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Analytical proofs exploring the presence and features of symmetry and symmetry breaking in
various multisite phosphorylation networks

This text details the analytical arguments used to ascertain features associated with symmetry breaking and
the impossibility of the behavior in various MSP networks considered in the main text.

Models

The networks described in the main text are modelled as a system of ODEs (Refer to Fig 1 in the main text
for reaction scthematics and Appendix 2 Figure 10 for kinetic nomenclature of elementary reactions). We
use mass action kinetic description for reaction rates and the overall model is constructed as a combination
of such descriptions for the elementary reactions.

Cross Validation and Parameters

The models provided here in Maple have been analyzed and cross validated with results from Matlab
simulations and bifurcation computations using the Matlab package MatCont. Matlab and bifurcation
computations have in turn been cross validated with simulations from the software COPASI, which self
generates the ODE expressions based on a reaction schematic. The parameters used for generating the
figures are presented here (in addition to the being present in appendix 2). These parameters have been
used to perform an additional cross validation of the analytical work by mapping the presence and features
of symmetry breaking, as predicted by the analytical work and obtained in the computational analysis.

Organization of Results
The general organization of this Maple workbook is as follows. There are a total of 10 maple worksheets
organized across 5 folders.



Read Me (This file) : Contains the parameters used for generating the figures, and further cross validation
of the invariants and necessary conditions predicted by the analytical work.

Folder 2: Ordered distributive double site phosphorylation (DSP) models and triple site phosphorylation
(TSP) (2.1 - 2.3)

Folder 3: Random DSP (3.1 - 3.3)

Folder 4: Mixed-Random DSP (4.1 - 4.3)

Folder 5: Absolute Concentration Robustness (5.1)

Each of the folders contain the discussions and analytical work pertaining to the various models in that
category. For example, in Random folder: The three different models, corresponding to common kinase-
common phosphatase, separate kinase-common phosphatase and separate kinase-separate phosphatase
enzyme configurations, are presented in separate Maple documents labelled System 1, System 2 and
System 3. Within each of these models, the three different classes of symmetries, where applicable are
presented.

Necessary and Sufficient Conditions.

In this supplementary material, we provide analytical arguments regarding the presence and absence of
various cases of symmetry breaking in multiple DSP networks. In networks permitting symmetry
breaking, we obtain a necessary and sufficient condition for the behavior to manifest at some total substrate
concentrations, in terms of the kinetic parameters (and in some cases total enzyme concentrations).

These constraints act as sufficient conditions to ensure symmetry breaking behavior is seen for some finite
value of total substrate concentration (A, ,.,). The choice of bifurcation along A .., is due to its flexibility

in accommodating different classes of symmetry while changing. However the symmetry breaking can be

encountered upon bifurcation along any parameter of interest (kinetic or enzyme concentrations) provided
there is sufficient total substrate concentration.

Please note: This entire document is also presented in a PDF format and is available as Supplementary file
1.



Parameters

The parameters used in generating the figures are presented below. The kinetic nomenclature pertaining to
the specific system and class of symmetry is used below (refer main text, Fig 1D). As discussed earlier the
bifurcation is performed along A ., in these figures. A cross verification of the analytical results showing

that the necessary conditions for symmetry breaking are met is presented. The features of the symmetry
broken state as predicted by the analytical work is also presented.

Figure 2

A. Case 1 - Double site phosphorylation

restart .
kl = 0.1 :kbl =1 :kub[ = 1:
k2 = 0.5 :kb2 =1 :kubZ = 1:
PTotal = 0.1:

kb] kb2
C, = ., =

1

kl T kub] 2 k2 + kubZ .

Necessary and sufficient condition

Here we show that the necessary and sufficient condition for symmetry breaking (refer to
analytical work) is satisfied for the parameters used.

1k, >k
0.1 <0.5 (1.1.1.1)

Symmetry Breaking (Invariants and position of symmetry in the bifurcation diagram
along A, . 1)

The invariant in the asymmetric steady states in ordered distributive DSP post case 1 symmetry
breaking is the concentration of the partially modified substrate [Ap].
This is evaluated (based on the expression from the analytical work) for the kinetic parameters

used in generating the plot.

Ap = 0.3750000000 (1.1.2.1)



The intersection of the symmetric and asymmetric steady states on the bifurcation plot indicates
the presence of a pitch fork bifurcation.

Below, the position of this pitch fork bifurcation is evaluated (based on the expression from the
analytical work) for the kinetic parameters used in generating the plot.

2 2
y _ (_CICZPTotal_ch)kZ —kpe kT Pr ke
foral (k) —k) e ek,
ATotal = 3.245000000 (1.1.2.2)

B. Case1 - System 1 Random DSP

restart .
k] = 0.1 :kb] = I:kubl = 1:
k2 =1 :kbz =1 :kub2 = 1:
a, = 0.25 ta,, = lzaubl = 1:
a, = 0.4:ab2 =1 a,, = 1
Total =1
c kb] o = kbz
1 2
kl + kub] kz + kubZ
a a
dj ST E— :d2 = b2 :
a, +a,, a,+a,,

Necessary Constraint

Here we show that the necessary and sufficient condition for symmetry breaking (refer to
analytical work) is satisfied for the parameters used.

1. ¢, az(k2 — kl) + dzkz(az — al) >0
0 < 1.163636364 (1.2.1.1)

Symmetry Breaking (Invariants and position of symmetry in the bifurcation diagram
along Ay .,

The invariant in the asymmetric steady states in System 1 Random ordered DSP post case 1
symmetry breaking is the concentration of the partially modified substrates [A01] and [A10].
This is evaluated (based on the expression from the analytical work) for the kinetic parameters
used in generating the plot.
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¢k a
Al0 == -
¢, (((k] _kz) ¢ —d] kz) a, +d] kzal)
Al0 == 0.1626016260 (1.2.2.1)
0] = - dykya,
d2 ((d] (al — az) - az) k2 + ¢ kl az)
A0 == 0.6260162603 (1.2.2.2)

The intersection of the symmetric and asymmetric steady states on the bifurcation plot indicates
the presence of a pitch fork bifurcation.

Below, the position of this pitch fork bifurcation is evaluated (based on the expression from the
analytical work) for the kinetic parameters used in generating the plot.

2
Arorar = [dz (_Cz (¢; + dz) (¢1 Prosr T d; Pryar t 2) ky" — ek (¢; + d]) k

_ 4

c
2,2 2 I
te ok PTotal)aZ t2d, [[_7 2 ]k2+cld2k1PTatal c,kya,a,

+a12 Czd12 dzkzszomz]/((((_cz —a’])k2+c1 kjya,+a,d, kz)az (¢

+ d]) c, dz kz)
ATOW =3.922980457 (1.2.2.3)
C. Case 1 - System 3 Random DSP
restart .
k] = 0.1 :kb] =1 :kub[ = 1:
ky=1:k,=1:k,6, =1:
a, = 0.5:ab1 = lzaubj = 1:
a, = 1.5 tay, = 1 A, = 1:
P]Total =1
P2Total =
: kl + kub] 2 k2 + kubZ
R T B S .
I a4 +4a 2 a4 +4a ’
1 ubl 2 ub2

Necessary Constraint

Here we show that the necessary and sufficient conditions for symmetry breaking (refer to



analytical work) is satisfied for the parameters used.

L. kZ'P]Total > kl .PZTotal

0.1 < 1. (1.3.1.1)

2. aZ‘P2Total > al .P]Total

0.5 < 3.0 (1.3.1.2)

Symmetry Breaking (Invariants and position of symmetry in the bifurcation diagram
along Ay . 1)

The invariant in the asymmetric steady states in System 3 Random ordered DSP post case 1
symmetry breaking is the concentration of the partially modified substrates [A01] and [A10].
This is evaluated (based on the expression from the analytical work) for the kinetic parameters
used in generating the plot.

A0] = - k] PZTotal
) (kl P2y =k Plroar)
A01 == 0.2222222222 (1.3.2.1)
A10 = - a] P]Total
d2 (a] P]Total — 4 PZTotal)
Al10 == 1.250000000 (1.3.2.2)

The intersection of the symmetric and asymmetric steady states on the bifurcation plot indicates
the presence of a pitch fork bifurcation.

First we evaluate the value of [K2] and [P2] using the various correlations between the
substrates and free enzyme concentrations at steady state. Below we use the so/ve command in
Maple to evaluate the value for [K2] from the correlation obtained between [A01] and [A10]
earlier. We use additional arguments (use assumptions) to only obtain solutions for [K2] that
permit positive concentrations of free enzyme concentrations.

2
A0l K2 a,c, dl k2
dz
1.356801051 P2 (1.3.2.3)

5 , K2, useassumptions |assuming P2 > 0, K2 > 0
P2 ¢ k, a

K2 :

N

K2 = solve {AIO =

This gives us the value of o (the ratio of [K2]/[P2]). Using this in the expression for [P2]
obtained earlier from solving P2Con at the symmetric state, we get the concentration of [P2] to
be,

a, Pl = aP20,.,) (kz P2r i~k Pl

k, (a] o —a2) Pl . +a,P2

Total)
-0k, + k])

P2 = eval[— ,00=1.356801051

Total (
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P2 := 0.3324958070 (1.3.2.4)

K2 A01 c, k2
All i = ——
P2 ¢, k]
All == 1.658312396 (1.3.2.5)
00 = K2 A01 c, k2
P2 ¢, k]
A00 = 1.658312396 (1.3.2.6)

Using these values, the position of the pitch fork bifurcation is evaluated as shown below.

ATotal: [_([_202 ((PZ (k2+k1)01 +k2 (K2d1 + 1))K26’2

P2c]k] 5
+T)d2PZTotal —|-2P1Toml[((P2 (k]P2+K2 (k2+k1))c]
P2 ¢, k] P2 ¢, dz k]
+K2k2(K2d]+1))d2+T)c2+# a]P2T0ml

9 1
—2Pl, [~ P2c (P2d2+ 3) a, k2 czj]j/((k] P2,
—k, Plra) € 12 d, (a4 Plyyy — @ P27,,,) )

A, = 7221594080 (1.3.2.7)

D. Case 2 - System 3 Random DSP
restart .
k] = 2.35 :kb] = l:kubl =1
k2 = 0.46 :kb2 =1 :kubZ =1
k3 = 1.86 :kb3 =1 :kub3 =1
k4 = 1.1 :kb4 =1 :kub4 = 1:
PTatal = 1:
KTotal =1
ka kbz kb3 kb4
C = . = . C = . ¢C ==

: kl + kub] 2 kZ + kub2 o k3 + kub3 ! k4 + kub4 -

T Necessary Conditions



Here we show that the necessary and sufficient conditions for symmetry breaking (refer to
analytical work) is satisfied for the parameters used.

L. kl .KTotal > k4'PTotal

1.1 <235 (14.1.1)

2. k3'PToml > kZ.KTotal

0.46 < 3.72 (14.1.2)

Symmetry Breaking (Invariants and position of symmetry in the bifurcation diagram
along A, . )

The invariant in the asymmetric steady states in System 3 Random ordered DSP post case 2
symmetry breaking is the concentration of the partially modified substrate [A00] and [A11].
This is evaluated (based on the expression from the analytical work) for the kinetic parameters
used in generating the plot.

400 = k4 PTotal
cl (k] KTotal o k4 PTotal)
A00 = 2.948000000 (14.2.1)
A]] = - kZ KTotaZ
3 (kz Koot — K PTotal)
All == 0.9397142857 (1.4.2.2)

The intersection of the symmetric and asymmetric steady states on the bifurcation plot indicates
the presence of a pitch fork bifurcation.

First we evaluate the value of [K2] and [P2] using the various correlations between the
substrates and free enzyme concentrations at steady state. Below we use the so/ve command in
Maple to evaluate the value for [K2] from the correlation obtained between [A01] and [A10]
earlier. We use additional arguments (use assumptions) to only obtain solutions for [K2] that
permit positive concentrations of free enzyme concentrations.

A00K2* ¢ c. k k

K2 = solve| A1l = 5 r 272 , K2, useassumptions |assuming P2 > 0, K2 > 0
P2 ¢, k4 ¢y k3
K2 = 0.7009391379 P2 (1.4.2.3)

This gives us the value of € (the ratio of [K2]/[P2]). Using this in the expression for [P2]
obtained earlier from solving P2Con at the symmetric state, we get the concentration of [P2] to
be,

(kZ KTotal o k3 PTotal) (kl KTotal B PTotal k4)
P2 := eval , €=0.7009391379
Ky (€5 = k5) Ko = %5 Progar (€51 — %))
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P2 := 0.3778808204
K2 400 ¢, k,

A0l =
P2 ¢, k4
A0l == 2.767307716
K2 400 ¢, k]
Al = ——————
P2 ¢, k4
AlIO0 = 2.767307716

E. Case 2 - Mixed-Random 2 DSP
restart .

ky=2:k, =1k, =1:
k2 = 0.1 :kb2 = I:kubz =1

k3 = 0.75 :kb3 =1 :kub3 = 1:

k=1

PTOml = 0.2 :K]Toml = 0.1:

o Ky, - Ky - kys )
: kl + kubl 2 k2 + kubZ 3 k3 + kub3

\ 4 Necessary Conditions

analytical work) is satisfied for the parameters used.

Lk, <k
0.1 <2

PTotal k3 k4

0.0350 < 0.150

2.k Kl (ks k) <

Total

A = 2|1P2||K2 (k + k ) c,+ —
Total 2 4 1 1 2
P2 ¢, k4 ¢y k3
K2? ¢, ¢, kl k2
+ K2 ¢, kz) ¢, k] K2 ¢y + > A00
ATOml: 12.13682517

(1.4.2.4)

(1.4.2.5)

(1.4.2.6)

Using these values, the position of the pitch fork bifurcation is evaluated as shown below.

]c4k3P2+ ((K202+1)k3

(1.4.2.7)

Here we show that the necessary and sufficient condition for symmetry breaking (refer to

(1.5.1.1)

(1.5.1.2)



Symmetry Breaking (Invariants and position of symmetry in the bifurcation diagram

along ATotal)

The invariant in the asymmetric steady states in Mixed Random 2 ordered DSP post case 2
symmetry breaking is the concentration of the partially modified substrate [A00] and [A11].
This is evaluated (based on the expression from the analytical work) for the kinetic parameters
used in generating the plot.

k
A= ——F———
(k= k) ¢
A00 = 0.1578947368 (1.5.2.1)
Al] = - kZ k4 K]Total
2¢4 (kz Kl (k3 + k4) ~ Proar ks k4)
All=0.06603773585 (1.5.2.2)

The intersection of the symmetric and asymmetric steady states on the bifurcation plot indicates
the presence of a pitch fork bifurcation.

The position of the pitch fork bifurcation is evaluated (based on the expression from the
analytical work) for the kinetic parameters used in generating the plot.

— 2,3
Arorar = (_2 3 (k3 + k4) ((k1 + k4) ks + K, k4) ¢ ¢ Kl

2
Total) k3

Total

2 2
+2¢, (03 (¢) Prosar ks T h; (¢) Prog T 1) Ky + ¢, k7K1

1 1 1
+2 [(E ¢, CSPTotal+ 7 ¢, + ?c3j k4+01 c3k1K1Toml) k4k1 k3

2,2 2
Toepe kT k, KITotal) Kl ks =2k (03 (¢ Prosar ky+e kb Klp,. (

_K]Total CZ + CZ PTotal o

1 2, 2,2
+Ecz_2c3j]k4k1k2_2c1 sk KTk Pry (KITotalc2+2))/(2 (%

2)) ks +c k ky Klp,. (Cz 3 Prorar ~ €6 Kl gy

—ky)es ks (K (ks k) Klgyr = Proar ks Ky) Ky ep e, k)
ATotal = 2.668055280 (1.5.2.3)

Figure 3

A. Case 3 - System 1 Random DSP (Hopf and Pitchfork)

restart .



k] = IOO:ka = 100:kub1 = 1:
k2 = 2:kb2 =1 :kubZ = 1:
k3 = 0.01 :kb3 = IOO:kuM =1
k4 = 20:kb4 = O.I:kub4 =1
PToml = 1.25:
kbl kbz kbs kb4
C . = — . C = —— . C P

1::

- .C, : . - .
kl + kubl 2 k2 + kubZ 3 k3 + kub3 ! k4 + kub4

Necessary conditions

Here we show that the necessary and sufficient condition for symmetry breaking (refer to
analytical work) is satisfied for the parameters used.

Loeyk, (ky=ky) = ky (b, —k,) >0
0 < 3782.178218 (2.1.1.1)

Symmetry Breaking

The invariant in the asymmetric steady states in System 1 Random ordered DSP post case 3
symmetry breaking is the sum of the concentrations of the partially modified substrates [A01]
and [A10].

This is evaluated (based on the expression from the analytical work) for the kinetic parameters
used in generating the plot.

¢, ¢, k] k2 —cc, k3 k4

(((—c] —03)k4+c] k])k2+c3k3k4)c402
A0l + A10=11.01047120 (2.1.2.1)

A01 + AI10=

The intersection of the symmetric and asymmetric steady states on the bifurcation plot indicates
the presence of a pitch fork bifurcation.

Below, the position of the pitch fork bifurcation is evaluated (based on the expression from the
analytical work) for the kinetic parameters used in generating the plot.

ek Ky (K +hy) e +es (hy+ k)Y e’
2

Arpar = |2 (€1 k hy Fese, ks k) | -

3 2
+ |k kP, (kl—k4) (k1+k2)cl + (((—2k1—k3)k4+k1 (k1+k3))k2



+ (—k] (K, + ;) ke, + 2k k3) k, + &’ k, k4) P,

K (K —4Kk,) by =k, Je) ) &,

2
+ 5 ]CI tc;

(k= 2k5) k,+ky k) k2

kz((—4k = 3ky) ky + ky ky)
2 1 3 4 13
Total €3 T 3 ¢

k3
3k2 kz_? )
¢y k ¢,

+k ks (k= k) ky+ 2k kT k) P

2 Total 3 Total) 3 2

2 2
—k[(kP — kP ) et 2

¢ kzkl ((k] +k2) ¢, tc (k2+k3)) (Cl kl +c3k3)
2

k ko k, k
— k) (k) e+ (2(([%}—?3)1(42—%+k12k3]k2
k ke k, (k= 3k,)

k1k3k4(k1+k4) p + 17274
2 Total 63 2

2
02+

[k] k2 PTotal (k]

+

—2ky) k42 —ky (K + k) kK k32) ky + ky (K, + k) k42 +2k, k32 k4)PTomlc3

4k k, k

2 13

3k4 ((k —i——3 ) g, 3
— cl—k

2 4( Proar (K T k) (k= K3) <

k k, k
3 34 2
+[—2 +2k4] > ]03 k3 ¢,

k
[kz (k, = 3k,) e, = 3k,c, [kz—fj) (e +esk;)? J

2

+

0402

e

Ky ((k k) e+ ey (ks +k)) (e b +esky+e k) eshe J]
2
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k
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—k4)k201 —k403 (k —k3)) (c] kl +03k3) c,c,

2
A, = 1324004002

A. Case 3 - System 1 Random DSP (Tristability)

restart .

Ran

= 100:ka = lOO:kubI = 1:

k2 = 2:kb2 = I:kubz = 1:
k3 = 0.01 :kb3 = 100:kub3 = 1:
k4 = 20:kb4 = 0.1 :kub4 = 1:
PTotal =10
kb] ka kb3 kb4
T S e

kl + kub[ s k2 + kubZ 3 k3 + kub3 k4 + kub4 .

Necessary conditions

Here we show that the necessary and sufficient condition for symmetry breaking (refer to
analytical work) is satisfied for the parameters used.

Locyk, (ky—ky) =, ky (k= k) >0
0 < 3782.178218 (2:2.1.1)

Symmetry Breaking

The invariant in the asymmetric steady states in System 1 Random ordered DSP case 3 post
symmetry breaking is the sum of the concentrations of the partially modified substrates [A01]
and [A10].

This is evaluated (based on the expression from the analytical work) for the kinetic parameters
used in generating the plot.

¢, ¢, k] k2 —cc, k3 k4

(((—c] —c3)k4+c] k])k2+c3k3k4)c402
A0l + A10=11.01047120 (2.2.2.1)

A01 + AI10=

The intersection of the symmetric and asymmetric steady states on the bifurcation plot indicates



the presence of a pitch fork bifurcation.
The position of the pitch fork bifurcation is evaluated (based on the expression from the
analytical work) for the kinetic parameters used in generating the plot.

2 3
¢, k2 k] ((kl +k2) ¢, tc (k2+k3)) c,

2

Aporar = |2 (Cr ok Ry T ey ks ky) | -

+ | |k Ky Progar (K =K (K, +k2)c13 + [(((-2k1 —ky) ky + Ky (K, +k3))k22

+ (—k] (K, + ;) ke, + 2k k3) k, + &’ k, k4) P,

K (K —4Kk,) by =k, Je) ) &,

2
) ]CI tc;

+ (k= 2k5) k,+ky k) k2

k' ((4k =3 k) kK, k)

2 2
+k kg (ky— k) by + 2k ks k4)PTomlc3+ 5 ¢,
k
3k, [kz— %J
2 2 2
—k, (kz Proar =K PTotal) c; + B 5 ks | e,

17271

c k, k ((k]+k2)c]+03(k2+k3))(clk1+c3k3) 5

- 3 & T V5 Proar (K
k k,k, k
—k,) (k]+k4)c]3+(2(([—kl—%jk42—%+k12k3]k2
kkk(k-i—k) kkk(k—3k)
155K (M TRy 152 % 4 2
+ ) ]PTota163+ 5 ]C} T c (((_kl

=2k ) k2 =k (k) Rk k) kg (k) kP 2k kP k) P

4k k, k
2 3 173
3k, ((k]+—3 )kz— 3

2 ¢, —k, (PTotal (k5 + k4) (k, —k;) ¢

Total C3

k k, k
3 34 2
+[—2 +2k4jk2— ]c k,|c



k
3 2
[kz (k] —3k4)c] =3k, ¢ [kz_ ?]] (cjkl +03k3)
+ 5 c,C,
Lk (kR e e (k) (e k ekt k) e ke
2
([cl kyky ((k +hy) e +es (hy+k))e,” = (kz (k= 3k) e, =3k, (kz
k
3
—?j] (¢ ky+eshy) e ek, ((k+k) e+ (k3+k4))c3k3c42] ((k,
—k4)kzcl—k4c3 (kz—k3)) (c]k]+c3k3)c4czj
A, =28.25979662 22.2.2)

¥V B.Case3- System 3 Random DSP (Hopf)

restart .

k=150 1k, =100k, =
k2 = 50:kb2 =1 :kubZ =
kyi= 1k, =001k  =1;
k, =10k, =500k =
KITotal =1 :P]Total =1
KZTotal =1 :P2Total =

¥ B.Case3- System 3 Random DSP (PitchFork - Approximate robustness in A00 + A11)

restart .

k, =10k, = 1:k, = 1:
ky=1:k,, 1:kub2 =1
k—2k —lzkub3=1
k =5 kb4 l:k,, =1

K1 = 1:PI = 1:
| ota ota



Appendix 2 Figure 1

B. Case 2 - Mixed-Random 3 DSP

restart .
k, = py = Lk, =1
k, = Ky, =1:k,,=1
k3 = 2:kb3 = l:kub3 =1
k4 = 1:
KITotal = 0.1
kbl kbz kbs
C ' = ==

1::

-, .C . - . .
kl + kubl 2 kZ + kubZ . k3 + kub3

Necessary Conditions

Here we show that the necessary and sufficient condition for symmetry breaking (refer to
analytical work) is satisfied for the parameters used.

Ik <k,
0.8 < 0.9 (3.1.1.1)

Symmetry Breaking (Invariants and position of symmetry in the bifurcation diagram
along A ..

The invariant in the asymmetric steady states in Mixed Random 3 ordered DSP case 2 post
symmetry breaking is the concentrations of the partially modified substrates [A00] and [A11].
This is evaluated (based on the expression from the analytical work) for the kinetic parameters
used in generating the plot.

A]] = KITotal kZ
2k,
Al1=0.02000000000 3.1.2.1)
k
2
A00 =
(k= k) ¢
A00=15.20000000 3.1.2.2)

The intersection of the symmetric and asymmetric steady states on the bifurcation plot indicates
the presence of a pitch fork bifurcation.



The position of the pitch fork bifurcation is evaluated (based on the expression from the
analytical work) for the kinetic parameters used in generating the plot.

1

A =
Total 2(k1_k2)c] c, ks k,
2
_2k3)czk2k1_2K]Tom1k2 czczk3)

((K]Total (b, ¥ 2k;) e, H4k3) ¢ k12 — (Kl gy by €

Ay . =47.80888889 3.1.2.3)

Appendix 2 Figure 2

A. Case 3 - System 1 Random DSP (Hopf)

restart .

k] = IOO:ka = lOO:kubI = 1:
k2 = 20:kb2 =1 :kub2 = 1:

k3 = I:kb3 = lOO:kub3 = 1:
k4 = 2:kb4 =1 :kub4 = 1:
PTotal =1:

A. Case 3 - System 1 Random DSP (Hopf + Pitchfork : Oscillations - Dynamic response)

restart .

k] = 100:ka = IOO:kubI =1
kZ = 2:kb2 =1 :kubZ =1

k3 = 0.01 :kb3 = 100:kub3 = 1:
k4 = 20:kb4 = 0.1 :kub4 = 1:

P, =125:4, ~=1295:

A. Case 3 - System 1 Random DSP (Pitchfork)

restart .

k] = (.1 :ka = 1:kub1 =1
k2 = lzkbz = l:kubz =1
k3 = 2:kb3 = l:kubj’ =1
k4 = 5:kb4 = l:kub4 =1



Ky, ky, . kys k4

C, = - .C, = .C, = .
2 3 4
k] + kub] kZ + kubZ k3 + kub3 k4 + kub4

Necessary conditions

Here we show that the necessary and sufficient condition for symmetry breaking (refer to
analytical work) is satisfied for the parameters used.

Loocyk, (ky—ky) =, ky (k, = k) >0
0 < 2.787878788 4.3.1.1)

Symmetry Breaking (Invariants and position of symmetry in the bifurcation diagram
along A, . ))

The invariant in the asymmetric steady states in System Random 1 ordered distributive DSP
post case 3 symmetry breaking is the sum of the concentrations of the partially modified
substrates [A00] and [A11].

This is evaluated (based on the expression from the analytical work) for the kinetic parameters
used in generating the plot.

¢, ¢, k] k2 —cc k3 k4

(((—01 —c3)k4+01 kl)k2+03k3k4)c402
A0l + A10 = 2.586956524 4.3.2.1)

The intersection of the symmetric and asymmetric steady states on the bifurcation plot indicates
the presence of a pitch fork bifurcation.

The position of the pitch fork bifurcation is evaluated (based on the expression from the
analytical work) for the kinetic parameters used in generating the plot.

A01 + A10=

c, kK (5 + k) e+ e (k+k)) c,’

2

Arpar = |2 (€16 5k Fese, ks k) | -

3 2
+ |k kP, (kl—k4) (k1+k2)cl + (((—2k1—k3)k4+k1 (k1+k3))k2

+ (—k] (K, + ky) ke, + 2k k3) k,+ &k, k4) P, ¢



Ky (K —4Kk,) by =k k) ) &,
2

+ ]clz—i-c

L (k= 2k) b+ k k) b

kz((—4k =3 k) k, k)
2 1 3 4 173
+k ks (ks = k) by + 2k, k32 k4)PTOmlc3+ c,

2
k
3k, [kz—%)
2 2 2
—k, (kz Proar 55 PTotal) ;T 2 5 ks ley
clkzk]((k]-l—kz)c]—i-cs (k2+k3))(clk]+c3k3) 5
- 2 < KK Proar (K
k k, k k
—k,) (k]+k4)c]3+(2(([—k]—73)k42— e +k12k3]k2
kkk(k-l—k) kkk(k—3k)
13k (% Ty 1% % (% 4 2
+ 2 ]PTotalc3+ B ]cl T (((_kz

=2k )k =k (ky k) kR k) kg (k) kP 2k kP k) P

4k k. k
2 3 13
3k4 ((kl-i-T)kz— 3 ]
_ ¢, —

k k, k
3 3%y 2
+[—+2k4]k2— ]03 k,|c

Total C3

2
k4((k]+k4)cl+cs (k3+k4)) (c]k1+c3k3+c4k4)c3ksc4 J]
2

([cl kyky ((k +hy) e +es (hy k)Y e,” = (kz (k,—3k) e, =3k, (kz

ky

— ?)] (¢ ky+eshy) e ek, ((k+k)e +e (k3+k4))c3k3c42] ((k,
—k4) k2 ¢ —k4 ¢, (k2 —k3)) (c] k] + ¢ k3) c4czj

A, = 8713626644 4.3.2.2)



Appendix 2 Figure 3

Case 1 - System 1 Random DSP (Independent leg bifurcation)

restart .
k] —O.I:kb] =1 kubl =1
k2 = lzkbz = l'kubZ =1
PTatal =1:
. kbl . ka
1 2
kl + kubl k2 + kubZ
a=1l:a,=1:a, =1
ay=lia,=1:qa,,=1
a a
d1 _ b1 'dz — b2
a,*a,, a,+a,,

Necessary Constraint

Here we show that the necessary and sufficient conditions for symmetry breaking (refer to
analytical work) is satisfied for the parameters used.

1. ¢ aZ(kZ — kl) + alkz(az — al) >0
0 < 1.909090909 (5.1.1.1)

Symmetry Breaking (Invariants and position of symmetry in the bifurcation diagram
along A, . 1)

The invariant in the asymmetric steady states in System Random 1 ordered distributive DSP
post case 1 symmetry breaking is the concentrations of the partially modified substrates [A01]

and [A10].
This is evaluated (based on the expression from the analytical work) for the kinetic parameters
used in generating the plot.

171
c, (((k] _kz) c —d] kz) a, +d1 kza])
Al10 = 0.2222222222 (5.1.2.1)

c k a
A10 == - 2
1



d,kya,

d ((d] (a —az)—c a )k2+clk]a2)

1 1
A01 = 1.222222222 (5.1.2.2)

The intersection of the symmetric and asymmetric steady states on the bifurcation plot indicates
the presence of a pitch fork bifurcation.

The position of the pitch fork bifurcation is evaluated (based on the expression from the
analytical work) for the kinetic parameters used in generating the plot.

Arorar = [dz ('Cz (¢ +d)) (€1 Proar T 41 Progar T 2) k22 — ¢ k(¢ d))k,

“e kP *+2d a4, d, k, P k
TGk Total)aZ T2dp |\ " Ty Rt dyk Pry | G ka4,

+a12 CZdldekZZPTotal]/((((_cl _dz)k2+cz kl) a,+a,d, kz)az (¢
+d1) Czdzkz)

A, =5308243732 (5.1.2.3)

Appendix 2 Figure 4

Case 3 - System 3 Random DSP (PitchFork - Approximate robustness in A01 + A10)

restart .

k] = I:kbl = 10:kub] = 1:
k2 = 2:kb2 =1 :kubZ = 1:
k3 = I:kb3 = 10:kub3 = 1:
k4 = 2O:kb4 = l:kub4 = 1:
KlTotal =5 :P]Total =5
KZTotal =5 :PZTotal =5

Appendix 2 Figure 5
Case 2 - System 3 Random DSP (Approximate robustness in non exact symmetric state)

restart .



kZ = 1.1:kb2 :—l:kubz =1
k3 = 2.5:kb3 :—l:kub3 =1
k4'— 0.4:kb4:—1:kub4 =1
a, = l.25:ab1 =1 a,, =1
@, =1lua,, =1

a; = 2.5:ab3 =1 b3 =1
a, = 0.4:ab4 =1 a4 =1
KlTot [ =1 :P]Total =1

Exact symmetry used for comparison

k] = 1.25:kb] = l:kubl =1
k2 = 1.1 :kb2 = l:kubz =1
k3 = 2.5:kb3 ==1:kub3 =1:
k4 = 0.4:kb4 :—l:kub4 = 1:
K]T tal - 1:P]Tmal =1

Appendix 2 Figure 6

Approximate concentration robustness in near symmetric systems (Ordered DSP with
common kinase common phosphatase)

restart .

kb] = lzkubj = 1:

k2 = 0.5'kb2 = I:kubz =1

k3 = 0.1 kb3 = I:kub3 =1

k4 = 0.5 kb2 = I:kubz =1
Total = 0.1 :KTolal = 0.1

k1 is varied between 50% to 150% from it's symmetric value (0.1). All other parameters remain the
same as those used in Fig2A.

Appendix 2 Figure 7

A. Case 3 - System 1 Random DSP



restart .

k] = 30:ka = IOO:kubI =1
kZ = 2:kb2 =1 :kubZ =1

k3 = 0.3 :kb3 = 100:kub3 = 1:
k4 = 20:kb4 = 0.1 :kub4 = 1:
KlTotal =1 :P]Total =1

B. Case 3 - System 1 Random DSP

Same kinetic parameters as above

K1, ., =20:P]

Tota = 20:

Total *

Appendix 2 Figure 8

Case 1 - Triple site phosphorylation

restart .
k] = 0.1 :kb] = l:kub] = 1:
kZ = 1.5 :kbz =] :kubZ = 1:
k3 = 2:kb3 =1 :kub3 =1
Total =0.1:
kb] ka kb3
c,'= ——— ¢, = ————— C, =

1 -6 3 :
ky + Ky, ky + k) ky + ks

Necessary Constraint

Here we show that the necessary and sufficient condition for symmetry breaking (refer to
analytical work) is satisfied for the parameters used.

Lk, >k,
0.1 < 2. (10.1.1.1)



Symmetry Breaking (Invariants and position of symmetry in the bifurcation diagram
along A, . ))

The invariant in the asymmetric steady states in distributive ordered TSP post case 1 symmetry
breaking is the sum of the concentrations of the partially modified substrates [Ap] and [App].
This is evaluated (based on the expression from the analytical work) for the kinetic parameters
used in generating the plot.

A
¢ (k= k)
Ap + App = 0.1578947368 (10.1.2.1)

The intersection of the symmetric and asymmetric steady states on the bifurcation plot indicates
the presence of a pitch fork bifurcation.

The position of the pitch fork bifurcation is evaluated (based on the expression from the
analytical work) for the kinetic parameters used in generating the plot.

Ap + App =-

(20 c,c k2—2c c,c, k, k +201032k2—2c czkz)P

4 _ 1727371 172737173 1 173 73 Total
Total (kl — k3) ¢, ¢ (cz k, —c,k, +3c¢ k3)
2 2 2 24,2
N _CICZkI -I-c]c3k1 —3cjc3k1k3—0203k1k3+03 k1k3—303 k3
(kl —k3) ¢, ¢, (02 k] —c kl +3 (e k3)
ATOMZ 1.389543626 (10.1.2.2)

Appendix 2 Figure 9

Ordered DSP (Common kinase common phosphatase) - ACR with non-symmetric kinetics
along changing A

Total
restart .
k] = lzkbl = I:kubl = 1:
k2 :22:kb2 = I:kubz = 1:
k3 = O.S:kb3 = lzkub3 = 1:
k4 = 1.2:kb4 =11 :kub4 = 1:

K

Total =~

=1:

1 :PTotal :



kb 1 ka kb 3 kb4

cC == — = —— = —
] e LG 1Cy :
k] + kub] kZ + kubZ k3 + kubS k4 + kub4

V' Necessary and sufficient condition

Here we show that the necssary and sufficient condition for ACR in Ap is satisfied by the
parameters used.

k,P k, K

1 3" Total __ Total
¢ (K Koporar = %3 Prorar) ¢4 (Kporar 1 = Proar)
1.000000000 = 1.000000000 (11.1.1.1)

¥ ACR concentration of Ap
The ACR concentration of Ap (as seen in the analytical work in section 5.1) is thus given by,

k, P

3~ Total
c, (k K k,P )

2 P rotal — "3 1 Total
Ap = 1.000000000 (11.1.2.1)

__ This is verified in the compuatational result in the figure.

Ap =




Double Site Ordered Distributive Phosphorylation : Common
Kinase Common Phosphatase
Case 1 Symmetry - Present and Breaks

In this Maple file we analytically show the presence of symmetry breaking in ordered distributive DSP
network with common kinase and common phosphatase effecting phosphorylation and dephoshorylation
respectively. We do this by first describing the model as a system of ODEs and imposing the kinetic
constraints pertaining to case 1 symmetry. We further describe the enzyme and substrate conservations
associated with the model. By solving for the steady states of the system of ODEs we obtain relations
between substrate variables (concentrations) in terms of each other and the free enzyme concentrations. In
ordered distributive DSP (with common kinase common phosphatase), K- .., = P, a1 1 required for exact

case 1 symmetry to be present. We use this information to get a further simplified expression describing all
possible steady states of the system. With case 1 symmetry in the ordered distributive MSP, the free
enzyme kinase and phosphatase share a strict symmetry in the symmetric steady state ([K] = [P]). Thus by
isolating steady states not of this type from the earlier correlation, we ascertain the features of the
asymmetric states emerging from symmetry breaking. This procedure is carried out in detail below using
built in Maple commands.

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt
Maple functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with(LinearAlgebra) : with(VectorCalculus) : with (Student| LinearAlgebra]) :

The system is modelled as a set of ODEs using the kinetic nomenclature described in the main text
and supplementary figure (refer to Appendix 2 figure 10). Here dA represents d[A]/dt and
similarly in the case of the other variables. At steady state thus, the right hand sides of each of
these expressions will be equal to zero.

d4d =k, ApP + k ,  -AK -k, -4-K:
ddp == k,-AK + k;-AppP +k ,,-ApK + k , ~ApP — k, ,-Ap-K —k, ,~Ap-P:
ddpp = k,-ApK + k , .-AppP -k, ,-App-P:

dAK =k, ,-AK - (k +k )-AK:

ubl 1
dApK =k, ,-Ap-K - (kubZ + kz) ‘ApK :
dAppP = k, ;-App-P - (kub3 + k3) -AppP :
dApP =k, ,~Ap-P - (kub4 + k4) -ApP :

dK = -k, AK + (k,, +k)AK =k, Ap-K + (k,,+k)-ApK:
dP = -k, y-App-P + (k5 + k;)-AppP — k- Ap-P + (k,,, + k,)-ApP:

The model is also associated with conservation conditions which are described below. Here we
store the conservation expressions as ACon, PCon and KCon for the substrate and the respective
enzymes. Each of these expressions is always equal to zero (both in the transient behavior and at
steady state).



ACon = A4 — A— Ap — App — AK — ApK — AppP — ApP :

Total
PCon == P,  — P— AppP — ApP:
KCon ==K, - K—AK—ApK:
otal

Kinetic constraints for case 1 symmetry (refer main text) are imposed on the original model.

by = ky ks =k =k
ky=kyih,y, =k, ik, =k,

In addition to the kinetic constraints the total enzyme concentrations of kinase and phosphatase
also need to be equal for exact case 1 symmetry to be present. This is imposed as shown below.

KTotal = PTotaI:

At this stage we introduce auxiliary constants ¢, and ¢, in place of the binding constants so as to
make further analytical expressions more accessible.

Ry =cp (Kt k)

Ky = ¢y (ky t k)

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In
this context we want to solve all variables in terms of the concentrations of the free enzymes (|[K] &
[P]) and the concentration of the partially modified substrate ([Ap]). In order to do this, we use
the Maple command solve, which solves the supplied equation for a given variable. We first solve
for the individual complexes using their corresponding differential equation. An example of this
(using [AK]) is given below in detail.

The differential equation of [AK] is given by,

d [AK]
dt

=dAK

d[AK]
=y (Kt ) AK = (K, +h) 4K 1)

The solve command by Maple, solves this equation for the given variable (in this case [AK]). We in
turn store this value (the solution returned by the solve command) in [AK]. This is performed by
the following command.

AK = solve(dAK, AK)
AK == KAc, 2)
This operation is repeated for the other complexes and substrate forms as well.

ApK = solve(dApK, ApK) :



AppP = solve(dAppP, AppP) :
ApP = solve(dApP, ApP) :

A = solve(dA, A) :
App = solve(dApp, App) :

Doing this results in the following correlations between the concentrations of the various substrate
forms at steady state.

KApc, k,
App = —
¢, Pk,
PApc,k
Y= 22
¢, Kk,

Proof for invariant in the asymmetric branches

We know that PCon and KCon are both individually always equal to zero. Thus at a given
steady state, PCon - KCon must also be equal to zero.

We thus introduce the term T = (KCon - PCon) = 0 and also introduce a new ratio, € = [K]/[P].
Note: As discussed in the main text, the symmetric steady state is one where [K] = [P] or € = 1.
Since we are isolating solutions of asymmetry, we are primarily interested in solutions that
permit, € # 1.

T := KCon - PCon=0:

K:=¢eP:

The following Maple command (simplify), simplifies the expression algebraically.
P(Ap (kl _kz) ¢, —|—k1) (e—1)

simplify (T) = - i =0
1

From this we can ascertain that, should an asymmetric steady state exist (where € # 1) - the

term (Ap (kl — k2) ¢, + k,) in the expression needs to be zero. We note that this term is a

expression in the partial substrate form [Ap] and Kinetic constants. Thus solving this to isolate
the partial substrate form we get the following. Here we use the solve command from Maple to
solve T for [Ap] as shown below.

Ap =solve(T, Ap)

k,

Ap= -
(k= k) <,

(1.1)

Thus we can see that in an asymmetric steady state, the value of the partially modified
substrate is fixed and is given by the above expression involving only a few key Kinetic



parameters.

Necessary conditions for symmetry breaking

Since substrate concentrations are always positive, the expression in equation 1.1 should be
positive. As the involved terms (kinetic constants) are by definition positive, we get the
necessary condition for asymmetric states to exist as follows.

1. k, >k
Sufficiency of necessary conditions

In this section of the proof we show the necessary conditions shown above are also sufficient
for an asymmetric steady state to exist for some positive A, .. value. i.e. We show that upon a

bifurcation along A, .. we are bound to encounter symmetry breaking provided the necessary

Tota
conditions are satisfied. Note that a feasible steady state in this context is one in which the
concentrations of all substrates, complexes and enzymes are positive.

We do this by showing that the asymmetric states defined by the invariant concentration of
[Ap] described above is indeed a feasible solution for the system of ODEs at some positive

ATotal value.

In an asymmetric steady state, as seen above the concentration of [Ap] is fixed by a few Kkinetic
constants,

Ap::— = -

The other variables in this asymmetric state are thus given by (we obtain this by using the
correlation obtained earlier between the different concentrations)

A= - 4
(k]—kz)c]e
p ekz
pp = -
(k= k) ¢
Pk2
AK = -
kl_kZ
ePk[
ApK = -
kz_kz
Pek2
AppP = -
pp k — k



ApP = -
k] _kz

The system of ODE is also satisfied at this point, as is verified below.

simplify(dA) =
simplify (dAp) = 0
simplify (dApp) =
simplify (dAK) =
simplify (dApK) = O
simplify (dAppP) = 0
simpllﬁ/(dApP) =0
simplify (dK) =
simplify(dP) =

Hence all that remains to be shown is that the variables (as described above) are positive for

some value of ATotal.

This is true if and only if
1. Necessary condition (&, > kz) is satisfied

2. P and e are positive.

Now by using the total conservation of phosphatase in the system (PCon = 0), we obtain an
algebraic expression for [P] in terms of P .|, Kinetic constants and € as shown below. The

Maple command solve is used for this purpose.

Proal (k1 o kz)

kZ (e+1)

P := solve(PCon, P) = -

Hence if € is positive P is automatically positive (provided necessary conditions are satisfied).

Thus this means that for every value of € # 1, all concentrations are positive and the
conservation of kinase and phosphatase is also satisfied.

Since the concentrations are all positive there exists a unique finite A ., value for the given ¢
(permitting asymmetric states).

Hence we have proved that symmetry breaking is guaranteed for some finite positive A ..,

provided the necessary conditions above are satisfied - making those conditions sufficient for
the behavior.

Prediction of position of pitchfork bifurcation along A ..,

Here we predict the value of A, .., at which symmetry breaking occurs via a pitchfork

bifurcation. This point in the bifurcation is characterized by the intersection of both the
symmetric steady state branch and the asymmetric steady state branches.



Hence at the position of symmetry breaking, we know two facts.

1. The system is still symmetric, hence [A] = [App] and [K] = [P].
2. The invariant describing the asymmetric steady state is also true.

Using these two information, we can simplify the original system considerably as follows.

K:=P:e:=1:

k,

(kz _kz) ¢,

Now, by solving the conservation expression for the substrate we can isolate the value of A .,

Ap = -

when the asymmetric steady states and the symmetric steady state intersect (indicating the
pitchfork bifurcation point)

Ay = simpllﬁ/(solve(simphﬁ/(ACon ) ATotal) )
2 2
y _ (7€ Pryq —26) Ky — ke ky+ Pr kg6
Total (k[ —k ) CI CZ k2

4.1)
2

A cross verification of this analytical work is carried out in the read me file for the parameters
used in generating the figures (Fig 2A).



Double Site Ordered Distributive Phosphorylation : Separate
Kinase Separate Phosphatase
Case 1 Symmetry - Present and Cannot Break

In this Maple file we analytically show the infeasibility of symmetry breaking in ordered distributive DSP
network with a unique kinase and unique phosphatase effecting phosphorylation and dephoshorylation on
each modification site. We do this by first describing the model as a system of ODEs and imposing the
kinetic constraints pertaining to case 1 symmetry. We further describe the enzyme and substrate
conservations associated with the model. By solving for the steady state of the system of ODEs we obtain
relations between substrate variables (concentrations) in terms of each other and the free enzyme
concentrations. In ordered distributive DSP (with separate kinase separate phosphatase), K1

and K2 Total

further simplified expression describing all possible steady states of the system. By subsequently
analyzing the steady state of the system using the conservation conditions, we show that a steady state
violating case 1 symmetry between [A] and [App] is not possible in this network for any choice of kinetics
or total enzyme concentrations, thus ruling out symmetry breaking.

Total 1)2T0tal
Pl 1s required for exact case 1 symmetry to be present. We use this information to get a

We initialize the maple file with the restart command and load the relevant libraries of inbuilt
Maple functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with(LinearAlgebra) : with(VectorCalculus) : with(Student| LinearAlgebra]) :

The system is modelled as a set of ODEs using the kinetic nomenclature described in the main text
and supplementary figure (refer to Appendix 2 figure 10). Here dA represents d[A]/dt and
similarly in the case of the other variables. At steady state thus, each of the right hand sides of
these expressions will be equal to zero.

d4 =k, -ApPl + k , -AKI -k, ,-A-KI :
ddp = k-AKI + k,-AppP2 + k ,,-ApK2 + k , ~ApPl - k, ,"Ap-K2 — k, ,-Ap-PI :
ddpp = k,"ApK2 + k , .-AppP2 - k, ,-App-P2 :

dAK] =k, ,-A-KI - (kubl + kl)-AK] :
dApK2 = k, ,"Ap-K2 - (kubZ + kz) ‘ApK?2 :
dAppP2 := k, ,-App-P2 - (kub3 + k3)-AppP2:
dApPl =k, ,-Ap-PI - (kub4 + k4)-ApP] :

dK1 = -k, ,-A-KI + (kubl + kl)-AKI :
dK2 := -k, ,-Ap-K2 + (kubZ + kz) ‘ApK?2 :
dP2 = -k, ,-App-P2 + (kub3 + ks) ‘AppP?2 :
dPl == -k, ,~Ap-Pl + (kub4 + k4)-ApP] :

The model is also associated with conservation conditions which are described below. Here we
store the conservation expressions as ACon, P1Con, P2Con, K1Con and K2Con for the substrate



and the respective enzymes. Each of these expressions is always equal to zero (both in the transient
behavior and at steady state).

ACon = A, .~ A—Ap — App — AKI — ApK2 — AppP2 — ApPI :
PiCon == Pl  — Pl —ApPI:
KiCon == Kl, . — KI —AKI:
otal
pP2Con == P2,  — P2— AppP2:
K2Con = K2, . — K2 —ApK2:
otal

Kinetic constraints for case 1 symmetry (refer main text) are imposed on the original model.

by i=ky ks =k k=
ky=kyik,y, =k, ik, =k,

In addition to the kinetic constraints the total enzyme concentrations of corresponding kinases
and phosphatases also need to be equal for exact case 1 symmetry to be present. This is imposed
as shown below.

K1
K2

Total = P2
= PI

Total *

Total * Total *

At this stage we introduce auxiliary constants ¢, and c, in place of the binding constants so as to
make further analytical expressions more accessible.

kyp=cp (b ke
o

kpy = ¢y (ky +kyp,) e

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In
this context we want to solve all variables in terms of the concentrations of the free enzymes ([K1],
[K2], [P1] and [P2]) and concentration of the partially modified substrate (JAp]). In order to do
this, we use the Maple command solve, which solves the equation supplied for a given variable. We
first solve for the individual complexes using their corresponding differential equation. An
example of this (using [AK1]) is given below in detail.

The differential equation of [AK1] is given by,

d[AKI] d[AKI]
o =dAKl ey (k,,, T k) AKL = (k,,, + k) AK]

The solve command by Maple, solves this equation for the given variable (in this case [AK1]). We
in turn store this value (the solution returned by the solve command) in [AK1]. This is performed
by the following command.

AK]I = solve(dAKI, AK1)
AK1 == Kl Ac, 1



This operation is repeated for the other complexes and substrate forms as well.

ApK?2 = solve(dApK2, ApK?2) :
AppP2 := solve(dAppP2, AppP2) :
ApPl = solve(dApPl, ApPl) :

A = solve(dA, A4) :
App = solve(dApp, App) :

Doing this results in the following correlations between the concentrations of the various substrate
forms at steady state.

Pl Apc, k,
¢, Kl 'k,
K2 4p c, k,

P2 ¢ k]

App =

Proof for infeasibility of symmetry breaking

We know that P1Con, K1Con, P2Con and K2Con are all individually equal to zero always.
Thus at a given steady state, [K2Con - P1Con] and [K1Con - P2Con]| must also be equal to
zero. We thus introduce terms T = (K2Con - P1Con) = 0 and Q = (K1Con - P2Con) = 0.

T := (K2Con — PICon) =0:
Q = (KiCon — P2Con)=0:

Simplifying T = [K2Con - P1Con] using the simplify command, we get the following expression.

simplifp(T) ~(K2 = PI) (Apc, + 1) =0

Since all kinetic constants and concentrations of variables are positive, in order for T to be
equal to zero, [K2] is necessarily equal to [P1]. Using this information and simplifying Q =
[K1Con - P2Con] = 0 we get the following expression.

K2 = PI:
simplify(Q) -KI +P2=0

Thus [K1] is equal to [P2] at any given steady state. Using this information, the earlier
expression for [A] and [App] reduces to the following.

K1 = P2:

_ Pldpe,k,
¢ P2 k/



Pl Apc, k,
App = —————
¢, P2k,

Thus we can see that irrespective of enzyme concentrations and Kinetic parameters, [A] is
always equal to [App]. i.e. There is no possibility of an asymmetric branch in this model

implying infeasibility of symmetry breaking.



Triple Site Ordered Distributive Phosphorylation : Common
Kinase Common Phosphatase
Case 1 symmetry - Present and Breaks

In this Maple file we analytically show the presence of symmetry breaking in ordered distributive TSP
network with common kinase and common phosphatase effecting phosphorylation and dephoshorylation
respectively. We do this by first describing the model as a system of ODEs and imposing the kinetic
constraints pertaining to case 1 symmetry. We further describe the substrate and enzyme conservations
associated with the model. By solving for the steady state of the system of ODEs we obtain relations
between substrate variables (concentrations) in terms of each other and the free enzyme concentrations. In
ordered distributive TSP (with common kinase common phosphatase), K ... = P ., 18 required for exact

case 1 symmetry to be present. We use this information to get a further simplified expression describing all
possible steady states of the system. With case 1 symmetry in the ordered distributive MSP, the free
enzyme kinase and phosphatase share a strict symmetry in the symmetric steady state ([K] = [P]). Thus by
isolating steady states not of this type from the earlier correlation, we ascertain the features of the
asymmetric state emerging from symmetry breaking. This procedure is carried out in detail below using
built in Maple commands.

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt
Maple functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with(LinearAlgebra) : with(VectorCalculus) : with (Student| LinearAlgebra]) :

The ordered distributive TSP system is modelled as a set of ODEs using the kinetic nomenclature
described in the main text and supplementary figure (refer to Appendix 2 figure 10). Here dA
represents d[A]/dt and similarly for other expressions. At steady state thus, each of the right hand
sides of these expressions will be equal to zero.

d4 =k, -AK + k -ApP -k, ,-4-K :

ddp = k -AK + ky-AppP + k , ,-ApK + k , -ApP - k, -Ap-P -k, ,"Ap-K :

dApp = k,-ApK + k,-ApppP + k , ,-AppK + k , .-AppP - k, ,-App-K - k, ;-App-P:
dAppp = ky-AppK + k , ,-ApppP - k, ,-Appp-P:

dAK =k, ,-A°K - (k +k )-AK:

ubl 1
dApK =k, ,"Ap-K - (kubZ + kz)-ApK:
dAppK = k, ;- App-K - (kub3 + k3)-AppK:
dApppP = k, ,-Appp-P - (kub4 + k4) ‘ApppP :
dAppP = k, ;-App-P - (kub5 + ks)-AppP:
dApP = k, -Ap-P - (kub6 + k6) “ApP :

dK = -k, ,-A'K - k, ,-Ap-K - k, ,-App-K + (kubl + kl)-AK + (kubZ + kz)-ApK + (kubS’ + k3)
-AppK :
dP = -k, Appp-P - k,s-App-P -k, ;-Ap-P + (kub4 + k4) ‘ApppP + (kub5 + ks)-AppP + (kub6



+k6)-ApP:

The above equations are also associated with conservation conditions which are described below.
Here we store the conservation expressions as ACon, PCon and KCon for the substrate and the
respective enzymes. Each of these expressions is always equal to zero (both in the transient
behavior and at steady state).

ACon = A, . —A—Ap — App — Appp — AK — ApP — AppP — ApppP — ApK — AppK :
KCon ==K,  —K—AK— ApK — AppK :
PCon = P, — P— ApP — AppP — ApppP:

Kinetic constraints for case 1 symmetry (refer main text) are imposed on the original model.

ky =tk ik, =k ik, =k,
ks = ky ks =k, ks =k,
ks =Ty ik s = k,5 ks = Ky3:

In addition to the Kinetic constraints the total enzyme concentrations of kinase and phosphatase
need to be equal for exact case 1 symmetry to be present. This is imposed as shown below.

K

Total = PTolal :

At this stage we introduce aucxiliary constants c,, ¢, and ¢, in place of the binding constants so as
to make further analytical expressions more accessible.
k, , =

b1 =€ (K T k)
kpy = ¢y (ky +kyp,) e
ko = 5 (ks + k)

b3

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In
this context we want to solve all variables in terms of the concentrations of the free enzymes ([K] &
[P]) and the concentration of the partially modified substrate ([Ap]). In order to do this, we use
the Maple command solve, which solves the equation supplied for a given variable. We first solve
for the individual complexes using their corresponding differential equation. An example of this
(using [AK]) is given below in detail.

The differential equation of [AK] is given by,

lAR]_ ¢, (kupy TH)AK— (K,

d [AK]
=dAK + k,) AK
dt dt )
The solve command by Maple, solves this equation for the given variable (in this case [AK]). We in
turn store this value (the solution returned by the solve command) in [AK]. This is performed by
the following command.



AK = solve(dAK, AK)
AK =K Ac, )

This operation is repeated for the other complexes and substrate forms as well. Here we
simultaneously solve expressions for the substrate forms using the so/lve command as shown
below. The solution is stored in a variable labelled So/, and then the respective solutions of the
substrate concentrations are extracted from this vector using the eval command.

ApK = solve(dApK, ApK) :
AppK = solve(dAppK, AppK) :
ApP = solve(dApP, ApP) :

AppP = solve(dAppP, AppP) :
ApppP = solve(dApppP, ApppP) :

Sol == solve({dA, dAppp, dApp}, {4, Appp, App}) :

A = eval (A4, Sol) :

Ap = eval(A4p, Sol) :
App = eval(App, Sol) :
Appp = eval(Appp, Sol) :

Doing this results in the following correlations between the concentrations of the various substrate
forms at steady state.

PApc,k
A=——
Kc, k,
Ap = Ap
Ap K
A _
pp p
Apch3k3

Appp = —
chl kl

Proof for invariant in the asymmetric branches

We know that PCon and KCon are both individually equal to zero always. Thus at a given
steady state, PCon - KCon must also be equal to zero.

Here we introduce the term T = (KCon - PCon) = 0 and also introduce a new ratio, € = [K]/[P].
Note: As discussed in the main text, the symmetric steady state is one where [K] = [P] or € = 1.
Since we are isolating solutions of asymmetry, we are primarily interested in solutions that
permit, € # 1.

T := KCon - PCon=20:
K:=¢eP:



The following command (simplify), simplifies the expression T algebraically as shown below

A +1) (k, —k)c,+ k)P (e—1
simplify(T) = - ( Pl )( ! ;)63 ]) € ! =0
1

From this we can ascertain that, should an asymmetric steady state exist (where € # 1) - the

expression Ap (e + 1) (k1 — k3) ¢, + k, needs to be zero. This term is an expression involving

of the concentrations of the partial substrate form, € and Kinetic constants. Thus solving this to
isolate the partial substrate form in terms of the kinetic parameters and ¢, we get the following.
Here we use the solve command from Maple to solve T for [Ap].

k,

(ek] —ek3 +k] _ks) (e

Ap = solve(T, Ap) = -

Using this information, we evaluate [App] from the correlations obtained earlier

k]e
(ekl —ek3 +k1 —k3) ¢,

App = -

We can see a pattern here. Adding [Ap] and [App] we get,

simplify (Ap + App)

k;

T (1.1)

Thus we can see that in an asymmetric steady state, the sum of the partially modified
substrates is fixed and is given by the above expression involving only a few key kinetic
parameters.

Necessary conditions

Since substrate concentrations are always positive, the expression in equation 1.1 should be
positive. This gives us the necessary condition for an asymmetric state to exist as follows.

1. ky > k
Sufficiency of necessary conditions

In this section of the proof we show the necessary conditions shown above are also sufficient
for an asymmetric steady state to exist for some positive A .. value. i.e. We show that upon a

bifurcation along A, ... we are bound to encounter symmetry breaking provided the necessary

conditions are satisfied. Note that a feasible steady state in this context is one in which the
concentrations of all substrates, complexes and enzymes are positive.



We do this by showing that the asymmetric states defined by the invariant concentration of
[Ap] and [App] described above is indeed a feasible solution for the system of ODEs at some
positive A, ., value.

In an asymmetric steady state, as seen above the concentration of [Ap] and [App] are fixed by
a few Kkinetic constants,

k; k,
Ap = simplify| - = -
(ek]—ek3+k]—k3)c3 (e+1)(k1—k3)c3
k, € k, €
App = simplify| - = -
(ekj—eks,—l—k]—kj)cs (e+1)(k1—k3)03

The other variables in this asymmetric state are thus given by (we obtain this by using the
correlation obtained earlier between the different concentrations)

k3
(et 1) (K, — k) ec,
62k3
Appp = -
(e+1) (k, —k;) ¢,
Pk3
(e+1) (k= ky)
ePk, c
1 72
ApK = -
(e+1)(k1—k3)c3
esz[
AppK = -
(e+1) (k, — k&)
Pezk3
ApppP = -
(e+1) (k, — k)
ePklc2
AppP = -
(e+1) (kj—ks)cg
Pkl
ApP = -

(e+1) (kz _ks)
The system of ODE is also satisfied at this point, as is verified below.

dA) =0
ddp) =0
dApp) =0
ddppp) =0
dAK) =0
dApK) =0

simplify
simplify
simplify
simplify
simplify
simplify

., o o—



simplify (dAppK) = 0
simplify (dApppP) = 0
simplify (dAppP) = 0
simphfy(dApP) =0
simplify (dK) =
simplify (dP) =

Hence all that remains to be shown is that the variables (as described above) are positive for

some value of ATotal.

This is true if and only if
1. Necessary condition (&, > k1) is satisfied

2. P and € are positive.

Now by using the total conservation of phosphatase in the system (PCon = (), we obtain an
algebraic expression for [P] in terms of P .|, Kinetic constants and € as shown below. The

Maple command solve is used for this purpose as shown below.

P := simplify(solve(PCon, P))

pi=- Pro (€ 1) (K =H) G0
62k303+((—k1+k3)c3+czk1)e+c3k3 .

Hence if € is positive P is automatically positive (provided necessary conditions are satisfied).

Thus this means that for every positive value of € # 1, all concentrations are positive and the
conservation of kinase and phosphatase is also satisfied.

Since the concentrations are all positive, there exists a unique A .., value for every
€ (permitting asymmetric states).

Hence we have proved that symmetry breaking is guaranteed for some finite positive A, ...

provided the necessary conditions above are satisfied - making those conditions sufficient for
the behavior.

Prediction of pitchfork bifurcation along A ..,

Here we predict the value of A, .. at which symmetry breaking occurs via a pitch fork

bifurcation. This point in the bifurcation is characterized by the intersection of both the
symmetric steady state branch and the asymmetric steady state branches.

Hence at the position of symmetry breaking, we know two insights.

1. The system is still symmetric, hence [A] = [Appp], [Ap] = [App] and [K] = [P].
2. The invariant describing the asymmetric steady state is also true.



Using these two information, we can simplify the original system considerably as follows.

K:=P:e:=1:
Ap.:_ k] .
(e+1) (k]—k3)c3 ’
k]e
App = -

(e+1) (k= k) e,

Now, by solving the conservation expression for the substrate we can isolate the value of A .,
when the asymmetric steady states and the symmetric steady state intersect (indicating the
pitchfork bifurcation point)

ATotal = (collect(solve(ACon, ATOW), PTOW) )
2 2,2 2,2
p B (2c]czc3k1 —ZC]czc3k]k3+20103 kl —20103 k3)PT0ml @
Total (kl—k3)cl ¢ (C2k1_k1 c;+ 3¢ k3)

2 2 2
—1-03 k1k3—3c k

2 2
—clczkj—l—cck—?)cckk—cckk 3k,

17371 1737173 2737173

(k] —kj) ¢, ¢, (czk] —k] e —|—3c3k3)

A cross verification of this analytical work is carried out in the read me file for the parameters
used in generating the figure (Appendix 2 figure 8).

+



Random DSP System 1 : Common Kinase Common Phosphatase

Casel Case?2 Case3
Present and Breaks Present and Can't Break Present and Breaks
Invariant identified Invariant Identified

In this Maple file we analytically show the presence of case 1 and case 3 symmetry breaking in Random
DSP network with common kinase and common phosphatase (System 1) effecting phosphorylation and
dephoshorylation respectively. We also show the infeasibility of case 2 symmetry breaking in this
network.

In each case, we do this by first describing the model as a system of ODEs along with the associated
substrate and enzyme conservations. We then impose the kinetic constraints (and constraints on total
enzyme concentrations) pertaining to the specific case of symmetry. By algebraically solving for the steady
state of the resulting system of ODEs we obtain relations between concentrations of the substrate variables
in terms of each other and the free enzyme concentrations. After this, we identify key symmetric pairings
that represent the symmetric steady state. i.e. In Random System 1, case 1 symmetry requires symmetry
between [K] & [P] and [A00] & [A11]; case 2 symmetry breaking requires symmetry between [A01] &
[A10]; case 3 symmetry breaking requires symmetry between [K] & [P], [A01] & [A10] and [A00] &
[A11]. In each case by leveraging this insight and isolating steady states not of this type, we ascertain the
features of the asymmetric state emerging through symmetry breaking. In a similar way we show the
infeasibility of case 2 symmetry breaking by revealing that [AO1] and [A10] are always equal for any
given feasible steady state. These procedures are carried out in detail below using built in Maple
commands.

Note: A subscript is used to distinguish between the two different complexes formed between [K] and
[AO0] ([400K | and AOOK, ]). Similarly a subscript is used to distinguish between the two distinct

complexes formed between [P] and [A11] ([4//P, and A1IP,]).

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt
Maple functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with(LinearAlgebra) : with(VectorCalculus) : with(Student| LinearAlgebral) :

The system is modelled as a set of ODEs using the kinetic nomenclature described in the main text
and supplementary figure (refer to Appendix 2 figure 10). Here dA0O represents d[A00]/dt and
similarly for other expressions. At steady state thus, each of the right hand sides of these
expressions will be equal to zero.

dA00 == k,-AOIP + a,-AIOP + k , -A00K, + a , -A00K, - k, -A00-K - a, ,-A00-K :
dA01 == k,-AOOK, + k,-AIIP, + k , ,-AOIK + k , -AOIP - k, ,-A0I-K - k, ,-A01-P:

dA10 = a,-AO0K, + a,-AIIP, + a ,,-AI0K + a , ~AIOP - a,,-Al0K - a, ,A10-P:
dAll == k,-A0IK + a,-AIOK + k ,,-AIIP, + a , -AIIP, - k, ,-AI]-P - a, ;-All-P:

d400K | = k, ,-A00-K - (kl + kubl) *AO0OK,



dA0IK := k, ,"A01-K - (k + k, )-AO]K:

d400K, = a, ,-A00-K - (a, )~AO0K :
dA10K = a, ,"A10-K - (aubz ) ‘A10K :
dA1IP =k, ,-Al1-P - (kubS’ )~A11P1 :
dA0IP = k, ,-A01-P - (k +k ) -AOIP :
dA1IP, = a,,~Al11-P - (a ) "AlLIP,

dAI0P = a, ,~A10-P - (a +a ) A]OP.

dK = -k, - A00-K + (k, + k) -A00K, — a, -400-K + (a,,, + a,)-A00K, — k,,-A01-K + (k,

+kub2)~A01K a, AIOK—I— ( 2—|—a2)'A10K:
dP = -k, ,-Al1-P + ( ) "AlIP, —a,,-All-P + (aub3 + a3)~A]]P2 —k, ,~A01-P + (kub4
+k4)-A01P—a A]OP—I— (aub4+a4)'A]0P:

The above equations are also associated with conservation conditions which are described below.
Here we store the conservation expressions as ACon, PCon and KCon for the substrate and the
respective enzymes. Each of these expressions is always equal to zero (both in the transient
behavior and at steady state).

ACon = ATOMZ — A00 — A10 — A0 — A1l — 400K, — A0IK — AOOK, — AI10K — AlIP — AIOP
— AllP,- A0OIP:

KCon = K — K—A00K, — AI0K - A0OK, - A0IK :

PCon = P —P—AIIP — AI1OP — AI1P, — AOIP:

Until now we have modelled the System 1 Random DSP network with common kinase effecting
phosphorylation and a common phosphatase for dephosphorylation - without any impositions on
kinetics or total concentrations of enzymes. In the following segments, we specifically do this for
each class of symmetry. The codes for each symmetry are modular and in order to run a particular
symmetry, please run the code until this point and then run only the code for the specific class of
symmetry.

Note: Do not run the whole script at the same time, as this will impose all symmetries at the same
time and give incorrect results.

Case 1 Symmetry : Present and Breaks

Kinetic constraints for case 1 symmetry (refer main text) are imposed on the original model.

by = ky kg =k ks =k

ky =ty iky, =k, ik, =k,
Ay = A2 Gy "= Ay, d s = dyg -
a, ‘— da, . a = a . a = a

4 2y b2 Yupg ub2



In addition to the kinetic constraints the total enzyme concentrations of kinase and
phosphatase need to be equal for exact case 1 symmetry to be present. This is imposed as
shown below.

K

Total = PTotal :

At this stage we introduce auxiliary constants c,, ¢,, d; and d, in place of the binding constants
so as to make further analytical expressions more accessible.

kyp = ¢ (k) Ryp)
Ky = ¢y (ky Ky )
pr = A (4t a,,)
p2 =4y (et a,,)

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In
this context we want to solve all variables in terms of the concentrations of the free enzymes (
[K] & [P]) and concentration of the partially modified substrate (JA10]). In order to do this, we
use the Maple command solve, which solves the equation supplied for a given variable. We first
solve for the individual complexes using their corresponding differential equation. An example
of this (using [AO0K,]) is given below in detail.

The differential equation of [A00K, ] is given by,

d [AOOK1 ]
dt

d [A()()K1 ]

=dAO00K
1 dt

=c, (kl + kubl) A00 K — (kj + kub]) A00OK,

The solve command by Maple, solves this equation for the given variable (in this case [A00K, ]).
We in turn store this value (the solution returned by the solve command) in [A00K, ]. This is
performed by the following command.

AOOK, += solve(dA00K,, A0OK )
AOOK | = K A00 c, 1.1

This operation is performed for the other complexes and substrate forms as well. Here we
simultaneously solve expressions for the substrate forms using the so/lve command as shown
below. The solution is stored in a variable labelled So/, and then the respective solutions are
extracted from this vector using the eval command.

AIOK = solve(dAI0K, A10K) :
A00K,, = solve(dA00K,, AOOK, ) :

AOIK = solve(dA0IK, AOIK) :
A]]P1 = Solve(dAllPl,Allpl) :



A]]P2 = Solve(dAlle,Allpz) :
AO0IP = solve(dA0IP, AOIP) :

AIOP = solve(dA10P, A10P) :
Sol := solve({dA00,dA01,dA11}, {A00, A01, A11}) :

A00 = eval(A00, Sol) :
A0 = eval (401, Sol) :
All = eval(All, Sol) :

Doing this results in the following correlations between the concentrations of the various
substrate forms at steady state.

A10d2 a2P
A0 = ——————F—
a, dIK
01 = Al d2 a,c, kl
a,d;c,k,
AlO = AI10
KAl0d, a
Pa] d]

Proof for invariant in the asymmetric branches

We know that PCon and KCon are both individually equal to zero always. Thus at a given
steady state, PCon - KCon must also be equal to zero.

We thus introduce the term T = (KCon - PCon) = 0 and also introduce a new ratio, € = [K]/
[P]. Note: As discussed in the main text, the symmetric steady state is one where [K] = [P] or

€ = 1. Since we are isolating solutions of asymmetry, we are primarily interested in solutions
that permit, € # 1.

T := KCon - PCon=0:
K:=¢€P:

The following command (simplify), simplifies the expression

simplify (T) =
(e—1) ((((al—a2)d1—a2c1)A10d2+a1d])k2—I—A10a2c1d2k1)P
a,d; k

=0

From this we can ascertain that, should an asymmetric steady state exist (where € # 1) - the
term ((A]O ((k] — kz) ¢, —d, kz) ¢, tg kl)p2 +A410c,d, k, p,) in the expression needs
to be zero. We note that this term is a expression in the partial substrate form and Kinetic



constants. Thus solving this to isolate the partial substrate form we get the following. Here
we use the solve command from Maple to solve T for [A10] as shown below.

Al10 = simplify(solve(T, A10))
a,d, k
A0 = - L 12 (1.1.1)

d2 (((—61—dl)a2+a1d1)k2+azcjk1)

We can thus see that in an asymmetric state [A10] is always a constant given by only a few
key kinetic parameters. Using this expression back in the relation between [A01] we
ascertain that [A01] is also fixed at a constant concentration at an asymmetric state.

A01 == simplify(A01)
a,c, k,
(((k —k) e —dik)a,+adky)e

A0l = - (1.1.2)

Thus we can see that in an asymmetric steady state, the value of the partially modified
substrates (JAO1] and [A10]) is fixed and is given by the above expressions involving only a
few key kinetic parameters.

Necessary Conditions

Since substrate concentration are always necessarily positive, the expression in equation
1.1.1 and 1.1.2 should be positive. The numerator is only a function of kinetic parameters
which are always positive, thus the denominator must necessarily be negative to ensure that
the resulting concentration is positive. This gives us the necessary condition for the
asymmetric state to exist as follows.

L ¢ az(k2 — kl) + aflkz(a2 —a

1)>O

Sufficiency of necessary conditions

In this section of the proof we show the necessary conditions shown above are also sufficient

for an asymmetric steady state to exist for some positive A, .. value. or upon a bifurcation

along A, .. we are bound to encounter symmetry breaking provided the necessary

conditions are satisfied. Note that in the context of this system, a feasible steady state is one
in which the concentrations of all substrates, complexes and enzymes are positive.

We do this by showing that an asymmetric state defined by the invariant concentrations

described above indeed is a solution for the system of ODEs at some positive A, .., value.

In an asymmetric steady state, as seen above [A01] and [A10] are fixed by a few kinetic
constants,



a,d k
AlQ = expand[— 12 )J

a’2 (((—cl —dl) a2+a1d1)k2+azc]k]
) a,d; k,
(al d1 k2 —I—azcl kj —a,c, k2 —azd] k2) af2
A01 d[ “2 1% ]
= expand| - =
¢, ((kl—kz)c]—dlkz)a2+a1d]k2)
a,c, k,

(al d1k2+a201k] —a,c kz_azdz k2)02

The other variables in this asymmetric state are thus given by

kya,

expand (A00) = - (a] d ky,+a,c k,—ayc k,—a,d, kz) €
€k,a,

expand (All) = - a d] kz +a,c, k] —a,c, k2 —a, d] k2

Pk,a,c,
expand(AOOKl) = - a,d k,+a,c k,—a,c k,—a,d,k,
Pkya,d,

expand(AOOKz) = - a,d k,+ac k —ac k,—a,d,k,
€ePa,c, k,

expand(A0IK) = - a,d k,+a,c k,—ayc k,—a,dk,
€Pa,d k,

expand (A10K) = - a d] k2 +a,c, k] —a,c, k2 —a, dl k2
Pek,a,c,

expand(A]]Pl) = - a,d k,+a,c k, —ayc k,—a,dk,
Pek,a,d,

expand(AIIPz) = - a,d k,+a,c k,—ayc k,—a,dk,
Pa,c, k,

expand (AOIP) = - a,d k,+a,c k,—ayc k,—a,d Kk,
Pa,d, k,

expand (A10OP) = -

a,d k,+a,c, k,—a,c k,—a,d, k,
The system of ODE is also satisfied at this point, as is verified below.
simplify (d400) = 0

simplify(dA11) = 0
simplify (dA01) = 0



simplify (dA10) =
simpllﬁ/(dAOOK )
simpllﬁ/(dAOOKz)
simplify (dAO1P) =
simplify (dA10P) =
simplify (dA0IK) =

( ) =

( I

(

(

(

0
0

simplify (dA10K
simplify (dA11P )
simplify (dA1 2)

simplify
simplify

dP) = 0
dK) =0

Hence all that remains to be shown is that the variables (as described above) are positive for

some value of ATotal.

This is true if and only if
1. Necessary condition is satisfied
2. P and e are positive.

Now by using the total conservation of phosphatase in the system (PCon = (), we obtain an
algebraic expression for [P] in terms of P .,, Kinetic constants and € as shown below. The

Maple command solve is used for this purpose as shown below.

P := expand (solve(PCon, P))

pi=- Total a d . PTotal Cl k (13.1)
az(cje+dle+cl+d1) kz(cle+d16+c[+d1)
+ PTotal (,'1 + PTolal dl
cje+dle+cl+d1 c[e—l—d1e+c1+d1
simplify (P)

_(((k]_kg)cl_d]kQ)a +a1d1k2) Total

a,k, (e+1) (cl—l—d])

(1.3.2)

Hence if € is positive P is automatically positive (provided necessary conditions are satisfied)
. Hence we have shown that the individual conservation equations for the enzymes (KCon
and PCon) and the system of ODEs is solved by the expressions above, and represent
feasible solutions provided ¢ is positive.

Since the concentrations are all positive there exists a unique A, ., value for every
€ (permitting asymmetric states).

Hence we have proved that symmetry breaking is guaranteed for some finite positive A, ...

provided the necessary conditions above are satisfied - making those conditions sufficient
for the behavior.



Prediction of pitchfork bifurcation along Ay,

Here we predict the value of A, .., at which symmetry breaking occurs via a pitch fork

Tota
bifurcation. This point in the bifurcation is characterized by the intersection of both the
symmetric steady state branch and the asymmetric steady state branches.

Hence at the position of symmetry breaking, we know two insights.

1. The system is still symmetric, hence [A00] = [A11] and [K] = [P].
2. The invariant describing the asymmetric steady state is also true.

Using these two information, we can simplify the original system considerably as follows.

K:=P:e:=1:
a,d, k,

M (G —dy)ay +a,d) by +aye k)

2 27171

Now, by solving the conservation expression for the substrate we can isolate the value of
Aot When the asymmetric steady states and the symmetric steady state intersect

(indicating the pitchfork bifurcation point).

A, = simphﬁ/(solve(ACon, ATOW) )

Arorar = (d2 (=e2 (¢ 40) (Prowar €1+ Progar 4 +2) k' =k, (¢, +d))k (1.4.1)

¢ d

2 2 2 i
te ok PT()tal)a2 +2d, [[_2_2]k2+cld2k1PTuml ¢,kya,a,

+alzc2a’]2d2k22PT0ml]/((c1 +d1)azcz (((-< _dl)k2+cl k])az

+a,d, k2) dzkz)

A cross verification of this analytical work is carried out in the read me file for the
parameters used in generating the figures (Fig 2B).



Case 2 Symmetry : Present and Can't Break

Kinetic constraints for case 2 symmetry (refer main text) are imposed on the original model.

=k ubl ubl :

a . ab] bl .a

y =y ray, =Ky, =k,
ay = hyray=Kpta, .=k,
ayi=kyray, =k va,, =k,

There are no constraints on the total enzyme concentrations for case 2 symmetry to be present.
At this stage we introduce auxiliary constants c,, ¢,, ¢; and ¢, in place of the binding constants

so as to make further analytical expressions more accessible.

kypi=cp (b kg ):
kpy = ¢y (ky k)
Ky = c5 (ks Hhp3) 0
Koy =<y (kg Kypy)

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In
this context we want to solve all variables in terms of the concentrations of the free enzymes (
[K] & [P]) and concentration of the completely unmodified substrate ([A00]). In order to do
this, we use the Maple command solve, which solves the equation supplied for a given variable.
We first solve for the individual complexes using their corresponding differential equation. An
example of this (using [A00K,]) is given below in detail.

The differential equation of [A00K, | is given by,

d [A00K |

= dA00K
dt 1

d [A00K ]

ey (ky k) 400K — (K + k) AOOK, @.1)

The solve command by Maple, solves this equation for the given variable (in this case [A00K, ]).
We in turn store this value (the solution returned by the solve command) in [A00K, ]. This is
performed by the following command.

A00K, = solve(dA0OK , AOOK )
AOOK == K A00 c, 22)

This operation is performed for the other complexes and substrate forms as well. Here we



simultaneously solve expressions for the substrate forms using the so/lve command as shown
below. The solution is stored in a variable labelled So/, and then the respective solutions are
extracted from this vector using the eval command.

AIOK = solve(dAI0K, A10K) :
A00K,, = solve(dA00K,, AOOK, ) :

AOIK = solve(dA0IK, AOIK) :
A]]P1 = Solve(dAllPl,Allpl) :

A]]P2 = Solve(dAlle,Allpz) :

AOQIP = solve(dA0IP, AOIP) :
AIOP = solve(dA10P, A10P) :

Sol := solve({dA10,dA01,dA11}, {A10,A01, A11}) :
Al0 = eval(A10, Sol) :
A0 = eval (401, Sol) :
All == eval(All, Sol) :

Doing this results in the following correlations between the concentrations of the various
substrate forms at steady state.

A00 = A00
KAOOCI k]
A0l = ——
c4k4P
KA0001 k]
Al) = ———
c4k4P
2
= A00 K ¢, ¢, k] k2
c4k4P2c3k3

Proof for impossibility of symmetry breaking

Thus from this we can clearly see that irrespective of kinetic parameters, the concentration
of [A01] is always going to be equal to the concentration of [A10]. Thus there is no scope for
any asymmetric steady state or case 2 symmetry breaking.

KAOOC] k[

A0l = ———
c4k4P

KAOOC] k]

Al = ———F—

c4k4P



Case 3 Symmetry : Present and Breaks

Kinetic constraints for case 3 symmetry to be seen (refer main text) are imposed on the original
model.

ayi=kytay;=kra, .=k,
ayi=kyray, =k,ta,, =k
ayi=lhyray, =kgta, =k,
a, =kyra,,=kyra,, =k,

In addition to the Kinetic constraints the total enzyme concentrations of kinase and
phosphatase also need to be equal for exact case 3 symmetry to be present. This is imposed as
shown below.

KTotal '_ PTotal:

At this stage we introduce auxiliary constants c,, ¢,, ¢; and ¢, in place of the binding constants
so as to make further analytical expressions more accessible.

Ry =cp (bt k)
kyy = ¢y (ky + )
by = ey (b T Ky
kyy = 4 (ky )

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In
this context we want to solve all variables in terms of the concentrations of the free enzymes (
[K] & [P]) and concentration of the fully modified substrate (|[A11]). In order to do this, we use
the Maple command solve, which solves the equation supplied for a given variable. We first
solve for the individual complexes using their corresponding differential equation. An example
of this (using [A00K, ]) is given below in detail.

The differential equation of [A00K, | is given by,

d [400K ]
L = dAOOK,
d [400K, |
=y (ky k) AO0K = (K, + K, ) AOOK, G.1)

The solve command by Maple, solves this equation for the given variable (in this case [A00K, ]).
We in turn store this value (the solution returned by the solve command) in [A00K, ]. This is
performed by the following command.



AOOK1 = solve(dAOOKl,AOOKl)
A00K, == K A00 c, 3.2)

This operation is performed for the other complexes and substrate forms as well. Here we
simultaneously solve expressions for the substrate forms using the solve command as shown
below. The solution is stored in a variable labelled So/, and then the respective solutions are
extracted from this vector using the eval command.

AI0K := solve(dA10K, AI0K) :
A00K, = solve(dAOOKz,AOOKZ) ;

AOIK = solve(dA0IK, AOIK) :
AlIP, = solve(dA]]Pl,AllPl) :
AlIP, = solve(dA]]Pz,Alle) :
AO01P = solve(dA0IP, AOIP) :
AIOP := solve(dA10P, A10P) :

Sol == solve({dA00, dA01, dA10, dA11}, {400, A01, A10, A11}) :

A00 = eval(A00, Sol) :
A01 == eval(A01, Sol) :
Al0 = eval (410, Sol) :
All = eval(All, Sol) :

Doing this results in the following correlations between the concentrations of the various
substrate forms at steady state.

A00 =
2 2
P2A11<ch kk +ch kk +Pc]czc4k]k2k4+Pczc3c4k2k3k4> 33)
K* (Kcl0204k1k2k4+K020304k2k3k4+Pc ¢, k1k2 —I—chc4 k3k4)
A0l =
2
PA]](Kclc3c4k1k3k4+Kc ck k+Pc ck k+Pclczc3k1k2k3) o)
K(Kepeye h ko, +Keyege kykok,+Peje) k k' +Peekik?)
AlO =
2
P(Kc ck k +Kc]czc3k1k2k3+Pclcjc4k]k3k4+Pc ck3 k4)A]] 35
2 2 .
K(Kc]c2c4k]k2k4—I—Kczc3c4k2k3k4—|—Pc ¢, k]k2 —I—Pcsc4 k3k4)
All =
All (3.6)

Proof for invariant in the asymmetric branches



We know that PCon and KCon are both individually equal to zero always. Thus at a given
steady state, PCon - KCon must also be equal to zero.

We thus introduce the term T = (KCon - PCon) = 0 and also introduce a new ratio, € = [K]/
[P]. Note: As discussed in the main text, the symmetric steady state is one where [K] = [P] or
€ = 1. Since we are isolating solutions of asymmetry, we are primarily interested in solutions
that permit, € # 1.

T := KCon - PCon=0:
K= ¢eP:

The following command (simplify), simplifies the expression

simplify (T')
(P e=1) (e, ¢, ek, k,® + e, (e h + ey k) (€Al (¢, +¢;) e—All (¢, B11)

teg) )k, H Al ek (e+ 1)) ky+k Al ek (e+ 1)) ey +eye’ ek k7))

/(e (c] czzk] k22 +kyec,k, (C1 k, +C3k3) ¢t ¢ C42k3k42>) -0

From this we can ascertain that, should an asymmetric steady state exist (where € # 1) - the
term (

2 2 2
c,c, €k, k,” + (c] k, + ¢, k3) ¢, (((e —All (c] + 03) € —All (c] + c3)) k,
2 2
+Allc k, (e+ 1)) k, +k,All cyky (e + 1)) ¢, teye ek k,
) in the expression needs to be equal to zero. We note that this term is a expression in the
fully modified [A11], € and kinetic constants. Thus solving this to isolate the fully modified

substrate form we get the following. Here we use the solve command from Maple to solve T
for [A11] as shown below.

All == simplify(solve(T, A11)) =
2 2 2 2
e(c]cz k1k2 +k4ec4k2 (cjk]+c3k3)c2—|—csc4 k3k4)

<, (c]k1+c3k3)c4(((—c]—c3)k4+c]k1)k2+c3k3k4) (e+1)

Substituting it back into the expressions for [A01] and [A10], we get the following
correlations

simplify (A01) =
~cyc €k ky—c e,k k, G.12)
0204(((—01—cg)k4—|—cjkl)k2+cjk3k4) (e+1)
simplify (A10) =
-c,c ek k,—c,c, k, k
17250 35y (3.13)

c2c4(((—cl—cs)k4+c1k1)k2+c3k3k4) (e+1)



From this we can see that the sum of concentrations of the partially modified substrates (
[A01] and [A10]) are independent of € and are dependent only on a few key kinetic
parameters. This thus shows that at an asymmetric steady state, the sum of the
concentrations of the partially modified substrates is fixed at a given value.

simplify(A01 + A10)

ey cy kpky —cye ki k,

c, ¢, (((—c]—6'3)k4+c]k1)k2+03k3k4)

(3.1.4)

Necessary Conditions

Since substrate concentrations are always necessarily positive, the expression in equation
3.1.1 should be positive. The numerator is only a function of kinetic parameters all of which
are positive always, thus the denominator must necessarily be positive to ensure that the
resulting concentration is positive. This gives us the necessary condition for symmetric state
to exist as follows.

Locyky (ky = k) =, ky (b, — k) >0

Sufficiency of necessary conditions

In this section of the proof we show the necessary conditions shown above are also sufficient
for an asymmetric steady state to exist for some positive A, ., value. or upon a bifurcation

along A .., we are bound to encounter symmetry breaking provided the necessary

conditions are satisfied. Note that in the context of this system, a feasible steady state is one
in which the concentrations of all substrates, complexes and enzymes are positive.

We do this by showing that an asymmetric state defined by the invariant concentrations

described above indeed is a solution for the system of ODEs at some positive A, .., value.

In an symmetric steady state, as seen above [Ap] is fixed by a few kinetic constants,

-c,c, ek k,—c c, k k
A0] = Simpliﬁ/ 374 34 1727172 _
(((—01—c3)k4+clk1)k2+cjk3k4)0204(e-i-l)

—cye ek ky— ek k,

c
¢yl (¢ =) ke k) ky+eykky) (e+1)

-, czek] k2—cjc4k3k4

(((—c —c3)k4+c]k])k2+c k k)czc4 (e+1)

AlQ = simpli]fj/(
1 37374




_CICZEka c3c4k3k4 -

0204(((—c]—c3)k4+c]k)k +03k3k4) (e+1)

The other variables in this asymmetric state are thus given by

e<01022k1k22+k4ec4k2 (clk1+c3k)c +c,c 2k k42)

simplyALl) = - < (< k; +C3k3) ¢ (((me—e )k tek )k +§3[:3k4) (e+1)
¢ ¢t ek, kS — ky (¢, k, +c k) k k, K’
simplify (400) = NG ]kczizcek,) : ((C(z_‘('j] 4 (c)k +i k))kz +ZZ}2) (€4+ 1) e
simplify (A00K ) = (C k(c-ilzl ll?)(? elz +e, k))lc L+ c4(k3 k4/(c;)6k +EC+’i )2
L
o eP(ccekk-i—cZk]ch])
szmpllﬁ/(AO]K):'(((—c] )k +c k)k +03k3k4) (et 1)c,
P k, k, + k. k
simplify (A10K) = - (((-< _ec )(/: Jcrce k) ky f:k:k:)) (e+1)
Sl-mphﬁ,(Aupl) - 0(3:1); (i4ck3]f4)((ck2€(kk]-l-_c /; )C —|—3c 4k(lkl:2 ¢ (C))Ek :‘i lk) )3
(17, - C(];Z](i4ck3kk4)((Ck;(kklt ¢, l;) = +oc, kz kl? c, (‘;)eck :‘ 1k))3
P kyk,+c k k
simplify(A0IP) = - (((_c] — )(C; Cj_ec A )k C—iz-cikz(l:c:)) c, (e+1)
P k k, + k, k
simplify (A10P) = - e 03)(;4:; > k;iz ;:3 ki; e+ 1)

The system of ODE is also satisfied at this point, as is verified below.

simplify (dA00) =
simplify (dA11) =
simplify(dA0I) =
simplify (dA10) =

(
(
E
Simpl]fv(dAOOK )
Simpljfv(dAOO )
(
(
(
(
(

0
0
simplify (dA01P) =
simplify(dA10P) =
simplify (dA0IK) =
simplify (dA10K) =
simplify a’A]]Pl) 0



simpliﬁ/(dA]]Pz) =0
simplify(dP) = 0
simplify (dK) = 0

Hence all that remains to be shown is that the variables (As described above) are positive for
some value of A, . ..

This is true if and only if
1. Necessary condition is satisfied
2. P and e are positive.

Now by using the total conservation of phosphatase in the system (PCon = (), we obtain an

algebraic expression for [P] in terms of P ., Kinetic constants and € as shown below. The

Maple command solve is used for this purpose as shown below.

P := simplify(solve(PCon, P

)) =
~ (e (e ky Fesks) ey (ky (K —ky) e = ck4(k2—k3))PToml(e+1))/
(e hyky (¢, +¢5) (¢ ky +esks) @+ (eyhy (K +ky)e,—e, (K —k4))k1c12
+ (k, ky (ky + Ky e 2 c4(((k—k)k4+k]k3)k +kkk)c+c2kk4(k]
+ 4)) cye; e, ((k—k)e,+e, (k3+k4))k4c3 k)e+c AING

17374
3 2 27472 4
c)(c]k]+c3k )

1

R

Hence if € is positive P is automatically positive (provided necessary conditions are satisfied)
. Hence we have shown that the individual conservation equations for the enzymes (KCon
and PCon) and the system of ODEs is solved by the expressions above, and represent
feasible solutions provided e is positive.

Since the concentrations are all positive there exists a unique A, ., value for every
€ (permitting asymmetric states).

Hence we have proved that symmetry breaking is guaranteed for some finite positive A, ..,

provided the necessary conditions above are satisfied - making those conditions sufficient
for the behavior.

Prediction of pitchfork bifurcation along Ay, (.

Here we predict the value of A, .., at which symmetry breaking occurs via a pitch fork

bifurcation. This point in the bifurcation is characterized by the intersection of both the
symmetric steady state branch and the asymmetric steady state branches.

Hence at the position of symmetry breaking, we know two insights.

1. The system is still symmetric.



2. The invariant describing the asymmetric steady state is also true.
Using these two information, we can simplify the original system considerably as follows.
€:=1:

All = simplify| eval

2 37%3 "%
(czk2+k4c4) (c c.k k,+c,c k k)
k

<01022k1k22+k4604k2 (clkl+c3k3)02+csc42k3k42)e
ek e k) (=) by + e k) by gk k) (e 1) e,
27172 374 374

1
All == -
202 (Clkl +c3k3)c4( 2 (kj—k4)cj —03k4 (kz—k3))

(3.4.1)

Now, by solving the conservation expression for the substrate we can isolate the value of
Aota When the asymmetric steady states and the symmetric steady state intersect

(indicating the pitchfork bifurcation point).

Ay = simpliﬁ/(solve(ACon, ATOW) )

k(b k) e+ e (b +k))e ke,
2

ATOmlz 2(cckk+cckk) -

1727172 3747374 (3.4.2)

KKy Prar (Kr = k) (Fy + ) ¢, + ((((-2k1 — k) k, K, (K,

+k3))k22+ (_kl (kl +k3)k4+2k12k3)k2+k12k3k4>PTotalc3

ey ey (k= 4k} by =k, k)

2
+ ) )cl—i-

(((-kI—ZkS)k4+k]k3)k22

by ((4k =3 k) kK, k)

2
+k kg (kg — k) hy + 2k kg k4) P, . c;+

k
3
YN

7 13 "3 Yy

2 2
¢y ¢ — (k P kP

2 Total '3 Total) 03 T



B (clkl-l—c3k3)k2 ((k1+k2)cl+c3 (k2+k3))clk] ]cz
2

2
. kY o, kkk
ey | bk Pryey (= k) (k) e + (2| | |-k — 5 |k — =
ky ks ky (K + k) ko kyk (k=3 k)
173 %\ 4 12\ 4
+k12k3)k2+ 5 ]PTotalc3+ 5 ]‘312
(k=2 k) k7 = kg (k) ko k k) by + g (K + k) k)

4k k. k
2 3 153
3, [(k1+—3 ]kz— : ]
6

2
T2k k k4)PTotalCS_ 5

P, (k. 4k (k, —k il 2k, | k ks koelk
|\ Prowar (K5 T 5,) (K, —h3) e+ B T2k, |k, = B 46 K3 1¢
k,+c k) |k, (k —3k —3k—§k
(1 kT esh) | & (K 1) €1 27 3 MG
2 i

+

¢ (e kT eghy ke, ky ((k+k) e, + ey (ks +k)) ek ]]
2

2
[02 (c] kl +03 k3) ¢, [kz ((k] +k2) ¢ -|-cj, (k2 +k3)) ¢ k] ¢, — (c] k]

k
3
+ey k) e, [k2 (k,—3k) e, =3 [kz— ?] k4c3j ey ek, (K +k) e
+c3 (k3 +k4)) e k3] (k2 (kl —k4) ¢, — ¢ k4 (k2 —k3))]

A cross verification of this analytical work is carried out in the read me file for the
_ parameters used in generating the figure (Fig 3A).




Random distributive DSP System 2 : Separate Kinase Common

Phosphatase
Case 1 Case 2 Case3
Symmetry Doesn't Exist Present and Can't Break Symmetry Doesn't Exist

In this Maple file we analytically show the infeasibility of case 2 symmetry breaking in Random
distributive DSP network with separate kinase and common phosphatase (System 2) effecting
phosphorylation and dephoshorylation respectively.We do this by first describing the model as a system of
ODE:s along with the associated enzyme and substrate conservations. We then impose the kinetic
constraints (and constraints on total enzyme concentrations) pertaining to case 2 symmetry. By
algebraically solving for the steady state of the resulting system of ODEs we obtain relations between
concentrations of the substrate variables in terms of each other and the free enzyme concentrations. A fter
this, we identify key symmetric pairings that represent the symmetric steady state. i.e. case 2 symmetry
breaking requires symmetry between [AO01] & [A10]; By leveraging this insight, we show the infeasibility
of case 2 symmetry breaking by revealing that [A01] and [A10] are always equal for any given feasible
steady state. These procedures are carried out in detail below using built in Maple commands.

Note: A subscript is used to distinguish between the two different complexes formed between [P] and
[A11] ([411P and A1IP,]).

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt
Maple functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with(LinearAlgebra) : with(VectorCalculus ) : with (Student| LinearAlgebra]) :

The system is modelled as a set of ODEs using the kinetic nomenclature described in the main text
and supplementary figure (refer Appendix 2 figure 10). Here dA00 represents d[A00]/dt and
similarly for other expressions. At steady state thus, each of the right hand sides of these
expressions will be equal to zero.

d400 = k,-A0IP +a,AIOP + k , -A00KI + a , -AOOK2 -k, ,-A00-K1 - a,,-A00-K2 :
dA401 := k,-A00KI + k;-A1IP +k ,,-AOIK2 + k , -AOIP - k,,-A01-K2 - k, ,~A0I-P:
d410 = a,-A00K2 + a,-A1IP, +a , ,-AIOKI + a b -AIOP - a,,"A10-KI - a, ~A10-P:
dAll = k,"A0IK2 + a,-AI0KI + k ,.-AlIP, +a  .-AIIP, -k, ,-Al1-P - a, ,-All-P:
d400K1 =k, ,-A00-K1 - (kl + kubl)'AOOK] :

dA10KI == a,,-A10-KI - (a2 + aubz)-AIOK]:

dA00K?2 - a,,~A00-K2 - (aub[ + a])-AOOKZ:

dA0IK2 =k, ,~A01-K2 - (kubZ + kz) ‘AOIK?2 :

dA1IP =k, ,-All-P - kub3~(A11P1)—k3~(A11Pl) :

dA10P = a, ~A10-P - (auM + a4) ‘A10P :

dA1IP, = a,,-All-P - (aubS + a3)'A11P2 :

dA0IP =k, ~A0I-P - (kub4 + k4) -AOIP



dK1 = —kb]-AOO-K] + (kl + kub])~AO0K1 —a,, A10-KI + (a2 + aub2)~A]0K1 :

dK2 = -a,,~A00-K2 + (aub[ + al)-AO0K2 — kbz ‘A01-K2 + (kubZ + kz) ‘A0IK2 :

dP = - kbg'All'P + (kubS’ + k3)~A11P1 —a,,A10-P + (aub4 + a4)-A]0P— a,,-A11-P + (a
+ a3) "A1IP, — kb4-A0] P+ (kub4 + k4)-A0]P:

ub3

The above equations are also associated with conservation conditions which are described below.
Here we store the conservation expressions as ACon, PCon, K1Con and K2Con for the substrate
and the respective enzymes. Each of these expressions is always equal to zero (both in the transient
behavior and at steady state).

ACon = A, . — A00 — A10 — A0l — All — AOOKI — A0IK2 — AOOK2 — A10KI — AI1IP — AI0P
— AlIP, — AOIP:

KiCon :== K1, . — KI —A00KI — AIOKI :

K2Con = K2, = — K2 —A00K2 — AOIK2 :

PCon == P,  —P—AlIP —AIOP — AlIP, — AOIP:
otal 1 2
Case 2 Symmetry : Present and Can't Break
Kinetic constraints for case 2 symmetry (refer main text) are imposed on the original model.

“Aupi ubl *

a .a .a

ay =kyray, =k,ra,, =k,
ay =kyiapi=kgra, =k
ay=kyray, =k ya, =k,

In addition to the kinetic constraints the total enzyme concentrations of the two kinases need to
be equal for exact case 2 symmetry to be present. This is imposed as shown below.

K1
K2

Total = KTotal :

Total = KTotal :

At this stage we introduce auxiliary constants c,, ¢,, ¢; and ¢, in place of the binding constants
so as to make further analytical expressions more accessible.

Ry =cp (bt k)
kpy = ¢y (ky T k)
ks = ¢35 (ks + Kyp3)

by = ey (ke ¥ hupy)

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In
this context we want to solve all variables in terms of the concentrations of the free enzymes (
[K1], [K2] & [P]) and concentration of the completely unmodified substrate ([A00]). In order to



do this, we use the Maple command solve, which algebraically solves the equation supplied for a
given variable. We first solve for the individual complexes using their corresponding differential
equation. An example of this (using [AO0K1]) is given below in detail.

The differential equation of [A00K1] is given by,

A[AOOKT) _ ook
dt
d [AOOKI] _
T =y (ky k) A0 KT — (K, + k) AOOK] (L.1)

The solve command by Maple, uses this solves this equation for the given variable (in this case
[A00K1]). This is performed by the following command. Here we assign [A00K1], the solution
returned by the solve command.

AOOK1 = solve(dA00KI, AOOK1I)
A00KI = K1 400 c, (1.2)

This operation is performed for the other complexes and substrate forms as well. Here we
simultaneously solve expressions for the substrate forms using the solve command as shown
below. The solution is stored in a variable labelled So/, and then the respective solutions are
extracted from this vector using the eval command.

A0IK?2 = solve(dA0IK2, AOIK?2) :
A00K?2 = solve(dA00K2, AO0OK?2) :
A10K1 = solve(dA10KI1, AI0KI) :
A]]P] = Solve(dAllPI,A]]P]) :

AIOP = solve(dA10P, A10P) :
AIIP2 = Solve(dAlle,Alle) :

AOIP = solve(dA0IP, AOIP) :

Sol := solve({dA10,dA01,dAl11}, {A10,A01, A11}) :
Al0 == eval(A10, Sol) :

A0I = eval (401, Sol) :

All == eval(All, Sol) :

Doing this results in the following correlations between the concentrations of the various
substrate forms at steady state.

A00 = A00
K1 A400c, k,
A0l = ————
¢, k4P
K2 A00 ¢ k]
AlO =

c4k4P



AO00 K1 K2 ¢, ¢ k{ k2

c4k4P203 k3

All =

Proof for impossibility of symmetry breaking

We know that K1Con and K2Con are both individually equal to zero always. Thus at a
given steady state, K1Con - K2Con must also be equal to zero.

We thus introduce the term T = (K1Con - K2Con) = 0 and also introduce a new ratio, € =
[K2]/[K1]. Note: As discussed in the main text, the symmetric steady state is one where [K1]
= [K2] or € = 1. Since we are isolating solutions of asymmetry, we are primarily interested in
solutions that permit, € # 1.

T := KIlCon - K2Con=20:
K2 := e¢KI:

The following command (simplify), simplifies the expression algebraically
simplify(T) = KI (e — 1) (AOOC] + 1) =0

Thus from this we can clearly see that irrespective of kinetic parameters, [K1] is always
going to be equal to [K2]. This means, from the expressions given above for [A01] and
[A10], that [A01] is always equal to [A10] irrespective of kinetic parameters or total
concentrations of enzymes or substrate. Thus there is no scope for any asymmetric steady
state or case 2 symmetry breaking.



Random DSP System 3 : Separate Kinase Separate Phosphatase

Case 1l Case 2 Case 3
Present and Breaks Present and Breaks Present and breaks
Invariant identified Invariant identified

In this maple file we analytically show presence of case 1 and case 2 symmetry breaking in Random DSP
network with separate kinase and separate phosphatase (System 3) effecting phosphorylation and
dephoshorylation respectively. In each case, we do this by first describing the model as a system of ODEs
along with the associated enzyme and substrate conservations. By algebraically solving for the steady state
of the system of ODEs we obtain relations between substrate variables (concentrations) in terms of each
other and the free enzyme concentrations. After this, we identify key symmetric pairings that represent the
symmetric steady state. i.e. In Random System 3, case 1 symmetry symmetry requires symmetry between
[A00] & [A11]; case 2 symmetry breaking requires symmetry between [AO01] & [A10].

We then proceed along two lines. One hand by leveraging this insight, we isolate correlations pertaining to
asymmetric steady states involving substrate forms and free enzymes. Through an alternate approach
considering the conservation of individual species and an overall flux balance around substrate forms, we
ascertain a secondary correlation that is pertinent to all feasible steady states of the system. By bringing the
two conditions together, we then finally ascertain the necessary conditions and features of symmetry
breaking in case 1 and case 2 symmetry. These procedures are carried out in detail below using built in
maple commands.

We initialize the maple file with the restart command and load the relevant libraries of inbuilt
maple functions (LinearAlgebra, VectorCalculus, Student{LinearAlgebra])

restart : with(LinearAlgebra) : with(VectorCalculus ) : with (Student| LinearAlgebra]) :

The system is modelled as a set of ODEs using the kinetic nomenclature described in the main text
and supplementary figure (refer Appendix 2 figure 10). Here dA00 represents d[A00]/dt and
similarly for other expressions. At steady state thus, each of the right hand sides of these
expressions will be equal to zero.

d400 = k,A0IPI + a,AIOP2 + k , -AOOKI + a , -AOOK2 -k, ,-A00-KI - a,,-A00-K2 :
dA0] = k -A00K1 + k,-A11P2 +k ,,-AOIK2 +k , -AOIPI - k, ~AO1-Pl -k, ,-A01-K2:

dA10 := a,-A00K2 + a,-A11P] + aub2-A]0K1 +a,, AIOP2 —a,, -A10-KI -a, ~A10-P2:
dAll = k,"A0IK2 + a,-AI0KI + k ,.-A1IP2 + a ,.-AIIP] - k, ,-A11-P2 —a, ,-A11-PI :

W oWl

2
dA00K1 = k, ,-A00-K1 - (k +k, ) AOOK]:
dA0IK2 = k, ,~A01-K2 - ( ) ‘A0IK2 :
dA11P2 := k, ,-A11-P2 - (k + k ) "A11IP2 :
dA01PI := k, ,-A01-PI - ( ) -AOIPI :
d400K2 := a, ,-A00-K2 - (a + a, 1) -AO00K?2 :

dAI0K] = abZ-AIO-K] - (a2 +a ) -AI10K1 -
ub?2
dAIlIP] = ab3-A]]-P] - (as + aubs)-A]]P] :



dA10P2 := a, ,~A10-P2 - (a ta, )-A]OPZ:

dP2 = -k, , A]] P2 + ( ) "AlIP2 —a, ~A10-P2 + (a +a, )-A]OPZ:
dPl == -a,,-Al11-PI + (a —|—a )'AIIPI —k, ,~A01-PI + (k +kub4)-A0]P]:
dK1 = —ka-AOO-K] + (kl +ku 1)~A00K1 —a,, A10-KI + ( a bz)'AIOK]:

dK2 :=-a,,-A00-K2 + (al + aubl)-AOOKZ —k,,"A01-K2 + (k2 + kubZ) ‘A0IK?2 :

The above equations are also associated with conservation conditions which are described below.
Here we store the conservation expressions as ACon, K1Con, K2Con, P1Con and P2Con for the
substrate and the respective enzymes. Each of these expressions is always equal to zero (both in
the transient behavior and at steady state).

ACon = A, . — A00 —A10 — A0 — A1l — AOOKI — AOIK2 — AI11P2 — AOIPI — AOOK?2
— AIOKI — Al1P] — AI0P2 :

KiCon == K1, ., — A00KI — AI0KI — K1 :

K2Con == K2, — A0IK2 — A00K2 — K2 :

PiCon == Pl - AIIP] —A0IP] — PI:

P2Con == P2, - AIOP2 — AlIP2 — P2:

Until now we have modelled the System 3 Random DSP network with separate kinase effecting
phosphorylation and a separate phosphatase for dephosphorylation - without any impositions on
kinetics or concentrations for symmetry. In the following segments, we specifically do this for each
class of symmetry. The codes for each symmetry are modular and in order to run a particular
symmetry, please run the code until this point and then run only the code for the specific class of
symmetry.

Note: Do not run the whole script at the same time, as this will impose all symmetries at the same
time and give incorrect results.

Case 1 Symmetry : Present and Breaks

Kinetic constraints for case 1 symmetry (refer main text) are imposed on the original model.

by =k k= k= ke

ky=kythy =,k =k,
Ay = Ay 2y 7= Aoy 7= e
Ay =Gy 2y 7= yy Ay = Ay

In addition to the Kkinetic constraints the total enzyme concentrations of corresponding kinases
and phosphatases need to be equal for exact case 1 symmetry in Random DSP System 3. This
is imposed as shown below.

K]Total = P2T0tal :



K2 = Pl

Total : Total :

At this stage we introduce auxiliary constants ¢, ¢,, d; and d, in place of the binding constants
so as to make further analytical expressions more accessible.

Ky, 201'(k1+kub1):
Ky = ¢y (ky T kyps)
bl :dz’(a1+ab1)
b2 T dz'(a2+aub2)

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In
this context we want to solve all variables in terms of the concentrations of the free enzymes (
[K1], [K2], [P1] & [P2]) and concentration of the partially modified substrate [A01]. In order to
do this, we use the Maple command solve, which solves the equation supplied for a given
variable. We first solve for the individual complexes using their corresponding differential
equation. An example of this (using [A00K1]) is given below in detail.

The differential equation of [A00K1] is given by,

d [A00OKI] d [A00OKI]
a4 dA00K 1 Y (k] + kub]) A00 K1 — (kl + kubl) AO00K1

The solve command by Maple, solves this equation for the given variable (in this case [A00K1]).
We in turn store this value (the solution returned by the so/lve command) in [A00K1]. This is
performed by the following command.

AO0K1 = solve(dAO0OKI, AOOKI )
A00K1 == K1 A00 ¢, 1.1)

This operation is performed for the other complexes and substrate forms as well. Here we
simultaneously solve expressions for the substrate forms using the so/lve command as shown
below. The solution is stored in a variable labelled So/, and then the respective solutions are
extracted from this vector using the eval command.

AO0IK?2 = solve(dA0IK2, AOIK?2) :
Al11P2 := solve(dA11P2,A11P2) :
AO0IP] = solve(dA01PI, AOIPI) :
A00K?2 = solve(dA00K2, AOOK?2) :
AI0K] = solve(dA10KI1, A10KI) :
AlIP] = solve(dA11PI, AI1PI) :
AI0P2 = solve(dA10P2, A10P2) :

Sol := solve({dA00,dAll,dA10}, {A00,A11, A10}) :

A00 = eval(A00, Sol) :



A0 = eval (401, Sol) :
Al0 = eval(A10, Sol) :
All == eval(All, Sol) :

Doing this results in the following correlations between the concentrations of the various
substrate forms at steady state.

A01 Pl c, k,
400 = ¢ k KI
A0l = A01
10— A0I K2 Pla,c, d1 k2
P2c¢, k,Kla,d,
e K2 A01 c, k,
P2c, k,

Proof for invariant in asymmetric branches

We know that (P]Toml-PZTmal —-Ki, K2, = 0) in this system under case 1 symmetry

(Since Kl 0y = P21g¢q and K2, =Pl . .). Thus at a given steady state,

(PIToml~P2Toml - K1T0M~K2T0m1) must be equal to 0. We introduce a term T = (P]Total
-PZTOM — K]Toml-KZToml) as shown below. Here we write P1, ., as P1, ., - P1Con.

Note: This comes from the expression used for P1Con earlier (P1Con =P1, .., - P1 - A11P1

- A01P1) and the fact that PCon = 0. This way we have represented the independent enzyme
concentrations as a sum of the free enzyme and the complexes in which it is sequestered.

Similarly for the other total enzyme concentrations as well.

T= (Pl

=0:

tal—P]Con)-(P2 tal—PZCon)—(KZ ml—KZCon)-(K] tal—K]Con)

To To To

At this stage we evaluate the ratio of [A00] and [A11]. Note that with case 1 symmetry
breaking, we are looking for asymmetric states such that [A00] not equal to [A11].

- KIK2

All )~

A Pl P2
simpliﬁ/( 00 J

We denote this ratio as e. i.e. € = (P2*P1)/(K2*K1).

¢-KIl-K2 '
Pl '

A
simpliﬁ/( A00 J =€

P2 =

All



After introducing this ratio and algebraically simplifying T using the Maple command
simplify, we get the following equation.

simplify (T) =
1

2
Kl ¢, ek] a,

— A01° PI? a, 022 d, k22> K2) =0

((e=1) (KI* €ayc, (401 c,+ 1) k> +k, PI* 401 a, ¢, d, (401 ¢, + 1) k,

From this we can ascertain that, should an asymmetric steady state exist (where € # 1) - the
term

(K]z ayec; (401 ¢, +1) kl2 +a, PI* 401 ¢y d, ky (401 ¢, + 1)k,

— 401* PI* 022 d, k22 a,) in the numerator of the expression needs to be zero. This term

is an expression in the partial substrate form [A01], €, the free enzymes and kinetic
constants.

We show here that this term is nothing but the numerator of the following expression where
[A01] written as a function of [A10].

[(AO] AlO (A01+ 1 ] [A10+ 1 )]]
7= : - ) :
ka k, ¢k, 4, d,-a,
This is verified below. The numer command in Maple isolates only the numerator of an
expression. In this context we isolate the numerator of 'r' and add the term denoting

asymmetry from earlier. We can see that all expressions in the term cancel out revealing that
they are identical.

simplify (numer (r) + (K]2 ayec; (401 c,+1) k* +a, PI* 401 ¢, d, k, (401 ¢, + 1) k,
2 2 2 2
— A0I° PI” ¢, d, k, az))
=0

Thus, here we have a clear representation of the asymmetric steady state in terms of a
correlation between only the concentrations of the partially modified enzymes and key
kinetic constants (i.e. r = 0). r in turn can be rewritten for simplicity as follows.

restart .

re=Ay A

TR

Where the 75401 and 7”A10 expressions are given as follows.



k, A01 ¢, k,
A= simpli =
401 = Simplify [Aoz N 1 ] ky (401 ¢, +1)
k, ¢, k,
Al0
a, A10d2a2
A e il _
ato 7= Simplify 410 1 a, (410d,+1)
4, dya,

Now we use an auxiliary analysis to ascertain other correlations between [A01] and [A10]
representing all steady states of the system. We refresh Maple here to rewrite some new
expressions.

restart .
(PZ + K1

(P]Tolal + K2Total)

the individual conservation equations that they correspond to the sum of the free enzyme
and the complexes in which they are sequestered. Thus,

Total Total)

We begin by evaluating the following ratio of enzymes . We know from

(P270001 t Klpora)  (A10P2 + A1IP2 + P2) + (A00KI + AIOKI + K1)
(P + K2 (A11IPI + AOIPI + PI) + (A0IK2 + A00K2 + K2)

Total)

This can be further simplified as follows, (by rewriting the concentration of the complexes at
steady state and simplifying the resulting expression)

(PZTOW + K1

(PITotal + K2Total )

(A11P2 + AOOKI ) + (1 + d,-A10)- (K1 + P2)
(00K2 + AIIPI) + (1 + ¢, 01 (K2 + PI)

Total)

Now from the dynamical representation of the network as a system of ODEs earlier
(particularly equations dA01 and dA10) we know that at steady state,

k
AIIP2 + A00KI = = “(4A01K2 + AO0IPI) :
1

k.
a,
AIlIPI + AOOK2 = — - (4A10P2 + AI0K1) :

a

1

Substituiting this in the earlier expression we get the following,



Kl ((A0IK2 + AOIPT) + (1 + d,-A10)- (K1 + P2)

+ K2

(PZ
(P]

Total Total)

Total Total)

Q |NQ N»L\)»

((A10P2 + AI0KI) + (1 + ¢, 01+ (K2 + PI)

Which simplifies to,

k
2
2 .c,-A01-(K2 + PI) + (1 + d,-A10\- (KI + P2
(P + Klpp) &y 2 (K24 P + (1 + dyAI0) (R + P2)
otal Total _ 1
Pl +K2 a
(P rota1 T 8 2rorar) —d,-A10- (P2 + K1) + (14 c,-401)- (K2 + PI)
a

1

(1 + cZ-AOI)-(KZ + PI)
(1 + dZ-AIO)-(K] + P2)
above expression we get the following simplified form,

Now we introduce a new ratio, o. = Substituting this ratio in the

k, ¢, A01-alpha
k, (1 + cZ-AOJ)
a d,-AI0

Total) _2
a, (1 +dyai0) "¢

1
+ K1 i

+ K2

Total

(PZ
(PI

Total) _

Total

1

Reintroducting the nomenclature of A, and A, the above equation simplifies as,

(PZTotal + K]Total) _ 7\'1401 ot .
(PITotal + K2Tota1) 7\’,4]0 + o
Under case 1 symmetry, K2, . =Pl ., and K1 ., =P2 .. Here we bring in the
1
asymmetry correlation ascertained earlier, i.e. r=1or A 10— = - Using these two

A10
insights, the above equation simplifies to

PZTotal = 2 (7\'A01

P]Total Aor (1 +OC'7LA01)

-oc+1)

Since the expression on the right is always positive ( o and A 0; Are all positive sums of

kinetic constants and species concentrations), we can cancel it in the numerator and the
denominator, without making any assumptions about the steady state.



P2

Total
k =

A01

PITotal
Thus,

A _ P]Total

Al0
P2Total

Solving these equations for their respective substrate concentrations we find that in an
asymmetric state, the concentrations of [A01] and [A10], the partially modified substrates
are fixed and is given by few key Kinetic constants.

A0] = - PZToml k1 — PZT()tal k]

¢ (P2 10001 k) =k, Plrar) ) (kl P2 — K Pl 1)
AlO = - P]Total 4 — PlTotal a4

dy (Plyyy @ — @ P2p,0) dy(a; Ply,—a;P2r,.)

Necessary Conditions

Since substrate concentration are always necessarily positive, the expression for the
concentrations of [A00] and [A11] should be positive. The numerator is only a function of
kinetic parameters and total enzyme concentrations which are always positive, thus the
denominator must necessarily be positive to ensure that the resulting concentration is
positive. This gives us the necessary condition for the asymmetric state to exist as follows.

1. k2 .PITotal
2. a, -P2

> kl .PZTotaZ

> a, -Pl

Total Total

Sufficiency of necessary conditions

In this section we show that the necessary conditions generated above are sufficient to
ensure symmetry breaking at some finite A .-

As shown above, should an asymmetric branch exist the associated invariants (of
concentrations) need to be true irrespective of A, ., values. To show that the asymmetric

state is a feasible steady state for the system, we need to show that the concentrations of all
variables involved (substrates, complexes and free enzymes) are all positive. Simultaneoulsy
we need ensure that the system satisfies the conservation conditions associated with the
concentrations of the substrate and the respective enzymes.



We show this in the following manner.

1. We evaluate the steady state of the system to obtain expressions of concentration of all
substrates and complexes in terms of a few key concentrations ([A01], [K1], [P1], [K2], [P2]
as done earlier).

Note: This is done by running the code until before the section 'Proof for invariant in
asymmetric branches'

2. We then substitute one of the invariants [A01] concentration into the system.

PZTotaZ k]

A0 = -
¢y (P2 K — Ky P1

Total 1 Total)

3. Further we solve the conservation expressions K1Con and P1Con, for expressions of the
free enzymes [K1] and [P1] in terms of the concentrations of other free enzymes ([K2] and
[P2]) and the invariant substituted earlier for [A01] concentration.

Pl := solve(PICon, PI) :
K1 = solve(K1Con, K1) :
We can thus ascertain concentrations of the following substrates as a function of free

K
enzymes [K2], [P2] and constants. Here we introduce a new ratio o = 153

K2 := o-P2:
Pl a
Total —1
mplify(A10) = -
simplify(A10) (4; PLyyer = a3 P27,,0,) 4,
simplip (K1) = - 1o % 41 (0 Mot~ 2 o)
(oc dyP2p .t ¢ PIToml) a,
Simpll]ﬁ/(P]) — P]Total (PZTozal k[ o k2 P]Total) C[
k2 <OC d1 P2T01al + € P[Tolal)
simplify(A00) = - Pl a1 %
o d] (Cl] P]T()tal - aZ PZT(}MZ)
o P2 k
Total "2
mplify(All) = -
simplify (A11) (P2 ky = Ky Py, €

We can see that automatically we get the second invariant for the concentration of [A10] to
be true. From the expressions of the variables we note that when [K2] and [P2] are both
positive the variable concentrations are positive.

4. Now we solve K2Con (the conservation condition associated with the enzyme [K2]) for the
concentration of free enzyme [P2] and get the following correlation.



P2 = simplify(solve(P2Con, P2)) =

P2 i— - (al P[Tolal o a2 P2T0tal) (PZTotal k] o kZ P]Total) (1 3 1)
k, (a] o= az) Plyyt 4,020, (—oc ky + kz)
Note that the denominator can be simplified as
Ok, (ay Py, = P20,0) tay (K P2ry = K Ply,.p)

So again, if o is positive, [P2] is positive implying [K2] is positive.

In an asymmetric condition we have no restriction on the value that this oo can take. Note

that in a symmetric state, by mandating [A01] = [A10] we fix the value of o in terms of
kinetic constants and total enzyme concentrations.

simplify (K1Con)
simplify (K2Con)
simplify(P1Con) =
simplify (P2Con)

simplify (dA00) =
simplify (dA11) =
simplify (dA01) =
simplify (dA10) =
simplify (dA00K 1
simplify (dA00K2) =
simplify (dAOIPI) =
simplify (dA10P2) =
simplify (dA01K2) =
simplify (dA10K1) =
simplify (dA11PI) =
simplﬁ/(dA]]PZ
simplify (dK2) =
simplify (dK1) =
simplify (dPI)
simplify (dP2)

\—/\—’\_/v\—"—’vx_/

We can thus ensure that for any positive value of o, all concentrations are positive. This
thus implies that there exists a finite positive ATotal value where this asymmetric state is
realized.

Hence we have shown that the necessary conditions are sufficient for symmetry breaking at
some finite A, ., value.

Position of symmetry breaking (Pitchfork bifurcation)

At the position of symmetry breaking, we know two insights.
1. The system is still symmetric, hence [A00] = [A11], [K1] = [P2], [P1] = [K2]



2. The invariants descibing the asymmetric steady state are also true.

Using these two information, we can simplify the original system considerably as follows.
Note:

Kl = P2:
Pl = K2 :
00 = K2 A01 ¢, k2

P2 ¢, kj
A0l = A01

2
A0l K2 a,c, d] kZ

AlO = 5

P2 ¢, k] a, a’2
e K2 A01 ¢, k2

P2 ¢, kj

But we also know that [A01] and [A10] are invariants given by the following expressions.

401 — - P2 ki _ P2k

¢ (P2rpm k) — k Plroar) ¢ (ki P2y = 5 Plyy,a)
410 = - Plyyar @ ) Plyyar @

dy (Plyy @ — @ P2p,0)  dy (4 Py — a3 P20,00)

Using this information we can find the value of [K2] and [P2]. Substituiting this into the
expressions for conservation of the individual enzymes, we get the concentrations of the
respective free enzymes.

A, = simplify (solve(ACon A, l))

P2 ¢, k1

2
5 ] d, P2, * (14.1)

ATOW ( a, k —I—k ¢ +k (K2d1+l))K202+

P2ck P2c,d,k,

+2P] 1(( kP2+K2(k2+k1))c]+K2k2(K2d1+1))d2
J Total

2
J a, P2,  —2PI P2c, (PZ d,

+2J a, k,c 2]/(( 2Ttalk1+kP]Ttal)CJPZdZ(P]Totalal

o a2 PZT()tal) CZ)

An example of this is done in the read me file using the parameters used in generating the



figures. A cross verification of the analytical work and bifurcation analysis is done in this
manner.



Case 2 Symmetry : Present and Breaks

Kinetic constraints for case 2 symmetry to be present (refer main text) are imposed on the
original model.

api=kpray =kyyra,, =k
ay = kyray, = ky,ta,, =k,
ay = kyiay ;= Kpta,, 0=k
ayi=kyray, =k ra,, =k,

In addition to the Kinetic constraints the total enzyme concentrations of kinase and
phosphatase need to be equal for exact case 2 symmetry to be present. This is imposed as
shown below.

K1
K2
Pl
P2

Total = KTotal :
Total = KTotal :
Total = PTotal :

Total = PTotal :

At this stage we introduce auxiliary constants c,, ¢,, ¢; and ¢, in place of the binding constants
so as to make further analytical expressions more accessible.

Ry =cp (bt k)
kpy = ¢y (ky T k)
ks = ¢35 (ks + Kyp3)

by = ey (ke ¥ hupy)

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In
this context we want to solve all variables in terms of the concentrations of the free enzymes (
[K1], [K2], [P1] & [P2]) and concentration of the completely unmodified substrate [A00]. In
order to do this, we use the Maple command solve, which algebraically solves the equation
supplied for a given variable. We first solve for the individual complexes using their
corresponding differential equation. An example of this (using [A00K1]) is given below in
detail.

The differential equation of [A00K1] is given by,

d [AO0K1] _ , . d[A00KI]

” o =c (kl + kubl) A00 K1 — (kj + kubj)A()()KI

The solve command by Maple, uses this solves this equation for the given variable (in this case
[AO0K1]). This is performed by the following command. Here we assign [A00K1], the solution



returned by the solve command.

AOOK1 = solve(dA00KI, AOOK1I)
A00KI = K1 400 c, 2.1)

This operation is performed for the other complexes and substrate forms as well. Here we
simultaneously solve expressions for the substrate forms using the solve command as shown
below. The solution is stored in a variable labelled So/, and then the respective solutions are
extracted from this vector using the eval command.

AO0IK2 = solve(dA0IK2, A0IK2) :
A11P2 == solve(dA11P2, A11P2) :
AO0IPI = solve(dA0IPI, AOIPI) :
AO0K2 = solve(dA00K2, AO0K2) :
AI0K] = solve(dA10K1, AI0K]) :
A11PI = solve(dA11PI, A11PI)
AIOP2 = solve(dA10P2, A10P2)

Sol == solve({dA01, dA10, dA11}, {A01, A10, A11}) :

A00 = eval(A00, Sol) :
A01 == eval(A01, Sol) :
Al0 = eval (410, Sol) :
All = eval(All, Sol) :

Doing this results in the following correlations between the concentrations of the various
substrate forms at steady state.

A00 = A00
AOOK]CI k]

A0l = ———
c4k4P1
K2A0001 k]

Al = ———
P204k4
AOOKIK2¢c, ¢k, k
A]] = 17271 2

P2c, kPl c,k,

Proof for invariant in asymmetric branches

We know that P1, . “K2. =Kl . P2 | in this system under case 1 symmetry
(Since K1 K2, a1 and P2
K2 = KlTotal
K10 a1 P2 1o @S Shown below. Here we write P1, ., as P1Con + P1 ... Note: This

comes from the expression used for P1Con earlier and the fact that PCon = 0. This way we
have represented the independent enzyme concentrations as a sum of the free enzyme and
the complexes in which it is sequestered.

Total — Plrotar)- Thus at a given steady state, (P1 .., *

*PZTotal) must be equal to 0. We introduce a term T = (PlTotal*KZTOtal =

Total =

Total



Similarly for the other total enzyme concentrations as well.

T:= (P]Con—P] )-(KZCon—KZ ) - (PZCon—PZ )-(K]Con—K]Toml) =0:

Total Total Total

This way we have represented the independent enzyme concentrations as a sum of the free
enzyme and the complexes in which it is sequestered.

At this stage we evaluate the ratio of [A01] and [A10]. Note that with case 2 symmetry
breaking, we are looking for asymmetric states such that [A01] not equal to [A10].

A10 ) PIK2

A0l K1 P2
simpliﬁz( j =

We denote this ratio as €. i.e. € = (P2*K1)/(K2*P1).

c¢-Pl-K2 _
K1 '
A0l

simpliﬁz(mj =e=

After introducing this ratio and algebraically simplifying T using the Maple command
simplify, we get the following equation.

P2 =

simplify (T')
1

[ . _ 2 . 2 ) o |
Plc4k42kje<(€ 1)( k3eP] ¢, (A0061+1)k4 KI“A00c, c, k, k (AOOCI (2.1.1)

1727172
+ 1)k, + 400" KI” ¢, ¢, k. k;) K2) =0

From this we can ascertain that, should an asymmetric steady state exist (where € # 1) - the

term (

2 2 2 2 .2 2 2
—k3 e Pl ¢, (AOOcI + 1) k4 — Kl AOOcI c, k1 kz (AOOcI + 1) k4 + 400" K1 ¢, ¢, k1 k3)
in the numerator of the expression needs to be zero. This term is an expression in the partial

substrate form [A00], €, the free enzymes and Kinetic constants.

We show here that this term is nothing but the numerator of the following expression
multiplied by the ratio (€ jJ& ¢, k4) where [A01] written as a function of [A10].

kycyAll k, ¢, ~A00
me [( k- (1+ ¢y-All ]( k- (1+ ¢,-400) ] i 1]'

This is verified below. The numer command in Maple isolates only the numerator of an

expression. In this context we isolate the numerator of 'r', divide it by the factor (¢ P/ 2 y k )

and add the term denoting asymmetry from earlier. We can see that all expressions in the



term cancel out revealing that they are identical.

Jactor| ~k; € PI* ¢, (400 ¢, + 1) k> = KI> 400 ¢, ¢, k, k, (400 ¢, + 1Y k,

(numer(r))

+A00° KI? ¢ e k), — ———
ePI"c k,

271 73

Thus, here we have a clear representation of the asymmetric steady state in terms of a
correlation between only the concentrations of the partially modified enzymes and key
kinetic constants (i.e. r = 0). r in turn can be rewritten for simplicity as follows.

restart .
ri= Ay Ay, L

Where the A 400 ANd A (;; €Xpressions are given as follows.

k3~03-All
AL = :
ALl kz-(l +c3-A]])
k,-c -A00
A . 1“1

400 k(14 ¢,-400) :

Now we use an auxiliary analysis to ascertain other correlations between [A00] and [A11]
that is valid for all steady states of the system (not just asymmetric ones). We refresh Maple
here to rewrite some new expressions.

restart .
(P] + P2
(K]Total + K2Total)

the individual conservation equations that they correspond to the sum of the free enzyme
and the complexes in which they are sequestered. Thus,

Total Total)

We begin by evaluating the following ratio of enzymes . We know from

(P]Tolal
(K]Total + K2

+P2r,)  (AIIPI + AOIPI + PI) + (AIOP2 + AIIP2 + P2)
(A00KI + AI0KI + K1) + (AOIK2 + A00K2 + K2)

Total)

Now from the dynamical representation of the network as a system of ODEs earlier
(particularly equations dA01 and dA10) we know that at steady state,

ky

AOIPI + AIOP2 = T (AOOKI + AO0K2) :
4



ks

AOIK2 + AI10KI = T (AI1IPI + Al11P2) :
2
Thus,
k]
— - (400K1 + AO00K2) + P1 + P2 + Al1Pl + Al1P2
(P]Tolal + PZTotal) _ k4
(K]Total + KZTotal) k3
T (AI11PI + A11P2) + AOOKI + KI + K2 + A00K2
2

This can be further simplified as follows, (by rewriting the concentration of the complexes at
steady state and simplifying the resulting expression)

k
1
L - A00-(KI + K2) + (1 + ¢,-All\- (Pl + P2
(Plyar + P2rot) Ky (KI+K2) + (1+ ¢y ALT)-(PL+ P2)
otal Total _ 4
Kl  +K2 k
(Mroar ™ Bopoar) - 55 ALL-(PL+ P2) + (1 + ¢-A00)-(KI + K2)
k, 3 1

(1+ ¢, 400)- (K1 + K2)
(1+ c;-All)- (P + P2)

above expression we get the following simplified form,

Now we introduce a new ratio, o. = Substituting this ratio in the

b _epdova
(Plyonat = P2rosat) Ky (1+ ¢,7400)
(KITotal + KzTotal) E . 03‘A11 + o
by (1+ cpAll)

Reintroducting the nomenclature of A 100 And A ,;; the above equation simplifies as,

(Plrpar ¥ P2rprt)  Pggp @+ 1 .
(KI

Total + KzTotal) 7”,4]] + o

Under case 2 symmetry, K2, . =Kl .. and P1 ., =P2. .. Here we bring in the

1
asymmetry correlation ascertained earlier, i.e. r =1 or A 00— - Using these two
Al
insights, the above equation simplifies to
(PTotal) (kAO().OC'D + 1)

(Kzorar) . (1 + OL'D'}\’A()O) oo



Since the expression on the right is always positive ( o and A are all positive sums of

400
kinetic constants and species concentrations), we can cancel it in the numerator and the
denominator, without making any assumptions about the steady state.

A o PTotal .
400
KTolal
Thus
) L KTolal .
All :
PTotal

Solving these equations for their respective substrate concentrations we find that in an
asymmetric state, the concentrations of [A00] and [A11], the partially modified substrates
are fixed and is given by few key Kinetic constants.

400 = solve[ 606 A0 P A()O]
k4~(1 + ¢, -AOO) K. . ’
P k
Total "4
A00 = 2.1.2)
Cl (kl KTotal o PTotal k4)
k,c,-All K
3 73 Total
All = solve = , ALl
[ k2~(1 +03-A11) P ]
K k
All = - Total 2 2.1.3)

¢ (Krorar ky = ks Proar)

Necessary conditions

Since substrate concentration are always necessarily positive, the expression for the
concentrations of [A00] and [A11] should be positive. The numerator is only a function of
kinetic parameters and total enzyme concentrations which are always positive, thus the
denominator must necessarily be positive to ensure that the resulting concentration is
positive. This gives us the necessary condition for the asymmetric state to exist as follows.

I kK

Total > k4.PTotal
2. kP

Total > kZ .KTotal

Sufficiency of necessary conditions

In this section we show that the necessary conditions generated above are sufficient to
ensure symmetry breaking at some finite A .-



As shown above, should an asymmetric branch exist the associated invariants (of
concentrations) need to be true irrespective of A, . values. To show that the asymmetric

state is a feasible steady state for the system, we need to show that the concentrations of all
variables involved (substrates, complexes and free enzymes) are all positive. Simultaneoulsy
we need ensure that the system satisfies the conservation conditions associated with the
concentrations of the substrate and the respective enzymes.

We show this in the following manner.

1. We evaluate the steady state of the system to obtain expressions of concentration of all
substrates and complexes in terms of a few key concentrations ([A00], [K1], [P1], [K2], [P2]
as done earlier).

Note: This is done by running the code until before the section 'Proof for invariant in
asymmetric branches'

2. We then substitute one of the invariants [A00] concentration into the system.

400 = PTotal k4 .
¢ (k] KTolaZ o PTotaZ k4)

3. Further we solve the conservation expressions K1Con and P1Con, for expressions of the
free enzymes [K1] and [P1] in terms of the concentrations of other free enzymes ([K2] and
[P2]) and the invariant substituted earlier for [A00] concentration.

K1 = simplify(solve(K1Con, K1)) :
P1 = simplify(solve(PICon, PI)) :
We can thus ascertain concentrations of the following substrates as a function of free

K
enzymes [K2], [P2] and constants. Here wee introduce a new ratio o, = 153

K2 := a-P2:
K k
Total "2
mplify(All) = -

e lﬁ}( ) (kZ KTolal —k PTotaZ) 3
sim llﬁ/(K]) _ KTotal (kl KTolal Total ) C4
g k(¢ EPTI/ 4 Krotar)
sim llﬁ/(P]) PTot [ (k KT tal —k PTotal)
P (CZEPT()ZI+C K ) 3

eP k
Total "1
mplify(A10) =
Smpy(AT0) (kl Krorar = Prosal k4) 4
K k
Total "3
mplify(A01) = -
sl ) 2 (kz Krora =55 PTotal)

We can see that automatically we get the second invariant for the concentration of [A11] to



be true. From the expressions of the variables we note that when [K2] and [P2] are both
positive the variable concentrations are positive.

4. Now we solve K2Con (the conservation condition associated with the enzyme [K2]) for the
concentration of free enzyme [P2] and get the following correlation.

P2 := simplify(solve(P2Con, P2))
P k )

(kZ KTolal o k3 PTolal) (kl KTotal U 1otal "4

Ky (€5 = k5) Kpprar = %5 Progar (€51 = 54)

P = 2.3.1)

Note that the denominator can be simplified as

€k (K Kporar =55 Prorar) =55 (K1 Kot = Prorar K4)

So again, if o is positive, [P2] is positive implying [K2] is positive.

Note that in a symmetric state, by mandating [A01] = [A10] we fix the value of o in terms of
kinetic constants and total enzyme concentrations.

simplify (K1Con)
simplify (K2Con)
simplify(P1Con) =
simplify (P2Con)

simplify (d400) = 0
simplify(dA11) = 0
simplify(dA01) = 0
simplify (dA10) = 0
simplify (dA00K1) = 0
simplify (dA00K2) = 0
simplify(dA0IPI) = 0
simplify (dA10P2) = 0
simplify(dA01K2) = 0
( ) =0
( ) =0
( ) =0
(
(
(
(

simplify(dA10K1
simplify(dA11PI
simplify (dA11P2
simplify(dK2) = 0
simplify (dK1)
simplify (dPI)
simplify (dP2)

=0
0
0

We can thus ensure that for any positive value of o, all concentrations are positive. This
thus implies that there exists a finite positive A, .. value where this asymmetric state is

realized.

Tota

Hence we have shown that the necessary conditions are sufficient for symmetry breaking at



some finite A, ., value.

Position of symmetry breaking (Pitchfork bifurcation)

At the position of symmetry breaking, we know two insights.

1. The system is still symmetric, hence [A01] = [A10], [K1] = [K2], [P1] = [P2]

2. The invariants descibing the asymmetric steady state are also true.

Using these two information, we can simplify the original system considerably as follows.

Note:
Kl = K2 :
Pl = P2
A00 = A00
K2 400 ¢, k,

AQl = ———
P204k4
K2AOOC] k]

Al = —————
P204k4
A00K2* ¢ c. k k
4] = 2 1%
P2 c4k4c3k3

But we also know that [A00] and [A11] are invariants given by the following expressions.

400 = PTotaZ k4 .
CI (kI KTotal o PTotal k4)
K k
Al = - Total "2

(kz Koot = %5 Prowt) 3

Using this information we can find the value of [K2] and [P2]. Substituiting this into the
expressions for conservation of the individual enzymes, we get the concentrations of the
respective free enzymes.

A4, = Simplijfj/(solve(ACon, ATOml) )
A = 1 2|P2 || K2 (k,+k —|—Q k, P2+ ((K2 24.1)
Total ~ py2 ek, k, (b, + k)¢ 5 | %" ((K2 ¢, -

2
K2 ¢, czkl k2
+1)k3+K202k2)c[k1K2 cj—l— A00

2



An example of this is done in the read me file using the parameters used in generating the
figures. A cross verification of the analytical work and bifurcation analysis is done in this
manner.



Case 3 Symmetry : Present and Breaks (Arguments for necessary
conditions)

Unlike case 3 symmetry breaking in other models of Random DSP with common enzymes or
case 1-2 symmetry breaking in System 3 Random DSP with separate kinases and
phosphatases, there exists no simple linear invariant of concentrations at asymmetric steady
states post symmetry breaking (upon bifurcation along A . |)

However the asymmetric steady states in this case 3 System 3 Random DSP exhibit their own
signature of symmetry breaking in the form of asymptotic values for concentrations of specific

substrates to increasing A, ... These asymptotic values manifest as approximate concentration

robustness for concentrations of the specific substrates.

In this analysis below we show the presence of such symmetries and how the underlying

Kkinetics dictates both the specific pair that exhibits asymptotic response to increasing A, . .

and the individual asymptote concentrations.

Through this process we also obtain necessary conditions for case 3 symmetry to break in
System 3 Random DSP (including the necessary conditions for approximate robustness in
relevant substrate concentrations through asymptotic behavior)

Kinetic constraints for case 3 symmetry (refer main text) are imposed on the original model.

b3 = Ky iy =k

Cl3 1 .a

ayi=hyray, =k,ta,, =k,
api=hyray =kpta,, =k
ay = kyray, =K, ra,, =k,

In addition to the kinetic constraints the total enzyme concentrations of kinase and
phosphatase also need to be equal for exact case 3 symmetry to be present. This is imposed as
shown below.

K1
K2

Total = PjTotal:

Total = PZTotal:

At this stage we introduce auxiliary constants ¢, ¢,, ¢; and ¢, in place of the binding constants
so as to make further analytical expressions more accessible.

kyp=cp (bt kp):
Ky = ¢y (ky k)
k .= c,-

b3 NCREIE



by =y (b T k)
Once this is done, we solve for the steady state of the system in terms of fewer key variables. In
this context we want to solve all variables in terms of the concentrations of the free enzymes (
[K1], [K2], [P1] & [P2]) and concentration of the substrates. In order to do this, we use the
Maple command solve, which solves the equation supplied for a given variable. We first solve
for the individual complexes using their corresponding differential equation. An example of this
(using [A00K1]) is given below in detail.

The differential equation of [A00K, ] is given by,

d [A00K] ]

=dA00K 1
" dA00

d [A00K] ]

=<y (ky k) A0 KT — (K, + k) AOOK] @.1)

The solve command by Maple, solves this equation for the given variable (in this case [A00K1]).
We in turn store this value (the solution returned by the so/ve command) in [A00K, |. This is

performed by the following command.

AOOK] = solve(dA00K1, A00K])
AO0KI = K1 A00 c, (3.2)

This operation is performed for the other complexes as well as shown below.

AOIK2 = solve(dA0IK2, A0IK2) :
A11P2 == solve(dA11P2, A11P2) :
AO0IPI == solve(dA0IPI, AOIPI) :
A00K2 = solve(dA00K2, AOOK2) :
AI0KI = solve(dA10K1, A10K1) :
A11PI = solve(dA11PI, A11PI)
AIOP2 == solve(dA10P2, A1OP2)

At this stage we solve for the individual free enzyme concentrations of [P1] and [P2] as shown
below. Note that since K1Con, K2Con, P1Con and P2Con are all equal to zero at any given
steady state, K1Con-P1Con and K2Con-P2Con is also equal to zero. We define these terms as
T = K1Con-P1Con and Q = K2Con-P2Con and use these expressions to solve for [P1] and [P2]
as shown below

T := KICon — PlCon :
O = K2Con — P2Con :

Pl = solve(T, PI)

K1 (AOOc] +A10c4+ 1)

Pl = .
A0l c,+Allc, + 1 (3-3)




P2 = solve(Q, P2)
K2 (AOO ¢, +A40Ic, + 1)

AlOc, +All c; + 1

P2 = (34

Now at this stage we simplify the remaining unsolved equations from the system of ODE
description of the model (dA00, dA01, dA10, dA11). (Note: dP1, dP2, dK1, dK2 are all equal to
zero since we solved the respective complex equations in the sytem of ODE description)

We definte two terms, M = dA00 + dA01 and N = dA00 + dA10. Note that since dA00, dA01
and dA10 are each equally to zero at any given steady state, M and N are also equal to zero.

M = simplify(dA00 + dA01)
M = 3.5)
1
AlOc, +All c, + 1

—410)) ¢, = ¢; k; (400 — A11)Y)

(K2 (((k; = k5) (400 A10 — 401 A1T) ¢; — k, (401

N = simplify(dA00 + dA10)
N := 3.6)
- Kl k, —k,) (400 A01 — A10 All) c,+ k, (A00
401 ¢, + 411 e, +1 (K =5) )¢y Tk
—A]])) ¢, —c, k, (401 —A]O)))
Thus from M and N we can ascertain that for any given feasible steady stae the following
expressions styled m and n need to be equal to zero.
m = ((k2 —k3) (400 A10 — A01 AI1) ¢y — k, (401 —A]O)) ¢, —c; k; (400 — A1) :
n = ((kz —k4) (400 A01 — A10 Al1) ¢, + k, (400 — AII)) ¢, —c, k, (401 — A10):
. . . 0 -
At this stage, we introduce the ratio € = 111 and thus m and n simplifies as shown below
A00 = epsilon-A11 :
simplify (m)
(—All (k2 — k3) (-A410 e+ A01) c, — k, (401 —AIO)) c,=Allc; k; (e = 1) 3.7
simplify (n)
All ((kl — k4) (401 € = A10) ¢, + k, (e — 1)) ; — ¢, k, (401 — A10) 3.9)

We first solve for the concentration of [A11] from m as shown below.

All = simplify(solve(M, AI11))
¢, ky (A01 — AI0)
All = - 3.9)

((ky = ks) (~A10 €+ 401) ¢, + ky (€= 1)) ¢

Substituiting this back in n, we get the following



simplify (n)
(((((((AO]C +A1003)k4—A0]c k )e+ (—AO]c — Al0 ¢ )k + A10 ¢ kj)kz (3.10)

+k e kg (-A10e+A01) Y e, —c k k(€= 1)) ¢, =k e e ky (e— 1)) (401

—A10)) [ (¢; ((k, = k;) (-410 e+ 401) ¢, + ky (e = 1))

We now solve this expression for [A01]. Note that since we are isolating solutions of asymmetry
(i.e. [A01] # [A10]), we ignore the symmetric solution while solving the system as shown below.

A01 = simplify(solve(N, A0I1)[2])
A0l = 3.11)

(c2 (A10c4 (036 cl)k4—|—c]k] (A]Oc4—e+1))k —cc k3k4 (A]Ocze

rern)/ (@ ((Cacrea)kteak)b—kek)e)

Finally we use the expressions obtained for [A11] and [A01] to solve for the free enzymes [K1]
and [K2] from their respective conservation expressions as shown below.

simplify (A11)
(—A]() (cjklkz—k4((cl+c3)k2—c3k3)) y Cjkjkz) —c; ¢,k k, G.12)
N ((kz_k3) (A]O (k] —k4) (e + 1)c4—|—k1) c, —€c,k; (k] —k4))
K1 = simplify(solve(simplify(KI1Con), K1))
K1 = (P]Tolal ((kz —k3) (AIO (k] —k4) (e+ 1)c4+k1) ¢, —€c,k, (kl 3.13)
—k4)) 03)/(((/1]06’3 (k2 —k3) (et1l)c, + (k2 —k3) c; — €, kz) ¢,
—036k3c4) (A]O (kl—k4)c4+k1))
K2 = simplify(solve(K2Con, K2))
K2 = (c4P2T0m1((k —k)(A]O(k k)(e+1) ek)c + ¢, k, (k 3.14)

=) e (e (5 =k ¢+ ok (B =4))) [ (k= k) 410 (ks (&

—k)c —I—ec k (kz—k3))cz—k3 (k2 (k]—k4)c]+csk4 (kZ—kj))e)c4

—cp ey k ky (k=) (€= 1)) ((A10¢, (k, = k) (e+ 1) e, + e (k= k) e,

—|-03k4)c4+cjczk1))

At this stage, by solving a majority of the system of equations describing the sytem (at an
asymmetric steady state), we have also obtained correlations between concentrations of
variables, primarily, concentrations of substrates and enzymes are obtained as functions of
[A10] and e.

K1Con)
K2Con)
P1Con)

)

simplify
simplify
simplify
simplify

0
0
0
P2Con 0

e p—



simplify (dA00K1) = 0
simplify (dA00K2) = 0
simplify (dAO1PI) = 0
simplify (dA10P2) = 0
simplify (dA0IK2) = 0
simplify (dA10K1) = 0
simplify (dA11PI) = 0
simplify (dA11P2) = 0
simplify (dK2) =
simplify (dK1)
simplify (dPI)
simplify (dP2)

O O o ovvvvvvvv

At an asymmetric steady state, ¢ # 1. Thus in order to show the presence of symmetry

breaking, we need to show the presence of positive solutions to the above correlations admitting
€ # 1. However due to the complexity of the system this is not possible to do symbolically

however can be easily verified for various kinetic values.

Necessary conditions for and location of symmetry breaking (pitchfork

bifrucation)

In this section we show the necessary condition for a pitchfork bifurcation/symmetry
breaking to exist. The pitchfork bifurcation is by definition the intersection of an

asymmetric branch and the symmetric branch of the steady states. Thus the correlation can
be easily discerned from the expressions obtained earlier for asymmetric solutions where

now €= 1.

Thus evaluating the expressions obtained for [A11] or [A00] at epsilon =1 (At symmetric

steady states [A00] = [A11])

simplify (eval(eval (simplify(A11)), epsilon = 1))

(—AIO(cjk]kZ k, ((c +c)k2 c—ckk2) —c e,k k,
c ks (k= k)
2 ((kg_kg) (AIO (kl c, T > J > ¢, ¢
simplify (eval(eval (simplify(400)), epsﬂon— )
(—AIO (clklkZ_k4 ((c +c )kz_ 3k3 c _°1k1k2) L, — ey, ko k,
¢, ks (k1 _k4)
2 [(kg_k3) (A]() (k1 ¢, 7 ¢, — > ¢, ¢
simplify (eval(eval (simplify(A01) ), epsﬂon =1))
Al0
simplify (eval(eval (simplify(A410)), epsilon = 1))
Al10

(3.1.1)

(3.1.2)

(3.1.3)

(3.1.4)



The above expression for A11 can be simplified further as the term t = 0 as shown below

restart .
kz k4
All-———— -All + ————
. ;' (k5 — k) _ (K, — k)¢
' k3 k]
AlO+ ———— A0+ ————
(k3—k2)-02 (k]—k4)-c4

Simplifying the above equation we get the following,

collect(szmplﬁ/ {kz, k3, k4, k1 })
((c A11+1)k 03k3A11)02 - (ckA]]+(—clA11—1)k4)
€3

4
(¢, b, 41O+ (¢, 410 — 1) k) (¢, 410+ 1)k, —c k, AI0) ¢,

(3.1.5)

We now use the individual conservation expressions for the enzymes [P1] and [P2]

Pl (1+c "A10 + ¢, A]])PI

Total

P2 (1+c "A10 + ¢, A]])PZ

Total

This can be rearranged as shown below

1 +c,-A10= Pl tota —c,-All;
4 Pl 1

L+ All= % — ¢, Al0:

1+, A10= % — e, Al

1+, All= lef;"” — ¢, Al0;

Substituiting these expressions in t, we get the following simplification for t

Pronar _ A10 | k. — . k, A1l
5, 2 T G 6

P2
[ == simplify 15 =
Total
e [Cz k2A10+ (—T +03-A11] k3]

j)

Total

k All —_— A]O k
et 11+ (gt e o)

¢y
([ Total - _ A]]]k —c,k A]Oj



(A]()P2 ¢, k, +All P2c  k, — k, P2T0ml)

e (A]OPZC ky+All P2 c k, — k; P2

(3.1.6)
Total

2
(c k AlO Pl —I—AIIP]c k k PI )
¢y

Tota
k,A10 Pl +All Pl c, k, —k, Pl Z)

C
Analyzing the left hand side of the equation 3.1.6

Assume k3 is greater than k2. We know that the denominator is positve from equation
3.1.5. Thus the numerator is also positive (since k2<k3), thus the entire left hand side term is
strictly negative.

Thus the right hand side expression has to be negative as well for the equation to be true.

Now suppose k4 > k1. Then the numerator as it appears in 3.1.6 is positive. And since k4 >
k1, the denominator also has to be positive. Thus the right hand side is entirely positive.

This is a contradiction and so the equation cannot be true under this condition.

Hence, should the correlation above hold good, k1 > k4 when k3 > k2. Similarly one can
reason that when k2 > k3, k4 > k1 is necessary.

Thus these become necessary Kinetic constraints for symmetry breaking to be feasible. Note
that these are not shown to be suffiient however extensive computational simulations show
indications that these conditions are indeed sufficient for symmetry breaking to exist at
some finite total substrate concentration.

The exact value at the pitchfork bifurcation point can be known by substituting equation
3.1.2 in the following correlation between the concentrations at the symmetric point
involving total enzyme concentrations of [P1] and [P2].

o P]Toml. (1+ ¢, AI0+ Al - (¢5ky-All — ¢y ky-A10) |
o P2 (1 F ¢, Al0+ ¢ AlT) (-¢; kAl + ¢k, A10) ‘

System 3 Random DSP breaks symmetry with a unique asymmetric signature in the form of
asymptotes for the individual substrates. However the value of the asymptote and the substrate
associated with it is given entirely by the kinetics.

Upon bifurcation along A, . . two scenarios are possible, as seen computationally
1. [A00] becomes O(Infinity) as [A11] becomes Infinity(0) (On the asymmetric branches)

In this scenario, [A01] and [A10] each inidivually saturate towards an unique asymptotic value.

2. [A01] becomes O(Infinity) as [A10] becomes Infinity(0) (On the asymmetric branches)



In this scenario, [AO1] and [A10] each inidivually saturate towards an unique asymptotic value.

Scenario 1 : Asymptotes (If [A01] & [A10] is robust, [A00] & [A11] becomes

0/infinite)

Since [A00] or [A11] becomes infinite, we are interested in solutions of the kind, epsilon =

0/infinity
1. [A11] = infinity, [A00] = 0, epsilon =0

simplify (eval(eval (simplify(A11) ), epsilon=10 ))
(—A]O(((—cl —cj)k4—|—c] k])k2+k4c3k3)c2—k4c3k3)c4—c] ¢,k k,

(A]O (k] —k4) ¢, +k1) c,C,C (k2 _ks)

This value is infinite - so the denominator must be equal to zero. This gives us the
asymptotic value of [A10] as shown below

A10 = simplify (solve(denom (simplify (eval(eval (simplify(A11)), epsilon=0 ))), A10))

k;

¢, (kl — k4)
At this value, we can evaluate the other concentrations, and so we have the second
asymptote for [A01].

AlO= -

k
simplzﬁz[eval(eval(AOl, epsilon =0), 410 =- - A ]_ X ] ]
¢ (% — k)

ky

(k;, —k3) <,
1. [A11] = 0, [A00] = Infinity, epsilon = infinity

simplify (400)
) ((A]O (c]k]kz—k4 ((c]+c3)k2—cjks))c4+c1k1k2)02+c304k3k4)e
((kz—kj) (A]() (k1 —k4) (e + 1)c4+k1)cz—ec4k3 (kl —k4))0301

This value is infinite - so the denominator must be equal to zero. This gives us the
asymptotic value of [A10] as shown below

simplify (limit(solve(denom (A400), A10), epsilon = infinity ) )

ky

) (kz - ks)

(3.2.1)

(3.2.2)

(3.2.3)

(3.2.4)

(3.2.5)



At this value, we can evaluate the other concentrations, and so we have the second
asymptote for [A01].

k
simplify| eval| limit((A01), epsilon = infinity), 4710 = ——————
¢, (ky = k5)
- k—l (3.2.6)
4 (kj - k4)

Thus for symmetry to break and lead to robustness in A10 and A10, the necessary
condition is k, > k, and k, > k, and these are the respective asymptotes

Scenario 2 : Asymptotes (If [A00] & [A11] is robust, [A01] & [A10] becomes
0/infinite)

Since [A01] or [A10] becomes infinite, we are interested in solutions of the kind, = 0 and
epsilon = infinity

1. [A01] = infinity, [A10] = 0

simplify (A01)

((AIOC4 (036—01)k4+61 k1 (A]()c4—e+ 1))czk2—csc4k3k4 (A]Ocze—i-e 3.3.1)

— 1))/((((—c1 etk tec k) k,—k k) c,c,)
This value is infinite - so the denominator must be equal to zero. This gives us the
asymptotic value of epsilon as shown below

epsilon = solve(denom (A01), epsilon)

3
_ (3.3.2)
ky (k; — k) ¢

csky (b, = k)

At this value, we can evaluate the other concentrations and thus we have our two invariants

’C‘j ]Ei‘l(k_z ’;;30)1 ] ]

k

_ ¢; (ky = K5)

¢y ky (k= ky)

ky (K = k)¢ ]]

ky

¢, (k, — k)

simplyﬁ/[eval(simplyﬁ/(A]] ), €= -

(3.3.3)

simpllﬁ/[eval(simpllﬁ/(AOO), €= -

(3.3.4)

2. [A01] = 0, [A10] = Infinity



simplify (A01)
(02 (A]Oc4 (€03 _Cl) k4 + ¢, k1 (AIOC4 — €+ 1)) kz ¢y c4k3 k4 (A]OCZ et+e (3.3.5)

— l))/(c402 (((-€c; +e3) ky+ec b))k, —k c;k;))
This value is infinite - so the denominator must be equal to zero. This gives us the
asymptotic value of epsilon as shown below, where [A10] = infinity

epsilon = simplify (limit(solve(A01, epsilon), A10 = infinity) )

g (kj —k4) k2
€= -  (k—F 3.3.6)
c;ky (k, — k)
At this value, we can evaluate the other concentrations and thus we have our two invariants
o _Cl(kl ky) K, .
limit| simplify| eval | simplify(All), e= - , A10 = infinity
¢y k ( k3)
k4
P EE——— 3.3.7)
(k] - k4) ¢

N - (k) .
limit| simplify | eval| simplify(A00), e = - , A10 = infinity
c; k, (/’c2 — k3)

k

2
I S (3.3.8)
(k, = k3) <

Thus for symmetry to break and lead to robustness in A00 and A11, the necessary
condition is k; > k, and k, > k, and these are the respective asymptotes



Mixed Random 1 DSP : Common Kinase Common Phosphatase
Case 2 - Present and Doesn't Break

In this Maple file we analytically show the infeasibility of case 2 symmetry breaking in the Mixed Random
1 DSP network with common kinase and common phosphatase effecting distributive random
phosphorylation and random processive dephoshorylation respectively. We do this by first describing the
model as a system of ODEs along with the associated enzyme and substrate conservations. We then
impose the kinetic constraints pertinent to case 2 symmetry. By solving for the steady state of the system
of ODEs we obtain relations between concentrations of the substrate variables in terms of each other and
the free enzyme concentrations. After this, we identify key symmetric pairings that represent the symmetric
steady state. i.e. case 2 symmetry breaking requires symmetry between [A01] & [A10]; By leveraging this
insight, we show the infeasibility of case 2 symmetry breaking by revealing that [A01] and [A10] are
always equal for any given feasible steady state. These procedures are carried out in detail below using
built in Maple commands.

Note: A subscript is used to distinguish between the two different complexes formed between [K] and
[A00]. Similarly a subscript is used to distinguish between the two distinct complexes formed between [P]
and [A11].

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt
Maple functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with (VectorCalculus ) : with(LinearAlgebra) : with(Student[ LinearAlgebra]) :

The system is modelled as a set of ODEs using the kinetic nomenclature described in the main text
and supplementary figure (refer Appendix 2 figure 10). Here dA00 represents d[A00]/dt and
similarly for other expressions. At steady state thus, each of the right hand sides of these
expressions will be equal to zero.

dA00 = —kb] A00-K — a,, A00-K+k , -A00K., +a , ,-A00OK, 4+ a,-AIOP + k,-A0IP :
ubl 1 ubl 2 4 4

dA0] = —kl72 A0l -K + kI AOOK1 +k, AOIK:
ub2

dA10 = -a,, Al0-K + a, AOOK2 + a,, AlOK :

dAll = kZ AO0IK + aZAIOK - kbj'All'P - ab3-A]]-P + kubj'AllP1 + aubs-A]]P2 :

a’A()()K1 = kb]-AOO-K— (k] + k )-AOOK :
ubl 1
dAIOK = ab2~A10~K - (az + aubz) -AI10K :
a’A()()K2 = ab]-AOO-K - (aub[ + a])-AOOK2 :
dA0IK = kbz-AOI-K - (kub2 + kz) -A0IK :
a’A]]P1 = kb3-A11-P - (kub3 + k3) -A]]P1 :
dA10P = a, -A]]P2 - a4-A10P:
a’A]]P2 = a,, -Al1-P - (aub3 + a3)-A]]P2 :
dAQIP = k3~A11P1 - k4~A01P:

dK = -k, -A00-K + (kl + kubl)-AOOK1 —a,, A10-K + (az + aubz)-AIOK— a,,~A00-K + (aubl



+ a])-AOOK2 —k,,"A01-K + (kubZ + kz) ‘A0IK :
dP = -k, ,-AIl-P + k ,,-AIIP + a,AIOP—a,,-All"-P + a . -AlIP, + k AOIP:

The above equations are also associated with conservation conditions which are described below.
Here we store the conservation expressions as ACon, PCon and KCon for the substrate and the
respective enzymes. Each of these expressions is always equal to zero (both in the transient
behavior and at steady state).

ACon = A, .~ A00— A10 - A0 — A1l — AOOK, — AOIK — AOOK, — AIOK — AI1P, — AIOP
— AIIP,- AOIP:

KCon ==K,  —K—A00K, —AIOK — AOOK, — AOIK :

PCon =P,  —P—AllP —AIOP — AlIP, — A0IP:

Proof for impossibility of symmetry breaking

Kinetic constraints for case 2 symmetry (refer main text) are imposed on the original model.

ay=kra, =kyra,, =k,
a,=kyra,,=k,a,, =k,
ayi=kytay=ksra,s =k
a, = k4 :

There are no constraints on the total enzyme concentrations for case 2 symmetry to be present
in Mixed Random 1 DSP. At this stage we introduce auxiliary constants ¢, ¢,, and ¢, in place

of the binding constants so as to make further analytical expressions more accessible.

Ky =c; (ks TR
Ky = ¢y (kTR
kps = ¢5 (ks TR

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In
this context we want to solve all variables in terms of the concentrations of the free enzymes (
[K] & [P]) and the concentrations of the fully unmodified substrate [A00] and the fully
modified substrate [A11]. In order to do this, we use the Maple command solve which solves
the equation supplied for a given variable. We first solve for the individual complexes using
their corresponding differential equation. An example of this (using [A00K, | is given below in

detail).

The differential equation of [A00K, | is given by,

d [400K ]
dt

d [AOOKI]

= dA00K
dA00K o

=c (k] + kub]) A00 K — (k] + kub])AOOK]



The solve command by Maple, solves this equation for the given variable (in this case [A00K, ]).
We in turn store this value (the solution returned by the solve command) in [A00K, ]. This is
performed by the following command.

AOOK, = solve(dAOOK,, 400K )
AOOK, == K A00 c, (1.1)

This operation is performed for the other complexes and substrate forms as well. Here we
simultaneously solve expressions for the substrate forms using the solve command as shown
below. The solution is stored in a variable labelled So/, and then the respective solutions are
extracted from this vector using the eval command.

AO0IK = solve(dA0IK, AOIK) :
AOOK2 = Solve(dAOOKz,AOOKZ) :

AIOK := solve(dA10K, AI0K) :
AIIP1 = solve(dAllPl,AllPl) :
AIOP := solve(dA10P, AI10P) :
AlIP, = solve(dA]]Pz,A]]PZ) :
AOQIP := solve(dA0IP, AOIP) :

S := solve({dA10,dA01}, {401, A10}) :

A00 == eval(A00, S) :
A01 == eval(A01,S) :
Al0 == eval(A10,S) :
All == eval(All,S) :

Doing this results in the following correlations between the concentrations of the various
substrate forms at steady state.

A00 = A00
A00 ¢, k]
A0l =
¢, k,
A00 ¢, k]
Al = ————
¢, k,
All = A1l

Proof for impossibility of symmetry breaking

Thus from this we can clearly see that irrespective of kinetic parameters, the concentration
of [A01] is always going to be equal to the concentration of [A10]. Thus there is no scope for
any asymmetric steady state or case 2 symmetry breaking.



A00 ¢, k,

A0l =
¢, k,
A00 ¢, k,
Al = ———
c. k

272



Mixed Random 2 DSP : Separate Kinase Common Phosphatase
Case 2 - Present and Breaks

In this Maple file we analytically show the presence of case 2 symmetry breaking in the Mixed Random 2
DSP network with separate kinase and common phosphatase effecting distributive random
phosphorylation and processive dephoshorylation respectively. We do this by first describing the model as
a system of ODEs along with the associated substrate and enzyme conservations. We then impose the
kinetic constraints pertaining to case 2 symmetry. By solving for the steady state of the system of ODEs
we obtain relations between concentrations of the substrate variables in terms of each other and the free
enzyme concentrations. After this, we identify key symmetric pairings that represent the symmetric steady
state. i.e. case 2 symmetry breaking requires symmetry between [A01] & [A10] and [K1] & [K2]. By
leveraging this insight and isolating steady states not of this type, we ascertain the features of the
asymmetric steady state emerging from symmetry breaking. These procedures are carried out in detail
below using built in Maple commands.

Note: A subscript is used to distinguish between the two different complexes formed between [P] and
[AT1].

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt
Maple functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebral)

restart : with(LinearAlgebra) : with(VectorCalculus ) : with (Student| LinearAlgebral) :

The system is modelled as a set of ODEs using the kinetic nomenclature described in the main text
and supplementary figure (refer Appendix 2 figure 10). Here dA00 represents d[A00]/dt and
similarly for other expressions. At steady state thus, each of the right hand sides of these
expressions will be equal to zero.

dA00 = -k, , A00-KI — a, , A00-K2 + k , ,-AO0KI + a , ,-A00K2 + a,-AI0P + k,-AOIP:
dA01 = -k, , A0I-K2 + k, AOOKI + k , , AOIK2 :
dA10 =-a,, A10-KI + a, AOOK2 + a , , AIOKI :

dAll = k,"A0IK2 + a,-A10K] -~ k, ,-A11-P - a,,-Al1-P + k ,,-AIIP +a  .-AIIP,:

d400K1 =k, ,-A00-K1 -
d410KI == a,,-A10-KI -
d400K2 = a,,-A00-K2 - (a,,,

d40IK2 ==k, ,-A01-K2 - (k ,, + kz) ‘AOIK?2 :
dA11P = 'k, ,-All-P - (kub3 + ks)-A]]P1 :
dA10P = a;-AIlP, — a AIOP:
+

k, +k,, ) -AOOK1 :

a, + aubz) ‘AI0K] :

a +a1)-A00K2:

N~~~

4
dA1IP, == a,,-All-P - (aubs

dA0IP =k, AIIP -k AOIP:

ag)-A]]PZ:

dK1 = —ka-AOO-K] + (k] +k )-AOOKI —a,,"A10-KI + (a +a )-A]OKI :
ubl b2 2 ub?
dK2 = -a,,~A00-K2 + (aubl + al)'AOOKZ — kb2 ‘A01-K2 + (kubZ + kz) ‘A0IK2 :



dP = -k, ,-AIl-P + k ,,-AIIP + a,AIOP—a,,-All"-P + a , ,-AlIP, + k AOIP:

The model is also associated with conservation conditions for the substrate and enzyme
concentrations which are described below. Here we store the conservation expressions in ACon,
K1Con, K2Con and PCon for the substrate and respective enzymes. The right hand side of each of
these expressions are always equal to zero (both in the transient behavior and at steady state).

ACon = A, . — A00 — A10 — A0l — All — AOOKI — A0IK2 — AOOK2 — A10KI — AI1IP — AI0P
— AlIP, — AOIP:

KiCon :== K1, . — KI —A00KI — AIOKI :

K2Con = K1, — K2 —A00K2 — AOIK2 :

PCon = PT — P—AlIP, — AIOP — AlIP, — A0IP:
otal 1 2

Kinetic constraints for case 2 symmetry (refer main text) are imposed on the original model.

=kpray, i =kra, =k

a4 1

ay = kytay, =k,ra,,=k,:
ay i=kytay=kpra, =k
a, = k4 :

In addition to the kinetic constraints the total enzyme concentrations of the two kinases need to be
equal for exact case 2 symmetry to be present in Mixed-Random 2 DSP. This is imposed as shown
below.

Total =~

K2

K]Total :

At this stage we introduce auxiliary constants c,, ¢,, and ¢, in place of the binding constants so as
to make further analytical expressions more accessible.
k, , =

b1 =€ (K THp)
kpy = ¢y (kpy TRy
iy = 5 (ks T 1) -

b3

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In
this context we want to solve all variables in terms of the free enzymes (|K1], [K2] & [P]) and the
partially modified substrate [A01]. In order to do this, we use the Maple command solve which
solves the equation supplied for a given variable. We first solve for the individual complexes using
their corresponding differential equation. An example of this (using [A00K1] is given below in
detail).

The differential equation of [A00K1] is given by,

d [A00K] |

=dA00K1
7 dA00



d [A00K] ]

7 =c (k] +k,, ) A00 K1 — (k] + kub]) A00K 1 1)

The solve command by Maple, solves this equation for the given variable (in this case [A00K1]).
We in turn store this value (the solution returned by the so/lve command) in [A00K1]. This is
performed by the following command.

AOOK1 = solve(dA00KI, AOOK1)
AOOKI = K1 400 c, Q)

This operation is performed for the other complexes and substrate forms as well. Here we
simultaneously solve expressions for the substrate forms using the so/lve command as shown
below. The solution is stored in a variable labelled So/, and then the respective solutions are
extracted from this vector using the eval command.

A0IK2 = solve(dA0IK2, AOIK2) :
A00K?2 := solve(dA00K2, AOOK?2) :
AIOK] = solve(dA10KI1, AI0KI) :
AlIP, = solve(dA]]Pl,A]]Pl) :
AlOP := solve(dA10P, A10P) :

A]]P2 = solve(dA]]Pz,A]]Pz) :
AOIP := solve(dA0IP, AOIP) :

S = solve({dA00, dA11,dA10}, {400, A1, A10}) :

A00 == eval(A00,S) :
A01 == eval(A01,S) :
Al0 == eval(A10,S) :
All == eval(All,S) :
Doing this results in the following correlations between the concentrations of the various substrate
forms at steady state.

K2 A01 c, k2
A0 = ———
Kl ¢ kj
A0l = A01
2
410 = K2 /i()]
K1
K2 A01 ¢, kz (KI + K2)
All =
2 K1 ch k3

Proof for invariant in the asymmetric branches

We know that K1Con and K2Con are both individually equal to zero always. Thus at a given



steady state, K1Con - K2Con must also be equal to zero.

We thus introduce the term T = (K1Con - K2Con) = 0 and also introduce a new ratio, ¢ = [K1]/
[K2]. Note: As discussed in the main text, the symmetric steady state is one where [K1] = [K2]
or € = 1. Since we are isolating solutions of asymmetry, we are primarily interested in solutions
that permit, € # 1.

T:=KIlCon - K2Con=20:
Kl = ¢eK2:

The following command (simplify), simplifies the expression algebraically

(-ek, + 401 ¢,y (k, —ky)) K2 (e = 1)

simplify (T) = < =0
1

From this we can ascertain that, should an asymmetric steady state exist (where € # 1) - the
term (-€k, + 401 c, (kl — k, )) in the expression needs to necessarily be zero. This term is an

expression in the partial substrate form [A01], € and Kinetic constants. Thus solving this to
isolate the partially modified substrate form we get the following. Here we use the solve
command from Maple to solve T for [A01] and the simplify command to algebraically simplify
the resulting expression.

A01 = simplify(solve(T, A0I))

€k,
A0l = W (1.1)

Substituting this value for [A01] it back into the expression for the concentration of [A01], we
get the following correlation.

k

(k1 - kz) ¢

We note that the concentration of [A00] is fixed in the asymmetric steady state and is given by
a few key kinetic parameters. Using this information (the concentration of [A00] at an
asymmetric steady state) - we solve for [K2], [P] at this asymmetric steady state using their
individual enzyme conservation equations. This is done by finding solutions for [K2] and [P]
using equations K2Con and PCon as shown below, using the Maple command solve.

A00 =

P := simplify(solve(PCon, P)) :
K2 = simplify(solve(K2Con, K2)) :

-k, (k3 + k4) Kl ot ¥ Proar K5 %4

ko k,

simplify (P) =

simplify (K2) =



KITozal (kl o kZ)

k, (e+1)

Using these expressions, we find that the concentration of [A11] and [P] is also fixed and is
given by only a few Kinetic constants and total enzyme concentrations as shown below.

-k, (ks + k4) Kl orat T Protar ks k4

simplify (P) = K
3%
k2 k4 K]Total
2¢5 (ky (ks + k) K g = Proar ¥ 54

simplify (A11) = -

Necessary conditions

Since substrate concentration are always necessarily positive, the expression for [A00] and
[A11] above must be positive. The numerators are only a function of kinetic parameters which
are always positive, thus the denominator must necessarily be positive to ensure that the
resulting concentration is positive. This gives us the necessary condition for an asymmetric state
to exist as follows.

Lk, <k

2.0y Kl (K T Ry) < Py ks k

total total "3 "4

Sufficiency of necessary conditions

In this section of the proof we show the necessary conditions shown above are also sufficient
for an asymmetric steady state to exist for some positive A, ., value. i.e. We show that upon a

bifurcation along A ., we are bound to encounter symmetry breaking provided the necessary

conditions are satisfied. Note that a feasible steady state in this context is one in which the
concentrations of all substrates, complexes and enzymes are positive.

We do this by showing that the asymmetric states defined by the concentration (invariant) of
[A00], [A11] & [P] described above is indeed a feasible solution for the system of ODEs at some

positive A ., value.

In an asymmetric steady state, as seen above the concentration of [A00], [A11] & [P] are fixed
by a few Kinetic constants and total enzyme concentrations,

k k

2 2
400 = -
(k= k) ¢ (k= k) ¢
A]] = - kZ k4 KITolal _

2¢ (kz (ks + k4) Kl iar = Prowar %3 k4)



. k, k, K1

L Total
2 ¢ (ky (k5 t Ky K]Total - PTotal ks k)
P = _kZ (k3 T k4) K]Tot / Total k3 k4 _ _k2 (k3 + k4) K]Total + PT()tal k3 k4
ks ey ks ky

The other variables in this asymmetric state are thus given by

k

A0 = ——F——
(k= k) ¢

ky by Kl
2¢5 (ky (ks + k) Kl gy = Prosar 3 54)
€K,k
kl (e+1)
Kl %
k, (e+1)

All = -
AO00K1 =

A00K?2 =

KIT()tal €

A0IK2 =
c+ 1

]Toml
c+1
Klpu (k= K)

k, (e+1)

Total (kz o kz)

k, (e+1)

AIOKI =

Kl =

K1
K2 =

K]T()tal kZ
2 k3

Ki Total k2

2 k,

simpliﬁ/(AllP1 ) =

Simpli]_‘j/(A]]P2 ) =

K]Total kZ

simplify (A0IP) = Y
4

KIT()tal kZ

simplify (A10P) = Y
4

The system of ODE is also satisfied at this point, as is verified below.

simplify (dA00) =

simplify (dA11) = 0
simplify (dA01) = 0
simplify (dA10) = 0



simplify (dA00K1) = 0
simplify (dA00K2) = 0
simplify (dA01P) = 0
simplify (dA10P) = 0
simplify (dA01K2) =
simplify (dA10K1) =
szmplfy(dAllP )

(4AT1E,)

(

i (

(

—_

simplify (dAl
szmplfy dP) =
dK1)
simplify (dK2) =

Hence all that remains to be shown is that the variables (As described above) are positive for

some value of ATotal.

This is true if and only if
1. Necessary condition (&, > k1) is satisfied

2. € is positive.

However if € is positive all concentrations are automatically positive (provided necessary
conditions are satisfied).

Thus this means that for every positive value of € # 1, all concentrations are positive and the
conservation of kinase and phosphatase is also satisfied.

Since the concentrations are all positive there exists a unique finite A ., value for every

Tota
€ (permitting asymmetric states).

Hence we have proved that symmetry breaking is guaranteed for some finite positive A, ...,

provided the necessary conditions above are satisfied - making those conditions sufficient for
the behavior.

Prediction of pitchfork bifurcation along A ..,

Here we predict the value of A, ., at which symmetry breaking occurs via a pitchfork

bifurcation. This point in the bifurcation is characterized by the intersection of both the
symmetric steady state branch and the asymmetric steady state branches.

Hence at the position of symmetry breaking, we know two insights.

1. The system is still symmetric, hence [A01] = [A10] and [K1] = [K2].
2. The invariant describing the asymmetric steady state is also true.

Using these two information, we can simplify the original system considerably as follows.

Kl =K2: e:=1:



2
A00 (k] — kz) c,
A1 e - ky by Kl g :
2c; (ky (ks + k) Klgy = Proa %3 %))
P -k, (k3 + k4) KL gt ¥ Prorar 15 %4 :

K k,

Now, by solving the conservation expression for the substrate we can isolate the value of A .,
when the asymmetric steady states and the symmetric steady state intersect (indicating the

pitchfork bifurcation point)

A, = simplijj/(solve(simphﬁ/(ACon )5 ATotal) )

2 3 )
4 [_2 (k3 +k4) C3 C] K]Total ((kl +k4) k3 +k1 k4) CZ k2 +2 (63 (CI PTolalk4 (4.1)

Total -
2 g4 24 5 1 1
Tk (¢ Pryjy T 1) ke kK Total) k" + 2k k, 5 €16 Proar T 4 €1

2
Total €2

1 2,2
+ 5 03) k,+c ek K]Totalj kytepe k) kKl

KI
; |

—2k; K k, (63 (cz Proarky T e ki Klpy (_K]Total TPy~ 2)) ks

1
toe k kyKlp,, (cz €3 Protar = €2 G5 K gy T 5 ¢ 72 C3] ) k,

—2¢; ¢ k12 k32 k42 Prorat (K o1 € 1 2) J / (2 ks (kj - kz) ky e (kz (ks

T K porar = Proar K5 5y ) €1 54 ¢5)

A cross verification of this analytical work is carried out in the read me file for the parameters
__used in generating the figures (Fig 2E).




Mixed Random 2a DSP : Separate Kinase Common Phosphatase
Case 2 - Present and Breaks

In this Maple file we analytically show the presence of case 2 symmetry breaking in the Mixed Random 2a
DSP network with separate kinase effecting distributive random phosphorylation and unsaturated
processive dephoshorylation respectively (modelled as a linear reaction). We do this by first describing the
model as a system of ODEs along with the associated substrate and enzyme conservations. We then
impose the kinetic constraints pertaining to case 2 symmetry. By solving for the steady state of the system
of ODEs we obtain relations between concentrations of the substrate variables in terms of each other and
the free enzyme concentrations. After this, we identify key symmetric pairings that represent the symmetric
steady state. i.e. case 2 symmetry breaking requires symmetry between [A01] & [A10] and [K1] & [K2].
By leveraging this insight and isolating steady states not of this type, we ascertain the features of the
asymmetric steady state emerging from symmetry breaking. These procedures are carried out in detail
below using built in Maple commands.

Note: A subscript is used to distinguish between the two different complexes formed between [P] and
[AT1].

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt
Maple functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebral)

restart : with(LinearAlgebra) : with(VectorCalculus ) : with (Student| LinearAlgebral) :

The system is modelled as a set of ODEs using the kinetic nomenclature described in the main text
and supplementary figure (refer Appendix 2 figure 10). Here dA00 represents d[A00]/dt and
similarly for other expressions. At steady state thus, each of the right hand sides of these
expressions will be equal to zero.

dA00 = -k, AOOKI — p, AO0K2 +k , -AO0OKI + p,, -AO0K2 + k,-All + p,-All :
dA01 = -k, , A01 K2 + k, AOOKI + k , , AOIK2 :
dA10 = -p,, AI0KI + p, AOOK2 + p . AI0KI :

dAll = k, A0IK2 + p, AIOK] ~k,-All - p,-Al1:

dAOOKT := k- A00-KT ~ (k, +k,, ) -AO0KI :
dAIOKT :=  p,,-A10-KI = (p, +p,,,) - AI0KI :
dA00K2 = p,-A00-K2 ~ (p,,, + pl) -A0OK?2 -
dAOIK2 i= ky,-A01K2 ~ (k,, + k;)-AOIK2

dK1 = -k, - A00-KI + (k, +k,, ) -A00KI —p, ,-A10-K] + (p,+p,,,) AI0KI
dK2 = ~p, ;*A00-K2 + (p,,, + ;) AOOK2 — ky,-A01-K2 + (k ,, + k,)-AOIK2

The above equations are associated with conservation conditions which are described below. Here
we store the conservation expressions in ACon, K1Con and K2Con for the substrate and the
respective enzymes. The right hand side of each of these expressions are always equal to zero (both
in the transient behavior and at steady state).



ACon = A4 -A00 — A10 — A01 — A1l — AOOKI — A0IK2 — AOOK2-A10K] :

Total
KlilCon = K]Total — K1 — A00KI1 — AI10K1 :
K2Con = K]Total — K2 — A00K2 — A0IK2 :

Kinetic constraints for case 2 symmetry (refer main text) are imposed on the original model.

Py=kpipy =k P =y
Py =k ipyy =k P, =y,
py = ks

In addition to the Kinetic constraints the total enzyme concentrations of the two Kkinases need to be
equal for exact case 2 symmetry to be present in Mixed-Random 3 DSP. This is imposed as shown
below.

K2 = KI

Total : Total :

At this stage we introduce auxiliary constants ¢,, ¢,, and ¢, in place of the binding constants so as
to make further analytical expressions more accessible.

Ky = ¢ (ki + )

b1 ubl
Ky = ¢y (Kypy T Hy)

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In
this context we want to solve all variables in terms of the free enzymes (|K1], [K2] & [P]) and the
partially modified substrate [A01]. In order to do this, we use the Maple command solve which
solves the equation supplied for a given variable. We first solve for the individual complexes using
their corresponding differential equation. An example of this (using [A00K1] is given below in
detail).

The differential equation of [A00K1] is given by,

d [A00KI) _ 0 d[A00KI]

7 7 =c, (k1 +kub])AO0K1 — (kl +kub1)A00K1

The solve command by Maple, solves this equation for the given variable (in this case [A00K1]).
We in turn store this value (the solution returned by the solve command) in [A00K1]. This is
performed by the following command.

A00K1 = solve(dA00K1, AOOK] )
A00K1 = K1 400 c, 1)

This operation is performed for the other complexes and substrate forms as well. Here we
simultaneously solve expressions for the substrate forms using the so/lve command as shown
below. The solution is stored in a variable labelled So/, and then the respective solutions are



extracted from this vector using the eval command.

AOIK2 = solve(dA0IK2, A0IK2) :
AOOK2 = solve(dA00K2, A00K2) :
AI0KI = solve(dA10K1, AI0K]) :

Sol == solve({dA00, dA11, dA10}, {400, Al1, A10}) :

A00 = eval(A00, Sol) :
A0 = eval(A01, Sol) :
Al0 = eval(A10, Sol) :
All == eval(All, Sol) :

Doing this results in the following correlations between the concentrations of the various substrate
forms at steady state.

A0l K2 c, k2
A0 = ———F—
Kl ¢, kl
A0l = A01
2
A0l K2
AlQ = 072
K1
A0l K2 c, k2 (K1 + K2)
All =
2KI k3

Proof for invariant in asymmetric branches

We know that K1Con and K2Con are both individually equal to zero always. Thus at a given
steady state, K1Con - K2Con must also be equal to zero.

We thus introduce the term T = (K1Con - K2Con) = 0 and also introduce a new ratio, ¢ = [K1]/
[K2]. Note: As discussed in the main text, the symmetric steady state is one where [K1] = [K2]
or € = 1. Since we are isolating solutions of asymmetry, we are primarily interested in solutions
that permit, € # 1.

T := KilCon - K2Con=20:
Kl = e¢K2:

The following command (simplify), simplifies the expression

K2 (-ek, + A01 k, —k —1
simplify (T = ( 4 02( ! 2)) € ! =0

kle

From this we can ascertain that, should an asymmetric steady state exist (where € # 1) - the
term (-€k, + 401 c, (k] —k, )) in the expression needs to necessarily be zero. This term is an

expression in the partial substrate form [A01], € and Kinetic constants. Thus solving this to



isolate the partially modified substrate form in terms of the kinetic parameters we get the
following. Here we use the solve command from Maple to solve T for [A01]. We use the simplify
command to algebraically simplify the resulting expression.

A01 = simplify(solve(T, A01))

€ k/
A0l = W (1.1)

Substituting this value for [A01] it back into the expression for the concentration of [A01], we
get the following correlation.

k

(k1 - kz) ¢

We note that the concentration of [A00] is fixed in the asymmetric steady state and is given by
a few key kinetic parameters. Using this information (the concentration of [A00] at an
asymmetric steady state) - we solve for the concentration of free enzyme [K2] at this asymmetric
steady state using the corresponding enzyme conservation equation (K2Con). This operation is
carried out using the Maple command solve as shown below.

A00 =

K2 := simplify(solve(K2Con, K2)) :

Kl pyal (kz o kz)

k, (e+1)

K2 =

Using these expressions, we find that the concentration of [A11] is also fixed and given by only
a few key Kkinetic constants and total enzyme concentrations as shown below.

Ki Total kZ

simplify (A11) = ok
3

Necessary conditions

Since substrate concentration are always necessarily positive, the expression for [A00] and
[A11] above must be positive. The numerators are only a function of Kkinetic parameters which
are always positive, thus the denominator must be positive to ensure that the resulting
concentration is positive. This gives us the necessary condition for an asymmetric state to exist
as follows.

1. k, <k,
Sufficiency of necessary conditions

In this section of the proof we show the necessary conditions shown above are also sufficient



for an asymmetric steady state to exist for some positive A, .. value. i.e. We show that upon a
bifurcation along A, ... we are bound to encounter symmetry breaking provided the necessary

conditions are satisfied. Note that a feasible steady state in this context is one in which the
concentrations of all substrates, complexes and enzymes are positive.

We do this by showing that the asymmetric states defined by the invariant concentration of
[A00] & [A11] described above is indeed a feasible solution for the system of ODEs at some
positive A, . value.

In an asymmetric steady state, as seen above the concentration of [A00] and [A11] are fixed by
a few Kkinetic constants and total enzyme concentrations,

k k
2 2
A00 = =
(k]—kz)c1 (kl—kz)cl
4]l = K]Total k2 _ i K]Total 2
2k, 2k

The other variables in this asymmetric state are thus given by

k

2
A0 = ——F——
(k= k) ¢
A]] = KlTotal kZ
2 k,
€Kl k
A00K] = p Total1 2
](e—l— )
Kl k
A00K2 = Total "2
k, (e+1)
KI €
A0IK? = Total
e+ 1
K1
AIOK] = Total
e+ 1

simpli]fv(A]]Pl) = AlIP,
simpli]fv(A]]Pz) = AlIP,

simplify (A0IP) = A0IP
simplify (A10P) = A10P

The system of ODE is also satisfied at this point, as is verified below.

dA00
dAll

simplify
simplify
simplify
simplify

)
)
):
)

A/&/—\A
N
S
~

dAI10



simplify (dA00K1)
simplify (dA00K?2)
simplify (dA01K2)
(
(
(

0
0
0
simplify (dA10K1) = 0

simplify (dK1)
simplify (dK2)

=0
=0

Hence all that remains to be shown is that the variables (As described above) are positive for

some value of ATotal.

This is true if and only if
1. Necessary condition (k, > kz) is satisfied

2. € is positive.

However if € is positive all concentrations are automatically positive (provided necessary
conditions are satisfied).

Thus this means that for every non singular value of € all concentrations are positive and the
conservation of kinase and phosphatase is also satisfied.

Since the concentrations are all positive there exists a unique A ., value for every
€ (permitting asymmetric states).

Hence we have proved that symmetry breaking is guaranteed for some finite positive A, ...,

provided the necessary conditions above are satisfied - making those conditions sufficient for
the behavior.

Prediction of pitchfork bifurcation along A ..,

Here we predict the value of A, .., at which symmetry breaking occurs via a pitch fork

bifurcation. This point in the bifurcation is characterized by the intersection of both the
symmetric steady state branch and the asymmetric steady state branches.

Hence at the position of symmetry breaking, we know two insights.

1. The system is still symmetric, hence [A01] = [A10] and [K1] = [K2].
2. The invariant describing the asymmetric steady state is also true.

Using these two information, we can simplify the original system considerably as follows.

Kl =K2: e:=1:

k,
A00 = ———2
(k= k) ¢
4]] = KITotal k2 .

2k,



Now, by solving the conservation expression for the substrate we can isolate the value of A .,
when the asymmetric steady states and the symmetric steady state intersect (indicating the

pitchfork bifurcation point)

Ay = simpllﬁ/(solve(simphﬁ/(ACon ) ATotal) )
1

Aroar = 3 (K, —ky) e, ey ks,

(¢) (Kl poray (R +2k5) €y + 4k ) kP = (Kl k

Total "2 C] (4'1)

Total

2
_st) kye,ky =2Klp,. k" ¢ Czks)

A cross verification of this analytical work is carried out in the read me file for the parameters
used in generating the figures (Appendix 2 Fig 1).



Absolute (exact) concentration robustness
Ordered DSP - Common kinase common phosphatase

In this maple file, we analytically show three key results pertaining to the presence of (exact) ACR in the
ordered DSP system with common kinase common phosphotase effecting phosphorylation and
dephosphorylation respectively (without any imposition of symmetry at the kinetic level). Namely,

1. We show that among the substrates, only the partially modified form (Ap) can show ACR in the
system irrespective of kinetic parameters; i.e. The compeltely modified or completely unmodified substrate
form is incapable of exhibiting ACR. This ACR is again only possible with changing total amounts of
substrate concentration (A ,.,)-

2. The presence of ACR is (if present) guaranteed on two distinct branches of steady states (for any
given A .. value.

3. If an ACR branch is to be present for some A then there will always be a non-ACR branch on

Total>
which the ratio of the free kinase to free phosphatase is exactly constant irrespective of total substrate
concentrations.

The ACR considered here is defined here as follows -- "If the substrate form is robust (maintained at an
exact concentration) to increasing (or changing) total concentration of either the substrate or the enzymes
(Ao taKrotalProtar)» that branch of steady state is termed to be an ACR branch, and the substrate form

that shows robustness is said to exhibit ACR"

Put together these results provide the insight that granular symmetry is not strictly required in the network
for ACR to be present - and other constratints involving kinetic constants and total concentrations of
enzymes can guarentee ACR. Further discussion on the relevance of these results is provided in the
appendix of the manuscript.

This section of the maple document pertaining to these results is structured with a common text
introducing the model and initializing the steady state calculations - followed by different sub-sections each
containing the proof to a specific self contained result. When running the code - please take notice to only
run one sub-section at a time.



We begin by initializing the Maple file with the restart command and load the relevant libraries of
inbuilt Maple functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with(LinearAlgebra) : with ( Vector Calculus) : with (Student| LinearAlgebra]) :

The system is modelled as a set of ODEs using the kinetic nomenclature described in the main text
and supplementary figure (refer to Appendix 2 Figure 10). Here dA represents d[A]/dt and
similarly in the case of the other variables. At steady state thus, the right hand sides of each of
these expressions will be equal to zero.

d4d =k, ApP + k ,  -AK -k, -4-K:
ddp = k,-AK + k,-AppP +k ,,-ApK + k , ~ApP — k, ,-Ap-K — k, ,~Ap-P:
ddpp = k,-ApK + k , .-AppP -k, ,-App-P:

dAK =k, ,-AK - (k +k )-AK:

ubl 1
dApK =k, ,-Ap-K - (kubZ + kz) ‘ApK :
dAppP = k, ;-App-P - (kub3 + k3) -AppP :
dApP = k, ,~Ap-P - (kub4 + k4) -ApP :

dK = -k, A-K + (k,, +k)AK =k, Ap-K + (k,,+k)-ApK:
dP := -k, 3-App-P + (k5 + k;)-AppP — k- Ap-P + (k,,, + k,)-ApP:

The model is also associated with conservation conditions which are described below. Here we
store the conservation expressions as ACon, PCon and KCon for the substrate and the respective
enzymes. Each of these expressions is always equal to zero (both in the transient behavior and at
steady state).

ACon = A, . — A— Ap — App — AK — ApK — AppP — ApP:
PCon == P,  — P— AppP — ApP:

KCon = KTotal_ K — AK — ApK :

ky, = CJ'(kz +kub1) :

Ky = ¢y (ky k)

ks = ¢y (ks tkyps)

by = ey (kg +hppy)

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In
this context we want to solve all variables in terms of the concentrations of the free enzymes (|[K] &
[P]) and the concentration of the partially modified substrate ([Ap]). In order to do this, we use
the Maple command solve, which solves the supplied equation for a given variable. We first solve
for the individual complexes using their corresponding differential equation. An example of this



(using [AK]) is given below in detail.

AK = solve(dAK, AK) = K A c,

This operation is repeated for the other complexes forms as well.

ApK = solve(dApK, ApK) :
AppP = solve(dAppP, AppP) :
ApP = solve(dApP, ApP) :

Here we introduce a new ratio € which is equal to the concentration of free (unbound) kinase to
the free (unbound) phosphotase.

K:=¢eP:

We know that PCon is always equal to zero. Here we solve for the steady state concentration of the

free phosphatase and in doing so we obtain an expression for it in terms of the ratio epsilion and
the substrate forms.

PT()tal
Apc,+App c; + 1

P := solve(PCon, P) =

As stated earlier - different sub-sections pertaining to specific proofs follow from here. Please take
notice to run one sub-section at a time.

Proof of inability of the ACR in any substrate with changing
I<T0tal (Ol‘ PTotal)

In this sub-section we show that no substrate is capable of exhibiting ACR for changing enzyme
concentrations. In order to do this - we systematically show that the completely unmodified, partially
modified and completely modified substrate forms are incapable of exhibiting ACR with increasing or

changing K ..

A

We begin by solving the remaining equations to obtain expressions for substrates App, Ap
at steady state in terms of concentrations of A and the ratio €. We do this by using the
inbuilt solve command in Maple.

€edc, kj ezAcl k/ Czkz
Sol := solve({dAp, dApp}, {Ap, App}) = {Ap= ——F—, App =
c, k, c, k, e,k

assign (Sol)



Thus at steady state - analyzing the total conservation of the substrate using these
expressions leads to (we have used the numer and collect command to isolate the numerator

and reorganize the resulting A ., expression respectively),

collect(numer (-ACon), €)

2 2 24,24, 2 4 2 2 2 2 2 2 3
A e e, kT k)€ —I—(A ¢, c,e kT kyk, +A47 ¢ ¢, ek, kzkg)e (1.1.1)

2 2 2 2 2
—|—<A ¢, cjc4k] k3 + A4 c]czc3c4k1k2k3k4—Ac]czc3c4k]k2k3k4AT0ml

2
tdAc ey ek kykyk, Pr tAc e e e,k kT kP

2 2 2 2 2 2
+Ac]c2c4k]k2k3k4)e +(A cyeie ki kS ky—Ac cie k kST kAL

2 2 2,2, o 2
tdc cie ki kT k Pr A e e kT kP T Ac ek k4)e

2,2, 2 2,2, 2
tdcye, kT kS —cye kTR AL

Here we proceed by a proof of contradiction - if we assume that A exhibits ACR for a range
of K, .., values - then this expression simplifies to simply a single variate polynomial in ¢

(roots of which represents steady state solutions of the system). The key insight here is that
since this expression does not contain K, .. ., changing K, .. values would not affect the
roots of this polynomial, implying € can only take certain values at steady states with ACR.
This is a contradiction as the expression for K, .., cannot accomodate a non-changing A

and € with changing K. .., as shown below.

Total

collect(numer (KCon), €)

_ 2
e ky(Ae ek by Ky —Ac ek ks Py ) € e ky (Adepe ik ks Kep (1.1.2)
2,2
—4 C] C4 k3 k4 PT()tal - C4 k3 k4 PT()tal) €+ C4 k4 k3 KT()tal

i.e. By the assumption of ACR in A, it is fixed at a given value (by definition of ACR) for a
range of K, .. values. Thus in the resulting polynomial from KCon, ¢ (feasible roots of the

resulting polynomial in €) will have to necessarily change as K .., changes. However
equation ACon above, which was independent of K ..., has fixed roots of ¢ which are
consequently independent of K ... As stated earlier the common feasible root of these two
equations would define steady state concentrations of the system. Since the roots in €

change in equation KCon with changing K .., and remain fixed in equation ACon - we

have a contradiction. Thus A cannot be fixed exactly for a range of K .-

Thus A cannot exhibit ACR.
Ap

We begin by solving the remaining equations to obtain expressions for substrates A, App at
steady state in terms of concentrations of Ap and the ratio €. We do this by using the inbuilt



solve command in Maple.

Apc4k4 €edpc, k,
Sol := solve({dA, dApp}, {4, App}) = A= ——— ., App= ——
c, ek, ¢, k,

assign (Sol)

Thus at steady state - analyzing the total conservation of the substrate using these
expressions leads to (we have used the numer and collect command to isolate the numerator
and reorganize the resulting A, ., expression respectively),

collect(numer (-ACon), €)

¢, Sk ky + (Ap” ¢ e ey ky ky ks +Ap” e eye k, ky k 1.2.1)

2
Ap” c ERO R EE 162 €0 Ry Ry

1

—Apc,c,c. k, k k, A +Apc,c,c.k, k k, P +Apccck1k32P

17273717273 "Total 17273717273 Total 17273 Total

ckkz—i-Apzccckkk

2 2
+Apcckkk)€+<Apcjcg413 273547273 %

172717273

2 2 2
—dApcycye k ki Ay T Ap e cse k kTP Ap e ese kTR Py

—|—Apcckk2—clc3k]k32/l e+Apzc

2,2 2
13k, Ky ¢, kS k,+Apcyc kk,

3743

T()tctl) 3

Here we proceed by contradiction - if we assume that Ap exhibits ACR for a range of K ..,

values - then this expression simplifies to simply a single variate polynomial in € (roots of
which represents steady state solutions of the system). The key insight here is that since this
expression does not contain K .., changing K. ., values would not affect the roots of this

expresssion, implying € can only take certain values at steady states with ACR. This is a
contradiction as the expression for K .., cannot accomodate a non-changing Ap and ¢ with

changing K, ..., as shown below

collect(numer (KCon), €)

(Ap ey by ky Kpypyy — A ey k) k5 P

—PriaksAp e,k tk kG Ky

Total ~ K1 %5 Prorar) €T AP € Ky s Ky (1.2.2)

i.e. By the assumption of ACR in Ap, it is fixed at a given value (by definition of ACR) for a
range of K, .. values. Thus in the resulting polynomial from KCon, € (feasible roots of the

resulting polynomial in €) will have to necessarily change as K, .., changes. However
equation ACon above, which was independent of K ..., has fixed roots of ¢ which are
consequently independent of K ... As stated earlier the common feasible root of these two

equations would define steady state concentrations of the system. Since the roots in ¢
change in equation KCon with changing K, .., and remain fixed in equation ACon - we

have a contradiction. Thus Ap cannot be fixed exactly for a range of K .-

Thus Ap cannot exhibit ACR.



App

We begin by solving the remaining equations to obtain expressions for substrates A, Ap at
steady state in terms of concentrations of App and the ratio €. We do this by using the
inbuilt solve command in Maple.

Appc,c, k., k App ¢, k,

Sol := solve({dA4,dAp}, {A, Ap}) = {4 = i 434 , Ap

)
c,cy€ klk2

; czek2

assign(Sol)

Thus at steady state - analyzing the total conservation of the substrate using these
expressions leads to (we have used the numer and collect command to isolate the numerator
and reorganize the resulting A ., expression respectively),

collect(numer (-ACon), €)

+dppc, e, e,k kP (1.3.1)

2 2 2 2 2
(App c ¢y ek ky —App e ey ey k ky A 3% % Protal

Total

2 2 2 2 2 3
tdppec, ek kyky Pyt App )k kT —cpeym kpky AT()lal) €

2 2 2
+ (App c,c ek kyk, +App”c e e e k k ky—Appc,c,c ek kyk A

+Appc c,cyc k kyky Pt App e e, cie ky ki k Pr

ek ko k

+Appc,c,c, k, k k)€2+(Appzclcszc4k1k32+Appzc ks kg k,

1727371273 2

2 2 242
+Appczcgc4k2k3k4)e+App c, c, k. k

Here we proceed by contradiction - if we assume that App exhibits ACR for a range of
Kyota1 Values - then this expression simplifies to simply a single variate cubic polynomial in

€ (roots of which represents steady state solutions of the system). The key insight here is
that since this expression does not contain K ..,, changing K . , values would not affect

the roots of this expresssion, implying € can only take certain values at steady states with
ACR. This is a contradiction as the expression for K, .., cannot accomodate a non-

changing App and ¢ with changing K, .|, as shown below

collect(numer (KCon), €)

_3 24,2 .
€ Proar €2 Ky ky Ty by (App ey ey by by Koy —APP €y 3 b ks Pry iy (1.3.2)
2 —
Tk ky Kya) € ey ky (App e ek ks Koy = Proa APp ¢3¢, k5 k) €

i.e. By the assumption of ACR in App, it is fixed at a given value (by definition of ACR) for
a range of K .., values. Thus in the resulting polynomial from KCon, ¢ (feasible roots of

the resulting polynomial in €) will have to necessarily change as K, .. changes. However

equation ACon above, which was independent of K has fixed roots of € which are

otal®
consequently independent of K. ... As stated earlier the common feasible root of these two



equations would define steady state concentrations of the system. Since the roots in ¢
change in equation KCon with changing K, .., and remain fixed in equation ACon - we

have a contradiction. Thus App cannot be fixed exactly for a range of K .-

Thus App cannot exhibit ACR.

Due to the structure of the DSP network, K .., (App) and P, , (A) are behaviorly equivalent

(acheivable by a simple transformation of variables) and thus by extension a similar proof (omitted
here) will rule out the presence of ACR in any of the substrates with increasing P,

Absence of ACR in the fully modified (and unmodified)
substrate with increasing A, ..,

In this sub-section we show that the fully modified and the fully unmodified substrate forms (A and
App) are capable of exhibiting ACR with changing total substrate concentrations.

We begin by solving the remaining equations to obtain expressions for substrates A, Ap at
steady state in terms of concentrations of App and the ratio €. We do this by using the inbuilt
solve command in Maple.

Sol := solve({dA, dAp}, {4, Ap}) =

Appc,c k, k App c, k
Sol i= (4= —A3 2 g — 33
¢, ¢, €k k,

2.1
c, € k2 2.1)

assign (Sol)

Thus at steady state - analyzing the total conservation of the substrate using these expressions
leads to (we have used the numer and collect command to isolate the numerator and reorganize
the resulting A, .., expression respectively),

collect(numer (KCon), €)

3 22 , .. _ .
€ P € Kk ek, (Appeyeskpky Ky —App ey ek ks Pr 2.2)
2 _
Tk ky Kpyy) € Tk, (App ey e,k ks Ky = Pryg APP 5 ¢, k5 k) €

Similar to the earlier proof, we proceed with a proof by contradiction. If we assume that App

presents with ACR for a range of A, .., values. Then the above expression simplifies to a single

variate polynomial in € (the roots of which represents steady state solutions of the system). The
key insight here is that since this expression does not contain A, . ., changing A, .., values

would not affect the roots of this expresssion, implying € can only take certain values at steady
states with ACR. This is a contradiction as the expression for A .., cannot accomodate a non-



changing App and ¢ with changing A ...

collect(numer (ACon), €)

2 2 2 2 2 2 2
<_App c ¢y ek ky +Appee, ek k) Ay, —App ey eyt ek k) P 2.3)

B 2 B 2 2 2 2 3
Appep ey ek ky ks Pr, = App ey ey ki k)™ + e e,k k, AT()tal) €+ (
2 2 2
~AppT ey e kykyky = Appt e ey ey e kK ky +App e ey i e ki kR Ap,

—dpp e cyese ky kyky P —App ey ek ki k, Pr = App e e, ek k, k3)

2 2 2 2 2 2 B
€ +( App”c ¢ c k kT —AppT e, ¢ ¢k, ki k, Appczcjc4k2k3k4)e

2 2 242
—App~c;m ¢ k) k,

Thus App cannot exhibit ACR.

Due to the structure of the DSP network A and App are topologically equivalent with respect to
variation in A, concentrations. Thus by a similar proof (omitted here), A is incapable of exhibiting

ACR with changing A .-

Presence and features of ACR in the partially modified

substrate form with increasing Ay ..,

In the earlier sub-sections we have shown how ACR is not possible in A and App with changing
Ao+ In this sub-section we show that the remaining substrate form Ap is capable of exhibiting ACR

with changing A .., and also elucidate the associated features of such the network and it's steady states
when it accomodates ACR.

We begin by solving the remaining equations to obtain expressions for substrates A, App at
steady state in terms of concentrations of App and the ratio ¢. We do this by using the inbuilt
solve command in Maple.

Apc4k4 EApCsz
Sol := solve({dA, dApp}, {4, App}) = (A= ——— . dpp=—"—
c, ek, ¢, ky

assign (Sol)
Thus at steady state - analyzing the total conservation of the substrate using these expressions

leads to (we have used the numer and collect command to isolate the numerator and reorganize
the resulting A, .., expression respectively),

collect(numer (KCon), €)



(Ap ey ky by Ky = AP cy by by Pro = Ky & Proa) €T AP e, k) ks Koot @3.1)

— Pk Ap ekt k kK

Now if Ap were to exhibit ACR with changing A .,
independent of A ..., should be satisfied for differing values of the ratio €. This independence

the above expression which is

in € can only be guarenteed when the coeffecient of € and the constant term are both zero.

This condition will provide a strict requirement on the kinetics (going beyond the granular
symmetry assumed in case 1 symmetry earlier) and will also establish the concentration of Ap
as functions of the Kinetics of the network on the ACR branch as follows.

Ap =solve((Ap ¢,k ky Ky, ) = Ap ey by by Pry oy = Ky Ky Pryyy)> AP) =
Ap _ k3 PTotal
) (kz Kroar = %5 Protal)
Ap= SO[V@(AP ok ks Kaprar = Progar 3 AP € kg + kK Ko 4p) =
Ap _ k] KTotal
C4 (KT()tal k, — k4 PT()tal)

The two expressions for Ap obtained above (as functions of kinetics and total enzyme
amounts) must be strictly equal and positive (since Ap is strictly positive).

Note: We quickly note an insight here that with case 1 symmetry in the Kinetics, these two
expressions are equivalent, however without the granular symmetry of case 1, these two
expressions can still be satisfied, by suitable choice of kinetic constants and total enzyme
concentrations.

Taking this in to account - ACon = 0 (the conservation expression for the total substrate
concentration) similarly simplifies to

collect(numer (ACon), €)

¢k k) &+ (~Ap® e ey ek kyky = Ap® e e, e k Ky k (32)

2
Ap”c 1 €2 635 15 Ry 1626 K 1R

1

2
tApcyc,eik kyky Ap  —Ap ey cik kyky Pr = Ap ey eik kTP

. 2 42 2 2
Apclczklksz)e +< Ap~c e ek kS —ApT e, e ¢k, ki k,

2 2 2
tdpc cye ki kA —Ape ese ki kTP —Ap e ese kT kP

2,2 2
¢, k" k,—Apcyc, kS k,

—Apcckk2+cckk2A E—Ap2C 5,k

1737173 173713 Total) 3

Thus at a fixed value for Ap (deteremined from the equations earlier) - the above equation
becomes a single variate polynomial in €.



We make two observations here,

1. The above polynomial in € has necessarily a negative real root (ascertained by noting the
signs of the leading coeffecient and the constant) for positive kinetic constants.
2. The product of roots of the polynomial is negative.

Thus, if there exists an € positive root, signifying a distinct ACR steady state, satisfying the
polynomial there will always exist another positive real root root signifying the presence of
another ACR steady state. Thus if ACR is to be present - it is necessarily present on two such
branches for any given A ...

"Hence we draw our first conclusion regarding the ACR steady states -
that should there exist an ACR steady state for Ap, there are necesarily two such branches
with changing A, "

Sufficiency of necessary conditions

Here, before proceeding to ascertain further features of the system while exhibiting ACR, we
show that the necessary kinetic conditions obtained earlier are sufficient to obtain ACR in
the system at some finite positive A, .,

We make two further observations at this stage,

1. That at sufficiently large ATotal concentrations, the sum of the roots of the polynomial (
in €, ACon = 0) earlier is postive.
2. The discriminant of the cubic polynomial is also positive at some finite but sufficiently
large A ., @s shown below
coeﬁ”(simpllﬁ/(discrim (numer (ACon), €)), 4, ., 4)
4,4 4 2, 6,2 ,2 2

c; k¢ (—Ap c,— 1) ki ky”Ap”c, 3.1.1)

The resulting polynomial for the discriminant is a quartic in A .- We isolate the leading

coeffecient of this polynomial as shown above using the inbuilt Maple command coeff. Now
since this expression is positive for all positive kinetic constants, the discriminant is itself
positive at some finite but sufficiently large A, .., concentration.

Thus the above two observations conclude that at some sufficiently large A, .. the
polynomial admits two € roots, each denoting a steady state on an ACR branch.

We now prove the existence of an intersection of the non-ACR branch and ACR branch.

We proceed with a proof by contraditction. Assuming that no intersection exists - there is no



common e¢ root for both equation 3.1 and 3.2. We should note here that while Ap is not fixed at
its ACR concentration on the non-ACR branch (by definition) the kinetic parameters should
none the less satisfy the necessary constraint elucidated above for the presence of ACR in the
network; i.e.,

k3 PTotal _ kl KTotal
CZ (kZ KTotal o k3 PTotal) 6‘4 (KTotal k] o k4 PTotal)

Inorder to establish this equivalency (in Kinetic constants and total concentrations of enzymes),
we solve for k1 from this equation. This is an artibitrary choice and this expression can be
satisfied by solving for any of the other constants involved.

k, P k K
3" Total 1 " Total
k, = simpliﬁ/[solve( =- ,k ] ]
: ¢ (K Kposar = %3 Prosar) ¢4 (Krorar %1 = %4 Protar) !
c k. k P, *
ko= 473 74" Total (3.3)

K

! ('ks (€2 =) Pror T €5 k, Krorat) Krorar

With this algebraic manipulation, equation 3.1 (KCon=0) from earlier can be rewritten as
shown below,

k3 PTotal
simplify | numer | eval| KCon, k, = simplify| solve i p =
5 (K Kpprar = %5 Prorar)

_ k] KTotal k ]]] ]
¢4 (Krorar 1 = %4 Protar) !

k ((—Apc2—1)kP + K Apcsz) (EP

34

3 3" Total Total Total KTolal)

We can see the birth and characteristic of the ACR branches more clearly now. There are two
possible ways in which this conservation can be satisfied for any steady state. Either we are on

an ACR branch - in which case the expression ( ~Apc, —1 ) ky P, ,tApc,k, K, . isequal
K
to 0 (as we have noted earlier for the ACR branch), or ¢ is fixed as Total .
Total
Total

Thus if we isolate for just the non-ACR branch (where € is fixed as ), we observe that
Total

the remaining conservation equation for the substrate simplifies to a univariate quadratic

polynomial in Ap. In this instance we don't resubstitute the k1 as we did earlier - but allow it to

be a variable as such for the sake of transparancy in the expression.



KTotal
T := collect| numer| eval| ACon, € = , Ap

Total
T:=(-c ¢’k k’K, *—coec ek k kK, *P (3.5)
172 12 Total 1727371 72 "3 “Total Total °
2 2 2
—C e ki ky ks Ky Proar T €13 K KT K Proran

2

o CZ 03 C4 k2 k3 k4 KT()tal PT()tal

2 2
+ (Cz ¢y ek Ry ks Ap i Kroral Protar = €162 351 5 K5 Kyt Prorar

2

2,2 3 2
- C3 C4 k3 k4 PT()tal ) Ap

2

2 2 2 2
¢ ek kT Ky Proal T 13¢50k Ary i Korat Prorar

2 3 2
— kT K Proal T 13K Ky Kt Prosan

2 2 2 2 3
—C ok ke ks K Proar = €1 S5 K1 K Kyt Protal = €3 €4 %5 Ky Proyar ) Ap

3

2 2
+ CI 63 k] k3 AT()tal KT()lal PTm‘al

This quadratic polynomial has necessarily only one positive solution for Ap for every single
value of A .., (This can be quickly verified by noting the sign of the coeffecients of the

polynomial). The range of the feasible root of Ap, as A, .., changes, would represent the range
of Ap on the non-ACR branch. Allowing A, . .

that the range of Ap also continously changes from 0 to +infinity (monotonically since it's a
quadratic polynomial).

to vary between 0 to +infinity, one can note

At some point within this range - Ap reaches the ACR value (provided by the kinetic
constants).

Thus this proves the existence of an intersection between an ACR branch and the non-ACR
branch, and that the non-ACR branch in the system has the unique feature that the ratio of
unbound kinase to phosphatase is exactly fixed by the ratio of the total amounts of kinase and
phosphatase at all total substrate concentrations.



