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Analytical proofs exploring the presence and features of symmetry and symmetry breaking in 
various multisite phosphorylation networks

This text details the analytical arguments used to ascertain features associated with symmetry breaking and 
the impossibility of the behavior in various MSP networks considered in the main text.  

Models
The networks described in the main text are modelled as a system of ODEs (Refer to Fig 1 in the main text
for reaction scfhematics and Appendix 2 Figure 10 for kinetic nomenclature of elementary reactions). We 
use mass action kinetic description for reaction rates and the overall model is constructed as a combination 
of such descriptions for the elementary reactions. 

Cross Validation and Parameters
The models provided here in Maple have been analyzed and cross validated with results from Matlab 
simulations and bifurcation computations using the Matlab package MatCont. Matlab and bifurcation 
computations have in turn been cross validated with simulations from the software COPASI, which self 
generates the ODE expressions based on a reaction schematic. The parameters used for generating the 
figures are presented here (in addition to the being present in appendix 2). These parameters have been 
used to perform an additional cross validation of the analytical work by mapping the presence and features 
of symmetry breaking, as predicted by the analytical work and obtained in the computational analysis. 

Organization of Results
The general organization of this Maple workbook is as follows. There are a total of 10 maple worksheets 
organized across 5 folders. 



Read_Me (This file) : Contains the parameters used for generating the figures, and further cross validation 
of the invariants and necessary conditions predicted by the analytical work.  

Folder 2: Ordered distributive double site phosphorylation (DSP) models and triple site phosphorylation 
(TSP) (2.1 - 2.3)
Folder 3: Random DSP (3.1 - 3.3)
Folder 4: Mixed-Random DSP (4.1 - 4.3)
Folder 5: Absolute Concentration Robustness (5.1)

Each of the folders contain the discussions and analytical work pertaining to the various models in that 
category. For example, in Random folder: The three different models, corresponding to common kinase-
common phosphatase, separate kinase-common phosphatase and separate kinase-separate phosphatase 
enzyme configurations, are presented in separate Maple documents labelled System_1, System_2 and 
System_3. Within each of these models, the three different classes of symmetries, where applicable are 
presented. 

Necessary and Sufficient Conditions. 
In this supplementary material, we provide analytical arguments regarding the presence and absence of 
various cases of symmetry breaking in multiple DSP networks. In networks permitting symmetry 
breaking, we obtain a necessary and sufficient condition for the behavior to manifest at some total substrate
concentrations, in terms of the kinetic parameters (and in some cases total enzyme concentrations). 

These constraints act as sufficient conditions to ensure symmetry breaking behavior is seen for some finite
value of total substrate concentration (ATotal). The choice of bifurcation along ATotal is due to its flexibility
in accommodating different classes of symmetry while changing. However the symmetry breaking can be 
encountered upon bifurcation along any parameter of interest (kinetic or enzyme concentrations) provided 
there is sufficient total substrate concentration. 

Please note: This entire document is also presented in a PDF format and is available as Supplementary file 
1.
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Parameters

The parameters used in generating the figures are presented below. The kinetic nomenclature pertaining to 
the specific system and class of symmetry is used below (refer main text, Fig 1D). As discussed earlier the
bifurcation is performed along ATotal in these figures. A cross verification of the analytical results showing
that the necessary conditions for symmetry breaking are met is presented. The features of the symmetry 
broken state as predicted by the analytical work is also presented.

Figure 2

A.  Case 1 - Double site phosphorylation

restart :

k1 0.1 : kb1 1 : kub1 1 : 
k2 0.5 : kb2 1 : kub2 1 : 
 
PTotal 0.1 : 

c1

kb1

k1 kub1
: c2

kb2

k2 kub2
:

Necessary and sufficient condition

Here we show that the necessary and sufficient condition for symmetry breaking (refer to 
analytical work) is satisfied for the parameters used. 

1.  k2 k1  

0.1 0.5

Symmetry Breaking (Invariants and position of symmetry in the bifurcation diagram 
along ATotal)

The invariant in the asymmetric steady states in ordered distributive DSP post case 1 symmetry 
breaking is the concentration of the partially modified substrate [Ap]. 
This is evaluated (based on the expression from the analytical work) for the kinetic parameters 
used in generating the plot. 

Ap =
k1

c2 k1 k2

Ap = 0.3750000000
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The intersection of the symmetric and asymmetric steady states on the bifurcation plot indicates 
the presence of a pitch fork bifurcation. 
Below, the position of this pitch fork bifurcation is evaluated (based on the expression from the 
analytical work) for the kinetic parameters used in generating the plot. 

ATotal =
c1 c2 PTotal 2 c2  k2

2 k1 c1 k2 PTotal k1
2 c1 c2

k1 k2  c1 c2 k2

ATotal = 3.245000000

B.  Case 1 - System 1 Random DSP

restart : 

k1 0.25 : kb1 1 : kub1 1 : 
k2 0.4 : kb2 1 : kub2 1 : 

a1 0.1 : ab1 1 : aub1 1 : 
a2 1 : ab2 1 : aub2 1 : 

PTotal 1 : 

 c1

kb1

k1 kub1
: c2

kb2

k2 kub2
: 

d1

ab1

a1 aub1
: d2

ab2

a2 aub2
:

Necessary Constraint

Here we show that the necessary and sufficient condition for symmetry breaking (refer to 
analytical work) is satisfied for the parameters used.

 1.  c1 a2 k2 k1   d1k2 a2 a1 0

0 1.163636364

 Symmetry Breaking (Invariants and position of symmetry in the bifurcation diagram 
along ATotal

The invariant in the asymmetric steady states in System 1 Random ordered DSP post case 1 
symmetry breaking is the concentration of the partially modified substrates [A01] and [A10].
This is evaluated (based on the expression from the analytical work) for the kinetic parameters 
used in generating the plot. 
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A01
c1 k1 a2

c2 k1 k2  c1 d1 k2  a2 d1 k2 a1

A01 0.6260162603

A10
d1 k2 a1

d2 d1 a1 a2 c1 a2  k2 c1 k1 a2

A10 0.1626016260
The intersection of the symmetric and asymmetric steady states on the bifurcation plot indicates 
the presence of a pitch fork bifurcation. 
Below, the position of this pitch fork bifurcation is evaluated (based on the expression from the 
analytical work) for the kinetic parameters used in generating the plot. 

ATotal = d2 c2 c1 d1  c1 PTotal d1 PTotal 2  k2
2 c1 k1 c1 d1  k2

c1
2 c2 k1

2 PTotal  a2
2 2 d1 

c1

2

d1

2
 k2 c1 d2 k1 PTotal  c2 k2 a1 a2

a1
2 c2 d1

2 d2 k2
2 PTotal c1 d1  k2 c1 k1  a2 a1 d1 k2  a2 c1

d1  c2 d2 k2

ATotal = 3.922980455

C.  Case 1 - System 3 Random DSP

restart : 

k1 0.5 : kb1 1 : kub1 1 : 
k2 1.5 : kb2 1 : kub2 1 : 

a1 0.1 : ab1 1 : aub1 1 : 
a2 1 : ab2 1 : aub2 1 :

P1Total 1 : 
P2Total 1 :

 c1

kb1

k1 kub1
: c2

kb2

k2 kub2
:

d1

ab1

a1 aub1
: d2

ab2

a2 aub2
:

Necessary Constraint

Here we show that the necessary and sufficient conditions for symmetry breaking (refer to 
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analytical work) is satisfied for the parameters used.

1.  k2 P1Total k1 P2Total

0.5 1.5
2.  a2 P2Total a1 P1Total

0.1 2.

Symmetry Breaking (Invariants and position of symmetry in the bifurcation diagram 
along ATotal)

The invariant in the asymmetric steady states in System 3 Random ordered DSP post case 1 
symmetry breaking is the concentration of the partially modified substrates [A01] and [A10].
This is evaluated (based on the expression from the analytical work) for the kinetic parameters 
used in generating the plot. 

A01
k1 P2Total

c2 k1 P2Total k2 P1Total

A01 1.250000000

A10
a1 P1Total

d2 a1 P1Total a2 P2Total
 

A10 0.2222222222

The intersection of the symmetric and asymmetric steady states on the bifurcation plot indicates 
the presence of a pitch fork bifurcation. 

First we evaluate the value of [K2] and [P2] using the various correlations between the 
substrates and free enzyme concentrations at steady state.  Below we use the solve command in 
Maple to evaluate the value for [K2] from the correlation obtained between [A01] and [A10] 
earlier. We use additional arguments (use assumptions) to only obtain solutions for [K2] that 
permit positive concentrations of free enzyme concentrations. 

K2 solve A10 =
A01 K22 a1 c2 d1 k2

P22 c1 k1 a2 d2

, K2, useassumptions assuming P2 0, K2 0

K2 0.7370277311 P2

This gives us the value of  (the ratio of [K2]/[P2]). Using this in the expression for [P2] 
obtained earlier from solving P2Con at the symmetric state, we get the concentration of [P2] to 
be, 

P2 eval
a1 P1Total a2 P2Total  k1 P2Total k2 P1Total

k2 a1 a2  P1Total a2 P2Total  k2 k1

, = 1.356801051
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(1.3.2.4)(1.3.2.4)P2 0.3178323642

A11
K2 A01 c2 k2

P2 c1 k1

A11 1.658312396

A00
K2 A01 c2 k2

P2 c1 k1

A00 1.658312396

Using these values, the position of the pitch fork bifurcation is evaluated as shown below. 

ATotal = 2 a2 P2 k2 k1  c1 k2 K2 d1 1  K2 c2

P2 c1 k1

2
 d2 P2Total

2 2 P1Total P2 k1 P2 K2 k2 k1  c1

K2 k2 K2 d1 1  d2

P2 c1 k1

2
 c2

P2 c1 d2 k1

2
 a1 P2Total

2 P1Total
2 P2 c1 P2 d2

1
2

 a1 k2 c2 k1 P2Total

k2 P1Total  c1 P2 d2 a1 P1Total a2 P2Total  c2

ATotal = 6.502775632

D. Case 2 - System 3 Random DSP

restart :

k1 2.35 : kb1 1 : kub1 1 : 
k2 0.46 : kb2 1 : kub2 1 : 
k3 1.86 : kb3 1 : kub3 1 : 
k4 1.1 : kb4 1 : kub4 1 : 
 
PTotal 1 : 
KTotal 1 : 

 c1

kb1

k1 kub1
: c2

kb2

k2 kub2
: c3

kb3

k3 kub3
: c4

kb4

k4 kub4
:

Necessary Conditions
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Here we show that the necessary and sufficient conditions for symmetry breaking (refer to 
analytical work) is satisfied for the parameters used.

1.  k1 KTotal k4 PTotal

1.1 2.35
2.  k3 PTotal k2 KTotal

0.46 3.72

Symmetry Breaking (Invariants and position of symmetry in the bifurcation diagram 
along ATotal)

The invariant in the asymmetric steady states in System 3 Random ordered DSP post case 2 
symmetry breaking is the concentration of the partially modified substrate [A00] and [A11].
This is evaluated (based on the expression from the analytical work) for the kinetic parameters 
used in generating the plot. 

A00
k4 PTotal

c1 k1 KTotal k4 PTotal

A00 2.948000000

A11
k2 KTotal

c3 k2 KTotal k3 PTotal

A11 0.9397142857

The intersection of the symmetric and asymmetric steady states on the bifurcation plot indicates 
the presence of a pitch fork bifurcation. 

First we evaluate the value of [K2] and [P2] using the various correlations between the 
substrates and free enzyme concentrations at steady state.  Below we use the solve command in 
Maple to evaluate the value for [K2] from the correlation obtained between [A01] and [A10] 
earlier. We use additional arguments (use assumptions) to only obtain solutions for [K2] that 
permit positive concentrations of free enzyme concentrations. 

K2 solve A11 =
A00 K22 c1 c2 k1 k2

P22 c4 k4 c3 k3

, K2, useassumptions assuming P2 0, K2 0

K2 0.7009391379 P2

This gives us the value of  (the ratio of [K2]/[P2]). Using this in the expression for [P2] 
obtained earlier from solving P2Con at the symmetric state, we get the concentration of [P2] to 
be, 

P2 eval
k2 KTotal k3 PTotal  k1 KTotal PTotal k4

k1  k2 k3  KTotal k3 PTotal  k1 k4
, = 0.7009391379
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P2 0.3778808204

A01
K2 A00 c1 k1

P2 c4 k4

A01 2.767307716

A10
K2 A00 c1 k1

P2 c4 k4

A10 2.767307716

Using these values, the position of the pitch fork bifurcation is evaluated as shown below. 

ATotal =
1

P22 c4 k4 c3 k3

2 P2 K2 k4 k1  c1

k4

2
 c4 k3 P2 K2 c2 1  k3

K2 c2 k2  c1 k1 K2  c3

K22 c1 c2 k1 k2

2
 A00

ATotal = 12.13682517

E. Case 2 - Mixed-Random 2 DSP

restart :

k1 2 : kb1 1 : kub1 1 : 
k2 0.1 : kb2 1 : kub2 1 : 
k3 0.75 : kb3 1 : kub3 1 : 
k4 1 :
 
PTotal 0.2 : K1Total 0.1 : 

 c1

kb1

k1 kub1
: c2

kb2

k2 kub2
: c3

kb3

k3 kub3
: 

Necessary Conditions

Here we show that the necessary and sufficient condition for symmetry breaking (refer to 
analytical work) is satisfied for the parameters used.

1.  k2 k1

0.1 2
2. k2 K1Total k3 k4 PTotal k3 k4   

0.0350 0.150
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Symmetry Breaking (Invariants and position of symmetry in the bifurcation diagram 
along ATotal)

The invariant in the asymmetric steady states in Mixed Random 2 ordered DSP post case 2  
symmetry breaking is the concentration of the partially modified substrate [A00] and [A11].
This is evaluated (based on the expression from the analytical work) for the kinetic parameters 
used in generating the plot. 

A00 = 
k2

k1 k2  c1

A00 = 0.1578947368

A11 = 
k2 k4 K1Total

2 c3 k2 K1Total k3 k4 PTotal k3 k4

A11 = 0.06603773585

The intersection of the symmetric and asymmetric steady states on the bifurcation plot indicates 
the presence of a pitch fork bifurcation. 
The position of the pitch fork bifurcation is evaluated (based on the expression from the 
analytical work) for the kinetic parameters used in generating the plot. 

ATotal 2 c3 k3 k4  k1 k4  k3 k1 k4  c1 c2 K1Total
2 k2

3

2 c2 c3 c1 PTotal k4
2 k1 c1 PTotal 1  k4 c1 k1

2 K1Total  k3
2

2 
1
2

 c1 c3 PTotal
1
4

 c1
1
2

 c3  k4 c1 c3 k1 K1Total  k4 k1 k3

c1 c3 k1
2 k4

2 K1Total  K1Total k2
2 2 k3 c3 c2 PTotal k4 c1 k1 K1Total 

K1Total c2 c2 PTotal 2  k3 c1 k1 k4 K1Total c2 c3 PTotal c2 c3 K1Total

1
2

 c2 2 c3  k4 k1 k2 2 c1 c3 k1
2 k3

2 k4
2 PTotal K1Total c2 2 2 k1

k2  c3 k3 k2 k3 k4  K1Total PTotal k3 k4  k4 c1 c2 k1

ATotal 2.668055280

Figure 3

A. Case 3 - System 1 Random DSP (Hopf and Pitchfork)

restart :
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(2.1.1.1)(2.1.1.1)

(2.1.2.1)(2.1.2.1)

(1.3.2.4)(1.3.2.4)

k1 100 : kb1 100 : kub1 1 : 
k2 2 : kb2 1 : kub2 1 : 
k3 0.01 : kb3 100 : kub3 1 : 
k4 20 : kb4 0.1 : kub4 1 : 

PTotal 1.25 : 
 

 c1

kb1

k1 kub1
: c2

kb2

k2 kub2
: c3

kb3

k3 kub3
: c4

kb4

k4 kub4
:

Necessary conditions

Here we show that the necessary and sufficient condition for symmetry breaking (refer to 
analytical work) is satisfied for the parameters used.

1.    c3 k4 k2 k3 c1 k2 k1 k4 0

0 3782.178218

Symmetry Breaking

The invariant in the asymmetric steady states in System 1 Random ordered DSP post case 3 
symmetry breaking is the sum of the concentrations of the partially modified substrates [A01] 
and [A10]. 
This is evaluated (based on the expression from the analytical work) for the kinetic parameters 
used in generating the plot. 

A01  A10 = 
c1 c2 k1 k2 c3 c4 k3 k4

c1 c3  k4 c1 k1  k2 c3 k3 k4  c4 c2

A01 A10 = 11.01047120

The intersection of the symmetric and asymmetric steady states on the bifurcation plot indicates 
the presence of a pitch fork bifurcation. 
Below, the position of the pitch fork bifurcation is evaluated (based on the expression from the 
analytical work) for the kinetic parameters used in generating the plot. 

ATotal = 2 c1 c2 k1 k2 c3 c4 k3 k4  
c1 k2

2 k1 k1 k2  c1 c3 k2 k3  c2
3

2

k1 k2 PTotal k1 k4  k1 k2  c1
3 2 k1 k3  k4 k1 k1 k3  k2

2



(1.4.2.4)(1.4.2.4)

(1.3.2.4)(1.3.2.4)

k1 k1 k3  k4 2 k1
2 k3  k2 k1

2 k3 k4  PTotal c3

k2 k1 4 k4  k2 k4 k1  k1

2
 c1

2 c3 k1 2 k3  k4 k1 k3  k2
2

k1 k3 k3 k4  k2 2 k1 k3
2 k4  PTotal c3

k2
2 4 k1 3 k3  k4 k1 k3

2
 c1

k4 k2
2 PTotal k3

2 PTotal  c3

3 k2 k2

k3

3
2

 c3
2 k3  c4

c1 k2 k1 k1 k2  c1 c3 k2 k3  c1 k1 c3 k3

2
 c2

2 k1 k2 PTotal k1

k4  k1 k4  c1
3 2 k1

k3

2
 k4

2
k3 k4 k1

2
k1

2 k3  k2

k1 k3 k4 k1 k4

2
 PTotal c3

k1 k2 k4 k1 3 k4

2
 c1

2 c3 k1

2 k3  k4
2 k3 k1 k3  k4 k1 k3

2  k2 k3 k1 k3  k4
2 2 k1 k3

2 k4  PTotal c3

3 k4
2 k1

4 k3

3
 k2

k1 k3

3
2

 c1 k4 PTotal k3 k4  k2 k3  c3

k3

2
2 k4  k2

k3 k4

2
 c3

2 k3  c4

k2 k1 3 k4  c1 3 k4 c3 k2

k3

3
 c1 k1 c3 k3

2

2
 c4 c2

k4 k1 k4  c1 c3 k3 k4  c1 k1 c3 k3 c4 k4  c3 k3 c4
2

2

c1 k2 k1 k1 k2  c1 c3 k2 k3  c2
2 k2 k1 3 k4  c1 3 k4 c3 k2

k3

3
 c1 k1 c3 k3  c4 c2 k4 k1 k4  c1 c3 k3 k4  c3 k3 c4

2  k1
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k4  k2 c1 k4 c3 k2 k3  c1 k1 c3 k3  c4 c2

 ATotal = 13.24004002

A. Case 3 - System 1 Random DSP (Tristability)

restart :

k1 100 : kb1 100 : kub1 1 : 
k2 2 : kb2 1 : kub2 1 : 
k3 0.01 : kb3 100 : kub3 1 : 
k4 20 : kb4 0.1 : kub4 1 : 

PTotal 10 : 
 

 c1

kb1

k1 kub1
: c2

kb2

k2 kub2
: c3

kb3

k3 kub3
: c4

kb4

k4 kub4
:

Necessary conditions

Here we show that the necessary and sufficient condition for symmetry breaking (refer to 
analytical work) is satisfied for the parameters used.

1.    c3 k4 k2 k3 c1 k2 k1 k4 0

0 3782.178218

Symmetry Breaking

The invariant in the asymmetric steady states in System 1 Random ordered DSP case 3 post 
symmetry breaking is the sum of the concentrations of the partially modified substrates [A01] 
and [A10]. 
This is evaluated (based on the expression from the analytical work) for the kinetic parameters 
used in generating the plot. 

A01  A10 = 
c1 c2 k1 k2 c3 c4 k3 k4

c1 c3  k4 c1 k1  k2 c3 k3 k4  c4 c2
 

A01 A10 = 11.01047120

The intersection of the symmetric and asymmetric steady states on the bifurcation plot indicates 
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(1.3.2.4)(1.3.2.4)

the presence of a pitch fork bifurcation. 
The position of the pitch fork bifurcation is evaluated (based on the expression from the 
analytical work) for the kinetic parameters used in generating the plot.

ATotal  = 2 c1 c2 k1 k2 c3 c4 k3 k4  
c1 k2

2 k1 k1 k2  c1 c3 k2 k3  c2
3

2

k1 k2 PTotal k1 k4  k1 k2  c1
3 2 k1 k3  k4 k1 k1 k3  k2

2

k1 k1 k3  k4 2 k1
2 k3  k2 k1

2 k3 k4  PTotal c3

k2 k1 4 k4  k2 k4 k1  k1

2
 c1

2 c3 k1 2 k3  k4 k1 k3  k2
2

k1 k3 k3 k4  k2 2 k1 k3
2 k4  PTotal c3

k2
2 4 k1 3 k3  k4 k1 k3

2
 c1

k4 k2
2 PTotal k3

2 PTotal  c3

3 k2 k2

k3

3
2

 c3
2 k3  c4

c1 k2 k1 k1 k2  c1 c3 k2 k3  c1 k1 c3 k3

2
 c2

2 k1 k2 PTotal k1

k4  k1 k4  c1
3 2 k1

k3

2
 k4

2
k3 k4 k1

2
k1

2 k3  k2

k1 k3 k4 k1 k4

2
 PTotal c3

k1 k2 k4 k1 3 k4

2
 c1

2 c3 k1

2 k3  k4
2 k3 k1 k3  k4 k1 k3

2  k2 k3 k1 k3  k4
2 2 k1 k3

2 k4  PTotal c3

3 k4
2 k1

4 k3

3
 k2

k1 k3

3
2

 c1 k4 PTotal k3 k4  k2 k3  c3

k3

2
2 k4  k2

k3 k4

2
 c3

2 k3  c4
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(2.2.2.2)(2.2.2.2)

(1.3.2.4)(1.3.2.4)

k2 k1 3 k4  c1 3 k4 c3 k2

k3

3
 c1 k1 c3 k3

2

2
 c4 c2

k4 k1 k4  c1 c3 k3 k4  c1 k1 c3 k3 c4 k4  c3 k3 c4
2

2

c1 k2 k1 k1 k2  c1 c3 k2 k3  c2
2 k2 k1 3 k4  c1 3 k4 c3 k2

k3

3
 c1 k1 c3 k3  c4 c2 k4 k1 k4  c1 c3 k3 k4  c3 k3 c4

2  k1

k4  k2 c1 k4 c3 k2 k3  c1 k1 c3 k3  c4 c2

ATotal = 28.25979662

B. Case 3 - System 3 Random DSP (Hopf)

restart :

k1 150 : kb1 100 : kub1 1 : 
k2 50 : kb2 1 : kub2 1 : 
k3 1 : kb3 0.01 : kub3 1 : 
k4 10 : kb4 500 : kub4 1 : 

K1Total 1 : P1Total 1 : 
K2Total 1 : P2Total 1 : 

B. Case 3 - System 3 Random DSP (PitchFork - Approximate robustness in A00 + A11)

restart :

k1 10 : kb1 1 : kub1 1 : 
k2 1 : kb2 1 : kub2 1 : 
k3 2 : kb3 1 : kub3 1 : 
k4 5 : kb4 1 : kub4 1 : 

K1Total 1 : P1Total 1 : 



(3.1.2.2)(3.1.2.2)

(1.4.2.4)(1.4.2.4)

(3.1.1.1)(3.1.1.1)

(3.1.2.1)(3.1.2.1)

(1.3.2.4)(1.3.2.4)

Appendix 2 Figure 1

B. Case 2 - Mixed-Random 3 DSP

restart :

k1 0.9 : kb1 1 : kub1 1 : 
k2 0.8 : kb2 1 : kub2 1 : 
k3 2 : kb3 1 : kub3 1 : 
k4 1 :

K1Total 0.1 : 
 

 c1

kb1

k1 kub1
: c2

kb2

k2 kub2
: c3

kb3

k3 kub3
: 

Necessary Conditions

Here we show that the necessary and sufficient condition for symmetry breaking (refer to 
analytical work) is satisfied for the parameters used.

1.  k2 k1

0.8 0.9

Symmetry Breaking (Invariants and position of symmetry in the bifurcation diagram 
along ATotal)

The invariant in the asymmetric steady states in Mixed Random 3 ordered DSP case 2 post 
symmetry breaking is the concentrations of the partially modified substrates [A00] and [A11]. 
This is evaluated (based on the expression from the analytical work) for the kinetic parameters 
used in generating the plot.

A11 =
K1Total k2

2 k3

A11 = 0.02000000000

A00 = 
k2

k1 k2  c1

A00 = 15.20000000

The intersection of the symmetric and asymmetric steady states on the bifurcation plot indicates 
the presence of a pitch fork bifurcation. 



(1.4.2.4)(1.4.2.4)

(3.1.2.3)(3.1.2.3)

(1.3.2.4)(1.3.2.4)

The position of the pitch fork bifurcation is evaluated (based on the expression from the 
analytical work) for the kinetic parameters used in generating the plot.

ATotal =
1

2 k1 k2  c1 c2 k3 k1
K1Total k2 2 k3  c2 4 k3  c1 k1

2 K1Total k2 c1

2 k3  c2 k2 k1 2 K1Total k2
2 c1 c2 k3

 = 
ATotal = 47.80888889

Appendix 2 Figure 2

A. Case 3 - System 1 Random DSP (Hopf) 

restart :

k1 100 : kb1 100 : kub1 1 : 
k2 20 : kb2 1 : kub2 1 : 
k3 1 : kb3 100 : kub3 1 : 
k4 2 : kb4 1 : kub4 1 : 

PTotal 1 : 

A. Case 3 - System 1 Random DSP (Oscillations - Dynamic response)

restart :

 ATotal 12.95 :

A. Case 3 - System 1 Random DSP (Pitchfork)

restart :

k1 0.1 : kb1 1 : kub1 1 : 
k2 1 : kb2 1 : kub2 1 : 
k3 2 : kb3 1 : kub3 1 : 
k4 5 : kb4 1 : kub4 1 : 

PTotal 1 :
 

c1

kb1

k1 kub1
: c2

kb2

k2 kub2
: c3

kb3

k3 kub3
: c4

kb4

k4 kub4
:



(1.4.2.4)(1.4.2.4)

(4.3.1.1)(4.3.1.1)

(1.3.2.4)(1.3.2.4)

(4.3.2.1)(4.3.2.1)

 

Necessary conditions

Here we show that the necessary and sufficient condition for symmetry breaking (refer to 
analytical work) is satisfied for the parameters used.

1.    c3 k4 k2 k3 c1 k2 k1 k4 0

0 2.787878788

Symmetry Breaking (Invariants and position of symmetry in the bifurcation diagram 
along ATotal)

The invariant in the asymmetric steady states in System Random 1 ordered distributive DSP 
post case 3 symmetry breaking is the sum of the concentrations of the partially modified 
substrates [A00] and [A11]. 
This is evaluated (based on the expression from the analytical work) for the kinetic parameters 
used in generating the plot.

A01  A10 = 
c1 c2 k1 k2 c3 c4 k3 k4

c1 c3  k4 c1 k1  k2 c3 k3 k4  c4 c2

A01 A10 = 2.586956524
The intersection of the symmetric and asymmetric steady states on the bifurcation plot indicates 
the presence of a pitch fork bifurcation. 
The position of the pitch fork bifurcation is evaluated (based on the expression from the 
analytical work) for the kinetic parameters used in generating the plot.

ATotal = 2 c1 c2 k1 k2 c3 c4 k3 k4  
c1 k2

2 k1 k1 k2  c1 c3 k2 k3  c2
3

2

k1 k2 PTotal k1 k4  k1 k2  c1
3 2 k1 k3  k4 k1 k1 k3  k2

2

k1 k1 k3  k4 2 k1
2 k3  k2 k1

2 k3 k4  PTotal c3

k2 k1 4 k4  k2 k4 k1  k1

2
 c1

2 c3 k1 2 k3  k4 k1 k3  k2
2

k1 k3 k3 k4  k2 2 k1 k3
2 k4  PTotal c3

k2
2 4 k1 3 k3  k4 k1 k3

2
 c1



(1.4.2.4)(1.4.2.4)

(4.3.2.2)(4.3.2.2)

(1.3.2.4)(1.3.2.4)

k4 k2
2 PTotal k3

2 PTotal  c3

3 k2 k2

k3

3
2

 c3
2 k3  c4

c1 k2 k1 k1 k2  c1 c3 k2 k3  c1 k1 c3 k3

2
 c2

2 k1 k2 PTotal k1

k4  k1 k4  c1
3 2 k1

k3

2
 k4

2
k3 k4 k1

2
k1

2 k3  k2

k1 k3 k4 k1 k4

2
 PTotal c3

k1 k2 k4 k1 3 k4

2
 c1

2 c3 k1

2 k3  k4
2 k3 k1 k3  k4 k1 k3

2  k2 k3 k1 k3  k4
2 2 k1 k3

2 k4  PTotal c3

3 k4
2 k1

4 k3

3
 k2

k1 k3

3
2

 c1 k4 PTotal k3 k4  k2 k3  c3

k3

2
2 k4  k2

k3 k4

2
 c3

2 k3  c4

k2 k1 3 k4  c1 3 k4 c3 k2

k3

3
 c1 k1 c3 k3

2

2
 c4 c2

k4 k1 k4  c1 c3 k3 k4  c1 k1 c3 k3 c4 k4  c3 k3 c4
2

2

c1 k2 k1 k1 k2  c1 c3 k2 k3  c2
2 k2 k1 3 k4  c1 3 k4 c3 k2

k3

3
 c1 k1 c3 k3  c4 c2 k4 k1 k4  c1 c3 k3 k4  c3 k3 c4

2  k1

k4  k2 c1 k4 c3 k2 k3  c1 k1 c3 k3  c4 c2

ATotal = 8.713626644

Appendix 2 Figure 3

Case 1 - System 1 Random DSP (Independent leg bifurcation)



(5.1.1.1)(5.1.1.1)

(1.4.2.4)(1.4.2.4)

(5.1.2.2)(5.1.2.2)

(5.1.2.1)(5.1.2.1)

(1.3.2.4)(1.3.2.4)

restart : 

k1 1 : kb1 1 : kub1 1 : 
k2 1 : kb2 1 : kub2 1 : 
PTotal 1 : 

 c1

kb1

k1 kub1
: c2

kb2

k2 kub2
:

a1 0.1 : ab1 1 : aub1 1 : 
a2 1 : ab2 1 : aub2 1 : 
 

 d1

ab1

a1 aub1
: d2

ab2

a2 aub2
:

Necessary Constraint

Here we show that the necessary and sufficient conditions for symmetry breaking (refer to 
analytical work) is satisfied for the parameters used.

 1.  c1 a2 k2 k1   a1k2 a2 a1 0

0 0.6000000000

Symmetry Breaking (Invariants and position of symmetry in the bifurcation diagram 
along ATotal)

The invariant in the asymmetric steady states in System Random 1 ordered distributive DSP 
post case 1 symmetry breaking is the concentrations of the partially modified substrates [A01] 
and [A10]. 
This is evaluated (based on the expression from the analytical work) for the kinetic parameters 
used in generating the plot.

A10
d1 k2 a1

d2 d1 a1 a2 c1 a2  k2 c1 k1 a2

A10 0.2222222222

A01
c1 k1 a2

c2 k1 k2  c1 d1 k2  a2 d1 k2 a1

A01 1.222222222

The intersection of the symmetric and asymmetric steady states on the bifurcation plot indicates 
the presence of a pitch fork bifurcation. 



(1.4.2.4)(1.4.2.4)

(5.1.2.3)(5.1.2.3)

(1.3.2.4)(1.3.2.4)

The position of the pitch fork bifurcation is evaluated (based on the expression from the 
analytical work) for the kinetic parameters used in generating the plot.

ATotal = d2 c2 c1 d1  c1 PTotal d1 PTotal 2  k2
2 c1 k1 c1 d1  k2

c1
2 c2 k1

2 PTotal  a2
2 2 d1 

c1

2

d1

2
 k2 c1 d2 k1 PTotal  c2 k2 a1 a2

a1
2 c2 d1

2 d2 k2
2 PTotal c1 d1  k2 c1 k1  a2 a1 d1 k2  a2 c1

d1  c2 d2 k2

ATotal = 5.308243724

Appendix 2 Figure 4

Case 3 - System 3 Random DSP (PitchFork - Approximate robustness in A01 + A10)

restart :

k1 1 : kb1 10 : kub1 1 : 
k2 2 : kb2 1 : kub2 1 : 
k3 1 : kb3 10 : kub3 1 : 
k4 20 : kb4 1 : kub4 1 : 

K1Total 5 : P1Total 5 : 
K2Total 5 : P2Total 5 : 

Appendix 2 Figure 5

Case 2 - System 3 Random DSP (Approximate robustness in non exact symmetric state)

restart :

k1 1.25 : kb1 1 : kub1 1 : 
k2 1.1 : kb2 1 : kub2 1 : 
k3 2.5 : kb3 1 : kub3 1 : 
k4 0.4 : kb4 1 : kub4 1 :
 
a1 1.25 : ab1 1 : aub1 1 : 
 ab2 1 : aub2 1 : 



(1.4.2.4)(1.4.2.4)

(1.3.2.4)(1.3.2.4)

 a3 2.5 : ab3 1 : aub3 1 : 
a4 0.4 : ab4 1 : aub4 1 : 

K1Total 1 : P1Total 1 : 

Exact symmetry used for comparison

k1 1.25 : kb1 1 : kub1 1 : 
k2 1.1 : kb2 1 : kub2 1 : 
k3 2.5 : kb3 1 : kub3 1 : 
k4 0.4 : kb4 1 : kub4 1 :

K1Total 1 : P1Total 1 :

Appendix 2 Figure 6

Approximate concentration robustness in near symmetric systems (Ordered DSP with 
common kinase common phosphatase)
restart :

kb1 1 : kub1 1 : 
k2 0.5 : kb2 1 : kub2 1 : 
k3 0.1 : kb3 1 : kub3 1 :
k4 0.5 : kb2 1 : kub2 1 : 
   
PTotal 0.1 : KTotal 0.1 : 

k1 is varied between 50% to 150% from it's symmetric value (0.1). All other parameters remain the 
same as those used in Fig2A. 

Appendix 2 Figure 7

A. Case 3 - System 1 Random DSP 

restart :

k1 30 : kb1 100 : kub1 1 : 
k2 2 : kb2 1 : kub2 1 : 
k3 0.3 : kb3 100 : kub3 1 : 



(1.4.2.4)(1.4.2.4)

(10.1.1.1)(10.1.1.1)

(1.3.2.4)(1.3.2.4)

k4 20 : kb4 0.1 : kub4 1 :
   
K1Total 1 : P1Total 1 : 

B. Case 3 - System 1 Random DSP

Same kinetic parameters as above 

K1Total 20 : P1Total 20 :

Appendix 2 Figure 8

Case 1 - Triple site phosphorylation

restart :

k1 0.1 : kb1 1 : kub1 1 : 
k2 1.5 : kb2 1 : kub2 1 : 
k3 2 : kb3 1 : kub3 1 : 

PTotal 0.1 : 
 

 c1

kb1

k1 kub1
: c2

kb2

k2 kub2
: c3

kb3

k3 kub3
:

Necessary Constraint

Here we show that the necessary and sufficient condition for symmetry breaking (refer to 
analytical work) is satisfied for the parameters used.

1.  k3 k1  

0.1 2.

Symmetry Breaking (Invariants and position of symmetry in the bifurcation diagram 
along ATotal)

The invariant in the asymmetric steady states in distributive ordered TSP post case 1 symmetry 
breaking is the sum of the concentrations of the partially modified substrates [Ap] and [App]. 



(10.1.2.2)(10.1.2.2)

(1.4.2.4)(1.4.2.4)

(10.1.2.1)(10.1.2.1)

(1.3.2.4)(1.3.2.4)

This is evaluated (based on the expression from the analytical work) for the kinetic parameters 
used in generating the plot.

Ap  App =
k1

c3 k1 k3

Ap App = 0.1578947368
The intersection of the symmetric and asymmetric steady states on the bifurcation plot indicates 
the presence of a pitch fork bifurcation. 
The position of the pitch fork bifurcation is evaluated (based on the expression from the 
analytical work) for the kinetic parameters used in generating the plot. 

ATotal =
2 c1 c2 c3 k1

2 2 c1 c2 c3 k1 k3 2 c1 c3
2 k1

2 2 c1 c3
2 k3

2  PTotal

k1 k3  c1 c3 c2 k1 c3 k1 3 c3 k3

c1 c2 k1
2 c1 c3 k1

2 3 c1 c3 k1 k3 c2 c3 k1 k3 c3
2 k1 k3 3 c3

2 k3
2

k1 k3  c1 c3 c2 k1 c3 k1 3 c3 k3
 = 

ATotal = 1.389543626

Appendix 2 Figure 9

Ordered DSP (Common kinase common phosphatase) - ACR with non-symmetric kinetics 
along changing ATotal

restart :

k1 1 : kb1 1 : kub1 1 : 
k2 2 : kb2 1 : kub2 1 : 
k3 0.5 : kb3 1 : kub3 1 : 
k4 1.2 : kb4 11 : kub4 1 : 

KTotal 1 : PTotal 1 :

c1

kb1

k1 kub1
: c2

kb2

k2 kub2
: c3

kb3

k3 kub3
: c4

kb4

k4 kub4
:

Necessary and sufficient condition

Here we show that the necssary and sufficient condition for ACR in Ap is satisfied by the 



(11.1.1.1)(11.1.1.1)

(11.1.2.1)(11.1.2.1)

(1.4.2.4)(1.4.2.4)

(1.3.2.4)(1.3.2.4)

parameters used. 

1.  
k3 PTotal

c2 k2 KTotal k3 PTotal
=

k1 KTotal

c4 KTotal k1 k4 PTotal

1.000000000 = 1.000000000

ACR concentration of Ap

The ACR concentration of Ap (as seen in the analytical work in section 5.1) is thus given by, 

 Ap = 
k3 PTotal

c2 k2 KTotal k3 PTotal

Ap = 1.000000000
This is verified in the compuatational result in the figure.



Double Site Ordered Distributive Phosphorylation : Common 
Kinase Common Phosphatase

Case 1 Symmetry - Present and Breaks
In this Maple file we analytically show the presence of symmetry breaking in ordered distributive DSP 
network with common kinase and common phosphatase effecting phosphorylation and dephoshorylation 
respectively. We do this by first describing the model as a system of ODEs and imposing the kinetic 
constraints pertaining to case 1 symmetry. We further describe the enzyme and substrate conservations 
associated with the model. By solving for the steady states of the system of ODEs we obtain relations 
between substrate variables (concentrations) in terms of each other and the free enzyme concentrations. In 
ordered distributive DSP (with common kinase common phosphatase), KTotal = PTotal is required for exact
case 1 symmetry to be present. We use this information to get a further simplified expression describing all
possible steady states of the system. With case 1 symmetry in the ordered distributive MSP, the free 
enzyme kinase and phosphatase share a strict symmetry in the symmetric steady state ([K] = [P]). Thus by 
isolating steady states not of this type from the earlier correlation, we ascertain the features of the 
asymmetric states emerging from symmetry breaking. This procedure is carried out in detail below using 
built in Maple commands.

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt 
Maple functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with LinearAlgebra :  with VectorCalculus :  with Student LinearAlgebra :

The system is modelled as a set of ODEs using the kinetic nomenclature described in the main text 
and supplementary figure (refer to Appendix 2 figure 10). Here dA represents d[A]/dt and 
similarly in the case of the other variables. At steady state thus, the right hand sides of each of 
these expressions will be equal to zero. 

dA  k4 ApP  kub1 AK  kb1 A K :
dAp  k1 AK  k3 AppP kub2 ApK kub4 ApP  kb2 Ap K kb4 Ap P :
dApp  k2 ApK  kub3 AppP  kb3 App P :
 
dAK kb1 A K  kub1 k1 AK :
dApK  kb2 Ap K  kub2 k2 ApK : 
dAppP kb3 App P  kub3 k3 AppP :  
dApP  kb4 Ap P  kub4 k4 ApP :

dK  kb1 A K  kub1 k1 AK kb2 Ap K  kub2 k2 ApK :
dP  kb3 App P  kub3 k3 AppP kb4 Ap P  kub4 k4 ApP :

The model is also associated with conservation conditions which are described below. Here we 
store the conservation expressions as ACon, PCon and KCon for the substrate and the respective 
enzymes. Each of these expressions is always equal to zero (both in the transient behavior and at 
steady state).



(1)(1)

(2)(2)

ACon ATotal  A  Ap App AK ApK AppP ApP :
PCon PTotal P AppP ApP :
KCon KTotal  K AK ApK :

Kinetic constraints for case 1 symmetry (refer main text) are imposed on the original model. 

k3 k1 : kub3 kub1 : kb3 kb1 :
k4 k2 : kub4 kub2 : kb4 kb2 :

In addition to the kinetic constraints the total enzyme concentrations of kinase and phosphatase 
also need to be equal for exact case 1 symmetry to be present. This is imposed as shown below. 

KTotal PTotal :

At this stage we introduce auxiliary constants c1 and c2 in place of the binding constants so as to 
make further analytical expressions more accessible. 

kb1 c1 k1 kub1 : 
kb2 c2 k2 kub2 :

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In 
this context we want to solve all variables in terms of the concentrations of the free enzymes ([K] &
[P]) and the concentration of the partially modified substrate ([Ap]). In order to do this, we use 
the Maple command solve, which solves the supplied equation for a given variable. We first solve 
for the individual complexes using their corresponding differential equation. An example of this 
(using [AK]) is given below in detail. 

The differential equation of [AK] is given by, 

d AK
dt

= dAK     

d AK
dt

= c1 kub1 k1  A K kub1 k1  AK

The solve command by Maple, solves this equation for the given variable (in this case [AK]). We in
turn store this value (the solution returned by the solve command) in [AK]. This is performed by 
the following command. 

AK solve dAK, AK
AK K A c1

This operation is repeated for the other complexes and substrate forms as well. 

ApK solve dApK, ApK : 



(1.1)(1.1)

AppP solve dAppP, AppP :
ApP solve dApP, ApP :

A solve dA, A : 
App solve dApp, App :

Doing this results in the following correlations between the concentrations of the various substrate
forms at steady state.

App  = 
K Ap c2 k2
c1 P k1

 

A = 
P Ap c2 k2
c1 K k1

 

Proof for invariant in the asymmetric branches

We know that PCon and KCon are both individually always equal to zero. Thus at a given 
steady state, PCon - KCon must also be equal to zero. 

We thus introduce the term T = (KCon - PCon) = 0 and also introduce a new ratio,  = [K]/[P]. 
Note: As discussed in the main text, the symmetric steady state is one where [K] = [P] or  = 1. 
Since we are isolating solutions of asymmetry, we are primarily interested in solutions that 
permit,  ≠ 1. 
T KCon  PCon = 0 :
K P :

The following Maple command (simplify), simplifies the expression algebraically. 

simplify T  = 
P Ap k1 k2  c2 k1  1

k1
= 0  

From this we can ascertain that, should an asymmetric steady state exist (where  ≠ 1) - the 
term (Ap k1 k2  c2 k1 ) in the expression needs to be zero. We note that this term is a 
expression in the partial substrate form [Ap] and kinetic constants. Thus solving this to isolate 
the partial substrate form we get the following. Here we use the solve command from Maple to 
solve T for [Ap] as shown below. 

Ap = solve T, Ap

Ap =
k1

k1 k2  c2

Thus we can see that in an asymmetric steady state, the value of the partially modified 
substrate is fixed and is given by the above expression involving only a few key kinetic 



parameters. 

Necessary conditions for symmetry breaking

Since substrate concentrations are always positive, the expression in equation 1.1 should be 
positive. As the involved terms (kinetic constants) are by definition positive, we get the 
necessary condition for asymmetric states to exist as follows. 

1.  k2 k1

Sufficiency of necessary conditions

In this section of the proof we show the necessary conditions shown above are also sufficient 
for an asymmetric steady state to exist for some positive ATotal value. i.e. We show that upon a 
bifurcation along ATotal we are bound to encounter symmetry breaking provided the necessary 
conditions are satisfied. Note that a feasible steady state in this context is one in which the 
concentrations of all substrates, complexes and enzymes are positive.
  
We do this by showing that the asymmetric states defined by the invariant concentration of 
[Ap] described above is indeed a feasible solution for the system of ODEs at some positive 
ATotal value. 

In an asymmetric steady state, as seen above the concentration of [Ap] is fixed by a few kinetic 
constants, 

Ap
k1

k1 k2  c2
 = 

k1
k1 k2  c2

The other variables in this asymmetric state are thus given by (we obtain this by using the 
correlation obtained earlier between the different concentrations) 

A = 
k2

k1 k2  c1 

App  = 
 k2

k1 k2  c1

AK  = 
P k2
k1 k2

ApK  = 
 P k1
k1 k2

AppP = 
P  k2
k1 k2



ApP = 
P k1
k1 k2

The system of ODE is also satisfied at this point, as is verified below. 

simplify dA  = 0
simplify dAp  = 0
simplify dApp  = 0
simplify dAK  = 0
simplify dApK  = 0
simplify dAppP  = 0
simplify dApP  = 0
simplify dK  = 0
simplify dP  = 0

Hence all that remains to be shown is that the variables (as described above) are positive for 
some value of ATotal. 
This is true if and only if
      1. Necessary condition (k2 k1  is satisfied 
      2. P and  are positive. 

Now by using the total conservation of phosphatase in the system (PCon = 0), we obtain an 
algebraic expression for [P] in terms of PTotal, kinetic constants and  as shown below. The 
Maple command solve is used for this purpose.

P solve PCon, P  = 
PTotal k1 k2
k2 1

Hence if  is positive P is automatically positive (provided necessary conditions are satisfied).

Thus this means that for every value of  ≠ 1, all concentrations are positive and the 
conservation of kinase and phosphatase is also satisfied. 

Since the concentrations are all positive there exists a unique finite ATotal value for the given  
(permitting asymmetric states). 

Hence we have proved that symmetry breaking is guaranteed for some finite positive ATotal, 
provided the necessary conditions above are satisfied - making those conditions sufficient for 
the behavior. 

Prediction of position of pitchfork bifurcation along ATotal

Here we predict the value of ATotal at which symmetry breaking occurs via a pitchfork 
bifurcation. This point in the bifurcation is characterized by the intersection of both the 
symmetric steady state branch and the asymmetric steady state branches.



(4.1)(4.1)

Hence at the position of symmetry breaking, we know two facts.

1. The system is still symmetric, hence [A] = [App] and [K] = [P]. 
2. The invariant describing the asymmetric steady state is also true. 

Using these two information, we can simplify the original system considerably as follows.

K P :  1 : 

Ap
k1

k1 k2  c2
: 

Now, by solving the conservation expression for the substrate we can isolate the value of ATotal
when the asymmetric steady states and the symmetric steady state intersect (indicating the 
pitchfork bifurcation point) 

ATotal = simplify solve simplify ACon , ATotal

ATotal =
c1 c2 PTotal 2 c2  k2

2 k1 c1 k2 PTotal k1
2 c1 c2

k1 k2  c1 c2 k2

A cross verification of this analytical work is carried out in the read me file for the parameters 
used in generating the figures (Fig 2A). 



Double Site Ordered Distributive Phosphorylation : Separate 
Kinase Separate Phosphatase

 Case 1 Symmetry - Present and Cannot Break
In this Maple file we analytically show the infeasibility of symmetry breaking in ordered distributive DSP 
network with a unique kinase and unique phosphatase effecting phosphorylation and dephoshorylation on 
each modification site. We do this by first describing the model as a system of ODEs and imposing the 
kinetic constraints pertaining to case 1 symmetry. We further describe the enzyme and substrate 
conservations associated with the model. By solving for the steady state of the system of ODEs we obtain 
relations between substrate variables (concentrations) in terms of each other and the free enzyme 
concentrations. In ordered distributive DSP (with separate kinase separate phosphatase), K1Total = P2Total 
and K2Total = P1Total is required for exact case 1 symmetry to be present. We use this information to get a 
further simplified expression describing all possible steady states of the system. By subsequently 
analyzing the steady state of the system using the conservation conditions, we show that a steady state 
violating case 1 symmetry between [A] and [App] is not possible in this network for any choice of kinetics
or total enzyme concentrations, thus ruling out symmetry breaking. 

We initialize the maple file with the restart command and load the relevant libraries of inbuilt 
Maple functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with LinearAlgebra :  with VectorCalculus :  with Student LinearAlgebra :

The system is modelled as a set of ODEs using the kinetic nomenclature described in the main text 
and supplementary figure (refer to Appendix 2 figure 10). Here dA represents d[A]/dt and 
similarly in the case of the other variables. At steady state thus, each of the right hand sides of 
these expressions will be equal to zero. 

dA k4 ApP1  kub1 AK1  kb1 A K1 :
dAp k1 AK1  k3 AppP2 kub2 ApK2 kub4 ApP1  kb2 Ap K2 kb4 Ap P1 :
dApp  k2 ApK2  kub3 AppP2  kb3 App P2 :

dAK1 kb1 A K1  kub1 k1 AK1 :
dApK2 kb2 Ap K2  kub2 k2 ApK2 : 
dAppP2 kb3 App P2  kub3 k3 AppP2 :  
dApP1 kb4 Ap P1  kub4 k4 ApP1 :

dK1 kb1 A K1  kub1 k1 AK1 :
dK2 kb2 Ap K2  kub2 k2 ApK2 :
dP2 kb3 App P2  kub3 k3 AppP2 :
dP1 kb4 Ap P1  kub4 k4 ApP1 :

The model is also associated with conservation conditions which are described below. Here we 
store the conservation expressions as ACon, P1Con, P2Con, K1Con and K2Con for the substrate 
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and the respective enzymes. Each of these expressions is always equal to zero (both in the transient
behavior and at steady state).

ACon ATotal  A Ap App AK1 ApK2 AppP2 ApP1 :
P1Con P1Total  P1 ApP1 :
K1Con K1Total  K1 AK1 :
P2Con P2Total  P2 AppP2 :
K2Con K2Total  K2 ApK2 :

Kinetic constraints for case 1 symmetry (refer main text) are imposed on the original model. 

k3 k1 : kub3 kub1 : kb3 kb1 :
k4 k2 : kub4 kub2 : kb4 kb2 :

In addition to the kinetic constraints the total enzyme concentrations of corresponding kinases 
and phosphatases also need to be equal for exact case 1 symmetry to be present. This is imposed 
as shown below. 

K1Total P2Total :
K2Total P1Total :

At this stage we introduce auxiliary constants c1 and c2 in place of the binding constants so as to 
make further analytical expressions more accessible. 

kb1 c1 k1 kub1 :
kb2 c2 k2 kub2 :

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In 
this context we want to solve all variables in terms of the concentrations of the free enzymes ([K1], 
[K2], [P1] and [P2]) and concentration of the partially modified substrate ([Ap]). In order to do 
this, we use the Maple command solve, which solves the equation supplied for a given variable. We
first solve for the individual complexes using their corresponding differential equation. An 
example of this (using [AK1]) is given below in detail. 
The differential equation of [AK1] is given by, 

d AK1
dt

= dAK1     
d AK1
dt

= c1 kub1 k1  A K1 kub1 k1  AK1

The solve command by Maple, solves this equation for the given variable (in this case [AK1]). We 
in turn store this value (the solution returned by the solve command) in [AK1]. This is performed 
by the following command. 

AK1 solve dAK1, AK1
AK1 K1 A c1



This operation is repeated for the other complexes and substrate forms as well. 

ApK2 solve dApK2, ApK2 : 
AppP2 solve dAppP2, AppP2 : 
ApP1 solve dApP1, ApP1 :

A solve dA, A : 
App solve dApp, App :

Doing this results in the following correlations between the concentrations of the various substrate
forms at steady state.

A = 
P1 Ap c2 k2
c1 K1 k1

App  = 
K2 Ap c2 k2
P2 c1 k1

Proof for infeasibility of symmetry breaking

We know that P1Con, K1Con, P2Con and K2Con are all individually equal to zero always. 
Thus at a given steady state, [K2Con - P1Con] and [K1Con - P2Con] must also be equal to 
zero. We thus introduce terms T = (K2Con - P1Con) = 0 and Q = (K1Con - P2Con) = 0.

T K2Con P1Con = 0 :
Q K1Con P2Con = 0 :   

Simplifying T = [K2Con - P1Con] using the simplify command, we get the following expression.

simplify T   K2 P1  Ap c2 1 = 0

Since all kinetic constants and concentrations of variables are positive, in order for T to be 
equal to zero, [K2] is necessarily equal to [P1]. Using this information and simplifying Q = 
[K1Con - P2Con] = 0 we get the following expression. 

K2 P1 :
simplify Q  K1 P2 = 0

Thus [K1] is equal to [P2] at any given steady state. Using this information, the earlier 
expression for [A] and [App] reduces to the following. 

K1 P2 : 

A = 
P1 Ap c2 k2
c1 P2 k1



App  = 
P1 Ap c2 k2
c1 P2 k1

Thus we can see that irrespective of enzyme concentrations and kinetic parameters, [A] is 
always equal to [App]. i.e. There is no possibility of an asymmetric branch in this model 
implying infeasibility of symmetry breaking. 



Triple Site Ordered Distributive Phosphorylation : Common 
Kinase Common Phosphatase

Case 1 symmetry - Present and Breaks
In this Maple file we analytically show the presence of symmetry breaking in ordered distributive TSP 
network with common kinase and common phosphatase effecting phosphorylation and dephoshorylation 
respectively. We do this by first describing the model as a system of ODEs and imposing the kinetic 
constraints pertaining to case 1 symmetry. We further describe the substrate and enzyme conservations 
associated with the model. By solving for the steady state of the system of ODEs we obtain relations 
between substrate variables (concentrations) in terms of each other and the free enzyme concentrations. In 
ordered distributive TSP (with common kinase common phosphatase), KTotal = PTotal is required for exact
case 1 symmetry to be present. We use this information to get a further simplified expression describing all
possible steady states of the system. With case 1 symmetry in the ordered distributive MSP, the free 
enzyme kinase and phosphatase share a strict symmetry in the symmetric steady state ([K] = [P]). Thus by 
isolating steady states not of this type from the earlier correlation, we ascertain the features of the 
asymmetric state emerging from symmetry breaking. This procedure is carried out in detail below using 
built in Maple commands.

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt 
Maple functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with LinearAlgebra :  with VectorCalculus :  with Student LinearAlgebra :

The ordered distributive TSP system is modelled as a set of ODEs using the kinetic nomenclature 
described in the main text and supplementary figure (refer to Appendix 2 figure 10). Here dA 
represents d[A]/dt and similarly for other expressions. At steady state thus, each of the right hand 
sides of these expressions will be equal to zero. 

dA  kub1 AK  k6 ApP  kb1 A K : 
dAp  k1 AK  k5 AppP  kub2 ApK  kub6 ApP  kb6 Ap P  kb2 Ap K :
dApp  k2 ApK  k4 ApppP  kub3 AppK  kub5 AppP  kb3 App K  kb5 App P :
dAppp  k3 AppK  kub4 ApppP  kb4 Appp P :

dAK  kb1 A K  kub1 k1 AK : 
dApK  kb2 Ap K  kub2 k2 ApK :
dAppK kb3 App K  kub3 k3 AppK :
dApppP  kb4 Appp P  kub4 k4 ApppP :
dAppP  kb5 App P kub5 k5 AppP :
dApP  kb6 Ap P kub6 k6 ApP :

dK  kb1 A K  kb2 Ap K  kb3 App K  kub1 k1 AK  kub2 k2 ApK  kub3 k3
AppK :

dP  kb4 Appp P  kb5 App P kb6 Ap P  kub4 k4 ApppP  kub5 k5 AppP kub6



k6 ApP :

The above equations are also associated with conservation conditions which are described below. 
Here we store the conservation expressions as ACon, PCon and KCon for the substrate and the 
respective enzymes. Each of these expressions is always equal to zero (both in the transient 
behavior and at steady state).

ACon ATotal A Ap App Appp AK ApP AppP ApppP ApK AppK :
KCon KTotal K AK ApK AppK :
PCon PTotal P ApP AppP ApppP :

Kinetic constraints for case 1 symmetry (refer main text) are imposed on the original model. 

k4 k1 : kub4 kub1 : kb4 kb1 :
k5 k2 : kub5 kub2 : kb5 kb2 :
k6 k3 : kub6 kub3 : kb6 kb3 :

In addition to the kinetic constraints the total enzyme concentrations of kinase and phosphatase 
need to be equal for exact case 1 symmetry to be present. This is imposed as shown below. 

KTotal PTotal :

At this stage we introduce auxiliary constants c1, c2 and c3 in place of the binding constants so as 
to make further analytical expressions more accessible. 

kb1 c1 k1 kub1 :
kb2 c2 k2 kub2 :
kb3 c3 k3 kub3 :

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In 
this context we want to solve all variables in terms of the concentrations of the free enzymes ([K] &
[P]) and the concentration of the partially modified substrate ([Ap]). In order to do this, we use 
the Maple command solve, which solves the equation supplied for a given variable. We first solve 
for the individual complexes using their corresponding differential equation. An example of this 
(using [AK]) is given below in detail. 

The differential equation of [AK] is given by, 

d AK
dt

= dAK     
d AK
dt

= c1 kub1 k1  A K kub1 k1  AK

The solve command by Maple, solves this equation for the given variable (in this case [AK]). We in
turn store this value (the solution returned by the solve command) in [AK]. This is performed by 
the following command. 
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AK solve dAK, AK

AK K A c1

This operation is repeated for the other complexes and substrate forms as well. Here we 
simultaneously solve expressions for the substrate forms using the solve command as shown 
below. The solution is stored in a variable labelled Sol, and then the respective solutions of the 
substrate concentrations are extracted from this vector using the eval command. 

ApK  solve dApK, ApK :
AppK solve dAppK, AppK :
ApP  solve dApP, ApP :
AppP  solve dAppP, AppP :
ApppP solve dApppP, ApppP : 

Sol solve dA, dAppp, dApp , A, Appp, App :

A eval A, Sol :
Ap eval Ap, Sol :
App eval App, Sol :
Appp eval Appp, Sol :

Doing this results in the following correlations between the concentrations of the various substrate
forms at steady state.

A = 
P Ap c3 k3
K c1 k1

Ap  = Ap

App  = 
Ap K
P

Appp  = 
Ap K2 c3 k3
P2 c1 k1

Proof for invariant in the asymmetric branches

We know that PCon and KCon are both individually equal to zero always. Thus at a given 
steady state, PCon - KCon must also be equal to zero. 

Here we introduce the term T = (KCon - PCon) = 0 and also introduce a new ratio,  = [K]/[P]. 
Note: As discussed in the main text, the symmetric steady state is one where [K] = [P] or  = 1. 
Since we are isolating solutions of asymmetry, we are primarily interested in solutions that 
permit,  ≠ 1. 

T KCon  PCon = 0 :
K P :
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The following command (simplify), simplifies the expression T algebraically as shown below

simplify T  = 
Ap 1  k1 k3  c3 k1  P 1

k1
= 0  

From this we can ascertain that, should an asymmetric steady state exist (where  ≠ 1) - the 
expression Ap 1  k1 k3  c3 k1  needs to be zero. This term is an expression involving 
of the concentrations of the partial substrate form,  and kinetic constants. Thus solving this to
isolate the partial substrate form in terms of the kinetic parameters and , we get the following. 
Here we use the solve command from Maple to solve T for [Ap]. 

Ap  solve T, Ap  = 
k1

 k1  k3 k1 k3  c3
 

Using this information, we evaluate [App] from the correlations obtained earlier

App  = 
k1 

 k1  k3 k1 k3  c3

We can see a pattern here. Adding [Ap] and [App] we get, 

simplify Ap  App   
k1

c3 k1 k3
 
Thus we can see that in an asymmetric steady state, the sum of the partially modified 
substrates is fixed and is given by the above expression involving only a few key kinetic 
parameters. 

Necessary conditions
Since substrate concentrations are always positive, the expression in equation 1.1 should be 
positive. This gives us the necessary condition for an asymmetric state to exist as follows. 

1.  k3 k1

Sufficiency of necessary conditions

In this section of the proof we show the necessary conditions shown above are also sufficient 
for an asymmetric steady state to exist for some positive ATotal value. i.e. We show that upon a 
bifurcation along ATotal we are bound to encounter symmetry breaking provided the necessary 
conditions are satisfied. Note that a feasible steady state in this context is one in which the 
concentrations of all substrates, complexes and enzymes are positive.
  



We do this by showing that the asymmetric states defined by the invariant concentration of 
[Ap] and [App] described above is indeed a feasible solution for the system of ODEs at some 
positive ATotal value. 

In an asymmetric steady state, as seen above the concentration of [Ap] and [App] are fixed by 
a few kinetic constants, 

Ap simplify
k1

 k1  k3 k1 k3  c3
 = 

k1
1  k1 k3  c3

App simplify
k1 

 k1  k3 k1 k3  c3
 = 

k1 

1  k1 k3  c3

The other variables in this asymmetric state are thus given by (we obtain this by using the 
correlation obtained earlier between the different concentrations) 

A = 
k3

1  k1 k3   c1

Appp  = 
2 k3

1  k1 k3  c1

AK  = 
P k3

1  k1 k3
 

ApK  = 
 P k1 c2

1  k1 k3  c3

AppK  = 
2 P k1

1  k1 k3

ApppP = 
P 2 k3
1  k1 k3

AppP = 
 P k1 c2

1  k1 k3  c3

ApP = 
P k1

1  k1 k3

The system of ODE is also satisfied at this point, as is verified below. 

simplify dA  = 0
simplify dAp  = 0
simplify dApp  = 0
simplify dAppp  = 0
simplify dAK  = 0
simplify dApK  = 0
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simplify dAppK  = 0
simplify dApppP  = 0
simplify dAppP  = 0
simplify dApP  = 0
simplify dK  = 0
simplify dP  = 0

Hence all that remains to be shown is that the variables (as described above) are positive for 
some value of ATotal. 
This is true if and only if
      1. Necessary condition (k3 k1  is satisfied 
      2. P and  are positive. 

Now by using the total conservation of phosphatase in the system (PCon = 0), we obtain an 
algebraic expression for [P] in terms of PTotal, kinetic constants and  as shown below. The 
Maple command solve is used for this purpose as shown below.

P simplify solve PCon, P

P
PTotal 1  k1 k3  c3

2 k3 c3 k1 k3  c3 c2 k1  c3 k3

Hence if  is positive P is automatically positive (provided necessary conditions are satisfied).

Thus this means that for every positive value of   ≠ 1, all concentrations are positive and the 
conservation of kinase and phosphatase is also satisfied. 

Since the concentrations are all positive, there exists a unique ATotal value for every 
 (permitting asymmetric states). 

Hence we have proved that symmetry breaking is guaranteed for some finite positive ATotal, 
provided the necessary conditions above are satisfied - making those conditions sufficient for 
the behavior. 

Prediction of pitchfork bifurcation along ATotal

Here we predict the value of ATotal at which symmetry breaking occurs via a pitch fork 
bifurcation. This point in the bifurcation is characterized by the intersection of both the 
symmetric steady state branch and the asymmetric steady state branches.

Hence at the position of symmetry breaking, we know two insights.

1. The system is still symmetric, hence [A] = [Appp], [Ap] = [App] and [K] = [P]. 
2. The invariant describing the asymmetric steady state is also true. 
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Using these two information, we can simplify the original system considerably as follows.

K P : 1 :  

Ap
k1

1  k1 k3  c3
: 

App
k1 

1  k1 k3  c3
:

Now, by solving the conservation expression for the substrate we can isolate the value of ATotal
when the asymmetric steady states and the symmetric steady state intersect (indicating the 
pitchfork bifurcation point) 

ATotal = collect solve ACon, ATotal , PTotal

ATotal =
2 c1 c2 c3 k1

2 2 c1 c2 c3 k1 k3 2 c1 c3
2 k1

2 2 c1 c3
2 k3

2  PTotal
k1 k3  c1 c3 c2 k1 k1 c3 3 c3 k3

c1 c2 k1
2 c1 c3 k1

2 3 c1 c3 k1 k3 c2 c3 k1 k3 c3
2 k1 k3 3 c3

2 k3
2

k1 k3  c1 c3 c2 k1 k1 c3 3 c3 k3
A cross verification of this analytical work is carried out in the read me file for the parameters 
used in generating the figure (Appendix 2 figure 8). 



Random DSP System 1 : Common Kinase Common Phosphatase

Case 1 Case 2 Case 3
Present and Breaks 
Invariant identified

Present and Can't Break Present and Breaks
Invariant Identified

In this Maple file we analytically show the presence of case 1 and case 3 symmetry breaking in Random 
DSP network with common kinase and common phosphatase (System 1) effecting phosphorylation and 
dephoshorylation respectively. We also show the infeasibility of case 2 symmetry breaking in this 
network. 

In each case, we do this by first describing the model as a system of ODEs along with the associated 
substrate and enzyme conservations. We then impose the kinetic constraints (and constraints on total 
enzyme concentrations) pertaining to the specific case of symmetry. By algebraically solving for the steady
state of the resulting system of ODEs we obtain relations between concentrations of the substrate variables
in terms of each other and the free enzyme concentrations. After this, we identify key symmetric pairings 
that represent the symmetric steady state. i.e. In Random System 1, case 1 symmetry requires symmetry 
between [K] & [P] and [A00] & [A11]; case 2 symmetry breaking requires symmetry between [A01] & 
[A10]; case 3 symmetry breaking requires symmetry between [K] & [P], [A01] & [A10] and [A00] & 
[A11]. In each case by leveraging this insight and isolating steady states not of this type, we ascertain the 
features of the asymmetric state emerging through symmetry breaking. In a similar way we show the 
infeasibility of case 2 symmetry breaking by revealing that [A01] and [A10] are always equal for any 
given feasible steady state. These procedures are carried out in detail below using built in Maple 
commands. 

Note: A subscript is used to distinguish between the two different complexes formed between [K] and  
[A00] ([A00K1  and A00K2 ]). Similarly a subscript is used to distinguish between the two distinct 
complexes formed between [P] and [A11]  ([A11P1  and A11P2 ]). 

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt 
Maple functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with LinearAlgebra :  with VectorCalculus :  with Student LinearAlgebra :

The system is modelled as a set of ODEs using the kinetic nomenclature described in the main text 
and supplementary figure (refer to Appendix 2 figure 10). Here dA00 represents d[A00]/dt and 
similarly for other expressions. At steady state thus, each of the right hand sides of these 
expressions will be equal to zero. 

dA00  k4 A01P a4 A10P  kub1 A00K1  aub1 A00K2  kb1 A00 K  ab1 A00 K :
dA01  k1 A00K1 k3 A11P1 kub2 A01K  kub4 A01P  kb2 A01 K  kb4 A01 P : 
dA10 a1 A00K2  a3 A11P2 aub2 A10K  aub4 A10P  ab2 A10 K  ab4 A10 P :
dA11  k2 A01K  a2 A10K  kub3 A11P1  aub3 A11P2  kb3 A11 P  ab3 A11 P :
 
dA00K1  kb1 A00 K  k1 kub1 A00K1 :



dA01K  kb2 A01 K  k2 kub2 A01K :
dA00K2  ab1 A00 K  aub1 a1 A00K2 :
dA10K  ab2 A10 K  aub2 a2 A10K : 
dA11P1 kb3 A11 P  kub3 k3 A11P1 :
dA01P kb4 A01 P  kub4 k4 A01P :
dA11P2 ab3 A11 P  aub3 a3 A11P2 :
dA10P  ab4 A10 P  aub4 a4 A10P :

dK kb1 A00 K  k1 kub1 A00K1 ab1 A00 K aub1 a1 A00K2 kb2 A01 K  k2
kub2 A01K ab2 A10 K  aub2 a2 A10K :

dP kb3 A11 P  kub3 k3 A11P1 ab3 A11 P  aub3 a3 A11P2 kb4 A01 P  kub4
k4 A01P ab4 A10 P  aub4 a4 A10P :

The above equations are also associated with conservation conditions which are described below. 
Here we store the conservation expressions as ACon, PCon and KCon for the substrate and the 
respective enzymes. Each of these expressions is always equal to zero (both in the transient 
behavior and at steady state).

ACon  ATotal  A00 A10 A01 A11 A00K1  A01K  A00K2  A10K  A11P1  A10P
 A11P2  A01P :

KCon KTotal K A00K1 A10K  A00K2  A01K :  
PCon  PTotal P A11P1 A10P A11P2 A01P :

Until now we have modelled the System 1 Random DSP network with common kinase effecting 
phosphorylation and a common phosphatase for dephosphorylation - without any impositions on 
kinetics or total concentrations of enzymes. In the following segments, we specifically do this for 
each class of symmetry. The codes for each symmetry are modular and in order to run a particular
symmetry, please run the code until this point and then run only the code for the specific class of 
symmetry. 
Note: Do not run the whole script at the same time, as this will impose all symmetries at the same 
time and give incorrect results. 

Case 1 Symmetry : Present and Breaks

Kinetic constraints for case 1 symmetry (refer main text) are imposed on the original model. 

k3 k1 : kb3 kb1 : kub3 kub1 : 
k4 k2 : kb4 kb2 : kub4 kub2 :

a3 a1 :  ab3 ab1 : aub3 aub1 :
a4 a2 : ab4 ab2 : aub4 aub2 :   
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In addition to the kinetic constraints the total enzyme concentrations of kinase and 
phosphatase need to be equal for exact case 1 symmetry to be present. This is imposed as 
shown below. 

KTotal PTotal : 

At this stage we introduce auxiliary constants c1, c2, d1 and d2 in place of the binding constants
so as to make further analytical expressions more accessible. 

kb1 c1 k1 kub1 : 
kb2 c2 k2 kub2 : 

ab1 d1 a1 aub1 : 
ab2 d2 a2 aub2 :   

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In 
this context we want to solve all variables in terms of the concentrations of the free enzymes (
[K] & [P]) and concentration of the partially modified substrate ([A10]). In order to do this, we 
use the Maple command solve, which solves the equation supplied for a given variable. We first 
solve for the individual complexes using their corresponding differential equation. An example 
of this (using [A00K1]) is given below in detail. 

The differential equation of [A00K1] is given by, 

d A00K1

dt
= dA00K1    

d A00K1
dt

= c1 k1 kub1  A00 K k1 kub1  A00K1

The solve command by Maple, solves this equation for the given variable (in this case [A00K1]).
We in turn store this value (the solution returned by the solve command) in [A00K1]. This is 
performed by the following command. 

A00K1 solve dA00K1, A00K1

A00K1 K A00 c1

This operation is performed for the other complexes and substrate forms as well. Here we 
simultaneously solve expressions for the substrate forms using the solve command as shown 
below. The solution is stored in a variable labelled Sol, and then the respective solutions are 
extracted from this vector using the eval command. 

A10K solve dA10K, A10K :
A00K2 solve dA00K2, A00K2 :
A01K solve dA01K, A01K :
A11P1 solve dA11P1, A11P1 :



A11P2 solve dA11P2, A11P2 :
A01P solve dA01P, A01P : 
A10P solve dA10P, A10P :

Sol solve dA00, dA01, dA11 , A00, A01, A11 :

A00 eval A00, Sol : 
A01 eval A01, Sol :
A11 eval A11, Sol : 

Doing this results in the following correlations between the concentrations of the various 
substrate forms at steady state.

A00  = 
A10 d2 a2 P

a1 d1 K
 

A01  = 
A10 d2 a2 c1 k1
a1 d1 c2 k2

A10  = A10

A11  = 
K A10 d2 a2
P a1 d1

Proof for invariant in the asymmetric branches

We know that PCon and KCon are both individually equal to zero always. Thus at a given 
steady state, PCon - KCon must also be equal to zero. 

We thus introduce the term T = (KCon - PCon) = 0 and also introduce a new ratio,  = [K]/
[P]. Note: As discussed in the main text, the symmetric steady state is one where [K] = [P] or

 = 1. Since we are isolating solutions of asymmetry, we are primarily interested in solutions 
that permit,  ≠ 1. 

T KCon  PCon = 0 :
K P :

The following command (simplify), simplifies the expression 

simplify T  = 
1  a1 a2  d1 a2 c1  A10 d2 a1 d1  k2 A10 a2 c1 d2 k1  P

a1 d1 k2
= 0   

From this we can ascertain that, should an asymmetric steady state exist (where  ≠ 1) - the 
term ( A10 k1 k2  c1 d1 k2  c2 c1 k1  p2 A10 c2 d1 k2 p1 ) in the expression needs 
to be zero. We note that this term is a expression in the partial substrate form and kinetic 
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constants. Thus solving this to isolate the partial substrate form we get the following. Here 
we use the solve command from Maple to solve T for [A10] as shown below. 

A10 simplify solve T, A10

A10
a1 d1 k2

d2 c1 d1  a2 a1 d1  k2 a2 c1 k1

We can thus see that in an asymmetric state [A10] is always a constant given by only a few 
key kinetic parameters. Using this expression back in the relation between [A01]  we 
ascertain that [A01] is also fixed at a constant concentration at an asymmetric state. 

A01 simplify A01

A01
a2 c1 k1

k1 k2  c1 d1 k2  a2 a1 d1 k2  c2

Thus we can see that in an asymmetric steady state, the value of the partially modified 
substrates ([A01] and [A10]) is fixed and is given by the above expressions involving only a 
few key kinetic parameters. 

Necessary Conditions

Since substrate concentration are always necessarily positive, the expression in equation 
1.1.1 and 1.1.2 should be positive. The numerator is only a function of kinetic parameters 
which are always positive, thus the denominator must necessarily be negative to ensure that 
the resulting concentration is positive. This gives us the necessary condition for the 
asymmetric state to exist as follows. 

1.  c1 a2 k2 k1   d1k2 a2 a1 0

Sufficiency of necessary conditions

In this section of the proof we show the necessary conditions shown above are also sufficient
for an asymmetric steady state to exist for some positive ATotal value. or upon a bifurcation 
along ATotal we are bound to encounter symmetry breaking provided the necessary 
conditions are satisfied. Note that in the context of this system, a feasible steady state is one 
in which the concentrations of all substrates, complexes and enzymes are positive.
  
We do this by showing that an asymmetric state defined by the invariant concentrations 
described above indeed is a solution for the system of ODEs at some positive ATotal value. 

In an asymmetric steady state, as seen above [A01] and [A10] are fixed by a few kinetic 
constants, 



A10 expand
a1 d1 k2

d2 c1 d1  a2 a1 d1  k2 a2 c1 k1
 = 

a1 d1 k2
a1 d1 k2 a2 c1 k1 a2 c1 k2 a2 d1 k2  d2

         

A01 expand
a2 c1 k1

c2 k1 k2  c1 d1 k2  a2 a1 d1 k2
 = 

a2 c1 k1
a1 d1 k2 a2 c1 k1 a2 c1 k2 a2 d1 k2  c2

        

The other variables in this asymmetric state are thus given by 

expand A00  = 
k2 a2

a1 d1 k2 a2 c1 k1 a2 c1 k2 a2 d1 k2  

expand A11  = 
 k2 a2

a1 d1 k2 a2 c1 k1 a2 c1 k2 a2 d1 k2
 

expand A00K1  = 
P k2 a2 c1

a1 d1 k2 a2 c1 k1 a2 c1 k2 a2 d1 k2

expand A00K2  = 
P k2 a2 d1

a1 d1 k2 a2 c1 k1 a2 c1 k2 a2 d1 k2

expand A01K  = 
 P a2 c1 k1

a1 d1 k2 a2 c1 k1 a2 c1 k2 a2 d1 k2

expand A10K  = 
 P a1 d1 k2

a1 d1 k2 a2 c1 k1 a2 c1 k2 a2 d1 k2

expand A11P1  = 
P  k2 a2 c1

a1 d1 k2 a2 c1 k1 a2 c1 k2 a2 d1 k2

expand A11P2  = 
P  k2 a2 d1

a1 d1 k2 a2 c1 k1 a2 c1 k2 a2 d1 k2

expand A01P  = 
P a2 c1 k1

a1 d1 k2 a2 c1 k1 a2 c1 k2 a2 d1 k2

expand A10P  = 
P a1 d1 k2

a1 d1 k2 a2 c1 k1 a2 c1 k2 a2 d1 k2

The system of ODE is also satisfied at this point, as is verified below. 

simplify dA00  = 0
simplify dA11  = 0
simplify dA01  = 0



(1.3.1)(1.3.1)

(1.3.2)(1.3.2)

simplify dA10  = 0
simplify dA00K1  = 0
simplify dA00K2  = 0
simplify dA01P  = 0
simplify dA10P  = 0
simplify dA01K  = 0
simplify dA10K  = 0
simplify dA11P1  = 0
simplify dA11P2  = 0
simplify dP  = 0
simplify dK  = 0

Hence all that remains to be shown is that the variables (as described above) are positive for 
some value of ATotal. 
This is true if and only if
      1. Necessary condition is satisfied 
      2. P and  are positive. 

Now by using the total conservation of phosphatase in the system (PCon = 0), we obtain an 
algebraic expression for [P] in terms of PTotal, kinetic constants and  as shown below. The 
Maple command solve is used for this purpose as shown below.

P expand solve PCon, P

P
PTotal a1 d1

a2 c1 d1 c1 d1

PTotal c1 k1
k2 c1 d1 c1 d1

PTotal c1
c1 d1 c1 d1

PTotal d1
c1 d1 c1 d1

simplify P
k1 k2  c1 d1 k2  a2 a1 d1 k2  PTotal

a2 k2 1  c1 d1

Hence if  is positive P is automatically positive (provided necessary conditions are satisfied)
. Hence we have shown that the individual conservation equations for the enzymes (KCon 
and PCon) and the system of ODEs is solved by the expressions above, and represent 
feasible solutions provided  is positive. 

Since the concentrations are all positive there exists a unique ATotal value for every 
 (permitting asymmetric states). 

Hence we have proved that symmetry breaking is guaranteed for some finite positive ATotal, 
provided the necessary conditions above are satisfied - making those conditions sufficient 
for the behavior. 



(1.4.1)(1.4.1)

Prediction of pitchfork bifurcation along ATotal

Here we predict the value of ATotal at which symmetry breaking occurs via a pitch fork 
bifurcation. This point in the bifurcation is characterized by the intersection of both the 
symmetric steady state branch and the asymmetric steady state branches.

Hence at the position of symmetry breaking, we know two insights.

1. The system is still symmetric, hence [A00] = [A11] and [K] = [P]. 
2. The invariant describing the asymmetric steady state is also true. 

Using these two information, we can simplify the original system considerably as follows.

K P : 1 : 

A10
a1 d1 k2

d2 c1 d1  a2 a1 d1  k2 a2 c1 k1
: 

 
Now, by solving the conservation expression for the substrate we can isolate the value of 
ATotal when the asymmetric steady states and the symmetric steady state intersect 
(indicating the pitchfork bifurcation point). 

ATotal = simplify solve ACon, ATotal

ATotal = d2 c2 c1 d1  PTotal c1 PTotal d1 2  k2
2 c1 k1 c1 d1  k2

c1
2 c2 k1

2 PTotal  a2
2 2 d1 

c1
2

d1
2

 k2 c1 d2 k1 PTotal  c2 k2 a1 a2

a1
2 c2 d1

2 d2 k2
2 PTotal c1 d1  a2 c2 c1 d1  k2 c1 k1  a2

a1 d1 k2  d2 k2
 
A cross verification of this analytical work is carried out in the read me file for the 
parameters used in generating the figures (Fig 2B). 



(2.1)(2.1)

(2.2)(2.2)

Case 2 Symmetry : Present and Can't Break

Kinetic constraints for case 2 symmetry (refer main text) are imposed on the original model. 

a1 k1 : ab1 kb1 : aub1 kub1 :
a2 k2 : ab2 kb2 : aub2 kub2 :
a3 k3 : ab3 kb3 : aub3 kub3 :
a4 k4 : ab4 kb4 : aub4 kub4 :

There are no constraints on the total enzyme concentrations for case 2 symmetry to be present. 
At this stage we introduce auxiliary constants c1, c2, c3 and c4 in place of the binding constants 
so as to make further analytical expressions more accessible. 

kb1 c1 k1 kub1 : 
kb2 c2 k2 kub2 : 
kb3 c3 k3 kub3 : 
kb4 c4 k4 kub4 :

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In 
this context we want to solve all variables in terms of the concentrations of the free enzymes (
[K] & [P]) and concentration of the completely unmodified substrate ([A00]). In order to do 
this, we use the Maple command solve, which solves the equation supplied for a given variable. 
We first solve for the individual complexes using their corresponding differential equation. An 
example of this (using [A00K1]) is given below in detail. 

The differential equation of [A00K1] is given by, 

d A00K1

dt
= dA00K1     

d A00K1
dt

= c1 k1 kub1  A00 K k1 kub1  A00K1

The solve command by Maple, solves this equation for the given variable (in this case [A00K1]).
We in turn store this value (the solution returned by the solve command) in [A00K1]. This is 
performed by the following command. 

A00K1 solve dA00K1, A00K1

A00K1 K A00 c1

This operation is performed for the other complexes and substrate forms as well. Here we 



simultaneously solve expressions for the substrate forms using the solve command as shown 
below. The solution is stored in a variable labelled Sol, and then the respective solutions are 
extracted from this vector using the eval command. 

A10K solve dA10K, A10K :
A00K2 solve dA00K2, A00K2 :
A01K solve dA01K, A01K :
A11P1 solve dA11P1, A11P1 :
A11P2 solve dA11P2, A11P2 :
A01P solve dA01P, A01P : 
A10P solve dA10P, A10P :

Sol solve dA10, dA01, dA11 , A10, A01, A11 :

A10 eval A10, Sol : 
A01 eval A01, Sol :
A11 eval A11, Sol : 

Doing this results in the following correlations between the concentrations of the various 
substrate forms at steady state.

A00  = A00

A01  = 
K A00 c1 k1
c4 k4 P

A10  = 
K A00 c1 k1
c4 k4 P

A11  = 
A00 K2 c1 c2 k1 k2
c4 k4 P

2 c3 k3

Proof for impossibility of symmetry breaking

Thus from this we can clearly see that irrespective of kinetic parameters, the concentration 
of [A01] is always going to be equal to the concentration of [A10]. Thus there is no scope for 
any asymmetric steady state or case 2 symmetry breaking. 

A01  = 
K A00 c1 k1
c4 k4 P

A10  = 
K A00 c1 k1
c4 k4 P



(3.1)(3.1)

Case 3 Symmetry : Present and Breaks

Kinetic constraints for case 3 symmetry to be seen (refer main text) are imposed on the original 
model. 

a3 k1 : ab3 kb1 : aub3 kub1 :
a4 k2 : ab4 kb2 : aub4 kub2 :
a1 k3 : ab1 kb3 :  aub1 kub3 :
a2 k4 : ab2 kb4 : aub2 kub4 :

In addition to the kinetic constraints the total enzyme concentrations of kinase and 
phosphatase also need to be equal for exact case 3 symmetry to be present. This is imposed as 
shown below. 

KTotal PTotal :

At this stage we introduce auxiliary constants c1, c2, c3 and c4 in place of the binding constants 
so as to make further analytical expressions more accessible. 

kb1 c1 k1 kub1 : 
kb2 c2 k2 kub2 :
kb3 c3 k3 kub3 : 
kb4 c4 k4 kub4 : 

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In 
this context we want to solve all variables in terms of the concentrations of the free enzymes (
[K] & [P]) and concentration of the fully modified substrate ([A11]). In order to do this, we use 
the Maple command solve, which solves the equation supplied for a given variable. We first 
solve for the individual complexes using their corresponding differential equation. An example 
of this (using [A00K1]) is given below in detail. 

The differential equation of [A00K1] is given by, 

d A00K1

dt
= dA00K1     

d A00K1
dt

= c1 k1 kub1  A00 K k1 kub1  A00K1

The solve command by Maple, solves this equation for the given variable (in this case [A00K1]).
We in turn store this value (the solution returned by the solve command) in [A00K1]. This is 
performed by the following command. 



(3.2)(3.2)

(3.5)(3.5)

(3.6)(3.6)

(3.3)(3.3)

(3.4)(3.4)

A00K1 solve dA00K1, A00K1

A00K1 K A00 c1

This operation is performed for the other complexes and substrate forms as well. Here we 
simultaneously solve expressions for the substrate forms using the solve command as shown 
below. The solution is stored in a variable labelled Sol, and then the respective solutions are 
extracted from this vector using the eval command. 

A10K solve dA10K, A10K :
A00K2 solve dA00K2, A00K2 :
A01K solve dA01K, A01K :
A11P1 solve dA11P1, A11P1 :
A11P2 solve dA11P2, A11P2 :
A01P solve dA01P, A01P : 
A10P solve dA10P, A10P :

Sol solve dA00, dA01, dA10, dA11 , A00, A01, A10, A11 :

A00 eval A00, Sol : 
A01 eval A01, Sol :
A10 eval A10, Sol :
A11 eval A11, Sol :

Doing this results in the following correlations between the concentrations of the various 
substrate forms at steady state.

A00  = 
P2 A11 K c1 c2

2 k1 k2
2 K c3 c4

2 k3 k4
2 P c1 c2 c4 k1 k2 k4 P c2 c3 c4 k2 k3 k4

K2 K c1 c2 c4 k1 k2 k4 K c2 c3 c4 k2 k3 k4 P c1 c2
2 k1 k2

2 P c3 c4
2 k3 k4

2

A01  = 
P A11 K c1 c3 c4 k1 k3 k4 K c3

2 c4 k3
2 k4 P c1

2 c2 k1
2 k2 P c1 c2 c3 k1 k2 k3

K K c1 c2 c4 k1 k2 k4 K c2 c3 c4 k2 k3 k4 P c1 c2
2 k1 k2

2 P c3 c4
2 k3 k4

2

A10  = 
P K c1

2 c2 k1
2 k2 K c1 c2 c3 k1 k2 k3 P c1 c3 c4 k1 k3 k4 P c3

2 c4 k3
2 k4  A11

K K c1 c2 c4 k1 k2 k4 K c2 c3 c4 k2 k3 k4 P c1 c2
2 k1 k2

2 P c3 c4
2 k3 k4

2

A11  = 
A11

Proof for invariant in the asymmetric branches



(3.1.3)(3.1.3)

(3.1.2)(3.1.2)

(3.1.1)(3.1.1)

We know that PCon and KCon are both individually equal to zero always. Thus at a given 
steady state, PCon - KCon must also be equal to zero. 

We thus introduce the term T = (KCon - PCon) = 0 and also introduce a new ratio,  = [K]/
[P]. Note: As discussed in the main text, the symmetric steady state is one where [K] = [P] or

 = 1. Since we are isolating solutions of asymmetry, we are primarily interested in solutions 
that permit,  ≠ 1. 

T KCon  PCon = 0 :
K P :

The following command (simplify), simplifies the expression 

simplify T

P 1  c1 c2
2  k1 k2

2 c4 c1 k1 c3 k3  2 A11 c1 c3  A11 c1

c3  k4 A11 c1 k1 1  k2 k4 A11 c3 k3 1  c2 c3 c4
2  k3 k4

2

 c1 c2
2 k1 k2

2 k4  c4 k2 c1 k1 c3 k3  c2 c3 c4
2 k3 k4

2 = 0

From this we can ascertain that, should an asymmetric steady state exist (where  ≠ 1) - the 
term (
c1 c2

2  k1 k2
2 c1 k1 c3 k3  c4 

2 A11 c1 c3  A11 c1 c3  k4
A11 c1 k1 1  k2 k4 A11 c3 k3 1  c2 c3 c4

2  k3 k4
2

) in the expression needs to be equal to zero. We note that this term is a expression in the 
fully modified [A11],  and kinetic constants. Thus solving this to isolate the fully modified 
substrate form we get the following. Here we use the solve command from Maple to solve T 
for [A11] as shown below. 

A11 simplify solve T, A11  = 
 c1 c2

2 k1 k2
2 k4  c4 k2 c1 k1 c3 k3  c2 c3 c4

2 k3 k4
2

c2 c1 k1 c3 k3  c4 c1 c3  k4 c1 k1  k2 c3 k3 k4  1

Substituting it back into the expressions for [A01] and [A10], we get the following 
correlations

simplify A01  = 
c3 c4  k3 k4 c1 c2 k1 k2

c2 c4 c1 c3  k4 c1 k1  k2 c3 k3 k4  1

simplify A10  = 
c1 c2  k1 k2 c3 c4 k3 k4

c2 c4 c1 c3  k4 c1 k1  k2 c3 k3 k4  1



(3.1.4)(3.1.4)

From this we can see that the sum of concentrations of the partially modified substrates (
[A01] and [A10]) are independent of  and are dependent only on a few key kinetic 
parameters. This thus shows that at an asymmetric steady state, the sum of the 
concentrations of the partially modified substrates is fixed at a given value.

simplify A01 A10
c1 c2 k1 k2 c3 c4 k3 k4

c2 c4 c1 c3  k4 c1 k1  k2 c3 k3 k4

Necessary Conditions

Since substrate concentrations are always necessarily positive, the expression in equation 
3.1.1 should be positive. The numerator is only a function of kinetic parameters all of which 
are positive always, thus the denominator must necessarily be positive to ensure that the 
resulting concentration is positive. This gives us the necessary condition for symmetric state 
to exist as follows. 

1.    c3 k4 k2 k3 c1 k2 k1 k4 0

Sufficiency of necessary conditions

In this section of the proof we show the necessary conditions shown above are also sufficient
for an asymmetric steady state to exist for some positive ATotal value. or upon a bifurcation 
along ATotal we are bound to encounter symmetry breaking provided the necessary 
conditions are satisfied. Note that in the context of this system, a feasible steady state is one 
in which the concentrations of all substrates, complexes and enzymes are positive.
  
We do this by showing that an asymmetric state defined by the invariant concentrations 
described above indeed is a solution for the system of ODEs at some positive ATotal value. 

In an symmetric steady state, as seen above [Ap] is fixed by a few kinetic constants, 

A01 simplify
c3 c4  k3 k4 c1 c2 k1 k2

c1 c3  k4 c1 k1  k2 c3 k3 k4  c2 c4 1
 = 

c3 c4  k3 k4 c1 c2 k1 k2
c2 c4 c1 c3  k4 c1 k1  k2 c3 k3 k4  1

 

A10 simplify
c1 c2  k1 k2 c3 c4 k3 k4

c1 c3  k4 c1 k1  k2 c3 k3 k4  c2 c4 1
 = 



c1 c2  k1 k2 c3 c4 k3 k4
c2 c4 c1 c3  k4 c1 k1  k2 c3 k3 k4  1

 = 

The other variables in this asymmetric state are thus given by 

simplify A11  = 
 c1 c2

2 k1 k2
2 k4  c4 k2 c1 k1 c3 k3  c2 c3 c4

2 k3 k4
2

c2 c1 k1 c3 k3  c4 c1 c3  k4 c1 k1  k2 c3 k3 k4  1

simplify A00  = 
c1 c2

2  k1 k2
2 c2 c4 k4 c1 k1 c3 k3  k2 c3 c4

2  k3 k4
2

c2 c1 k1 c3 k3  c4 c1 c3  k4 c1 k1  k2 c3 k3 k4  1  

simplify A00K1  = 
c1 P c2 k1 k2 c2  k2 c4 k4  c1 c3 c4 k3 k4 c4  k4 c2 k2
c1 k1 c3 k3  k2 k1 k4  c1 c3 k4 k2 k3  c2 1  c4

simplify A00K2  = 
c3 P c2 k1 k2 c2  k2 c4 k4  c1 c3 c4 k3 k4 c4  k4 c2 k2
c1 k1 c3 k3  k2 k1 k4  c1 c3 k4 k2 k3  c2 1  c4

simplify A01K  = 
 P c3 c4  k3 k4 c2 k1 k2 c1

c1 c3  k4 c1 k1  k2 c3 k3 k4  1  c4

simplify A10K  = 
 P c1 c2  k1 k2 c3 c4 k3 k4

c1 c3  k4 c1 k1  k2 c3 k3 k4  c2 1

simplify A11P1  = 
c3 P  c4 k3 k4 c2  k2 c4 k4  c3 c2 k1 k2 c1 c4  k4 c2 k2
c1 k1 c3 k3  k2 k1 k4  c1 c3 k4 k2 k3  c2 1  c4

simplify A11P2  = 
c1 P  c4 k3 k4 c2  k2 c4 k4  c3 c2 k1 k2 c1 c4  k4 c2 k2
c1 k1 c3 k3  k2 k1 k4  c1 c3 k4 k2 k3  c2 1  c4

simplify A01P  = 
P c3 c4  k3 k4 c2 k1 k2 c1

c1 c3  k4 c1 k1  k2 c3 k3 k4  c2 1

simplify A10P  = 
P c1 c2  k1 k2 c3 c4 k3 k4

c1 c3  k4 c1 k1  k2 c3 k3 k4  1  c4

The system of ODE is also satisfied at this point, as is verified below. 

simplify dA00  = 0
simplify dA11  = 0
simplify dA01  = 0
simplify dA10  = 0
simplify dA00K1  = 0
simplify dA00K2  = 0
simplify dA01P  = 0
simplify dA10P  = 0
simplify dA01K  = 0
simplify dA10K  = 0
simplify dA11P1  = 0



simplify dA11P2  = 0
simplify dP  = 0
simplify dK  = 0

Hence all that remains to be shown is that the variables (As described above) are positive for
some value of ATotal. 
This is true if and only if
      1. Necessary condition is satisfied 
      2. P and  are positive. 

Now by using the total conservation of phosphatase in the system (PCon = 0), we obtain an 
algebraic expression for [P] in terms of PTotal, kinetic constants and  as shown below. The 
Maple command solve is used for this purpose as shown below.

P simplify solve PCon, P  = 
c2 c1 k1 c3 k3  c4 k2 k1 k4  c1 c3 k4 k2 k3  PTotal 1

c2 c4 k2 k4 c1 c3  c1 k1 c3 k3  2 c2 k2 k1 k2  c2 c4 k1 k4  k1 c1
2

k1 k2 k2 k3  c2
2 c4 k1 k3  k4 k1 k3  k2 k1 k3 k4  c2 c4

2 k3 k4 k1
k4  c3 c1 c4 k2 k3  c2 c4 k3 k4  k4 c3

2 k3  c2 c4 k2 k4 c1
c3  c1 k1 c3 k3

Hence if  is positive P is automatically positive (provided necessary conditions are satisfied)
. Hence we have shown that the individual conservation equations for the enzymes (KCon 
and PCon) and the system of ODEs is solved by the expressions above, and represent 
feasible solutions provided  is positive. 

Since the concentrations are all positive there exists a unique ATotal value for every 
 (permitting asymmetric states). 

Hence we have proved that symmetry breaking is guaranteed for some finite positive ATotal, 
provided the necessary conditions above are satisfied - making those conditions sufficient 
for the behavior. 

Prediction of pitchfork bifurcation along ATotal

Here we predict the value of ATotal at which symmetry breaking occurs via a pitch fork 
bifurcation. This point in the bifurcation is characterized by the intersection of both the 
symmetric steady state branch and the asymmetric steady state branches.

Hence at the position of symmetry breaking, we know two insights.

1. The system is still symmetric. 



(3.4.2)(3.4.2)

(3.4.1)(3.4.1)

2. The invariant describing the asymmetric steady state is also true. 

Using these two information, we can simplify the original system considerably as follows.

1 : 

A11 simplify eval

c1 c2
2 k1 k2

2 k4  c4 k2 c1 k1 c3 k3  c2 c3 c4
2 k3 k4

2  

c1 k1 c3 k3  c1 c3  k4 c1 k1  k2 c3 k3 k4  1  c4 c2
, = 1

A11
c2 k2 k4 c4  c1 c2 k1 k2 c3 c4 k3 k4

2 c2 c1 k1 c3 k3  c4 k2 k1 k4  c1 c3 k4 k2 k3

 
Now, by solving the conservation expression for the substrate we can isolate the value of 
ATotal when the asymmetric steady states and the symmetric steady state intersect 
(indicating the pitchfork bifurcation point). 

ATotal = simplify solve ACon, ATotal

ATotal = 2 c1 c2 k1 k2 c3 c4 k3 k4  
k2

2 k1 k2  c1 c3 k2 k3  c1 k1 c2
3

2

k1 k2 PTotal k1 k4  k1 k2  c1
3 2 k1 k3  k4 k1 k1

k3  k2
2 k1 k1 k3  k4 2 k1

2 k3  k2 k1
2 k3 k4  PTotal c3

k2 k1 k1 4 k4  k2 k4 k1
2

 c1
2 k1 2 k3  k4 k1 k3  k2

2

k1 k3 k3 k4  k2 2 k1 k3
2 k4  PTotal c3

k2
2 4 k1 3 k3  k4 k1 k3

2

 c3 c1 k2
2 PTotal k3

2 PTotal  c3

3 k2
k3
3

 k2
2

 k4 c3
2 k3  c4



(3.4.2)(3.4.2)

c1 k1 c3 k3  k2 k1 k2  c1 c3 k2 k3  c1 k1
2

 c2
2

c4 k1 k2 PTotal k1 k4  k1 k4  c1
3 2 k1

k3
2

 k4
2

k1 k3 k4
2

k1
2 k3  k2

k1 k3 k4 k1 k4
2

 PTotal c3
k1 k2 k4 k1 3 k4

2
 c1

2

k1 2 k3  k4
2 k3 k1 k3  k4 k1 k3

2  k2 k3 k1 k3  k4
2

2 k1 k3
2 k4  PTotal c3

3 k4
2 k1

4 k3
3

 k2
k1 k3

3
2

 c3 c1

PTotal k3 k4  k2 k3  c3
k3
2

2 k4  k2
k4 k3

2
 k4 c3

2 k3  c4

c1 k1 c3 k3
2 k2 k1 3 k4  c1 3 k2

k3
3

 k4 c3
2

 c2

c4
2 c1 k1 c3 k3 k4 c4  k4 k1 k4  c1 c3 k3 k4  c3 k3

2

c2 c1 k1 c3 k3  c4 k2 k1 k2  c1 c3 k2 k3  c1 k1 c2
2 c1 k1

c3 k3  c4 k2 k1 3 k4  c1 3 k2
k3
3

 k4 c3  c2 c4
2 k4 k1 k4  c1

c3 k3 k4  c3 k3  k2 k1 k4  c1 c3 k4 k2 k3

A cross verification of this analytical work is carried out in the read me file for the 
parameters used in generating the figure (Fig 3A). 



Random distributive DSP System 2 : Separate Kinase Common 
Phosphatase

Case 1 Case 2 Case 3
Symmetry Doesn't Exist Present and Can't Break Symmetry Doesn't Exist

In this Maple file we analytically show the infeasibility of case 2 symmetry breaking in Random 
distributive DSP network with separate kinase and common phosphatase (System 2) effecting 
phosphorylation and dephoshorylation respectively.We do this by first describing the model as a system of
ODEs along with the associated enzyme and substrate conservations. We then impose the kinetic 
constraints (and constraints on total enzyme concentrations) pertaining to case 2 symmetry. By 
algebraically solving for the steady state of  the resulting system of ODEs we obtain relations between 
concentrations of the substrate variables in terms of each other and the free enzyme concentrations. After 
this, we identify key symmetric pairings that represent the symmetric steady state. i.e. case 2 symmetry 
breaking requires symmetry between [A01] & [A10];  By leveraging this insight, we show the infeasibility
of case 2 symmetry breaking by revealing that [A01] and [A10] are always equal for any given feasible 
steady state. These procedures are carried out in detail below using built in Maple commands. 

Note: A subscript is used to distinguish between the two different complexes formed between [P] and 
[A11]  ([A11P1  and A11P2 ]). 

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt 
Maple functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with LinearAlgebra :  with VectorCalculus :  with Student LinearAlgebra :

The system is modelled as a set of ODEs using the kinetic nomenclature described in the main text 
and supplementary figure (refer Appendix 2 figure 10). Here dA00 represents d[A00]/dt and 
similarly for other expressions. At steady state thus, each of the right hand sides of these 
expressions will be equal to zero. 

dA00  k4 A01P a4 A10P  kub1 A00K1  aub1 A00K2  kb1 A00 K1  ab1 A00 K2 :
dA01  k1 A00K1 k3 A11P1 kub2 A01K2  kub4 A01P  kb2 A01 K2  kb4 A01 P :
dA10 a1 A00K2  a3 A11P2 aub2 A10K1  aub4 A10P  ab2 A10 K1  ab4 A10 P :
dA11  k2 A01K2  a2 A10K1  kub3 A11P1  aub3 A11P2  kb3 A11 P  ab3 A11 P :
dA00K1     kb1 A00 K1  k1 kub1 A00K1 :
dA10K1     ab2 A10 K1  a2 aub2 A10K1 :
dA00K2     ab1 A00 K2  aub1 a1 A00K2 :
dA01K2     kb2 A01 K2  kub2 k2 A01K2 : 
dA11P1     kb3 A11 P  kub3 A11P1 k3 A11P1 :
dA10P      ab4 A10 P  aub4 a4 A10P :
dA11P2     ab3 A11 P  aub3 a3 A11P2 :
dA01P      kb4 A01 P  kub4 k4 A01P : 



dK1 kb1 A00 K1  k1 kub1 A00K1 ab2 A10 K1 a2 aub2 A10K1 :           
dK2 ab1 A00 K2  aub1 a1 A00K2 kb2 A01 K2 kub2 k2 A01K2 :
dP  kb3 A11 P  kub3 k3 A11P1  ab4 A10 P aub4 a4 A10P ab3 A11 P  aub3

a3 A11P2 kb4 A01 P  kub4 k4 A01P :

The above equations are also associated with conservation conditions which are described below. 
Here we store the conservation expressions as ACon, PCon, K1Con and K2Con for the substrate 
and the respective enzymes. Each of these expressions is always equal to zero (both in the transient
behavior and at steady state).

ACon  ATotal A00 A10 A01 A11 A00K1 A01K2 A00K2 A10K1 A11P1 A10P
A11P2 A01P :

K1Con K1Total K1 A00K1 A10K1 : 
K2Con  K2Total K2 A00K2 A01K2 : 
PCon  PTotal P A11P1 A10P A11P2 A01P :

Case 2 Symmetry : Present and Can't Break

Kinetic constraints for case 2 symmetry (refer main text) are imposed on the original model. 

a1 k1 : ab1 kb1 : aub1 kub1 :
a2 k2 : ab2 kb2 : aub2 kub2 :
a3 k3 : ab3 kb3 : aub3 kub3 :
a4 k4 : ab4 kb4 : aub4 kub4 :

In addition to the kinetic constraints the total enzyme concentrations of the two kinases need to
be equal for exact case 2 symmetry to be present. This is imposed as shown below. 

K1Total KTotal : 
K2Total KTotal :

At this stage we introduce auxiliary constants c1, c2, c3 and c4 in place of the binding constants 
so as to make further analytical expressions more accessible. 

kb1 c1 k1 kub1 : 
kb2 c2 k2 kub2 : 
kb3 c3 k3 kub3 : 
kb4 c4 k4 kub4 :

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In 
this context we want to solve all variables in terms of the concentrations of the free enzymes (
[K1], [K2] & [P]) and concentration of the completely unmodified substrate ([A00]). In order to
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do this, we use the Maple command solve, which algebraically solves the equation supplied for a
given variable. We first solve for the individual complexes using their corresponding differential
equation. An example of this (using [A00K1]) is given below in detail. 

The differential equation of [A00K1] is given by, 

d A00K1
dt

= dA00K1     

d A00K1
dt

= c1 k1 kub1  A00 K1 k1 kub1  A00K1

The solve command by Maple, uses this solves this equation for the given variable (in this case 
[A00K1]). This is performed by the following command. Here we assign [A00K1], the solution 
returned by the solve command. 

A00K1 solve dA00K1, A00K1
A00K1 K1 A00 c1

This operation is performed for the other complexes and substrate forms as well. Here we 
simultaneously solve expressions for the substrate forms using the solve command as shown 
below. The solution is stored in a variable labelled Sol, and then the respective solutions are 
extracted from this vector using the eval command. 

A01K2 solve dA01K2, A01K2 :
A00K2 solve dA00K2, A00K2 :
A10K1 solve dA10K1, A10K1 :
A11P1 solve dA11P1, A11P1 :
A10P solve dA10P, A10P : 
A11P2 solve dA11P2, A11P2 :
A01P solve dA01P, A01P :

Sol solve dA10, dA01, dA11 , A10, A01, A11 :

A10 eval A10, Sol : 
A01 eval A01, Sol :
A11 eval A11, Sol : 

Doing this results in the following correlations between the concentrations of the various 
substrate forms at steady state.

A00  = A00

A01  = 
K1 A00 c1 k1
c4 k4 P

A10  = 
K2 A00 c1 k1
c4 k4 P



A11  = 
A00 K1 K2 c1 c2 k1 k2

c4 k4 P
2 c3 k3

Proof for impossibility of symmetry breaking

We know that K1Con and K2Con are both individually equal to zero always. Thus at a 
given steady state, K1Con - K2Con must also be equal to zero. 

We thus introduce the term T = (K1Con - K2Con) = 0 and also introduce a new ratio,  = 
[K2]/[K1]. Note: As discussed in the main text, the symmetric steady state is one where [K1] 
= [K2] or  = 1. Since we are isolating solutions of asymmetry, we are primarily interested in 
solutions that permit,  ≠ 1. 

T K1Con  K2Con = 0 :
K2 K1 :

The following command (simplify), simplifies the expression algebraically

simplify T  = K1 1  A00 c1 1 = 0

Thus from this we can clearly see that irrespective of kinetic parameters, [K1] is always 
going to be equal to [K2]. This means, from the expressions given above for [A01] and 
[A10], that [A01] is always equal to [A10] irrespective of kinetic parameters or total 
concentrations of enzymes or substrate. Thus there is no scope for any asymmetric steady 
state or case 2 symmetry breaking. 



Random DSP System 3 : Separate Kinase Separate Phosphatase
Case 1 Case 2 Case 3

Present and Breaks
Invariant identified

Present and Breaks
Invariant identified

Present and breaks

In this maple file we analytically show presence of case 1 and case 2 symmetry breaking in Random DSP 
network with separate kinase and separate phosphatase (System 3) effecting phosphorylation and 
dephoshorylation respectively. In each case, we do this by first describing the model as a system of ODEs 
along with the associated enzyme and substrate conservations. By algebraically solving for the steady state 
of the system of ODEs we obtain relations between substrate variables (concentrations) in terms of each 
other and the free enzyme concentrations. After this, we identify key symmetric pairings that represent the 
symmetric steady state. i.e. In Random System 3, case 1 symmetry symmetry requires symmetry between 
[A00] & [A11]; case 2 symmetry breaking requires symmetry between [A01] & [A10]. 

We then proceed along two lines. One hand by leveraging this insight, we isolate correlations pertaining to
asymmetric steady states involving substrate forms and free enzymes. Through an alternate approach 
considering the conservation of individual species and an overall flux balance around substrate forms, we 
ascertain a secondary correlation that is pertinent to all feasible steady states of the system. By bringing the 
two conditions together, we then finally ascertain the necessary conditions and features of symmetry 
breaking in case 1 and case 2 symmetry. These procedures are carried out in detail below using built in 
maple commands. 

We initialize the maple file with the restart command and load the relevant libraries of inbuilt 
maple functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with LinearAlgebra : with VectorCalculus : with Student LinearAlgebra :

The system is modelled as a set of ODEs using the kinetic nomenclature described in the main text 
and supplementary figure (refer Appendix 2 figure 10). Here dA00 represents d[A00]/dt and 
similarly for other expressions. At steady state thus, each of the right hand sides of these 
expressions will be equal to zero. 

dA00  k4 A01P1  a4 A10P2  kub1 A00K1  aub1 A00K2  kb1 A00 K1  ab1 A00 K2 :
dA01  k1 A00K1  k3 A11P2 kub2 A01K2 kub4 A01P1  kb4 A01 P1  kb2 A01 K2 :
dA10 a1 A00K2  a3 A11P1  aub2 A10K1 aub4 A10P2 ab2 A10 K1 ab4 A10 P2 :
dA11 k2 A01K2  a2 A10K1  kub3 A11P2  aub3 A11P1  kb3 A11 P2 ab3 A11 P1 :
dA00K1  kb1 A00 K1  k1 kub1 A00K1 :
dA01K2 kb2 A01 K2  k2 kub2 A01K2 :
dA11P2 kb3 A11 P2  k3 kub3 A11P2 :
dA01P1 kb4 A01 P1  k4 kub4 A01P1 :
dA00K2 ab1 A00 K2  a1 aub1 A00K2 :
dA10K1 ab2 A10 K1  a2 aub2 A10K1 :
dA11P1 ab3 A11 P1  a3 aub3 A11P1 :



dA10P2 ab4 A10 P2  a4 aub4 A10P2 :
dP2 kb3 A11 P2  k3 kub3 A11P2 ab4 A10 P2  a4 aub4 A10P2 :
dP1 ab3 A11 P1  a3 aub3 A11P1 kb4 A01 P1  k4 kub4 A01P1 :
dK1 kb1 A00 K1  k1 kub1 A00K1 ab2 A10 K1  a2 aub2 A10K1 :
dK2 ab1 A00 K2  a1 aub1 A00K2 kb2 A01 K2  k2 kub2 A01K2 :

The above equations are also associated with conservation conditions which are described below. 
Here we store the conservation expressions as ACon, K1Con, K2Con, P1Con and P2Con for the 
substrate and the respective enzymes. Each of these expressions is always equal to zero (both in 
the transient behavior and at steady state).

ACon ATotal A00 A10  A01  A11 A00K1 A01K2 A11P2 A01P1 A00K2
A10K1 A11P1 A10P2 : 

K1Con  K1Total   A00K1 A10K1 K1 : 
K2Con K2Total   A01K2 A00K2 K2 : 
P1Con P1Total  A11P1 A01P1 P1 :
P2Con P2Total  A10P2 A11P2 P2 :

Until now we have modelled the System 3 Random DSP network with separate kinase effecting 
phosphorylation and a separate phosphatase for dephosphorylation - without any impositions on 
kinetics or concentrations for symmetry. In the following segments, we specifically do this for each 
class of symmetry. The codes for each symmetry are modular and in order to run a particular 
symmetry, please run the code until this point and then run only the code for the specific class of 
symmetry. 

Note: Do not run the whole script at the same time, as this will impose all symmetries at the same 
time and give incorrect results. 

Case 1 Symmetry : Present and Breaks

Kinetic constraints for case 1 symmetry (refer main text) are imposed on the original model. 

k3 k1 : kb3 kb1 : kub3 kub1 : 
k4 k2 : kb4 kb2 : kub4 kub2 : 

a3 a1 : ab3 ab1 : aub3 aub1 : 
a4 a2 : ab4 ab2 : aub4 aub2 : 

In addition to the kinetic constraints the total enzyme concentrations of corresponding kinases 
and phosphatases need to be equal for exact case 1 symmetry in Random DSP System 3. This 
is imposed as shown below. 

K1Total P2Total :
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K2Total P1Total :

At this stage we introduce auxiliary constants c1, c2, d1 and d2 in place of the binding constants
so as to make further analytical expressions more accessible. 

kb1 c1 k1 kub1 : 
kb2 c2 k2 kub2 :
 
ab1 d1 a1 aub1 : 
ab2 d2 a2 aub2 :

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In 
this context we want to solve all variables in terms of the concentrations of the free enzymes (
[K1], [K2], [P1] & [P2]) and concentration of the partially modified substrate [A01]. In order to
do this, we use the Maple command solve, which solves the equation supplied for a given 
variable. We first solve for the individual complexes using their corresponding differential 
equation. An example of this (using [A00K1]) is given below in detail. 

The differential equation of [A00K1] is given by, 

d A00K1
dt

= dA00K1     
d A00K1

dt
= c1 k1 kub1  A00 K1 k1 kub1  A00K1

The solve command by Maple, solves this equation for the given variable (in this case [A00K1]).
We in turn store this value (the solution returned by the solve command) in [A00K1]. This is 
performed by the following command. 

A00K1 solve dA00K1, A00K1
A00K1 K1 A00 c1

This operation is performed for the other complexes and substrate forms as well. Here we 
simultaneously solve expressions for the substrate forms using the solve command as shown 
below. The solution is stored in a variable labelled Sol, and then the respective solutions are 
extracted from this vector using the eval command. 

A01K2 solve dA01K2, A01K2 :
A11P2 solve dA11P2, A11P2 :
A01P1 solve dA01P1, A01P1 :
A00K2 solve dA00K2, A00K2 :
A10K1 solve dA10K1, A10K1 : 
A11P1 solve dA11P1, A11P1 :
A10P2 solve dA10P2, A10P2 :

Sol solve dA00, dA11, dA10 , A00, A11, A10 :

A00 eval A00, Sol : 



A01 eval A01, Sol :
A10 eval A10, Sol :
A11 eval A11, Sol :

Doing this results in the following correlations between the concentrations of the various 
substrate forms at steady state.

A00  = 
A01 P1 c2 k2
c1 k1 K1

A01  = A01

A10  = 
A01 K2 P1 a1 c2 d1 k2
P2 c1 k1 K1 a2 d2

A11  = 
K2 A01 c2 k2
P2 c1 k1

Proof for invariant in asymmetric branches

We know that P1Total P2Total K1Total K2Total = 0  in this system under case 1 symmetry
(Since K1Total = P2Total and K2Total = P1Total). Thus at a given steady state, 
P1Total P2Total K1Total K2Total  must be equal to 0. We introduce a term T = P1Total
P2Total K1Total K2Total  as shown below. Here we write P1Total as P1Total - P1Con. 

Note: This comes from the expression used for P1Con earlier (P1Con = P1Total - P1 - A11P1 
- A01P1) and the fact that PCon = 0. This way we have represented the independent enzyme
concentrations as a sum of the free enzyme and the complexes in which it is sequestered. 

Similarly for the other total enzyme concentrations as well. 

T P1Total P1Con P2Total P2Con   K2Total K2Con K1Total K1Con
= 0 :

At this stage we evaluate the ratio of [A00] and [A11]. Note that with case 1 symmetry 
breaking, we are looking for asymmetric states such that [A00] not equal to [A11]. 

simplify
A00
A11

 = 
P1 P2
K1 K2

We denote this ratio as . i.e.  = (P2*P1)/(K2*K1). 

P2
K1 K2
P1

: 

simplify
A00
A11

 =  



After introducing this ratio and algebraically simplifying T using the Maple command
simplify, we get the following equation.

simplify T  = 
1

K1 c1  k1
2 a2

1  K12  a2 c1 A01 c2 1  k1
2 k2 P1

2 A01 a1 c2 d1 A01 c2 1  k1

A012 P12 a2 c2
2 d1 k2

2  K2 = 0
 

From this we can ascertain that, should an asymmetric steady state exist (where  ≠ 1) - the 
term 
K12 a2  c1 A01 c2 1  k1

2 a1 P1
2 A01 c2 d1 k2 A01 c2 1  k1

A012 P12 c2
2 d1 k2

2 a2)  in the numerator of the expression needs to be zero. This term
is an expression in the partial substrate form [A01], , the free enzymes and kinetic 
constants. 

We show here that this term is nothing but the numerator of the following expression where
[A01] written as a function of [A10].

r
A01
k1

A10
a1

   
A01
k2

1
c2 k2

A10
a2

1
d2 a2

:

This is verified below. The numer command in Maple isolates only the numerator of an 
expression. In this context we isolate the numerator of 'r' and add the term denoting 
asymmetry from earlier. We can see that all expressions in the term cancel out revealing that 
they are identical. 

simplify numer r  K12 a2  c1 A01 c2 1  k1
2 a1 P1

2 A01 c2 d1 k2 A01 c2 1  k1
A012 P12 c2

2 d1 k2
2 a2

 = 0

Thus, here we have a clear representation of the asymmetric steady state in terms of a 
correlation between only the concentrations of the partially modified enzymes and key 
kinetic constants (i.e. r = 0).  r in turn can be rewritten for simplicity as follows. 

restart :
r  A01 A10 1 :

Where the A01  and A10  expressions are given as follows.



A01 simplify  

A01
k1

A01
k2

1
c2 k2

 = 
A01 c2 k2

k1 A01 c2 1

A10 simplify

A10
a1

A10
a2

1
d2 a2

  = 
A10 d2 a2

a1 A10 d2 1
 

Now we use an auxiliary analysis to ascertain other correlations between [A01] and [A10] 
representing all steady states of the system. We refresh Maple here to rewrite some new 
expressions.

restart : 

We begin by evaluating the following ratio of enzymes 
P2Total K1Total
P1Total K2Total

. We know from

the individual conservation equations that they correspond to the sum of the free enzyme 
and the complexes in which they are sequestered. Thus, 

P2Total K1Total
P1Total K2Total

 = 
A10P2 A11P2 P2   A00K1 A10K1 K1
A11P1 A01P1 P1  A01K2 A00K2 K2

:

This can be further simplified as follows, (by rewriting the concentration of the complexes at
steady state and simplifying the resulting expression)

P2Total K1Total
P1Total K2Total

 = 
A11P2 A00K1 1  d2 A10 K1 P2

A00K2 A11P1  1  c2 A01 K2 P1

Now from the dynamical representation of the network as a system of ODEs earlier 
(particularly equations dA01 and dA10) we know that at steady state,

A11P2  A00K1 = 
k2
k1

A01K2 A01P1 : 

A11P1 A00K2 =
a2

a1
A10P2 A10K1 :

Substituiting this in the earlier expression we get the following, 



P2Total K1Total
P1Total K2Total

 = 

k2
k1

A01K2 A01P1 1  d2 A10 K1 P2

a2
a1

A10P2 A10K1  1  c2 A01 K2 P1

:

Which simplifies to,

P2Total K1Total
P1Total K2Total

 = 

k2
k1

c2 A01 K2 P1 1  d2 A10 K1 P2

a2
a1

d2 A10 P2 K1  1  c2 A01 K2 P1

:  

Now we introduce a new ratio,  =
 1  c2 A01 K2 P1

1  d2 A10 K1 P2
Substituting this ratio in the

above expression we get the following simplified form,

P2Total K1Total
P1Total K2Total

 = 

k2
k1

c2 A01 alpha

1  c2 A01
1

a2
a1

d2 A10

1  d2 A10
 

:

Reintroducting the nomenclature of A01  and A10  the above equation simplifies as,

P2Total K1Total
P1Total K2Total

 = A01 1

A10  
:

Under case 1 symmetry, K2Total = P1Total, and K1Total = P2Total. Here we bring in the 

asymmetry correlation ascertained earlier, i.e. r = 1 or  A01 =
1

A10

 . Using these two 

insights, the above equation simplifies to

P2Total
P1Total

  =    A01   A01   1

1 A01

Since the expression on the right is always positive (   and  A01  are all positive sums of 
kinetic constants and species concentrations), we can cancel it in the numerator and the 
denominator, without making any assumptions about the steady state. 



 A01 = 
P2Total
P1Total

Thus, 

A10 = 
P1Total
P2Total

Solving these equations for their respective substrate concentrations we find that in an 
asymmetric state, the concentrations of [A01] and [A10], the partially modified substrates 
are fixed and is given by few key kinetic constants.

 A01  
P2Total k1

c2 P2Total k1 k2 P1Total
 = 

P2Total k1
c2 k1 P2Total k2 P1Total

A10
P1Total a1

d2 P1Total a1 a2 P2Total
 = 

P1Total a1
d2 a1 P1Total a2 P2Total

Necessary Conditions

Since substrate concentration are always necessarily positive, the expression for the 
concentrations of [A00] and [A11] should be positive. The numerator is only a function of 
kinetic parameters and total enzyme concentrations which are always positive, thus the 
denominator must necessarily be positive to ensure that the resulting concentration is 
positive. This gives us the necessary condition for the asymmetric state to exist as follows. 

1.  k2 P1Total k1 P2Total
2.  a2 P2Total a1 P1Total

Sufficiency of necessary conditions

In this section we show that the necessary conditions generated above are sufficient to 
ensure symmetry breaking at some finite ATotal. 

As shown above, should an asymmetric branch exist the associated invariants (of 
concentrations) need to be true irrespective of ATotal values. To show that the asymmetric 
state is a feasible steady state for the system, we need to show that the concentrations of all 
variables involved (substrates, complexes and  free enzymes) are all positive. Simultaneoulsy 
we need ensure that the system satisfies the conservation conditions associated with the 
concentrations of the substrate and the respective enzymes. 



We show this in the following manner. 

1. We evaluate the steady state of the system to obtain expressions of concentration of all 
substrates and complexes in terms of a few key concentrations ([A01], [K1], [P1], [K2], [P2] 
as done earlier). 
Note: This is done by running the code until before the section 'Proof for invariant in 
asymmetric branches'

2. We then substitute one of the invariants [A01] concentration into the system. 

A01  
P2Total k1

c2 P2Total k1 k2 P1Total
:

3. Further we solve the conservation expressions K1Con and P1Con, for expressions of the 
free enzymes [K1] and [P1] in terms of the concentrations of other free enzymes ([K2] and 
[P2]) and the invariant substituted earlier for [A01] concentration.

P1 solve P1Con, P1 :
K1 solve K1Con, K1 :

We can thus ascertain concentrations of the following substrates as a function of free 

enzymes [K2], [P2] and constants. Here we introduce a new ratio  = 
K2
P2

K2 P2 : 

simplify A10  = 
P1Total a1

a1 P1Total a2 P2Total  d2

simplify K1  = 
P2Total  d1 a1 P1Total a2 P2Total

 d1 P2Total c1 P1Total  a2

simplify P1  = 
P1Total P2Total k1 k2 P1Total  c1
k2  d1 P2Total c1 P1Total

simplify A00  = 
P1Total a2

 d1 a1 P1Total a2 P2Total

simplify A11  = 
 P2Total k2

P2Total k1 k2 P1Total  c1

We can see that automatically we get the second invariant for the concentration of [A10] to 
be true. From the expressions of the variables we note that when [K2] and [P2] are both 
positive the variable concentrations are positive.

4. Now we solve K2Con (the conservation condition associated with the enzyme [K2]) for the
concentration of free enzyme [P2] and get the following correlation.   
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P2 simplify solve P2Con, P2  = 

P2
a1 P1Total a2 P2Total  P2Total k1 k2 P1Total
k2 a1 a2  P1Total a2 P2Total  k2 k1

Note that the denominator can be simplified as 
 k2 a1 P1Total a2 P2Total a2 k1 P2Total k2 P1Total

So again, if  is positive, [P2] is positive implying [K2] is positive. 

In an asymmetric condition we have no restriction on the value that this  can take. Note 
that in a symmetric state, by mandating [A01] = [A10] we fix the value of  in terms of 
kinetic constants and total enzyme concentrations.

simplify K1Con  = 0
simplify K2Con  = 0
simplify P1Con  = 0
simplify P2Con  = 0

simplify dA00  = 0
simplify dA11  = 0
simplify dA01  = 0
simplify dA10  = 0
simplify dA00K1  = 0
simplify dA00K2  = 0
simplify dA01P1  = 0
simplify dA10P2  = 0
simplify dA01K2  = 0
simplify dA10K1  = 0
simplify dA11P1  = 0
simplify dA11P2  = 0
simplify dK2  = 0
simplify dK1  = 0
simplify dP1  = 0
simplify dP2  = 0

We can thus ensure that for any positive value of , all concentrations are positive. This 
thus implies that there exists a finite positive ATotal value where this asymmetric state is 
realized. 

Hence we have shown that the necessary conditions are sufficient for symmetry breaking at 
some finite ATotal value.  

Position of symmetry breaking (Pitchfork bifurcation)

At the position of symmetry breaking, we know two insights.
1. The system is still symmetric, hence [A00] = [A11], [K1] = [P2], [P1] = [K2] 
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2. The invariants descibing the asymmetric steady state are also true. 

Using these two information, we can simplify the original system considerably as follows. 
Note: 

K1 P2 : 
P1 K2 :

A00  = 
K2 A01 c2 k2
P2 c1 k1

                

A01  = A01                  

A10  = 
A01 K22 a1 c2 d1 k2
P22 c1 k1 a2 d2

                

A11  = 
K2 A01 c2 k2
P2 c1 k1

 

But we also know that [A01] and [A10] are invariants given by the following expressions. 
 

 A01  
P2Total k1

c2 P2Total k1 k2 P1Total
  = 

P2Total k1
c2 k1 P2Total k2 P1Total

A10
P1Total a1

d2 P1Total a1 a2 P2Total
 

P1Total a1
d2 a1 P1Total a2 P2Total

Using this information we can find the value of [K2] and [P2]. Substituiting this into the 
expressions for conservation of the individual enzymes, we get the concentrations of the 
respective free enzymes. 

ATotal = simplify solve ACon, ATotal

ATotal = 2 a2 P2 k2 k1  c1 k2 K2 d1 1  K2 c2
P2 c1 k1

2
 d2 P2Total

2

2 P1Total P2 k1 P2 K2 k2 k1  c1 K2 k2 K2 d1 1  d2

P2 c1 k1
2

 c2
P2 c1 d2 k1

2
 a1 P2Total 2 P1Total

2 P2 c1 P2 d2

1
2

 a1 k2 c2 P2Total k1 k2 P1Total  c1 P2 d2 P1Total a1

a2 P2Total  c2

An example of this is done in the read me file using the parameters used in generating the 



figures. A cross verification of the analytical work and bifurcation analysis is done in this 
manner. 



Case 2 Symmetry : Present and Breaks

Kinetic constraints for case 2 symmetry to be present (refer main text) are imposed on the 
original model. 

a1 k1 : ab1 kb1 : aub1 kub1 :
a2 k2 : ab2 kb2 : aub2 kub2 :
a3 k3 : ab3 kb3 : aub3 kub3 :
a4 k4 : ab4 kb4 : aub4 kub4 :

In addition to the kinetic constraints the total enzyme concentrations of kinase and 
phosphatase need to be equal for exact case 2 symmetry to be present. This is imposed as 
shown below. 

K1Total KTotal : 
K2Total KTotal :
P1Total PTotal : 
P2Total PTotal :

At this stage we introduce auxiliary constants c1, c2, c3 and c4 in place of the binding constants 
so as to make further analytical expressions more accessible. 

kb1 c1 k1 kub1 : 
kb2 c2 k2 kub2 :
kb3 c3 k3 kub3 : 
kb4 c4 k4 kub4 :

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In 
this context we want to solve all variables in terms of the concentrations of the free enzymes (
[K1], [K2], [P1] & [P2]) and concentration of the completely unmodified substrate [A00]. In 
order to do this, we use the Maple command solve, which algebraically solves the equation 
supplied for a given variable. We first solve for the individual complexes using their 
corresponding differential equation. An example of this (using [A00K1]) is given below in 
detail. 

The differential equation of [A00K1] is given by, 

d A00K1
dt

= dA00K1     
d A00K1

dt
= c1 k1 kub1  A00 K1 k1 kub1  A00K1

The solve command by Maple, uses this solves this equation for the given variable (in this case 
[A00K1]). This is performed by the following command. Here we assign [A00K1], the solution 
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returned by the solve command. 

A00K1 solve dA00K1, A00K1
A00K1 K1 A00 c1

This operation is performed for the other complexes and substrate forms as well. Here we 
simultaneously solve expressions for the substrate forms using the solve command as shown 
below. The solution is stored in a variable labelled Sol, and then the respective solutions are 
extracted from this vector using the eval command. 

A01K2 solve dA01K2, A01K2 : 
A11P2 solve dA11P2, A11P2 :
A01P1 solve dA01P1, A01P1 :
A00K2 solve dA00K2, A00K2 :
A10K1 solve dA10K1, A10K1 : 
A11P1 solve dA11P1, A11P1 :
A10P2 solve dA10P2, A10P2 :

Sol solve dA01, dA10, dA11 , A01, A10, A11 :

A00 eval A00, Sol :
A01 eval A01, Sol :
A10 eval A10, Sol :
A11 eval A11, Sol :

Doing this results in the following correlations between the concentrations of the various 
substrate forms at steady state.

A00  = A00         

A01  = 
A00 K1 c1 k1
c4 k4 P1

         

A10  = 
K2 A00 c1 k1
P2 c4 k4

        

A11  = 
A00 K1 K2 c1 c2 k1 k2
P2 c4 k4 P1 c3 k3

 

Proof for invariant in asymmetric branches
We know that P1Total*K2Total = K1Total*P2Total in this system under case 1 symmetry 
(Since K1Total = K2Total and P2Total = P1Total). Thus at a given steady state, (P1Total*
K2Total = K1Total*P2Total) must be equal to 0. We introduce a term T = (P1Total*K2Total = 
K1Total*P2Totall) as shown below. Here we write P1Total as P1Con + P1Total. Note: This 
comes from the expression used for P1Con earlier and the fact that PCon = 0. This way we 
have represented the independent enzyme concentrations as a sum of the free enzyme and 
the complexes in which it is sequestered. 
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Similarly for the other total enzyme concentrations as well. 

T P1Con P1Total K2Con K2Total   P2Con P2Total K1Con K1Total = 0 :

This way we have represented the independent enzyme concentrations as a sum of the free 
enzyme and the complexes in which it is sequestered.

At this stage we evaluate the ratio of [A01] and [A10]. Note that with case 2 symmetry 
breaking, we are looking for asymmetric states such that [A01] not equal to [A10]. 

simplify
A01
A10

 = 
K1 P2
P1 K2

We denote this ratio as . i.e.  = (P2*K1)/(K2*P1). 

P2
P1 K2
K1

: 

simplify
A01
A10

 =  = 

After introducing this ratio and algebraically simplifying T using the Maple command
simplify, we get the following equation.

simplify T
1

P1 c4 k4
2 k3 

1  k3  P12 c4 A00 c1 1  k4
2 K12 A00 c1 c2 k1 k2 A00 c1

1  k4 A002 K12 c1
2 c2 k1

2 k3  K2 = 0

 
From this we can ascertain that, should an asymmetric steady state exist (where  ≠ 1) - the 
term (
k3  P12 c4 A00 c1 1  k4

2 K12 A00 c1 c2 k1 k2 A00 c1 1  k4 A002 K12 c1
2 c2 k1

2 k3 )
 in the numerator of the expression needs to be zero. This term is an expression in the partial
substrate form [A00], , the free enzymes and kinetic constants. 

We show here that this term is nothing but the numerator of the following expression 
multiplied by the ratio (  P12 c4 k4 ) where [A01] written as a function of [A10].

r
k3 c3 A11

k2 1 c3 A11

k1 c1 A00

k4 1  c1 A00
  1 :

This is verified below. The numer command in Maple isolates only the numerator of an 
expression. In this context we isolate the numerator of 'r', divide it by the factor (  P12 c4 k4 )
and add the term denoting asymmetry from earlier. We can see that all expressions in the 



term cancel out revealing that they are identical. 

factor k3  P12 c4 A00 c1 1  k4
2 K12 A00 c1 c2 k1 k2 A00 c1 1  k4

A002 K12 c1
2 c2 k1

2 k3
numer r  
 P12 c4 k4

Thus, here we have a clear representation of the asymmetric steady state in terms of a 
correlation between only the concentrations of the partially modified enzymes and key 
kinetic constants (i.e. r = 0).  r in turn can be rewritten for simplicity as follows. 

restart :
r  A00 A11 1 :

Where the A00  and A11  expressions are given as follows.

A11

k3 c3 A11

k2 1 c3 A11
: 

A00

k1 c1 A00

k4 1  c1 A00
:

Now we use an auxiliary analysis to ascertain other correlations between [A00] and [A11] 
that is valid for all steady states of the system (not just asymmetric ones). We refresh Maple 
here to rewrite some new expressions.

restart : 

We begin by evaluating the following ratio of enzymes 
P1Total P2Total
K1Total K2Total

. We know from

the individual conservation equations that they correspond to the sum of the free enzyme 
and the complexes in which they are sequestered. Thus, 

P1Total P2Total
K1Total K2Total

 = 
A11P1 A01P1 P1 A10P2 A11P2 P2  

 A00K1 A10K1 K1  A01K2 A00K2 K2
:

Now from the dynamical representation of the network as a system of ODEs earlier 
(particularly equations dA01 and dA10) we know that at steady state,

A01P1  A10P2 = 
k1
k4

A00K1 A00K2 :



A01K2 A10K1 = 
k3
k2

A11P1 A11P2 :

Thus, 

P1Total P2Total
K1Total K2Total

 =

k1
k4

A00K1 A00K2 P1 P2 A11P1 A11P2 

k3
k2

A11P1 A11P2 A00K1 K1 K2 A00K2

:

This can be further simplified as follows, (by rewriting the concentration of the complexes at
steady state and simplifying the resulting expression)

P1Total P2Total
K1Total K2Total

 =

k1
k4

c1 A00 K1 K2 1  c3 A11 P1 P2  

k3
k2

c3 A11 P1 P2 1  c1 A00 K1 K2

:

 

Now we introduce a new ratio,  =
 1  c1 A00 K1 K2

1  c3 A11 P1 P2
Substituting this ratio in the

above expression we get the following simplified form,

P1Total P2Total
K1Total K2Total

 =

k1
k4

c1 A00

1  c1 A00
1 

k3
k2

c3 A11

1  c3 A11

:

Reintroducting the nomenclature of A00  and A11  the above equation simplifies as,

P1Total P2Total
K1Total K2Total

  = A00 1

A11  
:

Under case 2 symmetry, K2Total = K1Total, and P1Total = P2Total. Here we bring in the 

asymmetry correlation ascertained earlier, i.e. r = 1 or  A00 =
1

A11

 . Using these two 

insights, the above equation simplifies to
PTotal
KTotal

       =          A00 D  1

1 D A00
A00 :
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(2.1.3)(2.1.3)

Since the expression on the right is always positive (   and  A00  are all positive sums of 
kinetic constants and species concentrations), we can cancel it in the numerator and the 
denominator, without making any assumptions about the steady state. 

A00

PTotal
KTotal

:

Thus

A11

KTotal
PTotal

: 

Solving these equations for their respective substrate concentrations we find that in an 
asymmetric state, the concentrations of [A00] and [A11], the partially modified substrates 
are fixed and is given by few key kinetic constants.

A00 = solve
k1 c1 A00

k4 1  c1 A00
=
PTotal
KTotal

, A00

A00 =
PTotal k4

c1 k1 KTotal PTotal k4

A11 = solve
k3 c3 A11

k2 1 c3 A11
=
KTotal
PTotal

, A11

A11 =
KTotal k2

c3 KTotal k2 k3 PTotal

Necessary conditions

Since substrate concentration are always necessarily positive, the expression for the 
concentrations of [A00] and [A11] should be positive. The numerator is only a function of 
kinetic parameters and total enzyme concentrations which are always positive, thus the 
denominator must necessarily be positive to ensure that the resulting concentration is 
positive. This gives us the necessary condition for the asymmetric state to exist as follows. 

1.  k1 KTotal k4 PTotal
2.  k3 PTotal k2 KTotal

Sufficiency of necessary conditions

In this section we show that the necessary conditions generated above are sufficient to 
ensure symmetry breaking at some finite ATotal. 



As shown above, should an asymmetric branch exist the associated invariants (of 
concentrations) need to be true irrespective of ATotal values. To show that the asymmetric 
state is a feasible steady state for the system, we need to show that the concentrations of all 
variables involved (substrates, complexes and  free enzymes) are all positive. Simultaneoulsy 
we need ensure that the system satisfies the conservation conditions associated with the 
concentrations of the substrate and the respective enzymes. 

We show this in the following manner. 

1. We evaluate the steady state of the system to obtain expressions of concentration of all 
substrates and complexes in terms of a few key concentrations ([A00], [K1], [P1], [K2], [P2] 
as done earlier). 
Note: This is done by running the code until before the section 'Proof for invariant in 
asymmetric branches'

2. We then substitute one of the invariants [A00] concentration into the system. 

A00
PTotal k4

c1 k1 KTotal PTotal k4
:

3. Further we solve the conservation expressions K1Con and P1Con, for expressions of the 
free enzymes [K1] and [P1] in terms of the concentrations of other free enzymes ([K2] and 
[P2]) and the invariant substituted earlier for [A00] concentration.

K1 simplify solve K1Con, K1 : 
P1 simplify solve P1Con, P1 :

We can thus ascertain concentrations of the following substrates as a function of free 

enzymes [K2], [P2] and constants. Here wee introduce a new ratio  = 
K2
P2

K2 P2 : 

simplify A11  = 
KTotal k2

k2 KTotal k3 PTotal  c3

simplify K1  = 
KTotal k1 KTotal PTotal k4  c4
k1 c2  PTotal c4 KTotal

simplify P1  = 
PTotal  c2 k2 KTotal k3 PTotal

c2  PTotal c4 KTotal  k3

simplify A10  = 
 PTotal k1

k1 KTotal PTotal k4  c4

simplify A01  = 
KTotal k3

 c2 k2 KTotal k3 PTotal

We can see that automatically we get the second invariant for the concentration of [A11] to 
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be true. From the expressions of the variables we note that when [K2] and [P2] are both 
positive the variable concentrations are positive.

4. Now we solve K2Con (the conservation condition associated with the enzyme [K2]) for the
concentration of free enzyme [P2] and get the following correlation.   

P2 simplify solve P2Con, P2

P2
k2 KTotal k3 PTotal  k1 KTotal PTotal k4
k1  k2 k3  KTotal k3 PTotal  k1 k4

Note that the denominator can be simplified as 
 k1 k2 KTotal k3 PTotal  k3 k1 KTotal PTotal k4  

So again, if  is positive, [P2] is positive implying [K2] is positive. 

Note that in a symmetric state, by mandating [A01] = [A10] we fix the value of  in terms of
kinetic constants and total enzyme concentrations.

simplify K1Con  = 0
simplify K2Con  = 0
simplify P1Con  = 0
simplify P2Con  = 0

simplify dA00  = 0
simplify dA11  = 0
simplify dA01  = 0
simplify dA10  = 0
simplify dA00K1  = 0
simplify dA00K2  = 0
simplify dA01P1  = 0
simplify dA10P2  = 0
simplify dA01K2  = 0
simplify dA10K1  = 0
simplify dA11P1  = 0
simplify dA11P2  = 0
simplify dK2  = 0
simplify dK1  = 0
simplify dP1  = 0
simplify dP2  = 0

We can thus ensure that for any positive value of , all concentrations are positive. This 
thus implies that there exists a finite positive ATotal value where this asymmetric state is 
realized. 

Hence we have shown that the necessary conditions are sufficient for symmetry breaking at 
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some finite ATotal value.  

Position of symmetry breaking (Pitchfork bifurcation)

At the position of symmetry breaking, we know two insights.
1. The system is still symmetric, hence [A01] = [A10], [K1] = [K2], [P1] = [P2] 
2. The invariants descibing the asymmetric steady state are also true. 

Using these two information, we can simplify the original system considerably as follows. 
Note: 

K1 K2 : 
P1 P2 :

A00  = A00                 

A01  = 
K2 A00 c1 k1
P2 c4 k4

                 

A10  = 
K2 A00 c1 k1
P2 c4 k4

                

A11  = 
A00 K22 c1 c2 k1 k2
P22 c4 k4 c3 k3

 

But we also know that [A00] and [A11] are invariants given by the following expressions. 
 

A00
PTotal k4

c1 k1 KTotal PTotal k4
:

A11
KTotal k2

k2 KTotal k3 PTotal  c3
:

Using this information we can find the value of [K2] and [P2]. Substituiting this into the 
expressions for conservation of the individual enzymes, we get the concentrations of the 
respective free enzymes. 

ATotal = simplify solve ACon, ATotal

ATotal =
1

P22 c4 k4 c3 k3
2 P2 K2 k4 k1  c1

k4
2

 c4 k3 P2 K2 c2

1  k3 K2 c2 k2  c1 k1 K2  c3
K22 c1 c2 k1 k2

2
 A00



An example of this is done in the read me file using the parameters used in generating the 
figures. A cross verification of the analytical work and bifurcation analysis is done in this 
manner. 



Case 3 Symmetry : Present and Breaks (Arguments for necessary 
conditions)

Unlike case 3 symmetry breaking in other models of Random DSP with common enzymes or 
case 1-2 symmetry breaking in System 3 Random DSP with separate kinases and 
phosphatases, there exists no simple linear invariant of concentrations at asymmetric steady 
states post symmetry breaking (upon bifurcation along ATotal)

However the asymmetric steady states in this case 3 System 3 Random DSP exhibit their own 
signature of symmetry breaking in the form of asymptotic values for concentrations of specific 
substrates to increasing ATotal. These asymptotic values manifest as approximate concentration
robustness for concentrations of the specific substrates. 

In this analysis below we show the presence of such symmetries and how the underlying 
kinetics dictates both the specific pair that exhibits asymptotic response to increasing ATotal 
and the individual asymptote concentrations. 

Through this process we also obtain necessary conditions for case 3 symmetry to break in 
System 3 Random DSP (including the necessary conditions for approximate robustness in 
relevant substrate concentrations through asymptotic behavior)

Kinetic constraints for case 3 symmetry (refer main text) are imposed on the original model. 

a3 k1 : ab3 kb1 : aub3 kub1 :
a4 k2 : ab4 kb2 : aub4 kub2 :
a1 k3 : ab1 kb3 :  aub1 kub3 :
a2 k4 : ab2 kb4 : aub2 kub4 :

In addition to the kinetic constraints the total enzyme concentrations of kinase and 
phosphatase also need to be equal for exact case 3 symmetry to be present. This is imposed as 
shown below. 

K1Total P1Total :
K2Total P2Total :

At this stage we introduce auxiliary constants c1, c2, c3 and c4 in place of the binding constants 
so as to make further analytical expressions more accessible. 

kb1 c1 k1 kub1 : 
kb2 c2 k2 kub2 :
kb3 c3 k3 kub3 : 
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(3.3)(3.3)

(3.2)(3.2)

kb4 c4 k4 kub4 : 

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In 
this context we want to solve all variables in terms of the concentrations of the free enzymes (
[K1], [K2], [P1] & [P2]) and concentration of the substrates. In order to do this, we use the 
Maple command solve, which solves the equation supplied for a given variable. We first solve 
for the individual complexes using their corresponding differential equation. An example of this
(using [A00K1]) is given below in detail. 

The differential equation of [A00K1] is given by, 

d A00K1
dt

= dA00K1     

d A00K1
dt

= c1 k1 kub1  A00 K1 k1 kub1  A00K1

The solve command by Maple, solves this equation for the given variable (in this case [A00K1]).
We in turn store this value (the solution returned by the solve command) in [A00K1]. This is 
performed by the following command. 

A00K1 solve dA00K1, A00K1
A00K1 K1 A00 c1

This operation is performed for the other complexes as well as shown below. 

A01K2 solve dA01K2, A01K2 :
A11P2 solve dA11P2, A11P2 :
A01P1 solve dA01P1, A01P1 :
A00K2 solve dA00K2, A00K2 :
A10K1 solve dA10K1, A10K1 : 
A11P1 solve dA11P1, A11P1 :
A10P2 solve dA10P2, A10P2 :

At this stage we solve for the individual free enzyme concentrations of [P1] and [P2] as shown 
below. Note that since K1Con, K2Con, P1Con and P2Con are all equal to zero at any given 
steady state, K1Con-P1Con and K2Con-P2Con is also equal to zero. We define these terms as 
T = K1Con-P1Con and Q = K2Con-P2Con and use these expressions to solve for [P1] and [P2] 
as shown below 

T K1Con P1Con : 
Q K2Con P2Con : 

P1 solve T, P1

P1
K1 A00 c1 A10 c4 1

A01 c4 A11 c1 1
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(3.7)(3.7)

(3.5)(3.5)

(3.4)(3.4)

(3.9)(3.9)

(3.6)(3.6)

P2 solve Q, P2

P2
K2 A00 c3 A01 c2 1

A10 c2 A11 c3 1

Now at this stage we simplify the remaining unsolved equations from the system of ODE 
description of the model (dA00, dA01, dA10, dA11). (Note: dP1, dP2, dK1, dK2 are all equal to 
zero since we solved the respective complex equations in the sytem of ODE description)

We definte two terms, M = dA00 + dA01 and N = dA00 + dA10. Note that since dA00, dA01 
and dA10 are each equally to zero at any given steady state, M and N are also equal to zero. 

M simplify dA00 dA01
M

1
A10 c2 A11 c3 1

K2 k2 k3  A00 A10 A01 A11  c3 k2 A01

A10  c2 c3 k3 A00 A11

N simplify dA00 dA10
N

1
A01 c4 A11 c1 1

K1 k1 k4  A00 A01 A10 A11  c4 k1 A00

A11  c1 c4 k4 A01 A10

Thus from M and N we can ascertain that for any given feasible steady stae the following 
expressions styled m and n need to be equal to zero.  

m k2 k3  A00 A10 A01 A11  c3 k2 A01 A10  c2 c3 k3 A00 A11 :
n k1 k4  A00 A01 A10 A11  c4 k1 A00 A11  c1 c4 k4 A01 A10 :

At this stage, we introduce the ratio  = 
A00
 A11

and thus m and n simplifies as shown below

A00 epsilon A11 :

simplify m
A11 k2 k3  A10 A01  c3 k2 A01 A10  c2 A11 c3 k3 1

simplify n
A11 k1 k4  A01 A10  c4 k1 1  c1 c4 k4 A01 A10

We first solve for the concentration of [A11] from m as shown below. 

A11 simplify solve M, A11

A11
c2 k2 A01 A10

k2 k3  A10 A01  c2 k3 1  c3
Substituiting this back in n, we get the following
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(3.13)(3.13)

(3.11)(3.11)

(3.14)(3.14)

(3.10)(3.10)
simplify n

A01 c1 A10 c3  k4 A01 c1 k1  A01 c3 A10 c1  k4 A10 c1 k1  k2
k4 c3 k3 A10 A01  c4 c1 k1 k2 1  c2 k4 c3 c4 k3 1  A01

A10 c3 k2 k3  A10 A01  c2 k3 1

We now solve this expression for [A01]. Note that since we are isolating solutions of asymmetry
(i.e. [A01] ≠ [A10]), we ignore the symmetric solution while solving the system as shown below.

A01 simplify solve N, A01 2
A01

c2 A10 c4 c3 c1  k4 c1 k1 A10 c4 1  k2 c3 c4 k3 k4 A10 c2 

1 c2 c1 c3  k4  c1 k1  k2 k4 c3 k3  c4

Finally we use the expressions obtained for [A11] and [A01] to solve for the free enzymes [K1] 
and [K2] from their respective conservation expressions as shown below. 

simplify A11
A10 c1 k1 k2 k4 c1 c3  k2 c3 k3  c4 c1 k1 k2  c2 c3 c4 k3 k4

c3 c1 k2 k3  A10 k1 k4  1  c4 k1  c2  c4 k3 k1 k4
K1 simplify solve simplify K1Con , K1
K1 P1Total k2 k3  A10 k1 k4  1  c4 k1  c2  c4 k3 k1

k4  c3 A10 c3 k2 k3  1  c4 k2 k3  c3  c1 k2  c2
c3  k3 c4  A10 k1 k4  c4 k1

K2 simplify solve K2Con, K2
K2 c4 P2Total k1 k4  A10 k2 k3  1  c2  k3  c4 c2 k1 k2

k3  c1  k2 k1 k4  c1 c3 k4 k2 k3 k2 k3  A10 k2 k1
k4  c1  c3 k4 k2 k3  c2 k3 k2 k1 k4  c1 c3 k4 k2 k3   c4
c1 c2 k1 k2 k2 k3  1  A10 c1 k1 k4  1  c2  k1 k4  c1
c3 k4  c4 c1 c2 k1

At this stage, by solving a majority of the system of equations describing the sytem (at an 
asymmetric steady state), we have also obtained correlations between concentrations of 
variables, primarily, concentrations of substrates and enzymes are obtained as functions of 
[A10] and . 

simplify K1Con  = 0
simplify K2Con  = 0
simplify P1Con  = 0
simplify P2Con  = 0
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(3.1.1)(3.1.1)

(3.1.4)(3.1.4)

(3.1.3)(3.1.3)

simplify dA00K1  = 0
simplify dA00K2  = 0
simplify dA01P1  = 0
simplify dA10P2  = 0
simplify dA01K2  = 0
simplify dA10K1  = 0
simplify dA11P1  = 0
simplify dA11P2  = 0
simplify dK2  = 0
simplify dK1  = 0 
simplify dP1  = 0
simplify dP2  = 0

At an asymmetric steady state,   1. Thus in order to show the presence of symmetry 
breaking, we need to show the presence of positive solutions to the above correlations admitting

  1. However due to the complexity of the system this is not possible to do symbolically 
however can be easily verified for various kinetic values. 

Necessary conditions for and location of symmetry breaking (pitchfork 
bifrucation)

In this section we show the necessary condition for a pitchfork bifurcation/symmetry 
breaking to exist. The pitchfork bifurcation is by definition the intersection of an 
asymmetric branch and the symmetric branch of the steady states. Thus the correlation can 
be easily discerned from the expressions obtained earlier for asymmetric solutions where 
now  = 1.

Thus evaluating the expressions obtained for [A11] or [A00] at epsilon =1 (At symmetric 
steady states [A00] = [A11])

simplify eval eval simplify A11 , epsilon = 1
A10 c1 k1 k2 k4 c1 c3  k2 c3 k3  c4 c1 k1 k2  c2 c3 c4 k3 k4

2 k2 k3  A10 k1 k4  c4
k1
2

 c2
c4 k3 k1 k4

2
 c1 c3

simplify eval eval simplify A00 , epsilon = 1
A10 c1 k1 k2 k4 c1 c3  k2 c3 k3  c4 c1 k1 k2  c2 c3 c4 k3 k4

2 k2 k3  A10 k1 k4  c4
k1
2

 c2
c4 k3 k1 k4

2
 c1 c3

simplify eval eval simplify A01 , epsilon = 1
A10

simplify eval eval simplify A10 , epsilon = 1
A10



(3.1.5)(3.1.5)

The above expression for A11 can be simplified further as the term t = 0 as shown below
restart :

t

A11
k2

c3 k3 k2

A10
k3

k3 k2 c2

=

A11
k4

k1 k4 c1

A10
k1

k1 k4 c4

: 

Simplifying the above equation we get the following,

collect simplify t , k2, k3, k4, k1
c3 A11 1  k2 c3 k3 A11  c2

c3 c2 k2 A10 c2 A10 1  k3
=

c4 c1 k1 A11 c1 A11 1  k4
c4 A10 1  k1 c4 k4 A10  c1

 
We now use the individual conservation expressions for the enzymes [P1] and [P2] 

P1Total = 1 c4 A10 c1 A11 P1 : 
P2Total = 1 c2 A10 c3 A11 P2 : 

This can be rearranged as shown below

1 c4 A10 = 
P1Total
P1

c1 A11 :  

1 c1 A11 = 
P1Total
P1

c4 A10 :

1 c2 A10 =
P2Total
P2

c3 A11 :

1 c3 A11 =
P2Total
P2

c2 A10 :

Substituiting these expressions in t, we get the following simplification for t

l simplify

P2Total
P2

c2 A10  k2 c3 k3 A11  c2

c3 c2 k2 A10
P2Total
P2

c3 A11  k3

=

c4 c1 k1 A11
P1Total
P1

c4 A10  k4
P1Total
P1

c1 A11  k1 c4 k4 A10  c1



(3.1.6)(3.1.6)l
A10 P2 c2 k2 A11 P2 c3 k3 k2 P2Total  c2
c3 A10 P2 c2 k2 A11 P2 c3 k3 k3 P2Total

=
c4 c4 k4 A10 P1 A11 P1 c1 k1 k4 P1Total
c4 k4 A10 P1 A11 P1 c1 k1 k1 P1Total  c1

Analyzing the left hand side of the equation 3.1.6

Assume k3 is greater than k2. We know that the denominator is positve from equation 
3.1.5. Thus the numerator is also positive (since k2<k3), thus the entire left hand side term is
strictly negative. 

Thus the right hand side expression has to be negative as well for the equation to be true. 

Now suppose k4 > k1.  Then the numerator as it appears in 3.1.6 is positive. And since k4 > 
k1, the denominator also has to be positive. Thus the right hand side is entirely positive. 

This is a contradiction and so the equation cannot be true under this condition. 

Hence, should the correlation above hold good, k1 > k4 when k3 > k2. Similarly one can 
reason that when k2 > k3, k4 > k1 is necessary. 

Thus these become necessary kinetic constraints for symmetry breaking to be feasible. Note 
that these are not shown to be suffiient however extensive computational simulations show 
indications that these conditions are indeed sufficient for symmetry breaking to exist at 
some finite total substrate concentration.

The exact value at the pitchfork bifurcation point can be known by substituting equation 
3.1.2 in the following correlation between the concentrations at the symmetric point 
involving total enzyme concentrations of [P1] and [P2]. 

E
P1Total
P2Total

1 c2 A10 c3 A11

1 c4 A10 c1 A11  

c3 k3 A11 c2 k2 A10

c1 k1 A11 c4 k4 A10
:

System 3 Random DSP breaks symmetry with a unique asymmetric signature in the form of 
asymptotes for the individual substrates. However the value of the asymptote and the substrate
associated with it is given entirely by the kinetics. 

Upon bifurcation along ATotal two scenarios are possible, as seen computationally

1. [A00] becomes 0(Infinity) as [A11] becomes Infinity(0) (On the asymmetric branches)

In this scenario, [A01] and [A10] each inidivually saturate towards an unique asymptotic value.

2. [A01] becomes 0(Infinity) as [A10] becomes Infinity(0) (On the asymmetric branches)



(3.2.2)(3.2.2)

(3.2.1)(3.2.1)

(3.2.3)(3.2.3)

(3.1.6)(3.1.6)

(3.2.5)(3.2.5)

(3.2.4)(3.2.4)

In this scenario, [A01] and [A10] each inidivually saturate towards an unique asymptotic value.

Scenario 1 : Asymptotes (If [A01] & [A10] is robust, [A00] & [A11] becomes 
0/infinite)

Since [A00] or [A11] becomes infinite, we are interested in solutions of the kind,  epsilon = 
0/infinity

1. [A11] = infinity, [A00] = 0, epsilon = 0

simplify eval eval simplify A11 , epsilon = 0 
A10 c1 c3  k4 c1 k1  k2 k4 c3 k3  c2 k4 c3 k3  c4 c1 c2 k1 k2

A10 k1 k4  c4 k1  c2 c1 c3 k2 k3

This value is infinite - so the denominator must be equal to zero. This gives us the 
asymptotic value of [A10] as shown below 

A10 = simplify solve denom simplify eval eval simplify A11 , epsilon = 0 , A10

A10 =
k1

c4 k1 k4
At this value, we can evaluate the other concentrations, and so we have the second 
asymptote for [A01]. 

simplify eval eval A01, epsilon = 0 , A10 =
k1

c4 k1 k4
k3

k2 k3  c2
1. [A11] = 0, [A00] = Infinity, epsilon = infinity

simplify A00
A10 c1 k1 k2 k4 c1 c3  k2 c3 k3  c4 c1 k1 k2  c2 c3 c4 k3 k4  

k2 k3  A10 k1 k4  1  c4 k1  c2  c4 k3 k1 k4  c3 c1

This value is infinite - so the denominator must be equal to zero. This gives us the 
asymptotic value of [A10] as shown below 

simplify limit solve denom A00 , A10 , epsilon = infinity
k3

c2 k2 k3



(3.2.6)(3.2.6)

(3.3.3)(3.3.3)

(3.1.6)(3.1.6)

(3.3.2)(3.3.2)

(3.3.1)(3.3.1)

(3.3.4)(3.3.4)

At this value, we can evaluate the other concentrations, and so we have the second 
asymptote for [A01]. 

simplify eval limit A01 , epsilon = infinity , A10 =
k3

c2 k2 k3
k1

c4 k1 k4
Thus for symmetry to break and lead to robustness in A10 and A10, the necessary 
condition is k2 k3 and k4 k1  and these are the respective asymptotes

Scenario 2 : Asymptotes (If [A00] & [A11] is robust, [A01] & [A10] becomes 
0/infinite)

Since [A01] or [A10] becomes infinite, we are interested in solutions of the kind,  = 0 and 
epsilon = infinity

1. [A01] = infinity, [A10] = 0

simplify A01
A10 c4 c3 c1  k4 c1 k1 A10 c4 1  c2 k2 c3 c4 k3 k4 A10 c2 

1 c1 c3  k4  c1 k1  k2 k4 c3 k3  c2 c4
This value is infinite - so the denominator must be equal to zero. This gives us the 
asymptotic value of epsilon as shown below 

epsilon = solve denom A01 , epsilon

=
c3 k4 k2 k3
k2 k1 k4  c1

At this value, we can evaluate the other concentrations and thus we have our two invariants

simplify eval simplify A11 , =
c3 k4 k2 k3
k2 k1 k4  c1

k2
c3 k2 k3

simplify eval simplify A00 , =
c3 k4 k2 k3
k2 k1 k4  c1

k4
c1 k1 k4

2. [A01] = 0, [A10] = Infinity



(3.3.5)(3.3.5)

(3.1.6)(3.1.6)

(3.3.6)(3.3.6)

(3.3.8)(3.3.8)

(3.3.7)(3.3.7)

simplify A01
c2 A10 c4  c3 c1  k4 c1 k1 A10 c4 1  k2 c3 c4 k3 k4 A10 c2 

1 c4 c2  c1 c3  k4  c1 k1  k2 k4 c3 k3
This value is infinite - so the denominator must be equal to zero. This gives us the 
asymptotic value of epsilon as shown below, where [A10] = infinity 

epsilon = simplify limit solve A01, epsilon , A10 = infinity

=
c1 k1 k4  k2
c3 k4 k2 k3

At this value, we can evaluate the other concentrations and thus we have our two invariants

limit simplify eval simplify A11 , =
c1 k1 k4  k2
c3 k4 k2 k3

, A10 = infinity

k4
k1 k4  c1

limit simplify eval simplify A00 , =
c1 k1 k4  k2
c3 k4 k2 k3

, A10 = infinity

k2
k2 k3  c3

Thus for symmetry to break and lead to robustness in A00 and A11, the necessary 
condition is k3 k2 and k1 k4  and these are the respective asymptotes



Mixed Random 1 DSP : Common Kinase Common Phosphatase
Case 2 - Present and Doesn't Break

In this Maple file we analytically show the infeasibility of case 2 symmetry breaking in the Mixed Random
1 DSP network with common kinase and common phosphatase effecting distributive random 
phosphorylation and random processive dephoshorylation respectively. We do this by first describing the 
model as a system of ODEs along with the associated enzyme and substrate conservations. We then 
impose the kinetic constraints pertinent to case 2 symmetry. By solving for the steady state of the system 
of ODEs we obtain relations between concentrations of the substrate variables in terms of each other and 
the free enzyme concentrations. After this, we identify key symmetric pairings that represent the symmetric
steady state. i.e. case 2 symmetry breaking requires symmetry between [A01] & [A10];  By leveraging this
insight, we show the infeasibility of case 2 symmetry breaking by revealing that [A01] and [A10] are 
always equal for any given feasible steady state. These procedures are carried out in detail below using 
built in Maple commands. 

Note: A subscript is used to distinguish between the two different complexes formed between [K] and  
[A00]. Similarly a subscript is used to distinguish between the two distinct complexes formed between [P]
and [A11].

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt 
Maple functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

 
restart : with VectorCalculus : with LinearAlgebra : with Student LinearAlgebra :

The system is modelled as a set of ODEs using the kinetic nomenclature described in the main text 
and supplementary figure (refer Appendix 2 figure 10). Here dA00 represents d[A00]/dt and 
similarly for other expressions. At steady state thus, each of the right hand sides of these 
expressions will be equal to zero. 

dA00 kb1 A00 K ab1 A00 K kub1 A00K1 aub1 A00K2 a4 A10P k4 A01P :
dA01  kb2 A01 K k1 A00K1 kub2 A01K :
dA10 ab2 A10 K a1 A00K2 aub2 A10K :
dA11  k2 A01K a2 A10K  kb3 A11 P   ab3 A11 P  kub3 A11P1  aub3 A11P2 : 
 
dA00K1     kb1 A00 K  k1 kub1 A00K1 :
dA10K     ab2 A10 K  a2 aub2 A10K :
dA00K2     ab1 A00 K  aub1 a1 A00K2 :
dA01K     kb2 A01 K  kub2 k2 A01K : 
dA11P1     kb3 A11 P  kub3 k3 A11P1 :
dA10P     a3 A11P2  a4 A10P :
dA11P2     ab3 A11 P  aub3 a3 A11P2 :
dA01P      k3 A11P1  k4 A01P : 
 
dK kb1 A00 K k1 kub1 A00K1 ab2 A10 K  a2 aub2 A10K ab1 A00 K aub1



a1 A00K2 kb2 A01 K  kub2 k2 A01K :           
dP kb3 A11 P  kub3 A11P1  a4 A10P ab3 A11 P  aub3 A11P2  k4 A01P :

The above equations are also associated with conservation conditions which are described below. 
Here we store the conservation expressions as ACon, PCon and KCon for the substrate and the 
respective enzymes. Each of these expressions is always equal to zero (both in the transient 
behavior and at steady state).

ACon  ATotal  A00  A10  A01 A11 A00K1  A01K  A00K2  A10K  A11P1  A10P
 A11P2  A01P :

KCon KTotal K A00K1 A10K A00K2 A01K :
PCon  PTotal P A11P1 A10P A11P2 A01P :

Proof for impossibility of symmetry breaking

Kinetic constraints for case 2 symmetry (refer main text) are imposed on the original model. 

a1 k1 : ab1 kb1 : aub1 kub1 :
a2 k2 : ab2 kb2 : aub2 kub2 :  
a3 k3 :  ab3 kb3 : aub3 kub3 :
a4 k4 :

There are no constraints on the total enzyme concentrations for case 2 symmetry to be present 
in Mixed Random 1 DSP. At this stage we introduce auxiliary constants c1, c2, and c3 in place 
of the binding constants so as to make further analytical expressions more accessible. 

kb1 c1 kub1 k1 : 
kb2 c2 kub2 k2 :
kb3 c3 kub3 k3 : 

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In 
this context we want to solve all variables in terms of the concentrations of the free enzymes (
[K] & [P]) and the concentrations of the fully unmodified substrate [A00] and the fully 
modified substrate [A11]. In order to do this, we use the Maple command solve which solves 
the equation supplied for a given variable. We first solve for the individual complexes using 
their corresponding differential equation. An example of this (using [A00K1] is given below in 
detail). 

The differential equation of [A00K1] is given by, 

d A00K1

dt
= dA00K1     

d A00K1

dt
= c1 k1 kub1  A00 K k1 kub1  A00K1



(1.1)(1.1)

The solve command by Maple, solves this equation for the given variable (in this case [A00K1]).
We in turn store this value (the solution returned by the solve command) in [A00K1]. This is 
performed by the following command. 
 
A00K1 solve dA00K1, A00K1

A00K1 K A00 c1

This operation is performed for the other complexes and substrate forms as well. Here we 
simultaneously solve expressions for the substrate forms using the solve command as shown 
below. The solution is stored in a variable labelled Sol, and then the respective solutions are 
extracted from this vector using the eval command. 

A01K solve dA01K, A01K :
A00K2 solve dA00K2, A00K2 : 
A10K solve dA10K, A10K : 
A11P1 solve dA11P1, A11P1 : 
A10P solve dA10P, A10P : 
A11P2 solve dA11P2, A11P2 :
A01P solve dA01P, A01P :

S solve dA10, dA01 , A01, A10 :

A00 eval A00, S : 
A01 eval A01, S : 
A10 eval A10, S :
A11 eval A11, S :

Doing this results in the following correlations between the concentrations of the various 
substrate forms at steady state.

A00  = A00

A01  = 
A00 c1 k1

c2 k2

A10  = 
A00 c1 k1

c2 k2
A11  = A11

Proof for impossibility of symmetry breaking

Thus from this we can clearly see that irrespective of kinetic parameters, the concentration 
of [A01] is always going to be equal to the concentration of [A10]. Thus there is no scope for 
any asymmetric steady state or case 2 symmetry breaking. 



A01  = 
A00 c1 k1

c2 k2

A10  = 
A00 c1 k1

c2 k2



Mixed Random 2 DSP : Separate Kinase Common Phosphatase
Case 2 - Present and Breaks

In this Maple file we analytically show the presence of case 2 symmetry breaking in the Mixed Random 2 
DSP network with separate kinase and common phosphatase effecting distributive random 
phosphorylation and processive dephoshorylation respectively. We do this by first describing the model as
a system of ODEs along with the associated substrate and enzyme conservations. We then impose the 
kinetic constraints pertaining to case 2 symmetry. By solving for the steady state of the system of ODEs 
we obtain relations between concentrations of the substrate variables in terms of each other and the free 
enzyme concentrations. After this, we identify key symmetric pairings that represent the symmetric steady 
state. i.e. case 2 symmetry breaking requires symmetry between [A01] & [A10] and [K1] & [K2]. By 
leveraging this insight and isolating steady states not of this type, we ascertain the features of the 
asymmetric steady state emerging from symmetry breaking. These procedures are carried out in detail 
below using built in Maple commands. 

Note: A subscript is used to distinguish between the two different complexes formed between [P] and  
[A11].

 
We initialize the Maple file with the restart command and load the relevant libraries of inbuilt 
Maple functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with LinearAlgebra :  with VectorCalculus :  with Student LinearAlgebra :

The system is modelled as a set of ODEs using the kinetic nomenclature described in the main text 
and supplementary figure (refer Appendix 2 figure 10). Here dA00 represents d[A00]/dt and 
similarly for other expressions. At steady state thus, each of the right hand sides of these 
expressions will be equal to zero. 

dA00 kb1 A00 K1 ab1 A00 K2 kub1 A00K1 aub1 A00K2 a4 A10P k4 A01P :
dA01  kb2 A01 K2 k1 A00K1 kub2 A01K2 :
dA10 ab2 A10 K1 a1 A00K2 aub2 A10K1 :
dA11  k2 A01K2 a2 A10K1  kb3 A11 P   ab3 A11 P  kub3 A11P1  aub3 A11P2 : 

dA00K1     kb1 A00 K1  k1 kub1 A00K1 :
dA10K1     ab2 A10 K1  a2 aub2 A10K1 :
dA00K2     ab1 A00 K2  aub1 a1 A00K2 :
dA01K2     kb2 A01 K2  kub2 k2 A01K2 :
dA11P1     kb3 A11 P  kub3  k3 A11P1 :
dA10P     a3 A11P2  a4 A10P :
dA11P2     ab3 A11 P  aub3  a3 A11P2 :
dA01P      k3 A11P1  k4 A01P : 

dK1 kb1 A00 K1 k1 kub1 A00K1 ab2 A10 K1  a2 aub2 A10K1 :           
dK2 ab1 A00 K2 aub1 a1 A00K2 kb2 A01 K2  kub2 k2 A01K2 :



dP kb3 A11 P  kub3 A11P1  a4 A10P ab3 A11 P  aub3 A11P2  k4 A01P :

The model is also associated with conservation conditions for the substrate and enzyme 
concentrations which are described below. Here we store the conservation expressions in ACon, 
K1Con, K2Con and PCon for the substrate and respective enzymes. The right hand side of each of
these expressions are always equal to zero (both in the transient behavior and at steady state).

ACon  ATotal A00 A10 A01 A11 A00K1 A01K2 A00K2 A10K1 A11P1 A10P
A11P2 A01P :

K1Con K1Total K1 A00K1 A10K1 : 
K2Con  K1Total K2 A00K2 A01K2 : 
PCon  PTotal P A11P1 A10P A11P2 A01P :

Kinetic constraints for case 2 symmetry (refer main text) are imposed on the original model. 

a1 k1 : ab1 kb1 : aub1 kub1 :
a2 k2 : ab2 kb2 : aub2 kub2 :  
a3 k3 :  ab3 kb3 : aub3 kub3 :
a4 k4 :

In addition to the kinetic constraints the total enzyme concentrations of the two kinases need to be
equal for exact case 2 symmetry to be present in Mixed-Random 2 DSP. This is imposed as shown 
below. 

K2Total K1Total : 

At this stage we introduce auxiliary constants c1, c2, and c3 in place of the binding constants so as 
to make further analytical expressions more accessible. 

kb1 c1 kub1 k1 :
kb2 c2 kub2 k2 :
kb3 c3 kub3 k3 : 

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In 
this context we want to solve all variables in terms of the free enzymes ([K1], [K2] & [P]) and the 
partially modified substrate [A01]. In order to do this, we use the Maple command solve which 
solves the equation supplied for a given variable. We first solve for the individual complexes using 
their corresponding differential equation. An example of this (using [A00K1] is given below in 
detail). 

The differential equation of [A00K1] is given by, 

d A00K1
dt

= dA00K1     



(1)(1)

(2)(2)

d A00K1
dt

= c1 k1 kub1  A00 K1 k1 kub1  A00K1

The solve command by Maple, solves this equation for the given variable (in this case [A00K1]). 
We in turn store this value (the solution returned by the solve command) in [A00K1]. This is 
performed by the following command. 

A00K1 solve dA00K1, A00K1
A00K1 K1 A00 c1

This operation is performed for the other complexes and substrate forms as well. Here we 
simultaneously solve expressions for the substrate forms using the solve command as shown 
below. The solution is stored in a variable labelled Sol, and then the respective solutions are 
extracted from this vector using the eval command. 

A01K2 solve dA01K2, A01K2 : 
A00K2 solve dA00K2, A00K2 : 
A10K1 solve dA10K1, A10K1 :
A11P1 solve dA11P1, A11P1 :
A10P solve dA10P, A10P : 
A11P2 solve dA11P2, A11P2 :
A01P solve dA01P, A01P :

S solve dA00, dA11, dA10 , A00, A11, A10 :

A00 eval A00, S : 
A01 eval A01, S : 
A10 eval A10, S :
A11 eval A11, S :

Doing this results in the following correlations between the concentrations of the various substrate
forms at steady state.

A00  = 
K2 A01 c2 k2

K1 c1 k1
A01  = A01

A10  = 
K22 A01

K12

A11  = 
K2 A01 c2 k2 K1 K2

2 K1 P c3 k3

Proof for invariant in the asymmetric branches

We know that K1Con and K2Con are both individually equal to zero always. Thus at a given 



(1)(1)

(1.1)(1.1)

steady state, K1Con - K2Con must also be equal to zero. 

We thus introduce the term T = (K1Con - K2Con) = 0 and also introduce a new ratio,  = [K1]/
[K2]. Note: As discussed in the main text, the symmetric steady state is one where [K1] = [K2] 
or  = 1. Since we are isolating solutions of asymmetry, we are primarily interested in solutions 
that permit,  ≠ 1. 

T K1Con  K2Con = 0 :
K1 K2 :

The following command (simplify), simplifies the expression algebraically

simplify T  = 
 k1 A01 c2 k1 k2  K2 1

k1 
= 0

From this we can ascertain that, should an asymmetric steady state exist (where  ≠ 1) - the 
term (  k1 A01 c2 k1 k2 ) in the expression needs to necessarily be zero. This term is an 
expression in the partial substrate form [A01],  and kinetic constants. Thus solving this to 
isolate the partially modified substrate form we get the following. Here we use the solve 
command from Maple to solve T for [A01] and the simplify command to algebraically simplify 
the resulting expression.

A01 simplify solve T, A01

A01
 k1

k1 k2  c2

Substituting this value for [A01] it back into the expression for the concentration of [A01], we 
get the following correlation. 

A00  = 
k2

k1 k2  c1

We note that the concentration of [A00] is fixed in the asymmetric steady state and is given by 
a few key kinetic parameters. Using this information (the concentration of [A00] at an 
asymmetric steady state) - we solve for [K2], [P] at this asymmetric steady state using their 
individual enzyme conservation equations. This is done by finding solutions for [K2] and [P] 
using equations K2Con and PCon as shown below, using the Maple command solve. 

P simplify solve PCon, P :
K2 simplify solve K2Con, K2 :

simplify P  = 
k2 k3 k4  K1Total PTotal k3 k4

k3 k4

simplify K2  = 



(1)(1)

K1Total k1 k2

k1 1

Using these expressions, we find that the concentration of [A11] and [P] is also fixed and is 
given by only a few kinetic constants and total enzyme concentrations as shown below.

simplify P  = 
k2 k3 k4  K1Total PTotal k3 k4

k3 k4

simplify A11  = 
k2 k4 K1Total

2 c3 k2 k3 k4  K1Total PTotal k3 k4

Necessary conditions

Since substrate concentration are always necessarily positive, the expression for [A00] and 
[A11] above must be positive. The numerators are only a function of kinetic parameters which 
are always positive, thus the denominator must necessarily be positive to ensure that the 
resulting concentration is positive. This gives us the necessary condition for an asymmetric state
to exist as follows. 

1.  k2 k1

2.  k2 K1total k3 k4 Ptotal k3 k4

Sufficiency of necessary conditions

In this section of the proof we show the necessary conditions shown above are also sufficient 
for an asymmetric steady state to exist for some positive ATotal value. i.e. We show that upon a 
bifurcation along ATotal we are bound to encounter symmetry breaking provided the necessary 
conditions are satisfied. Note that a feasible steady state in this context is one in which the 
concentrations of all substrates, complexes and enzymes are positive.
  
We do this by showing that the asymmetric states defined by the concentration (invariant) of 
[A00], [A11] & [P] described above is indeed a feasible solution for the system of ODEs at some
positive ATotal value. 

In an asymmetric steady state, as seen above the concentration of [A00], [A11] & [P] are fixed 
by a few kinetic constants and total enzyme concentrations, 

A00
k2

k1 k2  c1
 = 

k2

k1 k2  c1
 

A11
k2 k4 K1Total

2 c3 k2 k3 k4  K1Total PTotal k3 k4
 = 



(1)(1)

1
2

 
k2 k4 K1Total

c3 k2 k3 k4  K1Total PTotal k3 k4

P
k2 k3 k4  K1Total PTotal k3 k4

k3 k4
 = 

k2 k3 k4  K1Total PTotal k3 k4

k3 k4

The other variables in this asymmetric state are thus given by 

A00  = 
k2

k1 k2  c1

A11  = 
k2 k4 K1Total

2 c3 k2 k3 k4  K1Total PTotal k3 k4

A00K1  = 
 K1Total k2

k1 1
 

A00K2  = 
K1Total k2

k1 1

A01K2  = 
K1Total 

1

A10K1  = 
K1Total

1

K1  = 
 K1Total k1 k2

k1 1

K2  = 
K1Total k1 k2

k1 1

simplify A11P1  = 
K1Total k2

2 k3

simplify A11P2  = 
K1Total k2

2 k3

simplify A01P  = 
K1Total k2

2 k4

simplify A10P  = 
K1Total k2

2 k4

The system of ODE is also satisfied at this point, as is verified below. 

simplify dA00  = 0
simplify dA11  = 0
simplify dA01  = 0
simplify dA10  = 0



(1)(1)

simplify dA00K1  = 0
simplify dA00K2  = 0
simplify dA01P  = 0
simplify dA10P  = 0
simplify dA01K2  = 0
simplify dA10K1  = 0
simplify dA11P1  = 0
simplify dA11P2  = 0
simplify dP  = 0
simplify dK1  = 0
simplify dK2  = 0

Hence all that remains to be shown is that the variables (As described above) are positive for 
some value of ATotal. 
This is true if and only if
      1. Necessary condition (k3 k1  is satisfied 
      2.  is positive. 

However if  is positive all concentrations are automatically positive (provided necessary 
conditions are satisfied).

Thus this means that for every positive value of   1, all concentrations are positive and the 
conservation of kinase and phosphatase is also satisfied. 

Since the concentrations are all positive there exists a unique finite ATotal value for every 
 (permitting asymmetric states). 

Hence we have proved that symmetry breaking is guaranteed for some finite positive ATotal, 
provided the necessary conditions above are satisfied - making those conditions sufficient for 
the behavior. 

Prediction of pitchfork bifurcation along ATotal

Here we predict the value of ATotal at which symmetry breaking occurs via a pitchfork 
bifurcation. This point in the bifurcation is characterized by the intersection of both the 
symmetric steady state branch and the asymmetric steady state branches.

Hence at the position of symmetry breaking, we know two insights.

1. The system is still symmetric, hence [A01] = [A10] and [K1] = [K2]. 
2. The invariant describing the asymmetric steady state is also true. 

Using these two information, we can simplify the original system considerably as follows.

K1 K2 :  1 : 



(1)(1)

(4.1)(4.1)

A00
k2

k1 k2  c1
:

A11
k2 k4 K1Total

2 c3 k2 k3 k4  K1Total PTotal k3 k4
:

P
k2 k3 k4  K1Total PTotal k3 k4

k3 k4
:

 

Now, by solving the conservation expression for the substrate we can isolate the value of ATotal
when the asymmetric steady states and the symmetric steady state intersect (indicating the 
pitchfork bifurcation point) 

ATotal = simplify solve simplify ACon , ATotal

ATotal = 2 k3 k4  c3 c1 K1Total
2 k1 k4  k3 k1 k4  c2 k2

3 2 c3 c1 PTotal k4
2

k1 c1 PTotal 1  k4 c1 k1
2 K1Total  k3

2 2 k1 k4 
1
2

 c1 c3 PTotal
1
4

 c1

1
2

 c3  k4 c1 c3 k1 K1Total  k3 c1 c3 k1
2 k4

2 K1Total  K1Total c2 k2
2

2 k3 k1 k4 c3 c2 PTotal k4 c1 k1 K1Total K1Total c2 c2 PTotal 2  k3

c1 k1 k4 K1Total c2 c3 PTotal c2 c3 K1Total
1
2

 c2 2 c3  k2

2 c1 c3 k1
2 k3

2 k4
2 PTotal K1Total c2 2 2 k3 k1 k2  k1 c3 k2 k3

k4  K1Total PTotal k3 k4  c1 k4 c2

A cross verification of this analytical work is carried out in the read me file for the parameters 
used in generating the figures (Fig 2E). 



Mixed Random 2a DSP : Separate Kinase Common Phosphatase
Case 2 - Present and Breaks

In this Maple file we analytically show the presence of case 2 symmetry breaking in the Mixed Random 2a
DSP network with separate kinase effecting distributive random phosphorylation and unsaturated 
processive dephoshorylation respectively (modelled as a linear reaction). We do this by first describing the 
model as a system of ODEs along with the associated substrate and enzyme conservations. We then 
impose the kinetic constraints pertaining to case 2 symmetry. By solving for the steady state of the system 
of ODEs we obtain relations between concentrations of the substrate variables in terms of each other and 
the free enzyme concentrations. After this, we identify key symmetric pairings that represent the symmetric
steady state. i.e. case 2 symmetry breaking requires symmetry between [A01] & [A10] and [K1] & [K2]. 
By leveraging this insight and isolating steady states not of this type, we ascertain the features of the 
asymmetric steady state emerging from symmetry breaking. These procedures are carried out in detail 
below using built in Maple commands. 

Note: A subscript is used to distinguish between the two different complexes formed between [P] and  
[A11].

We initialize the Maple file with the restart command and load the relevant libraries of inbuilt 
Maple functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with LinearAlgebra :  with VectorCalculus :  with Student LinearAlgebra :

The system is modelled as a set of ODEs using the kinetic nomenclature described in the main text 
and supplementary figure (refer Appendix 2 figure 10). Here dA00 represents d[A00]/dt and 
similarly for other expressions. At steady state thus, each of the right hand sides of these 
expressions will be equal to zero. 

dA00 kb1 A00 K1 pb1 A00 K2 kub1 A00K1 pub1 A00K2 k3 A11  p3 A11 :
dA01  kb2 A01 K2 k1 A00K1 kub2 A01K2 :
dA10 pb2 A10 K1 p1 A00K2 pub2 A10K1 :
dA11  k2 A01K2 p2 A10K1 k3 A11  p3 A11 : 

dA00K1     kb1 A00 K1  k1 kub1 A00K1 :
dA10K1     pb2 A10 K1  p2 pub2 A10K1 :
dA00K2     pb1 A00 K2  pub1 p1 A00K2 :
dA01K2     kb2 A01 K2  kub2 k2 A01K2 :
 
dK1 kb1 A00 K1 k1 kub1 A00K1 pb2 A10 K1  p2 pub2 A10K1 :           
dK2 pb1 A00 K2 pub1 p1 A00K2 kb2 A01 K2  kub2 k2 A01K2 :

The above equations are associated with conservation conditions which are described below. Here 
we store the conservation expressions in ACon, K1Con and K2Con for the substrate and the 
respective enzymes. The right hand side of each of these expressions are always equal to zero (both
in the transient behavior and at steady state).



(1)(1)

ACon ATotal A00 A10 A01 A11 A00K1 A01K2 A00K2 A10K1 :
K1Con K1Total K1 A00K1 A10K1 : 
K2Con  K1Total K2 A00K2 A01K2 : 

Kinetic constraints for case 2 symmetry (refer main text) are imposed on the original model. 

p1 k1 : pb1 kb1 : pub1 kub1 :
p2 k2 : pb2 kb2 : pub2 kub2 :  
p3 k3 :

In addition to the kinetic constraints the total enzyme concentrations of the two kinases need to be
equal for exact case 2 symmetry to be present in Mixed-Random 3 DSP. This is imposed as shown 
below. 

K2Total K1Total : 

At this stage we introduce auxiliary constants c1, c2, and c3 in place of the binding constants so as 
to make further analytical expressions more accessible.  

kb1 c1 kub1 k1 : 
kb2 c2 kub2 k2 : 

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In 
this context we want to solve all variables in terms of the free enzymes ([K1], [K2] & [P]) and the 
partially modified substrate [A01]. In order to do this, we use the Maple command solve which 
solves the equation supplied for a given variable. We first solve for the individual complexes using 
their corresponding differential equation. An example of this (using [A00K1] is given below in 
detail). 

The differential equation of [A00K1] is given by, 

d A00K1
dt

= dA00K1     
d A00K1

dt
= c1 k1 kub1  A00 K1 k1 kub1  A00K1

The solve command by Maple, solves this equation for the given variable (in this case [A00K1]). 
We in turn store this value (the solution returned by the solve command) in [A00K1]. This is 
performed by the following command. 

A00K1 solve dA00K1, A00K1
A00K1 K1 A00 c1

This operation is performed for the other complexes and substrate forms as well. Here we 
simultaneously solve expressions for the substrate forms using the solve command as shown 
below. The solution is stored in a variable labelled Sol, and then the respective solutions are 



extracted from this vector using the eval command. 

A01K2 solve dA01K2, A01K2 : 
A00K2 solve dA00K2, A00K2 : 
A10K1 solve dA10K1, A10K1 : 

Sol solve dA00, dA11, dA10 , A00, A11, A10 :

A00 eval A00, Sol :
A01 eval A01, Sol :
A10 eval A10, Sol :
A11 eval A11, Sol :

Doing this results in the following correlations between the concentrations of the various substrate
forms at steady state.

A00  = 
A01 K2 c2 k2
K1 c1 k1

A01  = A01

A10  = 
A01 K22

K12

A11  = 
A01 K2 c2 k2 K1 K2

2 K1 k3

Proof for invariant in asymmetric branches

We know that K1Con and K2Con are both individually equal to zero always. Thus at a given 
steady state, K1Con - K2Con must also be equal to zero. 

We thus introduce the term T = (K1Con - K2Con) = 0 and also introduce a new ratio,  = [K1]/
[K2]. Note: As discussed in the main text, the symmetric steady state is one where [K1] = [K2] 
or  = 1. Since we are isolating solutions of asymmetry, we are primarily interested in solutions 
that permit,  ≠ 1. 

T K1Con  K2Con = 0 :
K1 K2 :

The following command (simplify), simplifies the expression 

simplify T  = 
K2  k1 A01 c2 k1 k2  1

k1 
= 0 

   
From this we can ascertain that, should an asymmetric steady state exist (where  ≠ 1) - the 
term (  k1 A01 c2 k1 k2 ) in the expression needs to necessarily be zero. This term is an 
expression in the partial substrate form [A01],  and kinetic constants. Thus solving this to 
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isolate the partially modified substrate form in terms of the kinetic parameters we get the 
following. Here we use the solve command from Maple to solve T for [A01]. We use the simplify 
command to algebraically simplify the resulting expression.

A01 simplify solve T, A01

A01
 k1

k1 k2  c2

Substituting this value for [A01] it back into the expression for the concentration of [A01], we 
get the following correlation. 

A00  = 
k2

k1 k2  c1

We note that the concentration of [A00] is fixed in the asymmetric steady state and is given by 
a few key kinetic parameters. Using this information (the concentration of [A00] at an 
asymmetric steady state) - we solve for the concentration of free enzyme [K2] at this asymmetric
steady state using the corresponding enzyme conservation equation (K2Con). This operation is 
carried out using the Maple command solve as shown below. 

K2 simplify solve K2Con, K2 :

K2  = 
K1Total k1 k2
k1 1

Using these expressions, we find that the concentration of [A11] is also fixed and given by only 
a few key kinetic constants and total enzyme concentrations as shown below.

simplify A11  = 
K1Total k2

2 k3

Necessary conditions

Since substrate concentration are always necessarily positive, the expression for [A00] and 
[A11] above must be positive. The numerators are only a function of kinetic parameters which 
are always positive, thus the denominator must be positive to ensure that the resulting 
concentration is positive. This gives us the necessary condition for an asymmetric state to exist 
as follows. 

1.  k2 k1

Sufficiency of necessary conditions

In this section of the proof we show the necessary conditions shown above are also sufficient 



for an asymmetric steady state to exist for some positive ATotal value. i.e. We show that upon a 
bifurcation along ATotal we are bound to encounter symmetry breaking provided the necessary 
conditions are satisfied. Note that a feasible steady state in this context is one in which the 
concentrations of all substrates, complexes and enzymes are positive.
  
We do this by showing that the asymmetric states defined by the invariant concentration of 
[A00] & [A11] described above is indeed a feasible solution for the system of ODEs at some 
positive ATotal value. 

In an asymmetric steady state, as seen above the concentration of [A00] and [A11] are fixed by 
a few kinetic constants and total enzyme concentrations, 

A00
k2

k1 k2  c1
 = 

k2
k1 k2  c1

 

A11
K1Total k2

2 k3
 = 

1
2

 
K1Total k2

k3

The other variables in this asymmetric state are thus given by 

A00  = 
k2

k1 k2  c1

A11  = 
K1Total k2

2 k3

A00K1  = 
 K1Total k2
k1 1

 

A00K2  = 
K1Total k2
k1 1

A01K2  = 
K1Total 

1

A10K1  = 
K1Total

1
simplify A11P1  = A11P1
simplify A11P2  = A11P2
simplify A01P  = A01P
simplify A10P  = A10P

The system of ODE is also satisfied at this point, as is verified below. 

simplify dA00  = 0
simplify dA11  = 0
simplify dA01  = 0
simplify dA10  = 0



simplify dA00K1  = 0
simplify dA00K2  = 0
simplify dA01K2  = 0
simplify dA10K1  = 0
simplify dK1  = 0
simplify dK2  = 0

Hence all that remains to be shown is that the variables (As described above) are positive for 
some value of ATotal. 
This is true if and only if
      1. Necessary condition (k1 k2  is satisfied 
      2.  is positive. 

However if  is positive all concentrations are automatically positive (provided necessary 
conditions are satisfied).

Thus this means that for every non singular value of  all concentrations are positive and the 
conservation of kinase and phosphatase is also satisfied. 

Since the concentrations are all positive there exists a unique ATotal value for every 
 (permitting asymmetric states). 

Hence we have proved that symmetry breaking is guaranteed for some finite positive ATotal, 
provided the necessary conditions above are satisfied - making those conditions sufficient for 
the behavior.

Prediction of pitchfork bifurcation along ATotal

Here we predict the value of ATotal at which symmetry breaking occurs via a pitch fork 
bifurcation. This point in the bifurcation is characterized by the intersection of both the 
symmetric steady state branch and the asymmetric steady state branches.

Hence at the position of symmetry breaking, we know two insights.

1. The system is still symmetric, hence [A01] = [A10] and [K1] = [K2]. 
2. The invariant describing the asymmetric steady state is also true. 

Using these two information, we can simplify the original system considerably as follows.

K1 K2 :  1 : 

A00
k2

k1 k2  c1
:   

A11
K1Total k2

2 k3
:
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Now, by solving the conservation expression for the substrate we can isolate the value of ATotal
when the asymmetric steady states and the symmetric steady state intersect (indicating the 
pitchfork bifurcation point) 

ATotal = simplify solve simplify ACon , ATotal

ATotal =
1

2 k1 k2  c1 c2 k3 k1
c1 K1Total k2 2 k3  c2 4 k3  k1

2 K1Total k2 c1

2 k3  k2 c2 k1 2 K1Total k2
2 c1 c2 k3

A cross verification of this analytical work is carried out in the read me file for the parameters 
used in generating the figures (Appendix 2 Fig 1). 



Absolute (exact) concentration robustness
Ordered DSP - Common kinase common phosphatase

In this maple file, we analytically show three key results pertaining to the presence of (exact) ACR in the 
ordered DSP system with common kinase common phosphotase effecting phosphorylation and 
dephosphorylation respectively (without any imposition of symmetry at the kinetic level). Namely,

      1. We show that among the substrates, only the partially modified form (Ap) can show ACR in the 
system irrespective of kinetic parameters; i.e. The compeltely modified or completely unmodified substrate 
form is incapable of exhibiting ACR. This ACR is again only possible with changing total amounts of 
substrate concentration (ATotal).
      2. The presence of ACR is (if present) guaranteed on two distinct branches of steady states (for any 
given ATotal) value. 
      3. If an ACR branch is to be present for some ATotal, then there will always be a non-ACR branch on 
which the ratio of the free kinase to free phosphatase is exactly constant irrespective of total substrate 
concentrations.

The ACR considered here is defined here as follows -- "If the substrate form is robust (maintained at an 
exact concentration) to increasing (or changing) total concentration of either the substrate or the enzymes 
(ATotal/KTotal/PTotal), that branch of steady state is termed to be an ACR branch, and the substrate form 
that shows robustness is said to exhibit ACR"

Put together these results provide the insight that granular symmetry is not strictly required in the network 
for ACR to be present - and other constratints involving kinetic constants and total concentrations of 
enzymes can guarentee ACR. Further discussion on the relevance of these results is provided in the 
appendix of the manuscript.

This section of the maple document pertaining to these results is structured with a common text 
introducing the model and initializing the steady state calculations - followed by different sub-sections each
containing the proof to a specific self contained result. When running the code - please take notice to only 
run one sub-section at a time.



We begin by initializing the Maple file with the restart command and load the relevant libraries of 
inbuilt Maple functions (LinearAlgebra, VectorCalculus, Student[LinearAlgebra])

restart : with LinearAlgebra : with VectorCalculus : with Student LinearAlgebra :

The system is modelled as a set of ODEs using the kinetic nomenclature described in the main text 
and supplementary figure (refer to Appendix 2 Figure 10). Here dA represents d[A]/dt and 
similarly in the case of the other variables. At steady state thus, the right hand sides of each of 
these expressions will be equal to zero. 

dA  k4 ApP  kub1 AK  kb1 A K :
dAp  k1 AK  k3 AppP kub2 ApK kub4 ApP  kb2 Ap K kb4 Ap P :
dApp  k2 ApK  kub3 AppP  kb3 App P :
 
dAK kb1 A K  kub1 k1 AK :
dApK  kb2 Ap K  kub2 k2 ApK : 
dAppP kb3 App P  kub3 k3 AppP :  
dApP  kb4 Ap P  kub4 k4 ApP :

dK  kb1 A K  kub1 k1 AK kb2 Ap K  kub2 k2 ApK :
dP  kb3 App P  kub3 k3 AppP kb4 Ap P  kub4 k4 ApP : 

The model is also associated with conservation conditions which are described below. Here we 
store the conservation expressions as ACon, PCon and KCon for the substrate and the respective 
enzymes. Each of these expressions is always equal to zero (both in the transient behavior and at 
steady state).

ACon ATotal  A  Ap App AK ApK AppP ApP :
PCon PTotal P AppP ApP :
KCon KTotal  K AK ApK :

kb1 c1 k1 kub1 : 
kb2 c2 k2 kub2 :
kb3 c3 k3 kub3 : 
kb4 c4 k4 kub4 :

Once this is done, we solve for the steady state of the system in terms of fewer key variables. In 
this context we want to solve all variables in terms of the concentrations of the free enzymes ([K] &
[P]) and the concentration of the partially modified substrate ([Ap]). In order to do this, we use 
the Maple command solve, which solves the supplied equation for a given variable. We first solve 
for the individual complexes using their corresponding differential equation. An example of this 



(using [AK]) is given below in detail. 

AK solve dAK, AK  = K A c1

This operation is repeated for the other complexes forms as well. 

ApK solve dApK, ApK : 
AppP solve dAppP, AppP :
ApP solve dApP, ApP :

Here we introduce a new ratio  which is equal to the concentration of free (unbound) kinase to 
the free (unbound) phosphotase.

K P :

We know that PCon is always equal to zero. Here we solve for the steady state concentration of the
free phosphatase and in doing so we obtain an expression for it in terms of the ratio epsilion and 
the substrate forms.

P solve PCon, P  = 
PTotal

Ap c4 App c3 1

As stated earlier - different sub-sections pertaining to specific proofs follow from here. Please take 
notice to run one sub-section at a time. 

Proof of inability of the ACR in any substrate with changing 
KTotal (or PTotal)

In this sub-section we show that no substrate is capable of exhibiting ACR for changing enzyme 
concentrations. In order to do this - we systematically show that the completely unmodified, partially 
modified and completely modified substrate forms are incapable of exhibiting ACR with increasing or 
changing KTotal.

A

We begin by solving the remaining equations to obtain expressions for substrates App, Ap 
at steady state in terms of concentrations of A and the ratio . We do this by using the 
inbuilt solve command in Maple.

Sol solve dAp, dApp , Ap, App  = Ap =
 A c1 k1
c4 k4

, App =
2 A c1 k1 c2 k2
c4 k4 c3 k3

assign Sol
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Thus at steady state - analyzing the total conservation of the substrate using these 
expressions leads to (we have used the numer and collect command to isolate the numerator 
and reorganize the resulting ATotal expression respectively),

collect numer ACon ,

A2 c1
2 c2

2 k1
2 k2

2 4 A2 c1
2 c2 c3 k1

2 k2 k3 A2 c1
2 c2 c4 k1

2 k2 k3  3

A2 c1
2 c3 c4 k1

2 k3
2 A2 c1 c2 c3 c4 k1 k2 k3 k4 A c1 c2 c3 c4 k1 k2 k3 k4 ATotal

A c1 c2 c3 c4 k1 k2 k3 k4 PTotal A c1 c2 c3 c4 k1 k3
2 k4 PTotal

A c1 c2 c4 k1 k2 k3 k4  2 A2 c1 c3 c4
2 k1 k3

2 k4 A c1 c3 c4
2 k1 k3

2 k4 ATotal

A c1 c3 c4
2 k1 k3

2 k4 PTotal A c1 c3 c4
2 k3

2 k4
2 PTotal A c1 c3 c4 k1 k3

2 k4  

A c3 c4
2 k3

2 k4
2 c3 c4

2 k3
2 k4

2 ATotal

Here we proceed by a proof of contradiction - if we assume that A exhibits ACR for a range 
of KTotal values - then this expression simplifies to simply a single variate polynomial in  
(roots of which represents steady state solutions of the system). The key insight here is that 
since this expression does not contain KTotal, changing KTotal values would not affect the 
roots of this polynomial, implying  can only take certain values at steady states with ACR. 
This is a contradiction as the expression for KTotal cannot accomodate a non-changing A 
and  with changing KTotal, as shown below.

collect numer KCon ,
c4 k4 A c1 c2 k1 k2 KTotal A c1 c2 k1 k3 PTotal  2 c4 k4 A c1 c4 k1 k3 KTotal

A c1 c4 k3 k4 PTotal c4 k3 k4 PTotal  c4
2 k4

2 k3 KTotal

i.e. By the assumption of ACR in A, it is fixed at a given value (by definition of ACR) for a 
range of KTotal values. Thus in the resulting polynomial from KCon,  (feasible roots of the 
resulting polynomial in ) will have to necessarily change as KTotal changes. However 
equation ACon above, which was independent of KTotal, has fixed roots of  which are 
consequently independent of KTotal. As stated earlier the common feasible root of these two 
equations would define steady state concentrations of the system. Since the roots in  
change in equation KCon with changing KTotal and remain fixed in equation ACon - we 
have a contradiction. Thus A cannot be fixed exactly for a range of KTotal.

Thus A cannot exhibit ACR. 

Ap

We begin by solving the remaining equations to obtain expressions for substrates A, App at
steady state in terms of concentrations of Ap and the ratio . We do this by using the inbuilt
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solve command in Maple.

Sol solve dA, dApp , A, App  = A =
Ap c4 k4
c1  k1

, App =
 Ap c2 k2
c3 k3

assign Sol

Thus at steady state - analyzing the total conservation of the substrate using these 
expressions leads to (we have used the numer and collect command to isolate the numerator 
and reorganize the resulting ATotal expression respectively),

collect numer ACon ,

Ap2 c1 c2
2 3 k1 k2

2 Ap2 c1 c2 c3 k1 k2 k3 Ap2 c1 c2 c4 k1 k2 k3

Ap c1 c2 c3 k1 k2 k3 ATotal Ap c1 c2 c3 k1 k2 k3 PTotal Ap c1 c2 c3 k1 k3
2 PTotal

Ap c1 c2 k1 k2 k3  2 Ap2 c1 c3 c4 k1 k3
2 Ap2 c2 c3 c4 k2 k3 k4

Ap c1 c3 c4 k1 k3
2 ATotal Ap c1 c3 c4 k1 k3

2 PTotal Ap c1 c3 c4 k3
2 k4 PTotal

Ap c1 c3 k1 k3
2 c1 c3 k1 k3

2 ATotal  Ap2 c3 c4
2 k3

2 k4 Ap c3 c4 k3
2 k4

Here we proceed by contradiction - if we assume that Ap exhibits ACR for a range of KTotal 
values - then this expression simplifies to simply a single variate polynomial in  (roots of 
which represents steady state solutions of the system). The key insight here is that since this 
expression does not contain KTotal, changing KTotal values would not affect the roots of this 
expresssion, implying  can only take certain values at steady states with ACR. This is a 
contradiction as the expression for KTotal cannot accomodate a non-changing Ap and  with
changing KTotal, as shown below

collect numer KCon ,
Ap c2 k1 k2 KTotal Ap c2 k1 k3 PTotal k1 k3 PTotal  Ap c4 k1 k3 KTotal

PTotal k3 Ap c4 k4 k1 k3 KTotal

i.e. By the assumption of ACR in Ap, it is fixed at a given value (by definition of ACR) for a 
range of KTotal values. Thus in the resulting polynomial from KCon,  (feasible roots of the 
resulting polynomial in ) will have to necessarily change as KTotal changes. However 
equation ACon above, which was independent of KTotal, has fixed roots of  which are 
consequently independent of KTotal. As stated earlier the common feasible root of these two 
equations would define steady state concentrations of the system. Since the roots in  
change in equation KCon with changing KTotal and remain fixed in equation ACon - we 
have a contradiction. Thus Ap cannot be fixed exactly for a range of KTotal.

Thus Ap cannot exhibit ACR. 
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(1.3.1)(1.3.1)

App

We begin by solving the remaining equations to obtain expressions for substrates A, Ap at 
steady state in terms of concentrations of App and the ratio . We do this by using the 
inbuilt solve command in Maple.

Sol solve dA, dAp , A, Ap  = A =
App c3 c4 k3 k4
c1 c2 

2 k1 k2
, Ap =

App c3 k3
c2  k2

assign Sol

Thus at steady state - analyzing the total conservation of the substrate using these 
expressions leads to (we have used the numer and collect command to isolate the numerator 
and reorganize the resulting ATotal expression respectively),

collect numer ACon ,

App2 c1 c2
2 c3 k1 k2

2 App c1 c2
2 c3 k1 k2

2 ATotal App c1 c2
2 c3 k1 k2

2 PTotal

App c1 c2
2 c3 k1 k2 k3 PTotal App c1 c2

2 k1 k2
2 c1 c2

2 k1 k2
2 ATotal  3

App2 c1 c2 c3
2 k1 k2 k3 App2 c1 c2 c3 c4 k1 k2 k3 App c1 c2 c3 c4 k1 k2 k3 ATotal

App c1 c2 c3 c4 k1 k2 k3 PTotal App c1 c2 c3 c4 k2 k3 k4 PTotal

App c1 c2 c3 k1 k2 k3  2 App2 c1 c3
2 c4 k1 k3

2 App2 c2 c3
2 c4 k2 k3 k4

App c2 c3 c4 k2 k3 k4  App2 c3
2 c4

2 k3
2 k4

Here we proceed by contradiction - if we assume that App exhibits ACR for a range of 
KTotal values - then this expression simplifies to simply a single variate cubic polynomial in 

 (roots of which represents steady state solutions of the system). The key insight here is 
that since this expression does not contain KTotal, changing KTotal values would not affect 
the roots of this expresssion, implying  can only take certain values at steady states with 
ACR. This is a contradiction as the expression for KTotal cannot accomodate a non-
changing App and  with changing KTotal, as shown below

collect numer KCon ,
3 PTotal c2

2 k2
2 k1 c2 k2 App c2 c3 k1 k2 KTotal App c2 c3 k1 k3 PTotal

c2 k1 k2 KTotal  2 c2 k2 App c3 c4 k1 k3 KTotal PTotal App c3 c4 k3 k4  

i.e. By the assumption of ACR in App, it is fixed at a given value (by definition of ACR) for 
a range of KTotal values. Thus in the resulting polynomial from KCon,  (feasible roots of 
the resulting polynomial in ) will have to necessarily change as KTotal changes. However 
equation ACon above, which was independent of KTotal, has fixed roots of  which are 
consequently independent of KTotal. As stated earlier the common feasible root of these two 



(2.1)(2.1)

(2.2)(2.2)

equations would define steady state concentrations of the system. Since the roots in  
change in equation KCon with changing KTotal and remain fixed in equation ACon - we 
have a contradiction. Thus App cannot be fixed exactly for a range of KTotal.

Thus App cannot exhibit ACR. 

Due to the structure of the DSP network, KTotal (App) and PTotal (A) are behaviorly equivalent 
(acheivable by a simple transformation of variables) and thus by extension a similar proof (omitted 
here) will rule out the presence of ACR in any of the substrates with increasing PTotal.

Absence of ACR in the fully modified (and unmodified) 
substrate with increasing ATotal

In this sub-section we show that the fully modified and the fully unmodified substrate forms (A and 
App) are capable of exhibiting ACR with changing total substrate concentrations. 

We begin by solving the remaining equations to obtain expressions for substrates A, Ap at 
steady state in terms of concentrations of App and the ratio . We do this by using the inbuilt 
solve command in Maple.

Sol solve dA, dAp , A, Ap  = 

Sol A =
App c3 c4 k3 k4
c1 c2 

2 k1 k2
, Ap =

App c3 k3
c2  k2

assign Sol

Thus at steady state - analyzing the total conservation of the substrate using these expressions 
leads to (we have used the numer and collect command to isolate the numerator and reorganize 
the resulting ATotal expression respectively),

collect numer KCon ,
3 PTotal c2

2 k2
2 k1 c2 k2 App c2 c3 k1 k2 KTotal App c2 c3 k1 k3 PTotal

c2 k1 k2 KTotal  2 c2 k2 App c3 c4 k1 k3 KTotal PTotal App c3 c4 k3 k4  

Similar to the earlier proof, we proceed with a proof by contradiction. If we assume that App 
presents with ACR for a range of ATotal values. Then the above expression simplifies to a single
variate polynomial in  (the roots of which represents steady state solutions of the system). The 
key insight here is that since this expression does not contain ATotal, changing ATotal values 
would not affect the roots of this expresssion, implying  can only take certain values at steady 
states with ACR. This is a contradiction as the expression for ATotal cannot accomodate a non-
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changing App and  with changing ATotal. 

collect numer ACon ,

App2 c1 c2
2 c3 k1 k2

2 App c1 c2
2 c3 k1 k2

2 ATotal App c1 c2
2 c3 k1 k2

2 PTotal

App c1 c2
2 c3 k1 k2 k3 PTotal App c1 c2

2 k1 k2
2 c1 c2

2 k1 k2
2 ATotal  3

App2 c1 c2 c3
2 k1 k2 k3 App2 c1 c2 c3 c4 k1 k2 k3 App c1 c2 c3 c4 k1 k2 k3 ATotal

App c1 c2 c3 c4 k1 k2 k3 PTotal App c1 c2 c3 c4 k2 k3 k4 PTotal App c1 c2 c3 k1 k2 k3

 2 App2 c1 c3
2 c4 k1 k3

2 App2 c2 c3
2 c4 k2 k3 k4 App c2 c3 c4 k2 k3 k4  

App2 c3
2 c4

2 k3
2 k4

Thus App cannot exhibit ACR.

Due to the structure of the DSP network A and App are topologically equivalent with respect to 
variation in ATotal concentrations. Thus by a similar proof (omitted here), A is incapable of exhibiting 
ACR with changing ATotal.

Presence and features of ACR in the partially modified 
substrate form with increasing ATotal

In the earlier sub-sections we have shown how ACR is not possible in A and App with changing 
ATotal. In this sub-section we show that the remaining substrate form Ap is capable of exhibiting ACR 
with changing ATotal and also elucidate the associated features of such the network and it's steady states
when it accomodates ACR.

We begin by solving the remaining equations to obtain expressions for substrates A, App at 
steady state in terms of concentrations of App and the ratio . We do this by using the inbuilt 
solve command in Maple.

Sol solve dA, dApp , A, App  = A =
Ap c4 k4
c1  k1

, App =
 Ap c2 k2
c3 k3

assign Sol

Thus at steady state - analyzing the total conservation of the substrate using these expressions 
leads to (we have used the numer and collect command to isolate the numerator and reorganize 
the resulting ATotal expression respectively),

collect numer KCon ,



(3.1)(3.1)
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Ap c2 k1 k2 KTotal Ap c2 k1 k3 PTotal k1 k3 PTotal  Ap c4 k1 k3 KTotal
PTotal k3 Ap c4 k4 k1 k3 KTotal

Now if Ap were to exhibit ACR with changing ATotal, the above expression which is 
independent of ATotal, should be satisfied for differing values of the ratio . This independence 
in  can only be guarenteed when the coeffecient of  and the constant term are both zero. 

This condition will provide a strict requirement on the kinetics (going beyond the granular 
symmetry assumed in case 1 symmetry earlier) and will also establish the concentration of Ap 
as functions of the kinetics of the network on the ACR branch as follows. 

Ap = solve Ap c2 k1 k2 KTotal Ap c2 k1 k3 PTotal k1 k3 PTotal , Ap  = 

Ap =
k3 PTotal

c2 k2 KTotal k3 PTotal
 

Ap = solve Ap c4 k1 k3 KTotal PTotal k3 Ap c4 k4 k1 k3 KTotal, Ap  = 

Ap =
k1 KTotal

c4 KTotal k1 k4 PTotal

The two expressions for Ap obtained above (as functions of kinetics and total enzyme 
amounts) must be strictly equal and positive (since Ap is strictly positive).

Note: We quickly note an insight here that with case 1 symmetry in the kinetics, these two 
expressions are equivalent, however without the granular symmetry of case 1, these two 
expressions can still be satisfied, by suitable choice of kinetic constants and total enzyme 
concentrations.

Taking this in to account - ACon = 0 (the conservation expression for the total substrate 
concentration) similarly simplifies to

collect numer ACon ,

Ap2 c1 c2
2 k1 k2

2 3 Ap2 c1 c2 c3 k1 k2 k3 Ap2 c1 c2 c4 k1 k2 k3

Ap c1 c2 c3 k1 k2 k3 ATotal Ap c1 c2 c3 k1 k2 k3 PTotal Ap c1 c2 c3 k1 k3
2 PTotal

Ap c1 c2 k1 k2 k3  2 Ap2 c1 c3 c4 k1 k3
2 Ap2 c2 c3 c4 k2 k3 k4

Ap c1 c3 c4 k1 k3
2 ATotal Ap c1 c3 c4 k1 k3

2 PTotal Ap c1 c3 c4 k3
2 k4 PTotal

Ap c1 c3 k1 k3
2 c1 c3 k1 k3

2 ATotal  Ap2 c3 c4
2 k3

2 k4 Ap c3 c4 k3
2 k4

Thus at a fixed value for Ap (deteremined from the equations earlier) - the above equation 
becomes a single variate polynomial in . 



(3.1)(3.1)
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We make two observations here,

1. The above polynomial in  has necessarily a negative real root (ascertained by noting the 
signs of the leading coeffecient and the constant) for positive kinetic constants. 
2. The product of roots of the polynomial is negative. 

Thus, if there exists an  positive root, signifying a distinct ACR steady state, satisfying the 
polynomial there will always exist another positive real root root signifying the presence of 
another ACR steady state. Thus if ACR is to be present - it is necessarily present on two such 
branches for any given ATotal.

                                      "Hence we draw our first conclusion regarding the ACR steady states - 
that should there exist an ACR steady state for Ap, there are necesarily two such branches 
with changing ATotal"

Sufficiency of necessary conditions

Here, before proceeding to ascertain further features of the system while exhibiting ACR, we
show that the necessary kinetic conditions obtained earlier are sufficient to obtain ACR in 
the system at some finite positive ATotal

We make two further observations at this stage,

1. That at sufficiently large ATotal concentrations, the sum of the roots of the polynomial ( 
in , ACon = 0) earlier is postive. 
2. The discriminant of the cubic polynomial is also positive at some finite but sufficiently 
large ATotal as shown below 

coeff simplify discrim numer ACon , , ATotal, 4

c3
4 k1

4 c1
4 Ap c4 1 2 k3

6 k2
2 Ap2 c2

2

The resulting polynomial for the discriminant is a quartic in ATotal. We isolate the leading 
coeffecient of this polynomial as shown above using the inbuilt Maple command coeff. Now 
since this expression is positive for all positive kinetic constants, the discriminant is itself 
positive at some finite but sufficiently large ATotal concentration. 

Thus the above two observations conclude that at some sufficiently large ATotal the 
polynomial admits two  roots, each denoting a steady state on an ACR branch. 

We now prove the existence of an intersection of the non-ACR branch and ACR branch.

We proceed with a proof by contraditction. Assuming that no intersection exists - there is no 
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(3.4)(3.4)

(3.3)(3.3)

common  root for both equation 3.1 and 3.2. We should note here that while Ap is not fixed at
its ACR concentration on the non-ACR branch (by definition) the kinetic parameters should 
none the less satisfy the necessary constraint elucidated above for the presence of ACR in the 
network; i.e., 

k3 PTotal
c2 k2 KTotal k3 PTotal

=
k1 KTotal

c4 KTotal k1 k4 PTotal

Inorder to establish this equivalency (in kinetic constants and total concentrations of enzymes),
we solve for k1 from this equation. This is an artibitrary choice and this expression can be 
satisfied by solving for any of the other constants involved. 

k1 = simplify solve
k3 PTotal

c2 k2 KTotal k3 PTotal
=

k1 KTotal
c4 KTotal k1 k4 PTotal

, k1

k1
c4 k3 k4 PTotal

2

k3 c2 c4  PTotal c2 k2 KTotal  KTotal

With this algebraic manipulation, equation 3.1 (KCon=0) from earlier can be rewritten as 
shown below, 

simplify numer eval KCon, k1 = simplify solve
k3 PTotal

c2 k2 KTotal k3 PTotal
=

k1 KTotal
c4 KTotal k1 k4 PTotal

, k1

k3 Ap c2 1  k3 PTotal KTotal Ap c2 k2   PTotal KTotal

We can see the birth and characteristic of the ACR branches more clearly now. There are two 
possible ways in which this conservation can be satisfied for any steady state. Either we are on 
an ACR branch - in which case the expression Ap c2 1  k3 PTotal Ap c2 k2 KTotal  is equal 

to 0 (as we have noted earlier for the ACR branch), or  is fixed as 
KTotal
PTotal

.

Thus if we isolate for just the non-ACR branch (where  is fixed as 
KTotal
PTotal

), we observe that 

the remaining conservation equation for the substrate simplifies to a univariate quadratic 
polynomial in Ap. In this instance we don't resubstitute the k1 as we did earlier - but allow it to
be a variable as such for the sake of transparancy in the expression. 
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T collect numer eval ACon, =
KTotal
PTotal

, Ap

T c1 c2
2 k1 k2

2 KTotal
3 c1 c2 c3 k1 k2 k3 KTotal

2 PTotal

c1 c2 c4 k1 k2 k3 KTotal
2 PTotal c1 c3 c4 k1 k3

2 KTotal PTotal
2

c2 c3 c4 k2 k3 k4 KTotal PTotal
2 c3 c4

2 k3
2 k4 PTotal

3  Ap2

c1 c2 c3 k1 k2 k3 ATotal KTotal
2 PTotal c1 c2 c3 k1 k2 k3 KTotal

2 PTotal
2

c1 c2 c3 k1 k3
2 KTotal

2 PTotal
2 c1 c3 c4 k1 k3

2 ATotal KTotal PTotal
2

c1 c3 c4 k1 k3
2 KTotal PTotal

3 c1 c3 c4 k3
2 k4 KTotal PTotal

3

c1 c2 k1 k2 k3 KTotal
2 PTotal c1 c3 k1 k3

2 KTotal PTotal
2 c3 c4 k3

2 k4 PTotal
3  Ap

c1 c3 k1 k3
2 ATotal KTotal PTotal

2

This quadratic polynomial has necessarily only one positive solution for Ap for every single 
value of ATotal (This can be quickly verified by noting the sign of the coeffecients of the 
polynomial). The range of the feasible root of Ap, as ATotal changes, would represent the range 
of Ap on the non-ACR branch. Allowing ATotal to vary between 0 to +infinity, one can note 
that the range of Ap also continously changes from 0 to +infinity (monotonically since it's a 
quadratic polynomial).

At some point within this range - Ap reaches the ACR value (provided by the kinetic 
constants). 

Thus this proves the existence of an intersection between an ACR branch and the non-ACR 
branch, and that the non-ACR branch in the system has the unique feature that the ratio of 
unbound kinase to phosphatase is exactly fixed by the ratio of the total amounts of kinase and 
phosphatase at all total substrate concentrations.


