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Abstract Although time is a fundamental dimension of life, we do not know how brain areas 
cooperate to keep track and process time intervals. Notably, analyses of neural activity during 
learning are rare, mainly because timing tasks usually require training over many days. We inves-
tigated how the time encoding evolves when animals learn to time a 1.5 s interval. We designed 
a novel training protocol where rats go from naive- to proficient-level timing performance within 
a single session, allowing us to investigate neuronal activity from very early learning stages. We 
used pharmacological experiments and machine-learning algorithms to evaluate the level of time 
encoding in the medial prefrontal cortex and the dorsal striatum. Our results show a double dissoci-
ation between the medial prefrontal cortex and the dorsal striatum during temporal learning, where 
the former commits to early learning stages while the latter engages as animals become proficient in 
the task.

Editor's evaluation
This study investigates the question of whether distinct brain areas differentially encode time during 
the learning of a simple motor timing task. The key novel result is that early in training the dynamics 
of the medial prefrontal cortex provides the best code for time, but later in training the striatum 
provides a better code. In addition, the article reports that the inactivation of medial prefrontal 
cortex produces a delayed learning effect, while the inactivation of the striatum after learning led to 
impairment of performance. Thus, the observation that temporal coding and the necessity of brain 
area for task performance transfers from medial prefrontal cortex to the striatum during learning is 
an important observation for the field.

Introduction
Even though keeping track of time is essential for survival, our understanding of how animals encode 
temporal information in terms of neuronal activity is still modest (Ivry and Spencer, 2004; Merchant 
et al., 2013a). The literature contains evidence of physiological activity associated with timing, as, for 
example, ramping neurons (Narayanan and Laubach, 2009; Kim et al., 2013; Emmons et al., 2017) 
and time cells (MacDonald et  al., 2011; Eichenbaum, 2014), neuronal oscillations (Matell et  al., 
2003), and sequential firing of neurons (Modi et al., 2014; Zhou et al., 2020). Most of these encoding 
patterns are particular cases of a general type of encoding called population clocks, which states that 
any reliable dynamical evolution of neural activity works as a potential clock and might serve as a 
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timing mechanism (Buonomano and Maass, 2009). However, establishing causal links between the 
time encoding and timing itself has been elusive (Monteiro, 2020; Modi et al., 2014).

Reports of the spiking activity of neurons involved in keeping track of time implicate regions like 
frontal cortex (Emmons et al., 2017; Kim et al., 2017; Matell et al., 2003; Brody et al., 2003; Xu 
et al., 2014; Wang et al., 2018; Kunimatsu and Tanaka, 2012), motor cortex (Lebedev et al., 2008; 
Laubach et al., 2000; Zhou et al., 2020; Merchant et al., 2013b), striatum (STR) (Mello et al., 2015; 
Matell et al., 2003; Bakhurin et al., 2017; Gouvêa et al., 2015; Emmons et al., 2017; Zhou et al., 
2020; Merchant et al., 2013b), hippocampus (MacDonald et al., 2011; Eichenbaum, 2014), thal-
amus (Komura et al., 2001; Tanaka, 2007), substantia nigra pars compacta (Soares et al., 2016), 
among others. Moreover, studies with humans showed that distinct tasks of time estimation can acti-
vate different parts of the brain (Merchant et al., 2008). Active manipulations of the physiological 
activity have also helped assess the involvement of these areas in timing, particularly in the medial 
prefrontal cortex (mPFC) (Buhusi et al., 2018; Soares et al., 2016; Kim et al., 2009; Emmons et al., 
2017) and STR (Gouvêa et al., 2015). However, because timing tasks usually require many training 
sessions, the neurophysiological process underlying their acquisition has been less studied. The vast 
majority of the electrophysiological recordings in timing tasks come from well-trained animals (but see 
Modi et al., 2014). However, observing how neuronal activity develops with learning can considerably 
improve our understanding of brain mechanisms underlying timing.

We investigated how spiking activity in the mPFC and STR encodes a time interval during learning. 
We trained rats to sustain responses for at least 1.5 s and investigated how well the two brain areas 
decode the time interval during acquisition. If a brain area is involved in the encoding of that interval, a 
trial-dependent and more structured spiking activity must emerge due to learning. As a consequence, 
the performance of algorithms that evaluate the decoding should increase. Contrary to evidence of 
the concomitant involvement of mPFC (Buhusi et al., 2018; Kim et al., 2009) and STR (Mello et al., 
2015) in timing tasks, our results show very different roles of these two regions during learning. As 
training progresses, the decoding performance based on electrophysiological recordings decreases 
in the mPFC while it increases in the STR. Such results were confirmed and further investigated with 
pharmacological experiments. Our studies provide a useful method to investigate electrophysiolog-
ical correlates of temporal learning and advance our understanding of the role of mPFC and STR in 
interval timing.

Results
Rats learn to time in a single session
We conceived a novel experimental design in which rats improve their timing in a single session (Reyes 
et al., 2020), allowing us to track the activity of individual neurons during learning (Figure 1). Animals 
had to remain in a nose poke for at least 1.5 s to receive access to the sucrose solution, limited to three 
licks, after which the access gate closes (Figure 1A). Shorter responses produced no consequences. 
Critically, we recorded activity before, during, and after animals had learned the critical interval.

We implanted two sets of animals, one with electrode arrays in the mPFC (group mPFC, N = 
4 animals) in long sessions (> 4 hours) and another with arrays both in the mPFC and STR (group 
mPFC + STR, N = 4 animals) in shorter sessions (131 neurons in total). Animals produced between 801 
and 1671 trials (878 trials on average) in long sessions (group mPFC), and, in shorter sessions (group 
mPFC + STR), between 436 and 936 (606 on average) on day 1 and between 381 and 699 (535 on 
average) trials on day 2.

All eight animals showed significant learning in the first session, producing longer lever presses 
‍T ‍ and yielding higher reward rates late in the session (‍t(7) = 7.9‍, ‍p = 10−4

‍, Cohen's d = 3.2, 

‍Tearly = 0.99 ± 0.06‍ s, ‍Tlate = 1.71 ± 0.08‍ s; Figure 1B and C).
Animals trained for 2 days (group mPFC + STR, N = 4) also produced longer responses late in the 

first session as compared to the beginning (Figure 1C, group mPFC + STR, session 1). In the second 
session, these rats’ responses were initially shorter than those at the end of session 1, increasing 
throughout the session. Hence, animals retained information between sessions 1 and 2. Further-
more, rats performed similarly at the end of both sessions, suggesting that animals learned the task 
almost to their best on the first day of training. A repeated-measures ANOVA showed an effect of 
stage (‍F[1,3] = 61.0‍, ‍p = 0.004‍, ‍η

2
p = 0.95‍), no effect for day (‍F[1,3] = 2.37‍, ‍p = 0.22‍, ‍η

2
p = 0.44‍), and an 

https://doi.org/10.7554/eLife.65495
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interaction stage versus day (‍F[1,3] = 26.0‍, ‍p = 0.014‍, ‍η
2
p = 0.89‍). A post-hoc analysis revealed a signifi-

cant difference between early and late responses in the first (‍t(3) = 7.02‍, ‍p = 0.006‍), but only marginally 
significant in the second session (‍t(3) = 2.90‍, ‍p = 0.06‍).

Time representation decreases with learning in the medial prefrontal 
cortex, but not in the striatum, during the first session
We investigated the progression of individual neurons’ activity in the mPFC and the dorsal striatum 
during learning (Figure 2). We examined how the neuronal activity in both regions were modulated 
during trials and how such modulation evolved with learning (Figure 2C–F for mPFC and Figure 2G–J 
for STR).

Neurons exhibited diverse activity patterns, with a small number of units modulated by the onset 
or offset of the nose poke and others that became less responsive to trials during learning. Notably, 
in the mPFC, some neurons’ activity climbed up or down during the initial trials but became flat late 
in training. Overall, there was no evidence that the climbing activity increased with training, neither 
in the mPFC (‍t(3) = 0.54‍, ‍p = 0.60‍, ‍Nearly = 13 ± 8‍ s, ‍Nlate = 9.5 ± 7.4‍ s) nor in the STR (‍t(3) = −0.081‍, 

‍p = 0.94‍, ‍Nearly = 4.5 ± 3.8‍ s, ‍Nlate = 4.75 ± 3.6‍ s). These results were at odds with our working hypoth-
eses that the mPFC and the STR were highly involved in keeping track of time and that, once learning 

Figure 1. Description of the task and behavioral results. (A) Experimental design used in the experiment. The trial starts when the rat inserts its snout 
in the nose poke installed next to the reward port. The step lines represent the nose poke onset and offset. Depending on how long the rat stays in the 
nose poke—the response duration—it may receive access to a sucrose solution. Responses lasting more than 1.5 s grant access to three licks of sucrose 
solution, while shorter responses produce no consequences. (B) Responses from a single rat in the first session of training in the task. (Lower graph) Each 
dot represents a response duration (x-axis) in a specific trial (y-axis). The vertical dashed line represents the criterion (1.5 s) for receiving the reward. The 
two horizontal dash-dotted lines show the trials that were used in the electrophysiology experiments for early ‘E’ and late ‘L.’ (Upper graph) Probability 
density of responses as a function of the duration for the early and late trials, showing that the distribution shifted to the right. (C) Mean response 
duration for individual rats early and late in sessions 1 and 2. All animals significantly increased their responses in the very first session of training. For 
one group of animals (group medial prefrontal cortex [mPFC] + striatum [STR]), we recorded a second day of training. At the beginning of this second 
session (early trials), animals’ response durations were shorter than the late trials of session 1, but much longer than the early trials, showing that the 
training from session 1 improved the behavior early in session 2. Throughout the second session, rats achieved the same performance as the late trials 
of session 1, suggesting that the training in the first session took the rats close to the optimal performance.

https://doi.org/10.7554/eLife.65495
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took place, an encoding scheme should emerge. However, the evidence for mPFC data pointed to a 
very distinct scenario: a vanishing neural code.

Given the heterogeneity of individual neurons’ responses and based on recent proposals of popu-
lation clocks, we explored whether the pattern of activity in the mPFC and STR could work as a 
stable representation of time (Figure 3). We used spikes from all recorded neurons (Table 1) during 
reinforced trials, that is, trials longer than the criterion (1.5 s) and shorter than 3.5 s (a similar anlaysis 
made with non-reinforced trials is shown in supplementary material). We then truncated all trials at 
1.5 s and calculated the firing rate in bins of 100 ms. This procedure results in a matrix of firing rates, 

Figure 2. Recording sites and examples of neural activity during trials. (A) Recording sites in the medial prefrontal cortex (group mPFC). (B) Recording 
sites for group mPFC + striatum (STR). (C–J) The upper graphs show the raster plots from early (blue) and late (black) trials for mPFC (C–F) and STR 
(G–J). The bottom graphs show the corresponding firing rates, color-coded. The time scale for raster plots and firing rates consists of recordings starting 
500 ms before the rat enters the nose poke and ending when the animal leaves the nose poke. Trials were either aligned to the nose poke entering 
(onset time, left) or to the instant the rat left the nose poke (offset time, right). In onset time, the zero represents the instant the rat entered and the 
green points show when the animal left the nose poke. In offset time, the zero represents the instant the rat left the nose poke and, consequently, all 
times are negative. The green point shows when the animal entered the nose poke and the black markers at the beginning of each trial represent the 
500 ms before entering the nose poke. (C) A neuron whose activity is tuned to the trial onset. (D–F) Examples of neurons whose activity within the trial 
became less sensitive (flatter) in later trials compared with earlier trials in the session.

https://doi.org/10.7554/eLife.65495
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Figure 3. Classification analysis. (A) Pipeline of the analysis at the population level. Spike trains are epoched 
according to the trials, from 0.5 s before nose poke onset through the offset. The epoched trials are shown in 
Figure 2C–J. The trials are smoothed with a Gaussian kernel (σ = 100 ms) and then binned every 100 ms. The 
resulting spike rates were analyzed with the linear discriminant analysis. (B, D) Results of the classification decoder 

Figure 3 continued on next page
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representing the discrete bins, for all neurons, in all trials. We used these data to train a machine-
learning model (linear discriminant analysis [LDA]) to decode the time bin using firing rates as inputs 
and measured the classifier’s performance as the correlation coefficient between the predicted bin 
and the actual time bin. We calculated Pearson’s R using 1000 different training and testing sets, 
generating a distribution of R values compared between groups and conditions.

The classifier reliably decoded the elapsed time from mPFC neurons (Figure 3B, C), both early and 
late in session 1 (Pearson’s ‍Rearly = 0.56‍, ci (mean) = ‍[0.37, 0.74]‍; ‍Rlate = 0.35‍, ci (mean)= ‍[0.14, 0.56]‍), 
suggesting that this region encoded time from very early stages of training. These results were obtained 
by using all neurons from all rats. We analyzed the robustness of the results between animals using 
a jackknife procedure, which showed a marginal evidence that the decoding performance decayed 
during the first day of training (‍t(7) = 2.313, p = 0.054‍).

The classifier revealed a distinct scenario for the STR in the first session. We did not find evidence 
that striatal neurons were decoding the time intervals (Pearson’s ‍Rearly = 0.05‍, ci (mean)= ‍[−0.19, 0.29]‍, 
‍Rlate = 0.02‍, ci (mean)= ‍[−0.27, 0.22]‍) (Figure 3B, lower row). The jackknife analysis did not show signif-
icant differences between stages in the first session (‍t(3) = 0.49, p = 0.64‍). These results suggest that 
the prefrontal cortex exceeded the STR in time decoding in session 1. Such results, however, should 
be taken with caution because the number of neurons recorded in the mPFC was greater than that in 
the STR, a factor that affects the encoding performance.

Beyond the classifier’s absolute predicting power, affected by the number of neurons recorded, we 
were interested in how the performance changed in each region as the animals learned on the first 
day of training—going from a naive animal to almost a proficient level. Since we record from the same 
neurons in each animal, a better performance in late trials would reveal that the region developed 

a time-related neural code. Our data provide 
some evidence that the mPFC and STR evolved 
differently in the session. The performance of the 
classifier in the mPFC decreased with training 
(Figure  3C), reinforcing the previous evidence 
that neurons in the mPFC disengaged from timing 
as the training progressed. On the other hand, we 
could not find evidence that the STR engaged the 
timing task during the first day of learning, neither 
early nor late in the session.

We further analyzed the decoder performance 
in the two brain regions during two consecutive 
training days (Figure 3D and E). For these record-
ings, we only used rats from group mPFC + STR, 
for which all rats had simultaneous recordings in 
both brain regions (‍N = 4‍).

The performance decreased in the mPFC 
from the first to the second session, passing from 
significant performance (‍Rday1 = 0.22‍, ci (mean) = 

analysis within session 1 (B) and between sessions 1 and 2 (D). The confusion matrix (in the form of a heatmap) 
shows the probability of decoding a particular actual time bin (x-axis) as one of the possible decoding bins (y-axis). 
A diagonal pattern of bright pixels indicates a better performance of the classifier. (B) Results of the classifier in 
the medial prefrontal cortex (mPFC) (top row) and striatum (STR) (bottom row), early and late in training showing 
that the performance decreased with learning. (C) Overall classifier performance for mPFC (blue line) and STR 
data (black line), measured as a correlation coefficient (Pearson’s R) between the actual and the predicted bin. The 
results show that the performance decreases in the mPFC while there is no evidence of changes in the STR. Error 
bars represent the standard deviation of the distributions obtained with a bootstrap procedure (1000 folds). (D, E) 
Same analysis as in (B, C) but comparing data from sessions 1 and 2, for animals with electrodes implanted in both 
regions (group mPFC + STR). (E) Decoding performance from mPFC (top row) and STR (bottom row) during day 1 
(left column) and day 2 (right column). During day 1, mPFC outperformed the STR in decoding time information. 
On day 2, the opposite pattern emerged. (E) Pearson’s R score of the decoder performance summarizing results 
shown in (E).

Figure 3 continued

Table 1. Number of units selected for analysis 
per rat, brain region, and day of training.
Rats 7–10 received only one session of training, 
with recordings in medial prefrontal cortex 
(PFC). Rats 3–6 trained for two days, with 
recordings in PFC and striatum (STR). The 
symbol ‘-’ denotes that no neurons in that 
specific condition were recorded.

Day

Rat 3 4 5 6 7 8 9 10

Region

1 PFC 4 22 5 4 11 35 10 9

STR 12 15 16 1 - - - -

2 PFC 14 28 5 3 - - - -

STR 16 16 23 5 - - - -

Total 46 81 49 13 11 35 10 9

https://doi.org/10.7554/eLife.65495
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‍[0.06, 0.39]‍) to null (‍Rday2 = 0.02‍, ci (mean) = ‍[−0.11, 0.15]‍). However, this difference was not significant 
when the variability between rats was considered (‍t(3) = 0.784‍, ‍p = 0.46‍). The decoding performance 
in the STR neurons—which was almost negligible in the first session—slightly increased by the second 
session (‍Rday1 = 0.01‍, ci (mean) = ‍[−0.16, 0.17]‍; ‍Rday2 = 0.09‍, ci (mean) = ‍[−0.03, 0.22]‍). When consid-
ering the variability between animals, there was no significant difference between days (‍t(7) = −0.852‍, 

‍p = 0.422‍).

Medial prefrontal cortex is crucial for the acquisition but not the 
expression of timed responses
Given the unexpected finding of how training modulated activity in the mPFC, we further investigated 
its role in learning, looking for causal evidence supporting the results obtained with electrophysio-
logical recordings. We designed a 5-day training protocol to assess the temporal performance in the 
first days of training with the mPFC under muscimol inactivation. We used the behavioral task shown 
in Figure 1A, except that the rats responded to a lever instead of a nose poke, and received a sugar 
pellet as reward. In the three first sessions, the experimental group (muscimol group, N=8) received 
muscimol (100 ng/0.5 μl) infusion in the mPFC, while the control animals (saline group, N=11) received 
saline (0.5 μl). On the fourth day, both groups received saline, and in the fifth session, both received 
muscimol.

The mPFC inactivation severely impaired learning, but had no effect on the performance of 
trained animals (Figure 4). Although both saline and muscimol rats produced short responses early in 
training, only rats in the saline group made longer responses as the session progressed (Figure 4B). 
In the first session, a mixed ANOVA showed an effect for group (‍p = 0.048‍, ‍F[1,17] = 4.5‍, ‍η

2
p = 0.21‍), 

stage (‍p = 0.0006‍, ‍F[1,17] = 17.5‍, ‍η
2
p = 0.51‍), and an interaction between group and stage (‍p = 0.0049‍, 

‍F[1,17] = 10.5‍, ‍η
2
p = 0.38‍). A Holm’s post-hoc correction showed that the groups differed late (‍p = 0.023‍) 

but not early in the session (‍p = 0.91‍). Also, the muscimol group displayed no significant difference in 
the response duration comparing early versus late trials (‍t(7) = 0.36‍, ‍p = 0.73‍, paired t-test), with an 
anecdotal Bayes factor favoring the null hypothesis (‍BF10 = 0.36‍). Therefore, the saline group learned 
in the first session, while the muscimol group displayed no sign of change in behavior.

The effect of mPFC inactivation persisted over the first three sessions, impairing learning (Figure 4C). 
Even though both groups learned over the three sessions, shown by an effect of session (‍F[2,34] = 20.8‍, 

‍p = 10−6
‍, ‍η

2 = 0.55‍, mixed ANOVA), rats from the saline group produced longer responses compared 
with the muscimol group (effect of group, ‍F[1,17] = 8.27‍, ‍p = 0.01‍, ‍η

2 = 0.32‍), with no significant inter-
action (‍F[2,34] = 0.29‍, ‍p = 0.75‍, ‍η

2 = 0.017‍).
To further investigate the underlying changes induced by the mPFC inactivation, we fitted the 

distributions of response durations with a double Gaussian function (Figure 4D). The distributions 
became bimodal during learning, and it has been shown (Reyes et al., 2020) that such a phenomenon 
happens not only at the group level—what could suggest an artifact of group averaging—but also 
at the individual level. Even well-trained animals display bimodal distributions, suggesting that rats 
alternate between responses of two classes: premature (short) and time-controlled (long, Figure 4D). 
We investigated how the two classes of responses evolve using the five parameters that the double 
Gaussian yields: ‍γ ∈ [0, 1]‍, ‍µ1‍, ‍σ1‍, ‍µ2‍, and ‍σ2‍ (‍µ1 ≤ µ2‍). The parameters μ and σ are the mean and the 
standard deviation of the Gaussian distributions, and γ represents the ratio between their amplitude. 
We adjusted a double Gaussian curve for each animal and session and plotted the extracted param-
eters as a function of the session.

The double Gaussian analysis confirmed that learning was impaired in the muscimol group and 
revealed that the effect was mainly on the temporally controlled responses (Figure  4E–I). Over 
sessions, although the temporal-controlled responses (mean of the second Gaussian, ‍µ2‍) became 
longer for both groups, this increase was larger for the saline group (main effect of group, ‍F[1,17] = 7.12‍, 

‍p = 0.016‍, ‍η
2 = 0.30‍; main effect of session:‍F[2,34] = 11.20‍, ‍p = 0.020‍, ‍η

2 = 0.40‍; interaction: ‍F[2,34] = 0.72‍, 

‍p = 0.49‍, ‍η
2 = 0.04‍). The standard deviation of the temporally controlled responses (‍σ2‍) also evolved 

differently in the saline group (main effect of group, ‍F[1,17] = 3.21‍, ‍p = 0.09‍, ‍η
2 = 0.16‍; main effect of 

session:‍F[2,34] = 17.05‍, ‍p < 0.001‍, ‍η
2 = 0.50‍; interaction: ‍F[2,34] = 4.82‍, ‍p = 0.04‍, ‍η

2 = 0.22‍).
The premature responses (associated with the first Gaussian) became shorter for both groups, 

that is, ‍µ1‍ decreased (main effect of group, ‍F[1,17] = 0.70‍, ‍p = 0.41‍, ‍η
2 = 0.04‍; main effect of session: 

‍F[2,34] = 4.16‍, ‍p = 0.024‍, ‍η
2 = 0.19‍; interaction: ‍F[2,34] = 2.05‍, ‍p = 0.14‍, ‍η

2 = 0.11‍). Neither ‍σ1‍ or γ 

https://doi.org/10.7554/eLife.65495
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were significantly modulated across the first three sessions (‍σ1‍: main effect of group, ‍F[1,17] = 0.05‍, 

‍p = 0.81‍, ‍η
2 = 0.003‍; main effect of session: ‍F[2,34] = 1.45‍, ‍p = 0.27‍, ‍η

2 = 0.78‍, interaction: ‍F[2,34] = 2.76‍, 

‍p = 0.08‍, ‍η
2 = 0.14‍; γ: main effect of group, ‍F[1,17] = 0.20‍, ‍p = 0.66‍, ‍η

2 = 0.01‍; main effect of session: 

‍F[2,34] = 1.33‍, ‍p = 0.28‍, ‍η
2 = 0.07‍, interaction: ‍F[2,34] = 0.86‍, ‍p = 0.42‍, ‍η

2 = 0.04‍). Overall, these differ-
ences point to decreased temporal control when the mPFC is inactivated.

Figure 4. Results from the pharmacological inactivation of the medial prefrontal cortex (mPFC). (A) Histology showing the microinjection sites in the 
mPFC. (B) Left: average response duration early and late in the first session for saline (sal, N=8) and muscimol (mus, N=11) groups. Error bars represent 
the SEM. Right: same data as in left, but combining the responses from all rats for each group. The saline (sal) group increased the response duration 
during the first session (day 1), while the muscimol (mus) group produced no detectable change in behavior. (C) Probability density of late responses 
combined from all rats for the five consecutive sessions. The drug injected in each session is at the right of each graph and color-coded. The saline 
group evolves as expected, producing longer responses from the first session, producing bimodal distribution, whose second peak increases with 
respect to the first, remaining stable in sessions 3 and 4. The muscimol group has no sign of learning in the first session but progressed after the 
second session at a slower rate compared to saline group. By session 3, the peak of premature responses is still more prominent than the long (> 1 s) 
responses. (D) Histogram of response durations from one rat showing the bimodal distribution and the separate fitted distributions representing the 
premature responses (Gauss1), the temporally controlled responses (Gauss2), and the double Gaussian fit (dGauss). (E–I) Evolution of each double 
Gaussian parameter as a function of the sessions, γ (E), ‍µ1‍ (F), ‍σ1‍ (G), ‍µ2‍ (H), and ‍σ2‍ (I). The vertical dashed line divides the experiment into two phases: 
the first (sessions 1–3), when groups received different treatments, and second (sessions 4 and 5) when both groups received the same treatment. 
(J) Comparison between sessions 4 (no drug) and 5 (muscimol) for the saline (sal) and muscimol (mus) groups, suggesting that the muscimol injection 
produced no effect on trained animals.
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The last phase of the experiment (sessions 4 and 5) aimed at investigating the effect of the mPFC 
inactivation on trained animals. By session 4—when rats received no injections—the rats from both 
groups were well trained, mostly producing temporally controlled responses. We compared the results 
from sessions 4 (no injection) and 5 (muscimol) to check how the inactivation of the mPFC affected the 
response distributions after learning.

The results from the last phase showed that inactivating the mPFC after training produced no 
detectable effect on the response distributions (Figure 4J). A mixed ANOVA yielded no significant 
effect for session (‍F[1,17] = 0.09‍, ‍p = 0.77‍, ‍η

2 = 0.005‍), group (‍F[1,17] = 0.55‍, ‍p = 0.47‍, ‍η
2 = 0.03‍), or inter-

action between the factors (‍F[1,17] = 0.033‍, ‍p = 0.86‍, ‍η
2 = 0.002‍). Such a result indicates that the mPFC 

is only required at the beginning of the task—during the learning phase—becoming unnecessary 
as the animals get proficient. This finding is consistent with our previous observation regarding the 
disengagement of the mPFC observed in the electrophysiological recordings within the first session.

Striatum is necessary for temporally controlled responses
Results from the decoding analysis also suggested a higher participation of the STR in the temporal 
task in the second training session. To confirm this finding, we inactivated the STR in proficient animals, 
after four sessions of training. STR inactivation strongly impaired temporal performance, leading to 
a lower mean response duration (‍t(3) = 5.6‍, ‍p = 0.011‍, Cohen's d = 0.92, two-tailed t-test, Figure 5B 
and C). We again fitted double Gaussians and compared their parameters across sessions 4 and 5 
(before and during STR inactivation, respectively, Figure 5D–H). We observed no significant effect for 
gamma (‍t(3) = 2.3‍, ‍pγ = 0.11‍), ‍µ1‍ (‍t(3) = −0.38‍, ‍pµ1 = 0.72‍), or ‍σ1‍ (‍t(3) = 2.6‍, ‍pσ1 = 0.08‍), but significant 
decrease in ‍µ2‍ (‍t(3) = 3.36‍, ‍pµ2 = 0.04‍), and an increase in ‍σ2‍ (‍t(3) = −5.66‍, ‍pσ2 = 0.01‍).

Figure 5. Inactivation of the striatum (STR) in trained animals. (A) Histological sites for the pharmacological experiments in the STR. (B) Comparison 
between the combined distribution of responses for trained rats (N=4) in session 4 (no drug) and session 5 (muscimol), showing that the temporally 
controlled responses were more variable when the STR was inactivated. (C) Mean response duration for sessions 4 (no drug) and 5 (muscimol). (D–H) 
Parameters obtained with the double Gaussian fit for sessions 4 and 5. The variables ‍µ2‍ and ‍σ2‍ differed in these sessions, showing that the temporally 
controlled responses spread more with the inactivation of the STR. Errorbars represent the SEM.

https://doi.org/10.7554/eLife.65495
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In sum, the inactivation of STR led to a decrease in ‍µ2‍ to a level comparable to that observed in the 
very first session of training, while ‍σ2‍ increased to a level higher than that observed in session 1. Such 
changes suggest a significant decrease in the time precision of the temporally controlled responses. 
Interestingly, mean and standard deviation of the premature responses (first Gaussian) did not change 
in the inactivation session, which suggests that the STR was more involved with the production of 
time-controlled than in the premature responses.

Discussion
In this study, we investigated mPFC’s and STR’s roles and activity while rats learned a temporal task. 
We tested the hypothesis that the time-related neuronal patterns previously reported in trained 
animals should emerge, especially in the mPFC, as rats learned to correctly time their responses. 
Differently from our hypothesis, results showed an initial involvement of the mPFC in the task (with a 
lower participation of the STR early on), but a diminishing role as the rats quickly became proficient 
in the task (with a higher participation of the STR after learning). These findings were consistent both 
from a decoding analysis of neural activity from mPFC and STR during learning, and from selective 
inactivation of those areas during learning.

The decoding analysis revealed a better performance early in the task for the mPFC compared 
to the STR neurons, but better decoding performance for the STR than mPFC cells later in the task. 
Correspondingly, pharmacological inactivation of mPFC showed that this structure was necessary for 
learning but not the expression of timed behavior, while the inactivation of STR after learning led to 
impairment of performance.

The decoder approach has been proposed to study the information encoding in different brain 
regions. Bakhurin et al., 2017 showed that these algorithms could quantify the amount of informa-
tion encoded in different mice brain regions—the STR and the orbitofrontal cortex—in a Pavlovian 
conditioning task. They concluded that both regions encoded time, but the STR outperformed the 
orbitofrontal cortex. We cannot compare our results directly with those from Bakhurin et al. because 
they recorded from well-trained animals (5–10 training sessions), from a different species, and regis-
tered in a different brain area (although still within the mPFC). However, on the second day of training, 
our results show that the STR outperforms the mPFC, a situation likely to remain stable since most 
learning happens on the first day of training (Reyes et al., 2020). Hence, it is possible that after the 
first day (or days) of training, the STR became even more reliable than the cortex in encoding the time 
of events, which agrees with results from Bakhurin et al., 2017.

Previous studies attempted to describe the collective reorganization of neuronal activity by 
recording in naive animals during their first day of learning (Modi et al., 2014; Laubach et al., 2000; 
Komiyama et al., 2010). Modi et al., 2014 recorded from CA1 hippocampus neurons in a classical 
task—the trace eye-blink conditioning. They used calcium imaging techniques to identify clusters 
of neurons sequentially firing during the acquisition. They reported a progressive increase in firing 
sequences within the trial, concomitantly to improvements in behavioral performance. They also used 
the noise-correlation technique to infer common inputs to the network. Interestingly, the sequential 
firing observed in learners was preceded by a transient increase in noise correlations, which can be 
interpreted as a transitory increase in a common input to the CA1. Even though their behavioral task 
differs from ours, and the absence of monosynaptic projections from mPFC to CA1 (Sesack et al., 
1989), these common transient effects seem an essential part of learning, and there might be a causal 
connection between them.

The decoding method proved to be useful in detecting changes in the network dynamics due to 
learning. Surprisingly, the neuronal activity in the mPFC was quite organized from the very beginning, 
shown by a good decoding performance early on the first day of training. Such performance may 
relate to the fact that animals practiced nose poking during the fixed ratio 1 (FR1) training phase. 
Hence, animals may have habituated to the action (nose poking), and the only new contingency intro-
duced in the task was the wait time. In this sense, our results agree with previous results implicating 
the mPFC in top-down control of executive tasks, including behavioral switching learning (Emmons 
et al., 2020; Antzoulatos and Miller, 2011; Freedman et al., 2001; Baker and Ragozzino, 2014).

A confounding factor in our experiments is whether the results derive from learning temporal 
aspects of the task or from learning operational factors, such as attention and movement optimi-
zation. Even though electrophysiological results cannot isolate these effects, we suggest that our 
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training protocol favors the dissociation of temporal and nontemporal learning. First, animals were 
trained in FR1 sessions before initiating the Differential Reinforcement of Response Duration (DRRD) 
training phase. We argue that animals learn most of the operational aspects of the task during the 
FR1 procedure because nontemporal learning takes less time to train. For example, rats learn to press 
a bar and associate this activity with reinforcement in tens of trials, while they take hundreds of trials 
to produce timed responses. Second, in the DRRD procedure, the motor activity in each trial is highly 
time-locked with the trial, happening right before the trial begins (‍t = 0‍ ms) and right before the end 
of the trial. Finally, we removed 200 ms from the beginning and at least 200 ms at the end of each trial, 
aiming to exclude motor activity from the recordings.

Our pharmacological results provided causal evidence of the mPFC role in rats’ ability to time 
longer responses. They revealed a substantial impairment in learning when the mPFC was inacti-
vated, but this effect did not last after the first session. During the second session, rats from the 
muscimol group significantly improved during training, revealing that after the first session, rats 
learned—at least partially—even with their mPFC inactivated. One possible explanation is that the 
pharmacological procedure only partially inactivated the mPFC, and the remaining active neurons 
provided some learning. Also, other cortical areas may underlie the initial learning phase of this 
task, hence producing the observed change in behavior. Finally, the number of converging projec-
tions to the STR (Shipp, 2017) makes it prone to detect environmental changes from multiple brain 
sources beyond the mPFC. Hence, the STR may provide a different action selection and, conse-
quently, a different strategy to optimize reward rate (Antzoulatos and Miller, 2011; Oemisch, 
2018).

Another result of the inactivation of the mPFC was that this region completely disengages from 
timing after learning. Inactivation of mPFC did not disturb performance if the rats had already learned 
the task. Narayanan et  al., 2006 reported similar results in a different paradigm, a reaction time 
procedure. They showed that the inactivation of mPFC had an effect on the premature responses, 
but no effect on the time-controlled responses. Smith and collaborators also showed that the mPFC 
disengages from the task during habit formation (Smith et al., 2010). Our results also suggest that 
the mPFC may have a role similar to the observed in motor learning, where the cortex helps guiding 
plasticity downstream during initial phases, becoming unnecessary later on (Kawai et  al., 2015). 
However, these results are at odds with several results showing the critical role of the mPFC in timing 
(Kim et al., 2009; Buhusi et al., 2018; Dietrich and Allen, 1998; Xu et al., 2014; Kunimatsu and 
Tanaka, 2012). Particularly, results from different tasks show that this region’s inactivation impaired 
the timing precision but not accuracy (Buhusi et al., 2018; Kim et al., 2009). Then, since we dealt 
with a timing task, it seemed natural to assume the mPFC would be necessary for the expression of 
timed behavior. Such a hypothesis did not hold since inactivating the mPFC produced no detectable 
effect on experienced animals.

The mPFC’s disengagement raises the question of why our results differ from those in the litera-
ture. One possible explanation has to do with the different time scale of our experiment. The 1.5 s 
interval used in our task is shorter than that used in most timing experiments. The interval of 1 s is 
usually referred to as the point of division between interval-timing and the millisecond range (Buhusi 
and Meck, 2005). Our interval is slightly above 1 s, and yet our results regarding the mPFC’s role are 
quite distinct from experiments of more extended intervals (Buhusi et al., 2018; Kim et al., 2009). 
However, we cannot attribute the differences exclusively due to the interval duration. Xu et  al., 
2014 used similar intervals to ours—training animals to reproduce auditory stimuli either 1.5 or 2.5 s 
long—and found that neuronal activity scaled with the estimated interval. They also manipulated 
the temperature of the mPFC, which biased the responses in time, providing a causal link between 
the mPFC and the time estimation. We hypothesize that the difference between results from Xu and 
colleagues and ours rests on the fact that our task is self-timed and self-initiated, that is, it does not 
rely or depend on external stimuli, which may give the task a more autonomic character, and reducing 
the number of required associative links to its execution.

Our results could not find evidence that the STR assumes the time encoding during the first session, 
even though rats learn the task and the mPFC disengages from it. It implies that other regions may 
be taking over such encoding. Results from Heys et  al., 2020 show that inactivating the medial 
entorhinal cortex (MEC) impairs timing learning. Even though they used longer intervals, MEC seems 
a candidate to mediate learning in our experiments. We also suggest that the thalamus may relate 
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to our results because of its implication in timing tasks and its neuronal adaptation under changes in 
temporal contingencies (Komura et al., 2001; Lusk et al., 2020; Tanaka, 2007).

The increasing involvement of the STR in the second day of training seen in our electrophysio-
logical experiments was expected since the known role of this region in the expression of timed 
responses (Mello et al., 2015; Matell et al., 2003; Monteiro, 2020). However, our results give a 
timescale to this phenomenon, showing that the increase in time encoding happens already on the 
second training day. Monteiro, 2020 showed a causal relationship between the dynamics within 
the STR and the decision based on timing in a temporal classification task, whose decision interval 
was 1.5 s. They manipulated the STR temperature showing an underestimation of time in increased 
temperatures and overestimation when the STR was cooled, consistent with the interpretation that 
the intrinsic dynamics of the STR underlies time estimation. When we inactivated the STR, the 
timing performance was also disrupted, providing another causal link between the STR function and 
timing. The STR inactivation affected both the accuracy and precision of the responses, strength-
ening the view that the STR has a central role for performance in the DRRD task after learning and 
deepening the understanding that the STR robustly underlies time estimation in various timing 
modalities.

Finally, our results agree with recent neuronal recordings during learning of a new interval in a 
fixed-interval task (Emmons et al., 2020). They showed that the mPFC and STR play different roles on 
temporal and behavior flexibility. While mPFC was more likely related to the behavior flexibility, STR 
was modulated by the temporal rule.

Overall, our results provide a double dissociation between the role of the mPFC and the STR in a 
timing task. They also further our understanding of regions involved in time estimation and produc-
tion, improving our knowledge of a taxonomy of time (Pöppel, 1978; Paton and Buonomano, 2018).

Methods
Subjects
The subjects were 61 adult naive male Wistar rats 12–16 weeks old and weighing between 350 and 
400 g (purchased from the Federal University of São Paulo, Brazil). In total, 18 animals were used in 
the STR pharmacological protocol, 35 for mPFC pharmacological protocol, and 8 in the electrophys-
iology protocol (four implanted in the mPFC and four in the mPFC and STR). Animals were housed 
individually in a 12 hr light/dark cycle (lights on at 7 am). All procedures were conducted during the 
light cycle. Rats were gradually food-deprived to reach and maintain 85% of their free-feeding weight. 
Water was freely available. All experimental protocols were approved by our institutional animal care 
and use committee (CEUA-UFABC).

Apparatus
Animals with chronic implants of electrode arrays were trained in an operant chamber developed in 
our laboratory, controlled by an Arduino Uno board. The box was built of acrylic plastic. On one wall, 
a nose poke was equipped with an infrared emitter-sensor beam, which interrupts when the rat inserts 
its snout. There was a bottle with a metallic nozzle on the left of the same wall, from which the rat can 
lick to obtain the reward. This nozzle connects to a touch-sensitive electronic device that counts the 
number of licks. A metallic plate controlled by the Arduino circuit moves up and down, blocking or 
releasing the rat’s access to the nozzle.

We used six MED-Associates operant chambers for the pharmacological procedure equipped with 
two levers, two cue lights (one above each lever), and a food cup on the front wall; more details are 
presented in Reyes et al., 2020. The rats executed an identical protocol as the rats trained in the elec-
trophysiology boxes, except that the responses were produced on a lever and the rats were reinforced 
with a sugar pellet. The response duration was measured from the time the rats pressed the lever to 
the moment they released it.

We performed the experiments using different operant chambers due to resource optimization. 
Furthermore, the electrophysiological recordings were more affected by movement artifacts using 
lever presses and by electrical artifacts during chewing.

https://doi.org/10.7554/eLife.65495
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Timing procedure
Animals implanted with electrodes were trained in our custom-made chambers to respond to the nose 
poke and receive access to three licks of 50% sucrose solution as a reward. Animals in the pharma-
cological experiments used the Med-Associates training chambers, responded on the left lever, and 
received a 45 mg sugar pellet as a reward. Regardless of the chamber used, the behavioral procedure 
was the same. First, the animals were auto-shaped to nose poke (press a lever) in an FR1 schedule of 
reinforcement, in which the animal received access to the glucose solution (sugar pellet) after each 
response. Rats received 60 min daily sessions in this schedule until they responded 100 times in a 
single session. In the next session, animals started the timing procedure described in Reyes et al., 
2020. Trials were self-initiated and self-ended by responding on the nose poke (lever press). The 
animal had to nose poke (sustain the lever pressed) for at least 1.5 s to receive the reward: three licks 
in a 50% concentrated glucose solution (one 45 mg sugar pellet). The reward was only available after 
the animal self-ended the trial. Responses shorter than 1.5 s produced no consequences, and the rat 
could immediately start a new trial. Even if the animal did not consume the reward at the end of the 
trial, it could start a new trial. Rewards were available until the animal consumed them.

Pharmacology
Bilateral cannulas were implanted in the STR of 18 rats. Three rats were removed from the experi-
ments because they did not learn the FR1 after five sessions, and 11 were eliminated due to problems 
during drug injections or cannula placement. We also implanted bilateral cannulas on mPFC of 35 rats 
(male Wistar). From this group, 1 rat was removed because it did not learn the FR1 after five sessions, 
15 were removed because of problems with drug injections or cannula placement. The stereotaxic 
coordinates were mPFC: AP = +3.2 mm, ML = ± 0.5 mm, DV = –3.3 mm; STR: AP = 0.4 mm; ML = 
±3 mm; DV = 4.0 mm. After 1 week of recovery from the surgery, the animals were food-restricted, 
and the experiments began. Infusion of muscimol or saline at 100 ng/0.5 μl was made 10 min before 
the beginning of the behavioral session. Injecting needles were inserted into the guide cannula, and 
0.5 μl of infusion fluid was delivered per site at 0.5 μl/min rate of infusion. After infusion was complete, 
the injector was held in place for 1 min to allow fluid diffusion.

For the STR manipulation, we used a single injection after learning (fifth session), and for mPFC 
manipulation, we separated the animals into two groups. The muscimol group received muscimol 
during the first three sessions, no infusion in the fourth session, and muscimol infusion again in the fifth 
session. In contrast, the saline group received saline infusion in the first three sessions, no injection in 
session 4, and muscimol infusion in session 5.

Unit recordings and data analysis
Electrophysiological recordings came from two different sets of experiments, both using 32 single-
wire array electrodes, 50 µm in diameter. In the first (n = 4, rats 7–10), the amplification system and 
microwire arrays from TDT (Tucker-Davis Technologies, USA) using all electrodes were implanted 
unilaterally around the mPFC, Stereotaxic coordinates: AP = 2.5 to 4.6 mm; ML = 0.1 to 1.5 mm; DV = 
3.3 mm. Signals were digitized at 25 kHz and bandpass filtered between 1 and 5 kHz for spike detec-
tion. A threshold of 2 standard deviations of the signal was used to select spikes. The spike sorting 
for the first experiment consisted of two steps, first online (during recordings) and then offline with 
the Open Sort TDT software, which uses a principal component analysis to cluster the spike shapes. 
First, we used a k-means method to select three clusters. Then, the cluster was adjusted by visual 
inspection; noisy clusters were excluded. The second set of experiments (n = 4, rats 3–6) made use of 
the Open Ephys recording system (Siegle et al., 2017) with simultaneous recordings from mPFC and 
STR (AP = –0.3 to 2.0 mm; ML = 3.0 mm; DV = 4.0 mm). For the spike sorting, we used the kilosort 
package for semi-automatic spike sorting (Pachitariu et al., 2016), which uses template matching for 
the identification of spiking clusters and Phy (https://github.com/cortex-lab/phy; Rossant, 2022) for 
manual selection of proper waveform clusters. We used waveform shapes and autocorrelograms to 
identify putative single cells. Noisy clusters, with a significant percentage of inter-spike intervals falling 
below 2 ms, were excluded.

We assessed the stability of the spike waveform throughout the recordings by selecting the first 
and last waveforms in the session, keeping only neurons for which waveforms remained unaltered. For 
the first experiment, with longer sessions, we selected the first 30,000 and the last 30,000 spikes. For 
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the second experiment, we filtered the spikes during the trials and selected 3000 in both moments, 
beginning and end of the session. Then, we plotted the mean and standard deviation of these wave-
forms. The neuron was considered stable when the mean of the waveforms at the end of the session 
was at least inside the standard deviation shadow of the waveforms at the beginning of the session. 
Moreover, cells with abrupt changes in spike rate were removed. These two previous analyses detected 
seven unstable neurons, which were eliminated from the analysis.

Surgical and histological procedures
Animals were anesthetized using intraperitoneal (IP) injections of a cocktail of ketamine (100  mg/
kg) and xylazine (10 mg/kg). The surgical level of anesthesia was maintained using ketamine supple-
mentary doses of 0.1 ml when the surgical duration was above 40 min or if the animal responded to 
stimulus on the tail or feet. While the animal was on a superficial anesthetic plan, we started a sepsis 
protocol and accommodated the animal on the stereotaxic apparatus. When the animal was under a 
deep anesthetic plan, we made an incision. Craniotomies were drilled above the mPFC or STR, from 
where the electrodes or cannulas were implanted. Also, four holes were drilled for skull screws, which 
were used to implant the ground wire to keep the implant’s stability. After the electrode was placed 
into mPFC or STR, the craniotomy was closed with dental acrylic. Rats recovered for 1 week before 
the behavioral training.

Following the experiment, rats were anesthetized and euthanized with an injection of 100 mg/kg 
of urethane. To map the electrode position, we used an electrical current to promote damage where 
the electrodes were implanted. Moreover, to map the cannula position, the animal received a microin-
jection of methylene blue dye. Then we transcardially perfused the rats with 4% formalin. Brains were 
post-fixed in a solution of 8% formalin; after 2 days, the brains were transferred to a 30% sucrose solu-
tion until they sunk to the bottom of the Falcon tube. Next, they were frozen in isopentane at –80°C 
and sectioned in 25-µm slices in a cryostat. Brain slices were mounted on gelatin-subbed slides and 
stained for cell bodies using cresyl violet. Finally, the electrode and cannulae placements were defined 
by optical microscopy analysis.

Data analysis
Electrophysiological data
The neural activity analysis was performed in Python scripts developed in our lab. To calculate the 
peri-event raster and histograms, we computed the spiking activity from 0.5 s before the animals start 
(onset) a response (nose poke or lever press) until the moment they end the response (offset). Also, 
we calculated the peri-events for each neuron considering the neural activity aligned by the onset 
and offset of each trial. The peri-event histograms were calculated using bins of 100 ms and were 
smoothed with a bandwidth of 100ms.

Climbing activity
We quantified the climbing activity in spikes with a linear fit on the firing rate of each neuron, as 
performed by Kim et al., 2013. The firing rate was computed using a Gaussian kernel density function 
for the selected trial vs. time binned in 100 ms. The fit was adjusted by the Python function ‘linregress,’ 
and we considered a neuron as a ramping neuron when the slope was significantly different from 0 
with a 5% significance level.

Multivariate pattern activity
We used separate multivariate analyses for the two groups of animals, one with recordings from mPFC 
and the other with simultaneous recordings from mPFC and STR. All analyses were performed on 
spiking data from all animals within groups, in a way that all registered cells were considered to be 
from a unique ‘average’ rat. We used the spikes from reinforced trials, that is, trials longer than the 
reinforcement criterion (1.5 s). Trials were truncated at the criterion time, and the average fire rate was 
calculated in bins of 100 ms.

When performing the spiking activity analysis with neurons from different rats, we first selected the 
rat with the smallest number of trials, let’s say ‍N ‍. Then, we limited the trials from the other rats to ‍N ‍, 
so that we use the same number of trials for all rats. For the rat with the smallest number of trials, the 
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session was divided into two for selecting early and late trials (with ‍N/2‍ trials, each). For the other rats, 
we designated the first ‍N/2‍ trials as early, and the last ‍N/2‍ as late trials (see Figure 1B).

We used a multiclass LDA as implemented in the sci-kit Python library, with least-squares solver, 
automatically calculated shrinkage using Ledoit–Wolf lemma, no priors, and the default number of 
components: min(number of classes – 1, number of features). Cross-validation was performed using 
1000 random folds. In each fold, training data consisted of activity from 10 bins (one bin for each class) 
from 80% of the trials. Bins from the same trial were always in either the train or test set. Training and 
testing data were normalized based on the median and interquartile range for each neuron, calculated 
over the training set. The output for each fold was the probability of each class, which was in turn 
averaged across folds to generate the confusion matrices. Performance measures were estimated in 
each fold using a Pearson correlation from the true class with the highest probability class for each bin.

Jackknife procedure
We also gauged the differences in classifier using a jackknife procedure inspired by previous work on 
ERP measurements (Kiesel et al., 2008). In sum, the differences in the classifier were calculated ‍N ‍ 
times, where ‍N ‍ is the number of animals in the group, removing one animal in each run. Then the ‍N ‍ 
different runs were compared with a t-test, obtaining the value of the T-statistics. The T-value is then 
divided by ‍N − 1‍ (the jackknife correction), and this value was used to obtain the significance level of 
the comparison.

Behavioral data
All data were analyzed using Python routines developed in our laboratory. Statistical analysis was 
performed in Jasp (JASP Team, 2020) and Pingouin (Vallat, 2018). Our dependent variable was 
response duration. For each animal, we constructed probability density diagrams of response dura-
tion. To test whether the animals learned the task in the first session, we compared a group of trials 
from the beginning and the end of the session. For the electrophysiology and STR protocol, we 
used paired t-tests. For the mPFC pharmacological protocol, we used a two-way ANOVA to compare 
groups and stages of the session.

As we showed in our previous work (Reyes et al., 2020), animals trained in the task frequently 
display a bimodal distribution, characterized by the persistence of very short responses interspersed 
with more timed responses—even after several sessions of training (Platt et  al., 1973). To better 
characterize bimodal distributions, we used a double Gaussian fit. We fitted the responses of each 
animal and condition separately, using as ordinary least-squares method ‘curve_fit’ from the package 
‘scipy.optimize.’ The initial parameters to start the fitting interactions were ‍γ = 0.5‍, ‍µ1 = 0.2‍, ‍σ1 = 0.1‍, 

‍µ2 = 1‍, and ‍σ2 = 0.5‍.
The double Gaussian probability density function was defined as ‍p(ti) = f(ti)/ξ‍, where

	﻿‍
f(ti) = (1 − γ) exp

(
− (ti−µ1)2

2σ2
1

)
+ γ exp

(
− (ti−µ2)2

2σ2
2

)
,
‍� (1)

and the normalization term

	﻿‍ ξ = ∆t
∑N

i=1 f(ti),‍� (2)

with time measured from 0 to 6 s in 0.1 s bins: ‍ti = i ∗∆t‍, ‍i = 0 ... 60, ∆t = 0.1‍ s.

At the group level, estimated parameters were compared using parametric tests, such as t-tests 
and ANOVAs, indicated in each case.
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