasis theory, biochemical markers of synaptic potentia-
tion increase with prolonged wakefulness (Cirelli and Tononi, 2000; Tononi and Cirelli, 2001; Silva, 
2003). In addition, resting-state electroencephalogram (EEG) revealed a global increase in theta band 
power (4–8 Hz) with increased sleepiness (Cajochen et al., 1995; Aeschbach et al., 1997; Vyazovskiy 
and Tobler, 2005), suggesting sleep-wake state exerts a robust modulation on the neural circuits. 
However, experiments attempting to pinpoint this modulation by directly measuring brain excit-
ability have yielded less consistent results (Huber et al., 2013; De Gennaro et al., 2007; Manganotti 
et al., 2001). This is at least partially due to the technical challenges in measuring brain excitability, 
commonly via transcranial magnetic stimulation (TMS). TMS induces noninvasive activation of local 
brain region by applying a transient, alternating magnetic field through the skull, the effect of which 
can be readout through EEG or downstream motor output. Brain excitability can be measured by 
determining the minimal power required to achieve reliable output or the amplitude of the output 
given a standardized stimulation (Pascual-Leone et al., 1994). In addition, paired TMS pulses can be 
applied consecutively within a short temporal interval (e.g., several milliseconds) to induce certain 
facilitatory or inhibitory effect (Stefan et al., 2000). The nature of these paired-pulse effects has been 
studied extensively, and some of them have been attributed to the function of certain synaptic recep-
tors (Van den Bos et al., 2018; Daskalakis et al., 2002). While TMS allows noninvasive assessment of 
cortical excitability in humans, it suffers from relatively high degree of inter-subject variability. Previous 
studies taking group averages of TMS measurements reported either hyper- (Huber et al., 2013) 
or hypo- (De Gennaro et al., 2007) excitability associated with sleep deprivation, with inconsistent 
effects of pair-pulse stimulation results (Manganotti et al., 2001; Kreuzer et al., 2011; Kuhn et al., 
2016; Chellappa et al., 2016).

In this study, we attempted to circumvent the above-mentioned person-to-person variability by 
applying more advanced statistical methods to analyze the relationship between cortical excitability 
measured by TMS and self-report sleepiness. We collected TMS measurements in 38 healthy subjects 
in a continuous 34 hr study program. By utilizing a combination of partial least squares (PLS) regres-
sion and mixed-effect models, we identified a robust pattern of cortical excitability change that quan-
titatively predicts the degree of sleepiness in two separate subgroups of subjects. Interestingly, we 
found that both facilitatory and inhibitory changes in pair-pulse TMS enhance with sleepiness, while 
the overall excitability moderately decreases. While our results strongly support the synaptic homeo-
stasis theory that synaptic connection strengthens overtime during wakefulness, we showed that the 
strengthening occurs in both excitatory and inhibitory synapses. Such changes may contribute to the 
overall maintenance, and subtle decline, of cognitive functions during prolonged wakefulness (Rubin 
et  al., 2017). In sum, our study revealed strengthening of both excitatory and inhibitory synaptic 
transmission with sleepiness, clarifying and supporting a role of homeostatic modulation of synaptic 
strength by sleep.

Results
Sleep deprivation program
The awake period started after subjects arrived at the hospital and spent the previous night. During 
the 34 hr of study, the subjects were kept awake with two researchers and took eight times of Stan-
ford Sleepiness Scales (SSS) evaluations and TMS assessments, and three times of EEG measurements 
(Figure  1A and B, Figure  1—figure supplement 1). Sleepiness showed an increased after 16  hr 
(group average SSS scores increased from 2.75 to 4.5), and then a slight decrease after 24 hr (from 
4.5 to 3.25) (Figure 1C, Figure 1—figure supplement 2). This decrease in sleepiness agrees with 
previous sleep deprivation studies (Manganotti et al., 2001), likely due to circadian modulations. 
Furthermore, consistent with previous reports (Cajochen et al., 1995), EEG showed a stereotypical 
increase in the power of theta band (4–8 Hz), and a decrease in the alpha band (8–12 Hz) (Figure 1D 
and E, Figure 1—figure supplement 2). While all brain regions showed consistent global trends, 
we observed more prominent changes in the occipital areas, consistent with previous studies indi-
cating these areas showed more prominent changes around sleep onsets (Gorgoni et  al., 2019; 
Finelli et al., 2001). We did not observe an increase in the alpha and beta band in frontal regions, a 
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Figure 1. Induction and validation of sleep deprivation in current study. (A) Schematics of study design. All subjects received eight sessions of 
transcranial magnetic stimulation (TMS) measurements, but only 15 subjects received electroencephalogram (EEG) measurements (Figure 1—figure 
supplement 1). (B) Locations of EEG electrodes used in the study. Positionings are labeled following the extended international 10–20 system. (C) 
Measurements of self-report sleepiness using Stanford Sleepiness Scales (SSS). All individuals received eight measurements. Individuals’ scores were 
showed in gray and averaged responses were plotted in red curve (applied spline interpolation for smooth visualization). Statistical comparisons 
between sessions are reported in Figure 1—figure supplement 2. (D) Averaged heatmaps of different frequency bands’ powers in EEG data (N = 
15). Interpolations between electrodes were calculated using triangulation-based cubic interpolation method. (E) Quantifications of frequency bands’ 
powers showed in (D) at different timepoints. Average powers among all electrodes were used for plotting. Red dotted plots show averaged SSS (from 
C). Data are represented as mean ± SD (in shaded areas). Powers at 21 hr and 28 hr are compared with the 4 hr ones using paired t-test with Bonferroni’s 
correction for multiple comparisons. Statistically significant points were labeled (*p<0.05; **p<0.01; ***p<0.001).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Demographic information of participants.

Figure supplement 2. All raw data of transcranial magnetic stimulation (TMS) measurements.

https://doi.org/10.7554/eLife.65099
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prominent feature associated with sleep onset (Finelli et al., 2001; Marzano et al., 2013), suggesting 
that the subjects did not fall in and out sleep. In sum, the self-report sleepiness and EEG patterns 
provided quantitative measurements of the degree of sleepiness in our subjects throughout the study.

Raw TMS measurements showed weak correlations to sleepiness
We performed TMS stimulation on subjects’ motor cortices on the left hemispheres and measured 
motor-evoked potentials (MEPs) in first interosseous dorsal (FDI) muscle on the right hand (Figure 2A 
and B, Table  1). On average, the minimal power necessary for eliciting reliable MEPs decreased 
after the subjects woke up and mildly increased after 21 hr (Figure 2C). The delay between TMS 
and MEP followed a similar pattern (Figure 2E). The increase of minimal power and delay time indi-
cates a reduction in excitability with prolonged wakefulness. However, individuals’ data often do not 
agree with the average trend (Figure 1—figure supplement 2), and correlations between individuals’ 
sleepiness score and these parameters showed wide ranges of variabilities (Figure 2D and F). The 
MT (motor response threshold) and MEP latency are influenced by the excitability along the corti-
cospinal tract. In contrast, the pair-pulse protocols reflect characteristics within the cortex. Among 
four types of pair-pulse protocols (SICF, SICI, ICF, and LICI; Figure 2G, J, M and P), SICI, ICF, and 
LICI showed strengthening trends on average, yet none were statistically significant (Figure 2H, K, 
N and Q), nor any showed consistent correlations to SSS (Figure 2I, L, O and R). In summary, raw 
TMS measurements showed weak correlation with sleepiness on average, with considerable variance 
among subjects.

Sleepiness states can be mapped to latent dimensions in TMS 
measurements
Considering the individual variability in the TMS measurements, we hypothesized that each subject 
may have certain intrinsic noise pattern and group averages do not separate these noises from under-
lying correlation between TMS and sleepiness. In order to explore whether TMS measurements 
encode sleepiness states, we performed a PLS regression using six TMS parameters as predictors and 
sleepiness scores as responses (15 subjects, Figure 1—figure supplement 2). When we mapped the 
non-sleepy states (SSS = 1 or 2, blue dots) and sleepy states (SSS = 5, 6, or 7, red dots) on the first two 
PLS dimensions, we found that the first dimension showed significant separation between these two 
states, and a mild-sleepy state (SSS = 3 or 4) showed an intermediate peak (Figure 3A). Interestingly, 
while the first dimension explained only ~13 % of the total data variance, other PLS dimensions did 
not show separation of sleepiness states, suggesting that indeed the TMS data contain high vari-
ance, and a particular linear combination of the parameters captures the association to the degree of 
sleepiness. In comparison, similar analysis using the power of different EEG frequency bands from the 
same subjects showed obvious separation between sleepy states and non-sleepy states, yet the mild 
sleepiness showed a bimodal distribution, rather than forming an intermediate cluster (Figure 3B). 
Our results indicated that EEG data exhibits a phasic switch to sleepiness, while TMS data showed a 
correlation to the degree of sleepiness.

In order to examine whether the observed correlations between sleepiness and TMS or EEG 
measurements are due to a confounding effect of circadian modulation, we conducted three groups 
of paired analyses for datapoints at 7 a.m. (sleep deprived 0 and 24 hr), 11 a.m. (sleep deprived 4 and 
28 hr), and 5 p.m. (sleep deprived 10 and 34 hr). The separation between no sleepy and sleepy states 
remained primarily consistent, except for the 5 p.m. group with TMS measurements (Figure 3—figure 
supplements 1 and 2). The lack of correlation in the 5 p.m. group could be due to a lack of sufficient 
variation in the sleepy states in this timepoint. These data indicate that after controlling for the circa-
dian modulation TMS and EEG measurements still correlate sleepiness.

TMS quantitatively predicts sleepiness
Based on the conclusion above, we further hypothesized that a mixed-effect model of TMS measure-
ments should be able to predict subjects’ sleepiness, while tolerating the high degree of inter-subject 
variability. We established a linear full model using data from 15 subjects with all six TMS measure-
ments to predict sleepiness scores (Figure 1—figure supplement 2), without considering any inter-
action among these measurements, and each subject was given a random effect on intercept. The 
model showed a statistically significant fit. We then performed backward variable selection based on 
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Figure 2. Averages of transcranial magnetic stimulation (TMS) measurements show weak correlations to sleepiness. (A) Position of TMS targeting. (B) 
Schematics of the TMS study design. The electroencephalogram (EMG) trace showed is for illustrative purpose only. (C) Averaged measurements of 
motor threshold. Data are represented as mean ± SD (in shaded areas). ANOVA test was applied to test the differences among timepoints; p-value 
is showed when statistically significant. (D) Distribution of the correlation coefficients between individuals’ sleepiness scores and motor threshold 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.65099
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F-test of the standard model information criterion (Figure 3C, plotting log likelihood as representa-
tive), and found that SICF and LICI can be eliminated without reducing the model performance. With 
the updated model, all four TMS parameters (MT, MEP latency, SICI, and ICF) showed statistically 
significant coefficients, and the predicted sleepiness showed high correlation to the reported sleepi-
ness (Figure 3D). Using the same coefficients on these four TMS parameters, we predicted the other 
23  subjects’ sleepiness (Figure  1—figure supplement 2), allowing a new random effect for each 
subject. Our prediction showed high degree of correlation to their reported sleepiness (Figure 3E), 
strongly indicating that these coefficients represent a stable pattern in the TMS that robustly 
correlated with the degree of sleepiness. Using these four parameters and data from all subjects, we 
performed fivefolded cross-validation of our model (Colby and Bair, 2013). Testing group showed 
performance close to the training group, while shuffled control generated chance-level prediction, 
further supporting the validity of our model. Similar analysis using TMS measurements from matched 
SSS states to predict time of the data showed no significant correlation (Figure 3—figure supplement 
2B), indicating that circadian modulation contributed minimally in the TMS variance in our dataset.

In addition to predicting subjective self-reported sleepiness, we explored the group-level correla-
tion between TMS and EEG measurements using canonical correlation analysis (Figure  3—figure 
supplement 3). We found that the most correlated mode between TMS and EEG is aligned with 
sleepiness, indicating that sleepiness is the primary covariate linking these two measurements. Finally, 
we applied the same mixed-effect regression using frequencies power averaged from all EEG elec-
trodes and plotted the variance in the predictions at each degree of reported sleepiness. Consistent 
with the PLS analysis (Figure 3A and B), averaged EEG showed a robust detection of sleepiness, but 
the gradient was not distinguishable (Figure 3F). Together, these analyses showed a robust signature 
of TMS that uniquely reflects the degree of sleepiness in human.

Furthermore, examining the coefficients in the four TMS parameters revealed that all of them 
were positive. Therefore, our data indicate that sleepiness is associated with increased MT and MEP 
latency, both pointing to a decrease in the corticospinal tract excitability. Sleepiness is also associated 

measurements (median in red line, 25% and 75% quantiles in dotted lines). One-sample t-test was used to compare the distribution to 0; p-value is 
showed when statistically significant. Equivalent to the formats of (C) and (D), later panels show data for motor-evoked potentials latencies (E, F), short 
interval intracortical facilitations (SICFs) (H, I), short interval intracortical inhibitions (SICIs) (K, L), intracortical facilitations (ICFs) (N, O), and long interval 
intracortical inhibition (LICI) (Q, R). For the four pair-pulse protocols, a schematic is showed for the respective protocol, (G) SICF, (J) SICI, (M) ICF, and (P) 
LICI. For all TMS measurements, N = 38 except for LICI (Q, R, N = 15, Figure 1—figure supplement 1). Statistical comparisons between sessions are 
reported in Figure 1—figure supplement 2.

Figure 2 continued

Table 1. The result of the Stanford Sleepiness Scales (SSS) and transcranial magnetic stimulation 
(TMS).

SSS MT (% MSO) MEP latency (ms) SICF ICF SICI LICI

38 38 38 38 38 38 15 n

2.68 ± 0.189 0.49 ± 0.02 21.67 ± 0.26 1.64 ± 0.10 1.14 ± 0.09 0.49 ± 0.04 0.39 ± 0.07 0 hr

1.76 ± 0.122 0.45 ± 0.02 21.46 ± 0.27 1.71 ± 0.13 1.29 ± 0.09 0.47 ± 0.05 0.35 ± 0.07 4 hr

2.26 ± 0.180 0.45 ± 0.02 2.43 ± 0.25 1.72 ± 0.08 1.27 ± 0.08 0.42 ± 0.04 0.31 ± 0.07 10 hr

2.34 ± 0.143 0.45 ± 0.02 21.48 ± 0.26 1.71 ± 0.11 1.39 ± 0.08 0.39 ± 0.04 0.26 ± 0.07 16 hr

3.74 ± 0.149 0.47 ± 0.02 21.91 ± 0.23 1.58 ± 0.08 1.46 ± 0.14 0.38 ± 0.03 0.24 ± 0.07 21 hr

4.50 ± 0.191 0.46 ± 0.02 21.86 ± 0.26 1.73 ± 0.11 1.46 ± 0.09 0.42 ± 0.03 0.25 ± 0.06 24 hr

3.79 ± 0.21 0.45 ± 0.02 21.66 ± 0.27 1.71 ± 0.0.9 1.33 ± 0.09 0.45 ± 0.04 0.31 ± 0.09 28 hr

3.32 ± 0.223 0.45 ± 0.02 21.62 ± 0.26 1.75 ± 0.14 1.31 ± 0.10 0.46 ± 0.04 0.26 ± 0.07 34 hr

MT: motor response threshold; MSO: maximal stimulation output; MEP: motor-evoked potential; SICF: short 
interval intracortical facilitation; ICF: intracortical facilitation; SICI: short interval intracortical inhibition; LICI: long 
interval intracortical inhibition.

https://doi.org/10.7554/eLife.65099
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Figure 3. Transcranial magnetic stimulation (TMS) measurements quantitatively predict the degree of sleepiness. (A) Partial least squares (PLS) 
regression of TMS measurements to sleepiness scores (15 subjects with eight timepoints each, N = 120 states). The plot shows a scatter plot of each 
state in the first two PLS dimensions (Stanford Sleepiness Scales [SSS] = 1 or 2 for non-sleepy state, blue dots; SSS = 3 or 4 for mild sleepy state, purple 
dots; and SSS = 5, 6, or 7 for sleepy state, red dots). The heatmaps show density plots of the blue and red dots. And the distributions along each 
dimension are plotted on top and right side of the plot. Student’s t-tests were used to compare the distributions between sleepy and non-sleepy states, 
with p-value indicated if statistically significant. (B) PLS regression of electroencephalogram (EEG) measurements (15 subjects with three timepoints 
each, N = 45 states), similar to panel (A). (C) Log likelihood of different regression models. Increase in absolute values indicates a worse fit. Dash line 
indicates the level of full model. All models were compared to the full model using F-test of all four information criteria: Akaike Information Criterion 
(AIC), Bayesian Information Criterion (BIC), log likelihood and deviance; with asterisks showing statistical significance. The red bar indicates the model 
chosen for later analysis. (D) Mixed-effect linear model fitting results from the training set (15 subjects with eight timepoints each, N = 120 states). 
Green line shows mean ± SEM of the model predictions. p-Values of each coefficient was showed. (E) Mixed-effect linear model fitting results from the 
testing set (23 subjects with eight timepoints each, N = 184 states). All coefficients were kept the same with the training set in (D), except allowing a new 
random effect on intercept for each new subject. p-value was calculated with a F-test of a linear regression between predicted values to reported values 
to show the slope is significantly different from 0. Inset in (E) shows average performance from fivefold cross-validation compared to shuffled control. (F) 
Comparison of mixed-effect linear model fittings between TMS and EEG measurements, with balanced dataset (15 subjects with three timepoints each, 
N = 45 states for both). Heatmaps were calculated by fitting a normal distribution density function with the predicted values at each reported value bin.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Partial least squares (PLS) regression of electroencephalogram (EEG) measurements to Stanford Sleepiness Scales (SSS).

Figure 3 continued on next page

https://doi.org/10.7554/eLife.65099


 Short report﻿﻿﻿﻿﻿﻿ Neuroscience

Chia, Tang, et al. eLife 2021;10:e65099. DOI: https://​doi.​org/​10.​7554/​eLife.​65099 � 8 of 14

with enhancement in both facilitatory (ICF) and inhibitory (SICI) pair-pulse effects, suggesting the 
strengthening of both excitatory and inhibitory synapses during prolonged wakefulness.

Discussion
The present study reported that a combination of four TMS parameters (rMT, MEP latency, SICI, ICF) 
could efficiently predict subjective sleepiness. The values of rMT and MEP latency together directly 
reflect and measure the excitability states of motor cortical region. Enhanced rMT has been reported 
using similar sleep-deprivation paradigm (Manganotti et al., 2001). And increases in cortical excit-
ability were reported using local EEG measurements of TMS-evoked responses (Huber et al., 2013). 
On the other hand, the pair-pulse parameters, SICI and ICF, reflect local changes in the cortex. SICI is 
believed to be mediated by GABAAR, and ICF is mediated by glutamatergic transmission, potentially 
through NMDAR (Van den Bos et al., 2018). Therefore, our study suggested that both excitatory 
and inhibitory synapses are strengthening with prolonged wakefulness. Previous studies demon-
strated that cortical excitability can be sensitive to many variables including age (Gaggioni et al., 
2019), attention (Cardone et  al., 2021), and circadian rhythm (Chellappa et  al., 2016; Ly et  al., 
2016). Among these, effects of circadian rhythm are challenging to disambiguate since sleepiness 
correlates to circadian factors (Figure 1). Thanks to the prolonged durations of our study, we were 
able to compare timepoints 24 hr apart (Figure 3—figure supplement 2), which were not available 
to previous studies (Chellappa et al., 2016; Ly et al., 2016). We found that the correlation between 
TMS measurements and sleepiness remains significant after controlling for the circadian factors; but 
TMS measurements do not show correlation to circadian timing within each SSS subgroup. These data 
strongly suggest that the variance in cortical excitability is primarily correlated with sleepiness in our 
dataset. However, in other situations with short or no sleep deprivation, it is still likely that circadian 
factors are correlated with cortical excitability.

This finding agrees with the general theme of the synaptic homeostasis theory of sleep: wakeful-
ness is associated with continuous strengthening of the synapses. Importantly, we provided an addi-
tional supplement to this theory that the synaptic strengthening does not only happen in excitatory 
synapses, but also in inhibitory synapses. Lacking the exact mechanism of these changes, it is possible 
the observed strengthening in both types of synapses was independently modulated by sleepiness 
or is due to the circuit response to changes in one type of the synapse in order to maintain the exci-
tation/inhibition balance (E/I balance). Thus, in contrast to the original prediction of the theory that 
sleepiness leads to overt hyperactivity, we showed that there is a robust E/I balance. Nevertheless, the 
strengthening of synapses while maintaining balance can still have a detrimental effect on the informa-
tion processing in the circuits, as demonstrated by multiple studies simulating these effects. Deviating 
from the optimal range of the synaptic strengths will lead to a reduction in the signal-to-noise ratio in 
individual neurons (Rubin et al., 2017), as well as the suboptimal sparseness and noise correlations in 
the population-wide coding (Zhou and Yu, 2018). Sleep, then, may depress these synaptic weights 
and restore the circuits to an optimal state (Kuhn et al., 2016).

While the above-mentioned modification of the synaptic homeostasis theory does not change 
the general framework of sleep function, it is worth noting that the difference is not just a pedantic 
discussion. Our finding predicts that general excitability will not be a reliable marker for sleepiness. In 
addition, if any intervention were to develop to relief sleep drive, our finding suggests that prolonged 
synaptic suppression will not serve a restorative function. These predictions differ from the ones 
posited from the original synaptic homeostasis theory and will have important implications in the 
future research on the monitoring and modulation of sleep states.

Finally, we reported that a linear combination of TMS parameters can predict the gradual extent 
for the degree of sleepiness, while using the averaged EEG data only categorically separated non-
sleepy and sleepy states. Although EEG was only recorded on three timepoints, limiting the TMS 
model using the same amount of data still produced a gradient prediction for the degree of sleepiness 
(Figure 3), suggesting that there is likely to be some intrinsic different modes of modulation to the 

Figure supplement 2. Controlling for circadian modulation of transcranial magnetic stimulation (TMS) measurements.

Figure supplement 3. CCA analysis between transcranial magnetic stimulation (TMS) and electroencephalogram (EEG) measurements.

Figure 3 continued

https://doi.org/10.7554/eLife.65099
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sources of EEG and TMS measurements by sleepiness. As many frequency bands are empirically and 
potentially mechanistically linked to neural network function (Başar et al., 2001; Klimesch, 1999), the 
binary switch of EEG states may reflect a robust scheme of neural computation up to a high degree 
of sleepiness, and the change in the EEG state is potentially more predictive to the cognitive func-
tion decline related to sleepiness, compared to changes in the TMS measurements. Yet the synaptic 
changes revealed by TMS measurements may represent a mechanism underlying the EEG state switch 
as the synaptic strengths could impose biophysical boundaries and stable-state landscapes that force 
the switch in rhythmic activities states. On the other hand, a previous EEG and intracranial recording 
study showed that sleep onset is associated with a strong theta rhythm in the occipital regions and 
an increase in alpha and beta rhythm in the frontal regions (Marzano et al., 2013), suggesting that 
sleep deprivation may lead to different changes in rhythmic activities and potentially excitabilities in 
different brain regions. It remains to be seen whether our current finding represents a general feature 
across the brain.

Although our sleep deprivation paradigm exceeded the duration of many previous studies, one 
limitation of the current study is the limited datapoints of level 6–7 sleepiness. While we observed 
robust correlation with SSS levels of 1–5, the statistical power for very sleepy states is lower. This may 
partially explain the lack of correlation in one of the subsets in our results (Figure 3—figure supple-
ment 2).

In conclusion, our study showed that the strengthening of both excitatory and inhibitory synaptic 
connections in the cortex can quantitatively predict the degree of sleepiness. This finding indicates 
a modification of the synaptic homeostasis theory of sleep and furthers our understanding of how 
sleepiness state modulates brain functions.

Materials and methods
Participants
Thirty-eight healthy participants (21 males, 17 females, age: 22.46 ± 0.29 years, age range: 20–27 years, 
Figure 1—figure supplement 1) with no history of sleep disorders (Pittsburgh Sleep Quality Index; 
Buysse et al., 1989), head trauma, psychiatric conditions, or any other chronic disease were recruited 
for present study. The subjects were free of medication and tobacco use. All participants wrote 
informed consent before the experiment; the study has been approved by the Ethics Committee of 
Huashan Hospital (2017-410).

Study flow
The subjects were asked to stay in their regular sleep pattern at least 1 week before the experiment, 
and the experiment would postpone if the participants have a cold or any other uncomfortable situa-
tion. The subjects arrived at the laboratory 1 day before the experiment for preparation and to adapt 
to the environment. They slept in the separate and quiet room for one night. They were asked not to 
use the alarm and are wakened by the researchers at 7 a.m. of the second day.

The study lasts for 34 hr, during which the subjects received eight times for SSS evaluation and 
TMS assessments, as well as three times resting-state EEG measurements (Figure 1). SSS was used in 
our study due to its wide usage in research, previous validation against objective measurements, and 
brevity (Hungs, 2012). During the study period, the subjects were not allowed engaging in vigorous 
exercise or taking coffee or tea, and were maintained awake by two independent researchers.

EEG recording and data processing
The EEG signal was recorded by EEG system of BrainAmp MR32, BrainProducts, using a 32-channel 
EEG cap. A specific electrode was used as the reference channel placed between Cz and Fz. Refer-
ence would then be transferred offline into overall average reference. Subjects were seated in a 
comfortable chair with a computer screen in front of them showing instructions when recording the 
resting state EEG. Subjects were asked to focus on a cross symbol on the screen for 5 min to record 
their open-eye EEG and followed by another 5 min of close-eye EEG epoch and then repeated for 
totally 20 min EEG recording with two episodes of open and close eye EEG, respectively. The EEG was 
acquired at 4, 21, and 28 hr from awake.

https://doi.org/10.7554/eLife.65099
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The collected EEG signals were processed 
offline using MATLAB (The MathWorks Inc, 
Natick, MA). Primary processing included eye-
blink correction, artifact rejection, segmenta-
tion, and band-pass filter. The eye-blinks were 
removed from the EEG signal in other channels 
to eliminate the effects of electro-ocular artifacts. 
High-frequency artifacts, such as muscle activity, 
and high-amplitude slow wave were rejected 
based on the automatic removal algorithm with 
an initial threshold of 70 μV, which would continu-
ously increase 5 μV at a time if more than 20 % of 
the data was rejected until the threshold reached 
150 μV. According to the study protocol, the EEG 
signal was then segmented by 1 min and following 
band filter of 0.5 –49 Hz as beta wave was often 

interested in sleep deprivation studies.
The EEG signals were decomposed into the delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and 

low-beta (12–20 Hz) frequency components, spectral power (μV2) of which was analyzed separately via 
fast Fourier transform (FFT) for overall average at the three timepoints, respectively.

TMS procedures
The subjects were seated on a comfortable chair in a silent environment. TMS studied was conducted 
with OSF–priming TMS (YRD CCY-IA, Yiruide Co., Wuhan, China) connected with a 70 mm figure-
of-8 coil (CCY-I TMS instrument, Yiruide Co.). The motor hotspot for FDI muscle on the contralateral 
hemisphere of primary motor cortex (M1) was defined with maximum MEP value. The MT is defined 
as the lowest density that can be evoked at least 5 MEP, with amplitude more than 50 μV in 10 times 
of successive stimulation with the relaxed recording muscle (Rossini et al., 2015). Then, the intensity 
of the test stimulation (TS) was determined when the average amplitude reached at 400–1000 μV. The 
TS was given 10 times continuously, and their latency and amplitude were recorded.

The paired-pulses TMS (ppTMS) included short interval intracortical inhibition (SICI), long interval 
intracortical inhibition (LICI), short interval intracortical facilitation (SICF), and intracortical facilitation 
(ICF). The ppTMS also included three controllable parameters, TS, conditioning stimulation (CS), and 
interstimulus intervals (ISI). The setting of ppTMS in this study is shown in Table 2 (Rossini et al., 2015; 
Lazzaro and Ziemann, 2013). Every index was repeated 10 times, and the single pulse of the TS was 
inserted between the pulses to guarantee the accurate stimulation site and the angle of the coil. The 
pause was set within 5–7 s between the pulses to make sure the excitability would not have been 
interfered by the last stimulation. The format of the index of the ppTMS is shown below. The 10 times 
stimulation of each index were averaged.

	﻿‍ ppTMS
(
%MEP

)
= amplitude of ppTMS

amplitude of TS × 100%‍�

Statistical analysis
The data were repeated measurement variables of single group. One-way ANOVA was used for statis-
tics, and the sample size was calculated based on the data from previous studies. TMS and SSS were 
repeated seven times and EEG three times. PASS 11 was used to calculate the sample size of 34 
(power = 0.9, α = 0.05 [double-sided]). If the lost rate was assumed to be 10%, then the sample size 
was 34/0.9 = 38 cases. In the actual study, 40 cases were included and lost 2 cases.

All statistical analyses were performed with GraphPad Prism (GraphPad Software LLC, USA). Paired 
t-tests were used in EEG dataset (Figure  1). One-way ANOVA was applied in the result of TMS 
measurements and one-sample t-test for the correlations between TMS and SSS (Figure 2). The statis-
tical significance threshold was set as two-tailed, p<0.05. F-tests were used in most of the model-
related coefficient comparisons (Figure 3). Data are presented as mean ± standard deviation or mean 
± standard error of the mean.

Table 2. The setting of the ppTMS.

SICI LICI SICF ICF

CS (%MEP) 70 120 90 70

TS (%MEP)
Average amplitude reached at 400–1000 

μV

ISI 2 150 1.5 15

ppTMS: paired-pulses transcranial magnetic 
stimulation; SICI: short interval intracortical inhibition; 
LICI: long interval intracortical inhibition; SICF: short 
interval intracortical facilitation; ICF: intracortical 
facilitation; MEP: motor-evoked potential; CS: 
conditioning stimulation; TS: test stimulation: ISI: 
interstimulus interval.

https://doi.org/10.7554/eLife.65099
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Partial least-square regressions were performed with MATLAB, using SSS as responses. In the case 
of TMS measurements, all six TMS parameters were used as predictors and output was set with five 
dimensions. In the case of EEG measurements, all four EEG bands were used as predictors and output 
was set with three dimensions. The correlation between SSS and the predictor scores for each output 
dimensions was examined, and the first two dimensions were plotted.

Mixed-effect linear regressions were performed with MATLAB, using SSS as responses. All parame-
ters were normalized to a 0–1 scale according to group extrema before used in the model. Pilot explo-
rations adding sex and age as predictor variables show no effect of these variables. Additionally, using 
all subjects’ data, all random effects and residuals follow normal distribution and are not correlated, 
suggesting compliance to the core assumption of the mixed-effect model. No interaction term was 
allowed, and the random effect was limited to only the intercept for each subject. Backward model 
selection was performed based on information criteria compared to the full model. It should be noted 
that parameters not selected may still change with SSS, but would not provide further information in 
a prediction model. To apply the fitted model in a new group, we calculated the fixed effects of each 
new subject using the fitted coefficients and then fit a new model adding only a random intercept for 
each new subject.

For cross-validation of our model, we adopted the methods described in a previous study (Colby 
and Bair, 2013). In brief, for each iteration, all subjects were randomly assigned into training (23 
out of 38) or testing (15 out of 38) group. Within training group, 18 subjects were used to estimate 
model coefficients. After freezing the fixed-effects coefficients, random effects were estimated for 
the remaining  five subjects and residuals from these  five subjects were used as model performance. 
This within-training group sampling was repeated 500 times and the best model is selected. Using 
the fixed-effect coefficients from this model, we re-evaluated the random effects from all 23 subjects 
and calculated the residuals as training group performance. And then we applied this model to 
the 15  subjects and calculated the random effects and residuals, which were recorded as testing 
group performance. This concluded one iteration of the cross-validation process. 500 iterations were 
performed on the dataset, and averaged performance was reported in the results. We conducted 
the same procedures in randomly shuffled SSS data, and the testing performance in that group is 
recorded. To estimate chance level, we draw 38 random number from 1 to 7 following a normal distri-
bution as model prediction and calculated the errors. This procedure was repeated 500 times to get 
an average chance level.
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