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Abstract Sensorimotor learning is supported by at least two parallel systems: a strategic process 
that benefits from explicit knowledge and an implicit process that adapts subconsciously. How do 
these systems interact? Does one system’s contributions suppress the other, or do they operate 
independently? Here, we illustrate that during reaching, implicit and explicit systems both learn 
from visual target errors. This shared error leads to competition such that an increase in the explicit 
system’s response siphons away resources that are needed for implicit adaptation, thus reducing its 
learning. As a result, steady-state implicit learning can vary across experimental conditions, due to 
changes in strategy. Furthermore, strategies can mask changes in implicit learning properties, such 
as its error sensitivity. These ideas, however, become more complex in conditions where subjects 
adapt using multiple visual landmarks, a situation which introduces learning from sensory prediction 
errors in addition to target errors. These two types of implicit errors can oppose each other, leading 
to another type of competition. Thus, during sensorimotor adaptation, implicit and explicit learning 
systems compete for a common resource: error.

Editor's evaluation
The interaction between implicit and explicit processes is central for motor learning. The present 
study builds upon diverse and sometimes seemingly conflicting data sets to propose a compu-
tational model, delineating a competing relationship between the explicit and implicit learning 
process during motor adaptation. The model provides a number of conceptual insights about the 
nature of error-based learning, not just for researchers in sensorimotor learning but also for those 
studying human learning in general.

Introduction
When our movements are perturbed, we become aware of our errors, and through our own strategy, 
or instructions from a coach, engage an explicit learning system to improve our outcome (Morehead 
et  al., 2017; Mazzoni and Krakauer, 2006). This awareness, is not required to adapt; our brain 
also uses an implicit learning system that partially corrects behavior without our conscious awareness 
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(Morehead et al., 2017; Mazzoni and Krakauer, 2006). How do these two systems interact during 
sensorimotor adaptation?

Suppose that both systems learn from the same error. In this case, when one system adapts, it will 
reduce the error that drives learning in the other system; thus, the two parallel systems will compete 
to ‘consume’ a common error. Alternatively, suppose the two systems learn from separate errors, and 
each produces an output to minimize its own error. In this case, when one system adapts to its error, it 
could change behavior in ways that paradoxically increase the other system’s error.

Current models suggest that adaptation is driven by two distinct error sources: a task error (Leow 
et al., 2020; Körding and Wolpert, 2004; Langsdorf et al., 2021), and a prediction error (Mazzoni 
and Krakauer, 2006; Tseng et  al., 2007; Kawato, 1999). One leading theory suggests that the 
explicit system acts to decrease errors in task performance, while the implicit system acts to reduce 
errors in predicting sensory outcomes (Mazzoni and Krakauer, 2006; Taylor and Ivry, 2011; Wong 
and Shelhamer, 2012). In this model, strategies have no impact on implicit learning. A second theory 
suggests that task errors can drive learning in both systems (Leow et al., 2020; Kim et al., 2019; 
McDougle et  al., 2015; Miyamoto et  al., 2020). In this model, implicit and explicit systems will 
compete with one another.

Suppose implicit and explicit systems share at least one common error source. What will happen 
when experimental conditions enhance one’s explicit strategy? In this case, increases in explicit 
strategy will siphon away the error that the implicit system needs to adapt, thus reducing total implicit 
learning without directly changing implicit learning properties (e.g. its memory retention or sensitivity 
to error). This reduction in implicit learning creates the illusion that the implicit system was directly 
altered by the experimental manipulation, when in truth, it was only responding to changes in strategy.

Competitive interactions like this highlight the need to distinguish between an adaptive system’s 
learning properties such as its sensitivity to an error, and its learning timecourse, that is the contri-
bution it makes to overall adaptation at any point in time. In a competitive system, an adaptive 
processes’ learning timecourse depends not only on its own learning properties, but also its compet-
itors’ learning properties. In cases where implicit and explicit systems share an error source, one 
system’s behavior can be shaped not only by its past experience, but also by changes in the other 
system. Thus, competition may play an important role in savings (Haith et al., 2015; Coltman et al., 
2019; Kojima et al., 2004; Medina et al., 2001; Mawase et al., 2014) and interference paradigms 
(Sing and Smith, 2010; Lerner et al., 2020; Caithness et al., 2004) where learning properties change 
over time. Measuring the interdependence between implicit and explicit learning may help to explain 
the disconnect between studies that have suggested acceleration in motor learning is subserved 
solely by explicit strategy (Haith et  al., 2015; Huberdeau et  al., 2019; Morehead et  al., 2015; 
Avraham et al., 2020; Avraham et al., 2021), and studies that have pointed to concomitant changes 
in implicit learning systems (Leow et al., 2020; Yin and Wei, 2020; Albert et al., 2021).

Here, we begin by mathematically (McDougle et al., 2015; Miyamoto et al., 2020; Smith et al., 
2006; Albert and Shadmehr, 2018; Thoroughman and Shadmehr, 2000) considering the extent 
to which implicit and explicit systems are engaged by task errors and prediction errors. The hypoth-
eses make diverging predictions, which we test in various contexts. Our work suggests that in some 
contexts (Mazzoni and Krakauer, 2006; Taylor and Ivry, 2011), prediction errors and task errors 
both make important contributions to implicit learning (Results Part 3). In other contexts, the data 
suggest that the implicit system is primarily driven by task errors shared with the explicit system 
(Results Part 1). In this latter case, the competition theory explains why increases (Neville and 
Cressman, 2018; Benson et al., 2011) or decreases (Fernandez-Ruiz et al., 2011; Saijo and Gomi, 
2010) in explicit strategy cause an opposite change in implicit learning. This model explains why in 
some cases implicit adaptation can saturate as perturbations grow (Neville and Cressman, 2018; 
Bond and Taylor, 2015; Tsay et al., 2021a), but not others (Tsay et al., 2021a; Salomonczyk et al., 
2011). The model also explains why participants that utilize large explicit strategies can exhibit less 
implicit (Miyamoto et al., 2020) or procedural learning (Fernandez-Ruiz et al., 2011), than those 
who do not. Finally, the theory provides an alternate way to interpret implicit contributions to two 
learning hallmarks: savings (Haith et al., 2015) and interference (Lerner et al., 2020) (Results Part 
2).

Altogether, our results illustrate that sensorimotor adaptation is shaped by competition between 
parallel learning systems, both engaged by task errors.

https://doi.org/10.7554/eLife.65361
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Results
In visuomotor rotation paradigms, participants move a cursor that travels along a rotated path 
(Figure 1A). This perturbation causes adaptation, resulting in both implicit recalibration (Figure 1A, 
implicit) and explicit (intentional) re-aiming (Figure 1A, aim) (Mazzoni and Krakauer, 2006; Taylor 
and Ivry, 2011; Taylor et al., 2014; Shadmehr et al., 1998).

Current models suggest that the rotation r creates two distinct error sources. One error source is 
the deviation between cursor and target: a target error (Leow et al., 2020; Körding and Wolpert, 
2004; Langsdorf et al., 2021). Notably, this target error (Figure 1A, target error) is altered by both 
implicit (xi) and explicit (xe) adaptation:
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In addition, a second error is created due to our expectation that the cursor should move toward 
where we aimed our movement: a sensory prediction error (SPE) (Mazzoni and Krakauer, 2006; 
Tseng et al., 2007; Kawato, 1999). SPE is the deviation between the aiming direction (the expected 
cursor motion) and where we observed the cursor’s actual motion (Figure 1A, sensory prediction 
error). Critically, because this error is anchored to our aim location, it changes over time in response 
to implicit adaptation alone:
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How does the implicit learning system respond to these two error sources? State-space models 
describe implicit adaptation as a process of learning and forgetting (McDougle et al., 2015; Miya-
moto et al., 2020; Smith et al., 2006; Albert and Shadmehr, 2018; Thoroughman and Shadmehr, 
2000):

	﻿‍ x
(

n+1
)

i = aix
(

n
)

i + bie
(

n
)
‍� (3)

Forgetting is controlled by a retention factor (ai) which determines how strongly we retain the adapted 
state. Learning is controlled by error sensitivity (bi) which determines the amount we adapt in response 
to an error (e.g. an SPE or a target error).

Here, we will contrast two possibilities: (1) the implicit system responds primarily to target error, 
or (2) the implicit system responds primarily to SPE. In a target error learning system, explicit strategy 
will reduce the target error in Equation 1. This decrease in target error will lead to a competition 
between implicit and explicit systems, that is increasing explicit strategy reduces target error, which 
will then decrease implicit learning. Competition in a target error model will occur over the entire 
learning timecourse and can lead to unintuitive implicit learning phenotypes (Appendix 1.2). While 
these implicit behaviors can be observed at any point during adaptation, they are easiest to examine 
during steady-state adaptation (Appendix 1.1).

Consider how Equation 3 behaves in the steady-state condition. Like adapted behavior (Kim 
et al., 2019; Albert et al., 2021; Vaswani et al., 2015; Kim et al., 2018), Equation 3 approaches an 
asymptote with extended exposure to a rotation. This steady-state (Figure 1B, implicit) occurs when 
learning and forgetting counterbalance each other.

Consider a system where target errors alone drive implicit learning. In this system, total (steady-
state) implicit learning is determined by Equations 1 and 3:

	﻿‍ xss
i = bi

1−ai+bi

(
r − xss

e
)
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Equation 4 demonstrates a competition between implicit and explicit systems; the total amount of 
implicit adaptation (xi

ss) is driven by the difference between the rotation r and total explicit adaptation 
(xe

ss).
Now consider a system where SPEs drive implicit learning. SPEs (Equation 2) are unaltered by 

strategy. In this case, total implicit learning is determined by Equations 2 and 3:

	﻿‍ xss
i = bi

1−ai+bi
r‍� (5)
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Figure 1. Total implicit learning is shaped by competition with explicit strategy. (A). Schematic of visuomotor rotation. Participants move from start to 
target. Hand path is composed of explicit (aim) and implicit corrections. Cursor path is perturbed by rotation. We explored two hypotheses: prediction 
error (H1, aim vs. cursor) vs. target error (H2, target vs. cursor) drives implicit learning. (B) Prediction error hypothesis predicts that enhancing aiming 
(dashed magenta) will not change implicit learning (black vs. dashed cyan) according to the independence equation. Target error hypothesis predicts 
that enhancing aiming (dashed magenta) will decrease implicit adaptation (black vs. dashed cyan). (C) Data reported by Neville and Cressman, 2018. 
Participants were exposed to either a 20°, 40°, or 60° rotation. Learning curves are shown. The “no aiming” inset shows implicit learning measured 
via exclusion trials at the end of adaptation. Explicit strategy was calculated as the voluntary reduction in reach angle during the no aiming period. 
(D) Implicit learning measured during no aiming period in Neville and Cressman yielded a ‘saturation’ phenotype. (E) Explicit strategies calculated in 
Neville & Cressman dataset by subtracting exclusion trial reach angles from the total adapted reach angle. (F) The implicit learning driving force in 
the competition theory: difference between rotation and explicit learning in Neville and Cressman. (G) Implicit learning predicted by the competition 
and independence models in Neville and Cressman. Models were fit assuming that the implicit learning gain was identical across rotation sizes. 
(H) Experiment 1. Subjects in the stepwise group (n = 37) experienced a 60° rotation gradually in four steps: 15°, 30°, 45°, and 60°. Implicit learning was 
measured via exclusion trials (points) twice in each rotation period (gray ‘no aiming’). (I) Total implicit learning calculated during each rotation period in 
the stepwise group yielded a ‘scaling’ phenotype. (J) Explicit strategies were calculated in the stepwise group by subtracting exclusion trial reach angles 
from the total adapted reach angle. (K) The implicit learning driving force in the competition theory: difference between rotation and explicit learning in 
the stepwise group. (L) Implicit learning predicted by the competition and independence models in the stepwise group. Models were fit assuming that 
implicit learning gain was constant across rotation size. (M) Data reported by Tsay et al., 2021a. Participants were exposed to either a 15°, 30°, 60°, or 
90° rotation. Learning curves are shown. The “no aiming” inset shows implicit learning measured via exclusion trials at the end of adaptation. (N) Implicit 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.65361


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Albert et al. eLife 2022;11:e65361. DOI: https://doi.org/10.7554/eLife.65361 � 5 of 81

Equation 5 demonstrates an independence between implicit and explicit systems; the total amount 
of implicit adaptation depends solely on the rotation’s magnitude, not one’s explicit strategy.

Here, we explore how implicit learning systems respond to explicit strategy, and whether behavior 
is more consistent with competition or independence. Competition and independence can be studied 
at any point during the adaptation timecourse (Appendix 1). We will primarily examine steady-state 
learning, where the competition equation (Equation 4) and independence equation (Equation 5) make 
simple predictions. The critical insight is that in an independent system (SPE learning), increasing the 
explicit strategy (Figure 1B, magenta solid and dashed) does not alter implicit adaptation (Figure 1B, 
independence, compare black and cyan). However, in a competitive system (Equation 4), the same 
increase in strategy will indirectly decrease implicit learning (Figure 1B, competition, compare black 
and cyan).

To analyze these possibilities, we begin by examining how changes in explicit strategy alter implicit 
learning in response to variations in rotation magnitude, experimental instructions, rotation type, and 
at the individual participant level (Part 1). Next, we describe how competition between implicit and 
explicit systems could in principle mask changes in implicit learning (Part 2). Finally, we will examine 
studies which suggest implicit error sources vary across experimental conditions due to the presence 
and/or absence of multiple visual stimuli in the experimental workspace (Part 3).

Part 1: Measuring how implicit learning responds to changes in explicit 
strategy
Here, we measure how implicit learning and explicit strategy vary across several factors: (1) rota-
tion size, (2) instructions, (3) gradual versus abrupt rotations, and (4) individual subjects. We will ask 
whether the variations in implicit and explicit learning are consistent with the competition or indepen-
dence theories.

Implicit responses to rotation size suggest a competition with explicit 
strategy
Over extended exposure to a rotation, adaptation appears to saturate (Morehead et  al., 2017; 
Albert et al., 2021; Vaswani et al., 2015; Kim et al., 2018). How does implicit learning contribute to 
steady-state saturation, and what learning model best describes its behavior?

In Neville and Cressman, 2018, participants adapted to a 20°, 40°, or 60° rotation (Figure 1C). 
As is common, adaptation reached a steady-state prior to eliminating the target error (Albert et al., 
2021; Figure 1C, solid vs. dashed lines). To measure implicit learning, participants were instructed 
to reach to the target without aiming (Figure 1C, no aiming). The independence model (Equation 
5) predicts that the implicit response should scale as the rotation increases. On the contrary, total 
implicit learning was insensitive to rotation size; it reached only 10° and remained constant despite 

learning measured during no aiming period in Tsay et al. yielded a ‘non-monotonic’ phenotype. (O) Explicit strategies calculated in Tsay et al. dataset 
by subtracting exclusion trial reach angles from the total adapted reach angle. (P) Implicit learning driving force in the competition theory: difference 
between rotation and explicit learning in Tsay et al. (Q) Total implicit learning predicted by the competition and independence models in Tsay et al. 
Models were fit assuming that the implicit learning gain was identical across rotation sizes. Error bars show mean ± SEM, except in the independence 
predictions in G, L, and Q; independence predictions show mean and standard deviation across 10,000 bootstrapped samples. Points in H, J, M, and 
O show individual participants.

The online version of this article includes the following source code and figure supplement(s) for figure 1:

Source code 1. Figure 1 data and analysis code.

Figure supplement 1. Implicit learning can exhibit various phenotypes in the competition theory.

Figure supplement 2. Variations between total learning and implicit learning are consistent with the competition model.

Figure supplement 2—source code 1. Figure 1—figure supplement 2 data and analysis code.

Figure supplement 3. Scaling, saturation, and non-monotonic phenotypes across the implicit learning timecourse.

Figure supplement 3—source code 1. Figure 1—figure supplement 3 analysis code.

Figure supplement 4. Changes in implicit learning across blocks.

Figure supplement 4—source code 1. Figure 1—figure supplement 4 data and analysis code.

Figure 1 continued

https://doi.org/10.7554/eLife.65361
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a threefold increase in rotation magnitude (Figure 1D). To estimate explicit strategy, we subtracted 
the implicit learning measure from the total adapted response. Opposite to implicit learning, explicit 
strategy increased proportionally with the rotation’s size (Bond and Taylor, 2015; Tsay et al., 2021a; 
Figure 1E).

In the competition model, implicit learning is driven by the difference between the rotation and 
explicit strategy (r – xe

ss in Equation 4). As a result, when an increase in rotation magnitude is matched 
by an equal increase in explicit strategy (Figure 1—figure supplement 1A, same), the implicit learning 
system’s driving force will remain constant (Figure 1—figure supplement 1B, same). This constant 
driving input leads to a phenotype where implicit learning appears to ‘saturate’ with increases in rota-
tion size (Figure 1—figure supplement 1C, same).

To investigate whether this mechanism is consistent with the implicit response, we examined how 
explicit strategy and the implicit driving force varied with rotation size. As rotation size increased, 
explicit strategies increased substantially (Figure  1E). Under the competition model, these rapid 
changes in explicit strategy produced an implicit driving force that responded little to rotation magni-
tude; while the rotation increased by 40°, the driving force changed by less than 2.5° (Figure 1F). 
Thus, the competition Equation (Figure 1G, competition) suggested that implicit learning would not 
vary with rotation size, as we observed in the measured data (Figure 1G, data).

In other words, the competition model suggests that the implicit system can exhibit an unintui-
tive saturation when its driving input remains constant. The key prediction is that by altering explicit 
strategy, this driving input will change, changing the implicit response to rotation size. One possi-
bility is to weaken the explicit system’s response to the rotation (Figure 1—figure supplement 1A, 
slower) which should increase the steady-state of the implicit system (Figure 1—figure supplement 
1C, slower).

To test this idea, we used a stepwise rotation (Yin and Wei, 2020). In Experiment 1, participants 
(n = 37) adapted to a stepwise perturbation which started at 15° but increased to 60° in 15° incre-
ments (Figure 1H). Twice toward the end of each rotation block, we assessed implicit adaptation 
by instructing participants to aim directly to the target (Figure 1H, gray regions). Supplemental 
analysis suggested that the implicit system reached its steady-state during each learning period 
(Appendix 2), although this is not required to test the competition theory (Appendix 1.2). Critically, 
the stepwise rotation onset decreased explicit responses relative to the abrupt rotations used by 
Neville and Cressman, 2018; explicit strategies increased with a 94.9% gain (change in strategy 
divided by change in rotation) across the abrupt groups in Figure 1E, but only a 55.5% gain in 
the stepwise condition shown in Figure 1J. In the competition model, this reduction in strategy 
increased the implicit system’s driving input (Figure 1K). The increased driving input produced a 
“scaling” phenotype in the competition model’s implicit response (Figure 1L, competition) which 
closely matched the measured implicit data (Figure 1I; 1 L, data; rm-ANOVA, F(3,108)=99.9, p < 
0.001, ηp

2=0.735).
Thus, the implicit system can exhibit both saturation (Figure 1G) and scaling (Figure 1L), consistent 

with the competition model. Recent work by Tsay et al., 2021a suggests a third steady-state implicit 
phenotype: non-monotonicity. In their study, the authors examined a wider range in rotation size, 
15° to 90° (Figure 1M). A no-aiming period revealed total implicit adaptation each group (n = 25/
group). Curiously, whereas implicit learning increased between the 15° and 30° rotations, it appeared 
similar in the 60° rotation group, and then decreased in the 90° rotation group (Figure 1N). This non-
monotonic behavior was inconsistent with the independence model where implicit learning is propor-
tional to rotation size (Figure 1Q, independence).

To determine whether this non-monotonicity could be captured by the competition theory, we 
considered again how explicit re-aiming increased with rotation size (Figure 1O). We observed an 
intriguing pattern. When the rotation increased from 15° to 30°, explicit strategy responded with a very 
low gain (4.5%, change in strategy divided by change in rotation). An increase in rotation size to 60° 
was associated with a medium-sized gain (80.1%). The last increase to 90° caused a marked change in 
the explicit system: a 53.3° increase in explicit strategy (177.7% gain). Thus, explicit strategy increased 
more than the rotation had. Critically, this condition produces a decrease in the implicit driving input in 
the competition theory (Figure 1—figure supplement 1, faster). Overall, we estimated that this large 
variation in explicit learning gain (4.5–80.1% to 177.7%) should yield non-monotonic behavior in the 
implicit driving input (Figure 1P): an increase between 15° and 30°, no change between 30° and 60°, 

https://doi.org/10.7554/eLife.65361
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and a decrease between 60° and 90°. As a result, the competition theory (Figure 1Q, competition) 
exhibited a non-monotonic envelope, which closely tracked the measured data (Figure 1Q, data).

Unfortunately, there is a potential problem in our analysis: implicit and explicit learning measures 
were not independent, because explicit strategy was estimated using implicit reach angles (i.e. 
explicit learning equals total learning minus implicit learning). Did this bias our analysis towards the 
competition model? To answer this question, Equation 4 can be stated as xi

ss = pi(r – xe
ss) where pi is 

the learning gain determined by the implicit system’s retention and error sensitivity (i.e. ai and bi). We 
can replace the explicit strategy (xe

ss) appearing in this equation noting that xe
ss = xT

ss – xi
ss, where xT

ss 
equals total steady-state adaptation. With this, the model relates implicit learning to total learning: 
xi

ss = pi(1 – pi)–1(r – xT
ss), as opposed to explicit learning, and can be used to test the competition 

model without correlated learning measures (see Appendix 3). We reexamined all three experiments 
in Figure 1, using total adaptation to predict implicit learning with the competition model (Figure 1—
figure supplement 2). This alternate method yielded nearly identical predictions (Figure 1—figure 
supplement 2, ‘model-2’) as Equation 4 (Figure 1—figure supplement 2, ‘model-1’). Thus, the qual-
itative and quantitative correspondence between the competition model and the measured data was 
not due to how we operationalized implicit and explicit learning (see Appendix 3).

Collectively, these studies demonstrate that the implicit system can exhibit at least three distinct 
behavioral phenomena: saturation, scaling, or non-monotonicity. The competition model matched 
all three phenotypes, due to the implicit system’s response to explicit strategy. The SPE learning 
model described by the independence equation, however, could only produce a scaling phenotype 
(Figure 1I). Could the SPE learning model be altered to produce implicit learning phenotypes other 
than scaling? One possibility is that a saturation phenotype (Figure 1D) could be built into the SPE 
model by adding a restriction, that is an upper bound, on total implicit adaptation, as observed in 
studies where participants experience invariant error perturbations (Morehead et  al., 2017; Kim 
et al., 2018). With that said, the 10° implicit responses observed across the three rotations in Neville 
and Cressman, 2018, are much lower than the 20°–25° ceiling suggested by recent error-clamp 
studies (Kim et al., 2018), and the 35–45° implicit responses observed in some standard rotation 
studies (Salomonczyk et al., 2011; Maresch et al., 2021). More importantly, a learning model with a 
rotation-insensitive upper bound on implicit learning would be inconsistent with the scaling (Figure 1I) 
and nonmonotonic (Figure 1N; see Appendix 6.6) phenotypes we observed. We will explore other 
extensions to this SPE model in several analyses in the Control analyses section below.

Increase in explicit strategy suppresses implicit learning
The competition model predicts that increasing explicit strategy will decrease implicit learning, even 
when the rotation size is the same. In contrast, the independence theory predicts that implicit learning 
will be insensitive to differences in explicit strategy (extensions to this model are considered in Control 
analyses).

To test these ideas, we considered another condition tested by Neville and Cressman, 2018 
where participants were exposed to the same 20°, 40°, or 60° rotation, but received coaching instruc-
tions. The coaching sharply improved adaptation over the non-instructed group (Figure 2A, compare 
purple with black). To understand how implicit and explicit learning contributed to these changes, we 
analyzed the mean implicit and explicit reach angles measured across all three rotation sizes (each 
individual response is shown in Figure 2—figure supplement 1).

Unsurprisingly, explicit adaptation was enhanced in the participants that received coaching instruc-
tions. Explicit re-aiming increased by approximately 10° (Figure 2B, t(61)=2.29, p = 0.026, d = 0.56). 
However, while instruction enhanced explicit strategy, it suppressed implicit learning, decreasing total 
implicit learning by approximately 32% (Figure 2C, data, t(61)=2.62, p = 0.011, d = 0.66). To interpret 
this implicit response, we fit the competition (Equation 4) and independence equations (Equation 5) 
to the behavior across all experimental conditions (six groups: 3 rotation magnitudes, 2 instruction 
conditions), while holding the implicit learning parameters in the model constant (i.e. holding ai and 
bi constant across all conditions).

As in Figure 1, implicit learning in the independence model does not respond to explicit strategy, 
and is not altered by instruction (Figure 2C, implicit learning, indep.). On the other hand, the compe-
tition model accurately suggested that total implicit learning would decrease by approximately 3° 
(data showed 2.98° decrease, model produced a 2.92° decrease) in response to increases in explicit 

https://doi.org/10.7554/eLife.65361
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Figure 2. Increases or decreases in explicit strategy oppositely impact implicit adaptation. (A) Neville and Cressman, 2018 tested participants in 
two conditions: an uninstructed condition (black) and an instructed condition (purple) where subjects were briefed about the upcoming rotation and 
its solution. Instruction increased the adaptation rate across three rotation sizes: 20°, 40°, and 60°. Insets in gray shaded area show implicit adaptation 
measured via exclusion trials at the end of adaptation. (B) Here, we show the average strategy across all rotation sizes in the instructed (black) and 
uninstructed (purple) conditions. Explicit strategy was calculated by subtracting implicit learning (exclusion trials) from total adaptation. Instruction 
increased explicit strategy use. (C) The data show implicit adaptation averaged across all three rotation sizes. The independent (SPE learning) and 
competition (target error learning) models were fit to these data assuming that implicit error sensitivity and retention were identical across rotation sizes 
and instruction conditions (i.e. identical ai and bi across all six groups). Error bars for model predictions refer to mean and standard deviation across 
10,000 bootstrapped samples. (D) In Experiment 1 we tested participants in either an abrupt condition or a stepwise (gradual) condition. Here, we show 
the rotation schedule. (E) Here, we show learning curves in the abrupt and stepwise conditions in Experiment 1. Bars show implicit adaptation measured 
during each rotation period (four blocks total) via exclusion trials. Individual learning measures are shown in the terminal 60° learning period for both 
groups (points at bottom-right). (F) We calculated explicit strategies during the terminal 60° learning period by subtracting implicit learning measures 
from total adaptation (mean over last 20 trials). Gradual onset reduced explicit strategy use. (G) The data show total implicit learning measured in the 
60° rotation period. The competition (blue) and independence (green) models were fit to the data assuming that the implicit learning parameters were 
the same across the abrupt and stepwise groups. Error bars for the model show the mean and standard deviation across 1,000 bootstrapped samples. 
Statistics in B, F, and G denote a two-sample t-test: *p < 0.05, ***p < 0.001. Error bars in A, B, C (data), E, F, and G (data) denote mean ± SEM. Points in 
E and F show individual participants.

The online version of this article includes the following source code and figure supplement(s) for figure 2:

Source code 1. Figure 2 data and analysis code.

Figure supplement 1. Changes in implicit adaptation in response to awareness and rotation size.

Figure supplement 1—source code 1. Figure 2—figure supplement 1 data and analysis code.

Figure supplement 2. Total implicit adaptation varies slowly with changes in implicit error sensitivity.

Figure supplement 2—source code 1. Figure 2—figure supplement 2 analysis code.

Figure supplement 3. Suppressing explicit strategy increases total implicit adaptation.

Figure supplement 3—source code 1. Figure 2—figure supplement 3 data and analysis code.

Figure supplement 4. The competition model is compatible with various explicit strategy levels in Saijo and Gomi, 2010.

Figure supplement 4—source code 1. Figure 2—figure supplement 4 data and analysis code.

https://doi.org/10.7554/eLife.65361
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strategy (Figure 2C, implicit learning, competition, t(61)=2.05, p = 0.045, d = 0.52). Altogether, the 
competition theory parsimoniously captured how the implicit system responded to explicit instruction 
(Figure 2C) as well as changes in rotation size (Figure 1G) with the same model parameter set (same 
ai and bi in the competition equation).

Decrease in explicit strategy enhances implicit learning
Next, we examined how implicit learning responds to decreases in explicit strategy. Yin and Wei, 
2020 recently demonstrated that explicit strategies can be suppressed using gradual rotations. The 
competition theory predicts that decreasing explicit strategy will lead to greater implicit adaptation. 
We tested this prediction in Exp. 1. Participants were exposed to a 60° rotation, either abruptly (n 
= 36), or in a stepwise manner (n = 37) where perturbation magnitude increased by 15° across four 
distinct learning blocks (Figure 2D). We measured implicit and explicit learning during each block, 
as in Figure 1. To compare gradual and abrupt learning, we analyzed reach angles during the 4th 
learning block, where both groups experienced the 60° rotation size (Figure 2E).

As in Yin and Wei, 2020, participants in the stepwise condition exhibited a 10° reduction in explicit 
re-aiming (Figure 2F, two-sample t-test, t(71)=4.97, p < 0.001, d = 1.16). Reductions in strategy led 
to a decrease in total adaptation in the stepwise group by approximately 4°, relative to the abrupt 
group (Figure 2E, right-most gray region (last 20 trials); two-sample t-test, t(71)=3.33, p = 0.001, d = 
0.78), but an increase in implicit learning by approximately 80% (Figure 2G, data, two-sample t-test, 
t(71)=6.4, p < 0.001, d = 1.5). Thus, the data presented a curious pattern; greater total adaptation 
in the abrupt condition was paradoxically associated with reduced implicit adaptation. As expected, 
these surprising patterns did not match the independence model (Figure 2G, indep.), in which implicit 
learning does not respond to changes in explicit strategy.

To test whether implicit learning patterns matched the competition model we fit Equation 4 to 
implicit and explicit reach angles measured in Blocks 1–4, across the stepwise and abrupt conditions, 
while holding the model’s implicit learning parameters (ai and bi) constant. The competition model 
correctly predicted that the decrease in strategy in the gradual condition should produce an increase 
in implicit learning (Figure 2G, comp., two-sample t-test, t(71)=4.97, p < 0.001, d = 1.16). In addi-
tion, the competition model predicted a decrease in total learning, consistent again with the data 
(the model yielded 53.47° total adaptation in abrupt, and 50.42° in gradual: values not provided in 
Figure 2). The model’s negative correlation between implicit learning and total adaptation occurred 
in two steps: (1) greater abrupt strategies increased overall adaptation, but (2) siphoned away target 
errors, reducing implicit adaptation.

We analyzed another hypothesis: changes in implicit adaptation were caused by variation in error 
sensitivity (e.g. greater implicit error sensitivity in the stepwise condition), rather than competition. 
Note, however, that the implicit learning gain, pi, is given by pi = bi(1 – ai+ bi)–1. Because the bi term 
appears in both numerator and denominator, total implicit learning varies slowly with changes in 
bi (Appendix 4). Accordingly, supplemental analyses (Appendix 4, Figure 2—figure supplement 2) 
showed that no change in bi could yield the 80% increase in stepwise implicit learning in Figure 2G, 
let alone the 46% increase in implicit learning in the no-instruction group in Figure 2C. Thus, while 
variation in implicit error sensitivity might contribute to changes in steady-learning learning, its role is 
minor compared to error competition.

In summary, we observed that explicit strategies could be suppressed by increasing the rota-
tion gradually. Reductions in explicit strategy were associated with increased implicit adaptation 
(Figure  2G) as predicted by the competition theory. Furthermore, the same competition theory 
parameter set (i.e. same ai and bi, see Materials and methods) accurately matched the extent to which 
implicit learning responded to decreases in explicit strategy (Figure 2G) as well as increases in rota-
tion size (Figure 1L). It is interesting to note that these implicit patterns are broadly consistent with 
the observation that gradual rotations improve procedural learning (Saijo and Gomi, 2010; Kagerer 
et al., 1997), although these earlier studies did not properly tease apart implicit and explicit adapta-
tion (see the Saijo and Gomi analysis described in Appendix 5).

https://doi.org/10.7554/eLife.65361
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Implicit adaptation responds to between-subject differences in explicit 
adaptation
Use of explicit strategy is highly variable between individuals (Miyamoto et al., 2020; Fernandez-Ruiz 
et al., 2011; Bromberg et al., 2019). According to the competition theory (Equation 4), implicit and 
explicit learning will negatively co-vary according to a line whose slope and bias are determined by 
the properties of the implicit learning system (ai and bi). In Experiment 2, we tested this prediction. In 
one group, we limited preparation time to inhibit time-consuming explicit strategies (Fernandez-Ruiz 
et al., 2011; McDougle and Taylor, 2019; Figure 3D–F, Limit PT). In the other group, we imposed no 
preparation time constraints (Figure 3A–C, No PT Limit). We measured ai and bi in the Limit PT group 
and used these values to predict the implicit-explicit relationship across No PT Limit participants.

As expected, Limit PT participants dramatically reduced their reach latencies throughout the adap-
tation period (Figure 3F), whereas the No PT Limit participants exhibited a sharp increase in move-
ment preparation time after perturbation onset (Figure 3C), indicating explicit re-aiming (Langsdorf 
et al., 2021; Haith et al., 2015; Albert et al., 2021; Fernandez-Ruiz et al., 2011; McDougle and 
Taylor, 2019). Consistent with explicit strategy suppression, learning proceeded more slowly and was 
less complete under the preparation time limit (compare Figure 3B&E; two-sample t-test on last 10 
adaptation epochs: t(20)=3.27, p = 0.004, d = 1.42).

Next, we measured the retention factor ai during a terminal no feedback period (Figure 3E, dark 
gray, no feedback) and error sensitivity bi during the steady-state adaptation period. Steady-state 
implicit error sensitivity (note errors are small at steady-state creating high bi) was consistent with 
recent literature (Figure 3—figure supplement 1A-C). Together, this retention factor (ai = 0.943) and 
error sensitivity (bi = 0.35), produced a specific form of Equation 4, xi = 0.86 (30 – xe). We used this 
result to predict how implicit and explicit learning should vary across participants in the No PT Limit 
group (Figure 3G, blue line).

To measure implicit and explicit learning in the No PT Limit group, we instructed participants to 
move their hand through the target without any re-aiming at the end of the rotation period (Figure 3B, 
no aiming). The precipitous change in reaching angle revealed implicit and explicit components of 
adaptation (post-instruction reveals implicit; voluntary decrease in reach angle reveals explicit). We 
observed a striking correspondence between the No PT Limit implicit-explicit relationship (Figure 3G, 
black dot for each participant; ρ = −0.95) and that predicted by the competition equation (Figure 3G, 
blue). The slope and bias predicted by Equation 4 (–0.86 and 25.74°, respectively) differed from the 
measured linear regression by less than 5% (Figure 3G, black line, R2 = 0.91; slope is –0.9 with 95% CI 
[-1.16,–0.65] and intercept is 25.46° with 95% CI [22.54°, 28.38°]).

In addition, we also asked participants to verbally report their aiming angles prior to concluding 
the experiment. These responses were variable, with 25% reported in the incorrect direction. Because 
strategies are susceptible to sign-flipped errors (McDougle and Taylor, 2019), we assumed these 
misreported strategies represented the correct magnitude, but the incorrect sign, and thus took their 
absolute value. While reported explicit strategies were on average greater than our probe-based 
measure, and report-based implicit learning was on average smaller than our probe-based measure 
(Figure 3—figure supplement 2A&B; paired t-test, t(8)=2.59, p = 0.032, d = 0.7), the two report-
based measures exhibited a strong correlation which aligned with the competition theory’s prediction 
(Figure 3—figure supplement 2C; R2 = 0.95; slope is –0.93 with 95% CI [-1.11,–0.75] and intercept is 
25.51° with 95% CI [22.69°, 28.34°]).

In summary, individual participants exhibited an inverse relationship between implicit and explicit 
learning; participants who used large explicit strategies inadvertently suppressed their implicit 
learning, a pattern consistent with error-based competition.

Limiting reaction time strongly suppresses explicit strategy and increases 
implicit learning
Our analysis in Experiment 2 had two important limitations. First, the competition theory used 
implicit learning parameters measured under limited preparation time conditions (Leow et  al., 
2020; Fernandez-Ruiz et al., 2011; Leow et al., 2017): how effectively does this condition suppress 
explicit learning? Second, our individual-level implicit and explicit learning measures were intrinsically 
correlated because they both depended on probe-based reach angles (i.e. implicit is no aiming probe, 
and explicit is total learning minus no aiming probe).

https://doi.org/10.7554/eLife.65361
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Figure 3. Strategy suppresses implicit learning across individual participants. (A–C) In Experiment 2, participants in the No PT Limit (no preparation 
time limit) group adapted to a 30° rotation. The paradigm is shown in A. The learning curve is shown in B. Implicit learning was measured via exclusion 
trials (no aiming). Preparation time is shown in C (movement start minus target onset). (D–F) Same as in A–C, but in a limited preparation time condition 
(Limit PT). Participants in the Limit PT group had to execute movements with restricted preparation time (F). The task ended with a prolonged no visual 
feedback period where memory retention was measured (E, gray region). (G) Total implicit and explicit adaptation in each participant in the No PT Limit 
condition (points). Implicit learning measured during the terminal no aiming probe. Explicit learning represents difference between total adaptation 
(last 10 rotation cycles) and implicit probe. The black line shows a linear regression. The blue line shows the theoretical relationship predicted by the 
competition equation which assumes implicit system adapts to target error. The parameters for this model prediction (implicit error sensitivity and 

Figure 3 continued on next page
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To address these limitations, we conducted a laptop-based control experiment (Experiment 3). 
Participants (n = 35) adapted to a 30° rotation (Figure 3I), but this time, we measured implicit adap-
tation using the no-aiming instruction over an extended 20-cycle period (Figure 3I, no aiming). We 
calculated early (the first no-aiming cycle; Figure 3Q) and late (last 15 no-aiming cycles; Figure 3P) 
implicit learning measures. Explicit strategy was estimated by subtracting the first no-aiming cycle from 
total adaptation. Thus, our explicit strategy measure was not calculated using late implicit learning 
trials; these two measures were no longer spuriously correlated. Regardless, we still observed a strong 
relationship between explicit strategy and late implicit learning; greater strategy use was associated 
with reduced late implicit adaptation (Figure 3P, ρ = −0.78, p< 0.001).

Next, we repeated this experiment, but under limited preparation time conditions in a separate 
participant cohort (Figure  3L, Experiment 3, Limit PT, n = 21). As for the Limit PT group in Exp. 
2, we imposed a strict bound on reaction time to suppress movement preparation time (compare 
Figure  3J&M). Once the rotation period ended, participants were told to stop re-aiming. The 
decrease in reach angle revealed each participant’s explicit strategy (Figure 3N). When no reaction 
time limit was imposed (No PT Limit), re-aiming totaled 11.86° (Figure 3N, black). In addition, we 
did not detect a statistically significant difference in re-aiming across Exps. 2 and 3 (t(42)=0.50, p = 
0.621). As in earlier reports (Leow et al., 2020; Albert et al., 2021; Fernandez-Ruiz et al., 2011; 
Leow et al., 2017), limiting reaction time dramatically suppressed explicit strategy, yielding only 2.09° 
of re-aiming (Figure 3N, red). Thus, these data showed that our limited reaction time technique was 
highly effective at suppressing explicit strategy.

Consistent with the competition theory, suppressing explicit strategy increased implicit learning 
by approximately 40% (Figure 3O, No PT Limit vs. Limit PT, two-sample t-test, t(54)=3.56, p < 0.001, 
d = 0.98). We again used the Limit PT group’s behavior to estimate implicit learning parameters (ai 
and bi) as we did in Exp. 2 (Figure 3G). Using these parameters, the competition theory (Equation 4) 
predicted that implicit and explicit adaptation should be related by the line: xi = 0.658(30 – xe). As in 
Exp. 2, we observed a striking correspondence between this model (Figure 3Q, bottom, model) and 
the actual implicit-explicit relationship measured in participants in the No PT Limit group (Figure 3Q, 
bottom, points). The slope and bias predicted by Equation 4 (–0.665 and 19.95°, respectively) differed 
from the measured linear regression by less than 5% (Figure 3Q, bottom brown line, R2 = 0.78; slope 
is –0.63 with 95% CI [-0.74,–0.51] and intercept is 19.7° with 95% CI [18.2°, 21.3°]).

In summary, Exp. 3 provided additional evidence that implicit and explicit systems compete 
with one another at the individual-participant level. Participants who relied more on strategy exhib-
ited reductions in implicit learning, as predicted by the competition theory. Moreover, by limiting 

retention) were measured in the Limit PT group. (H–J) In Experiment 3, participants adapted to a 30° rotation using a personal computer in the No PT 
Limit condition. The paradigm is shown in H. The learning curve is shown in I. Implicit learning was measured at the end of adaptation over a 20-cycle 
period where participants were instructed to reach straight to the target without aiming and without feedback (no aiming seen in I). We measured 
explicit adaptation as difference between total adaptation and reach angle on first no aiming cycle. We measured ‘early’ implicit aftereffect as reach 
angle on first no aiming cycle. We measured ‘late’ implicit aftereffect as mean reach angle over last 15 no aiming cycles. (K–M) Same as in H–J, but for a 
Limit PT condition. (N) Explicit adaptation measured in the No PT Limit condition in Experiment 2 (E2), No PT Limit condition in Experiment (E3, black), 
and Limit PT condition in Experiment 3 (E3, red). (O) Late implicit learning in the Experiment 3 No PT Limit group (No Lim.) and Experiment 3 Limit PT 
group (PT Limit). (P) Correspondence between late implicit learning and explicit strategy in the Experiment 3 No PT Limit group. (Q) Same as in G but 
where model parameters are obtained from the Limit PT group in Experiment 3, and points represent subjects in the No PT Limit group in Experiment 
3. Early implicit learning is used. Throughout all insets, error bars indicate mean ± SEM across participants. Statistics in N and O are two-sample t-tests: 
n.s. means p > 0.05, ***p < 0.001.

The online version of this article includes the following source code and figure supplement(s) for figure 3:

Source code 1. Figure 3 data and analysis code.

Figure supplement 1. Implicit error sensitivity varies with error.

Figure supplement 1—source code 1. Figure 3—figure supplement 1 data and analysis code.

Figure supplement 2. Comparing implicit and explicit adaptation via reported strategies.

Figure supplement 2—source code 1. Figure 3—figure supplement 2 data and analysis code.

Figure supplement 3. Movement paths in Experiment 3 were straight and brisk.

Figure supplement 3—source code 1. Figure 3—figure supplement 3 data and analysis code.

Figure 3 continued

https://doi.org/10.7554/eLife.65361
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preparation time on each trial, explicit strategies were strongly suppressed, allowing us to estimate 
the time course of the implicit system’s adaptation.

Control analyses
Implicit learning exhibits generalization: a decay in adaptation measured when subjects move to posi-
tions across the workspace (Hwang and Shadmehr, 2005; Krakauer et al., 2000; Fernandes et al., 
2012). Implicit generalization is centered where participants aim (Day et al., 2016; McDougle et al., 
2017). For this reason, implicit learning measured when aiming towards the target, can underapprox-
imate total implicit learning. Subjects that aim more (larger strategy) can exhibit a larger reduction in 
measured implicit learning. Might this contribute to the negative implicit-explicit correlations in Exps. 
1–3?

To test this idea, we compared our data to generalization curves measured in past studies (Krakauer 
et al., 2000; Day et al., 2016; McDougle et al., 2017; Figure 4). Absolute implicit responses are 
shown in Figure 4B, and normalized measures are shown in Figure 4A (see Appendix 6.1). Implicit 
learning in Exps. 2&3 declined 300% more rapidly than predicted by past generalization studies 
(Figure 4A&B). Moreover, this comparison in Figure 4A–C is not appropriate under the generalization 
hypothesis. In Exps. 2&3, explicit strategies are estimated as total learning minus implicit learning. If 
implicit learning measured at the target underapproximates total implicit learning measured at the 
aim location, then the explicit strategies we calculate will overapproximate the actual strategy used by 
each participant. We need to correct these strategies prior to comparing to past generalization curves 
(Appendix 6.2). The corrected generalization curves (Figure 4C, E2 and E3 lines) that produce the 
patterns in Figure 4A&B exhibited an unphysiological narrowing: their standard deviation (width) was 
85% smaller than that reported in recent studies (Krakauer et al., 2000; Day et al., 2016; McDougle 
et al., 2017) (σ is about 5.5° versus 37.76° in McDougle et al., see Appendix 6.1). These same issues 
occurred in the group-level phenomena that we analyzed in Figures 1 and 2: no plausible general-
ization curve could explain the implicit response to instruction, rotation onset (abrupt/gradual), and 
rotation size (Appendices 6.4 and 6.5). As an example, the variations in implicit learning across abrupt 
and stepwise groups in Exp. 1 would require a generalization curve that is 90% narrower than recent 
estimates (McDougle et al., 2017) (see Appendix 6.4 and Figure 4—figure supplement 1; σ = 3.87° 
versus 37.76° in McDougle et al., 2017).

We extended the independence model with implicit generalization and compared its behavior 
to the competition theory. The competition model is given by xi

ss = pi(r – xe
ss), where pi is an implicit 

learning gain. The SPE generalization model is xi
measured = pirg(xe

ss), where g(xe
ss) encodes generalization 

(derivation in Appendix 6.2). We specified g(xe
ss) with McDougle et al., 2017. We considered models 

where g(xe
ss) was linear (Figure 4D–F, SPE gen. linear) and g(xe

ss) was normal (SPE gen. normal). Then 
we fit each model’s pi to match implicit learning during the 60° stepwise rotation in Exp. 1. We used 
this gain to predict the implicit-explicit relationship across the three earlier learning periods (B1-B3 
in Figure 4D). The generalization models yielded poor matches to the held-out data (model RMSE in 
Figure 4E, rm-ANOVA, F(2,72)=13.7, p < 0.001, ηp

2 = 0.276). Further, a model comparison showed 
that competition best described individual subject data, minimizing AIC in 84% of stepwise partici-
pants (Figure 4G, Appendix 6.3). Poor SPE generalization model performance was not due to mises-
timating generalization curve properties; we conducted a sensitivity analysis in which we varied the 
generalization curve’s width. The competition model was superior across the entire range (Figure 4H, 
Appendix 6.3).

To understand why the competition theory alone generalized across rotation sizes, we fit linear 
regressions to the data in each rotation period. The regression slopes and 95% CIs are shown in 
Figure 4F (data). Remarkably, the measured implicit-explicit slope appeared to be constant across all 
rotation sizes. This invariance was directly consistent with the competition theory (Figure 4F, compe-
tition) which possesses an implicit gain pi that remains constant across rotations (like the data). But 
in generalization models (Figure 4F, generalization), the gain relating implicit and explicit learning is 
not constant; it changes as the rotation gets larger (see Appendix 6.3). In sum, data in Exps. 1–3 were 
poorly explained by an SPE model extended with generalization.

We considered one last control analysis. The competition equation predicts that implicit-explicit 
correlations are caused by the implicit system’s response to variations in strategy. An SPE learning 
model could create correlations the opposite way: individuals who possess less implicit learning 

https://doi.org/10.7554/eLife.65361
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Figure 4. Correlations between implicit and explicit learning are consistent with competition, not SPE generalization. (A) Aim-centered generalization 
could create the illusion that implicit and explicit systems compete. To evaluate this possibility, we compared the implicit-explicit relationship in Exps. 
2 and 3 to generalization curves reported in Krakauer et al., 2000, Day et al., 2016, and McDougle et al., 2017. The 1T, 2T, 4T, and 8T labels 
correspond to the number of adaptation targets in Krakauer et al. The gold McDougle et al. curve is particularly relevant because the authors controlled 
aiming direction on generalization trials and counterbalanced CW and CCW rotations. Data in Exps. 2 and 3 are shown overlaid in the inset. Implicit 
learning declined about 300% more rapidly with increases in re-aiming than that observed by Day et al. The solid black and brown lines show the 
competition theory predictions. Implicit learning in Experiments 2 and 3 was normalized to its theoretical maximum, reached when re-aiming is equal to 
zero. The value used to normalize was determined via linear regression (25.5° in Exp. 2, 19.7° in Exp. 3). (B) Same as in A, but without normalizing implicit 
learning. Generalization curves were converted to degrees by multiplying the curves in A by the max. implicit learning value in Exp. 2 (25.5°) or Exp. 3 
(19.7°). (C) The comparisons in A and B are not correct. Under the generalization hypothesis, each data point’s explicit strategy needs to be corrected 
according to generalization. This inset shows the true implicit-explicit generalization curve that would be required to produce the data in A and B. The 
E2 and E3 lines show the Exp. 2 and Exp. 3 curves. (D) Points show implicit and explicit learning measured in the stepwise individual participants 
studied in Exp. 1 (B1 is 15° period, B2 is 30° period, B3 is 45° period, and B4 is 60° period). Three models were fit to participant data in the 60° period. 
Competition model fit is shown in black. A linear generalization (SPE gen. linear) with slope set by McDougle et al. is shown in cyan. A Gaussian 
generalization (SPE gen. normal) with width set by McDougle et al. is shown in gold. Since models were fit to B4 data, the B1, B2, and B3 lines represent 
predicted behavior. (E) The prediction error (RMSE) in each model’s implicit learning curve across the held-out 15°, 30°, and 45° periods in D. (F) Linear 
regressions fit to each rotation block in (D). Brown points and lines (data) show the regression slope and 95% CI. The black (competition), cyan (SPE gen. 
linear), and gold (SPE gen. normal) are model predictions where lines are 95% CIs estimated via bootstrapping. (G) All three models in D–F were fit to 
individual participant behavior in the stepwise group. At left, the AIC for each model is compared to that of the competition model. At right, the total 
number of subjects best captured by each model is shown. (H) Same as E and G but where the generalization width was varied in a sensitivity analysis. 
We tested values between one-half the McDougle et al. generalization curve (–50%) and twice the McDougle et al. generalization curve (+100%). Error 
bars in E show mean ± SEM. Statistics in E are post-hoc tests following one-way rm-ANOVA: **p < 0.01.

The online version of this article includes the following source code and figure supplement(s) for figure 4:

Figure 4 continued on next page
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compensate by increasing their explicit strategy. This scenario can be described by xe
ss = pe(r – xi

ss) 
where pe is the explicit response gain. This model has three properties (Appendix 7.2). First, implicit 
and explicit learning will show a negative relationship (Figure  5A). Second, increases in implicit 
learning will tend to increase total adaptation (Figure 5C). Finally, increasing implicit learning leaves 
smaller errors to drive explicit strategy, resulting in a negative correlation between strategy and total 
adaptation (Figure 5B). While the competition model also predicts negative implicit-explicit correla-
tions (Figure 5D), the other pairwise correlations differ (Appendix 7.1). Increases in explicit strategy 
lead to greater total learning (Figure 5E), but reduce the error which drives implicit learning, leading 
to a negative correlation between implicit learning and total adaptation (Figure 5F).

We analyzed these predictions in the No PT Limit group in Exp. 3 (Appendix 7.4). Our observations 
matched the competition theory; greater explicit strategy was associated with greater total adapta-
tion (Figure 5G, ρ = 0.84, p < 0.001), whereas greater implicit learning was associated with lower total 
adaptation (Figure 5H, ρ = −0.70, p < 0.001). We repeated these analyses in other datasets (Appendix 
7.4) that measured implicit learning with no-aiming probe trials: (1) 60° rotation groups (combined 
across gradual and abrupt groups) in Experiment 1, (2) 60° groups reported by Maresch et al., 2021 
(combined across the CR, IR-E, and IR-EI groups), and (3) 60° rotation group in Tsay et al., 2021a 
These data matched the competition theory: negative implicit-explicit correlations (Figure 5—figure 
supplement 1G-I), positive explicit-total correlations (Figure 5—figure supplement 1D-F), and nega-
tive implicit-total correlations (Figure 5—figure supplement 1A-C).

In summary, while an SPE learning model could exhibit negative correlations between implicit and 
explicit adaptation, it does not predict a negative correlation between steady-state implicit learning 
and total adaptation (nor a positive relationship between steady-state explicit strategy and total adap-
tation), as we observed in the data. The data were consistent with the competition theory, where 
the implicit system responds to variations in explicit strategy. However, there is a critical caveat. The 
predictions outlined above assumed that implicit learning properties (contained within pi) are the 
same across every participant. This is unlikely to be true, and variation in pi across subjects (e.g. 
changes in error sensitivity) will undermine some correlations in Figure 5, particularly the relationship 
between implicit learning and total adaptation. This phenomenon and past studies where it appears 
to occur are treated in Appendix 8.

Part 2: Competition with explicit learning can mask changes in the 
implicit learning system
Here, we show that in the competition model, implicit learning may undergo savings, without changing 
its learning timecourse. Next, we limit preparation time to detect increases and decreases in implicit 
learning.

Two ways to interpret the implicit response in a savings paradigm
When participants are exposed to the same perturbation twice, they adapt more quickly the second 
time. This phenomenon is known as savings and is a hallmark of sensorimotor adaptation (Smith 
et al., 2006; Herzfeld et al., 2014; Zarahn et al., 2008). Multiple studies have attributed this process 
solely to changes in explicit strategy (Haith et al., 2015; Huberdeau et al., 2019; Morehead et al., 
2015; Avraham et al., 2021; Huberdeau et al., 2015).

For example, in an earlier work (Haith et al., 2015), we trained participants (n = 14) to reach to one 
of two targets, coincident with an audio tone (Figure 6A). By shifting the displayed target approx-
imately 300ms prior to tone onset on a minority of trials (20%), we forced participants to execute 
movements with limited preparation time (Low preparation time; Figure 6A, middle). On all other 
trials (80%) the target did not switch resulting in high preparation time movements (Figure 6A, left). 

Source code 1. Figure 4 data and analysis code.

Figure supplement 1. Implicit variations are inconsistent with generalization.

Figure supplement 1—source code 1. Figure 4—figure supplement 1 data and analysis code.

Figure supplement 2. Differences in generalization across visuomotor rotation tasks.

Figure supplement 2—source code 1. Figure 4—figure supplement 2 data and analysis code.

Figure 4 continued

https://doi.org/10.7554/eLife.65361
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Figure 5. Implicit-explicit correlations with total adaptation match the competition theory. The competition equation states that xi
ss = pi(r – xe

ss), where 
pi is a scalar learning gain depending on ai and bi. The competition between steady-state implicit (xi

ss) and explicit (xe
ss) adaptation predicted by this 

model is simulated in D across 250 hypothetical participants. The model pi is fit to data in Experiment 3. Total learning is given by xT
ss = xi

ss + xe
ss. These 

two equations can be used to derive expressions relating total learning (xT
ss) to steady-state implicit (xi

ss) and explicit (xe
ss) learning. In E, we show that 

the competition theory predicts a positive relationship between explicit learning and total adaptation (equation at top derived in Appendix 7, green 
denotes a positive gain). In F, we show that the competition theory predicts a negative relationship between implicit learning and total adaptation 
(equation at top derived in Appendix 7, red shading denotes negative gain). In (A–C), we consider an alternative model. Suppose that implicit learning 
is immune to explicit strategy and varies independently across participants. This is equivalent to the SPE learning model. But in this case, the explicit 
system could respond to variability in implicit learning via another competition equation: xe

ss = pe(r – xi
ss). Here, pe is an explicit learning gain (must be 

less than one to yield a stable system). In A, we show the negative relationship between implicit and explicit adaptation predicted by this alternate 
SPE learning model. In B, we show that when the explicit system responds to implicit variability (SPE learning) there is a negative relationship between 
total adaptation and explicit strategy. The equation at top is derived in Appendix 7. In C, we show that the SPE learning model will yield a positive 
relationship between implicit learning and total adaptation. Equation at top derived in Appendix 7. (G) We measured the relationship between explicit 
strategy and total adaptation in Exp. 3 (No PT Limit group). Total learning exhibits a positive correlation with explicit strategy. (H) Same concept as in 
G, but here we show the relationship between total learning and implicit adaptation. The patterns in G and H are consistent with the competition theory 
(compare with E and F).

The online version of this article includes the following source code and figure supplement(s) for figure 5:

Figure 5 continued on next page
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We measured adaptation to a 30° rotation during high preparation time (Figure 6B, left) and low 
preparation time trials (Figure 6B, middle) across two separate exposures (Day 1 and Day 2).

To detect savings, we calculated the learning rate on low and high preparation time trials. Savings 
appeared to require high preparation time; learning rate increased during the second exposure on 
high preparation time trials, but not low preparation time trials (Figure 6B, right; two-way rm-ANOVA, 
preparation time by exposure number interaction, F(1,13)=5.29, p = 0.039; significant interaction 
followed by one-way rm-ANOVA across Days 1 and 2: high prep. time with F(1,13)=6.53, p = 0.024, 
ηp

2=0.335; low preparation time with F(1,13)=1.11, p = 0.312, ηp
2=0.079). To corroborate this rate 

analysis, we also measured savings via early changes in reach angle (first 5 rotation cycles) across Days 
1 and 2 (Figure 6C, left and middle). Only high preparation time trials exhibited a statistically signif-
icant increase in reach angle, consistent with savings (Figure 6C, right; two-way rm-ANOVA, prep. 
time by exposure interaction, F(1,13)=13.79, p = 0.003; significant interaction followed by one-way 
rm-ANOVA across days: high prep. time with F(1,13)=11.84, p = 0.004, ηp

2=0.477; low prep. time 
with F(1,13)=0.029, p = 0.867, ηp

2=0.002).
Because explicit strategies can be suppressed by limiting movement preparation time under some 

conditions (Huberdeau et  al., 2019; Fernandez-Ruiz et  al., 2011; McDougle and Taylor, 2019), 
in our initial study we interpreted these data to mean that savings relied solely on time-consuming 
explicit strategies. Multiple studies have reached similar conclusions (Haith et al., 2015; Huberdeau 
et al., 2019; Morehead et al., 2015; Avraham et al., 2021; Huberdeau et al., 2015), suggesting that 
the implicit learning system is not improved by multiple exposures to a rotation.

However, the competition theory provides an alternate possibility: changes in the implicit learning 
system may occur but are hidden because of competition with explicit learning. To show this unintui-
tive phenomenon, we fit the competition model to individual participant behavior under the assump-
tion that low preparation time trials relied solely on implicit adaptation, but high preparation time 
trials relied on both implicit and explicit adaptation. The model generated implicit (Figure 6D, blue) 
and explicit (Figure 6D, magenta) states that tracked the behavior well on high preparation time trials 
(Figure 6D, solid black line) and also low preparation time trials (Figure 6D, dashed black line).

Next, we considered the implicit and explicit error sensitivities estimated by the model, which are 
commonly linked to changes in learning rate (Coltman et al., 2019; Mawase et al., 2014; Lerner 
et al., 2020; Albert et al., 2021; Herzfeld et al., 2014). The model unmasked a surprising possi-
bility: even though savings was observed only on high preparation time trials, but not low preparation 
time trials (Figure 6B&C), the model suggested that both the implicit and explicit systems exhibited 
a statistically significant increase in error sensitivity (Figure 6D, right; two-way rm-ANOVA, within-
subject effect of exposure number, F(1,13)=10.14, p = 0.007, ηp

2=0.438; within-subject effect of 
learning process, F(1,13)=0.051, p = 0.824, ηp

2=0.004; exposure by learning process interaction, 
F(1,13)=1.24, p = 0.285).

In contrast, a model where the implicit system adapted to SPEs as opposed to target errors 
(the independence model) suggested that only the explicit system exhibited a statistically signifi-
cant increase in error sensitivity (Figure 6E; two-way rm-ANOVA, learning process (i.e. implicit vs 
explicit) by exposure interaction, F(1,13)=7.016, p = 0.02; significant interaction followed by one-way 
rm-ANOVA across exposures: explicit system, F(1,13)=9.518, p = 0.009, ηp

2=0.423; implicit system, 
F(1,13)=2.328, p = 0.151, ηp

2=0.152).

Source code 1. Figure 5 data and analysis code.

Figure supplement 1. Relationships between implicit, explicit, and total learning indicate competition.

Figure supplement 1—source code 1. Figure 5—figure supplement 1 data and analysis code.

Figure supplement 2. Factors that weaken the correlation between implicit learning and total adaptation.

Figure supplement 2—source code 1. Figure 5—figure supplement 2 data and analysis code.

Figure supplement 3. Correlations between explicit learning and total adaptation are more robust to between-subject implicit variability.

Figure supplement 3—source code 1. Figure 5—figure supplement 3 data and analysis code.

Figure supplement 4. Variance in implicit learning properties weakens the relationship between implicit learning and total adaptation in the 
competition theory.

Figure supplement 4—source code 1. Figure 5—figure supplement 4 analysis code.

Figure 5 continued
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Figure 6. Competition predicts changes in implicit error sensitivity without changes in implicit learning rate. (A) Haith et al., 2015 instructed 
participants to reach to Targets T1 and T2 (right). Participants were exposed to a 30° visuomotor rotation at Target T1 only. Participants reached to the 
target coincident with a tone. Four tones were played with a 500ms inter-tone-interval. On most trials (80%) the same target was displayed during all 
four tones (left, High preparation time or High PT). On some trials (20%) the target switched approximately 300ms prior to the fourth tone (middle, Low 
preparation time or Low PT). (B) On Day 1, participants adapted to a 30° visuomotor rotation (Day 1, black) followed by a washout period. On Day 2, 
participants again experienced a 30° rotation (Day 2, blue). At left, we show the reach angle expressed on High PT trials during Days 1 and 2. Dashed 
vertical line shows perturbation onset. At middle, we show the same but for Low PT trials. At right, we show learning rate on High and Low PT trials, 
during each block. (C) As an alternative to the rate measure shown at right in B, we calculated the difference between reach angle on Days 1 and 2. At 
left and middle, we show the learning curve differences for High and Low PT trials, respectively. At right, we show difference in learning curves before 
and after the rotation. ‘Pre-rotation’ shows the average of Day 2 – Day 1 prior to rotation onset. ‘Post-rotation’ shows the average of Day 2 – Day 1 after 
rotation onset. (D) We fit a state-space model to the learning curves in Days 1 and 2 assuming that target errors drove implicit adaptation. Low PT trials 
captured the implicit system (blue). High PT trials captured the sum of implicit and explicit systems (green). Explicit trace (magenta) is the difference 
between the High and Low PT predictions. At right, we show error sensitivities predicted by the model. (E) Same as in D, but for a state-space model 
where implicit learning is driven by SPE, not target error. Model-predicted error sensitivities are shown. Error bars across all insets show mean ± SEM, 
except for the learning rate in B which displays the median. Two-way repeated-measures ANOVA were used in B, C, D, and E. For B and C, exposure 
number and preparation time condition were main effects. For D and E exposure number and learning system (implicit vs explicit) were main effects. 
Significant interactions in B, C, and E prompted follow-up one-way repeated-measures ANOVA (to test simple main effects). Statistical bars where two 
sets of asterisks appear (at left and right) indicate interactions. Statistical bars with one centered set show main effects or simple main effects. Statistics: 
n.s. means p > 0.05, *p < 0.05, **p < 0.01.

The online version of this article includes the following source code for figure 6:

Source code 1. Figure 6 data and analysis code.

https://doi.org/10.7554/eLife.65361
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In summary, when we reanalyzed our earlier data, the competition and independence theories 
suggested that our data could be explained by two contrasting hypothetical outcomes. If we 
assumed that implicit and explicit systems were independent, then only explicit learning contrib-
uted to savings, as we concluded in our original report. However, if we assumed that the implicit 
and explicit systems learned from the same error (competition model), then both implicit and 
explicit systems contributed to savings. Which interpretation is more parsimonious with measured 
behavior?

Competition with explicit strategy can alter measurement of implicit learning
The idea that implicit error sensitivity can increase without any change in implicit learning rate 
(Figure 6) is not intuitive. What the competition model suggests is that when the explicit system 
increases its learning rate as in Figure 6D, it leaves a smaller target error to drive implicit learning. 
However, despite this decrease in target error, low preparation time learning was similar on Days 1 and 
2 (Figure 6B). Because we assumed that low preparation time learning relied on the implicit system, 
the competition theory required that the implicit system must have experienced an increase in error 
sensitivity to counterbalance the reduction in target error magnitude. In other words, though increase 
in implicit error sensitivity did not increase total implicit learning, it still contributed to savings. That 
is, had implicit error sensitivity remained the same, low preparation time learning would decrease on 
Day 2, and less overall savings would occur.

To understand how our ability to detect changes in implicit adaptation can be altered by explicit 
strategy we constructed a competition map (Figure 7A). Imagine that we want to compare behavior 
across two timepoints or conditions. Figure 7A shows how changes in implicit error sensitivity (x-axis) 
and explicit error sensitivity (y-axis) both contribute to measured implicit aftereffects (denoted by 
map colors), based on the competition equation (note that the origin denotes a 0% change in error 
sensitivity relative to Day 1 adaptation in Haith et al., 2015). The left region of the map (cooler colors) 
denotes combinations of implicit and explicit changes that decrease implicit adaptation. The right 
region of the map (hotter colors) denotes combinations that increase implicit adaptation. The middle 
black region represents combinations that manifest as a perceived invariance in implicit adaptation ( 
< 5% absolute change in implicit adaptation).

This map defines several distinct areas (Figure  7B). Region A denotes a ‘matching’ decrease 
between implicit adaptation and error sensitivity; total implicit learning will decline across two sepa-
rate learning periods due to a reduction in implicit error sensitivity. Region D is similar. Here, total 
implicit learning will increase across two separate learning periods due to an increase in implicit error 
sensitivity.

The other regions show less intuitive cases. In Region B, there is a ‘mismatching’ change in total 
implicit learning and implicit error sensitivity; here total implicit learning decreases even though 
implicit error sensitivity has increased or stayed the same. Likewise, in Region E, total implicit learning 
will increase across two separate learning periods, though implicit error sensitivity has decreased or 
stayed the same.

Indeed, we have already described these cases in Figure 2. For example, by enhancing the explicit 
system via coaching (Figure 2A–C), implicit learning decreased. This scenario is equivalent to moving 
up the y-axis of the map (Figure 7C, top). The same implicit system will decrease its output (Figure 7C, 
bottom) when normal levels of explicit strategy are increased (Figure 7C, middle). On the other hand, 
suppressing explicit strategy by gradually increasing the rotation (Figure  2D–G), or limiting reac-
tion time (Figure 3N&O), increased implicit learning without changing any implicit learning proper-
ties. This scenario is equivalent to moving down the y-axis of the competition map (Figure 7D, top). 
The same implicit system will increase its output (Figure 7D, bottom) when normal levels of explicit 
strategy are then suppressed (Figure 7D, middle).

Now, let us consider the savings experiment in Figure  6. The competition theory predicted 
(Figure 6D) that explicit error sensitivity increased by approximately 70.6% during the second expo-
sure, whereas the implicit system’s error sensitivity increased by approximately 41.5% (Figure 7E, 
middle). These changes in implicit and explicit adaptation describe a single point in the competition 
map, denoted by the gray circle in Figure 7E (top). This experiment occupies Region C, which indi-
cates that despite the 41.5% increase in implicit error sensitivity, the total implicit learning will increase 
by less than 5% (Figure 7E, bottom). In other words, the competition model suggests the possibility 

https://doi.org/10.7554/eLife.65361
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Figure 7. Changes in implicit adaptation depend on both implicit and explicit error sensitivity. (A) Here we depict the competition map. The x-axis 
shows change in implicit error sensitivity between reference and test conditions. The y-axis shows change in explicit error sensitivity. Colors indicate 
the percent change in implicit adaptation (measured at steady-state) from the reference to test conditions. Black region denotes an absolute change 
less than 5%. The map was constructed with Equation 8. (B) The map can be described in terms of five different regions. In Region A (matching 
increase), implicit error sensitivity and total implicit adaption both increase in test condition. Region D is same, but for decreases in error sensitivity 
and total adaptation. In Region B (mismatching decrease), implicit learning decreases though its error sensitivity is higher or same. In Region E 
(mismatching increase), implicit learning increases though its error sensitivity is lower or same. Region C shows a perceived invariance where implicit 

Figure 7 continued on next page
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that implicit learning improved between Exposures 1 and 2, but this change was hidden by a dramatic 
increase in explicit strategy (which suppressed implicit learning during Exposure 2).

To test this prediction, we can suppress explicit adaptation, thus eliminating competition (Figure 7F, 
middle). Such an intervention would move our experiment from Region C to Region D (Figure 7F, top) 
where we will observe greater change in the implicit process (Figure 7D, bottom). We examined this 
possibility in a new experiment.

Savings in implicit learning is unmasked by suppression of explicit strategy
In Exp. 4 (Figure 8), participants experienced two 30° rotations, separated by washout trials with 
veridical feedback (mean reach angle over last three washout cycles was 0.55 ± 0.47°, one-sample 
t-test against zero, t(9)=1.16, p = 0.28; not shown in Figure  8). To suppress explicit strategy, we 
restricted reaction time on every trial, which in Exp. 3, greatly reduced explicit learning (Figure 3N; 
re-aiming decreases from 12° to about 2°). Under these reaction time constraints, participants exhib-
ited reach latencies around 200ms (Figure 8B, top).

While occasionally limiting preparation time prevented savings in Haith et al., 2015 (Figure 8A, 
low preparation time on 20% of trials), inhibiting strategy use on every trial in Experiment 4 yielded 
the opposite outcome (Figure 8B). Low preparation time learning rates increased by more than 80% 
in Experiment 4 (Figure 8C top; mixed-ANOVA exposure number by experiment type interaction, 
F(1,22)=5.993, p = 0.023; significant interaction followed by one-way rm-ANOVA across exposures: 
Haith et al. with F(1,13)=1.109, p = 0.312, ηp

2=0.079; Experiment 4 with F(1,9)=5.442, p = 0.045, 
ηp

2=0.377). Statistically significant increases in reach angle were detected immediately following 
rotation onset in Experiment 4 (Figure 8B, bottom), but not our earlier data (Figure 8C, bottom; 
mixed-ANOVA exposure number by experiment interaction, F(1,22)=4.411, p = 0.047; significant 
interaction followed by one-way rm-ANOVA across exposures: Haith et al. with F(1,13)=0.029, p = 
0.867, ηp

2=0.002; Experiment 4 with F(1,9)=11.275, p = 0.008, ηp
2=0.556).

In sum, when explicit learning was inhibited on every trial, low preparation time behavior showed 
savings (Figure 8B). But when explicit learning was inhibited less frequently, low preparation time 
behavior did not exhibit a statistically significant increase in learning rate (Figure 8A). The competition 
theory provided a possible explanation; that an implicit system expressible at low preparation time 
exhibits savings, but these changes in implicit error sensitivity can be masked by competition with 
explicit strategy.

However, the savings we measured at limited preparation time may not be solely due to changes in 
implicit learning, but also cached explicit strategies (Huberdeau et al., 2019; McDougle and Taylor, 
2019). Indeed, when we limited preparation time in Exp. 3, participants still exhibited a small decrease 
(2.09°) in reach angle when we instructed them to stop aiming (Figure 3L, no aiming; Figure 3N and 
E, red). These small residual strategies could have contributed to the 8° reach angle measured early 
during the second rotation in Exp. 4 (Figure 8C, implicit difference, no comp.).

What that said, the ‘aiming angle’ we measured in the Limit PT group in Exp. 3, may overesti-
mate the extent to which participants can use explicit strategy in our limited preparation time para-
digm. That is, the decrease in reach angle we observed when participants were told to stop aiming 
(Figure 3L, no aiming) may be due to time-based decay in implicit learning (Neville and Cressman, 
2018; Maresch et al., 2021) over the 30 s instruction period, as opposed to a voluntary reduction in 
strategy.

adaptation changes less than 5%. (C) Row 1: effect of enhancing explicit learning. Row 2: total learning increases. Row 3: implicit and explicit learning 
shown in Blocks 1 and 2, where only difference is 100% increase in explicit error sensitivity. Row 4: change in implicit learning (Block 2–1). (D) Row 1: 
effect of suppressing explicit learning. Row 2: total learning decreases. Row 3: implicit and explicit learning shown in Blocks 1 and 2, where explicit 
error sensitivity decreases 100%. Row 4: implicit learning change (Block 2–1). (E) Row 1: model simulation for Haith et al., 2015. Row 2: Total learning 
increases. Row 3: implicit and explicit learning during Blocks 1 and 2 where implicit error sensitivity increases by 41.5% and explicit error sensitivity 
increases by 70.6%. Row 4: negligible change in implicit learning (Block 2–1). (F) Same as in E except here explicit strategy is suppressed during Blocks 1 
and 2.

The online version of this article includes the following source code for figure 7:

Source code 1. Figure 7 analysis code.

Figure 7 continued

https://doi.org/10.7554/eLife.65361
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To test this alternate interpretation, we collected another limited preparation group (n = 12, 
Figure 8—figure supplement 1A, decay-only, black). But this time, participants were instructed that 
the experiment’s disturbance was still on, and that they should continue to move the ‘imagined’ cursor 
through the target during the terminal no feedback period. Despite this instruction, reach angles 
decreased by approximately 2.1° (Figure 8—figure supplement 1B, black). Indeed, we detected no 
statistically significant difference between the change in reach angle in this decay-only group, and the 
Limit PT group in Experiment 3 (Figure 8—figure supplement 1B; two-sample t-test, t(31)=0.016, p 
= 0.987).
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Figure 8. Removing explicit strategy reveals savings in implicit adaptation. (A) Top: Low preparation time (Low PT) trials in Haith et al., 2015 used to 
isolate implicit learning. Middle: learning during Low PT in Blocks 1 and 2. Bottom: difference in Low PT learning between Blocks 1 and 2. (B) Similar to 
A, but here (Experiment 4) explicit learning was suppressed on every trial, as opposed to only 20% of trials. To suppress explicit strategy, we restricted 
reaction time on every trial. The reaction time during Blocks 1 and 2 is shown at top. At middle, we show how participants adapted to the rotation under 
constrained reaction time. At bottom, we show the difference between the learning curves in Blocks 1 and 2. These two periods were separated by 
washout cycles with veridical feedback (not shown). (C) Here, we measured savings in Haith et al. (20% of trials had reaction time limit) and Experiment 3 
(100% of trials had reaction time limit). Top row: we quantify savings by fitting an exponential curve to each learning curve. Data are the rate parameter 
associated with the exponential. Left column shows group-level data (median). Right column shows individual participants. Bottom row: we quantify 
savings by comparing how Blocks 1 and 2 differed before perturbation onset (black), and after perturbation onset (purple and yellow). At left, error bars 
show mean ± SEM. At right, individual participants are shown. Error bars in A and B indicate mean ± SEM. Statistics in C show mixed-ANOVA (exposure 
number is within-subject factor, experiment type is between-subject factor). Significant interactions were observed both in rate (top) and angular 
(bottom) savings measure. Follow-up simple main effects were assessed via one-way repeated-measures ANOVA. Statistical bars where two sets of 
asterisks appear (at left and right) indicate interactions. Statistical bars with a centered set show simple main effects. Statistics: n.s. means p > 0.05, *p < 
0.05, **p < 0.01.

The online version of this article includes the following source code and figure supplement(s) for figure 8:

Source code 1. Figure 8 data and analysis code.

Figure supplement 1. Limiting preparation time eliminates explicit strategy use.

Figure supplement 1—source code 1. Figure 8—figure supplement 1 data and analysis code.

https://doi.org/10.7554/eLife.65361
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This control experiment suggested that ‘explicit strategies’ we measured in the Limit PT condition 
were more likely caused by time-dependent decay in implicit learning. Indeed, our Limit PT protocol 
may eliminate explicit strategy. This additional analysis lends further credence to the hypothesis that 
savings in Experiment 4 was primarily due to changes in the implicit system rather than cached explicit 
strategies.

Impairments in implicit learning contribute to anterograde interference
Exp. 4 suggested that the implicit system can exhibit savings. We next wondered whether these 
changes are bidirectional: can the implicit learning rate decrease? When subjects learn two opposing 
perturbations in sequence, their adaptation slows due to another hallmark of adaptation, anterograde 
interference.

In Experiment 5, we exposed two groups of participants to opposing visuomotor rotations of 30° 
and –30° in sequence (Experiment 5). In one group, the perturbations were separated by a 5-min 
break (Figure 9A). In a second group, the break was 24 hr in duration (Figure 9B). We inhibited 
explicit strategies by strictly limiting reaction time. Under these constraints, participants executed 
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Figure 9. Removing explicit strategy reveals anterograde interference in implicit adaptation. (A) Top: participants were adapted to a 30° rotation 
(A). Following a 5-min break, participants were then exposed to a –30° rotation (B). This A-B paradigm was similar to that of Lerner et al., 2020 Middle: 
to isolate implicit adaptation, we imposed strict reaction time constraints on every trial. Under these constraints, reaction time (blue) was reduced by 
approximately 50% over that observed in the self-paced condition (green) studied by Lerner et al., 2020. Bottom: learning curves during A and B in 
Experiment 5; under reaction time constraints, the interference paradigm produced a strong impairment in the rate of implicit adaptation. To compare 
learning during A and B, B period learning was reflected across y-axis. Furthermore, the curves were temporally aligned such that an exponential fit 
to the A period and exponential fit to the B period intersected when the reach angle crossed 0°. This alignment visually highlights differences in the 
learning rate during the A and B periods. (B) Here, we show the same analysis as in A but when exposures A and B were separated by 24 hr. (C) To 
measure the amount of anterograde interference on the implicit learning system, we fit an exponential to the A and B period behavior. Here, we 
show the B period exponential rate parameter divided by the A period rate parameter (values less than one indicate a slowing of adaptation). At left, 
group-level statistics are shown. At right, individual participants are shown. Data in the Limit PT (limited preparation time) condition in Experiment 5 
are shown in blue. Data from Lerner & Albert et al. (no preparation time limit) are shown in green. A two-way ANOVA was used to test for differences in 
interference (preparation time condition (i.e. experiment type) was one between-subject factor, time-elapsed between exposures (5 min vs 24 hr) was 
the other between-subject factor). Statistical bars indicate each main effect. Statistics: *p < 0.05, **p < 0.01. Error bars in each inset show mean ± SEM.

The online version of this article includes the following source code for figure 9:

Source code 1. Figure 9 data and analysis code.

https://doi.org/10.7554/eLife.65361
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movements at latencies near 200ms (Figure 9A&B, middle, blue). These reaction times were approx-
imately 50% lower than those observed when no reaction time constraints were imposed on partici-
pants, as in our earlier work (Lerner et al., 2020; Figure 9A&B, middle, green).

To assess changes in low preparation time learning, we measured the adaptation rate during 
each rotation period. In addition, we re-analyzed the adaptation rates obtained in our earlier work 
(Lerner et  al., 2020) where participants were tested in a similar paradigm but without any reac-
tion time constraints. While both low preparation time and high preparation time trials exhibited 
decreases in learning rate which improved with the passage of time (Figure 9C; two-way ANOVA, 
main effect of time delay, F(1,50)=5.643, p = 0.021, ηp

2=0.101), these impairments were greatly exac-
erbated by limiting preparation time (Figure 9C; two-way ANOVA, main effect of preparation time, 
F(1,50)=11.747, p = 0.001, ηp

2=0.19). This result was unrelated to initial differences in error across 
rotation exposures; we obtained analogous results (see Materials and methods) when learning rate 
was calculated after the ‘zero-crossing’ in reach angle (two-way ANOVA, main effect of time delay, 
F(1,50)=4.23, p = 0.045, ηp

2=0.067; main effect of prep. time, F(1,50)=8.303, p = 0.006, ηp
2=0.132).

Thus, inhibiting explicit strategy via preparation time constraints revealed a strong and sustained 
anterograde deficit in implicit learning. Under normal reaction time conditions, adaptation rates 
were less impaired, suggesting that explicit strategies may have partially compensated and masked 
lingering deficits in the implicit system’s sensitivity to error.

Part 3: Limitations of the competition theory
The competition theory assumes that learning in the implicit system is driven by only one error. Here 
we show that this single error hypothesis is unlikely to be true in every condition. To demonstrate the 
theory’s limitations, we examine two earlier studies and speculate how the theory might be extended 
to account for these more sophisticated behaviors.

The implicit system may adapt to multiple target errors at the same time
In Mazzoni and Krakauer, 2006, we tested two sets of participants. In a no-strategy group, partic-
ipants adapted to a standard 45° rotation (Figure 10A, blue, no-strategy, adaptation) followed by 
washout (Figure 10A, blue, no-strategy, washout). In a second group, participants made two initial 
movements with the rotation (Figure  10A, red, strategy, 2 movements no instruction). Then we 
coached subjects to aim toward a neighboring target (45° away) which entirely compensated for 
the rotation. Participants adopted the aiming strategy, bringing the primary target error to zero 
(Figure 10A, red, strategy, instruction). Curiously, even though the primary target error had now been 
eliminated, reaching movements gradually drifted beyond the primary target, overcompensating for 
the rotation. These involuntary changes implicated an implicit process.

When we compared the rate of learning with and without strategy in Mazzoni and Krakauer, 
2006, we found that it was not different during the initial exposure to the perturbation (Figure 10B, 
gray, mean adaptation over rotation trials 1–24, Wilcoxon rank sum, p = 0.223). This statistical test led 
us to conclude in Mazzoni and Krakauer, that implicit adaptation was driven by a sensory prediction 
error that did not depend on the primary target and was not altered by explicit strategy.

However, there remained an unsolved puzzle. While the initial rates of adaptation were the same 
irrespective of strategy, adaptation diverged later in learning (Figure  10B, compare strategy and 
no-strategy curves after initial gray region; two-sample t-test, p < 0.005), with the no-strategy group 
exhibiting a larger aftereffect (see aftereffect in Figure 10C; two-sample t-test, p < 0.005). Might 
these late differences have been caused by participants in the strategy group abandoning their explicit 
strategy as it led to larger and larger errors? This possibility seemed unlikely. When we asked partici-
pants to stop using their aiming strategy and to move instead toward the primary target (Figure 10A, 
do not aim rotation on) their movement angle changed by 47.8° (difference between three move-
ments before and three movements after instruction), indicating that they had continued to maintain 
the instructed explicit re-aiming strategy near 45°.

We wondered if interactions between implicit and explicit learning could help solve this puzzle. 
First, we considered the competition model that best described the experiments in Figures 1–7. In this 
model, the implicit system is driven exclusively by error with respect to the primary target (Equation 
1) (Figure 10D, top, e1). While this model predicted learning in the standard no-strategy condition, it 
failed to account for the drift observed when participants were given an explicit strategy (Figure 10D, 
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Figure 10. Two visual targets create two implicit error sources. (A) Data reported in Mazzoni and Krakauer, 2006. Blue shows error between primary 
target and cursor during adaptation and washout. Red shows the same, but in a strategy group that was instructed to aim to a neighboring target 
(instruction) to eliminate target errors, once participants experienced two large errors (two cycles no instruction). (B) The error between the cursor and 
the aimed target during the adaptation period. These curves are the same as in A except we use the aimed target rather than primary target, so as 
to better compare learning curves across groups. (C) The washout period reported in A. Here, error is relative to primary target, though in this case 
aimed and primary targets are the same. (D) We modeled behavior when implicit learning adapts to primary target errors e1. Note that the no-strategy 
learning group resembles data. However, strategy learning exhibits no drift because the implicit system has zero error. Note here that the primary 
target error of 0° is a 45° aimed target error in the strategy group. (E) Similar to D, except here the implicit system adapts to errors between the cursor 
and aimed target, termed e2. (F) In this model, the strategy group adapts to both the primary target error and the aimed target error (e1 and e2 at top). 
The no-strategy group adapts only to the primary target error. Learning parameters are identical across groups. (G) We show how aiming target and 
primary target errors evolve in the strategy group in F. (H) A potential neural substrate for implicit learning. The primary target error and aiming target 
error engage two different sub-populations of Purkinje cells in the cerebellar cortex. These two implicit learning modules combine at the deep nucleus. 
(I) Data reported in Taylor and Ivry, 2011. Before adaptation, subjects were taught to re-aim their reach angles. In the ‘nstruction with target’ group, 
participants re-aimed during adaptation with the aid of neighboring aiming targets (top-left). In the ‘instruction without target’ group, participants re-
aimed during adaptation without any aiming targets, solely based on the remembered instruction from the baseline period. The middle shows learning 
curves. In both groups, the first two movements were uninstructed, resulting in large errors (two movements no instruction). Note in the ‘instruction with 
target’ group, there is an implicit drift as in A, but participants eventually reverse this by changing explicit strategy. There is no drift in the ‘instruction 
without target’ group. At right, we show the implicit aftereffect measured by telling participants not to aim (first no feedback, no aiming cycle post-
adaptation). Greater implicit adaptation resulted from physical target. Error bars show mean ± SEM. Statistics: *p < 0.05, ***p < 0.001.

The online version of this article includes the following source code for figure 10:

Source code 1. Figure 10 data and analysis code.

https://doi.org/10.7554/eLife.65361
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no learning in strategy group). This was not surprising. If implicit learning is driven by the primary 
target’s error, it will not adapt in the strategy group because participants explicitly reduce target error 
to zero at the start of adaptation (note that 45° in Figure 10D means a 0° primary target error).

We next considered the possibility that implicit learning was driven exclusively by an error with 
respect to the aimed target (target 2, Figure 10E, top, e2), as we concluded in our original study 
(Mazzoni and Krakauer, 2006). While this model correctly predicted non-zero implicit learning in the 
no-strategy and strategy groups, it could not account for any differences in learning that emerged 
later during the adaptation period (Figure 10E, bottom).

Finally, we noted that participants in the strategy group were given two contrasting goals. One 
goal was to aim for the neighboring target, whereas the other goal was to move the cursor through 
the primary target (both targets were always visible). Therefore, we wondered if participants in the 
strategy group learned from two distinct target errors: cursor with respect to target 1, and cursor with 
respect to target 2 (Figure 10F, top). In contrast, participants in the no-strategy group attended solely 
to the primary target, and thus learned only from the error between the cursor and target 1. Thus, we 
imagined that implicit learning in the strategy group was driven by two target errors: e1 was cursor 
with respect to target 1, and e2 was cursor with respect to target 2:
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These two modules then combined to determine the total amount of implicit learning (i.e. xi = xi,1+ 
xi,2).

Interestingly, when we applied the dual target error model (Equation 6) to the strategy group, 
and the single target error model (Equations (1) and (3)) to the no-strategy group, the same 
implicit learning parameters (ai and bi) closely tracked the observed group behaviors (black model 
in Figure  10B). These models correctly predicted that initial learning would be similar across the 
strategy and no-strategy conditions but would diverge later during adaptation (Figure 10F). How was 
this possible?

In Figure 10G, we show how the primary target error and aiming target error evolved over time 
in the instructed strategy group. Initially, strategy reduces primary target error to zero (Figure 10G, 
primary target error). Thus, early in learning, the implicit system is driven predominantly by aiming 
target error. For this reason, initial learning will appear similar to the no-strategy group which also 
adapts to only one error. However, as the error with respect to the aimed target decreases, error with 
respect to the primary target increases but in the opposite direction (Figure 10G; see schematic in 
Figure 10F). Therefore, the primary target error opposes adaptation to the aiming target error. This 
counteracting force causes implicit adaptation to saturate prematurely. Hence, participants in the 
no-strategy group, who do not experience this error conflict, adapt more.

It is important, however, to note a limitation in these analyses. Our earlier study did not employ 
the standard conditions used to measure implicit aftereffects: that is instructing participants to aim 
directly at the target, and also removing any visual feedback. Thus, the proposed model relies on the 
assumption that differences in washout were primarily related to the implicit system. These assump-
tions need to be tested more completely in future experiments.

In summary, the conditions tested by Mazzoni and Krakauer show that the simplistic idea that 
adaptation is driven by only one target error, or only one SPE, cannot be true in general (Tsay et al., 
2021b). We propose a new hypothesis that when people move a cursor to one visual target, while 
aiming at another visual target, cursor error with respect to each target contributes to implicit learning. 
When one target error conflicts with the other target error, the implicit learning system may exhibit an 
attenuation in total adaptation.

This experiment alone does not reveal the nature of aiming target error. That is, in the strategy 
group, the error between the aim direction and the cursor is both an SPE, but also a target error 
(because participants are aiming at a neighboring target). We explore this distinction in the next 
section.

https://doi.org/10.7554/eLife.65361


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Albert et al. eLife 2022;11:e65361. DOI: https://doi.org/10.7554/eLife.65361 � 27 of 81

The persistence of sensory prediction error, in the absence of target error
Our analysis in Figure 10A–G suggested that when participants see two targets, one to aim toward 
with their hand and one to move the cursor to, the landmarks can act as two different target errors. To 
what extent do these errors depend on the target’s physical presence in the workspace? Taylor and 
Ivry, 2011 tested this idea, repeating the instruction paradigm used by Mazzoni and Krakauer, though 
with nearly four times the number of adaptation trials (Figure 10I, instruction with target, black). Inter-
estingly, while the reach angle exhibited the same implicit drift described by Mazzoni and Krakauer, 
with many more trials participants eventually counteracted this drift by modifying their explicit strate-
gies, bringing their target error back to zero (Figure 10I, black). At the end of adaptation, participants 
exhibited large implicit aftereffects when instructed to stop aiming (Figure  10I, right, aftereffect; 
t(9)=5.16, p < 0.001, Cohen’s d = 1.63).

In a second experiment, participants were taught how to re-aim their reach angles during an initial 
baseline period, but during adaptation itself, they were not provided with physical aiming targets 
(Figure 10I, instruction without target). In this case, only SPEs (not a target error) could drive implicit 
learning towards the aimed location. Even without physical aiming landmarks, participants imme-
diately eliminated error at the primary target after being instructed to re-aim (Figure 10I, middle, 
yellow). Curiously, without the physical aiming target, these participants did not exhibit an implicit 
drift in reach angle at any point during the adaptation period and exhibited only a small implicit 
aftereffect during the washout period (Figure 10I, right, t(9)=3.11, p = 0.012, Cohen’s d = 0.985). In 
fact, the aftereffect was approximately three times larger when participants aimed towards a physical 
target during adaptation than when this target was absent (Figure 10I, right, aftereffect; two-sample 
t-test, t(18)=2.85, p = 0.012, Cohen’s d = 0.935).

A target error (competition) model is consistent with some of these results, but not all. The model 
correctly predicts that when only a single target is present, performance during adaptation will not 
exhibit a drift, even though people are aiming. However, it does not explain why this condition still 
leads to the small aftereffect. Further, with two targets, it correctly predicts that adaptation will drift, 
as in Mazzoni and Krakauer, but it does not explain how this is eliminated late during adaptation; this 
reversal in drift would seem to indicate a compensatory and gradual reduction in explicit strategy 
(Taylor and Ivry, 2011; McDougle et al., 2015; Taylor et al., 2014).

Together, the data suggested a remarkable depth to the implicit system’s response to error. While 
implicit learning was greatest in response to target error, removing the physical target still permitted 
SPE-driven learning, albeit to a smaller degree. Whether this aiming-related error is both a target 
error and an SPE occurring together, or solely an SPE enhanced by a salient visual stimulus, remains 
unknown.

Discussion
Sensorimotor adaptation relies on an explicit process shaped by intention (Taylor et al., 2014; Hwang 
et  al., 2006), and an implicit process driven by unconscious correction (Morehead et  al., 2017; 
Mazzoni and Krakauer, 2006; Kim et al., 2018). Here, we examined the possibility that these two 
parallel systems can become entangled when they respond to a common error source: target (i.e. 
task) error (Leow et al., 2020; Kim et al., 2019). The data suggested that this coupling resembles a 
competition by which enhancing the explicit system’s response rapidly depletes error, decreasing the 
driving force for implicit adaptation. Thus, providing instructions on how to reduce errors enhances 
the explicit system, but comes at the cost of robbing the implicit system of what it needs to adapt.

This simple rule explained why the implicit system can operate in three modes, one that appears 
insensitive to perturbation magnitude, another that scales with the perturbation’s size, and a third 
that exhibits non-monotonic behavior (Figure 1). It also predicted that priming or suppressing explicit 
awareness can inversely change implicit adaptation (Figure 2). As a result, subjects that utilize strat-
egies inadvertently suppress their implicit learning (Figures 3–5). This inhibition can continue to the 
extent that improvements in implicit learning (e.g. savings) are masked by dramatic upregulation in 
strategic learning (Figures 6–8).

The task-error driven implicit system likely exists in parallel with other implicit processes (Leow 
et al., 2020; Kim et al., 2019; Morehead and Orban de Xivry, 2021). For example, in cases where 
primary target errors are eliminated, small amounts of implicit adaptation persist (Figure 10). These 
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residual changes are likely due to sensory prediction errors (Mazzoni and Krakauer, 2006; Leow 
et al., 2020; Taylor and Ivry, 2011; Kim et al., 2019) as well as other target errors that remain in the 
workspace (Figure 10I). When these error sources oppose one another, competition between parallel 
implicit learning modules may inhibit the overall implicit response (Figure 10A–C).

In a broader sense, these competitive interactions extend beyond implicit and explicit processes, to 
other parallel neural circuits that respond to a common error. Changes in one neural circuit’s response 
to error may be indirectly driven, or hidden, by a parallel circuit. Thus, competition may lead to long-
range interactions between neuroanatomical regions that subserve separate neural processes. For 
example, strategic learning systems housed within the cortex (Shadmehr et al., 1998; Milner, 1962; 
Gabrieli et al., 1993), may exert indirect changes on a subcortical structure like the cerebellum, which 
is widely implicated in subconscious adaptation (Tseng et al., 2007; Donchin et al., 2012; Smith and 
Shadmehr, 2005; Izawa et al., 2012; Wong et al., 2019; Becker and Person, 2019; Morton and 
Bastian, 2006).

Flexibility in the implicit response to error and its contribution to 
savings
When two similar perturbations are experienced in sequence, the rate of relearning is enhanced 
during the second exposure (Haith et al., 2015; Coltman et al., 2019; Mawase et al., 2014; Zarahn 
et al., 2008; Kording et al., 2007). This hallmark of memory (MacLeod, 1988; Ebbinghaus, 1885) is 
referred to as savings, which is often quantified based on differences in the learning curves for each 
exposure (Haith et al., 2015; Morehead et al., 2015), or the rate of adaptation (Kitago et al., 2013). 
These conventions are based on an underlying assumption: when a learning system is enhanced, its 
total adaptation will also change. Here, we showed that this intuition is incorrect.

The state space model (Smith et al., 2006; Albert and Shadmehr, 2018; Thoroughman and Shad-
mehr, 2000) quantified behavior using two processes: learning and forgetting. This model described 
savings as a change in sensitivity to error (Coltman et al., 2019; Mawase et al., 2014; Herzfeld et al., 
2014). When similar errors are experienced on consecutive trials, the brain becomes more sensitive 
to their occurrence and responds more strongly on subsequent trials (Albert et al., 2021; Herzfeld 
et al., 2014; Leow et al., 2016). Generally, as error sensitivity increases, so too does the rate at which 
we adapt to the perturbation (e.g. High PT trials in Figure 6). However, under certain circumstances, 
changes in one’s implicit sensitivity to error may not lead to differences in measured behavior (e.g. 
Low PT trials in Figure 6).

The reason is competition. When strategy is enhanced, it reduces the error available for implicit 
learning. Therefore, although the implicit system may become more sensitive to error, this increase in 
sensitivity is canceled out by the decrease in error size.

For example, recent lines of work have suggested that increases in learning rate depend solely 
on the explicit recall of past actions. Implicit adaptation does not seem to contribute to faster 
re-learning, whether implicit learning is estimated via reported strategies (Morehead et al., 2015), 
or by intermittently restricting movement preparation time (Haith et al., 2015; Huberdeau et al., 
2019; Figure  6). These results suggested that implicit processes do not show savings. Our data 
suggest a different possibility. When we limited reaction time on all trials in Experiment 4, thus 
suppressing explicit contributions to behavior, we found that the implicit system exhibited savings 
(Figure 8). The disconnect between studies that have detected changes in both implicit and explicit 
learning rates (Leow et al., 2020; Yin and Wei, 2020; Albert et al., 2021), versus studies that have 
only observed changes in explicit learing (Haith et al., 2015; Huberdeau et al., 2019; Morehead 
et al., 2015; Avraham et al., 2020; Avraham et al., 2021), can be resolved by the competition 
equation (Equation 4).

The competition equation links steady-state implicit learning to both implicit and explicit learning 
properties (Figure 7). When both implicit and explicit systems become more sensitive to error, the 
explicit response can hide changes in the implicit response (Figure 7B, Region C). Moreover, dramatic 
enhancement in explicit adaptation could even lead to a decrease in implicit learning, even when 
implicit error sensitivity has increased (Figure 7B, Region B). Indeed, this prediction can explain cases 
whereby re-exposure to a rotation increases explicit strategies, but can attenuate implicit learning 
(Huberdeau et al., 2019; Avraham et al., 2021; Wilterson and Taylor, 2021). For example, in a 
recent study by Huberdeau et al., 2019, seven exposures to a rotation dramatically enhanced the 
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strategic learning system, but simultaneously attenuated implicit learning. Prolonged multi-day expo-
sure to a rotation appears to have a similar outcome (Wilterson and Taylor, 2021).

It is critical to distinguish between cases where implicit learning is indirectly reduced by increases 
in explicit strategy, versus contexts that lead to direct impairments in the implicit system’s sensitivity 
to error. For example, when two opposing perturbations are experienced sequentially, the response 
to the second exposure is impaired by anterograde interference (Sing and Smith, 2010; Caithness 
et al., 2004; Smith et al., 2006; Miall et al., 2004). Recently, we linked these impairments in learning 
rate to a transient reduction in error sensitivity which recovers over time (Lerner et al., 2020). Here, 
we limited reaction time to try and isolate the implicit contributions to this impairment. Impairments 
in learning at low preparation time were long-lasting, persisting even 24  hr, and exceeded those 
measured at normal movement preparation times (Figure  9C). These results suggested that less-
inhibited explicit strategies may sometimes compensate, at least in part, for lingering deficits in 
implicit adaptation (Leow et al., 2020; Huberdeau et al., 2019). Our analysis in Figure 9, however, 
compares Exp. 5 to our earlier work in Lerner et al., 2020 where we did not tease apart implicit and 
explicit learning. Thus, future work needs to test these ideas more carefully.

There is a possible limitation in this interpretation. Recent studies have demonstrated that with 
multiple exposures to a rotation, explicit responses can be expressed at lower reaction times: a 
process termed caching (Huberdeau et al., 2019; McDougle and Taylor, 2019). Thus, changes in 
low preparation time adaptation commonly ascribed to the implicit system, may be contaminated by 
cached explicit strategies. This possibility seems unlikely to have altered our results. First, it is not clear 
why caching would occur in Experiment 4, but not our earlier study in Haith et al., 2015; Figure 8; 
these earlier data implied that caching remains limited with only two exposures to a rotation (at least 
during the initial exposure to the second rotation over which savings was assessed). Nevertheless, to 
test the caching hypothesis, we measured explicit re-aiming under limited preparation time condi-
tions in Experiment 3. We found that our method restricted explicit re-aiming to only 2°, compared 
to about 12° in the standard condition (Figure 3N). Moreover, this 2° decrement in reach angle was 
more likely due to forgetting in implicit learning (Neville and Cressman, 2018; Hadjiosif and Smith, 
2015; Alhussein et al., 2019; Hosseini et al., 2017; Joiner et al., 2017; Zhou et al., 2017). That 
is, we a similar 2° decrease in reach angle occurred over the 30  s instruction period, even when 
participants were not told to stop aiming (Figure 8—figure supplement 1). Thus, while it appears 
that caching played little role in our results, our results should be taken cautiously. It is critical that 
future studies investigate how caching varies across experimental methodologies, and how cached 
strategies interact with implicit learning. In addition, such experiments should dissociate these cached 
explicit responses from associative implicit memories that may be rapidly instantiated in the appro-
priate context.

Competition-driven enhancement and suppression of implicit 
adaptation
The competition theory cautions that increases or decreases in implicit learning do not necessarily 
imply that the implicit system has altered its response to error. That is, changes in implicit learning may 
occur indirectly through competition with explicit strategies.

For example, when participants are coached about a visuomotor rotation prior to its onset, their 
explicit strategies are greatly enhanced (Neville and Cressman, 2018; Benson et al., 2011). These 
increases in explicit strategy are coupled to decreases in implicit adaptation (Figure  2). A similar 
phenomenon is observed in other experiments where participants report their strategy using visual 
landmarks. In such paradigms, increased reporting frequency leads to increased explicit strategy, but 
decreased implicit learning (Maresch et al., 2021; Bromberg et al., 2019; de Brouwer et al., 2018). 
Subjects themselves exhibit substantial variations in strategic learning, leading to negative individual-
level correlations between implicit and explicit learning (Neville and Cressman, 2018; Benson et al., 
2011; Fernandez-Ruiz et al., 2011; Figure 3).

The competition theory helps to reveal the input that drives implicit learning. This competitive 
relationship (Equation 4) naturally arises when implicit systems are driven by errors in task outcome 
(Equation 1). We can observe these negative interactions not solely when enhancing explicit strategy, 
but also when suppressing re-aiming. For example, in cases where perturbations are introduced grad-
ually, thus reducing conscious awareness, implicit “procedural” adaptation appears to increase (Yin 
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and Wei, 2020; Saijo and Gomi, 2010; Kagerer et al., 1997; Figure 2, Figure 2—figure supple-
ment 3, and Appendix 5). Similarly, when participants are required to move with minimal preparation 
time, thus suppressing time-consuming explicit re-aiming (Haith et al., 2015; Fernandez-Ruiz et al., 
2011; McDougle and Taylor, 2019), the total extent of implicit adaptation also appears to increase 
(Figure 3O; Albert et al., 2021; Fernandez-Ruiz et al., 2011).

Although the implicit system varies with experimental conditions, a common phenomenon is its 
invariant response to changes in rotation size (Morehead et al., 2017; Neville and Cressman, 2018; 
Bond and Taylor, 2015; Tsay et  al., 2021a; Kim et  al., 2018). For example, in the (Neville and 
Cressman, 2018) data examined in Figure 1, total implicit learning remained constant despite tripling 
the rotation’s magnitude. While this saturation in implicit learning is sometimes due to a restriction in 
implicit adaptability (Morehead et al., 2017; Kim et al., 2018), in other cases this rotation-insensitivity 
may have another cause entirely: competition. That is, when rotations increase in magnitude, rapid 
scaling in the explicit response may prevent increases in total implicit adaptation. In the competition 
theory, implicit learning is driven not by the rotation, but by the residual error that remains between 
the rotation and explicit strategy. Thus, when we used gradual rotations to reduce explicit adaptation 
(Experiment 1), prior invariance in the implicit response was lifted: as the rotation increased, so too 
did implicit learning (Salomonczyk et al., 2011; Figure 1I). The competition theory readily described 
these two implicit learning phenotypes: saturation and scaling (Figure 1G&L). Furthermore, it also 
provided insight as to why implicit learning can even exhibit a non-monotonic response, as in Tsay 
et al., 2021a.

With that said, changes in implicit learning occur not solely due to error-based competition, but 
also variations in implicit learning properties such as error sensitivity. For example, Morehead et al., 
2017 show that total implicit learning paradoxically decreases when rotations exceed about 90°. A 
possible cause is error sensitivity, which declines as errors become larger (Kim et al., 2018; Marko 
et al., 2012; Wei and Körding, 2009). Because no aiming was permitted in their study, steady-state 
errors were  >80°, which would dramatically reduce error sensitivity. Reductions in error sensitivity 
could contribute to the non-monotonic phenotype we described in Tsay et al. (2021). On the other 
hand, Tsay et al. permitted aiming, so steady-state errors were only about 5° in the 90° rotation group. 
These residual errors would not be associated with dramatic reduction in error sensitivity, so error-
based competition seems a more likely mechanism (Figure 1Q). In addition, note that total implicit 
learning varies strongly with error but not error sensitivity; the implicit learning gain pi = bi(1 – ai+ 
bi)-1, responds weakly to changes in bi (see Appendix 4). Thus, large changes in total implicit learning 
are much more likely driven by a competition for error, than by changes in implicit error sensitivity 
(Appendix 6.6 provides additional comparisons between Morehead et al. and Tsay et al.).

In addition, there may be other ways to cast the adaptation model, that also produce competi-
tion between implicit learning and explicit strategy. Here, implicit and explicit systems are treated 
as parallel states that adapt to the same error. A recent inference-based model of motor adaptation 
(Heald et al., 2021) suggests the possibility that implicit and explicit systems participate in a credit 
assignment problem: with the explicit state estimating the external perturbation, and implicit state 
estimating the mismatch between vision and proprioception. This inference model will also produce 
a competition because both states attempt to sum to total state feedback. When more credit is 
assigned to the external perturbation, explicit adaptation will increase, and implicit adaptation will 
decrease. All in all, this model will produce similar phenotypes to the competition equation, given that 
they both describe a competitive learning process.

Variations in individual learning unveil competition between implicit 
and explicit processes
Individuals exhibit substantial variation in how they adapt to rotations (Miyamoto et  al., 2020; 
Fernandez-Ruiz et al., 2011; Tsay et al., 2021d). For example, in Experiments 1–3, we observed 
that individuals who relied more on explicit strategy inadvertently suppressed their own implicit 
learning. In one prime example, Miyamoto et al., 2020 exposed participants to sum-of-sines rota-
tions. Curiously, participants with more vigorous explicit responses to the perturbation exhibited less 
vigorous implicit learning. In a second case, Fernandez-Ruiz et al., 2011 observed that increases in 
movement preparation time helped participants adapt more rapidly, but led to reductions in afteref-
fects. As a third example, when Bromberg et al., 2019 measured eye movements during adaptation, 
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participants who tended to look toward their re-aiming locations not only exhibited greater explicit 
strategies, but less implicit adaptation.

These results suggest that a subject’s strategy suppresses their implicit learning (Fernandez-Ruiz 
et al., 2011). To explain these individual-level correlations, Miyamoto et al., 2020 suggested that 
there may be an intrinsic relationship between implicit and explicit sensitivity to error: when an indi-
vidual’s explicit error sensitivity is high, their implicit error sensitivity is low. Here, our results describe 
another way to account for a similar observation (Figure 3). In Exps. 2 and 3, we used the competi-
tion equation (Equation 4) to predict an individual’s implicit adaptation from their measured explicit 
strategy, assuming each participant had the same sensitivity to error. This equation could accurately 
predict the negative relationship between implicit and explicit learning. Thus, negative individual-level 
correlations between implicit and explicit adaptation can arise from variation in strategy, even under 
an extreme scenario where implicit error sensitivity is constant across participants.

There are alternate ways that such negative correlations between implicit and explicit learning 
might arise. For example, here we described an implicit-centered competition equation where explicit 
strategies suppress implicit learning. The opposite is also possible; implicit learning might be immune 
to explicit strategy, but strategies respond to variation in implicit learning. These contrasting possi-
bilities both predict negative relationships between implicit learning and explicit strategy but diverge 
in how total adaptation should vary with implicit and explicit states (Figure 5). When we tested these 
ideas in Experiment 3, our data were highly consistent with the competition model: increases in total 
learning were associated with greater strategy, but less implicit learning (Figure 5G&H). We observed 
similar phenomena across three additional studies (Figure 5—figure supplement 1). Thus, in cases 
where implicit learning is dominated by target errors, greater total adaptation may be supported 
by less implicit learning. Note, however, that negative correlations at the individual-level are more 
nuanced. Variation in implicit learning properties will weaken the relationship between implicit 
learning and total adaptation (Appendices 7 and 8). Further, in conditions with enhanced SPE learning 
(e.g. multiple visual landmarks), these correlations can easily be invalidated.

These results imply that implicit learning responds to variations in explicit strategy, but strate-
gies are immune to implicit learning. A similar phenomenon was noted by Miyamoto et al., 2020, 
using structural equation modeling. This unidirectional causality, however, is not true in general. For 
example, early during learning, it is common that explicit strategies increase, peak, and then decline. 
That is, when errors are initially large, strategies increase rapidly. But as implicit learning builds, the 
explicit system’s response can decline in a compensatory manner (Taylor and Ivry, 2011; McDougle 
et al., 2015; Taylor et al., 2014). This dynamic phenomenon can also occur in the competition theory, 
where both implicit and explicit systems respond to target error (Figure 6D). But in many cases, a 
second error source may drive this behavioral phenotype. That is, in cases with aiming landmarks 
(Taylor and Ivry, 2011; McDougle et al., 2015; Taylor et al., 2014), errors between the cursor and 
primary target can be eliminated, but implicit learning persists. This implicit learning is likely driven by 
SPEs and target errors that remain between the cursor and aiming landmark (Taylor and Ivry, 2011). 
Persistent implicit learning is counteracted by decreasing explicit strategy to avoid overcompensa-
tion. In sum, competition between implicit learning and explicit strategy is complex. Both systems can 
respond to one another in ways that change with experimental conditions.

Comparisons to invariant error-clamp experiments
The competition and independence models described here apply solely to standard visuomotor rota-
tions where target errors decrease throughout the adaptation process. Another popular visuomotor 
paradigm is an invariant error-clamp: experiments where the target error is fixed to a constant value, 
noncontingent on the participant’s movement. In this paradigm, implicit adaptation reaches a ceiling 
whose value varies somewhere between 15 degrees (Morehead et al., 2017) and 25 degrees (Kim 
et al., 2018) and does not change with rotation size. It is important not to conflate this rotation-
invariant saturation, with the implicit saturation phenotype we explored with the competition model 
in our Neville and Cressman, 2018 analysis (Figure 1G). The ceiling in the invariant error-clamp para-
digm appears to be due to an upper bound on implicit corrections (Kim et al., 2018). The saturation 
phenotype in Figure 1G is due to implicit competition with explicit strategy.

In invariant error-clamp studies, there is no explicit strategy. In such a case, the competition and 
independence models are equivalent. However, the models encoded in Equations (4) and (5) only 
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describe the standard rotation learning conditions considered in our Results. When there is no explicit 
strategy, these models predict implicit learning via: xi

ss = bi(1-ai+ bi)–1  r. In an error-clamp study, 
however, the correct model would be xi

ss = bi(1-ai)–1 r. These equations differ in their implicit learning 
gains: bi(1-ai)–1 for constant error-clamp and bi(1-ai+ bi)–1 for standard rotations. This has critical impli-
cations. For example, in an error-clamp condition, for ai = 0.98 and bi = 0.3, the state-space model 
predicts an implicit steady-state of 15 times the imposed rotation, r. In other words, implicit adap-
tation would need to exceed the rotation size by at least an order of magnitude to reach its steady-
state; a 5° error-clamp would require 75° of implicit learning to reach a dynamic steady-state and a 30° 
rotation would require 450°. In sum, error-clamp rotations require implicit learning that cannot reach 
the dynamic steady-state described by the state-space model. For these reasons, the steady-states 
reached in error-clamp studies are likely caused by another mechanism: the ceiling effect shown in 
Morehead et al., 2017 and Kim et al., 2018. However, in a standard rotation, implicit learning must 
be less than the rotation size (proportional to difference between rotation size and explicit strategy: 
proportionality constant between 0.6 and 0.8 in the data sets we consider here). Under these condi-
tions, the dynamic steady-state described by the competition model is attainable.

Now, a separate but related question, is what causes the implicit system’s upper limit and does 
it vary across experimental settings. We suspect it does. For example, in Morehead et  al., 2017 
the implicit system was limited to 10–15° learning, but in Kim et al., 2018 this limit increased to 
20–25°. It may be that these limits relate to a reliance on proprioceptive error signals (Tsay et al., 
2021c): implicit learning may be ‘halted’ by some unknown mechanism when the hand deviates too 
far from the target. This would make sense, as participants are told to move their hand straight to 
the target and ignore the cursor in this paradigm. In standard rotation paradigms, however, visual 
errors between the cursor and target may dominate this proprioceptive signal, extending the implicit 
system’s capacity. This might explain why some studies have observed implicit learning levels (e.g. 
about 35° in Salomonczyk et al., 2011, and even 45° in Maresch et al., 2021) which greatly exceed 
the error-clamp limits observed in Morehead et al. and Kim et al.

A critical puzzle that remains, however, is savings. The savings in implicit adaptation observed in 
Exp. 4 (Figure 8) contrasts with error-clamp behavior (Avraham et al., 2021), where implicit learning 
decreases during the second exposure. We can only speculate why these phenotypes differ. The 
discrepancy may relate to a divergence in goals. In error-clamp studies, the overall objective is to 
move straight to the target: to not change one’s reach angle. In standard rotation studies, the objec-
tive is to move the cursor to the target: to change one’s reach angle. This goal could play a role in 
enhancing or suppressing the implicit system’s response; some utility associated with adapting more 
rapidly may be necessary to obtain savings. On the other hand, responses to visual errors may be 
suppressed over time during error-clamp, as they are irrelevant to the arm’s motion. Interestingly, 
interacting with the visual target in error-clamp does appear to attenuate the implicit response to the 
rotation (Kim et al., 2019).

A second idea relates to the reward system. Sedaghat-Nejad and Shadmehr, 2021 has shown 
that saccade adaptation is accelerated when learning improves task success. Learning speeds up 
when this leads to an increase in reward probability. Adaptation rates are not improved when 
learning does not impact reward probability. In other words, a higher level ‘desire’ to obtain reward 
may be needed to increase learning rate. Again, such motivation is clear in standard rotation 
experiments where adaptation will improve task success and reward probability. There is no moti-
vation to adapt more rapidly in error-clamp paradigms; participants are never rewarded. More-
over, as noted above, hitting the target in invariant error-clamp paradigms appears to attenuate 
the implicit response (Kim et al., 2019). Interestingly, a link between reward and savings may be 
present in the cerebellum. Several studies (Medina, 2019) have shown that both granule cell layers 
(Wagner et al., 2017) and climbing fiber inputs (Heffley et al., 2018; Kostadinov et al., 2019) 
carry reward-related signals to the cerebellum. Thus, it may be that the cerebellum, a potential 
locus for implicit adaptation (Tseng et  al., 2007; Donchin et  al., 2012; Smith and Shadmehr, 
2005; Izawa et al., 2012; Wong et al., 2019; Becker and Person, 2019; Morton and Bastian, 
2006) responds to errors differently when rewards are not attainable (Morehead et  al., 2017; 
Avraham et al., 2021; Kim et al., 2018) such as error-clamp paradigms, versus conventional rota-
tions where more rapid learning promotes reward acquisition. These ideas are speculative and 
remain to be tested.
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Overall, our data suggest that some implicit learning properties may vary across standard rotation 
and error-clamp paradigms. Considerable future work is needed to better compare these paradigms 
and test the suppositions outlined above.

The relationship between competition and implicit generalization
One potential limitation in our analyses relates to implicit generalization. Earlier studies have shown 
that implicit learning generalizes around the reported aiming direction (Day et al., 2016; McDougle 
et  al., 2017). Thus, participants who aim further away from the target may show smaller implicit 
adaptation when asked to ‘move straight to the target’. While generalization could have contributed 
to the negative implicit-explicit correlation, its role would be small relative to competition. In earlier 
studies (Figure  4B&C), implicit learning decayed only 5° or so with 22.5°–30° changes in aiming 
(Figure 4—figure supplement 2B shows 22.5° re-aiming, McDougle et al., 2017; Figure 4—figure 
supplement 2A shows 30° re-aiming, Day et al., 2016). However, in Exps. 1–3, we observed between 
15°–20° changes in implicit learning (see Figure 4B&C) over similar ranges in explicit strategy. Thus, 
generalization-based decay in implicit learning would need to occur over 300% more rapidly than 
earlier reports to match our data.

Critically, in Exps. 1–3 explicit strategy was estimated as total adaptation minus implicit learning. 
Had generalization reduced the implicit measures, it would falsely inflate our explicit measures. While 
it is tempting to compare our data in Figure  2 or Figure  4 with past generalization curves, this 
should not be done without correcting the explicit strategy measures. These corrections revealed 
that implicit generalization would need to exhibit an implausible narrowing to explain our group-level 
(e.g., response to stepwise rotation, or instruction) and individual-level results (Appendices 6.1–6.5, 
Figure 4C, and Figure 4—figure supplement 1). Altogether, generalization is not a viable alternative 
to the competition theory.

Generalization may have played a smaller role in the studies we analyzed, because participants 
trained with 2 (Tsay et al., 2021a), 3 (Exp. 1, Neville and Cressman, 2018), 4 (Exps. 2–4), 8 (Exp. 5, 
Maresch et al., 2021), or 12 (Saijo and Gomi, 2010) targets. Past studies that measured plan-based 
generalization, only used one training target (Day et al., 2016; McDougle et al., 2017; Figure 4—
figure supplement 2A and B). Thus, decreases in implicit learning would likely be smaller in our 
studies, because the generalization curve widens with additional training targets (Krakauer et al., 
2000; Tanaka et al., 2009). For, example, in Neville and Cressman, 2018, subjects trained with three 
targets. Given the targets’ geometries, 2 had coincided with the neighboring target’s aim direction, 
but one did not. A narrow generalization curve would predict a larger aftereffect for the targets that 
coincided with aim directions, yet no variations in implicit learning were detected across targets (see 
their supplementary analyses).

Note that unlike past generalization studies (Day et al., 2016; McDougle et al., 2017), we did 
not use aiming reports to measure explicit strategy (Day et al., 2016; McDougle et al., 2017). We 
speculate this may play a role in generalization, given that aiming landmarks themselves drive implicit 
learning (Taylor and Ivry, 2011; Figure 10). For example, past generalization studies observed a 
discrepancy between exclusion-based implicit learning and report-based implicit learning: the exclu-
sion measures were smaller due to plan-based generalization (Figure 4—figure supplement 2C). But 
in Exp. 2, the opposite occurred. Exclusion-based implicit learning was larger than implicit learning 
estimated with reporting (Figure 4—figure supplement 2E). The same phenomenon was noted by 
Maresch and colleagues (Maresch et al., 2021) in a condition where reporting was used sparsely 
during adaptation (Figure 4—figure supplement 2D).

Exp. 1 provided a direct way to test how our data may have been impacted by generalization. 
In Exp. 1, a 60° rotation resulted in 22° of implicit learning, whereas a 15° rotation caused about 
7° (Figure 1I). Suppose that implicit learning exhibits about 20% generalization-based decay with 
a 15° change in aiming direction as in McDougle et al., 2017. This decay causes a (0.2)(22°) = 4.4° 
decrease in implicit learning in the 60° rotation, but only a (0.2)(7) = 1.4° in the 15° rotation (i.e., 7° 
implicit learning). Thus, the absolute change in implicit learning driven by generalization depends 
on total implicit learning achieved at steady-state, or in Exp. 1, the rotation’s size. This is not true in 
the competition theory: Equation 4 predicts that the gain relating implicit and explicit adaptation 
does not depend on rotation size. We tested these diverging predictions in Figure 4D–F. Critically, 
behavior matched the competition theory (Figure  4F). AIC indicated that the competition model 
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better described participant behavior than SPE learning models extended with plan-based general-
ization (Figure 4G&H, Appendix 6.3).

With that said, while the generalization hypothesis did not match important patterns in our data, it 
remains a very important phenomena that may alter implicit learning measurements. It is imperative 
that implicit generalization is more thoroughly examined to determine how it varies across experi-
mental methodologies. These data will be needed to accurately evaluate the competitive relationship 
between implicit and explicit learning.

Error sources that drive implicit adaptation
Mazzoni and Krakauer, 2006 exposed participants to a visuomotor rotation, but also provided 
instructions for how to re-aim their hand to achieve success. While participants immediately used this 
strategy to move the cursor through the target, the elimination of task error failed to stop implicit 
adaptation. These data suggested that the implicit system responded to errors in the predicted 
sensory consequence of their actions (Tseng et al., 2007; Shadmehr et al., 2010), rather than errors 
in hitting the target.

However, such a model, where implicit systems learn solely based on the angle between aiming 
direction and the cursor (Equation 2), could not account for the implicit-explicit interactions we 
observed in our data (Figures 1–5). These interactions could only be described by an implicit error 
source that is altered by explicit strategy, such as the angle between the cursor and the target (Equa-
tion 1). For example, in Experiments 2 and 3, participants did not aim straight to the target, but rather 
adjusted their aiming angle by 5–20° (Figure 3). These changes in re-aiming appeared to alter implicit 
adaptation via errors between the cursor and the target. This target-cursor error source (Equation 1) 
appeared to provide an accurate account of short-term visuomotor adaptation across a number of 
studies (McDougle et al., 2015; Miyamoto et al., 2020; Albert et al., 2021; Neville and Cressman, 
2018; Benson et al., 2011; Fernandez-Ruiz et al., 2011; Saijo and Gomi, 2010).

We do not mean to suggest, however, that implicit adaptation is solely driven by a single target 
error. In fact, there are many cases where this idea fails (Leow et al., 2020; Taylor and Ivry, 2011; 
Taylor et al., 2014). We speculate that one feature which alters implicit learning is the simultaneous 
presence of multiple visual targets. In Figures 1–9, there was only one visual target on the screen at 
a time. However, in Mazzoni and Krakauer (Figure 10), there were two important visual targets: the 
adjacent target towards which participants explicitly aimed their hand, and the original target toward 
which the cursor should move. In theory, the brain could calculate errors with respect to both targets. 
When we considered the idea that the implicit system adapted to both errors at the same time, we 
could more completely account for these earlier data (Figure 10F).

The idea that both kinds of visual error (cursor with respect to the primary target, and cursor with 
respect to the aimed target) drive implicit learning, could account for other surprising observations. 
For example, in cases where landmarks are provided to report explicit aiming (McDougle et al., 2015; 
Taylor et al., 2014; Day et al., 2016), target-cursor error is often rapidly eliminated, but implicit adap-
tation persists. A dual-error model (Equation 6) would explain this continued adaptation based on 
persistent aim-cursor error. In other words, aiming landmarks may continue to drive adaptation even 
when primary target errors have been eliminated.

However, the nature of aim-cursor errors remains uncertain. For example, while this error source 
generates strong adaptation when the aim location coincides with a physical target (Figure  10I, 
instruction with target), implicit learning is observed even in the absence of a physical aiming land-
mark (Taylor and Ivry, 2011; Figure 10I, instruction without target), albeit to a smaller degree. This 
latter condition may implicate SPE learning that does not require an aiming target. Thus, it may be 
that the aim-cursor error in Mazzoni and Krakauer is actually an SPE that is enhanced by the presence 
of a physical target. In this view, implicit learning is driven by a target error module and an SPE module 
that is enhanced by a visual target error (Leow et al., 2020; Kim et al., 2019; Leow et al., 2018).

These various implicit learning modules are likely strongly dependent on experimental contexts, 
in ways we do not yet understand. For example, Taylor and Ivry, 2011 would suggest that all exper-
iments produce some implicit SPE learning, but less so in paradigms with no aiming targets. Yet, 
the competition equation accurately matched single-target behavior in Figures 1–9 without an SPE 
learning module. It is not clear why SPE learning would be absent in these experiments. One idea 
may be that the aftereffect observed by Taylor and Ivry, 2011 in the absence of an aiming target, 
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was a lingering associative motor memory that was reinforced by successfully hitting the target during 
the rotation period. Indeed, such a model-free learning mechanism (Huang et al., 2011) should be 
included in a more complete implicit learning model. It is currently overlooked in error-based systems 
such as the competition and independence equations.

Another idea is that some SPE learning did occur in the no aiming target experiments we analyzed 
in Figures 1–9 but was overshadowed by the implicit system’s response to target error. A third possi-
bility is that the SPE learning observed by Taylor and Ivry, 2011 was contextually enhanced by partic-
ipants implicitly recalling the aiming landmark locations provided during the baseline period. This 
possibility would suggest SPEs vary along a complex spectrum: (1) never providing an aiming target 
causes little or no SPE learning (as in our experiments), (2) providing an aiming target during past 
training allows implicit recall that leads to small SPE learning, (3) providing an aiming target that disap-
pears during the movement promotes better recall and leads to medium-sized SPE learning (i.e. the 
disappearing target condition in Taylor and Ivry), and (4) an aiming target that always remains visible 
leads to the largest SPE learning levels. This context-dependent SPE hypothesis may be related to 
recent work suggesting that target errors and SPEs drive implicit learning, but SPEs are altered by 
distraction (Tsay et al., 2021b).

We speculate that the cerebellum might play an important role in supporting multiple implicit 
learning modules (Smith and Shadmehr, 2005; Wong et al., 2019; Hanajima et al., 2015; Kojima 
and Soetedjo, 2018; Bastian et al., 1996). Current models propose that complex spikes in Purkinje 
cells (P-cells) in the cerebellar cortex cause LTD (Marr-Albus-Ito hypothesis). These complex spikes are 
reliably evoked by olivary input in response to a sensory error (Kojima and Soetedjo, 2018; Herzfeld 
et al., 2018; Herzfeld et al., 2015). However, different P-cells are activated by different error direc-
tions, thus organizing P-cells into error-specific subpopulations (Herzfeld et  al., 2018; Herzfeld 
et al., 2015). Therefore, our model suggests that two different sources of error might simultaneously 
transduce learning in two different P-cell subpopulations, which then combine their adapted states 
into a total implicit correction at the level of the deep nuclei. Thus, errors based on the original target, 
and the aiming target, might simultaneously activate two implicit learning modules in the cerebellum 
(Figure 10H).

Alternatively, it is equally possible that these aim-cursor errors and target-cursor errors engage 
separate brain regions both inside and outside the cerebellum. In this view, an interesting possibility is 
that patients with cerebellar disorders (Tseng et al., 2007; Gabrieli et al., 1993; Izawa et al., 2012; 
Maschke et al., 2004; Martin et al., 1996) may have learning deficits specific to one error but not 
the other, as recent results suggest (Wong et al., 2019). These possibilities remain to be fully tested.

Materials and methods
Our work involves reevaluation of earlier literature; this includes data from Haith et  al., 2015 in 
Figures 6 and 8, data from Lerner et al., 2020 in Figure 9, data from Neville and Cressman, 2018 
in Figures 1 and 2, data from Saijo and Gomi, 2010 in Figure 2—figure supplement 3, data from 
Mazzoni and Krakauer, 2006 in Figure  10, data from Taylor and Ivry, 2011 in Figure  10, data 
from McDougle et al., 2017 in Figure 4, data from Day et al., 2016 in Figure 4, data from Tsay 
et al., 2021a in Figure 1, data from Maresch et al., 2021 in Figure 5—figure supplement 1, and 
data from Krakauer et al., 2000 in Figure 4. Relevant details for all studies are summarized in the 
sections below alongside the new data collected for this work (Exps. 1–5). Note that some methods 
are described in Appendices 1–8.

Participants
Here we report the sample sizes used in past studies analyzed here: Haith and colleagues (Haith 
et al., 2015) (n = 14), Lerner et al., 2020 (n = 16 for 5 min group, n = 18 for 24 hr group), Neville 
and Cressman, 2018 (no strategy: n = 11 for 20°, n = 10 for 40°, n = 10 for 60°; strategy: n = 10 for 
20°, n = 11 for 40°, n = 10 for 60°), Mazzoni and Krakauer, 2006 (n = 18), Saijo and Gomi, 2010 (n 
= 9 for abrupt, n = 9 for gradual), Maresch et al., 2021 (n = 40 across the CR, IR-E, and IR-EI groups), 
Tsay et al., 2021a (n = 25/rotation size), McDougle et al. (n = 15), and Taylor and Ivry, 2011 (n = 10 
for instruction with visual target, n = 10 for instruction without visual target).
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All volunteers (ages 18–62) in Experiments 1–5 were neurologically healthy and right-handed. 
Experiment 1 included n = 36 participants in the abrupt group (12 Male, 24 Female), n = 37 partici-
pants in the stepwise group (6 Male, 30 Female, 1 opted to not report). Experiment 2 included n = 9 
participants (5 Male, 4 Female) in the No PT Limit group and included n = 13 participants (6 Male, 7 
Female) in the Limit PT group. Experiment 3 included n = 35 participants in the No PT Limit group (7 
Male, 14 Female), n = 21 participants in the Limit PT group (20 Male, 15 Female), and n = 12 (5 Male, 
7 Female) participants in the decay-only group. Experiment 4 included n = 10 participants (6 Male, 4 
Female). Experiment 5 included n = 20 participants (10 Male, 10 Female) with n = 9 in the 5 min group 
and n = 11 in the 24 group. Experiment 1 was approved by the York Human Participants Review Sub-
committee. Experiments 2–5 were approved by the Institutional Review Board at the Johns Hopkins 
School of Medicine.

Data extraction
When acquiring data from published figures we first attempted to open it in Adobe Illustrator. 
Depending on how these figures were saved and embedded, occasionally the figure could be decom-
posed into its layers. This allowed us to extract the x and y pixel values for each data point (which 
appeared as an object) to interpolate the necessary data from the figure. However, in some cases, 
objects and layers could not be obtained in Illustrator. In these cases, we used the utility GRABIT in 
MATLAB to extract the necessary data. We clearly indicate which approach was used when discussing 
each dataset below. Note that the authors provided source data for our Maresch et al., 2021 and 
Tsay et al., 2021a analyses.

Apparatus
In Experiments 1, 2, 4, and 5 participants held the handle of a robotic arm and made reaching move-
ments to different target locations in the horizontal plane. The forearm was obscured from view by 
an opaque screen. An overhead projector displayed a small white cursor (diameter = 3 mm) on the 
screen that tracked the hand’s motion. We recorded the position of the handle at submillimeter preci-
sion with a differential encoder. Data were recorded at 200 Hz. Protocol details were similar for Haith 
et  al., 2015, Neville and Cressman, 2018, Saijo and Gomi, 2010, and Maresch et  al., 2021 in 
that participants gripped a two-link robotic manipulandum, were prevented from viewing their arm, 
and received visual feedback of their hand position in the form of a visual cursor. In Lerner et al., 
2020, participants performed pointing movements with their thumb and index finger while gripping 
a joystick with their right hand. In Mazzoni and Krakauer, 2006, participants rotated their hand to 
displace an infrared marker placed on the index finger. In Taylor and Ivry, 2011, hand position was 
tracked via a sensor attached to the index finger while participants made horizontal reaching move-
ments along the surface of a table. In Day et al., 2016, Krakauer et al., 2000, and McDougle et al., 
2017, participants moved a stylus over a digitizing tablet. In Experiment 3, participants were tested 
remotely on a personal computer. They moved a cursor on the screen by sliding their index finger 
along the track pad. These conditions were similar in Tsay et al., 2021a.

Visuomotor rotation
Experiments 1–5 followed a similar protocol. At the start of each trial, the participant brought their 
hand to a center starting position (circle with 1 cm diameter). After maintaining the hand within the 
start circle, a target circle (1 cm diameter) appeared in 1 of 4 positions (0°, 90°, 180°, and 270°) at a 
displacement of 8 cm (Experiments 2, 4, and 5). In Experiment 5, eight targets were used, spaced in 
increments of 45°. In Experiment 1, three targets were used positioned in a triangular wedge (45°, 90°, 
and 135°). Participants made a brisk movement that terminated on (Exp. 1) or moved through (Exps. 
2–5) the target. Each experiment consisted of epochs of four trials (three trials for Experiment 1, 8 
trials for Experiment 5) where each target was visited once in a pseudorandom order.

Participants were provided audiovisual feedback about their movement speed and accuracy. If a 
movement was too fast (duration <75ms) or too slow (duration >325ms) the target turned red or blue, 
respectively. If the movement was the correct speed, but the cursor missed the target, the target 
turned white. Successful movements were rewarded with a point (total score displayed on-screen), an 
on-screen animation, and a pleasing tone (1000 Hz). If the movement was unsuccessful, no point was 
awarded, and a negative tone was played (200 Hz). Participants were instructed to obtain as many 
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points as possible throughout the experimental session. Experiment 1 was similar but used 10 cm 
reach displacements and had no upper bound on movement duration.

Once the hand reached the target, visual cursor feedback was removed, and a yellow marker was 
frozen on-screen to indicate the final hand position. At this point, participants were instructed to move 
their hand back to the starting position (in Exp. 1, this return movement was aided by a circle centered 
on the start position, whose radius matched the hand’s displacement). The cursor remained hidden 
until the hand was moved within 2 cm of the starting circle (1 cm in Exp. 1).

Movements were performed in one of three conditions: null trials, rotation trials, and no feedback 
trials. On null trials, veridical feedback of hand position was provided. On rotation trials, the on-screen 
cursor was rotated relative to the start position. On no feedback trials, the subject cursor was hidden 
during the entire trial. No feedback was given regarding movement endpoint, accuracy, or timing.

As a measure of adaptation, we analyzed the reach angle on each trial. The reach angle was 
measured as the angle between the hand and the target (relative to the start position), at the moment 
where the hand exceeded 95% of the target displacement. In Experiment 1, reach angles were 
measured at the hand’s maximum velocity.

Experiments in Haith et al., 2015, Lerner et al., 2020, McDougle et al., 2017, Taylor and Ivry, 
2011, Neville and Cressman, 2018, Saijo and Gomi, 2010, Day et al., 2016, McDougle et al., 2017, 
Krakauer et al., 2000, Maresch et al., 2021, Tsay et al., 2021a, and Mazzoni and Krakauer, 2006 
were collected using similar, but separate protocols. Important differences between these studies and 
the rotation protocol mentioned above are briefly described in the sections below.

Statistics
Parametric t-tests were performed in MATLAB R2018a. For these tests, we report the t-statistic, 
p-value, and Cohen’s d as a measure of effect size. A repeated measures ANOVA (rm-ANOVA) was 
used to measure differences in prediction error in Figure 4E. Two-way repeated measures ANOVAs 
were used in Figure  6B–D to measure how preparation time (low vs high) and exposure number 
(Day 1 vs. Day 2) altered learning rate, reach angle, and model-based error sensitivity measurements, 
respectively. Mixed-ANOVAs were used in Figure 8C to examine how learning (both rate and mean 
over initial trials) was altered by preparation time conditions (between-subject factor: Haith et al., 
2015 vs Experiment 4) and exposure number (within-subjects factor, exposure 1 vs exposure 2). 
A two-way ANOVA was used in Figure 9C to determine how interference patterns changed with 
movement preparation time (no limit vs limit) and time passage (5 min vs 24 hr). For all two-way 
and mixed-ANOVAs, we initially determined whether there was a statistically significant interaction 
effect between each factor. In cases where this interaction effect was statistically significant, we next 
measured simple main effects via one-way ANOVA.

Competition map
In Figure 7, we created a competition map to describe the interactions between explicit strategy and 
implicit learning predicted by the competition theory. To generate this map, we used a state-space 
model (Equations 1-3) where implicit learning and explicit learning were both driven by target errors:
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The terms ai and ae represent implicit retention and explicit retention. The terms bi and be represent 
implicit error sensitivity and explicit error sensitivity.

Because implicit and explicit systems share a common error source in this target error model, their 
responses will exhibit competition. That is, increases in explicit adaptation will necessarily be coupled 
to decreases in implicit adaptation. To summarize this interaction, we created a competition map. The 
competition map describes common scenarios in which the goal is to compare two different learning 
curves. For example, one might want to compare the response to a 30° visuomotor rotation under two 
different experimental conditions. Another example would be savings, where we compare adaptation 
to the same perturbation at two different timepoints. In these cases, it is common to measure the 
amount of implicit and explicit adaptation, and then compare these across conditions or timepoints.
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The critical point is that changes in the amount of implicit adaptation reflect the modulation of both 
implicit and explicit responses to error. This competition will occur at all points during the adaptation 
timecourse (Appendix 1), but is easiest to mathematically validate at steady-state. As described in 
the main text, the steady-state level of implicit adaptation can be derived from Equations 1-3. This 
derivation resulted in the competition equation shown in Equation 4. Note that Equation 4 predicts 
the steady-state level of implicit learning from the implicit retention factor, implicit error sensitivity, 
mean of the perturbation, and critically, the steady-state explicit strategy. If the explicit system is also 
described using a state-space model as in Equation 7, it can be shown that Equation 4 can be equiv-
alently expressed in terms of the implicit and explicit learning parameters according to Equation 8:
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Equation 8 provides the total amount of implicit adaptation as a function of the retention factors, ai 
and ae, as well as the error sensitivities, bi and be. We used Equation 8 to construct the competition 
map in Figure 7A, by comparing the total amount of implicit learning across a reference condition 
and a test condition.

For our reference condition, we fit our state space model to the mean behavior in Haith et al., 
2015 (Figure 6B, Day 1, left). This model best described adaptation during the first perturbation 
exposure using the parameter set: ai = 0.9829, ae = 0.9278, bi = 0.0629, be = 0.0632. Next, we imag-
ined that implicit error sensitivity and explicit error sensitivity differed across the reference and test 
conditions. On the x-axis of the map, we show a percent change in bi from the reference condition 
to the test condition. On the y-axis of the map, we show a percent change in be from the reference 
condition to the test condition. The retention factors were held constant across conditions. Then for 
each condition we calculated the total amount of implicit learning using Equation 8. The color at 
each point in the map represents the percent change in the total amount of implicit learning from the 
reference condition to the test condition.

As described in the main text, the competition map (Figure 7A) is composed of several important 
regions (Figure 7B). In Region A, there is a decrease in implicit error sensitivity (from reference to test) 
as well as a decrease in the total amount of implicit adaptation predicted by Equation 8. In Region 
B, Equation 8 predicts a decrease in implicit adaptation, despite an increase in implicit error sensi-
tivity. In Region D, there is an increase both in implicit error sensitivity as well as steady-state implicit 
learning. In Region E, there is an increase in implicit adaptation, despite a decrease in implicit error 
sensitivity. Finally, Region C shows cases where there are changes in implicit error sensitivity, but the 
total absolute change in implicit adaptation (Equation 8) is less than 5%. To localize this region, we 
solved for the linear bounds that describe a 5% increase or a 5% decrease in the output of Equation 8.

Neville and Cressman, 2018
To understand how enhancing explicit strategy might alter implicit learning, we considered data 
collected by Neville and Cressman, 2018. Here, the authors tested how awareness of a visuomotor 
rotation altered the adaptation process. To do this, participants (n = 63) were divided into several 
groups. In the instructed groups (Figure 2A, purple), participants were instructed about the rotation 
and a compensatory strategy prior to perturbation onset. In other groups, no instruction was provided 
(Figure  1C; Figure  2A, black). During rotation periods, participants reached to three potential 
targets. Implicit contributions to behavior were measured at four different periods using ‘exclusion’ 
trials. During exclusion trials, the authors instructed participants to reach (without visual feedback) as 
they did during the baseline period prior to perturbation onset (without using any knowledge of the 
perturbation gained thus far). Exclusion trial reach angles served as our implicit learning measure. The 
difference between total adaptation and exclusion trial reach angles served as our explicit learning 
measure.

At the start of the experiment, all participants performed a baseline period without a rotation for 
30 trials. Baseline implicit and explicit reach angles were then assayed. At this point, participants in the 
strategy group were briefed about the perturbation with an image that depicted how feedback would 
be rotated, and how they could compensate for it. Then all groups were exposed to the first block of 
a visuomotor rotation for 30 trials. Some participants experienced a 20° rotation, others a 40° rotation, 
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and others a 60° rotation. After this first block, implicit and explicit learning were assayed. This block 
structure was repeated two more times.

Here, we focused on implicit and explicit adaptation measures obtained at the end of the final 
block. To obtain these data, we extracted the mean participant response and the associated standard 
error of the mean, directly from the primary figures reported by Neville and Cressman, 2018 using 
Adobe Illustrator CS6. The implicit and explicit responses in all six groups are shown in Figure 2—
figure supplement 1. The marginal effect of instruction (average over rotation sizes) is shown in 
Figure 2B and C.

Finally, we tested whether the competition equation (Equation 4) or independence equation 
(Equation 5) could account for the levels of implicit learning observed across rotation magnitude and 
awareness conditions. To do this, we used a bootstrapping approach. Using the mean and standard 
deviation obtained from the primary figures, we sampled hypothetical explicit and implicit aftereffects 
for 10 participants. We then calculated the mean across these 10 simulated participants. After this, 
we used fmincon in MATLAB R2018a to find an implicit error sensitivity that minimized the following 
cost function:

	﻿‍
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in
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This cost function represents the difference between the simulated level of implicit adaptation, and 
the amount of implicit learning that would be predicted for a given perturbation size and simulated 
explicit adaptation, according to our competition framework (Equation 4) or independence frame-
work (Equation 5). For this process, we set the implicit retention factor to 0.9565 (see Measuring 
properties of implicit learning). Therefore, only the implicit error sensitivity remained as a free param-
eter. In sum, we aimed to determine if a single implicit error sensitivity could account for the amount 
of adaptation across the no instruction group, instruction group, and each of the three perturbation 
magnitudes (20, 40, and 60°). The combination of instruction and perturbation magnitude yielded 
six groups, hence the upper limit on the sum in Equation 9. We repeated this process for a total of 
10,000 simulated groups.

In Figure 2B&C, we show the marginal effect of instruction on the implicit aftereffect. This was 
obtained by averaging across each of the three rotation magnitudes shown in Figure  2—figure 
supplement 1, for each model. In Figure 1, we show the implicit learning levels predicted by the 
model across all rotation sizes in the no-instruction group. Model predictions across all rotations sizes 
in the instruction group are shown in Figure 2—figure supplement 1. Again, all model predictions 
were made using the same underlying implicit learning parameter set.

Experiment 1
To examine how changes in rotation onset and magnitude altered implicit learning, we recruited two 
participant groups. In the abrupt group, subjects (n = 36) experienced a 60° visuomotor rotation 
abruptly. In the stepwise group, subjects (n = 37) experienced four separate rotation magnitudes in 
sequence: 15°, 30°, 45°, and 60°. Thus, the experiment had four learning periods, one for each rota-
tion size. Each period lasted 66 trials, over which three targets (45°, 90°, 135°) were visited 22 times. 
This same structure was used in the abrupt group, though the rotation magnitude remained constant 
over each learning block. Twice during each block (about 75% into each block and again at the end), 
exclusion trials were used to measure implicit adaptation. On these trials, subjects were told to stop 
using explicit strategies and to reach as they had during the baseline period. The average exclusion 
trial reach angle (across both probe periods in each block) served as our implicit learning measure. The 
difference between total adaptation and the average exclusion trial reach angle served as our explicit 
learning measure. Total adaptation was calculated as the average reach angle on the last 20 trials in 
each learning period.

Here, we focused on implicit and explicit adaptation measures obtained during each block. These 
measures are shown in Figures 1I and 2J. In Figures 1 and 2, we tested how well these measures 
were predicted by the competition and independence equations. The same model parameters were 
used in Figures 1 and 2, although Figure 1 only shows data in the stepwise condition. Note that the 
competition equation can be written as xi

ss = pi(r – xe
ss) and the independence equation can be written 
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as xi
ss = pir, where pi is a scalar gain determined by ai and bi. Thus, the gain pi is the only unknown 

model parameter.
Our goal was to identify one gain (one for each model) that could parsimoniously explain behavior 

across the stepwise and abrupt groups. Thus, we identified the optimal gain that minimized the 
squared error between the model predictions and implicit adaptation across five measures: 15° step-
wise learning, 30° stepwise learning, 45° stepwise learning, 60° stepwise learning, and 60° abrupt 
learning. For the abrupt condition, we did not observe a statistically significant difference in implicit 
aftereffect across the four learning periods (rm-ANOVA, F(3,105)=2.21, p = 0.091, ηp

2=0.059); thus, 
we averaged across learning periods to obtain a single implicit measure. We then identified the pi 
parameter that minimized squared error according to Equation 9, with all five terms described above 
appearing in the sum.

To construct the model predictions shown in Figures 1 and 2, we used a bootstrapping approach. 
Participants in the stepwise and abrupt group were resampled with replacement 1000 times. Each 
time the average implicit learning measure was calculated across the five conditions described above. 
Each model was then fit to these average data. Thus, Figures 1 and 2 show the mean implicit learning 
predicted by each model across all 1000 iterations, as well as the associated standard deviation.

In the main text, we also report a statistical comparison between implicit learning predicted by the 
competition theory in the 60° stepwise and 60° abrupt conditions. This statistic was obtained using a 
different procedure. Here the optimal pi was determined again using Equation 9, but without boot-
strapping. Average across-subject implicit adaptation in the 15° stepwise period, 30° stepwise period, 
45° stepwise period, 60° stepwise period, and 60° abrupt period appeared within the sum in Equation 
9. Then implicit learning was predicted using Equation 4 assuming that each participant had the same 
pi learning gain. We then conducted a paired t-test between 60° stepwise and 60° abrupt implicit 
learning predicted by the model.

Exp. 1 was used extensively to compare the competition theory with an SPE generalization model. 
All details concerning this analysis are provided in Appendix 6. Results are depicted in Figure 4.

Finally, we analyzed subject-to-subject pairwise relationships between implicit learning, explicit 
strategy, and total adaptation (average over last 40 rotation trials) in Figure 5—figure supplement 
1B,E&H. For these analyses, we combined subjects across the 60° rotation period in the abrupt and 
stepwise groups. Note we excluded three outlying participants whose reach angles differed by more 
than three median absolute deviations from the total population on at least 33% of all trials. This 
yielded a total dataset of n = 70. To analyze each pairwise relationship, we used linear regressions. 
In addition, we analyzed the same relationships during the 30° rotation period in the stepwise group 
(Figure 5—figure supplements 2A and 3B).

Tsay et al., 2021a
To evaluate the competition and independence models, we analyzed how implicit and explicit systems 
responded to rotation sizes between 15° and 90° in experiments conducted by Tsay et al., 2021a. 
Data in these experiments was collected remotely via a laptop-based experiment. Participants moved 
to targets at 45° and 135°, which alternated across trials. Participants were exposed to a 15°, 30°, 60°, 
or 90° rotation (n = 25/rotation size). The reach angles during an initial baseline period, rotation period, 
and terminal no aiming period are shown in Figure 1M. During the no aiming period, participants 
reached to each target 10 times (20 trials total). To calculate implicit learning (Figure 1M, no aiming; 
Figure 1N&Q, data) we averaged the reach angle across the 20 no aiming trials. To calculate total 
adaptation, we measured the average reach angle over the last 40 reaching trials (Figure 5—figure 
supplement 1C,1F,2A&3A). To calculate explicit strategy, we computed the difference between total 
adaptation and implicit learning (Figure  1O). We also calculated the implicit driving input in the 
competition theory (rotation minus explicit strategy) in Figure 1P. We also reported an explicit gain 
in the main text. This gain was calculated by dividing the difference between explicit strategies by the 
difference in rotation sizes corresponding to each strategy (and then multiplying by 100 to obtain a 
percentage).

To investigate the non-monotonic relationship between implicit learning and rotation size 
(Figure 1N), we used the competition and independence models. In Figure 1Q, we fit each model to 
the measured data. To do this, we estimated the implicit retention factor using the reach angle decay 
rate during the terminal no aiming period (see Measuring properties of implicit learning, estimate = 
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0.974). Next, we used a least-squares approach to determine the optimal implicit error sensitivity (bi) 
that best matched the implicit reach angles measured across all four rotation sizes. Note that since 
ai and bi appear together in the implicit learning gain, pi, fitting the gain directly would produce the 
same results.

For the competition theory, we averaged the implicit and explicit responses within each rotation 
group, and then identified the bi value that best predicted implicit learning across rotation sizes 
according to the competition equation (Equation 4). To do this, we used the fminbnd utility in MATLAB 
R2018a. This yielded bi = 0.0319. We then used the same ai and bi parameter values to predict total 
implicit learning across all four rotation sizes via Equation 4, assuming all participants had the same 
implicit learning parameters (Figure 1Q, competition). Again, this is equivalent to directly fitting the 
implicit learning gain pi.

We used a bootstrapping procedure to identify the optimal bi parameter in the independence 
model. To do this, we sampled participants in each rotation group with replacement 10,000 times. 
Each time, we calculated the average implicit response, and then minimized the squared error 
(fminbnd in MATLAB R2018a) between this implicit response and that predicted by the independence 
model (Equation 5), across all four rotations sizes. We used the ai and bi estimated in the bootstrap-
ping procedure to predict total implicit learning according to the independence model (Figure 1Q, 
independence).

Finally, we analyzed subject-to-subject pairwise relationships between implicit learning, explicit 
strategy, and total adaptation in Figure 5—figure supplement 1C, F and I. For this, we considered 
participants in the 60° rotation group. To analyze each relationship, we used linear regressions. We 
also analyzed these same relationships during the 30° rotation period (Figure 5—figure supplements 
2A and 3B).

Note that Tsay et al. also tested participants in an invariant error-clamp experiment. We did not 
analyze these data here for two reasons. First, no strategy is used in invariant error-clamp paradigms. 
This means that SPE and target errors are the same, meaning that the competition model and inde-
pendence model cannot be distinguished (they make the same predictions). Second, as described in 
our Discussion (see the section on invariant error-clamp learning), the competition and independence 
models derived in Equations (4) and (5) only apply to standard rotation learning. The implicit learning 
gain in the invariant error-clamp paradigm is not the same and predicts implicit learning levels that 
cannot be physically achieved (see Discussion).

Experiment 2
To test whether changes in explicit strategy altered implicit learning at the individual-level, we tested 
two adaptation conditions. In the first experiment, participants adapted to a visuomotor rotation 
without any limits applied to preparation time (No PT Limit), thus allowing participants to use explicit 
strategy. In a second experiment, we strictly limited preparation time in order to suppress explicit 
strategy (Limit PT).

Participants in the No PT Limit condition began with 10 epochs of null trials (one epoch = 4 trials), 
followed by a rotation period of 60 epochs. Other details concerning the experiment paradigm are 
described in Visuomotor rotation. At the end of the perturbation period, we measured the amount 
of implicit and explicit learning. To do this, participants were instructed to forget about the cursor 
and instead move their hand through the target without applying any strategy to compensate for 
the perturbation. Furthermore, visual feedback was completely removed during these trials. All four 
targets were tested in a randomized sequence. To quantify the total amount of implicit learning, we 
averaged the reach angle across all targets (Figure 3B&G). To calculate the amount of explicit adap-
tation, we subtracted this measure of implicit learning from the mean reach angle measured over the 
last 10 epochs of the perturbation prior to the verbal instruction (results did not change whether we 
used 5, 10, 15 or 20 epochs to calculate total learning). Explicit measures are shown in Figure 3G&N 
(E2).

In the Limit PT group, we suppressed explicit adaptation for the duration of the experiment by 
limiting the time participants had to prepare their movements. To enforce this, we limited the amount 
of time available for the participants to start their movement after the target location was shown. 
This upper bound on reaction time was set to 225ms (we corrected reaction times by the average 
screen delay, 55ms). If the reaction time of the participant exceeded the desired upper bound, the 

https://doi.org/10.7554/eLife.65361


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Albert et al. eLife 2022;11:e65361. DOI: https://doi.org/10.7554/eLife.65361 � 42 of 81

participant was punished with a screen timeout after providing feedback of the movement endpoint. 
In addition, a low unpleasant tone (200 Hz) was played. This condition was effective in limiting reaction 
time (Figure 3F). This experiment started with 10 epochs (one epoch = 4 trials) of null trials. After 
this, the visuomotor rotation was introduced for 60 epochs. At the end of the perturbation period, 
we measured retention of the visuomotor memory in a series of 15 epochs of no feedback trials 
(Figure 3E, no feedback).

Our goal was to test whether the putative implicit learning properties measured in the Limit PT 
group could be used to predict the subject-to-subject relationship between implicit and explicit adap-
tation in the No PT Limit group (according to Equation 4). To do this, we measured each participant’s 
implicit retention factor and error sensitivity in the Limit PT condition (see Measuring properties of 
implicit learning below). We then averaged each parameter across participants. Next, we inserted 
these mean parameters into Equation 4. With these variables specified, Equation 4 predicted a 
specific linear relationship between implicit and explicit learning (Figure 3G, model). We overlaid this 
prediction on the actual amounts of implicit and explicit adaptation measured in each No PT Limit 
participant (Figure 3G, black dots). We performed a linear regression across these measured data 
(Figure 3G, black line, measured). We report the slope and intercept of this regression as well as the 
corresponding 95% confidence intervals.

Lastly, we also asked participants to verbally report their explicit strategy. After the implicit 
probe trials, we showed each target once again, with a ring of small white landmarks placed at 
an equal radial distance around the screen (McDougle et  al., 2015). A total of 108 landmarks 
was used to uniformly cover the circle. Each landmark was labeled with an alphanumeric string. 
Subjects were asked to report the nearest landmark that they were aiming towards at the end of 
the experiment in order to move the cursor through the target when the rotation was on. The 
mean angle reported across all four targets was calculated to provide an additional assay of explicit 
adaptation. However, several (25% across all participants and trials) reports appeared inaccurate in 
that they had the incorrect sign (participants reported aiming with, not opposite to, the rotation). 
Noting that explicit re-aiming is prone to erroneous sign errors (McDougle and Taylor, 2019) 
(errors of same magnitude, opposite sign), we took each report’s absolute value when calculating 
explicit recalibration.

Next, we calculated a report-based implicit measure by subtracting report-based explicit strategy 
from total adaptation. While report-based implicit learning was smaller than reach-based implicit 
learning (Figure 3—figure supplement 2B), and report-based explicit strategy was larger than reach-
based strategy (Figure  3—figure supplement 2A), the two exhibited close correspondence with 
Equation 4 (Figure 3—figure supplement 2C).

Lastly, we also analyzed our reach-based implicit and explicit learning measures in a generalization 
analysis (Figure 5A&B). This analysis is described in Appendix 6.

Experiment 3
We remotely tested three participant groups (No PT Limit, Limit PT, and decay-only). Participants 
controlled a cursor by moving their index finger across the track pad of their personal computer. 
The experiment was coded in Java. To familiarize themselves with the task, participants watched a 
3 minute instructional video. In this video, the trial structure, point system, and feedback structure 
were described. After this video, there was a practice period. During the practice period, the software 
tracked the participant’s reach angle on each trial. If the participant achieved success on fewer than 
65% of trials (measured based on an angular target-cursor discrepancy ≤30°, reaction time ≤1 sec, 
and movement duration ≤0.6 sec), they had to re-watch the instructional video and re-do the practice 
period. Movements were brisk and straight, as in standard in-person rotation studies (two example 
participants are shown in the No PT Limit and Limit PT groups in Figure 3—figure supplement 3).

After the practice period ended, the testing period began. This testing period was similar to the 
No PT Limit condition in Experiment 2. On each trial, participants reached to 1 of 4 targets (up, down, 
left, and right). Each target was visited once pseudorandomly in a cycle of 4 targets. After an initial 
10-cycle null period, a 30° visuomotor rotation was imposed that lasted for 60 epochs. At the end of 
the rotation period, we measured implicit and explicit adaptation. The experiment briefly paused, and 
an audiovisual recording was played that instructed participants to not use any strategy and to move 
their hand straight through the target. After the experiment resumed, feedback was removed, and 
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participants performed 20 cycles of no-feedback probe trials. In the No PT-Limit group, participants 
were told to stop aiming on these no-feedback trials, and to move their hand straight to the target.

We measured subject-to-subject correlations between implicit and explicit adaptation in the No 
PT Limit group. For this, we calculated two implicit learning measures. The early implicit aftereffect 
was simply the aftereffect observed on the first no-aiming, no-feedback probe cycle (Figure 3Q). The 
late implicit aftereffect was the average aftereffect observed on the last 15 cycles of this no-aiming, 
no-feedback period (Figure 3P). To measure explicit learning, we calculated the difference between 
the total amount of adaptation (mean reach angle over last 10 cycles of the rotation period) and the 
first cycle of the no-aiming, no-feedback period. We investigated the relationship between explicit 
adaptation and the early and late implicit aftereffects via linear regression in Figure 3P&Q, respec-
tively. For the early implicit aftereffect, we measured the 95% CI for the slope and intercept. Note 
that explicit learning measures are also reported in Figure 3N (E3, black) and late implicit learning 
measures are reported in Figure 3O (No Lim.).

In addition, we also analyzed the relationship between total adaptation and implicit and explicit 
adaptation in the No PT Limit group. As described in the main text, the competition theory predicted 
that total adaptation and explicit strategy should have a positive relationship, whereas total adapta-
tion and implicit learning should have a negative relationship (see Appendix 7). In Figure 5G, we show 
the relationship between total adaptation and the explicit learning measure. In Figure 5H, we show 
the relationship between total adaptation and the late implicit learning measure. The brown lines 
denote a linear regression across individual participants.

Finally, we also considered the No PT Limit data in our generalization analyses in Figure 4A&C. 
This process was the same as for Experiment 2 as shown in Figure 4A&B. See Appendix 6.

Next, we also tested a Limit PT group in Exp. 3. Here, we attempted to suppress explicit strate-
gies by limiting movement preparation time. To determine the limiting preparation time, we used an 
adaptive algorithm during the baseline period to decrease or increase the preparation time limit in 
response to a correct or incorrect reach responses (i.e. reaches to the correct or incorrect target). This 
limit was capped at 350ms, but this upper bound did not include screen delay. We used audiovisual 
feedback throughout the experiment to enforce the preparation time limit. If the reaction time of the 
participant exceeded the desired upper bound, the participant was played a low-pitched tone during 
which the screen briefly timed out and shown a message to “react faster”. This condition produced 
the preparation times shown in Figure 3M. Apart from this, the experiment protocol was the same as 
the No PT Limit group.

To test whether limiting preparation time was successful in inhibiting explicit strategy, we calcu-
lated explicit strategy as in the No PT Limit. Explicit strategies were dramatically inhibited by limiting 
preparation time (Figure 3E&O, red). Second, we wanted to measure implicit learning properties in 
the Limit PT condition and use these to predict the implicit-explicit relationship in the No PT Limit 
group, with the competition theory. For the latter, we used the same method described above for 
Experiment 2 (also see Measuring properties of implicit learning). Using the Limit PT data, the compe-
tition theory predicted the line shown in blue in Figure 3Q. The black data points show the implicit 
and explicit learning measures in the No PT Limit group. Also note that consistent with the compe-
tition theory, limiting preparation time led to an increase in implicit learning (Figure 3O, PT Limit).

As stated above, in the No PT Limit and Limit PT groups, participants were instructed to stop 
re-aiming during the no feedback period, and to move their hand straight to the target (Figure 3I&L, 
no aiming). We used the voluntary change in reach angle to estimate explicit strategy. However, 
the instruction period lasted about 30 s, which may have caused decay in temporally labile implicit 
learning (Neville and Cressman, 2018; Maresch et al., 2021; Hadjiosif and Smith, 2015). To measure 
how much implicit learning had decayed over this time delay, we varied the instruction condition in 
a decay-only group (n = 12). The decay-only group adapted using the same restricted reaction time 
paradigm as the Limit PT group. However, prior to the no feedback period, participants were told that 
the disturbance between the cursor and their movement would still be present when they returned to 
the experiment, but they would no longer be able to see the cursor. Still, they were told to imagine 
this disturbance and to try and move the imagined cursor to the target. Changes in reach angle in 
this group, would be due solely to decay in implicit learning (Figure 8—figure supplement 1). We 
compared the behavior in the decay-only group to the Limit PT group in Figure 8—figure supple-
ment 1.
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Finally, we used a separate procedure to estimate screen delay. To do this, participants were told 
to tap a circle that flashed on and off in a regular, repeating cycle. Participants were told to predict 
the appearance of the circle, and to tap exactly as the circle appeared. Because the stimulus was 
predictable, the difference between the appearance time, and the participant’s button press, revealed 
the system’s visual delay. The average visual delay we measured was 154ms. This average value was 
subtracted out in the preparation times reported in Figure 3J&M, as well as Figure 8—figure supple-
ment 1.

Day et al., 2016
A recent study by Day et al. measured implicit generalization. Participants were exposed to a 45° 
rotation at a single target. On each trial, they reported their aiming direction, using a ring of visual 
landmarks. This study measured implicit generalization by instructing participants to aim towards 
untrained targets. We reproduce this curve in Figure 4A (Day 1T). We only show the curve starting at 
the average aiming direction (0° on the x-axis), towards the training target direction (i.e. in the direc-
tion participants will change their aim when instructed to aim to the primary target). Note in Figure 4B 
and C, only the initial two points along the curve are shown.

Last, we also compared implicit learning measured across two groups reported in their Figure 2. In 
the ‘target’ group in Figure 4—figure supplement 2A, implicit aftereffects were periodically probed 
at the trained target location, by asking subjects to reach to the target without aiming. In the ‘aim’ 
group, implicit aftereffects were probed at a target location 30° away from the trained target, consis-
tent with the direction of the most frequently reported aim. In Figure 4—figure supplement 2A, 
we show the implicit aftereffect measured on the first aftereffect trial at the end of the experiment. 
In Figure 4—figure supplement 2C we again show the implicit aftereffect measured at the trained 
target location in the ‘probe’ condition. The ‘report’ condition shows the amount of implicit learning 
estimated by subtracting the reported explicit strategy from the reported reach angle on the last cycle 
of the rotation. Note that all data were extracted using the primary source’s figures with MATLAB’s 
GRABIT utility.

Krakauer et al., 2000
Figure 4A reproduces generalization curves measured by Krakauer et al. We extracted curves shown 
in Figure 7B in Krakauer et al., 2000 using GRABIT in MATLAB R2018a. To demonstrate how gener-
alization curves are altered by the number of adaptation targets, we show the one target (1T), 2 target 
(2T), four target (4T), and eight target (8T) curves reported in Krakauer et al., 2000. In this study, 
participants moved a stylus across a digitized tablet and adapted to a 30° rotation.

McDougle et al., 2017
In Figure 4—figure supplement 2B, we show data collected by McDougle et al., 2017, reported 
in Figure  3A of the original manuscript. Here, participants were exposed to a 45° rotation while 
reaching to a single target. At the end of the experiment, participants were exposed to an aftereffect 
block where they reached 3 times to 16 different targets spaced in varying increments around the unit 
circle. In this aftereffect block feedback was removed and participants were told to move straight to 
the target without re-aiming. This aftereffect block was used to construct a generalization curve. In 
Figure 4—figure supplement 2B we show data only from two relevant locations on this curve. The 
‘target’ condition represents aftereffects probed at the training target. The ‘aim’ condition shows the 
aftereffect measured at 22.5° away from the primary target, which was the target closest to the mean 
reported explicit re-aiming strategy of 26.2°.

We also use the study’s implicit generalization curve (their Figure 3A) in our SPE generalization 
model analysis. This curve is reproduced in Figure 4. We extracted only one side: the one pointing 
along the vector which connected the aiming direction and the adaptation target. We also normalized 
the curve by dividing by the maximum implicit learning they measured along the aiming direction. 
These data were extensively used in our generalization analysis in Appendix 6. All relevant details are 
provided there. We selected this study because implicit and explicit learning were dissociated and 
because CW and CCW were counterbalanced across participants (alleviating potential position-based 
biases). Note that all data were extracted using the primary source’s figures with MATLAB’s GRABIT 
utility.

https://doi.org/10.7554/eLife.65361
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Maresch et al., 2021
To evaluate the competition and independence models, we analyzed how implicit and explicit learning 
varied across individual participants in a study conducted by Maresch and colleagues (Maresch et al., 
2021). In this analysis, we collapsed across participants in the CR, IR-E, and IR-EI groups (n = 40 
total). Note that we did not include participants in the IR-I group, because implicit learning was only 
measured at one timepoint, unlike the three other groups. In this task, participants reached to eight 
targets (45° between each target) while holding a robotic manipulandum. Participants were exposed 
to a 60° rotation. Implicit learning and explicit strategy were probed in various ways throughout the 
experiment. Here, we used the authors’ exclusion-based implicit and explicit learning measures. In 
other words, implicit learning was measured by telling subjects to stop aiming. Explicit strategy was 
estimated as the voluntary decrease in reach angle that occurred when participants were told not to 
aim (the difference between total adaptation and implicit learning). To calculate total adaption, we 
averaged the reach angle over the 40 terminal rotation trials. We analyzed subject-to-subject pairwise 
relationships between implicit learning, explicit strategy, and total adaptation in Figure 5—figure 
supplement 1A,D&G. To analyze each pairwise relationship, we used linear regressions.

Lastly, in Figure 5—figure supplement 3 we show data collected by Maresch et al., 2021, reported 
in Figure 4b of the original manuscript. This study calculated implicit learning directly with exclusion 
trials and indirectly with aim reports. In Figure 5—figure supplement 3D we show data from the IR-E 
group. This group was comparable to our data because aim was reported intermittently (4 times every 
80 trials), meaning that on most trials, aiming targets would not cause adaptation (only the primary 
target). In addition, there were eight adaptation targets, which will widen implicit generalization. 
The probe condition in Figure 5—figure supplement 3D corresponds to the total implicit learning 
measured at the end of adaptation by telling participants to reach without re-aiming. The ‘report’ 
condition corresponds to total implicit learning estimated at the end of adaptation by subtracting the 
reported aim direction from the measured reach angle.

Haith et al., 2015
To investigate savings, Haith et al., 2015 used a forced preparation time task. Briefly, participants (n 
= 14) performed reaching movements to two targets, T1 and T2, under a controlled preparation time 
scenario. To control movement preparation time, four audio tones were played (at 500ms intervals) 
and participants were instructed to reach coincident with the 4th tone. On high preparation time trials 
(High PT), target T1 was shown during the entire tone sequence. On low preparation time trials (Low 
PT), T2 was initially shown, but was then switched to target T1 approximately 300ms prior to the 4th 
tone. High PT trials were more probable (80%) than Low PT trials (20%).

After a baseline period (100 trials for each target), a 30° visuomotor rotation was introduced for 
target T1 only. After 100 rotations trials (Exposure 1), the rotation was turned off for 20 trials. After 
a 24 hr break, participants then returned to the lab. On Day 2, participants performed 10 additional 
reaching movements without a rotation, followed by a second 30° rotation (Target T1 only) of 100 
trials (Exposure 2). The experiment then ended with a washout period of 100 trials for each target.

We quantified the amount of savings expressed upon re-exposure to the perturbation, on High PT 
and Low PT trials. We measured savings using two metrics. First, we measured the rate of learning 
during each exposure to the perturbation using an exponential fit. We fit a two-parameter exponential 
function to both Low PT and High PT trials during the first and second exposure (we constrained the 
third parameter to enforce that the exponential begin at each participant’s measured baseline reach 
angle). We compared the exponential learning rate across high PT trials, low PT trials, and Exposures 
1 and 2 with a two-way repeated-measures ANOVA (two within-subject factors: PT and exposure 
number), followed by one-way repeated-measures ANOVA to test simple main effects (Figure 6B, 
right).

We also quantified savings in a manner similar to that reported by Haith et al., 2015; we calculated 
the difference between the reach angles before and after the introduction of the perturbation, during 
each exposure (Figure 6C, 1st and 2nd columns). For High PT trials, we then computed the mean 
reach difference over the three trials preceding, and three trials following perturbation onset. Given 
their reduced frequency, for Low PT trials, we focused solely on the trial before and trial after pertur-
bation onset. We used the same statistical testing procedure (two-way rm-ANOVA with follow-up 
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simple main effects) to test for savings in the pre-perturbation and post-perturbation differences 
(Figure 6C, right).

Finally, we also used a state-space model of learning to measure properties of implicit and explicit 
learning during each exposure. We modeled implicit learning according to Equation 3 and explicit 
learning according to Equation 7. In our competition theory, we used target error as the error in both 
the implicit and explicit state-space equations. In our SPE model, we used target error as the explicit 
system’s error, and SPE as the implicit system’s error.

The total reach angle was set equal to the sum of implicit and explicit learning. Each system 
possessed a retention factor and error sensitivity. Here, we asked how implicit and explicit error sensi-
tivity might have changed from Exposure 1 to Exposure 2, noting that savings is related to changes 
in error sensitivity (Coltman et al., 2019; Mawase et al., 2014; Lerner et al., 2020; Albert et al., 
2021; Herzfeld et al., 2014). Therefore, we assumed that the implicit and explicit retention factors 
were constant across perturbations but allowed a separate implicit and explicit error sensitivity during 
Exposures 1 and 2. Therefore, our modeling approach included six free parameters. We fit this model 
to the measured behavior by minimizing the following cost function using fmincon in MATLAB R2018a:
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Here y1 and y2 represent the reach angles during the 1st and 2nd rotation. These reach angles are 
composed of High PT and Low PT trials. On Low PT trials, the reach angle is equal to the implicit 
process. On High PT trials, the reach angle is equal to the sum of the implicit adaptive process and 
the explicit adaptive process.

We fit this model to individual participant behavior, in the case where implicit learning was driven 
by target errors (Equation 1), and also in the alternate case where it was driven by SPEs (Equation 2). 
The implicit and explicit model simulations in Figure 6D (columns 1 and 2) represent the competition 
theory (target error learning). For the SPE model, these states are not shown, but model parameters 
are reported in Figure 6E.

We used a two-way repeated-measures ANOVA to test whether error sensitivity differed across 
implicit and explicit learning (within-subject factor) and across exposures (within-subject factor). We 
used follow-up one-way repeated measures ANOVA to test for differences across exposures (sepa-
rately for implicit and explicit learning) for the SPE model, after detecting a statistically significant 
interaction effect.

Finally, we also fit the target-error (Equation 1) model to the mean behavior across all participants 
in Exposure 1 and Exposure 2. We obtained the parameter set: ai = 0.9829, ae = 0.9278, bi,1 = 0.0629, 
bi,2 = 0.089, be,1 = 0.0632, be,2 = 0.1078. Note that the subscripts 1 and 2 denote error sensitivity 
during Exposure 1 and 2, respectively. These parameters were used for our simulations in Figure 7 
(see Competition Map).

Experiment 4
The competition theory (Figure  7) predicted that more consistently suppressing explicit strategy, 
relative to the conditions used by Haith et al., 2015, should reveal savings in the implicit system. 
That is, Haith et al., 2015 inhibited strategy only on 20% of all trials. Strategies were able to compete 
with the implicit system on the remaining 80% of trials. To test this prediction, we inhibited strategy 
on every trial in Exp. 4. To inhibit strategies, we limited reaction time using the procedure described 
above for Experiments 2 and 3. In Exp. 3, we observed that limiting movement preparation time 
drastically suppressed explicit re-aiming (Figure 3N). Limiting preparation time in Exp. 4 was effective 
in reducing reaction times (Figure 8B, top row), even lower than the 300ms threshold used by Haith 
et al., 2015.

Experiment 4 used the 4-target protocol reported in Visuomotor rotation. Apart from that, its trial 
structure was similar to that of Haith et al., 2015. After a familiarization period, subjects completed 
a baseline period of 10 epochs (one epoch = 4 trials for each target). At that point, we imposed a 
30° visuomotor rotation for 60 epochs (Exposure 1). At the end of this first exposure, participants 
completed a washout period with no perturbation that lasted for 70 epochs. At the end of the washout 
period, subjects were once again exposed to a 30° visuomotor rotation for 60 epochs (Exposure 2).

https://doi.org/10.7554/eLife.65361
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We quantified savings in a manner consistent with Haith et al., 2015. First, we fit a two-parameter 
exponential function to the reach angle during Exposures 1 and 2 (third parameter was used to constrain 
the fit so that the exponential curve started at the reach angle measured prior to perturbation onset). 
Second, we also tested for differences in the initial response to the perturbation across each exposure. 
To do this, we calculated the difference between reach angle during Exposures 1 and 2 (Figure 8A&B, 
bottom row). We then calculated the difference in reach angle between the five epochs preceding 
and five epochs following rotation onset. Differences between these two savings indicators (rate and 
early learning) were tested with a mixed-ANOVA, to determine how adaptation differed across each 
perturbation exposure (within-subject) in Exp. 4 and Haith et al. (between-subject factor). Statistically 
significant interaction effects were followed by one-way repeated-measures ANOVA (testing simple 
main effect of exposure number). Results are shown in Figure 8C.

Experiment 5
Lerner et al., 2020 demonstrated that anterograde interference slows the rate of learning after 5 min 
(also 1 hr), but dissipates over time and is nearly gone after 24 hr. Here, we wondered if this reduction 
in learning rate could at least be in part driven by impairments in implicit learning. Because Lerner 
et al., 2020 did not constrain preparation time, one would expect that participants used both implicit 
and explicit learning processes. In Experiments 2–4, we isolated the implicit component of adaptation 
by limiting reaction time. We used the same technique to limit reaction time in Experiment 5. The 
experiment paradigm is described in Visuomotor rotation above. With that said, we used eight adap-
tation targets as opposed to four targets, to match the protocol used by Lerner et al., 2020.

The perturbation schedule is shown in Figure 9A&B at top. We recruited two groups of partici-
pants, a 5 min group (n = 9), and a 24 hr group (n = 11). After familiarization, all participants were 
exposed to a baseline period of null trials lasting five epochs (one epoch = 8 trials). Next participants 
were exposed to a 30° visuomotor rotation for 80 cycles (Exposure A). At this point, the experiment 
ended. After a break, participants returned to the task. For the 5  min group, the second session 
occurred on the same day. For the 24 hr group, participants returned the following day for the second 
session. At the start of the second session, participants were exposed to a 30° visuomotor rotation 
(Exposure B) whose orientation was opposite to that of Exposure A. This rotation lasted for 80 epochs.

We analyzed the rate of learning by fitting a two-parameter exponential function to the learning 
curve during Exposures A and B (the third parameter was used to constrain the exponential curve 
to start from the behavior on the first epoch of the rotation). For each participant, we computed an 
interference metric by dividing the exponential rate of learning during Exposure B, by that measured 
during Exposure A (Figure 9C, blue). We tested how interference was impacted by passage of time 
between Exposures A and B (5 min or 24 hr) as well as by the preparation time condition (no limit 
in Lerner and Albert et al., limit in Exp. 5) using a two-way ANOVA. In addition, we calculated each 
exponential’s x-intercept (i.e. zero-crossing), which we used in the control analysis described below.

One potential issue with this technique, is that it does not consider differences in the initial errors 
experienced during re-exposure to the rotation (Figure 9A&B, bottom row), which could alter sensi-
tivity to error (Albert et al., 2021; Kim et al., 2018; Marko et al., 2012). To examine this, we recal-
culated learning rate during the second rotation exposure only after the zero-crossing in reach angle 
(i.e. the point at which the error reached 30°, as in the initial exposure). To estimate this zero-crossing 
point, we used the exponential model’s x-intercept as described above. Then we used a two-way 
ANOVA (same as above) to test how this alternate interference metric was altered by time passage 
(between exposures) and preparation time.

Lerner et al., 2020
Recently, Lerner et al., 2020 demonstrated that slowing of learning in anterograde interference para-
digms is caused by reductions in sensitivity to error. Here, we re-analyze some of these data.

Lerner et  al., 2020 studied how learning one visuomotor rotation altered adaptation to an 
opposing rotation when these exposures were separated by time periods ranging from 5 min to 24 hr. 
Here, we focused solely on the 5 min group (n = 16) and the 24 hr group (n = 18). A full methodolog-
ical description of this experiment is provided in the earlier manuscript. Briefly, participants gripped a 
joystick with the thumb and index finger which controlled an on-screen cursor. Their arm was obscured 
from view using a screen. Targets were presented in eight different positions equally spaced at 45° 
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intervals around a computer monitor. Each of these eight targets was visited once (random order) 
in epochs of eight trials. On each trial, participants were instructed to shoot the cursor through the 
target.

All experiment groups started with a null period of 11 epochs (one epoch = 8 trials). This was 
followed by a 30° visuomotor rotation for 66 epochs (Exposure A). At this point, the experiment ended. 
After a break, participants returned to the task. For the 5 min group, the second session occurred on 
the same day. For the 24 hr group, participants returned the following day for the second session. At 
the start of the second session, participants were immediately exposed to a 30° visuomotor rotation 
(Exposure B) whose orientation was opposite to that of Exposure A. This rotation lasted for 66 epochs. 
Short set breaks were taken every 11 epochs during Exposures A and B.

Here, as in the earlier work (Lerner et al., 2020), we analyzed the rate of learning by fitting a two-
parameter exponential function to the learning curve during Exposures A and B (the third parameter 
was used to constrain the exponential curve to start from the behavior on the first epoch of the rota-
tion). For each participant we computed an interference metric by dividing the exponential rate of 
learning during Exposure B, by that measured during Exposure A (Figure 9C, green). In addition, we 
also analyzed the reaction time of the participants during Exposure B. The mean reaction time over 
the first perturbation block is shown in Figure 9A&B (middle, green traces).

Mazzoni and Krakauer, 2006
In this study, subjects sat in a chair with their arm supported on a tripod. An infrared marker was 
attached to a ring placed on the participant’s index finger. The hand was held closed with surgical 
tape. Participants moved an on-screen cursor by rotating their hand around their wrist. These rotations 
were tracked with the infrared marker. On each trial, participants were instructed to make straight 
out-and-back movements of a cursor through 1 of 8 targets, spaced evenly in 45° intervals. A 2.2 cm 
marker translation was required to reach each target. Note that all eight targets remained visible 
throughout the task.

Two groups of participants were tested with a 45° visuomotor rotation. In the no-strategy group, 
participants adapted as per usual, without any instructions. After an initial null period, the rotation 
was turned on (Figure 10A, blue, adaptation). After about 60 trials of adaptation, the rotation was 
turned off and participants performed another 60 washout trials (Figure 10A, blue, washout). The 
break between the adaptation and washout periods in Figure 10A, no-strategy, is simply for align-
ment purposes.

The strategy group followed a different protocol. After the null period, participants reached 
for two movements under the rotation (Figure 10A, 2 cycles no instruction, red). At this point, the 
subjects were told that they made two errors, and that they could counter the error by reaching to the 
neighboring clockwise target (all targets always remained onscreen). After the instruction, participants 
immediately reduced their error to zero (point labeled instruction in red, Figure 10A). They continued 
to aim to the neighboring target throughout the adaptation period. Note that the directional errors 
became negative. This convention indicates overcompensation for the rotation, that is, participants 
are altering their hand angle by more than their strategic aim of 45°. Toward the end of the adaptation 
period, participants were told to stop re-aiming, and direct their movement back to the original target 
(Figure 10A, do not aim, rotation on). Then after several movements, the rotation was turned off as 
participants continued to aim for the original target during the washout period.

In Figure 10A we show the error between the primary target (target 1) and cursor during the entire 
experiment. In Figure 10B, we show the error between the aimed target (target 2) and cursor during 
the adaptation period. Note that the aimed and primary targets are related by 45° when the strategy 
group is re-aiming. We observed that initial adaptation rates (over first 24 movements, gray area in 
Figure 10B) were similar, but the no-strategy group ultimately achieved greater implicit adaptation. 
These data were all obtained by using the GRABIT routine in MATLAB 2018a to extract the mean (and 
standard error of the mean) performance in each group from the figures shown in the primary article.

We fit 1 of 3 models to the direction error during the adaptation period shown in Figure 10B. In 
all cases, we modeled explicit re-aiming in the strategy group as an aim sequence that started at zero 
during the initial two movements, and then 45° for the rest of the adaptation period (i.e. after the 
instruction to re-aim). In the no-strategy group, we modeled explicit learning as an aim sequence that 
remained at zero throughout the adaptation period.

https://doi.org/10.7554/eLife.65361
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In Figure 10D, we modeled implicit learning based on the state-space model in Equation 3 and 
target error term defined in Equation 1. This target error was defined as the difference between 
the primary target (i.e. the target associated with task outcome) and the cursor. In Figure 10E, we 
modeled implicit learning based on the state-space model in Equation 3 and the aim-cursor error 
defined in Equation 2. This aim-cursor error was defined as the difference between the aimed target 
(either 0° or 45°) and the cursor. Figure 10F, shows our third and final model. In this model, implicit 
learning in the strategy group was modeled using the dual-error system shown in Equation 6. That is, 
there were two implicit modules, one which responded to the target errors as in Figure 10D, and the 
other which responded to aim-cursor errors as in Figure 10E. The evolution of these errors is shown 
in Figure 10G. In the no-strategy group, we modeled implicit learning based on the primary target 
error and cursor alone.

Each model in Figure 10D–F was fit in an identical manner. We fit the implicit retention factor and 
implicit error sensitivity to minimize squared error according to:
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In other words, we minimized the sum of squared error between our model fit and the observed 
behavior across the strategy and no-strategy groups in Figure 10B. Therefore, we constrained each 
group to have the same implicit learning parameters. In the case of our dual-error model in Figure 10F, 
we assumed that each implicit module also possessed the same retention and error sensitivity. In sum, 
all model fits had two free parameters (error sensitivity and retention) which were assumed to be 
identical independent of instruction. This fit was performed using fmincon in MATLAB R2018a. The 
predicted behavior is shown in Figure 10D–F at bottom. For our best model (Figure 10F), the model 
behavior is also overlaid in Figure 10B.

Taylor and Ivry, 2011
In Figure 10I, we show data collected and originally reported by Taylor and Ivry, 2011. In this exper-
iment, participants moved their arm at least 10 cm toward 1 of 8 targets, that were pseudorandomly 
arranged in cycles of eight trials. Only endpoint feedback of the cursor position was provided. The 
hand was slid along the surface of a table while the position of the index finger was tracked with a 
sensor. After an initial familiarization block (five cycles), participants were trained how to explicitly 
rotate their reach angle clockwise by 45°. That is, on each trial they were shown veridical feedback 
of their hand position, but were told to reach to a neighboring target, that was 45° away from the 
primary illuminated target. After this training and another null period, the adaptation period started 
where the cursor position was rotated by 45° in the counterclockwise direction for 40 cycles. The first 
two movements in the rotation exhibited large errors (Figure 10I, 2 movements no instruction). As in 
Mazzoni and Krakauer, 2006, the participants were then instructed that they could minimize their 
error by adopting the aiming strategy they learned at the start of the experiment. Using this strategy, 
participants immediately reduced their direction error to zero.

Here, we report data from two critical groups in this experiment. In the ‘instruction with target’ 
group (Figure 10I, black, n = 10) participants were shown the neighboring targets during the adap-
tation period to assist their re-aiming. However, in the ‘instruction without target’ group (Figure 10I, 
yellow, n = 10) participants were only shown the primary target; the neighboring targets did not 
appear on the screen to help guide re-aiming. Only participants in the ‘instruction with target’ group 
exhibited the drift reported by Mazzoni and Krakauer, 2006. However, both groups exhibited an 
implicit aftereffect (Figure 10I, aftereffect; first cycle of washout period as reported in Figure 4C of 
the original manuscript Taylor and Ivry, 2011).

Data were extracted from the primary figures in Taylor and Ivry, 2011 using Adobe Illustrator 
CS6. We used the means and standard deviations for our statistical tests on the implicit aftereffect in 
Figure 10I.

Measuring properties of implicit learning
Many of our model’s predictions depended on estimates of implicit retention factor and error sensi-
tivity. We obtained these using the Limit PT groups in Experiments 2 and 3. To calculate the reten-
tion factor for each participant, we focused on the no feedback period at the end of Experiment 2 

https://doi.org/10.7554/eLife.65361
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(Figure 3E, no feedback) and the no aiming period at the end of Experiment 3 (Figure 3L, no aiming). 
During these error-free periods trial errors were hidden, thus causing decay of the learned behavior. 
The rate of this decay is governed by the implicit retention factor according to:

	﻿‍ y
(

n
)

= an
i yss‍� (12)

Here, y(n) refers to the reach angle on feedback trial n, and yss corresponds to the asymptotic behavior 
prior to the no feedback period. We used fmincon in MATLAB R2018a to identify the retention factor 
which minimized the difference between the decay predicted by Equation 12 and that measured 
during the no feedback period. For Experiment 2, we obtained an epoch-by-epoch retention factor 
of 0.943 ± 0.011 (mean ± SEM). Note that an epoch consisted of four trials, so this corresponded to 
a trial-by-trial retention factor of 0.985. When modeling Neville and Cressman, 2018 (Figure 1), we 
cubed this trial-by-trial term because each cycle consisted of 3 different targets (final retention factor 
of 0.9565). For Experiment 3, we obtained an epoch-by-epoch retention factor of 0.899 (trial-by-trial: 
0.9738).

Next, we measured implicit error sensitivity in the Limit PT group during rotation period trials. To 
measure implicit error sensitivity on each trial, we used its empirical definition:

	﻿‍ b
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n1
)

= y
(

n2
)
−an2−n1 y

(
n1

)

e
(

n1
)

‍� (13)

Equation 13 determines the sensitivity to an error experienced on trial n1 when the participant visited 
a particular target T. This error sensitivity is equal to the change in behavior between two consecutive 
visits to target T, on trials n1 and n2 divided by the error that had been experienced on trial n1. In the 
numerator, we account for decay in behavior by multiplying the behavior on trial n1 by a decay factor 
that accounted for the number of intervening trials between trials n1 and n2. For each target, we used 
the retention factor estimated for that target with Equation 12.

Using this procedure, we calculated implicit error sensitivity as a function of trial in Experiment 2. To 
remove any potential outliers, we identified error sensitivity estimates that deviated from the popula-
tion median by over three median absolute deviations within windows of 10 epochs. As reported by 
Albert et al., 2021, implicit error sensitivity increased over trials. Equations (4) and (5) require the 
steady-state implicit error sensitivity observed during asymptotic performance. To estimate this value, 
we averaged our trial-by-trial error sensitivity measurements over the last 5 epochs of the perturba-
tion. This yielded an implicit error sensitivity of 0.346 ± 0.071 (mean ± SEM).

To corroborate this value, we compared our estimate to data reported in Kim et al., 2018. There, 
error sensitivity is reported as a function of error size across various experiments in Figure 3a. These 
data are reproduced in Figure  3—figure supplement 1C. Note that error sensitivity increases as 
errors get smaller. For our analyses, we required steady-state error sensitivity, which is the error sensi-
tivity reached at the end of the training period. Figure 3—figure supplement 1B shows how error in 
the PT-Limit group changed with adaptation. The terminal error (horizontal black line) corresponding 
to the steady-state condition was equal to about 7.6° (Figure 3—figure supplement 1B). For this 
error, error sensitivity fell somewhere between 0.25 and 0.35 (see Figure 3—figure supplement 1C) 
according to Experiments 1 and 2 reported by Kim et al., 2018. Thus, our value 0.346 appeared in 
agreement with these data.

Finally, we conducted a similar analysis in Experiment 3. However, trial-by-trial behavior was more 
variable and overall adaptation was lower in this laptop-based experiment. Thus, to obtain a more 
stable steady-state implicit error sensitivity estimate, we averaged error sensitivity over the asymp-
totic period apparent in Figure 3—figure supplement 1D (cycles 37–60). The average error sensitivity 
was approximately 0.193 (Figure 3—figure supplement 1D). To corroborate this value, we calculated 
the terminal error in the Limit PT group. This value was approximately 13.1° (Figure 3—figure supple-
ment 1E). This error corresponded to an error sensitivity between about 0.13 and 0.22 (Figure 3—
figure supplement 1F) according to Kim et al., 2018. Thus, our Limit PT error sensitivity estimate 
0.193 was within this range.
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Appendix 1
In the main text, the competition and independence models predict steady-state implicit learning, 
xi

ss. But each theory applies to the entire timecourse, not solely asymptotic learning. Here, we will 
derive general expressions that apply on each trial k. We will then show that the scaling, saturation, 
and non-monotonic phenotypes in Figure 1, occur throughout the entire implicit learning timecourse 
(in the competition model).

1.1 General model derivation
Consider the state-space model where the implicit system adapts to target error driven by the 
rotation r, as in the competition model (this is the competition model simulated in Figures 6 and 7):

	﻿‍ x(n)
i = aix(n−1)

i + bi(r − x(n−1)
i − x(n−1)

e )‍� (A1.1)

Recall that ai and bi are implicit retention and error sensitivity. The xi
(n) and xe

(n) terms represent 
implicit and explicit learning on a given trial (numerator). This equation can be rewritten recursively 
to represent xi

(n) with respect to all prior trials:

	﻿‍
x(n)

i = (ai − bi)n−1x(1)
i + bi

n−1∑
k=1

(ai − bi)n−k−1(r − x(k)
e )

‍�
(A1.2)

In the case where implicit learning starts at zero (naïve learner), this equation simplifies to:

	﻿‍
x(n)

i = bi
n−1∑
k=1

(ai − bi)n−k−1(r − x(k)
e )

‍�
(A1.3)

Equation A1.3 shows how the implicit system on trial n is driven by the explicit system on all prior 
trials, the rotation, and the implicit error sensitivity and retention factor. An excellent approximation 
to this equation can be obtained by replacing xe

(k) as the average xe across all prior trials this 
approximation’s accuracy can be seen in the red and cyan lines in Figure 1—figure supplement 3A; 
cyan shows true implicit learning in Equation A1.3; red shows the approximation in A1.4 below. This 
approximation yields:

	﻿‍ x(n)
i ≈ bi

1−(ai−bi)n−1

1−(ai−bi) (r − x(avg)
e )‍� (A1.4)

Equation A1.4 is analogous to the competition model in Equation 4 in the main text. It states that 
implicit learning on a given trial n is approximately proportional to (r – xe

avg), the difference between 
the rotation and the average explicit strategy used by the participant. Note that in the limit as n 
goes to infinity (i.e., steady-state), we obtain the competition model in Equation 4. The implication 
of Equation A1.4 is that a linear competition between implicit learning and explicit learning can 
be observed throughout the adaptation process, not only in the asymptotic learning phase. Thus, 
the scaling, saturation, and non-monotonic phenotypes we describe in Figure 1, can be observed 
throughout the adaptation process.

Finally, note that the derivations above apply for the independence (SPE) model in Equation 5. 
For this model, simply set all xe terms in A1.1-A1.4 to zero.

1.2 Scaling, saturation, and non-monotonic phenotypes across the 
entire implicit learning timecourse
Here we illustrate the scaling, saturation, and non-monotonic implicit learning phenotypes produced 
by the competition model. In Figure 1—figure supplement 3A, we simulate the implicit and explicit 
response to a 30° rotation using A1.1 and its explicit learning analogue. This means that the implicit 
and explicit systems are driven by target error. Note that the red line shows the implicit approximation 
in A1.4 above, the blue line shows exact implicit learning in A1.3 above, and the magenta line shows 
explicit strategy. In this simulation, we used the ai, bi, and ae parameters identified in our model fit to 
Haith et al., 2015, as in the competition map shown in Figure 7.

The scaling, saturation, and nonmonotonic phenotypes in Figure 1 are due to how the explicit 
system responds to changes in rotation size. When strategy increases slower than the rotation, implicit 
learning will increase in the scaling phenotype. When it increases at the same rate as the rotation, 
implicit learning will stay the same, leading to the saturation phenotype. When it increases more 
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rapidly than the rotation, implicit learning will decreases as the rotation increases: the nonmonotonic 
phenotype. All these scenarios are depicted in Figure 1—figure supplement 1.

Thus, to produce these phenotypes, we must change the way explicit strategy ‘responds’ to error: 
least vigorously in the scaling phenotype, and most vigorously in the nonmonotonic phenotype. 
To do this we simulated implicit and explicit responses to 30° and 45° rotations and tuned explicit 
error sensitivity: be. For all 30° simulations, be remained 0.15. To obtain the scaling implicit 
phenotype, explicit error sensitivity remained 0.15 in the 45° simulation. To obtain the saturation 
implicit phenotype, we increased be to 0.435 in the 45° condition (i.e., the explicit system became 
more reactive to the higher rotation). Lastly, to obtain the nonmonotonic phenotype, we increased 
the explicit error sensitivity dramatically, to 0.93. In Figure 1—figure supplement 3B and C, we 
calculate implicit and explicit learning at various points across these simulations: from left to right, 
5, 10, 20, 40, and 150 rotation cycles. The explicit responses are shown in inset B. Implicit responses 
are shown in inset A.

There are many critical things to note. Firstly, at all time points, changes in explicit error sensitivity 
produce three distinct levels: less explicit learning when be = 0.15, medium explicit learning when 
be = 0.435, and high explicit learning when be = 0.93. These changes have dramatic effects on the 
implicit system. For the low explicit strategy level, the implicit system scales when the rotation 
increases from 30° to 45°. For the medium explicit strategy level, the implicit system remains the 
same when the rotation increases from 30° to 45°. For the high explicit strategy level, implicit 
learning decreases when the rotation increases from 30° to 45°. Most critically, all three phenotypes 
occur at all phases in the implicit learning time course: as early as cycle 5, and as late as cycle 150 
(compare each set of bars in Figure 1—figure supplement 3B). The only thing that changes is the 
total difference (i.e. effect size) between 30° and 45° implicit learning, which is smallest and hardest 
to detect early in learning (e.g. cycle 5), and largest (easiest to detect) when implicit learning reaches 
its steady-state (e.g. cycle 150).

What this means is that the competition model does not solely pertain to asymptotic learning. 
The same phenomena that occur due to implicit-explicit competition, appear throughout all phases 
in the learning process. To simplify matters we have chosen in our main text to focus on steady-state 
learning, where the mathematical relationship between steady-state implicit and explicit learning 
converges and is easy to test (i.e. the competition equation).

https://doi.org/10.7554/eLife.65361
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Appendix 2
In Figure 1H–L, we applied the competition and independence theories to the stepwise group in 
Exp. 1. While these models do not solely apply to asymptotic learning (see Appendix 1), here we 
analyze whether the exposures during B1 (15°), B2 (30°), B3 (45°), and B4 (60°), lasted long enough 
to achieve implicit steady-state adaptation. That is, the scaling phenotype we noted in the implicit 
response could be influenced by two factors: (1) rotation size, and (2) exposure time.

In the stepwise condition in Exp. 1 we observed that implicit adaptation increased across the 
15°, 30°, 45°, and 60° rotation blocks (Figure 1—figure supplement 4A; rm-ANOVA, F(3,38)=99.9, 
p < 0.001, ηp

2=0.735). Were these increase due to changing the rotation’s magnitude, or additional 
accumulation in the implicit response over time which had not yet saturated? Comparison with other 
comparable data sets, suggests that implicit learning likely saturated during each block in the Exp. 
1 stepwise group. Here, we will describe each data set in turn.

Most importantly, the abrupt rotation group provides a way to verify the timecourse of implicit learning 
in Exp. 1. Total implicit learning was assayed four times in the abrupt group. Each probe overlapped 
with a stepwise rotation period. For example, the initial probe in the abrupt condition occurred during 
B1, when implicit learning was measured in the 15° stepwise rotation. Similarly, the B2, B3, and B4 
implicit measurements in the abrupt group overlapped with the 30°, 45°, and 60° rotation periods in the 
stepwise group. Implicit learning measures across all four abrupt periods are shown in Figure 1—figure 
supplement 4B. We tested whether total implicit learning varied across the four blocks in the abrupt 
condition. We did not detect a statistically significant effect of block number on implicit learning (rm-
ANOVA, F(3,105)=2.21, p = 0.091, ηp

2=0.059). The same was true when we compared solely the first 
and last blocks (paired t-test, t(35)=1.53, p = 0.134). This indicated that in the 60° rotation condition 
there was little to no change in implicit learning following B1. This suggests that a single rotation block 
was sufficient to achieve steady-state adaptation even in the largest rotation condition tested: 60°.

Does this generalize to smaller rotation sizes? While we did not measure implicit learning across 
multiple blocks in the 15°, 30°, and 45° stepwise conditions, we used a very similar experimental 
protocol in Salomonczyk et al., 2011: here three learning targets were also used, separated by 
45° between targets, in an upper triangular wedge (the exact same conditions as Exp. 1). Note that 
these data provided another example where the implicit response scales with rotation size during 
a stepwise rotation sequence (Figure 1—figure supplement 4C). That is, when we increased the 
rotation in a stepwise manner across three blocks: 30° then 50° and lastly 70°, we observed strong 
increases in asymptotic implicit learning (p < 0.001). In this study we exposed another participant 
group to a 30° rotation and measured implicit learning across three consecutive blocks (Figure 1—
figure supplement 4D). Critically, we did not detect any change in implicit learning across the three 
learning periods (all contrasts, p > 0.05). This matched our 60° rotation analysis in the abrupt group 
in Exp. 1. Thus, for both 30° and 60° rotations, a single block provides enough time to reach steady-
state learning.

Lastly, we did not measure extended exposures to a 15° or 45° rotation, but Neville and 
Cressman, 2018 tested prolonged exposure to a 20° and 40° rotation in a similar paradigm (three 
targets, separated by 45° in an upper triangular wedge). No-instruction group implicit learning is 
shown in Figure 1—figure supplement 4E and F. We do not have access to the raw data, and so 
cannot run a repeated-measures ANOVA to test whether these groups exhibited a block-by-block 
change in implicit learning. However, comparing the first and third rotation blocks, we can calculate a 
maximum 0.7°–1.4° c hange in implicit learning. This represents a change between 7.6–16.5%, which 
are daunted by the 313% increase in implicit learning exhibited from the 15° to the 60° blocks in the 
Exp. 1 stepwise group.

In sum, the 60° implicit learning timecourse we measured in the abrupt group, the 30° implicit 
learning timecourse measures in Salomonczyk et al., 2011, and the 20° and 40° groups in Neville 
and Cressman, 2018., suggest that the implicit learning system exhibits little to no increase beyond 
the initial learning block. Each study was extremely comparable, testing participants with three 
learning targets, located in an upper triangular wedge spanning 45–135° in the workspace. We 
estimate that any changes in implicit learning due to exposure time alone were limited to about 1.4°, 
which is an order magnitude smaller than that observed across the stepwise blocks in Exp. 1 (14.5°). 
Therefore, our Exp. 1 analyses in Figures 1, 2 and 4, likely reflects steady-state implicit learning, or 
very nearly so.

https://doi.org/10.7554/eLife.65361
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Appendix 3
In Section 1.1, we note a potential concern in our Figure 1 analysis, where our implicit and explicit 
learning measures were not independent; explicit strategy was estimated as total adaptation minus 
implicit learning: xe

ss = xT
ss - xi

ss. Thus, when total adaptation is constant, implicit and explicit learning 
will exhibit a negative correlation simply due to the dependencies in our implicit and explicit learning 
measures. At a glance, this negative correlation may appear similar to the negative correlation 
between implicit and explicit learning embedded within the competition equation: xi

ss = pi(r - xe
ss). 

Thus, it is reasonable to question whether the correspondence between our empirical data and the 
competition model in Figure 1, is unfairly biased by the intrinsic implicit-explicit dependencies in 
our empirical measures.

In short, suppose that two conditions, A and B, exhibit an increase in implicit learning. Using 
our explicit learning measures, we would expect a decrease in explicit strategy. This negative 
correspondence between implicit learning and explicit strategy may appear trivially predicted by 
the competition model. This, however, is not the case. For this trivial relationship to occur, total 
adaptation must be the same in A and B. In Figure 1, we calculate implicit and explicit learning 
measures across changes in rotation size, over which total adaptation varies in proportion to rotation 
magnitude. Thus, our empirical implicit and explicit learning measures will not necessarily match the 
competition model.

To explain this, let us consider a hypothetical scenario similar to the data recorded by Neville and 
Cressman. Suppose total adaptation and implicit learning are measured over three rotations sizes 
(20°, 40°, and 60°): total learning (19°, 36°, 53°), implicit learning (10°, 10°, 10°). As expected, total 
adaptation increases with rotation size. Implicit learning remained constant, as in the Neville and 
Cressman data set. Next, suppose we estimate explicit strategy, by subtracting total adaptation and 
implicit learning. This will yield the explicit strategy estimates: (9°, 26°, 43°). Thus, in this example, 
our implicit and explicit learning measures are dependent. How well does the competition model 
match these data?

To answer this question, we can calculate the implicit learning gain, pi, for each rotation size. 
This can be calculated as pi = xi

ss/(r – xe
ss). For the example above, the implicit learning gain would 

be equal to the set: (0.909, 0.714, 0.588). What this means, is that as the rotation increases, the 
implicit learning gain decreases by approximately 35.3%. These variations in pi will not produce a 
good match between the data and model. To show this, we can estimate the optimal pi that would 
minimize the squared error between the measured implicit learning, and model-predicted implicit 
learning. In this example, the optimal pi value is 0.693. Using this gain, we can now use the model 
to predict how much implicit learning should occur in each rotation size condition. This would yield: 
(7.62°, 9.70°, 11.78°) in predicted learning. We can see even though implicit learning remained 
constant in the ‘real’ data, the competition equation predicts a 54.5% increase in implicit learning 
across the three rotation sizes.

What does this mean? This hypothetical example demonstrates that calculating explicit learning 
via a subtraction between total adaptation and implicit learning, will not automatically yield a 
good match between the empirical data and the competition model. Rather, the only way that the 
competition model will match data, is in the case where the conditions tested in an experiment abide 
by the principle that pi is constant (or at least very similar) across various experimental conditions 
(e.g. rotation sizes). The three data sets we analyze in Figure 1, must obey this property, and thus, 
are intrinsically compatible with Equation 4.

Nevertheless, there is another way to corroborate the relationship between the model and data 
in Figure 1 that does not involve using implicit and explicit learning measures at the same time. By 
noting that xe

ss = xT
ss – xi

ss, we can substitute this expression into Equation 4 to obtain a relationship 
between implicit learning and total adaptation: xi

ss = pi(1 – pi)–1(r – xT
ss). This equation represents an 

alternate way to express the competition model which can be compared with the empirical data. 
Fortunately, here we compare xi

ss and xT
ss which were directly measured on separate trials (they are 

not dependent, in a statistical sense).
A simple thought experiment shows that when data do not agree with the competition model, xi

ss 
and xe

ss can show a correlation, but xi
ss and xT

ss will not (in general). Suppose 3 participants have 10°, 
15°, and 5° implicit learning, respectively, and all have 20° total learning. Subtracting total learning 
and implicit learning will yield an estimated 10°, 5°, and 15° explicit strategy, respectively. The 
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competition model will predict that implicit-explicit and implicit-total will show negative correlations. 
For these participants, the implicit-explicit correlation is –1, but the implicit-total correlation is 0, 
inconsistent with competition. That is, implicit-explicit show a correlation spuriously, but implicit-
total were sampled independently, yielding a robust way to test the competition theory.

Thus, in the main text we repeated our competition model analysis in Figure 1 using the alternate 
equation. We used total adaptation measured in Exp. 1, Neville and Cressman, and Tsay et  al., 
2021a to predict implicit learning. To do this, we identified a pi value in each data set that minimized 
the squared error between measured implicit learning and model-predicted implicit learning (in 
Neville and Cressman, the pi value was calculated across six conditions (three rotations, 2 instruction 
types), in Exp. 1, the pi value was calculated across five conditions (all four rotation sizes in the 
stepwise group, as well as the 60° abrupt condition), in Tsay et al., the pi value was calculated across 
all four rotation sizes).

Our results are shown in Figure  1—figure supplement 2. The competition model predicted 
nearly identical implicit learning patterns when total adaptation was used as the independent 
variable (‘model-2’) and when explicit adaptation was used as the independent variable (‘model-1’). 
This control analyses shows that the close correspondence between measured behavior and model-
predicted behavior in Figure 1, is not due to the way we empirically operationalized our learning 
measures. Rather, the properties embedded in the competition model (with a constant implicit 
learning gain) were intrinsically present within the data.

https://doi.org/10.7554/eLife.65361
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Appendix 4
At various points in our work, we analyze how well the competition model, or independence model, 
can predict changes in implicit learning across various conditions. These models have one free 
parameter, the implicit learning gain: pi = bi(1 – ai+ bi)–1. In each case, we assumed that the implicit 
learning gain is the same across experimental groups, that is only one gain is selected and applied to 
all experimental conditions. We made this choice to minimize the number of free variables; allowing 
pi to vary across groups, would allow arbitrarily precise matches to the data. However, holding 
pi constant across conditions, shows that the same equation applies across conditions, limiting 
overfitting and increasing model confidence.

This assumption, however, may seem inappropriate given that the implicit learning gain depends 
on error sensitivity, which varies with conditions such as error size (Albert et al., 2021; Kim et al., 
2018; Marko et al., 2012). However, it is important to note that the implicit learning gain responds 
weakly to changes in error sensitivity. This insensitivity is due to the appearance of error sensitivity 
(bi) in both the gain’s numerator and denominator: pi = bi(1-ai+ bi)–1. For example, let us suppose 
that participants in Condition 1 have bi = 0.2, but in Condition 2 bi = 0.3, a 50% increase. For an 
implicit retention factor of 0.9565 (see in Materials and methods: Measuring properties of implicit 
learning), the implicit learning gain in Condition 1 would be pi = 0.821 versus pi = 0.873 in Condition 
2. Thus, even though implicit error sensitivity was 50% larger in Condition 2, the implicit learning 
gain would change only 6.3%. For a more extreme case where implicit error sensitivity was double 
(0.4) in Condition 2, there would still only be a 9.8% change in implicit learning gain.

For these reasons, there are no physiologic changes in bi that could create the 46.2% increase in 
implicit learning in Figure 2C (ratio of no instruction to instruction groups), and 82.3% increase in 
learning in Figure 2G (ratio of stepwise to abrupt). To show this, we conducted sensitivity analyses. 
Imagine that across two conditions, a reference condition, and a test condition, implicit sensitivity 
varies. We set the reference implicit error sensitivity to 0.1, 0.1625, 0.225, 0.2875, 0.35. We chose 
these values, because steady-state implicit error sensitivity determines steady-state implicit learning, 
which varied between 0.19 and 0.35 in Exps. 2 and 3; see Figure 3—figure supplement 1. Then we 
calculated how much pi (total learning) will change, when this reference error sensitivity increases to 
a test error sensitivity: test error sensitivity was capped at the physiologic, yet exceedingly unlikely, 
upper bound of 1. Because pi also depends on implicit retention, we also tested several possible 
values between 0.95–0.99. The results are depicted in Figure  2—figure supplement 2. Each 
column denotes the same analysis, but with a different retention factor. Each line denotes a different 
reference error sensitivity. The x-axis continuously varies the test error sensitivity.

For example, for the point highlighted by the black arrow in the second column: this point shows 
that total implicit learning will increase by about 20% (y-axis) in a scenario where implicit retention 
= 0.96, and implicit error sensitivity increases from 0.1625 (i.e., it is on the red line) in the reference 
condition to 0.8 (i.e., the x-axis value) in the test condition. This example is illustrative. Here bi 
increase from 0.1625 to 0.8, a 392% increase, but total implicit learning only increases 20%. In sum, 
extreme variations in implicit error sensitivity, still produce small changes in total implicit learning.

In Figure 2—figure supplement 2, we indicated the 46.2% and 82.3% changes in Figure 2C&G 
with dashed horizontal lines. Note how no curve crosses either level, even though these represent 
several hundred % changes in implicit error sensitivity. Thus, it is not possible that variations in implicit 
error sensitivity could generate the changes in total implicit learning we examined in Figure 2.

On the other hand, consider the competition model, xi
ss = pi(r – xe

ss). Distributing the pi term 
yields: xi

ss = pir – pixe
ss. Note that pi varied between about 0.6–0.8 in our studies, meaning that 

implicit learning is very sensitive to competition. The implicit system will decrease by approximately 
60–80%  each unit increase in explicit strategy. For these reasons, the competition model more 
readily produces large fluctuations in implicit learning, such as those observed in Figure 2.

https://doi.org/10.7554/eLife.65361
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Appendix 5
In Experiment 1 in the main text, we analyze how abrupt and gradual perturbation onset alters the 
steady-state distribution for implicit and explicit learning. In this appendix, we conduct a similar 
investigation for data collected by Saijo and Gomi, 2010. In the first section, we describe the 
results of our analysis. In the second section, we describe the experimental paradigm and detail the 
methods used in our analysis.

5.1 Suppressing explicit strategy enhances procedural learning
In the main text (Figure 2D–G), we observed that gradual perturbations reduce explicit re-aiming 
relative to abrupt rotations. The competition theory predicts that these reductions in aiming will 
lead to increases in implicit adaptation. That is, suppose participants adapt with an explicit strategy 
(Figure 2—figure supplement 3B, aim, solid magenta line), but this strategy is then suppressed 
(Figure 2—figure supplement 3B, aim, dashed magenta line). Reductions in explicit strategy will 
increase the residual steady-state target error that drives implicit adaptation. Thus, Equation 4 
predicts that suppressing explicit aiming will increase implicit learning (Figure 2—figure supplement 
3B, H2, right, compare dashed blue and solid black implicit lines). However, a model where the 
implicit system responds to SPEs (Equation 5) does not predict any change in implicit learning.

We corroborated these predictions in Experiment 1 (Figure 2D–G). Here, we describe similar 
data collected by Saijo and Gomi, 2010. Participants were exposed to an abrupt (Figure 2—
figure supplement 3A, abrupt) or gradual (Figure 2—figure supplement 3A, gradual) rotation. 
The abrupt perturbation was immediately set to 60°, but the gradual perturbation reached this 
magnitude over time, in six 10° steps. Each rotation size persisted for 36 trials (three cycles, 
12 adaptation targets). Participants in the abrupt condition adapted rapidly to the perturbation, 
greatly decreasing their target error to about 5° over about 10 perturbation cycles (Figure 2—
figure supplement 3C, abrupt). In the gradual group, target errors remained small throughout 
training. Curiously, total adaptation was smaller in the gradual condition; participants exhibited a 
terminal error nearly three times greater than the abrupt condition (Figure 2—figure supplement 
3C, gradual).

At this point, the perturbation was abruptly removed, revealing large aftereffects in each group. 
Paradoxically, even though participants in the gradual group had adapted less completely to the 
rotation, they exhibited larger aftereffects (Figure 2—figure supplement 3F, data), which remained 
elevated throughout the entire washout period (Figure 2—figure supplement 3C, aftereffect).

Here, we demonstrate that these patterns are consistent with the competition theory, provided 
we make several assumptions. First, we assume that the initial washout cycle is driven by implicit 
learning. While this is likely not entirely true, we should note that when Morehead et al., 2015 
measured aim reports during washout with a 45° rotation, participants appeared to immediately 
“turn off” their explicit strategy. Nevertheless, this assumption likely introduces some error in our 
modeling approach. Second, we assume that participants in the abrupt group used larger strategies 
than participants in the gradual group. This assumption seems reasonable, considering that we 
also measured larger strategies in the abrupt group in Experiment 1, as did Yin and Wei, 2020. 
Furthermore, as shown in Figure 2 in the primary manuscript (Saijo and Gomi, 2010), subjects in the 
abrupt group exhibited a sharp increase in reaction time upon rotation onset, consistent with explicit 
strategy use (Fernandez-Ruiz et al., 2011; McDougle and Taylor, 2019).

With these assumptions, we investigated how well the competition and independence models 
predicted the observed data. To simulate these models, we estimated the explicit strategies in 
each group. (Neville and Cressman, 2018) measured the explicit response to a 60° rotation, 
demonstrating that participants re-aimed their hand approximately 35° consistently over the 
adaptation period (see yellow points in Figure 2—figure supplement 3D and E, explicit aim). This 
estimate agreed well with the data; participants in the abrupt condition adapted 55° and exhibited 
an aftereffect of approximately 20° (Figure 2—figure supplement 3F, data, abrupt), suggesting 
about 35° of re-aiming. In the gradual group, we assumed that little to no re-aiming occurred. This 
also seemed consistent with the data; participants in the gradual group adapted approximately 40° 
and exhibited an aftereffect of approximately 38° (Figure 2—figure supplement 3F, data, gradual) 
suggesting <5° of re-aiming. Using these estimates, we constructed hypothetical explicit learning 
timecourses, as shown in Figure 2—figure supplement 3D and E, explicit aim.

https://doi.org/10.7554/eLife.65361
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We next used the state-space model to simulate the implicit learning timecourse, in cases where 
the implicit system learned solely due to SPE (Figure 2—figure supplement 3D, implicit angle) or 
solely due to target error (Figure 2—figure supplement 3E, implicit angle), under the assumption 
that participants in both the abrupt and gradual groups had the same implicit error sensitivity (bi) 
and retention factor (ai). The parameter sets that yielded the closest match to the measured behavior 
(Figure 2—figure supplement 3C) are shown in Figure 2—figure supplement 3D and E. In both 
cases, the models predicted that abrupt learning would be more complete than gradual learning (i.e. 
steady-state error is smaller in the abrupt condition).

However, the implicit states predicted by SPE learning and target error learning possessed a 
critical difference. According to Equation 4, the target error model predicted that the total extent of 
implicit learning would be suppressed by explicit strategy in the abrupt condition, yielding a smaller 
aftereffect (Figure 2—figure supplement 2E, implicit angle). However, according to Equation 5, the 
SPE model predicted that implicit learning should reach the same level, yielding identical aftereffects 
(Figure 2—figure supplement 3D, implicit angle).

In summary, the differences in aftereffects across the abrupt and gradual conditions (Figure 2—
figure supplement 3F, data) were accurately predicted by the competition theory (Figure 2—figure 
supplement 3F, competition), but not the independence equation (Figure 2—figure supplement 
3F, indep.). Suppressing explicit strategy revealed competition between implicit and explicit systems 
which suggested that the implicit system predominantly responded to target error. Furthermore, it is 
interesting to note that these data were consistent with our observation that steady-state adaptation 
is greater when explicit learning is large and implicit adaptation is small (Figure 5G&H). These trends 
are consistent with competition (Figure 5D–F).

5.2 Methods used to analyze Saijo and Gomi, 2010
To understand how suppressing explicit strategy might alter implicit learning, we considered data 
collected by Saijo and Gomi, 2010. In one of their experiments, the authors tested how perturbation 
onset altered the adaptation process. Subjects were divided into either an abrupt (n = 9) or gradual 
group (n = 9), and reached to 1 of 12 targets, which were ordered pseudorandomly in each cycle of 
12 trials. After a baseline period of 8 cycles, a visuomotor rotation was introduced. The perturbation 
period lasted 32 cycles. After this, the perturbation was removed for 6 cycles of a washout condition. 
Participants were exposed to either an abrupt rotation where the perturbation magnitude suddenly 
changed from 0° to 60°, or a gradual condition where the perturbation magnitude increased over 
smaller increments (10° increments that lasted three cycles each, Figure 2—figure supplement 3A).

Here, we considered why participants in the abrupt perturbation condition achieved greater 
adaptation during the rotation period (smaller error in Figure  2—figure supplement 3C) but 
exhibited a smaller aftereffect when the perturbation was removed. Our theory suggested that this 
may be due to competition. If the gradual condition suppressed explicit awareness of the rotation 
(Yin and Wei, 2020), then Equation 4 would predict increases in implicit learning which were 
observed in the aftereffects measured during the washout period (where explicit strategies were 
disengaged). However, the SPE model (Equation 5) would predict the same amount of implicit 
adaptation: the same aftereffect in each condition.

To test these hypotheses, we simulated implicit adaptation using the state-space model in 
Equation 3. In Figure 2—figure supplement 3D, we used an SPE for the error term in Equation 
3. In Figure 2—figure supplement 3E, we used the target error for the error term in Equation 3. 
We imagined that the total reach angle was determined based on the sum of implicit and explicit 
learning. However, these authors did not directly measure explicit strategies. Fortunately, Neville 
and Cressman, 2018 measured explicit strategies using inclusion and exclusion trials during a 60° 
abrupt rotation (yellow points, explicit aim in Figure 2—figure supplement 3D and E).

We used these measurements in our abrupt simulations. Neville and Cressman observed that 
explicit strategies rapidly reached 35.5° and remained stable during adaptation. To approximate 
these data, we simulated abrupt explicit strategy using the exponential curve: xe = 35.5 - 10e-2t 
(Figure  2—figure supplement 3D and E, explicit aim, black line). Note that the nature of this 
exponential curve is entirely inconsequential to our analysis, apart from its saturation level. Outside 
of the rotation period, we assumed explicit strategy was zero. This is consistent with data from 
Morehead et al., 2015 that showed almost immediate disengagement in aiming strategy during 
washout (though this assumption likely introduced error into our modeling approach). For the gradual 
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condition, we assumed explicit strategy was zero throughout the entire experiment (Figure  2—
figure supplement 3D, explicit aim, gradual), as the participants remained largely unaware of the 
rotation. This seemed consistent with the data; gradual participants adapted approximately 40°, 
and exhibited an aftereffect of about 38°, indicating a re-aiming angle less than even 5°. Note, our 
primary results (Figure 2—figure supplement 3F) were unchanged in a sensitivity test where we 
assumed 10° of re-aiming in the gradual group (Figure 2—figure supplement 4).

Thus, our simulations included two free parameters: error sensitivity (bi) and retention factor (ai) 
for the implicit system. In each simulation, we assumed that these parameters were identical across 
the gradual and abrupt groups. To fit these parameters, we minimized the following cost function:

	﻿‍
θfit = argmin

θ
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n
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n
)
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(A5.1)

Equation A5.1 is the sum of squared errors between the directional errors predicted by the model 
(Figure 2—figure supplement 3D and E, directional error) and observed in the data (Figure 2—
figure supplement 3C) across all trials in the abrupt and gradual conditions. Note that each 
simulation incorporated variability. We simulated noisy directional errors using the standard errors 
shown in the data in Figure 2—figure supplement 3C. In the explicit state, we added variability 
to each trial using the standard error in explicit strategy reported by Neville and Cressman, 2018. 
For the implicit state, we used 20% of the explicit variability, given that aiming strategies are more 
variable than implicit corrections (Miyamoto et al., 2020). We repeated these simulations 20,000 
times, each time resampling our noise sources and then fitting our parameter set (ai and bi) by 
minimizing Equation A5.1 with fmincon in MATLAB R2018a. The mean implicit curves for the SPE 
learning model and target error learning models are shown in Figure 2—figure supplement 3D and 
E respectively (implicit angle; mean ± SD). Critically, in each simulation we measured the aftereffect 
that occurred on the first cycle of the washout period (Figure 2—figure supplement 3D and E, 
aftereffect). The mean and standard deviation in these aftereffects is reported in Figure 2—figure 
supplement 3F.

Finally, note that we obtained the directional errors in Figure 2—figure supplement 3C directly 
from the primary figure in the original manuscript (using the GRABIT routine in MATLAB R2018a). 
Please also note in the actual experiment, on some trials (7.1% of all trials), the perturbation was 
introduced midway during the reach to test feedback corrections at only one target location (the 0° 
target). These trials were not relevant for our current analysis. Otherwise, the visuomotor rotation 
was applied during the entire movement. Also note that because the authors analyzed feedback 
responses, participants made 15 cm movements, with a 0.6 second movement duration at baseline. 
Here, we only wanted to consider the feedforward adaptive component. Fortunately, the authors 
reported initial movement errors 100ms following movement onset that could not have been altered 
by feedback. Therefore, we used these early measures of adaptation in the current study.

https://doi.org/10.7554/eLife.65361
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Appendix 6
Adapted movement patterns exhibit generalization: a decay in adaptation measured when 
participants reach towards new areas in the workspace (Hwang and Shadmehr, 2005; Krakauer 
et  al., 2000; Fernandes et  al., 2012). Recent studies have observed that this generalization is 
centered where participants aim their movement, as opposed to the visual target (Day et al., 2016; 
McDougle et al., 2017). In Exps. 1–3, we measured implicit adaptation by instructing participants 
to aim directly to the target without an explicit strategy. Had implicit learning truly been ‘centered’ 
at the aiming location and not the target, these no aiming trials may underapproximate total implicit 
learning. This discrepancy will increase with re-aiming. Thus, it may appear that individuals who 
aim more, possess less implicit learning. These generalization properties could contribute to the 
negative subject-to-subject relationships we observed in Figure 3. In other words, could an SPE 
model with plan-based generalization produce the implicit-explicit correlations that we observed in 
Figure 3? Our main text explores this possibility in Figure 4. Here, we expand on these analyses to 
provide additional intuition, derivations, and technical background.

6.1 Comparing our data to past generalization curves
We compared data in Exps. 2 and 3 (Figure  4A–C), with generalization curves measured by 
Krakauer et  al., 2000, Day et  al., 2016, and McDougle et  al., 2017. This last study is most 
important because aiming was controlled during generalization measurements and CW and CCW 
rotations were counterbalanced. In Figure 4A we normalized our data so that true implicit learning 
equals measured implicit learning (100% generalization) when the re-aiming angle is 0°. To estimate 
total implicit learning (the value we normalized to), we used the y-intercepts corresponding to the 
regressions in Figure 3 (25.5° and 19.7° in Exps. 2 & 3) which extrapolates total implicit learning 
when explicit strategy is zero. Note that dimensioned data (in degrees) are shown in Figure 4B&C. 
As described in our Results, these comparison showed that implicit learning in Exps. 2 and 3 
(Figure  4A) declined nearly 300% faster than the generalization curves predicted. For example, 
given the explicit strategies used in the No PT Limit groups in Exps. 2 and 3, McDougle et al. would 
predict about a 5° reduction in implicit learning, whereas the actual data varied by about 15–20°. 
SPE generalization was too small in magnitude to match our data.

This analysis, however, has a critical limitation. Assuming that our implicit learning measures 
are altered by generalization, the explicit strategy we estimated will be affected too. That is, in 
Experiments 1–3 explicit strategy was estimated as total adaptation minus implicit learning. Had 
generalization reduced the implicit measures, it would falsely inflate our explicit measures. While it is 
tempting to compare our data in Figure 2 or Figure 4A with past generalization curves, this should 
not be done without correcting the explicit strategy measures. Such corrections create a substantial 
narrowing in the generalization curve. In Figure 4C we show corrected implicit-explicit generalization 
curves that best match the data in Exps. 2 and 3. This process is described in Appendix 6.2. These 
curves had σ = 5.16° and 5.76° in Exps. 2 and 3, respectively, which is about 80–85% narrower than 
that observed in McDougle et  al., 2017 (σ = 37.76°). Altogether, to obtain the implicit-explicit 
relationships we report in Exps. 2 and 3 would require unphysiological generalization curves that are 
an order of magnitude narrower than any study has reported to date.

6.2 Deriving SPE generalization models
The competition model (Equation 4) can be represented as xi

ss = pi(r – xe
ss), where pi is an implicit 

learning gain (between 0 and 1). Multiplying out pi yields, xi
ss = pir – pixe

ss. Assuming pi is roughly 
constant (see Appendix 4), this expression predicts implicit learning with vary with explicit strategy 
according to a line with slope -pi and bias pir. In other terms, while the bias in implicit learning will 
increase with rotation size, the slope that relates implicit and explicit learning should not be altered 
by the rotation’s magnitude.

Let us now derive an SPE generalization model. In this model implicit learning is driven by SPEs, 
and also exhibits plan-based generalization when it is measured. To derive this model, we begin 
with Equation 5, the independence model: xi

ss = pir. This encodes SPE learning. Next, we add 
generalization; measured implicit learning (what we obtained when participants are instructed to stop 
aiming) is related to steady-state implicit learning by the generalization curve, g, which varies with 
steady-state explicit strategy, xe

ss. Thus, we have: xi
measured = xi

ssg(xe
ss). Normally, this generalization 

curve would be modeled via a nonlinear cosine, or normal, tuning function. However, our data 
suggested that implicit and explicit varied linearly. Thus, we considered two model classes: (1) g(xe

ss) 

https://doi.org/10.7554/eLife.65361
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is linear and (2) g(xe
ss) is Gaussian. For the linear model, g(xe

ss) = 1 + mxe
ss and for the normal model, 

g(xe
ss) = exp(–(xe

ss/ σ)2). By combining together all equations, we get: xi
measured = pir(1+ mxe

ss) for the 
linear model and xi

measured = pir exp(-(xe
ss/ σ)2) for the normal model. Here m is the generalization line’s 

slope (negative), and σ is the normal distribution’s standard deviation.
For the linear model, this indicates that measured implicit learning and explicit strategy will vary 

according to a line with slope pirm and bias pir. Thus, the rotation size will alter the slope relating 
implicit and explicit learning. In the Gaussian generalization model, nonlinearity also contributes to 
this variation. In the competition model, the slope does not vary with rotation size (see equation 
above). Thus a key way to compare competition with generalization is to examine whether the 
implicit-explicit slope changes with rotation size. This is discussed in more detail in Appendix 6.3.

Critically, xe
ss in the SPE generalization model is equal to the total steady-state explicit strategy. In 

Exps. 1–3, our Tsay et al. analysis, and our Neville and Cressman analysis, we did not measure total 
explicit strategy. Rather our explicit strategies were estimated by subtracting total adaptation and 
implicit learning. Thus, we cannot fit the SPE generalization model to our data without correcting 
our explicit strategy measures as our explicit strategies will overapproximate true explicit strategy. 
To say this another way, suppose that the implicit learning we measured, xi

measured is less than total 
implicit learning xi

ss. The explicit strategy we calculated was total adaptation, xT
ss, minus xi

measured. It 
should instead be xT

ss - xi
ss. We need to correct the explicit measures in the SPE generalization model.

To do this, start with a Gaussian generalization model:

	﻿‍ xmeasured
i = xss

i exp(−0.5(xss
e /σ)2).‍� (A6.1)

Generalization causes a discrepancy between measured implicit learning and total implicit 
learning. The total amount that implicit learning is underapproximated, xi

ss - xi
measured, is equal and 

opposite to the total amount that explicit learning is overapproximated. Thus, we have:

	﻿‍ xmeasured
e = xss

e + xss
i − xmeasured

i .‍� (A6.2)

Equation A6.2 can be rearranged:

	﻿‍ xss
e = xmeasured

e − xss
i + xmeasured

i .‍� (A6.3)

Combining Equations A6.1 and A6.3 yields the expression:

	﻿‍ xss
e = xmeasured

e − xss
i + xss

i exp(−0.5(xss
e /σ)2).‍� (A6.4)

Equations A6.1 and A6.4 together express and constrain the relationship between (1) total 
implicit learning, (2) total explicit learning, (3) measured implicit learning, and (4) measured explicit 
learning. The same process can be used to correct the linear SPE generalization model. Here, we 
begin with the linear implicit generalization equation:

	﻿‍ xmeasured
i = xss

i (1 + mxss
e ).‍� (A6.5)

As above, the discrepancy xi
ss - xi

measured will be equal and opposite to the discrepancy between 
xe

ss and xe
measured. Thus,

	﻿‍ xmeasured
e = xss

e + xss
i − xmeasured

i .‍� (A6.6)

Combining these equations together yields

	﻿‍ xmeasured
i = xss

i (1 + mxmeasured
e /(1 − mxss

i )).‍� (A6.7)

We fit the SPE generalization models to the data noting that xi
ss = pir in the generalization model. 

These models have two unknown parameters: pi and m in the linear model, and pi and σ in the normal 
model. In some cases (e.g. Figure 4D–F), m and σ were set equal to the implicit generalization 
properties in McDougle et al., 2017 (more on this below). When these parameters were set, we 
used fmincon to identify the optimal pi that minimized the squared error between measured implicit 
learning, and the implicit learning predicted by Equations A6.1 (Gaussian) and Equation A6.5 
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(linear) above. Note in the Gaussian model, we also needed to constrain that the model’s solutions 
satisfy Equation A6.4.

In other cases, we did not constrain m or σ. Instead, we used fmincon (MATLAB R2021a) to 
identify the optimal pi and m (linear), or pi and σ (Gaussian), that minimized the squared error as 
described above.

6.3 Comparing the competition model to SPE generalization models
In Figure 4D–F, we compare the competition model to the SPE generalization models above. We 
did this in multiple ways. Note that the competition model possesses one unknown parameter, pi. 
The SPE models possess two, m and pi in the linear model, and m and σ in the normal model. In 
one analysis, we used the data collected by McDougle et al., 2017, to estimate the generalization 
parameters m and σ. To estimate m, we used the initial two points on the generalization curve in 
Figure 4A. This yielded m = –0.011. For the σ parameter, we used the value calculated by McDougle 
et al. for their data: σ = 37.76°. These parameters were used in Figure 4D–F, in the SPE gen. linear 
and SPE gen. normal models.

In Figure  4D–F, we fit all three models to the stepwise group’s implicit and explicit learning 
measures in B4 in Exp. 1 (the 60° rotation period). The fitting procedure is described in Appendix 
6.2 above. This revealed the optimal pi that best matched the implicit learning measures. Next, we 
used these parameters to predict the implicit-explicit relationship across the held-out rotation sizes 
(i.e., the B1, B2, and B3 periods). Each model’s curve is shown in Figure 4D.

To determine how well each model generalized to the held-out 15°, 30°, and 45° rotations, we 
calculated the RMSE between the model and measured data. We compared this error using an rm-
ANOVA. Interestingly, the Gaussian model had slightly worse predictive power than the linear model 
(Figure 4E, p < 0.01). This was likely because the underlying data did not appear to be normally 
distributed.

Issues with the linear and normal SPE generalization functions were due to an intrinsic property 
possessed by the SPE generalization model; the relationship between implicit and explicit learning 
should vary as implicit learning increases. To understand this, suppose two participants have an 
explicit strategy of 20°, which hypothetically yields 80% generalization. If the first participant has 
15° implicit learning, they will exhibit a 15° (0.2) = 3° decrease in implicit learning. If the second 
participant has 7.5° implicit learning, they will exhibit only a 1.5° decrease. What this means is 
that as total implicit learning changes, the gain that relates implicit learning and explicit learning 
will also vary. Because implicit learning increased with rotation size in Exp. 1 (stepwise), then the 
generalization curve will differ in slope across each period. For the Gaussian generalization model, 
there is an additional factor which alters the gain: sampling across the nonlinear distribution. As the 
rotation gets larger, explicit strategies increase, which results in systematic changes in where the 
normal distribution is sampled, hence yielding variable implicit-explicit relationships when assessed 
via a linear regression within the B1, B2, B3, and B4 periods.

These variations in slope/gain did not match the measured data (Figure 4F). Here, we fit a separate 
linear regression to each learning period in the stepwise group and calculated the regression slope as 
well as the 95% CI. Remarkably, the measured implicit-explicit slope appeared to be constant across 
all rotation sizes. This invariance was consistent with the competition theory (Figure 4F, competition) 
which possesses an implicit gain pi that remains constant across rotations (like the data). It was not 
consistent with each generalization model, where slope varied across rotation sizes. Note, the error 
bars on model predictions in Figure 4F were estimated with bootstrapping; we sampled participants 
with replacement, fit the models to collapsed participant behavior, and calculated their slope. For 
the Gaussian models, there is no one slope (nonlinear) so we calculated the slope in the region 
bounded by the explicit strategies seen in the measured data over each rotation period. Also note 
that any negative explicit strategies (only three points in the 15° period and 1 in the 45° period) were 
ignored during this calculation.

We also compared the models using AIC. For this analysis, we used the stepwise participants in 
Exp. 1. This is the only experiment where the model can be fit to individual participants, because 
implicit and explicit learning was assayed across the four rotation sizes. Thus, we fit all the models 
in Figure 4D–F to individual participants. We used the same process described above, where m 
and σ were set to McDougle et al. values in the SPE generalization models. The results are shown 
in Figure  4G. As expected, AIC strongly favored the competition model. At left, we show the 
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generalization model’s AIC values relative to that of the competition model (positive values mean 
competition is more likely to explain the data). At right, we show how many participants are best 
described by each of the three models.

A potential issue is that generalization properties differed between McDougle et al. and our data. 
Perhaps the SPE generalization model would have exhibited better performance with another m or 
σ value. To assess this possibility, we conducted a sensitivity analysis. We repeated the entire analysis 
in Figure 4D–G described above, but varied m and σ across a wide range. For the range’s lower 
bound we reduced the McDougle et al. generalization parameters by 50%. For the upper bound 
we doubled the values. The sensitivity analysis results are shown in Figure 4H. The left inset shows 
the prediction error at each generalization width, similar to Figure 4E. The right inset counts the 
total participants best explained by each model, according to AIC as in Figure 4G. Across the entire 
range, the competition model had smaller error and better explained the data.

In sum, data in Exps. 1–3 were poorly explained by an SPE model extended with generalization. 
While plan-based generalization may promote negative implicit-explicit correlations, its contribution 
is small relative to the competition theory.

6.4 Abrupt and gradual rotations in Exp. 1
In Exp. 1 we observed that perturbing individuals in a stepwise manner led to an increase in implicit 
learning and a reduction in explicit strategy. These observations qualitatively and quantitatively 
matched the competition model (Figure  2D–G). But there is an alternate possibility. Suppose 
that the implicit system is driven by SPE as in the independence model but exhibits plan-based 
generalization. In Appendix 6.2 we derive this SPE generalization model. This model could predict a 
reduction in implicit learning via two steps: (1) both abrupt and stepwise groups have equal implicit 
learning, but the abrupt rotation leads to greater re-aiming. (2) More aiming in the abrupt rotation 
results in a decrease in the implicit learning measured at the target due to plan-based generalization. 
This hypothesis could be summarized with an SPE generalization model in which measured implicit 
learning at the target is equal to total implicit learning via: xi

measured = xi
ssexp(–0.5(xe

ss/σ)2). Could this 
model lead to the observed data?

Initially, let us assume that σ = 37.76° as measured by McDougle et al., 2017. To estimate the 
change in implicit learning between abrupt and gradual implicit learning, we can calculate the 
reduction in implicit aftereffect expected given a normal distribution with σ = 37.76°, for the 39.5° 
and 29.9° explicit strategies measured in the abrupt and stepwise groups. Aiming straight to the 
target in the abrupt group would yield 57.86% remaining implicit aftereffect. In the stepwise group, 
it would yield 73.09% remaining aftereffect. Altogether, the model predicts that stepwise implicit 
learning should increase by 100(73.09/57.86–1), or 26.3%, over the abrupt group. On the contrary, 
the abrupt and stepwise implicit aftereffects were 11.72° and 21.36°, respectively. This is an 82.3% 
increase in implicit learning.

In sum, similar to our analysis of Exps. 2 and 3 in Figure 5, while generalization will produce a 
negative implicit-explicit relationship, the implicit learning variations we observed were much larger 
in Exp. 1 than predicted by generalization alone. In this case, the 82.3% increase in implicit learning 
is more than threefold larger than the 26.3% increase predicted by the implicit generalization 
properties measured by McDougle et al., 2017. Suppose σ = 37.76° does not accurately represent 
our data. To match the measured data, σ would need to be smaller, to narrow the generalization 
curve. This is unlikely to be the case given that in Exp. 1 used three targets, whereas McDougle et 
al. used 1. Additional targets do not narrow the generalization curve, they would widen it (Krakauer 
et al., 2000). Still, let us proceed. Rather than assume that σ = 37.76°, we can fit a normal distribution 
to the measured data. In the abrupt group, implicit and explicit learning were 11.72° and 39.5°, 
respectively. In the stepwise group, implicit and explicit learning were 21.36° and 29.9°, respectively. 
Fitting a normal curve to these data, would yield the curve shown in Figure 4—figure supplement 
1A. The optimal σ is 23.6° and total implicit learning would need to be 47.8°.

While implicit learning equal to 47.8°, or 90% the total adapted responses, appears high, there 
is a more important issue. These values create an unphysical scenario. For abrupt learning an xi

ss 
of 47.8° and xe

ss of 39.5° would indicate that total adaptation should equal 47.8° + 39.5° = 87.3° 
(Figure 4—figure supplement 1B). This is larger than the rotation’s size and thus, is unphysical. In 
the stepwise group as well, total predicted learning would be about 77.7°, which is also larger than 
the rotation size.

https://doi.org/10.7554/eLife.65361
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There is a deep issue here, as described in Appendix 6.2. The problem is that as the generalization 
curve narrows (e.g., σ = 23.6° vs. 37.76°), not only does implicit learning measured at the target 
drastically underapproximate total implicit learning at the aim location, but the explicit strategy 
we estimated via xe

ss = xT
ss – xi

ss will substantially overestimate true explicit strategy, leading to 
unphysical systems. To understand this, suppose xi

ss is larger than xi
measured. Explicit strategy in Exp. 

1, xe
measured = xT

ss – xi
measured. When this measured strategy is taken as actual explicit strategy in the 

generalization curve, this is equivalent to saying that total learning will be equal to xe
measured, plus total 

implicit learning, xi
ss. Total learning would be strategy (xT

ss - xi
measured) plus total implicit learning xi

ss. 
This would be xT

ss – xi
measured+ xi

ss. Herein lies the contradiction. Because xi
ss is larger than xi

measured, by 
using the estimated explicit strategy as the actual explicit strategy in the model, total learning in the 
model will automatically be larger than actual total learning. As we described above, this problem 
can progress so far as to predict that total learning is larger than the rotation.

The key idea is that both implicit and explicit learning need to be corrected by the generalization 
curve in our data. This correction is outlined in Appendix 6.2. Using Equations A6.1 and A6.4, 
we identified the σ and xi

ss that minimized the squared error between xi
measured predicted by an SPE 

generalization model, and the measured stepwise and abrupt implicit values. The model revealed 
that the optimal σ and xi

ss were 3.87° and 45.69°, which produced the curve shown in Figure 4—
figure supplement 1C (corrected model). This curve shows how measured implicit learning and 
explicit learning will interact. This is not the true implicit-explicit generalization curve. That curve is 
in Figure 4—figure supplement 1D (corrected model). The generalization curve required by the 
model, was implausible: it had a width of σ = 3.87°, compared to 37.76° as measured by McDougle 
et al. This is why the model’s distribution in Figure 4—figure supplement 1D is so narrow.

The relationship between Figure  4—figure supplement 1C and D may not be intuitive. To 
explain how these curves are entwined, consider the stepwise learning point in inset C. This point 
lies roughly at 20° implicit learning and 30° explicit strategy. This explicit strategy is the estimated 
strategy calculated in Exp. 1: total adaptation – measured implicit learning. Note that total implicit 
learning is about 45°. Thus, measured implicit learning is about 45°–20° = 25° smaller than total 
implicit learning. This means that our estimated explicit strategy at 30°, is about 25° too large. Thus, 
the actual strategy is much smaller: 30°–25° = 5°. These corrections reveal the mapping between 
insets C and D. The point, xi = 20° and xe = 30°, will approximately lie at xi = 20/45 x 100 = 44.4%, 
and xe = 5°.

In sum, we conclude that our abrupt vs. stepwise analysis in Figure 2D–G does not match implicit 
generalization. While incorrect, we began with the assumption that the implicit learning measures 
in Exp. 1 represent generalized learning, but explicit strategies represent total re-aiming. But in this 
model, the change in implicit learning in the actual data, was three times larger than that predicted 
by generalization as measured in McDougle et al. Moreover, this analysis is flawed, in that only 
correcting implicit measures with generalization, but not explicit measures, produced a situation 
where total adaptation would have exceeded the rotation’s magnitude. This is because explicit 
strategies are estimated using total adaptation minus implicit learning. When we corrected the SPE 
generalization model so that both the implicit and explicit learning we measured were corrected 
by a generalization curve, the model required that plan-based generalization resemble a Gaussian 
with σ = 3.87°, an unphysiological scenario. The generalization model is not a viable alternate to the 
competition theory.

6.5 Instructions and variations in rotation size
In Neville and Cressman, 2018, implicit learning did not vary across 20°, 40°, and 60° rotations. 
Saturated responses like this resemble implicit learning properties exhibited in invariant error-clamp 
(Morehead et  al., 2017; Kim et  al., 2018) paradigms. In such experiments, the implicit system 
appears to reach a ceiling that does not depend on the rotation’s magnitude (at least when rotations 
are less than 90°). Does this same phenotype cause the saturation we explored using the competition 
model in Neville and Cressman, 2018?

In isolation this might appear plausible, but there is one issue: the response to instruction. The 
authors also tested how implicit learning and explicit strategies responded to instructions. Coaching 
participants increased explicit strategy but decreased implicit learning. This variation in implicit 
learning would not be explained by invariant error-clamp implicit learning properties, which would 
predict that implicit learning should always saturate at the same level. One idea that could potentially 
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rescue this alternate hypothesis is generalization; perhaps implicit learning truly is the same across the 
instruction group and no instruction group but only appears variable because instructed participants 
used larger strategies. This idea, however, would directly contradict the implicit response to rotation 
size. Supposing all groups had the same implicit learning, greater explicit strategy in the 40° and 
60° rotations, should produce a reduction in the measured implicit learning due to plan-based 
generalization.

In sum, an SPE learning model with a ceiling on implicit learning, would require complete (100%) 
generalization, to show the saturation phenotype in Figure 1D. However, there would be no way 
to capture the reduction in implicit learning seen in the instruction group with complete implicit 
generalization – a contradiction. Conversely, the reduction in implicit learning in the instruction 
group would need implicit generalization. But variations in explicit strategy across the 20°, 40°, and 
60° rotations would alter implicit learning, violating the saturated implicit learning phenotype in the 
data. Thus, there is no way that these data can be described by an upper ceiling on implicit learning 
as in invariant error-clamp studies (Morehead et al., 2017; Kim et al., 2018).

As discussed in our Results, this is not true in the competition model. The exact same competition 
model parameters (i.e. implicit learning gain pi) parsimoniously explained implicit responses to 
rotation size in Figure 1G and instruction in Figure 2C.

There is one last possibility to consider. Perhaps plan-based generalization alone could cause 
the decrease in implicit learning due to instruction, and the saturation in implicit learning across 
rotation size. In an SPE generalization model, the instruction and no-instruction groups could reach 
the same implicit learning level but show differences in implicit learning measured at the target 
due to variations in explicit strategy. In addition, implicit learning should scale according to pi as 
the rotation increases. Perhaps true implicit learning does vary across the 20°, 40°, and 60° rotation 
periods, but appears saturated because as rotation size increases so do strategies, reducing the 
implicit learning measured at the target due to generalization. We evaluated both these possibilities.

Let us begin with the response to rotation size. In Figure  4—figure supplement 1E and F, 
we fit a Gaussian SPE generalization model to the implicit and explicit responses measured in the 
no-instruction group. As described in Appendix 6.2, inset E shows uncorrected explicit strategy 
estimates: total adaptation minus implicit learning. Inset F shows the true implicit-explicit plan-based 
generalization curve that produces the data in inset E. These curves were produced by an implicit 
learning gain pi = 0.56, and σ = 11.2°. This shows that a generalization curve could yield a saturation 
phenotype, as shown in inset E. Here, the same implicit curve is shown (pi = 0.56 and σ = 11.2°) but is 
scaled by the rotation size r as predicted by the SPE model. Increases in implicit learning due to the 
rotation size are counterbalanced by increases in explicit strategy which generalize less at the target. 
However, while such a model produces a saturation phenotype, the generalization curve’s width as 
shown in inset F, is not physiological. Rather, to produce the measured responses, the curve’s width 
(11.2°) would need to be 70% narrower than the generalization properties measured by McDougle 
et al. (σ = 37.76°). This extreme narrowing has not been observed in past studies. Moreover, the 
notion that generalization in Neville and Cressman would be narrower than that in McDougle et al., 
is inconsistent with known implicit generalization properties (Krakauer et al., 2000). As shown in 
the Krakauer et al. generalization curves in Figure 4A, increasing the number of training targets in 
Neville and Cressman (three targets) would widen the generalization curve relative to McDougle et 
al., which only used one training target.

Next, we repeated the analyses described above, on the implicit-explicit responses to instruction 
in Figure 4—figure supplement 1G, H. The best generalization model (pi = 0.5 and σ = 9.8°) could 
produce changes in generalized implicit learning that were consistent with the data, as shown in 
inset G. However, as in the response to rotation size described above, the required generalization 
properties were not physiologically consistent with past measurements as shown in inset H. The 
generalization curve would need to be about 74% narrower than that measured by McDougle et al. 
Thus, again, while in principle generalization could produce changes in implicit learning, it would 
require implausible implicit learning properties.

6.6 Nonmonotonic implicit learning in Tsay et al., 2021a
In Tsay et al., 2021a, participants exhibited a non-monotonic implicit response to 15°, 30°, 60°, 
and 90° rotations as shown in Figure 1N. In the main text, we explain how this phenotype could be 
explained by the competition model. Namely, variations in strategy, could lead to changes in the 
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residual target error that drives implicit learning in the competition model. Could another model also 
produce these data?

We considered that the decrease in implicit learning observed in the 90° rotation group resembles 
a pattern shown by the implicit process in invariant error-clamp paradigms (Morehead et al., 2017; 
Kim et al., 2018); rotations larger than 90° cause a drop in implicit learning. Morehead et al., 2017 
suggested that a similar drop occurs in response to standard rotations, at least when participants 
are told to ignore the cursor and aim to the target (i.e. they did not use explicit strategies). Thus, 
might it be that reductions in implicit learning in response to large rotations are an intrinsic property 
of the implicit system, rather than a phenomenon caused by error competition? The experiments 
conducted by Morehead et al., have another similarity to the Tsay et al. observations. In particular, 
in standard rotation conditions (plus a no aiming instruction), Morehead et al. observed that a 7.5° 
rotation caused a reduction in implicit learning relative to larger rotation sizes tested. This decrease 
in implicit learning cannot be due to error competition, because participants did not aim in this 
study. In sum, could it be that both the increase in implicit learning between 15° and 30° in Tsay et 
al. as well as the drop in implicit learning between 60° and 90° are caused by the implicit system’s 
intrinsic learning properties, versus a competition with explicit strategy?

This is unlikely. First, in Morehead et al., subjects in the 7.5° standard rotation condition achieved 
complete adaptation: a total reach angle of 7.5°. This 7.5° level was smaller than that achieved in a 
7.5° invariant error-clamp. To explain these results, Morehead et al., suggested that implicit learning 
stopped in the standard rotation condition, because the error was completely canceled (i.e. both 
the rotation and total implicit learning achieved were 7.5°, creating a 0° error). In the error-clamp 
condition, error never decreased and continued to drive implicit learning to its saturation point.

The data in Tsay et al., however, cannot be explained by the error cancellation mechanism. In the 
15° rotation in Tsay et al., implicit learning reached only 7.6°, and thus did not completely cancel 
the error. Morehead et al. would have predicted that implicit learning should continue until 15° to 
cancel the error. Thus, unlike Morehead et al., the increase in implicit learning between the 15° and 
30° rotations in Tsay et al. cannot be explained by an error cancellation mechanism. This increase 
clearly violates invariant error clamp learning properties, where implicit learning reaches the same 
saturation point across error sizes less than 95°, unless error is canceled. This same argument can 
be made in the scaling phenotype in Exp. 1, as well as the scaling phenotype observed earlier by 
Salomonczyk et al., 2011.

Next, consider the decrement in implicit learning shown in Figure 1N with the 90° rotation. It 
remains possible that this decrease is due to a rotation-insensitivity that is intrinsic to the implicit 
process (rather than error competition). However, it is error that drives learning, not rotations. While 
the large rotations used by Morehead et al. resemble the 90° group in Tsay et al., target errors 
were totally mismatched in these two studies. In Morehead et al., participants in both the error-
clamp and standard rotation groups were told not to aim and to ignore the cursor. Because there 
was no strategy, the implicit learning curve reached approximately 10°, leaving an 85° target error. 
Past studies have shown that error sensitivity will be exceedingly small in response to such extreme 
errors (Kim et al., 2018; Marko et al., 2012; Wei and Körding, 2009). In our view, this insensitivity 
to extremely large errors likely led to the attenuation in implicit learning observed in Morehead et 
al. Instructions to ‘ignore the cursor’ may further exacerbate reductions in sensitivity to these large 
errors.

However, in Tsay et al., subjects were allowed to aim. Total learning reached about 85°, leaving 
a 5° target error: an error much more inclined to drive implicit learning. Comparing steady-state 
adaptation to this 5° residual error with the 85° residual error in Morehead et al., is not reasonable 
in our view.

In sum, the increase in implicit learning in the 15° and 30° groups could only be described by 
error competition, not an error cancellation mechanism as in Morehead et al. Second, the residual 
target errors experienced in Morehead et al. were about 80° larger in their 95° rotation group, 
than the 90° rotation group in Tsay et al. For these reasons, attenuation in implicit learning in these 
two studies was likely caused by differing mechanisms: a drastic reduction in target errors (the 
competition hypothesis) in Tsay et al., and an unresponsiveness to extreme target error in Morehead 
et al. (which could have been exacerbated by telling participants to ignore the cursor). For the 
learning patterns in Tsay et al., the competition model seems the most parsimonious choice, not 
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only given its quantitative match to the data (Figure  1Q and Figure  1—figure supplement 2), 
but also because it alone (not the error-clamp learning properties in Morehead et al.) can explain 
implicit responses across the many other cases described in Figures 1 and 2: abrupt and stepwise 
responses in Exp. 1 (as well as Salomonczyk et al.), rotation responses between 15 and 60° in Tsay 
et al., as well as implicit behavior in Neville and Cressman. This is not to mention that the implicit 
learning properties in Morehead et al. provide no clear way to interpret the pairwise relationships 
between implicit learning, explicit strategy, and total learning detailed at length in Figures 3–5 at 
the individual-participant level.

https://doi.org/10.7554/eLife.65361
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Appendix 7
In our Results, we considered how an SPE model might also predict negative correlations between 
implicit learning and explicit strategy. Suppose that implicit learning is driven by SPEs and is not 
altered by explicit strategy. However, a subject with a better implicit learning system (e.g. a higher 
implicit error sensitivity) will require less explicit re-aiming to reach a desired adaptation level. In 
other words, individuals with large SPE implicit learning may use less explicit strategy relative to 
those with less SPE implicit learning. Like the competition theory, this scenario would also yield 
a negative relationship between implicit and explicit learning, due to the way explicit strategies 
respond to variation in the implicit system. We will now show the diverging predictions this model 
makes, relative to the competition theory.

7.1 Competition model predictions: implicit learning responds to 
variations in explicit strategy
Here, we will start with the competition theory. In this model, the implicit system responds to variation 
in explicit strategy according to: xi

ss = pi(r – xe
ss). Clearly, this predicts a negative relationship between 

implicit learning and explicit strategy (Figure 5D). Next, we note that total adaptation is given by xT
ss 

= xi
ss + xe

ss. We can solve for xe
ss and substitute this into the model, yielding the following relationship 

between implicit learning and total adaptation: xi
ss = pi(1 – pi)–1(r – xT

ss). This is the expression tested 
in Appendix 3 where we analyzed our data in Figure 1 using steady-state implicit learning and total 
adaptation. We can rearrange this equation, solving for xT

ss yielding the dual expression: xT
ss = r + pi

–

1(pi – 1)xi
ss. This expression is written within the inset in Figure 5F. Both equation variants show that 

in a stable learning system (pi < 1) that implicit learning and total adaptation will exhibit a negative 
relationship. We can repeat this analysis, but this time solve for xi

ss, and substitute into Equation 4, 
to obtain a relation between explicit learning and total adaptation. This yields xT

ss = pir + (1 – pi)xe
ss. 

Note that this expression is provided in Figure 5E. Again, noting that pi < 1, this predicts a positive 
relation between explicit strategy and total adaptation.

To summarize, the competition model makes three predictions about the pairwise relationships 
between implicit learning, explicit strategy, and total adaptation. First, as explicit strategies increase, 
this will tend to increase total adaptation (i.e. positive relation as in Figure 5E). As explicit strategy 
increases, the residual target error will decrease, leading to less implicit learning. This predicts that 
implicit learning will exhibit a negative correlation with both explicit strategy (Figure 5D) and total 
adaptation (Figure 5F).

7.2 SPE model predictions: explicit strategy responds to variations in 
implicit learning
Now, let us suppose we have the opposite scenario to the competition model. In an SPE model, 
implicit learning does not respond to explicit strategy. Suppose implicit learning varies randomly 
across subjects (due to inter-subject variability in implicit learning properties, e.g., error sensitivity) 
and explicit strategy responds to this variability in implicit learning. In this framework, competition 
occurs but with a reversed causal structure. Now, assuming xi

ss is due to an independent SPE 
learning mechanism, this will yield a residual target error of r – xi

ss. A negative relationship between 
implicit and explicit learning occurs in the event that explicit strategies respond in proportion to 
this residual target error: xe

ss = pe(r – xi
ss), where pe is an explicit learning gain. This equation is the 

same as the competition model in Equation 4, where the roles of xe
ss and xi

ss are reversed. Thus, 
similar relationships between xT

ss and each system occur. Assuming that pe is less than 1 (i.e. the 
explicit system does not overcompensate for the remaining error, yielding total learning > r) then 
the relationship between total adaptation and implicit learning will now be positive, with xT

ss = per + 
(1 – pe)xi

ss, and the relationship between total adaptation and explicit learning will now be negative: 
xT

ss = r + pe
–1(pe – 1) xe

ss. Note that these expressions are provided in Figure 5B&C.

To summarize, the SPE model makes three predictions about the pairwise relationships between 
implicit learning, explicit strategy, and total adaptation. First, as implicit learning increases, 
this will tend to increase total adaptation (i.e., positive relation as in Figure  5C). But as implicit 
learning increases, there is a smaller target error for the explicit system to correct, leading to less 
explicit strategy. This predicts that explicit strategy will exhibit a negative correlation with both 
implicit learning (Figure 5A) and total adaptation (Figure 5B). This provides a way to compare the 
competition and SPE models.
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7.3 Simulating variations in implicit and explicit learning across 
participants
We constructed Figure 5A–F to provide more intuition on how to compare the competition and SPE 
model predictions described above. In these toy-simulations, we first fit pi and pe in the equations 
above to the implicit and explicit measures in the No PT Limit group in Exp. 3 yielding pi = 0.669 and 
pe = 0.689. These values are not important; the same qualitative behavior will occur provided 
they are between 0 and 1. We assumed that implicit learning varied across participants according 
to a normal distribution. For the distribution’s mean we calculated the average implicit learning 
measured in the No PT Limit group. For the distribution’s standard deviation, we used 4°. Then, 
we calculated explicit learning according to xe

ss = pe(r – xi
ss) for each participant. We then simulated 

‘measurements’ of implicit and explicit learning by adding a normal random variable with mean zero 
and standard deviation 2° to these simulated implicit and explicit learning measures. We simulated 
250 participants in total.

Simulations for the competition theory were similar. Here, we simulated explicit strategies across 
participants according to a normal distribution. The mean was set equal to the average explicit 
strategy measured in the No PT Limit group. The standard deviation was set to 4°. To simulate 
implicit learning, we used the competition equation: xi

ss = pi(r – xe
ss). We then added variability to 

these “true” values to obtain noisy implicit and explicit measures across 250 participants.
Results for these simulations are shown in Figure 5A–F. In Panels A-C, we show results for the 

250 participants for the model where explicit systems respond to variability in an SPE-driven implicit 
system. In Panels D-F, we show simulations for the competition theory where implicit systems respond 
to variability in explicit strategy. In Panels A and D, we show the relationship between implicit and 
explicit learning. In Panels B and E, we show the relationship between total adaptation and explicit 
learning. In Panels C and F, we show the relationship between total adaptation and implicit learning. 
Red ellipses denote the 95% confidence ellipses for the 250 simulated participants.

7.4 Comparing pairwise implicit-explicit-total correlations between 
competition and SPE models
In this Appendix we show that both an SPE model and a target error learning model could exhibit 
negative participant-level correlations between implicit learning and explicit strategy. But their 
predictions diverge on the relationships between total adaptation and each individual learning 
system. Target error learning predicts a negative implicit-total correlation and positive explicit-total 
correlation. SPE learning predicts a positive implicit-total correlation and a negative explicit-total 
correlation. To test these predictions, we considered how total learning was related to implicit and 
explicit adaptation measured in the No PT Limit group in Exp. 3. Our observations closely agreed 
with the competition theory; greater explicit strategy was associated with greater total adaptation 
(Figure 5G, ρ = 0.84, p < 0.001), whereas greater implicit learning was associated with lower total 
adaptation (Figure 5H, ρ = −0.70, p < 0.001).

We repeated similar analyses across additional data sets that also measured implicit learning 
via exclusion (i.e. no aiming) trials: (1) the 60° rotation groups (combined across gradual and 
abrupt groups) in Experiment 1, (2) the 60° rotation groups reported by Maresch and colleagues 
(Maresch et al., 2021) (combined across the CR, IR-E, and IR-EI groups), and (3) the 60° rotation 
group described by Tsay and colleagues (Tsay et al., 2021a). We obtained the same result as in 
Experiment 3. Participants exhibited negative correlations between implicit learning and explicit 
strategy (Figure 5—figure supplement 1G-I), positive correlations between explicit strategy and 
total learning (Figure  5—figure supplement 1D-F) and negative correlations between implicit 
learning and total learning (Figure  5—figure supplement 1A-C). These additional studies also 
matched the competition theory’s predictions.

7.5 Critical exceptions to these predictions
The competition theory predicts on average that implicit learning will exhibit a negative correlation 
with total adaptation (across individual participants). However, this prediction assumes that implicit 
learning is only driven by target errors, a condition we explore more completely in Part 3 of our 
Results. Second, it assumes that implicit learning properties (ai and bi, summarized with the gain 
pi above) are identical across participants, an unlikely possibility. Variation in the implicit learning 
gain (e.g. Participant A has an implicit system that is more sensitive to error) will promote a positive 
correlation between implicit and total adaptation, that will weaken the negative correlations 
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we described above. Two examples where this appears to occur are shown in Figure 5—figure 
supplement 2A. Inter-subject variability in the implicit learning gain can dominate inter-subject 
variability in explicit strategy, which would lead to a positive relationship between implicit learning 
and total adaptation. It should be noted that the converse is not true in the independence model. 
SPE learning rules will always promote a positive relationship between implicit learning and total 
adaptation and will not show a negative correlation, despite inter-subject variability in implicit and 
explicit learning gains. A more thorough discussion on these matters is provided in Appendix 8.
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Appendix 8
In Appendix 7, we detail how an SPE independence model, and a target error competition theory 
predict implicit and explicit learning should vary across participants. To review, the SPE model predicts 
(1) positive correlations between implicit learning and total adaptation, and (2) negative correlations 
between explicit strategy and total adaptation. On the other hand, the competition theory predicts 
(1) negative correlations between implicit learning and total adaptation, and (2) positive correlations 
between explicit strategy and total adaptation. We noted several datasets that supported the 
competition theory: our data in Experiment 3 (Figure 5G&H), experiments conducted by Maresch 
et al., 2021 (Figure 5—figure supplement 1A,D&G), our data in Experiment 1 (Figure 5—figure 
supplement 1B,E&H), and data collected by Tsay et  al., 2021a (Figure  5—figure supplement 
1C,F&I). Here, we detail a critical nuance in the competition theory’s predictions that may result in 
little to no correlation between implicit learning and total adaptation.

8.1 Subject-to-subject correlations in implicit learning within the 
competition theory
The competition theory (i.e. target error learning model) will not always produce a negative 
relationship between implicit learning and total adaptation. In Appendix 7.1, we explained that the 
competition theory, xi

ss = pi (r – xe
ss), does on average predict a negative correlation between implicit 

learning and total adaptation. Let us consider again why this occurs. Suppose two Participants A and 
B have identical implicit learning systems, but Participant A has superior explicit strategy. Overall, this 
means Participant A will adapt more to the perturbation. However, their greater strategy will create 
a smaller driving force for the implicit system, yielding less implicit learning. Thus, total adaptation is 
positively correlated with explicit strategy, but negatively correlated with implicit learning.

To restate this idea, in a target error model, between-subject variation in explicit strategy creates 
a negative relationship between implicit learning and total adaptation. However, these predictions 
rely on a key assumption; implicit learning properties must be the same across all participants to 
yield negative correlations. In other words, in our Participants A and B example, both participants 
were assumed to have the same pi parameter, a term that depends on implicit error sensitivity and 
retention. Between-subject variation in these implicit learning properties, however, will promote a 
positive relationship between total adaptation and implicit learning. Thus, it is entirely possible that 
the negative correlations promoted by between-subjects explicit variability can be negated by the 
positive correlations promoted by between-subjects implicit variability, yielding no correlation in 
some instances.

To illustrate this, consider the toy simulation in Figure 5—figure supplement 4A. At left, we 
simulate total implicit learning using the competition equation (pi = 0.8) across 35 participants 
adapting to a 30° rotation, whose explicit strategies vary according to a normal distribution (mean = 
12°, S.D. = 4°). Note the strong negative relationship between implicit learning and total adaptation. 
At right, we show the same data (same explicit strategies) but introduce variability in implicit learning 
(pi in the model is varied according to a normal distribution with mean = 0.8, and S.D. = 0.1). Even 
though these data arise from the same competition equation, adding between-subject variation in 
implicit learning properties yields zero correlation between implicit learning and total adaptation (p 
= 0.199, R2 = 0.05).

The competition equation predicts that the correlation between implicit learning and total 
adaptation is uniquely susceptible to contamination with between-subject implicit variability. That is, 
while the correlation between implicit learning and total adaptation (Figure 5—figure supplement 
4A, right) was not statistically significant, the same simulated data exhibited a strong positive 
correlation between explicit strategy and total adaptation (Figure 5—figure supplement 4B right; p 
< 0.001, R2 = 0.42), and a strong negative correlation between implicit learning and explicit strategy 
(Figure 5—figure supplement 4C, right; p < 0.001, R2 = 0.77).

Thus, with implicit variability the competition theory can simultaneously exhibit no correlation 
between implicit learning and total adaptation, a strong positive correlation between explicit 
strategy and total adaptation, and a strong negative correlation between implicit learning and 
explicit strategy.

To conclude, correlative phenomena in the competition theory represent a balance between 
negative correlations induced by between-subject explicit variability, and positive correlations 
induced by between-subject implicit variability. Observing negative correlations is a probabilistic 
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phenomenon. A given study can easily fail to yield a statistically significant correlation between total 
adaptation and implicit learning, yet still be governed by the competition equation. To maximize the 
probability of detecting a negative correlation between implicit learning and total adaptation, there 
are several critical factors that should be considered by the experimenter.

To describe these factors, we compare our data in Experiment 3 (Figure 5G&H) to experimental 
conditions where we detected no statistically significant correlation between implicit learning 
and total adaptation. These include the 30° rotation groups collected in Tsay et al., 2021a and 
Experiment 1 (Figure  5—figure supplement 2A, middle and right). These studies used similar 
experimental procedures, yet only our data in Exp. 3 yielded a statistically significant correlation 
between implicit learning and total adaptation. Here, we describe four key factors that may have 
played a role in these differences. For each factor, we will perform simulations using the competition 
equation. Factors 1 and 2 deal with statistical power. Factors 3 and 4 deal with how changes in 
explicit strategy use alter the ability to measure correlations between implicit learning and total 
adaptation.

8.2 Factor 1. Statistical power: total number of trials
Because correlations between implicit learning and total adaptation are a balance between two 
opposing variability sources, high statistical power will increase one’s ability to detect them in an 
experiment. One simple way to increase this power, is to increase the total number of trials used 
to measure total adaptation and implicit learning. That is, each reaching movement is corrupted 
by motor variability. To better estimate total adaptation and implicit learning, averaging over more 
trials lessens the effect of trial-to-trial reach variability on subject-to-subject correlations. This can be 
especially problematic for the number of aftereffect trials used to measure implicit learning, which 
remain limited in many studies.

Consider the simulations in Figure  5—figure supplement 2B. These simulations show a 
power analysis where we vary the total number of aftereffect trials in simulation, to detect the 
probability that an experiment with 30 participants will yield a statistically significant correlation 
between implicit and total adaptation. Here, implicit learning is set by the competition equation. All 
simulation parameters are held still (e.g. explicit parameter variability, implicit parameter variability, 
mean explicit strategy; see Appendix 8.8 below) except the total number of aftereffect trials used to 
calculate implicit learning. That is, we average over simulated trials to calculate total learning, explicit 
strategy, and implicit learning. Each simulated trial differs due to motor execution noise (i.e. varied 
according to a normal distribution). We repeat each simulation 40,000 times with 30 participants in 
each simulation, and calculate the total fraction of iterations where there was a statistically significant 
negative correlation between total adaptation and implicit learning (Figure 5—figure supplement 
2B, red, left), no statistically significant correlation between total adaptation and implicit learning 
(Figure  5—figure supplement 2B, black, left), and a positive statistically significant correlation 
between these two variables (Figure 5—figure supplement 2B, green, left).

This power analysis qualitatively demonstrates that increasing the number of aftereffect trials 
greatly improves one’s ability to detect a negative statistically significant correlation between total 
adaptation and implicit learning. We should note that our study (Experiment 3) is an outlier, in that 
we used a very large number of no feedback (and no aiming) trials to measure implicit learning: 
80 trials. In cases where we did not detect a statistically significant correlation, the total aftereffect 
trial count was much smaller: Tsay et al. (2021) used only 20 trials to measure the implicit aftereffect 
and Exp. 1 used only 18 trials (Figure 5—figure supplement 2B, right). Thus, Exp. 3 was more 
likely to produce a negative correlation between implicit learning and total adaptation, given this 
experimental factor.

8.3 Factor 2. Statistical power: motor variability
The second factor that plays an important role in measuring subject-to-subject correlations, is also 
related to statistical power: motor variability. Like trial count (Factor 1), the more variable a participant’s 
reaching movements are, the poorer one’s estimate for total learning and implicit learning. To show 
this, we repeated our power analysis process described above (using the competition model), 
but this time held all simulation parameters constant, except trial-to-trial variability in executing a 
movement. We sampled this motor execution noise parameter for each participant; some simulated 
subjects had higher trial-to-trial variability than others. We gradually increased the mean motor noise 
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parameter across participants, as well as the variation in motor noise across participants. Results are 
shown in Figure 5—figure supplement 2C.

Motor execution noise plays a strong role in detecting statistically significant negative correlations 
between implicit learning and total adaptation (Figure  5—figure supplement 2C, left, red); as 
motor execution noise increases, the probability of detecting a statistically significant correlation 
falls sharply. Therefore, studies where subjects have smaller trial-to-trial variability in reaching 
movements, will be more likely to detect negative correlations between total adaptation and 
implicit learning. For example, we calculated the trial-by-trial variability in reach angle during the 
no feedback periods in our data (Exp. 3) as well as the 30° rotation datasets we described above 
(Tsay et al., 2021a and Experiment 1). We used this period so that trial-to-trial volatility in explicit 
strategy did not corrupt our estimate of motor variability (i.e. trial-to-trial variability is much larger 
during asymptotic behavior).

As shown in Figure 5—figure supplement 2C at right, participants in Experiment 3 exhibited 
smaller trial-by-trial reach variability (one-way ANOVA, F = 6.84, p = 0.002) than both the Tsay 
dataset (post-hoc test: p = 0.003) as well as Experiment 1 (post-hoc text: p = 0.015). Thus, Exp. 3 was 
more likely to produce a negative correlation between implicit learning and total adaptation, given 
this experimental factor. In addition, it should be noted that motor noise variability (Factor 2) will 
act synergistically with limited aftereffect trials (Factor 1) to impair one’s ability to detect accurate 
implicit learning measures.

While it may be difficult to control motor noise, experimenters should consider the following 
parameters: (1) movement displacement, (2) the type of experimental apparatus (laptop vs. robot 
vs. tablet), (3) the speed of the reaching or shooting movements, and (4) target location. These 
experimental conditions will alter reaching variability and may improve one’s ability to detect 
negative correlations between total adaptation and implicit learning.

8.4 Factor 3: explicit strategy use
Factors 3 and 4 relate less to statistical power, and more to the variability sources that underly 
subject-to-subject differences in implicit and explicit learning. A critical factor that determines one’s 
probability of detecting negative correlations between implicit learning and total adaptation, is total 
explicit strategy use. To detect how overall strategy use affects the ability to obtain statistically 
significant correlations, we again used our power analyses. This time, we repeated our power 
analysis procedure, but varied the mean of the normal distribution used to simulate variable explicit 
strategies; we gradually increased the mean strategy use across our simulations, in the case where 
participants adapted to a 30° rotation. All other simulation parameters remained constant across 
simulations (n = 30 in each simulation, 40,000 iterations for each explicit strategy level). The results 
are shown in Figure 5—figure supplement 2E, at left.

Strategy use strongly affects one’s ability to detect negative statistically significant correlations 
between implicit learning and total adaptation (Figure  5—figure supplement 2E, left, red). 
When participants use little explicit strategy on average, it is more difficult to obtain a statistically 
significant implicit-total adaptation correlation. In other words, at a given rotation size, studies 
where participants use greater strategies are more likely to yield a negative relationship between 
implicit learning and total adaptation. Comparing participants in Experiment 3 to the Tsay dataset 
and Experiment 1 (Figure 5—figure supplement 2E, right), we noted that participants in the Tsay 
dataset exhibited large reductions in explicit strategy use (one-way ANOVA, F = 11.09, p < 0.001; 
post-hoc tests had p < 0.001 for Experiment 3 vs. Tsay and Experiment 1 vs. Tsay). Thus, participants 
in the Tsay experiment were least likely to exhibit negative correlations between implicit learning 
and total adaptation, according to this experimental factor.

8.5 Factor 4: Between-subject variability in explicit strategy use
Recall that the relationship between implicit learning and total adaptation is a balance between 
variability sources: positive correlations induced by between-subjects implicit variability, and negative 
correlations induced by between-subjects explicit variability. Thus, more variability in explicit strategy 
increases how likely one is to detect a negative correlation between implicit and total adaptation. 
To demonstrate this, we performed a final power analysis. All parameters were constant across 
simulations, except variability in strategy use. For each simulation (n = 30) we sampled strategies from 
a normal distribution; we gradually increased the SD of this normal distribution across simulations 
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(40,000 simulations for each level) while holding mean explicit strategy constant. The results are 
shown in Figure 5—figure supplement 2D, at left.

These simulations demonstrated two critical properties. First, as subject-to-subject variability in 
strategy use increases, so too does the likelihood of detecting a negative relationship between 
implicit learning and total adaptation (Figure  5—figure supplement 2D, left, red). Second, 
when between-subject explicit variability is very low, there is even a chance of detecting positive 
correlations between total adaptation and implicit learning (Figure 5—figure supplement 2D, left, 
green) even in the competition theory. This key point should be kept in mind when experiments use 
conditions where strategy use is minimal across participants (e.g. exceedingly gradual rotations; very 
small rotations, etc.).

Along these lines, we should note that between-subject variability in explicit strategy use was 
greatest in Experiment 3. As compared to the Tsay dataset and Experiment 1, explicit variability 
was 32% and 72% greater in Experiment 3, respectively (Figure 5—figure supplement 2D, right). 
Therefore again, Experiment 3 was most likely to produce a negative correlation between implicit 
learning and total adaptation.

8.6 Unique susceptibility in the correlation between implicit learning 
and total adaptation
It is important to reiterate that with target error learning, negative correlations between implicit 
learning and total adaptation are uniquely challenging to detect. That is, there is more power to 
detect positive correlations between explicit strategy and total adaptation. For example, though 
we did not detect a negative relationship between implicit learning and total adaptation in the 30° 
conditions tested by Tsay et al., 2021a and in Experiment 1, we did detect a positive correlation 
between explicit strategy and total adaptation in these experiments (Figure 5—figure supplement 
3A and B).

Figure 5—figure supplement 3 (panels C-F), again shows the power analyses on Factors 1-4 
illustrated in Figure 5—figure supplement 2, but this time investigates the correlation between 
explicit strategy and total adaptation. Across all 4 factors, the power analyses demonstrated that 
experiments should yield greater probability of detecting positive correlations between explicit 
strategy and total adaptation (Figure 5—figure supplement 3C-F, green curves at top), than negative 
correlations between implicit learning and total adaptation (Figure 5—figure supplement 3C-F, red 
curves at top). These data are recapitulated in the simulated R2 statistic across the two correlations 
(Figure 5—figure supplement 3C-F, bottom row); the correlation between total adaptation and 
explicit strategy was greater than the correlation between total adaptation and implicit learning.

8.7 Appendix 8 summary
Here we explained processes that impact the correlation between implicit learning and total 
adaptation in the competition theory. Between-subject variability in explicit strategy and implicit 
learning properties promote positive and negative correlations between implicit learning and total 
adaptation, respectively. These opposing factors make it possible that correlations between implicit 
learning may be weak or absent in an experiment. We explored four key experimental factors 
that researchers should consider in their data sets to maximize the chance of detecting negative 
correlations between implicit learning and total adaptation. However, this is by no means a complete 
list. For example, greater SPE learning will drastically undermine the negative correlations between 
implicit learning and total adaptation produced by target error learning. Thus, we expect that 
conditions which use multiple visual landmarks (e.g., aiming targets) are unlikely to show negative 
correlations between implicit learning and total adaptation.

8.8 Appendix 8 methods
Here we analyzed data collected in Experiment 1, Experiment 3, and Tsay et al. (2021). Implicit 
and explicit learning measures were calculated as reported in the Methods section in our main 
text. These implicit and explicit learning measures were used to calculate the correlations shown 
in Figure  5—figure supplement 2A and Figure  5—figure supplement 3A&B. In addition, the 
explicit measures were used to calculate the strategy use in Figure 5—figure supplement 2E. Each 
dot in the right-most inset represents an individual participant. Variations in explicit strategy across 
experiments were assessed with a one-way ANOVA, with Bonferroni-corrected post-hoc tests. In 
addition, Figure 5—figure supplement 2D (at right) shows the std. dev. in explicit strategy across 
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participants within the three experimental conditions. In Figure  5—figure supplement 2C, we 
estimated motor variability within individual participants. To do this we calculated the standard 
deviation in the reach angle across trials in the no-aiming period at the end of each experiment. We 
chose this period to prevent volatility in explicit strategy from inflating our motor variability measure. 
Each dot in the right-most inset shows the reach angle standard deviation for a single participant. 
We assessed differences in motor variability across the three experiments using a one-way ANOVA, 
with Bonferroni-corrected post-hoc tests.

In Figure  5—figure supplement 4, we provide toy simulations to illustrate how variation in 
implicit learning properties alters pairwise relationships between implicit learning, explicit strategy, 
and total adaptation. For the left-most inset in panels A, B, and C, we simulated a condition with 
no variability in implicit learning properties. That is, we used the competition equation to simulate 
implicit learning, but held ai and bi constant across all participants (each individual dot in the 
panel). We chose ai and bi so that the implicit learning gain, pi, was equal to 0.8. We simulated 35 
participants adapting to a 30° rotation. Explicit strategy was sampled for each participant using a 
normal distribution with a mean of 12° and a standard deviation of 4°. The right-most inset in panels 
A, B, and C, use the exact same explicit strategies. However, here we allow pi (i.e., implicit learning 
properties) to vary across participants. To simulate this variation, we sample pi according to a normal 
distribution with a mean of 0.8 and a standard deviation of 0.1.

Finally, Figure 5—figure supplement 2 and Figure 5—figure supplement 3 show four power 
analyses. The power analyses were the same across these two figures, only, Figure  5—figure 
supplement 2 focuses on how implicit learning relates to total adaptation, and Figure 5—figure 
supplement 3 considers how explicit strategy relates to total adaptation. In these power analyses, 
there are several parameters. First, implicit error sensitivity was uniformly sampled between 0.9 and 
0.95. Implicit error sensitivity was uniformly sampled between 0.2 and 0.3. The rotation size was 
always 30°. Other simulation parameters varied across each power analysis. For each power analysis, 
there was one parameter that varied across simulations, but all other parameters were fixed to 
default values. The default values were as follows. Explicit learning was sampled for each participant 
using a normal distribution with a mean of 10° and a standard deviation of 6°. The total number 
of trials used to measure total adaptation, implicit learning, and explicit learning was equal to 40. 
Motor variability had a mean of 12° across participants, with a standard deviation of 6°.

Power analyses in Figure 5—figure supplement 2B and Figure 5—figure supplement 3C used 
the default parameter values but varied the total number of probe trials used to measure implicit 
and explicit learning between 1 and 80. Power analyses in Figure 5—figure supplement 2C and 
Figure 5—figure supplement 3D used the default parameter values but varied the average motor 
variability between 5° and 20°, and the standard deviation in motor variability between 2° and 10°. 
As mean motor variability increased across simulations, so did the subject-level standard deviation. 
Power analyses in Figure 5—figure supplement 2D and Figure 5—figure supplement 3E used 
the default parameter values but varied the standard deviation in strategy use between participants 
between 0.1° and 8°. Finally, power analyses in Figure 5—figure supplement 2E and Figure 5—
figure supplement 3F used the default parameters values but varied average strategy use between 
0° and 20°.

In these power analyses, the parameter of interest was varied linearly between its two extreme 
values. For each value we conducted 40,000 simulations, each time sampling random variables for 30 
participants according to the distributions noted above. Across these simulations we calculated the 
probability that a negative statistically significant relationship occurred between implicit learning and 
total adaptation (red lines in Figure 5—figure supplement 2 and Figure 5—figure supplement 3), 
a positive statistically significant relationship occurred between implicit learning and total adaptation 
(green lines in Figure  5—figure supplement 2), no statistically significant relationship occurred 
between implicit learning and total adaptation (black lines in Figure 5—figure supplement 2), and 
a positive statistically significant relationship occurred between explicit learning and total adaptation 
(green lines in Figure 5—figure supplement 3). Statistically significant relationships were detected 
using a linear regression across the 30 participants in each simulation (P < 0.05). The bottom row in 
Figure 5—figure supplement 3, shows the average R2 statistic for these linear regressions.
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