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Abstract 8 

The ability to use sensory cues to inform goal directed actions is a critical component of 9 

behavior. To study how sounds guide anticipatory licking during classical conditioning, we 10 

employed high-density electrophysiological recordings from the hippocampal CA1 area and 11 

the prefrontal cortex (PFC) in mice. CA1 and PFC neurons undergo distinct learning 12 

dependent changes at the single cell level and maintain representations of cue identity at the 13 

population level. In addition, reactivation of task-related neuronal assemblies during 14 

hippocampal awake Sharp-Wave Ripples (aSWR) changed within individual sessions in CA1 15 

and over the course of multiple sessions in PFC. Despite both areas being highly engaged 16 

and synchronized during the task, we found no evidence for coordinated single cell or 17 

assembly activity during conditioning trials or aSWR. Taken together, our findings support 18 

the notion that persistent firing and reactivation of task-related neural activity patterns in CA1 19 

and PFC support learning during classical conditioning.  20 
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Introduction 40 

The ability to react to sensory cues with appropriate behavior is crucial for survival. On the 41 

level of neuronal circuits, linking cues to actions likely requires the interplay between a large 42 

network of cortical and subcortical brain structures, including the medial prefrontal cortex 43 

(PFC) and the CA1 area of the hippocampus (Allen et al., 2017; Steinmetz et al., 2019). Both 44 

areas have been found to respond to sensory cues and reward in various behavioral 45 

paradigms (Aronov et al., 2017; Chen et al., 2013; Starkweather et al., 2018; Taxidis et al., 46 

2020) and are involved in action planning and execution (Otis et al., 2017; Terada et al., 47 

2017).  48 

PFC has been suggested to map contextual and sensory information to appropriate actions 49 

according to flexible rules (Euston, 2012). Accordingly, PFC has been found to control the 50 

development and expression of anticipatory licking during sensory guided reward-seeking 51 

behavior (Otis et al., 2017). PFC also maintains working memory representations of sensory 52 

cues over delay periods (Funahashi et al., 1993; Goldman-Rakic, 1995). 53 

Similar to PFC, CA1 responds to sensory cues and displays sustained activity during delay 54 

periods to support memory formation (Hattori et al., 2015; McEchron et al., 1999; McEchron 55 

and Disterhoft, 1997). 56 

Importantly, CA1 and PFC interact substantially during awake hippocampal Sharp-Wave 57 

Ripples (aSWRs) (Jadhav et al., 2016). aSWRs have been suggested to support planning of 58 

goal directed actions in the context of spatial navigation (Ólafsdóttir et al., 2018) and the 59 

disruption of aSWRs leads to impairments in anticipatory behavior (Nokia et al., 2012). In 60 

addition, sensory cue representations are reactivated in hippocampal and cortico-61 

hippocampal circuits during aSWRs (Herzog et al., 2020; Rothschild et al., 2017). Yet, 62 

whether task related information during classical conditioning is also reactivated in the CA1-63 

PFC circuit during aSWR and how this changes over the course of learning is currently 64 

unknown. 65 

Here, we investigate how neural activity patterns in CA1 and PFC change throughout 66 

learning of sensory guided behavior, if information related to sensory cues is maintained 67 

while anticipatory actions are performed, and whether task-related information is reactivated 68 

in the CA1-PFC circuit during aSWRs. To this end, we employed high density silicon probe 69 

recordings from both areas in head-fixed mice during appetitive auditory trace-conditioning. 70 

Our findings reveal that CA1 and PFC exhibit distinct learning dependent changes in 71 

sensory cue evoked activity, trial type and sensory-cue related sustained activity as well as 72 

reactivation of task-related neural assemblies during aSWR. 73 



  74 

Results 75 

Head-fixed mice learn to anticipate reward during appetitive auditory trace 76 

conditioning 77 

We trained head-fixed mice to associate one of two sounds (CS+ vs CS-) with a liquid 78 

reward delivered after a 1-second-long, silent trace period (Figure 1A) (Otis et al., 2017). 79 

Successful learning expressed as the emergence of anticipatory licking of the animals in 80 

response to CS+ sounds (Figure 1B & 1C). Across all animals, lick rates during the trace 81 

period were significantly higher during CS+ trials after 5 days of training (Figure 1C; 82 

Wilcoxon rank sum, p<0.01). 83 

  84 

CA1 and PFC exhibit learning dependent changes in sound evoked and sustained 85 

activity 86 

We next investigated how learning shapes neural dynamics in CA1 and PFC. To this end, 87 

we performed high-density silicon probe recordings from dorsal CA1 and PFC (1636 and 88 

2217 cells total and 34 and 54 average per session in CA1 and PFC respectively; Figure 1-89 

figure supplement 1 and Figure 1-source data 1), during the first two days of training and 90 

after the animals successfully acquired the conditioning task (hereafter referred to as pre 91 

and post learning) (Figure 1D, 1E and 1J). We observed that over the course of learning 92 

both areas developed pronounced differences in neural activity patterns between CS+ and 93 

CS- trials. 94 



 95 

 96 

Figure 1. CA1 and PFC single cell activity shows distinct learning-dependent changes 97 

during appetitive auditory trace conditioning (AATC). A) Schematic of AATC task and 98 

electrophysiological recordings B) Example post-learning training sessions of one mouse 99 

during the AATC task (dots in raster-plots represent licks, solid lines indicate average 100 

responses from respective sessions). C) Average change in lick rate during the trace period 101 



trial during learning for all animals (n=17) (*indicates sessions with significantly higher group 102 

average licks during the trace period after CS+ sounds, Shade area represents standard 103 

error of the mean (SEM)). D) “Neuroseeker” silicon probe layout and combined spatial spike 104 

waveform patterns of 4 simultaneously recorded example neurons from CA1. E) Z-scored 105 

firing rates of all CA1 neurons recorded pre (top) and post (bottom) learning during CS+ and 106 

CS- trials ordered according to average trace period firing rates. F) Z-scored PSTHs of all 107 

recorded cells in CA1. G) Z-scored sound evoked change in firing rate (0-350ms post 108 

CS+/CS- onset) in CA1. H) Z-scored trace period change in firing rate (2-3s post CS+/CS- 109 

onset) in CA1. I) Z-scored reward period change in firing rate (0-.5s post reward presentation 110 

for CS+ trials pre and post learning) in CA1. J) Z-scored firing rates of all PFC neurons 111 

recorded pre (top) and post (bottom) learning during CS+ and CS- trials ordered according 112 

to average trace period firing rates. K) Z-scored PSTHs of all recorded cells in PFC. L) Z-113 

scored sound evoked change in firing rate in PFC. M) Z-scored trace period change in firing 114 

rate in PFC. N) Z-scored reward period change in firing rate in PFC (*,**,*** represents 115 

Wilcoxon rank sum, p<0.05, p<0.01,p<0.001). (Error bars and shaded areas represent 116 

SEM). 117 

 118 



 119 

Figure 1-figure supplement 1. Positioning of silicon probes in CA1 and PFC. A) 120 

Histological image of silicon probe implantation track in PFC (left). Arrows show estimated 121 

extend of 128 channel “Neuroseeker” silicon probe. Schematic of verified recording position 122 

from 6 animals (right) (adapted from (Franklin and Paxinos, 2019). B) Histological image of 123 

silicon probe implantation track in CA1 (left). Arrows show estimated extend of 128 channel 124 

“Neuroseeker” silicon probe. Schematic of verified recording position from 4 animals (right) ). 125 

 126 

Figure 1-source data 1. Number of recorded neurons per animal and session in CA1, 127 

PFC and simultaneous CA1-PFC recordings. 128 
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 130 

  131 

Short-latency evoked responses to both CS+ and CS- stimuli increased over the course of 132 

learning in CA1 (Kruskal-Walis test;  F(3,3267)=23.64, p<0.001; Posthoc Wilcoxon Rank 133 

Sum Test for CS+, p<0.001 and CS-, p=0.008) but were not significantly different from each 134 

other post learning (Figure 1 G, Wilcoxon Rank Sum, p=.73). In contrast, in PFC, CS+ 135 

responses remained high during learning but responses to CS- stimuli decreased (Kruskal-136 

Walis test; F(3,4413)=21.49, p<0.001; Post-hoc Wilcoxon Rank Sum Test for CS+, p=0.2 137 

and CS-, p<0.001) which led to a significant differences in post learning responses between 138 

CS+ and CS- stimuli (Figure 1L, Wilcoxon Rank sum p<.05) 139 

During the trace period following CS+ sounds, cells in PFC exhibited, on average, a strong 140 

sustained increase in firing rates (Wilcoxon rank sum, p<0.001) (Figure 1M) while average 141 

single cell responses in CA1 became significantly suppressed (Wilcoxon rank sum, p<0.001) 142 

(Figure 1H). 143 



Reward evoked activity significantly decreased in both CA1 (Wilcoxon rank sum, p<0.001) 144 

and PFC (Wilcoxon rank sum, p<0.001) (Figure 1I and 1N) from pre- to post-learning 145 

sessions. 146 

 147 

A subset of single cells in CA1 and PFC show lick related activity 148 

Over the course of learning, mice started to respond to CS+ sounds with anticipatory licking. 149 

Therefore, we investigated whether CA1 and PFC also exhibited time-locked activity at the 150 

onset of anticipatory licking during CS+ trials. In line with previous reports showing the      151 

involvement of PFC in licking behavior during appetitive trace conditioning (Otis et al., 2017), 152 

we found that single cells in PFC showed increases in activity compared to pre-trial baseline 153 

at the time of the first anticipatory lick (PFC Lick Up, n = 77, 4% of all cells; Criterion: mean 154 

activity during -250ms - +250ms around 1st lick, 1 standard deviation above pre-trial 155 

baseline) (Figure 2D).  We also found that a small population of CA1 cells responded during 156 

licking (CA1 Lick-up, n = 36, 2%) (Figure 2A).  157 

  158 

CA1 and PFC cells exhibit distinct patterns of trial type-specific sustained activity 159 

However, lick related activity was not the only driver of single cell modulation during the 160 

interval between CS+ and reward delivery. We discovered a large subset of single cells that 161 

exhibited trial type specific sustained responses during the trace period in CA1 and PFC, 162 

similar to what had previously been described during aversive eyeblink trace-conditioning 163 

(Hattori et al., 2015, 2014; Takehara-Nishiuchi and McNaughton, 2008).  164 

In CA1, a large fraction of non-lick cells was significantly suppressed by CS+ stimuli (post 165 

Trace-Down, n = 580 40%) (Figure 2B and 2C (bottom)) and the percentage of these Trace-166 

Down cells as well as suppression levels increased from pre to post learning (Pre 19%; 167 

Suppression Pre vs Post, T-test p<0,01). We also observed a smaller fraction of non-lick 168 

cells with sustained increases to CS+ sounds (post Trace-Up, n = 247, 17%) (Figure 2B and 169 

2C (bottom)). The percentages of these cells decreased from pre to post learning session 170 

(Pre, 29%, Sup. Fig. 3 A & B). 171 

In PFC, most modulated cells showed sustained increases in activity in response to CS+ 172 

sounds (Trace-Up, n = 734, 38%) (Figure 2E and 2F (top)) and the percentage and 173 

activation levels of these cells remained similar from pre to post learning. A similar fraction of 174 

cells showed sustained suppression (Trace-Down, n = 630 33%) (Figure 2E and 2F 175 

(bottom)).  Differences between CS+ and CS- responses that emerged over the course of 176 

learning in PFC were mostly caused by a reduction in CS- stimulus evoked activity.  CS- 177 

responsive Trace-Up cells in PFC significantly decreased their activity from pre to post 178 

learning sessions (T-test, p<0,001) (Fig. 2-figure supplement 1 A & B). 179 

   180 



181 
Figure 2. CA1 and PFC single cells exhibit lick evoked responses and distinct patterns 182 

of sustained activity. A) Z-scored firing rates of all CA1 neurons (Top) aligned to the first 183 

lick of a lick bout (at least 3 licks/s) during CS+ trials (before reward delivery). Z-scored 184 

change in activity of all and for positively lick modulated cells (bottom). Purple bar indicates 185 

Lick-Up cells. B) Z-scored PSTHs of all Trace-Up (Top) and Trace-Down (Bottom) post-186 

learning for CA1 (in CS+ or CS- trials: Trace-Up, n=444; Trace-Down, n=675). C) Z-scored 187 

change in firing rate during the trace period of the same Trace-Up neurons (Top) and Trace-188 

Down neurons (bottom) for CA1 D) Lick cells in PFC (same as in A) E) Trace-Up (Top) and 189 

Trace-Down (Bottom) non-lick neurons post-learning for PFC (CS+ or CS- trials: Trace-Up, 190 

n=736; Trace-Down, n=734). F) Z-scored change in firing rate during the trace period of the 191 



same Trace-Up neurons (Top) and Trace-Down neurons (bottom) for PFC. (*,**,*** 192 

represents Wilcoxon rank sum, p<0.05, p<0.01,p<0.001 ; Error bars and shaded areas 193 

represent SEM). 194 

 195 

Figure 2-figure supplement 1. Distribution and activation of Trace-Up and Trace-Down 196 

cells in CA1 and PFC changes over the course of learning. A) Percentage of Trace-Up 197 

and Trace-Down cells in CA1 and PFC in pre- and post-learning sessions separately for 198 

CS+ and CS- trials.  B) Average Z-scored modulation of all combined Trace-up and Trace-199 

down cells in CA1 and PFC in pre- and post-learning sessions (Error bars represent SEM). 200 

  201 

CA1 and PFC population activity distinguishes between rewarded and unrewarded 202 

trials during the trace period 203 

Because individual cells in CA1 and PFC exhibited sustained activity during the trace period, 204 

we hypothesized that these responses might be part of a broader CA1 and PFC population 205 

code to maintain a representation of trial identity between CS+ and reward delivery (i.e., in 206 



the trace period, in which there is no on-going stimulus). To test this, we first computed the 207 

binned population rate vectors for all simultaneously recorded non-lick cells in both areas 208 

during CS+ and CS- trials on a session-by-session basis. We next calculated the Euclidean 209 

distance between the population rate vector trajectories during the two stimuli (see Figure 3A 210 

and 3C for trajectory examples), and used this metric as a proxy for the similarity of 211 

population responses over time. We found that in post-learning sessions, the population rate 212 

vector distance increased after stimulus onset and persists to be significantly different from 213 

baseline during the trace period in CA1 (Wilcoxon sign rank, p<0.001) and PFC (Wilcoxon 214 

sign rank, p<0.001), indicating that both areas maintain trial type specific information at the 215 

population level. Non-lick cell population rate vector distance did not correlate with lick 216 

activity or movement of the animals in CA1 (n=36, Population Vector Distance vs. Licks: 217 

correlation coefficient =.14, p=.42; Population Vector Distance vs movement: correlation 218 

coefficient = .03, p= .85; Fig. 3-figure supplement 2C) or PFC (n=38, Population Vector 219 

Distance vs. Licks: correlation coefficient =-.1, p=.52; Population Vector Distance vs 220 

movement: correlation coefficient = -.04, p= .74; Fig. 3-figure supplement 2D). Population 221 

response differences persisted even after reward delivery and usually settled back at 222 

baseline levels after 20s (Fig. 3-figure supplement 1). 223 

To verify that both areas maintain CS type specific information on a trial-by-trial basis, we 224 

next trained a support vector machine classifier on the firing rates of simultaneously 225 

recorded non-lick cells during the trace period from either CA1 or PFC. We were able to 226 

predict the preceding stimulus identity significantly above chance level in CA1 (mean 227 

performance, 62% correct, Wilcoxon sign rank p<0.001; Figure 3C) and PFC (mean 228 

performance, 76% correct, Wilcoxon sign rank p<0.001; Figure 3F).  229 



 230 

Figure 3. CA1 and PFC non-lick cell population activity encode trial identity during the 231 

trace period. A) Example of average non-lick cell population rate vector trajectories for one 232 

session in CA1 (CS+ (blue) and CS- (red)). Averages plotted along first 3 principal 233 

components (Baseline period: blob on the left, trace period thicker lines on the right). B) 234 

Average z-scored Euclidean-distance between CS+ and CS- non-lick cell population rate 235 

vector trajectories during AATC task for CA1 (n=36) (shaded areas represent SEM). C) 236 

Support vector machine classification of trial identity by average baseline (-1s-0) and trace 237 

period (2-3s) activity of non-lick cells in CA1 (n=36) (*** indicate Wilcoxon sign rank 238 

p<0.001). D) Example of average non-lick cell population rate vector trajectory for one 239 

session in PFC. E) Average z-scored Euclidean-distance between CS+ and CS- non-lick cell 240 

population rate vector trajectories for PFC (n=38) (shaded areas represent SEM).  F) 241 

Support vector machine classification of trial identity by average baseline (-1s-0) and trace 242 

period (2-3s) activity of non-lick cells in PFC (n=38). 243 

 244 



245 
Figure 3-figure supplement 1. CA1 and PFC single cells and population responses 246 

slowly decay back to baseline after conditioning trials. A & B) Z-scored firing rates of all 247 

CA1 (A) and PFC (B) neurons recorded during post-learning sessions for 25s after trial 248 

onset.  C & D) Average z-scored Euclidean-distance between CS+ and CS- non-lick cell 249 

population rate vector trajectories during AATC task for CA1 (n=36) and PFC (n=38) 250 

(shaded areas represent SEM). 251 



 252 



Figure 3-figure supplement 2. CA1 and PFC non-lick cell population activity does not 253 

correlate with lick or running behavior. A) Average Lick responses during post-learning 254 

trials for CS+ and CS- trials (52 sessions, 17 animals) (shaded areas represent SEM). B) 255 

Average running speed during post-learning CS+ and CS- trials (52 sessions, 17 animals). C 256 

& D) Correlation between non-lick population rate vector differences (CS+ vs CS- trials) for 257 

all post learning sessions in CA1 (C) and PFC (D) (middle) and differences in lick rate (CS+ 258 

vs CS- trials) (left) and differences in running Speed (CS+ vs CS- trials) (right) for all post 259 

learning sessions. 260 

 261 

CA1-PFC LFP coherence but not single cell interactions increase during trace 262 

conditioning 263 

CA1 and PFC are known to interact during various spatial memory tasks in rodents 264 

(Benchenane et al., 2010; Jones and Wilson, 2005; Sigurdsson et al., 2010; Spellman et al., 265 

2015) and aversive trace-conditioning affects local field potential synchronization within and 266 

across brain areas (Shearkhani and Takehara-Nishiuchi, 2013; Takehara-Nishiuchi et al., 267 

2011). Given that CA1 and PFC are also highly engaged and encode information about trial 268 

identity during appetitive trace-conditioning, we wondered if we could find evidence for an 269 

interaction between CA1 and PFC on the level of single cells and local field potentials (LFP) 270 

(Figure 4A).  271 

We found that post-learning, high frequency CA1-PFC LFP coherence was increased during 272 

CS presentation (n=13, 60-140 Hz permutation test at each frequency <0.05) (Figure 4B). 273 

During CS+ trials, trace period coherence was furthermore significantly elevated across a 274 

broad frequency range (n=13, 12-140 Hz permutation test at each frequency <0.05). 275 

Given the interactions between CA1 and PFC on the LFP level, we next checked for an 276 

interaction between both areas on the single cell level (Figure 4C). To this end we computed 277 

a reduced-rank regression (RRR) to assess how well the activity of a sampled population in 278 

one of the areas (source area) could be used to explain another (disjoint) sampled 279 

population in the same area or in another connected area (target area), through a simplified, 280 

low-dimensional linear model. We then used cross-validation to estimate the optimal 281 

dimensionality (rank) of each RRR and its performance (R2) (Semedo et al., 2019).  282 

We observed that post learning CA1 ensemble activity at baseline could be used to predict 283 

other individual neurons firing rates in CA1 just as well as the firing rates of neurons in PFC. 284 

The PFC ensemble on the other hand was much better at predicting the firing rates of other 285 

PFC neurons compared to neurons in CA1 (Figure 4C), which indicates a directionality of 286 

information flow between both areas at baseline.  287 

However, cross-area predictability of firing rates did not change significantly when we 288 

compared baseline levels to any of the different trial stages (Stim, Trace or Reward) (Figure 289 



4C, Wilcoxon ranksum test p<0.05). Comparing the performance of the full-rank model also 290 

did not reveal any significant differences in coordination between CA1 and PFC across task 291 

periods (Ridge-regression with L1 regularization; Figure 4-figure supplement 1, Wilcoxon 292 

ranksum test p<0.05).  293 

However, by focusing on CA1, we found that ensemble activity substantially decorrelated 294 

over the course of learning and individual cells firing rates were significantly less well 295 

predicted by the rest of the ensemble from pre to post learning sessions. This was not the 296 

case in PFC (Figure 4C). 297 

 298 

 299 

Figure 4. CA1-PFC interaction during trace-conditioning A) Example of simultaneously 300 

recorded LFP and single cell activity from CA1 and PFC during a CS+ conditioning trial. B) 301 

CA1-PFC LFP coherence during CS+ trials (right) and CS- trials (left). Average coherence 302 

during baseline and during the trace-period (right). Black bar indicates significant difference 303 

between CS+ post and CS- post trials (permutation test at each frequency <0.05). C) (Left) 304 

Schematic representation of how performance and the number of predictive dimensions 305 

were calculated for each regression. (Right) Reduced-rank regression between CA1 and 306 

PFC spiking activity during conditioning trials in pre and post learning sessions. Solid and 307 

filled bars represent pre learning and post learning sessions respectively,error bars 308 

represent SEM and * refers to Wilcoxon ranksum test p<0.05. 309 

  310 



 311 

 312 

Figure 4-figure supplement 1. CA1-PFC single cell interaction does not change across 313 

different task periods A) Schematic representation of Ridge-regression. A full-rank model 314 

was computed using 10-fold cross validation and L1 regularization. The model with the best 315 

performance over the regularization parameter λ was selected. B) Full-model ridge 316 

regression between CA1 and PFC spiking activity during conditioning trials in pre and post 317 

learning sessions. Solid and filled bars represent pre learning and post learning sessions 318 

respectively, error bars represent SEM, and * refers to Wilcoxon ranksum test p<0.05. 319 

  320 

Task-related neuronal assemblies are more strongly reactivated in PFC during aSWR 321 

after learning 322 

Learning-dependent reorganization of cortical circuits during memory consolidation has 323 

previously been linked to activity during hippocampal SWRs (Peyrache et al., 2009) and 324 

reactivation of spatial information in PFC during aSWRs has been reported by several 325 

groups (Kaefer et al., 2020; Maggi et al., 2018; Shin et al., 2019). aSWRs have additionally 326 

been implicated in the planning of goal-directed behavior (Ólafsdóttir et al., 2018). Therefore, 327 

we wondered if we could find evidence for reactivation of task-related neural assemblies 328 

during aSWRs occurring during inter-trial intervals of the conditioning task. To test this, we 329 

first detected the presence of neuronal cell assemblies in concatenated trial activity (Lopes-330 

dos-Santos et al., 2013, Fig. 5-figure supplement 3) and then checked the reactivation 331 

strength of these task related assemblies during aSWRs in CA1 and PFC. We found that 332 

reactivation of task-related assemblies in PFC increases significantly over the course of 333 

learning during hippocampal aSWRs (Figure 5A 5B) (Wilcoxon rank sum test; p<0.05). This 334 

was true for assemblies defined during trials as well as during intertrial intervals (Fig. 5-figure 335 

supplement 1). In CA1, on the other hand, reactivation strength remained constant from pre- 336 

to post-learning sessions (p=0.337). The frequency of aSWR occurrences did not change 337 

between pre and post learning sessions (Pre n=24, 0.08 Hz; Post n=38, 0,09 Hz; Wilcoxon 338 

rank sum test; p=.2) (Fig. 5-figure supplement 2 ,B&C). During conditioning trials, aSWR rate 339 

decreased and was at its lowest during reward consumption (Fig. 5-figure supplement 2 C). 340 



Average aSWR rates independent of task stage slightly increased from the beginning to the 341 

end of each session (n=62; 0.06 Hz to 0.1 Hz, Wilcoxon rank sum test; p<0.01).  342 

  343 

 344 

Figure 5. CA1 and PFC cell assemblies show different aSWR reactivation dynamics. 345 

A) Average (z-scored) assembly activation triggered by aSWR occurring in the inter-trial 346 

intervals for CA1 and PFC, Pre and Post learning sessions (Top). Mean aSWR-triggered 347 

activation over all the assemblies for Pre and Post sessions for each area. Shaded areas 348 

represent the SEM. Black dots represent windows in which Pre and Post assembly activity 349 

were statistically different (Wilcoxon rank sum test; p<0.05). Notice the higher aSWR 350 

triggered activation of assemblies in PFC in Post sessions. B) Histogram (left) and 351 

cumulative distribution function (CDF; right) of the mean assembly activity on the reactivation 352 

window denoted in A. P-values refer to a two-sample Kolmogorov-Smirnov test between Pre 353 

and Post distributions. C) Average aSWR reactivation of each assembly per session (Top). 354 



Sessions were divided into 10 blocks of equal trial length. Mean aSWR reactivation of all 355 

positively (reactivation+) and negatively (reactivation-) reactivated assemblies. Asterisks 356 

refer to Wilcoxon signed-rank test performed between the first and last three trial-blocks 357 

(dashed rectangles) of each area/learning condition (n.s.: non-significant; *p<0.05; **p<0.01; 358 

***p<0.001) and shaded areas represent SEM. Note the evident increase in CA1 aSWR 359 

assembly reactivation across the session in both Pre and Post sessions for positively 360 

modulated assemblies (reactivation+). D) Mean (z-scored) assembly activity triggered by the 361 

stimulus onset for the 25% most strongly aSWR-reactivated assemblies in CA1 (Left). 362 

Average of the traces over each trial period is shown for CS+ and CS- (Right). Notice the 363 

initial decrease of assembly activity in CA1 during the stimulus and the posterior separation 364 

between CS+ and CS-. E) The same as in D, but for PFC assemblies. Note the difference 365 

between CS+ and CS-assembly activity during the reward period. Asterisks refer to a 366 

Wilcoxon signed-rank test comparing CS+ and CS- (*p<0.05; **p<0.01; ***p<0.001). Error 367 

bars refer to SEM and darker bars denote mean assembly activity significantly different from 368 

zero (p<0.05; t-test). 369 

 370 

 371 

Figure 5-figure supplement 1. aSWR reactivation of assemblies detected during inter-372 

trial intervals. A) (Left) Mean reactivation around aSWRs of assemblies detected during the 373 

inter-trial intervals (excluding aSWR events) for Pre and Post learning sessions. (Middle) 374 
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Histogram of mean assembly aSWR-reactivation on the reactivation window (yellow 375 

rectangle) for Pre and Post learning sessions. (Right) Cumulative distribution of mean 376 

assembly aSWR-reactivation. P-values refer to a two-sample Kolmogorov-Smirnov test 377 

between Pre and Post distributions. B) Similar to A, but using sham aSWR times to compute 378 

the average reactivation. (aSWR events were randomly shifted by ~200 ms). 379 

 380 

 381 

Figure 5-figure supplement 2. Distribution of awake Sharp Wave Ripples during trace-382 

conditioning. A) Example of simultaneously recorded LFP and single cell activity from CA1 383 

and PFC during aSWRs B) Ripple rate during CS+(blue) and CS-(red) trials across all 384 

conditioning sessions. Average lick rate during CS+ trials is overlaid in green (Shaded areas 385 

indicate SEM). C) Average aSWR rate increases from early to late within individual sessions 386 

(top) and average aSWR rate does not change between pre and post learning sessions 387 

(bottom) (error bars represent SEM and ** refers to Wilcoxon ranksum test p<0.01). 388 

 389 



 390 
Figure 5-figure supplement 3. Detecting cell assemblies in neural populations. A) The 391 

rastergram (left) of each trial was computed and binned in 20-ms-bins with no overlap 392 

(middle). After concatenating the activity of all trials, the activity of each neuron was z-scored 393 

and the correlation matrix was computed (right). B) The eigenvalues of the correlation matrix 394 

were then computed and compared to the analytical (Marchenko-Pastur) distribution to 395 

estimate the amount of assembly patterns present in the data (top). After that, independent 396 

component analysis was used to extract the assembly patterns (bottom). C) The patterns in 397 

B were then used to project the assembly activity during the trial, using 20 ms bins with 398 

steps of 1 ms. 399 

 400 

Task-related assembly reactivation strength increases during individual sessions in 401 

CA1 402 

We next analyzed how reactivation strength changed over time within individual sessions. 403 

We found that in CA1 assembly reactivation strength per aSWR increases gradually over the 404 

course of individual pre-learning sessions for positively modulated assemblies 405 

(reactivation+) as well as for negatively modulated assemblies (reactivation-) during aSWRs 406 



(Figure 5C). This effect was also present in post-learning sessions for the reactivation+ 407 

assemblies (One-way ANOVA; CA1 pre+: p<0.01, pre-: p<0.05, pos+: p<0.001, post-: n.s.). 408 

In PFC assembly reactivation strength slightly increased for positively modulated assemblies 409 

in post learning sessions (Figure 5C).   410 

We then sought to determine what type of task specific information the most strongly SWR-411 

reactivated assemblies represent during the conditioning task in post learning sessions. In 412 

CA1, we found that the 25% most reactivated assemblies are suppressed during the trace 413 

and reward period after CS+ trials compared to CS- trials (Figure 5D) (Wilcoxon signed-rank; 414 

p<0.001). In PFC, on the other hand, the 25% most reactivated assemblies responded 415 

strongly during the reward period (Figure 5E) (t-test, compared to pre-trial baseline; p<0.05). 416 

Those effects were not observed for the 25% least reactivated cells. 417 

  418 

CS+ responsive assemblies are preferentially replayed in CA1 during aSWRs 419 

Given that assemblies detected during the task and the intertrial intervals became both 420 

reactivated during aSWR, we next asked whether we could find additional evidence for a 421 

prioritized reactivation of assemblies that carry specific information about CS sounds during 422 

the conditioning trials. To this end, we first computed the average activity of each assembly 423 

for CS+ or CS- stimuli and computed a trial-type modulation score, defined as the average 424 

assembly activation during CS+ trials subtracted by the average activation during CS- trials 425 

(stimulus and trace periods; Figure 6A). Then, for each session, we selected the most 426 

positively modulated (i.e., CS+ activity higher than CS-), the most negatively modulated (i.e., 427 

CS- activity higher than CS+), and the least modulated, control assembly. Because we found 428 

that most assemblies in CA1 are suppressed during the stimulus (as are the firing rates), we 429 

term assemblies by whether they were more suppressed during CS+ or CS- stimuli. We 430 

found that, for CA1, CS+ suppressed assemblies in both stimulus and trace periods (i.e., 431 

assemblies that are more suppressed during CS+ trials than CS- trials) were more 432 

reactivated during aSWRs (Figure 6B) compared to CS- suppressed assemblies and control, 433 

non-modulated assemblies. This effect was confirmed by the presence of a negative 434 

correlation between the trial-type modulation score and the average aSWR reactivation of 435 

each assembly (Figure 6C).  436 

CS- suppressed assemblies were also more strongly reactivated than control assemblies in 437 

pre-learning sessions (p<0.05, Figure 6B) and, in CS- trials, assemblies that were more 438 

suppressed during stimulus compared to trace period also reactivated more during 439 

aSWR(Figure 6-figure supplement 1 C). Together this indicates that stimulus-coding 440 

assemblies are also differentially modulated during aSWR. 441 



In PFC we did not observe preferential reactivation of CS+ or CS- specific assemblies 442 

(Figure 6-figure supplement 1). 443 

 444 

Figure 6. Trial-type modulation and PFC coactivation of CA1 assemblies. A) Schematic 445 

representation of trial-type modulation scores, CS+ and CS- suppressed assemblies. The 446 

modulation score was defined as the difference between average assembly activation on 447 

CS+ and CS- trials during a specific period. B) Mean aSWR reactivation of CS+ suppressed, 448 

CS- suppressed and non-modulated assemblies pre and post learning over time (left) and 449 

within 50 ms window around ripples (right). Error bars denote SEM (*p<0.05; **p<0.01; 450 

***p<0.001). C) Scatter plot and Pearson’s correlation values between trial-type modulation 451 

score and average aSWR reactivation for all CA1 assemblies (pre and post learning). Notice 452 



the stronger reactivation of negatively modulated assemblies (CS+ suppressed). D) (Left) 453 

Example of joint reactivation for two pairs of CA1-PFC assemblies. Quadrants were defined 454 

using the median aSWRs reactivation of each area and the proportion of reactivations in 455 

each quadrant was computed. (Right) Percentage of ripple reactivations in 1st and 2nd 456 

quadrants defined in left for all possible combination of assembly pairs (Wilcoxon signed-457 

rank test).  458 

 459 

 460 

 461 

Figure 6-figure supplement 1. Trial-type modulation of PFC assemblies and trial-462 

period modulation. A) Mean aSWR reactivation of CS+ suppressed, CS- suppressed and 463 

non-modulated assemblies in PFC over time (left) and within 50 ms window around ripples 464 

(right). Error bars denote SEM. B) Scatter plot and Pearson’s correlation values between 465 

trial-type modulation score and average aSWR reactivation for all CA1 assemblies (pre and 466 

post learning). C) (Left) Schematic representation of trial-period modulation scores. The trial-467 

period modulation score was defined as the difference between average assembly activation 468 

on stimulus and trace periods in CS- trials. (Right) Scatter plot and Pearson’s correlation 469 

values between trial-period modulation scores and aSWRs reactivation for assemblies in 470 

CA1 and PFC. D) Percentage of significant assembly reactivations during aSWRs.    471 

 472 

Finally, we wondered whether CA1 and PFC assembly reactivation is coordinated during 473 

aSWRs. Coordinated reactivation of task relevant information during aSWR has previously 474 

been found in the CA1-PFC circuit during some spatial navigation tasks but not during others 475 



(Kaefer et al., 2020; Shin et al., 2019). We found that both areas independently of each 476 

other showed comparable and significant aSWRs reactivations rates (Fig. 6–figure 477 

supplement 1D). To then check whether CA1 and PFC assembly reactivation is coordinated 478 

during aSWR during trace conditioning, we computed how often high aSWR reactivation of 479 

pairs of assemblies co-occurred between the two areas (Figure 6D). We found that 480 

coordinated reactivations of pairs of CA1 and PFC assemblies during aSWRs happens at 481 

chance levels (Figure 6D) which suggest that aSWR reactivations of cell assemblies derived 482 

from conditioning trials are uncoordinated between CA1 and PFC. 483 

 484 

Discussion 485 

This study characterizes changes in neural activity in the CA1-PFC network while mice learn 486 

to use predictive sounds to anticipate future rewards. We show that activity in both areas is 487 

strongly shaped by learning and that task specific information is reactivated in a complex 488 

pattern across CA1 and PFC during aSWR. 489 

While CA1 and PFC are highly active during aversive eyeblink trace conditioning, evidence 490 

for a similar involvement during appetitive trace-conditioning had been missing. In fact, 491 

several previous studies have pointed out differences in the mechanisms underlying both 492 

types of learning (Pezze et al., 2017; Thibaudeau et al., 2007). 493 

Despite these differences, we found that single cells in CA1 and mPFC during appetitive 494 

trace-conditioning behave similarly to what had previously been reported during aversive 495 

trace-conditioning. Both areas display long lasting sustained activity that bridges the 496 

temporal gap between CS+ offset and reward delivery. In both areas, these sustained 497 

responses are composed of a mix of Trace-Up and Trace-down cells, i.e., cells that display 498 

sustained excitation and inhibition respectively. In CA1, higher numbers and stronger 499 

inhibition of Trace-Down cells result in overall suppression of the entire area during the trace 500 

period, while in PFC higher numbers and stronger activation of Trace-Up cells resulted in 501 

overall excitation.  502 

Similar to our study, abundant Trace-Down like responses and sparse Trace-Up like 503 

responses have been described during aversive trace-conditioning in CA1 (Hattori et al., 504 

2015; McEchron and Disterhoft, 1997). This distinct pattern of mostly inhibition mixed with 505 

sparse excitation has been hypothesized to increase the signal to noise ratio to more 506 

efficiently propagate the signal of Trace-Up cells to downstream areas (Hattori et al., 2015). 507 

Yet, it is also conceivable that Trace-down cells participate in an independent form of coding. 508 

Inhibition in CA1 might for example play an active role in suppressing well expected 509 

incoming stimuli, i.e. reward delivery (Bastos et al., 2012; Rummell et al., 2016; Stachenfeld 510 

et al., 2017). 511 



In PFC, responses during appetitive trace-conditioning are also similar to what has 512 

previously been found during aversive trace-conditioning. Specifically, higher numbers and 513 

stronger excitation of Trace-Up cells have also been found in rat PFC and parts of rabbit 514 

PFC during aversive trace-conditioning (Hattori et al., 2014; Takehara-Nishiuchi and 515 

McNaughton, 2008). A learning dependent reduction in responses to CS- like pseudo 516 

conditioning stimuli have also previously been described in PFC (Hattori et al., 2014; 517 

Takehara-Nishiuchi and McNaughton, 2008; Weiss and Disterhoft, 2011). 518 

In combination, this suggests that sparse excitation with strong surrounding inhibition in CA1 519 

and mostly excitation in PFC are two general coding principles employed to bridge the 520 

temporal gap between a salient cue and a behaviorally relevant event, independently of the 521 

appetitive or aversive nature of the event and the specific anticipatory action that it requires.  522 

We furthermore observed high frequency CA1-PFC coherence was specifically increased 523 

during CS+ trials. Increased synchronization between both areas during spatial working 524 

memory tasks have previously been reported predominantly in the Theta frequency (4-12 525 

Hz) (Battaglia et al., 2011; Benchenane et al., 2010; Jones and Wilson, 2005). However, 526 

during trace-conditioning mice were mostly stationary and did not display strong 527 

hippocampal theta oscillations and high frequency coherence therefore likely results from a 528 

different underlying mechanism. 529 

Despite both areas being highly engaged in the task and encoding trial specific information 530 

on a trial-by-trial level, we did not find any evidence for task-specific communication on the 531 

single cell level. CA1 and PFC therefore either process conditioning trials in parallel rather 532 

than in series or rely on intermediate structures (e.g. entorhinal cortex) for effective 533 

communication (Insel and Takehara-Nishiuchi, 2013). 534 

Lastly, we found that cell assemblies in CA1 and PFC that are responsive during classical 535 

conditioning also strongly reactivate during awake hippocampal Sharp-Wave Ripples 536 

(aSWRs).  Earlier reports  found coordinated  aSWR reactivation of behavioral sequences 537 

during learning of  spatial memory tasks in CA1 and PFC respectively (Kaefer et al., 2020; 538 

Shin et al., 2019; Shin and Jadhav, 2016; Tang et al., 2017). In addition, close loop 539 

disruption of aSWRs has been shown to impair performance in spatial memory task and 540 

slow learning during conditioning. However, physiological evidence for reactivation of neural 541 

assembly patterns during aSWRs in a non-spatial task in either CA1 or PFC had been 542 

missing (Joo and Frank, 2018; Ólafsdóttir et al., 2018). Our data now provides this missing 543 

link. 544 

Notably, we observed a fast increase in reactivation strength of assemblies derived from 545 

conditioning trial activity within CA1 during aSWRs as individual training sessions 546 

progressed and a slow increase in reactivation strength in trial and inter-trial-interval derived 547 

assemblies in PFC from pre-learning to post-learning sessions. This is well in line with the 548 



idea that both areas support learning on different timescales and levels of complexity, with 549 

the hippocampus adapting fast to detailed new experiences and the prefrontal cortex 550 

adapting more slowly to behaviorally important variables that remain stable over time 551 

(McClelland et al., 1995; Takehara-Nishiuchi and McNaughton, 2008; Takehara et al., 2003). 552 

Assembly reactivation in CA1 was furthermore task specific during trace-conditioning. 553 

Assemblies that were suppressed during and after CS+ sounds became most strongly 554 

reactivated. CS- suppressed assemblies were also but less strongly modulated during 555 

aSWRs in CA1. 556 

This preferential reactivation of CS suppressed assemblies during aSWR, provides 557 

additional evidence that suppression in CA1 during CS+ trials plays a pivotal role during 558 

trace conditioning and might be relevant to actively encode stimulus identity or to predict 559 

upcoming task events. 560 

 561 

Surprisingly, we did not observe that assemblies, derived from activity during conditioning 562 

trials in CA1 and PFC, significantly co-reactivated during aSWR.  563 

Several studies previously reported single cells in CA1 and PFC with similar spatial firing 564 

fields to also be strongly correlated during aSWRs and that synaptic inputs to individual 565 

mPFC cells increased if CA1 replay was more coordinated (Nishimura et al., 2021; Shin et 566 

al., 2019; Tang et al., 2017). However, on the population level, CA1 and mPFC reactivation 567 

of specific spatial trajectories has been found to occur independently (Kaefer et al., 2020). 568 

Moreover, reactivation of spatial sequences in CA1 and other cortical areas, specifically the 569 

entorhinal cortex has been shown to occur independently as well (O’Neill et al., 2017).  570 

One way to reconcile these findings is that the coordination of aSWRs reactivation within the 571 

CA1-PFC circuit might depend on task structure. If animals have to follow rules that are 572 

based on specific sequences of behavioral events, e.g., in spatial alternation tasks (Shin et 573 

al., 2019), replay of sequences of events in CA1 might drive the activation of cells or cell 574 

assemblies in PFC that encode the appropriate behavioral response to those sequences 575 

(Buzsáki and Tingley, 2018). If the task structure instead “only” requires stimulus response 576 

mappings, as in our experiment and visually guided spatial navigation experiments (Kaefer 577 

et al., 2020), PFC might not rely on additional information from CA1 and reactivation remains 578 

independent. However, coordinated aSWRs reactivation in CA1 and PFC might happen 579 

robustly in non-spatial tasks if the tasks require the animals to learn sequences (Cabral et 580 

al., 2014; Rondi-Reig et al., 2001; Terada et al., 2017).  581 

Lastly, it would be intriguing to know how SWRs reactivation of task relevant information 582 

during classical conditioning depends on the current state of the animal. A previous study 583 

reported significant differences in coordinated CA1-PFC reactivation between wakefulness 584 

and sleep (Tang et al., 2021). Yet evidence for sleep SWR reactivation of nonspatial 585 



information is still lacking. This further highlights the importance to study SWR reactivation 586 

with a battery of different behavioral task and across behavioral states that can help to 587 

disentangle the exact content and relevance of replay events for learning and behavior in the 588 

future.  589 

 590 

 591 

 592 

Material and Methods 593 

Animals 594 

For this experiment, we used a total of 17 male C57Bl/6J mice. The animals were obtained 595 

at 10-13 months of age from Charles River Laboratory and all experiments were performed 596 

within two months after delivery. 7 animals were used for silicon probe recordings from 597 

dorsal hippocampus area CA1, 6 animals were used for recordings from PFC and an 598 

additional 4 animals were used for combined silicon probe recordings from CA1 and PFC 599 

during the AATC task. All animals were group housed until the first surgery after which they 600 

were individually housed to prevent damage to the implants. Throughout the experiment the 601 

animals were maintained on a reversed 12-hour light/dark cycle and received food and water 602 

ad libitum until we introduced food restriction two days after the first surgery. All experiments 603 

were performed during the dark period. This study was approved by the Central Commissie 604 

Dierproeven (CCD) and conducted in accordance with the Experiments on Animals Act and 605 

the European Directive 2010/63/EU on animal research. 606 

  607 

Surgical preparation for head-fixed electrophysiological recordings 608 

Animals were anesthetized using isoflurane (1–2%) and placed in a stereotaxic frame. At the 609 

onset of anesthesia, all mice received subcutaneous injections of carprofen (5 mg/kg) as 610 

well as a subcutaneous lidocaine injection through the scalp. The animals’ temperature was 611 

maintained for the duration of the surgical procedure using a heating blanket. Anesthesia 612 

levels were monitored throughout the surgery and the concentration of isoflurane was 613 

adjusted so that a breathing rate was kept constant at around 1.8 Hz. We exposed the skull 614 

and inserted a skull screw over the cerebellum to serve as combined reference and ground 615 

for electrophysiological recordings. We then placed a custom made, circular head-plate for 616 

head-fixation evenly on the skull and fixated it with dental cement (Super-Bond C&B). For 617 

CA1 recordings, a craniotomy was performed over the left hippocampus -2.3 mm posterior 618 

and +1.5 mm lateral to Bregma and for PFC recordings a craniotomy was performed over 619 

left frontal cortex at +1.78mm anterior and +.4mm lateral to Bregma. The exposed skull was 620 



covered with a silicon elastomer (Body Double Fast, Smooth-on) until the first recording. All 621 

mice were given at least 2 days to recover from the surgery. 622 

  623 

Head-fixed virtual reality setup 624 

The head-fixed virtual reality setup consisted of two rods that were screwed onto either side 625 

of the implanted head-plate and fixated the mice on top of an air-supported spherical 626 

treadmill. The motion of the treadmill was recorded using an optical mouse and transformed 627 

into movement along a virtual linear track designed with the Blender rendering software. The 628 

virtual track was then projected through a mirror into a spherical screen surrounding the 629 

head-fixed animal on the treadmill (Schmidt-Hieber and Häusser, 2013) 630 

(https://github.com/neurodroid/gnoom). While in head-fixation the animals received soy milk 631 

as reward which was delivered through a plastic spout that was positioned .5cm anterior to 632 

the lower lip. Licks were detected with an infrared beam-break sensor that was positioned 633 

right in front of the spout. 634 

All animals were slowly habituated to head-fixation by placing them in the setup for at least 2 635 

days of 3x10 minute sessions during which they received about 50 rewards, totaling to about 636 

.2ml of soy milk. During the habituation, we started to food restrict the animals to around 637 

90% of initial body weight to motivate better task performance. 638 

In all cases, the food restricted animals started to lick off the soymilk reward reliably within 639 

the first 6 habituation sessions. 640 

  641 

Behavioral training 642 

The AATC task required the animals to associate a 2-second-long CS+ sound with a droplet 643 

of soymilk reward (~5 microliter), delivered after 1 second of silence, the so-called “trace 644 

period” while ignoring a CS- control sound. We interleaved the CS presentations randomly 645 

every 30-45 seconds. For the two sounds, we choose a 3000 kHz continues pure tone and a 646 

7000 kHz tone pulsating at 10hz. We counter-balanced the CS+ and CS- sounds evenly 647 

between animals throughout the experiment. 648 

As the main behavioral outcome measure, we detected the licks of the animals with an 649 

infrared beam-break sensor that was mounted in front of the reward spout. Each training 650 

session ended as soon as the animals received 50 rewards. We repeated the experiment for 651 

at least 10 days. 652 

During these behavioral training sessions, the head-fixed animals could freely run on the 653 

linear track in the virtual reality which was otherwise not correlated with the AATC task. 654 

We performed acute silicon probe recordings from the dorsal CA1 area and/or PFC of head-655 

fixed mice during the first 2 days of the AATC task as well as from day 6 onwards for as long 656 

as we were able to achieve stable recordings. We then classified recording sessions from 657 



the first 2 days of training as pre-learning (Pre) and recording sessions from day 6 onwards 658 

and with a significant increase in anticipatory licks as post-learning (Post). 659 

  660 

Acute electrophysiological recordings during AATC tasks 661 

At the start of each recording session, we placed the mice in head-fixation and removed the 662 

silicon elastomer cover to expose the skull. We then used a micromanipulator (Thorlabs) to 663 

acutely insert a 128-channel silicon probe into the middle of the previously prepared 664 

craniotomy above PFC and/or CA1. For PFC recordings, we then slowly lowered the 665 

recording electrode to -2.0mm ventral to Bregma. For CA1 recordings, we continuously 666 

monitored the local field potential (1-600Hz), ripple frequency signal (150-300Hz) and 667 

spiking activity (600-2000Hz) during the insertion process and tried to positioned our 668 

electrode in a way that the strongest ripple amplitude and spiking activity was 200-250µm 669 

from the base of the probe and 470-520µm from the tip. In this way, we were able to cover 670 

most of dorso-ventral extend of CA1 with our recording electrode. 671 

Electrophysiological signals were filtered between 1 and 6000 Hz, digitized at 30 kHz using 2 672 

64 channel digitizing heads-stages (RHD2164 Amplifier Board, Intan Technologies) and 673 

acquired with an open-ephys recording system. After each recording session, we retracted 674 

the silicon probe and placed a new silicon cover on the skull before releasing the animals 675 

back to their respective home cages. 676 

  677 

Behavioral Data Analysis 678 

For every training session and each animal, we compared the change in lick-rate between 679 

CS+ vs CS- trials. In short, for each trial we took the sum of all licks during the trace period 680 

and subtracted the sum of all licks during the baseline period (-1s to onset of CS). We then 681 

computed a T-test between the change in lick rate for all CS+ vs all CS- trials and defined 682 

the animal to have learned (post-learning sessions) if this comparison showed a significant 683 

difference in lick rate between the two conditions.   684 

  685 

Neural Data Analysis 686 

To identify single unit activity, the raw voltage signal was automatically spike sorted with 687 

Kilosort (Pachitariu et al., 2016) (https://github.com/cortex-lab/Kilosort) and then manually 688 

inspected and curated with the ‘phy’ gui (https://github.com/kwikteam/phy). All following 689 

analysis was performed using custom written MATLAB scripts 690 

 (https://github.com/chanlukas/AATCstudy). 691 

. 692 

  693 

Single Cell responses 694 



For each unit, we binned the single cell spiking data (25ms), smoothed the data with 695 

Gaussian-weighted moving average filter (25 Bins) and computed the Peri-Stimulus-Time-696 

Histograms (PSTH) for CS+ and CS- trails. 697 

To assess evoked responses to CS+ and CS- we calculated the Z-scored firing rates in the 698 

first 350ms (post-learning CS) post stimulus interval for each cell and compared population 699 

responses in this time window. 700 

To assess lick related activity, we first defined lick onset as the first lick after CS+ sound 701 

onset but before reward delivery that was followed by at least 3 licks within the next second. 702 

We then defined single cells to be lick-responsive if the average firing rate during the time 703 

window around the 1st lick (-250ms to +250ms) was increased by at least 1 standard 704 

deviation or decreased by at least 1 standard deviation from pre-trial baseline (-1000 - CS+ 705 

onset) 706 

To assess trace period activity, we defined single cells to be trace responsive if the average 707 

Z-scored firing rate during the 1 second trace period increased by at least 1 standard 708 

deviation or decreased by at least 1 standard deviation from baseline during either CS+ or 709 

CS- trials. 710 

To quantify group differences, we performed a Kruskal-Valis (pre vs post learning) using 711 

average S-scored responses during the trace period. 712 

For analysis of learning dependent changes in reward evoked activity, we calculated the Z-713 

scoredfiring rates during the reward response window (reward delivery- reward 714 

delivery+500ms).  715 

  716 

Population rate vector analysis 717 

To analyze the CA1 and PFC population response during the trace period, we first computed 718 

the average CS+ and CS- PSTHs for all simultaneously recorded non-lick cells in 25ms bins 719 

for every session and smoothed the data with Gaussian-weighted moving average filter (25 720 

bins).  For visualization purposes, we then computed the first 3 principal components of the 721 

resulting matrices CS+ and CS- PSTHs and plotted the resulting 3-dimensional vectors. To 722 

quantify the difference in population activity between CS+ and CS- trials, we calculated the 723 

Euclidean distance between CS+ and CS- in n-dimensional space (n=number of 724 

simultaneously recorded non-lick cells) for each bin and averaged across sessions.  725 

In order to predict trial identity by trace period population firing rates using a support vector 726 

machine classifier, we first calculated the trial-by-trial firing rates for all simultaneously 727 

recorded cells during the trace period. We then split all trials of a single recording session 728 

into 20 equal partitions and used 19 of these partitions to train the support vector machine 729 

classifier (fitcsvm function, MATLAB). We then tested the classifier performance on the 20th 730 

partition and repeated this process for all other partitions (20fold cross validation). Classifier 731 



performance above chance was determined by comparing the average prediction accuracy 732 

across all sessions against chance level using a Wilcoxon sign rank test. 733 

 734 

Reduced Rank Regression of CA1-PFC single cell interactions 735 

To investigate CA1-PFC interaction on the single cell population level,  we used reduced 736 

rank regression (RRR) to assess how well the activity of a sampled population in one of the 737 

areas (source area) can be explain another (disjoint) sampled population in the same or in a 738 

separate target area, through a simplified, low-dimensional linear model. (Semedo et al., 739 

2019). Briefly, for a given session, we first subsample (without replacement) the population 740 

of each region in two equally-sized sets of source and target neurons, so that all four sets 741 

had the same number of neurons. We then used a 10-fold cross validation scheme to 742 

compute the RRR (i.e., fitting the target population activity using the source population) 743 

using multiple rank values. The performance of each model was computed using the relative 744 

amount of variance explained by the model (R2). We then selected the first model which had 745 

mean performance within 1 SEM of the best model, using its rank as the number of 746 

predictive dimensions (Figure 4 C). This procedure was repeated for 10 different 747 

subsamples and the performance and number of predictive dimensions of each session was 748 

computed via averaging across sub-samples. We also compared the performance of the full 749 

regression model (in which all the ranks were used) to control for different dimensionality of 750 

the RRRs in the two areas. In this particular case, we added L1 regularization, and chose 751 

the best model (highest average performance over cross-validation) among different ridge 752 

parameter values and measured the MSE between estimated and real activity (Figure 4-753 

figure supplement 1). 754 

Coherence analysis 755 

To assess coherence between mPFC and CA1 during the AATC task, we first selected the 756 

CA1 recording channel with the strongest aSWR amplitude (see below) as well at the central 757 

channel of the mPFC recording electrodes and down-sampled the raw voltage singles to 758 

2000Hz. Coherence was then analyzed with multi-taper Fourier Analysis (Mitra and Pesaran, 759 

1999), using  the Chronux MATLAB toolbox (http://www.chronux.org). 760 

  761 

Reactivation during awake Sharp-Wave Ripples 762 

In order to detected awake Sharp-Wave Ripples during the inter-trial periods of the AATC 763 

task, we first filtered the local field potential at the top half of our recording electrode (16 764 

channels in total, 1 channel at each depth, 320µm spread around CA1 cell layer) between 765 

150-300Hz and used common average reference to exclude artefacts affecting all channels. 766 

We then identified the recording depth with the strongest average ripple power and used the 767 

http://www.chronux.org/


ripple band signal on this channel for further analysis. For each recording session, we 768 

visually inspected the ripple band signal and manually set a low-cut threshold for ripple 769 

detection (100 µV in most cases) and a high-cut threshold for artefact rejection (500µV in 770 

most cases).  We furthermore, excluded threshold crossings within 200ms of each other as 771 

well as within 200ms of any licking activity. 772 

To compute task related cell assemblies in CA1 and PFC, we first binned the spikes of each 773 

trial (-1 to 4 s from stimulus onset) into 20 ms bins. Then, we used independent component 774 

analysis (ICA) to find the co-activation patterns as described previously (Lopes-dos-Santos 775 

et al., 2013, Fig. 5-figure supplement 3). The number of assemblies was defined by the 776 

eigenvalues of the cross-correlation matrix that were above the analytical Marcenko Pastur 777 

distribution (Lopes-dos-Santos et al., 2013). We then projected the neural activity onto each 778 

of the assembly patterns (using the same 20 ms bins, with overlap) and computed the mean 779 

assembly activity triggered by the stimulus, animal licks and hippocampal SWR, normalizing 780 

it with the z-score transformation. Normalization was done using the z-score transformation, 781 

which in the case of stimulus-triggered assembly activity only used pre-stimulus period (of 782 

both CS+ and CS-) as baseline (-1000 - 0 s) and in case of ripples-triggered activity only 783 

used the period outside the ripple center (50 ms window) as baseline. At last, we defined the 784 

assembly reactivation window on SWR as the average z-scored assembly activity in the 50 785 

ms window centered on the aSWR. We then divided each session in 10 equally long trial 786 

blocks, and investigated the reactivation strength of positively (reactivation+) and negatively 787 

(reactivation-) modulated assemblies over the course of the session. Statistical comparisons 788 

between pre and post (normalized) mean assembly activity was done using a Wilcoxon rank 789 

sum test, while comparisons of reactivation within a session was done comparing the 790 

reactivation in the first three and last blocks using a Wilcoxon signed-rank test. In Figure 5D-791 

E traces were smoothed using a 100 ms Gaussian window. Comparisons between CS+ and 792 

CS- stimuli were done using a Wilcoxon signed-rank test, while comparisons with baseline 793 

(pre-stimulus period) were done using a t-test. 794 

 795 

Trial-type encoding assembly reactivation during aSWR 796 

For each assembly a trial-type modulation score (Figure 6A) was computed defined as the 797 

average assembly activation (in a given period) during CS+ trials minus the average 798 

activation during CS- trials. Similarly, a trial-period modulation score was defined as the 799 

average assembly activation during stimulus minus the average assembly activation during 800 

trace (Figure 6-figure supplement 1A). For trial-period modulation scores, only CS- trials 801 

were used. In Figure 6B and Figure 6-figure supplement 1B only the assemblies with the 802 

lowest (CS+ suppressed), highest (CS- suppressed) and least (non-modulated) score values 803 

of each session were chosen. 804 



 805 

CA1-PFC assembly co-activation during aSWR 806 

First, to ensure that both areas had significant aSWRs reactivations, we computed the 807 

percentage of significant ripples. This was defined as the percentage of reactivations above 808 

2 standard deviations (computed through the median absolute deviation) from the median. 809 

Then, to assess the coordination of CA1 and PFC assembly reactivation (during aSWRs), 810 

we counted how often each simultaneously recorded pair (1 CA1 and 1 PFC assembly) 811 

reactivated together above the median in both areas and then compared the percentage of 812 

coincident high reactivations (quadrant 1; Q1) with the percentage of high and low 813 

reactivations in CA1 and PFC respectively (quadrant 2; Q2; see Figure 6). A more 814 

conservative version of this analysis using the 5% highest and lowest aSWRs reactivation to 815 

define the quadrant thresholds yield similar results (data not shown).  816 

 817 

Histology 818 

At the end of each experiment, mice were perfused with 4%PFA and brain sections (100µm) 819 

were examined with light microscopy to confirm electrode placement in CA1 and mPFC. 820 
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 982 

 983 

 984 

Figure 1. CA1 and PFC single cell activity shows distinct learning-dependent changes 985 

during appetitive auditory trace conditioning (AATC). A) Schematic of AATC task and 986 

electrophysiological recordings B) Example post-learning training sessions of one mouse 987 

during the AATC task (dots in raster-plots represent licks, solid lines indicate average 988 



responses from respective sessions). C) Average change in lick rate during the trace period 989 

trial during learning for all animals (n=17) (*indicates sessions with significantly higher group 990 

average licks during the trace period after CS+ sounds, Shade area represents standard 991 

error of the mean (SEM)). D) “Neuroseeker” silicon probe layout and combined spatial spike 992 

waveform patterns of 4 simultaneously recorded example neurons from CA1. E) Z-scored 993 

firing rates of all CA1 neurons recorded pre (top) and post (bottom) learning during CS+ and 994 

CS- trials ordered according to average trace period firing rates. F) Z-scored PSTHs of all 995 

recorded cells in CA1. G) Z-scored sound evoked change in firing rate (0-350ms post 996 

CS+/CS- onset) in CA1. H) Z-scored trace period change in firing rate (2-3s post CS+/CS- 997 

onset) in CA1. I) Z-scored reward period change in firing rate (0-.5s post reward presentation 998 

for CS+ trials pre and post learning) in CA1. J) Z-scored firing rates of all PFC neurons 999 

recorded pre (top) and post (bottom) learning during CS+ and CS- trials ordered according 1000 

to average trace period firing rates. K) Z-scored PSTHs of all recorded cells in PFC. L) Z-1001 

scored sound evoked change in firing rate in PFC. M) Z-scored trace period change in firing 1002 

rate in PFC. N) Z-scored reward period change in firing rate in PFC (*,**,*** represents 1003 

Wilcoxon rank sum, p<0.05, p<0.01,p<0.001). (Error bars and shaded areas represent 1004 

SEM). 1005 

 1006 

Figure 1-figure supplement 1. Positioning of silicon probes in CA1 and PFC. A) 1007 

Histological image of silicon probe implantation track in PFC (left). Arrows show estimated 1008 

extend of 128 channel “Neuroseeker” silicon probe. Schematic of verified recording position 1009 

from 6 animals (right) (adapted from (Franklin and Paxinos, 2019). B) Histological image of 1010 

silicon probe implantation track in CA1 (left). Arrows show estimated extend of 128 channel 1011 

“Neuroseeker” silicon probe. Schematic of verified recording position from 4 animals (right)). 1012 

 1013 

 1014 

Figure 1-source data 1. Number of recorded neurons per animal and session in CA1, 1015 

PFC and simultaneous CA1-PFC recordings. 1016 

 1017 

Figure 2. CA1 and PFC single cells exhibit lick evoked responses and distinct patterns 1018 

of sustained activity. A) Z-scored firing rates of all CA1 neurons (Top) aligned to the first 1019 

lick of a lick bout (at least 3 licks/s) during CS+ trials (before reward delivery). Z-scored 1020 

change in activity of all and for positively lick modulated cells (bottom). Purple bar indicates 1021 

Lick-Up cells. B) Z-scored PSTHs of all Trace-Up (Top) and Trace-Down (Bottom) post-1022 

learning for CA1 (in CS+ or CS- trials: Trace-Up, n=444; Trace-Down, n=675). C) Z-scored 1023 

change in firing rate during the trace period of the same Trace-Up neurons (Top) and Trace-1024 

Down neurons (bottom) for CA1 D) Lick cells in PFC (same as in A) E) Trace-Up (Top) and 1025 



Trace-Down (Bottom) non-lick neurons post-learning for PFC (CS+ or CS- trials: Trace-Up, 1026 

n=736; Trace-Down, n=734). F) Z-scored change in firing rate during the trace period of the 1027 

same Trace-Up neurons (Top) and Trace-Down neurons (bottom) for PFC. (*,**,*** 1028 

represents Wilcoxon rank sum, p<0.05, p<0.01,p<0.001 ; Error bars and shaded areas 1029 

represent SEM). 1030 

 1031 

Figure 2-figure supplement 1. Distribution and activation of Trace-Up and Trace-Down 1032 

cells in CA1 and PFC changes over the course of learning. A) Percentage of Trace-Up 1033 

and Trace-Down cells in CA1 and PFC in pre- and post-learning sessions separately for 1034 

CS+ and CS- trials.  B) Average Z-scored modulation of all combined Trace-up and Trace-1035 

down cells in CA1 and PFC in pre- and post-learning sessions (Error bars represent SEM). 1036 

 1037 

Figure 3. CA1 and PFC non-lick cell population activity encode trial identity during the 1038 

trace period. A) Example of average non-lick cell population rate vector trajectories for one 1039 

session in CA1 (CS+ (blue) and CS- (red)). Averages plotted along first 3 principal 1040 

components (Baseline period: blob on the left, trace period thicker lines on the right). B) 1041 

Average z-scored Euclidean-distance between CS+ and CS- non-lick cell population rate 1042 

vector trajectories during AATC task for CA1 (n=36) (shaded areas represent SEM). C) 1043 

Support vector machine classification of trial identity by average baseline (-1s-0) and trace 1044 

period (2-3s) activity of non-lick cells in CA1 (n=36) (*** indicate Wilcoxon sign rank 1045 

p<0.001). D) Example of average non-lick cell population rate vector trajectory for one 1046 

session in PFC. E) Average z-scored Euclidean-distance between CS+ and CS- non-lick cell 1047 

population rate vector trajectories for PFC (n=38) (shaded areas represent SEM).  F) 1048 

Support vector machine classification of trial identity by average baseline (-1s-0) and trace 1049 

period (2-3s) activity of non-lick cells in PFC (n=38). 1050 

 1051 

Figure 3-figure supplement 1. CA1 and PFC single cells and population responses 1052 

slowly decay back to baseline after conditioning trials. A & B) Z-scored firing rates of all 1053 

CA1 (A) and PFC (B) neurons recorded during post-learning sessions for 25s after trial 1054 

onset.  C & D) Average z-scored Euclidean-distance between CS+ and CS- non-lick cell 1055 

population rate vector trajectories during AATC task for CA1 (n=36) and PFC (n=38) 1056 

(shaded areas represent SEM). 1057 

 1058 

Figure 3-figure supplement 2. CA1 and PFC non-lick cell population activity does not 1059 

correlate with lick or running behavior. A) Average Lick responses during post-learning 1060 

trials for CS+ and CS- trials (52 sessions, 17 animals) (shaded areas represent SEM). B) 1061 

Average running speed during post-learning CS+ and CS- trials (52 sessions, 17 animals). C 1062 



& D) Correlation between non-lick population rate vector differences (CS+ vs CS- trials) for 1063 

all post learning sessions in CA1 (C) and PFC (D) (middle) and differences in lick rate (CS+ 1064 

vs CS- trials) (left) and differences in running Speed (CS+ vs CS- trials) (right) for all post 1065 

learning sessions. 1066 

 1067 

Figure 4. CA1-PFC interaction during trace-conditioning.  A) Example of simultaneously 1068 

recorded LFP and single cell activity from CA1 and PFC during a CS+ conditioning trial. B) 1069 

CA1-PFC LFP coherence during CS+ trials (right) and CS- trials (left). Average coherence 1070 

during baseline and during the trace-period (right). Black bar indicates significant difference 1071 

between CS+ post and CS- post trials (permutation test at each frequency <0.05). C) (Left) 1072 

Schematic representation of how performance and the number of predictive dimensions 1073 

were calculated for each regression. (Right) Reduced-rank regression between CA1 and 1074 

PFC spiking activity during conditioning trials in pre and post learning sessions. Solid and 1075 

filled bars represent pre learning and post learning sessions respectively (error bars 1076 

represent SEM). 1077 

 1078 

Figure 4-figure supplement 1. CA1-PFC single cell interaction does not change across 1079 

different task periods. A) Schematic representation of Ridge-regression. A full-rank model 1080 

was computed using 10-fold cross validation and L1 regularization. The model with the best 1081 

performance over the regularization parameter λ was selected. B) Full-model ridge 1082 

regression between CA1 and PFC spiking activity during conditioning trials in pre and post 1083 

learning sessions. Solid and filled bars represent pre learning and post learning sessions 1084 

respectively, error bars represent SEM, and * refers to p<0.05 in a Wilcoxon ranksum test. 1085 

 1086 

Figure 5. CA1 and PFC cell assemblies show different aSWR reactivation dynamics. 1087 

A) Average (z-scored) assembly activation triggered by aSWR occurring in the inter-trial 1088 

intervals for CA1 and PFC, Pre and Post learning sessions (Top). Mean aSWR-triggered 1089 

activation over all the assemblies for Pre and Post sessions for each area. Shaded areas 1090 

represent the SEM. Black dots represent windows in which Pre and Post assembly activity 1091 

were statistically different (Wilcoxon rank sum test; p<0.05). Notice the higher aSWR 1092 

triggered activation of assemblies in PFC in Post sessions. B) Histogram (left) and 1093 

cumulative distribution function (CDF; right) of the mean assembly activity on the reactivation 1094 

window denoted in A. P-values refer to a two-sample Kolmogorov-Smirnov test between Pre 1095 

and Post distributions. C) Average aSWR reactivation of each assembly per session (Top). 1096 

Sessions were divided into 10 blocks of equal trial length. Mean aSWR reactivation of all 1097 

positively (reactivation+) and negatively (reactivation-) reactivated assemblies. Asterisks 1098 



refer to Wilcoxon signed-rank test performed between the first and last three trial-blocks 1099 

(dashed rectangles) of each area/learning condition (n.s.: non-significant; *p<0.05; **p<0.01; 1100 

***p<0.001) and shaded areas represent SEM. Note the evident increase in CA1 aSWR 1101 

assembly reactivation across the session in both Pre and Post sessions for positively 1102 

modulated assemblies (reactivation+). D) Mean (z-scored) assembly activity triggered by the 1103 

stimulus onset for the 25% most strongly aSWR-reactivated assemblies in CA1 (Left). 1104 

Average of the traces over each trial period is shown for CS+ and CS- (Right). Notice the 1105 

initial decrease of assembly activity in CA1 during the stimulus and the posterior separation 1106 

between CS+ and CS-. E) The same as in D, but for PFC assemblies. Note the difference 1107 

between CS+ and CS-assembly activity during the reward period. Asterisks refer to a 1108 

Wilcoxon signed-rank test comparing CS+ and CS- (*p<0.05; **p<0.01; ***p<0.001). Error 1109 

bars refer to SEM and darker bars denote mean assembly activity significantly different from 1110 

zero (p<0.05; t-test). 1111 

 1112 

Figure 5-figure supplement 1. aSWR reactivation of assemblies detected during inter-1113 

trial intervals. A) (Left) Mean reactivation around aSWRs of assemblies detected during the 1114 

inter-trial intervals (excluding aSWR events) for Pre and Post learning sessions. (Middle) 1115 

Histogram of mean assembly aSWR-reactivation on the reactivation window (yellow 1116 

rectangle) for Pre and Post learning sessions. (Right) Cumulative distribution of mean 1117 

assembly aSWR-reactivation. P-values refer to a two-sample Kolmogorov-Smirnov test 1118 

between Pre and Post distributions. B) Similar to A, but using sham aSWR times to compute 1119 

the average reactivation. (aSWR events were randomly shifted by ~200 ms). 1120 

 1121 

Figure 5-figure supplement 2. Distribution of awake Sharp Wave Ripples during trace-1122 

conditioning. A) Example of simultaneously recorded LFP and single cell activity from CA1 1123 

and PFC during aSWRs. B) Ripple rate during CS+(blue) and CS-(red) trials across all 1124 

conditioning sessions. Average lick rate during CS+ trials is overlaid in green (Shaded areas 1125 

indicate SEM C) Average aSWR rate increases from early to late within individual sessions 1126 

(top) and average aSWR rate does not change between pre and post learning sessions 1127 

(bottom) ( error bars represent SEM and ** refers to Wilcoxon ranksum test p<0.01).. 1128 

 1129 

Figure 5-figure supplement 3. Detecting cell assemblies in neural populations. A) The 1130 

rastergram (left) of each trial was computed and binned in 20-ms-bins with no overlap 1131 

(middle). After concatenating the activity of all trials, the activity of each neuron was z-scored 1132 

and the correlation matrix was computed (right). B) The eigenvalues of the correlation matrix 1133 

were then computed and compared to the analytical (Marchenko-Pastur) distribution to 1134 

estimate the amount of assembly patterns present in the data (top). After that, independent 1135 



component analysis was used to extract the assembly patterns (bottom). C) The patterns in 1136 

B were then used to project the assembly activity during the trial, using 20 ms bins with 1137 

steps of 1 ms. 1138 

 1139 

Figure 6. Trial-type modulation and PFC coactivation of CA1 assemblies. A) Schematic 1140 

representation of trial-type modulation scores, CS+ and CS- suppressed assemblies. The 1141 

modulation score was defined as the difference between average assembly activation on 1142 

CS+ and CS- trials during a specific period. B) Mean aSWR reactivation of CS+ suppressed, 1143 

CS- suppressed and non-modulated assemblies pre and post learning over time (left) and 1144 

within 50 ms window around ripples (right). Error bars denote SEM (*p<0.05; **p<0.01; 1145 

***p<0.001). C) Scatter plot and Pearson’s correlation values between trial-type modulation 1146 

score and average aSWR reactivation for all CA1 assemblies (pre and post learning). Notice 1147 

the stronger reactivation of negatively modulated assemblies (CS+ suppressed). D) (Left) 1148 

Example of joint reactivation for two pairs of CA1-PFC assemblies. Quadrants were defined 1149 

using the median aSWRs reactivation of each area and the proportion of reactivations in 1150 

each quadrant was computed. (Right) Percentage of ripple reactivations in 1st and 2nd 1151 

quadrants defined in left for all possible combination of assembly pairs (Wilcoxon signed-1152 

rank test).  1153 

 1154 

Figure 6-figure supplement 1. Trial-type modulation of PFC assemblies and trial-1155 

period modulation. A) Mean aSWR reactivation of CS+ suppressed, CS- suppressed and 1156 

non-modulated assemblies in PFC over time (left) and within 50 ms window around ripples 1157 

(right). Error bars denote SEM. B) Scatter plot and Pearson’s correlation values between 1158 

trial-type modulation score and average aSWR reactivation for all CA1 assemblies (pre and 1159 

post learning). C) (Left) Schematic representation of trial-period modulation scores. The trial-1160 

period modulation score was defined as the difference between average assembly activation 1161 

on stimulus and trace periods in CS- trials. (Right) Scatter plot and Pearson’s correlation 1162 

values between trial-period modulation scores and aSWRs reactivation for assemblies in 1163 

CA1 and PFC. D) Percentage of significant assembly reactivations during aSWRs.    1164 
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