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Abstract
Background: The impact of variable infection risk by race and ethnicity on the dynamics of SARS-
CoV-2 spread is largely unknown.
Methods: Here, we fit structured compartmental models to seroprevalence data from New York 
State and analyze how herd immunity thresholds (HITs), final sizes, and epidemic risk change across 
groups.
Results: A simple model where interactions occur proportionally to contact rates reduced the HIT, 
but more realistic models of preferential mixing within groups increased the threshold toward the 
value observed in homogeneous populations. Across all models, the burden of infection fell dispro-
portionately on minority populations: in a model fit to Long Island serosurvey and census data, 81% 
of Hispanics or Latinos were infected when the HIT was reached compared to 34% of non-Hispanic 
whites.
Conclusions: Our findings, which are meant to be illustrative and not best estimates, demonstrate 
how racial and ethnic disparities can impact epidemic trajectories and result in unequal distributions 
of SARS-CoV-2 infection.
Funding: K.C.M. was supported by National Science Foundation GRFP grant DGE1745303. Y.H.G. 
and M.L. were funded by the Morris-Singer Foundation. M.L. was supported by SeroNet cooperative 
agreement U01 CA261277.

Introduction
The dynamics of SARS-CoV-2 spread are influenced by population heterogeneity. This is especially true 
for herd immunity, which occurs when susceptible individuals in a population are indirectly protected 
from infection due to immunity in others. The herd immunity threshold (HIT) is the fraction of the 
population that is non-susceptible when an unmitigated epidemic reaches its peak, and estimating the 
HIT for SARS-CoV-2 is important for forecasting the harm associated with letting the epidemic spread 
in the absence of interventions (Randolph and Barreiro, 2020). A population that has reached the HIT 
is protected from a new epidemic occurring, until births or waning immunity reduce the proportion 
nonsusceptible below the HIT, but existing cases will still lead to some onward transmission as the 
epidemic declines and can often result in a final epidemic size that exceeds the HIT. In a population 
with homogeneous mixing, the HIT is 1–1/R0, where R0 is the basic reproduction number; this trans-
lates to an HIT of 67% using an R0 of 3.
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However, population homogeneity is an unrealistic assumption, and models incorporating hetero-
geneity in social exposure and infection susceptibility (defined as the probability of infection given 
exposure) generally result in lowered HITs (Hill and Longini, 2003; Britton et  al., 2020; Gomes 
et al., 2020; Aguas et al., 2020; Tkachenko et al., 2020). The key idea behind these models is that 
subpopulations important for epidemic spread (i.e., those with substantially increased susceptibility 
or exposure) become infected – and thus develop immunity – early on in an epidemic’s course. Herd 
immunity for the population overall is then achieved earlier because once these individuals are no 
longer susceptible to infection, further epidemic spread is slowed.

Importantly, these models also imply that in locations where SARS-CoV-2 has spread there may 
be demographic subpopulations with particularly high cumulative incidences of infection due to 
increased exposure, susceptibility, or both. Seroprevalence studies – which characterize past exposure 
by identifying SARS-CoV-2 antibodies – can identify these subpopulations and are more reliable and 
unbiased than case data, which suffer from under-reporting and other biases (Metcalf et al., 2020). 
Identifying and building structured models with these groups in mind is important for understanding 
how variation in exposure or susceptibility and social disparities is interconnected. These models are 
also useful for designing interventions that can both reduce disparities and disrupt overall transmis-
sion by focusing efforts on groups most affected by high transmission rates (Wallinga et al., 2010; 
Bubar et al., 2021). Transmission models in this space have incorporated subpopulation structure by 
focusing primarily on accounting for variation in susceptibility and exposure by age (Britton et al., 
2020; Davies et al., 2020; Miller et al., 2020). Supporting this approach, susceptibility to infection, 
contact rates, and cumulative incidence in some locations all appear to vary by age (Davies et al., 
2020; Mossong et al., 2008). Nonetheless, serosurveys in Belgium, Spain, Iran, New York City (NYC), 
Brazil, and other places exhibit relatively low variation in seropositivity by age (Herzog et al., 2020; 
Pollán et al., 2020; Shakiba et al., 2020; Rosenberg et al., 2020; Hallal et al., 2020), indicating 
additional factors that govern transmission spread.

Substantial racial and ethnic disparities in infection rates, hospitalizations, and deaths have been 
characterized across the US (Chamie et al., 2020; Moore et al., 2020; Millett et al., 2020a; Pan 
et al., 2020; Chen and Krieger, 2020; Bassett et al., 2020; Hanage et al., 2020), but it is unclear 
how these heterogeneities in risk are expected to change over time and what implications – if any – 
they have on overall epidemic dynamics. Here, we aim to address these questions by fitting compart-
mental SEIR transmission models structured by race and ethnicity to seroprevalence data from NYC 
and Long Island (Rosenberg et  al., 2020). We focus primarily on building and analyzing variable 
exposure models because observed disparities in infection rates in US cities are strongly attributable 
to differences in mobility and exposure (Chang et al., 2021; Zelner et al., 2020; Kissler et al., 2020). 
Because of the challenges in acquiring racial and ethnic COVID-19 data (Krieger et  al., 2020b), 
including social contact data that can be used in transmission models, we analyze a range of model 
structures that are compatible with the data and assess how these assumptions affect estimates of 
HITs, final epidemic sizes, and longitudinal trends in risk across groups. These results highlight the 
importance of developing socially informed COVID-19 transmission models that incorporate patterns 
of epidemic spread across racial and ethnic groups.

Materials and methods
SEIR model
We initially modeled transmission dynamics in a homogeneous population using a SEIR compart-
mental SARS-CoV-2 infection model:

	﻿‍
dS
dt = −βIS‍� (1)

	﻿‍
dE
dt = βIS − rE‍� (2)

	﻿‍
dI
dt = rE − γI ‍� (3)

	﻿‍
dR
dt = γI ‍� (4)

where ‍S, E, I, R‍ refer to the number of people in susceptible, latently infected, infectious, and recov-
ered compartments, respectively. Given a mean incubation period and mean serial interval of 5 days 
as suggested by empirical studies (Nishiura et al., 2020; Lauer et al., 2020), we set the mean latent 
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period ‍1/r‍ to be 3 days to allow for pre-symptomatic transmission and the mean infectious period ‍1/γ‍ 
to be 4 days to coincide with the observed serial interval. The per capita transmission rate is given by 

‍β = R0γ/N ‍, where ‍N ‍ is the total number of people in the population.
We extended this model to incorporate multiple racial and ethnic groups by including SEIR 

compartmental variables for each group, which interact through a social contact matrix that governs 
the interactions between and within groups. In matrix form, the structured SEIR model is given by

	﻿‍
dS
dt = −(BI) ◦ S‍� (5)

	﻿‍
dE
dt = (BI) ◦ S − rE‍� (6)

	﻿‍
dI
dt = rE − γI‍� (7)

	﻿‍
dR
dt = γI‍� (8)

where ° denotes element-wise multiplication and ‍S, E, I, R‍ are column vectors comprising the 
compartmental variables for each group (e.g., ‍S = [S0, ..., Sp]T

‍ for ﻿‍ p‍ demographic groups). We let 
S0 denote non-Hispanic whites, S1 denote Hispanics or Latinos, S2 denote non-Hispanic African-
Americans, S3 denote non-Hispanic Asians, and S4 denote multiracial or other demographic groups, 
with similar ordering for elements in vectors ‍E‍ through ‍R‍.

We define contacts to be interactions between individuals that allow for transmission of SARS-
CoV-2 with some non-zero probability. Following the convention for age-structured transmission 
models (Wallinga et al., 2019), we defined the ‍p × p‍ per capita social contact matrix ‍C‍ to consist of 
elements ‍ci←j‍ at row ‍‍ and column ‍j‍, representing the per capita rate that individuals from group i 
are contacted by individuals of group ﻿‍ j‍. Letting ‍Ni‍ be the total number of individuals in group i, the 
social contact matrix ‍M‍ consists of elements ‍mi←j = ci←j ∗ Ni‍, which represents the average number of 
individuals in group i encountered by an individual in group ‍j‍. The susceptibility to infection can vary 
between groups, which we modeled by allowing the probability of infection given contact with an 
infected individual to vary: ‍q = [q0, ..., qp]T

‍. The transmission matrix ‍B‍ is then given by ‍(q1T) ◦ C‍, where 
‍1T ‍ is a one by ‍p‍ vector of 1 s:

	﻿‍

B=




q0 ... q0 ... q0

...
...

...

q4 ... q4 ... q4


◦




c0←0 ... c0←2 ... c0←4

...
...

...

c4←0 ... c4←2 ... c4←4



‍�

(9)

Given mean duration of infectiousness ‍1/γ‍, the next-generation matrix ‍G‍, representing the 
average number of infections in group i caused by an infected individual in group ‍j‍, is given by 

‍(q1T) ◦ M/γ = N ◦ B/γ‍. R0 for the overall population described by this structured model was calculated 
by computing the dominant eigenvalue of matrix ‍G‍. The effective reproduction number ‍Rt‍ at time 
‍t‍ was calculated by computing the dominant eigenvalue of ‍Gt = (q1T) ◦ Mt/γ = St ◦ B/γ‍, where the 
elements in ‍Mt‍ are given by ‍ci←j ∗ Si,t‍ and ‍Si,t‍ is the number of susceptible individuals in group i at time 
‍t‍. To hold R0 values across model types constant when calculating HITs and final epidemic sizes, we 
re-scaled transmission matrices to have the same dominant eigenvalue. We also calculated the instan-
taneous incidence rate at some time ‍t‍ for all groups by calculating the force of infection ‍λt = (BIt) ◦ St‍. 
To account for the effects of social distancing and other non-pharmaceutical interventions (NPIs), we 
scaled the transmission rate by a factor ‍α‍ beginning when 5% cumulative incidence in the popula-
tion was reached, representing an established and expanding epidemic, for a variable duration. We 
analyzed a range of ‍α‍ values to reflect the variation in NPIs implemented.

Structured model variants
Simplifying assumptions are needed to constrain the number of variables to estimate in ‍B‍ given limited 
data. Under the variable susceptibility model, we set the contact rates ‍ci←j‍ to all be 1, indicating no 
heterogeneity in exposure, but allowed the qj in the susceptibility vector to vary (i.e., ‍B = q1T

‍).
Under each of two variable exposure models, in contrast, we set the susceptibility factors qj to be 

equal. The simplest variable exposure model we analyzed was the proportionate mixing model, which 
assumes that the contact rate for each pair of groups is proportional to the total contact rate of the 
two groups (i.e., total number of contacts per unit time for an individual of group i) (Hethcote, 1996). 
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Denoting ai as the total contact rate for a member of group ‍‍ and ‍a‍ as the ‍1 × p‍ vector of ais, the ‍ij‍ th 
entry in the transmission matrix is given by

	﻿‍
βi←j = q aiaj∑

k akNk ‍� (10)

and the overall transmission matrix ‍B‍ can be written as

	﻿‍
B = q∑

k akNk
aaT

‍� (11)

Finally, under the assortative mixing assumption, we extended this model by partitioning a frac-
tion ‍ϵ‍ of contacts to be exclusively within-group and distributed the rest of the contacts according to 
proportionate mixing (with ‍δij‍ being an indicator variable that is 1 when ‍i = j‍ and 0 otherwise) (Heth-
cote, 1996):

	﻿‍
βi←j = (1 − ϵ)q aiaj∑

k akNk
+ ϵδijq ai

Ni ‍� (12)

	﻿‍
B = (1−ϵ)q∑

k akNk
aaT + ϵ q diag(a ◦ 1/N)

‍� (13)

Calculating the HIT and final epidemic size
We defined the HIT for all models as the fraction of nonsusceptible people when the effective repro-
duction number ‍Rt‍ first crosses 1. In the homogenous model, where ‍Rt = Stβ/γ‍, the analytical solution 
for the HIT occurs when the fraction of nonsusceptible individuals equals 1–1/R0. In the structured 
models of heterogeneous populations, the HIT was calculated via simulation: we took the dominant 
eigenvalue of ‍Gt‍ at each timestep to calculate ‍Rt‍ and identified the number of nonsusceptible indi-
viduals when ‍Rt‍ first decreased below 1. For the heterogeneous models with mitigation measures, ‍Rt‍ 
was calculated at each timestep with respect to the corresponding unmitigated epidemic; in other 
words, the mitigation scaling factor ‍α‍ was not included in the ‍Rt‍ calculation. This identifies the point 
in the epidemic trajectory at which the population reaches the HIT even if all mitigation measures 
were lifted (i.e., HIT due to population immunity), as opposed to the point in the trajectory when the 
population transiently reaches the HIT due to mitigation measures (see Figure 1—figure supplement 
1 for further explanation).

Final epidemic sizes were calculated by simulation by running the epidemic out to 1 year for R0 
above 2 and 4 years for R0 below 2 to allow additional time for the slower epidemics to fully resolve. 
The final time point was used as the estimate for the final epidemic size.

Model fitting and data sources
SEIR differential equations were solved using the lsoda function in the deSolve package (version 1.28) 
of R (version 3.6.3). We estimated the ai in the variable exposure models and the qi in the variable 
susceptibility models using maximum likelihood fits to a single cross-sectional serosurvey from New 
York, which was collected from over 15,000 adults in grocery stores from April 19 to 28 (Rosenberg 
et al., 2020). We assumed that the seroprevalence data (adjusted cumulative incidence estimates 
from Table 2 in Rosenberg et al., 2020) were collected via a binomial sampling process: at a given 
time point ts representing the time of the serosurvey, the number of seropositive cases ‍Yi(ts)‍ in group 
i is distributed ‍Bin(mi, Ri(ts)/Ni(ts))‍, where mi is the number of people tested from group i in the sero-
survey and ‍Ri/Ni‍ is the fraction of recovered people from the SEIR model. The likelihood was calcu-
lated jointly for all demographic groups, with ts set to 100 days and the initial number of infected 
individuals set to 1 in each demographic group.

We conducted sensitivity analyses to assess whether these assumptions on epidemic timing, and 
number and distribution of initial infected individuals, affected parameter and HIT estimates. Varying 
the timing of epidemic start did not substantially affect HIT estimates as long as the time between 
epidemic start and serosurvey ts was reasonably large (e.g., >20 days) and assortativity was low 
(‍ϵ < 0.8‍) (Figure 2—figure supplement 1). The distribution and number of initial infected individuals 
also did not substantially affect HIT estimates for low levels of assortativity (‍ϵ < 0.8‍) (Figure 2—figure 
supplements 2 and 3). We limited our analyses to models with ‍ϵ‍ less than 0.8.

We acquired total population numbers (i.e., ‍Ni‍ for ‍i ∈ {0, ..., 4}‍) from the 2018 ACS census 1-year 
estimates Table B03002 (Hispanic or Latino origin by race) subsetted to the following counties: Bronx, 
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Kings, New York, Queens, and Richmond Counties for NYC and Nassau and Suffolk Counties for Long 
Island. We acquired population numbers at the level of ‘all block groups’ within the above counties 
from the 2018 ACS 5-year estimates Table B03002 (Hispanic or Latino origin by race). Copies of 
the census data we used are available at https://​github.​com/​kevincma/​covid19-​race-​ethnicity-​model/​
tree/​main/​data.

Census-informed transmission model
The total number of contacts ‍Cij‍ between groups i and ‍j‍ can be calculated using the assortative 
mixing social contact matrix.

	﻿‍
Cij = cijNiNj = (1 − ϵ) aiajNiNj∑

k akNk
+ ϵδijaiNj‍�

To fit this assortative mixing model to both serosurvey and census data, we modeled interactions 
between racial and ethnic groups at the census block group level – which we interpreted to be roughly 
equivalent to neighborhoods – allowing the structure of the census data to inform the dynamics of 
transmission. Specifically, we assumed proportionate mixing between racial and ethnic groups in each 
census block group, with no interactions between block groups. Under this proportionate mixing 
within neighborhoods assumption, the total number of contacts ‍C

′
ij‍ between groups i and ‍j‍ is propor-

tional to:

	﻿‍ C′
ij ∝

∑L
l aiajNi,lNj,l‍�

where ‍L‍ is the number of census block groups, ‍Nj,l‍ is the number of people from demographic 
group ‍j‍ in census block ‍l‍, and aj is the total contact rate per individual in group ‍j‍ as before. Within 
each neighborhood, proportionate mixing holds: the total number of contacts between two groups 
is proportional to the activity level and neighborhood population of the groups. Additionally, similarly 
to the previous models, the total number of contacts across all groups (‍

∑
ij C′

ij‍) must equal ‍
∑

k akNk‍; to 
satisfy this constraint, we set a proportionality constant:

	﻿‍
C′

ij =
∑

k akNk∑
ijl aiajNi,lNj,l

∑L
l aiajNi,lNj,l

‍�

To fit ‍ϵ‍, we minimized the absolute difference between these two formulations (‍Cij‍ and ‍C
′
ij‍) of the 

total number of contacts across all pairs of groups (Figure 2—figure supplement 4):

	﻿‍

ϵ̂ = argmin
ϵ

∑
ij

|Cij − C
′
ij| =

argminϵ

∑
ij |(1 − ϵ) aiajNiNj∑

k akNk
+ ϵδijaiNj −

∑
k akNk∑

ijl aiajNi,lNj,l

∑L
l aiajNi,lNj,l|

‍�

Using the fitted value ‍̂ϵ‍, we then conducted maximum likelihood to fit the varying ai as described 
previously. We repeated this process iteratively – holding ai constant while ‍ϵ‍ was fit, and then vice 
versa – until convergence, which we defined as the difference between successive ‍̂ϵ‍ values being 
lower than a threshold of 0.001 (Supplementary file 3). For the first iteration, we fit ‍̂ϵ‍ holding ai 
constant at 1. We used this iterative fitting procedure to accommodate both the seroprevalence and 
census data because the single seroprevalence time point cannot fit both the activity levels and ‍ϵ‍.

To empirically characterize average neighborhood composition from the census data, we also 
calculated the exposure index matrix ‍P‍ with elements ‍Pij‍ for demographic groups i and ‍j‍, defined 
similarly to McCauley et al., 2001; Richardson et al., 2020

	﻿‍
Pij =

∑L
l

(
Nj,l
Nj

)(
Ni,l
Tl

)
‍� (14)

where ‍Tl‍ is the total number of people in census block group ‍l‍ and other variables are defined 
as before. The exposure indices were used for descriptive purposes only and not used in the model 
fitting approach.

Variable susceptibility versus variable exposure models
The serosurvey data were compatible with variable susceptibility models in which Hispanics or Latinos, 
non-Hispanic Black people, non-Hispanic Asians, and multiracial or other people had 2.25, 1.62, 0.86, 
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and 1.28 times the susceptibility to infection relative to non-Hispanic whites in NYC, respectively, and 
4.32, 1.96, 0.92, and 2.48 times the susceptibility to infection relative to non-Hispanic whites in Long 
Island, respectively. As with variable exposure models, these differences in susceptibility lowered 
herd immunity levels and final epidemic sizes relative to the homogeneous model (Figure 1—figure 
supplement 2), but to a lesser extent; for instance, variable susceptibility models resulted in HITs 
~10% greater than HITs under proportionate mixing for Long Island.

The difference between these models is that incorporating heterogeneity in susceptibility only 
affects susceptible individuals, but heterogeneity in exposure impacts both susceptible and infectious 
individuals: individuals from racial and ethnic groups with higher contact rates are both more likely to 
be infected, and when infected, to infect a greater number of secondary cases. This contrast is clear 
when comparing the next-generation matrices for each model, which lists the average number of 
secondary infections caused by an infected individual from a given demographic group (Figure 2—
figure supplements 5 and 6). The epidemic resolves at an earlier stage in variable exposure models 
once these key transmission groups become immune because of this additional compound effect on 
transmission.

Our results contrasting mechanistic variable exposure and susceptibility models are in line with 
theoretical studies, which also indicate that models incorporating heterogeneity in exposure have 
more pronounced effects on HITs than models incorporating heterogeneity in susceptibility, assuming 
comparable continuous distributions of exposure and susceptibility (Tkachenko et al., 2020; Gomes 
et al., 2020). Tkachenko et al. showed that ‍HIT = 1 − (1/R0)(1/λ)

‍, where ‍λ‍ is either ‍1 + CV2‍ for variable 
susceptibility models or ‍1 + CV2(2 + γsCV)/(1 + CV2)‍ for variable exposure models, and ‍CV ‍ is the coef-
ficient of variation and ‍γs‍ is the skewness for the exposure distribution (Tkachenko et al., 2020). We 
calculated CV and skewness using the susceptibility and total contact rate ratios and substituted those 
values into the HIT formula, which is an approximation because our exposure and susceptibility distri-
butions are discrete; nonetheless, the approximations result in similar HIT curves to the simulation 
results (Figure 1—figure supplement 3).

Code availability
Code and data to reproduce all analyses and figures are available at https://​github.​com/​kevincma/​
covid19-​race-​ethnicity-​model Ma et  al., 2021, copy archived at swh:1:rev:75574621317a599e90
58236f62bb34de63120e99. An executable version of the Jupyter notebook is available at https://​
mybinder.​org/​v2/​gh/​kevincma/​covid19-​race-​ethnicity-​model/​HEAD.

Results
We model the dynamics of COVID-19 infection allowing for social exposure to infection to vary across 
racial and ethnic groups. Models incorporating variable susceptibility to COVID-19 are commonly 
used when stratifying by age because children are thought to have decreased susceptibility to infec-
tion (Davies et al., 2020). Variable susceptibility to infection across racial and ethnic groups has been 
less well characterized, and observed disparities in infection rates can already be largely explained by 
differences in mobility and exposure (Chang et al., 2021; Zelner et al., 2020; Kissler et al., 2020), 
likely attributable to social factors such as structural racism that have put racial and ethnic minorities in 
disadvantaged positions (e.g., employment as frontline workers and residence in overcrowded, multi-
generational homes) (Henry Akintobi et al., 2020; Thakur et al., 2020; Tai et al., 2021; Khazanchi 
et al., 2020). In line with the notion that variation in exposure could instead be the main driver of 
observed seroprevalence differences, our primary focus is on analyzing variable exposure models; we 
have also analyzed variable susceptibility models for comparison (see Materials and methods section).

The simplest variable exposure models assume proportionate mixing, where the contact rate 
between groups is set to be proportional to the total contact rates (i.e., total number of contacts per 
time period per individual) of the two groups (Hethcote, 1996). We fit proportionate mixing models 
allowing for variable contact rates across racial and ethnic demographic groups to serosurvey data 
collected in late April from NYC and Long Island, comprising 5946 and 2074 adults, respectively 
(Rosenberg et al., 2020). The serosurvey data were compatible with proportionate mixing models in 
which Hispanics or Latinos, non-Hispanic Black people, non-Hispanic Asians, and multiracial or other 
people had 2.25, 1.62, 0.86, and 1.28 times the total contact rates relative to non-Hispanic whites in 
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https://archive.softwareheritage.org/swh:1:dir:c900453c5bec4abaa0cd94a6209b6f33fb11f513;origin=https://github.com/kevincma/covid19-race-ethnicity-model;visit=swh:1:snp:877604c017b6b65cfb4dccbaf77517193a37e775;anchor=swh:1:rev:75574621317a599e9058236f62bb34de63120e99
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NYC. Model fits to Long Island resulted in even more pronounced exposure differences because of 
greater between-group differences in seropositivity (e.g., the seropositivity in Hispanics or Latinos 
relative to non-Hispanic whites was 1.85 times higher in Long Island than in NYC). Under propor-
tionate mixing, Hispanics or Latinos, non-Hispanic Black people, non-Hispanic Asians, and multira-
cial or other people had 4.31, 1.96, 0.92, and 2.48 times the fitted total contact rates relative to 
non-Hispanic whites in Long Island, respectively. These differences in exposure impacted herd immu-
nity levels and final epidemic sizes relative to the homogeneous model across a range of R0 values 
(Figure 1 and Figure 1—figure supplement 4); for example, for an R0 of 3, the HIT decreases to 58% 
in NYC and 40% in Long Island compared to 67% under the homogeneous model. The observed 
contrast in HITs and final sizes between the proportionate mixing and the homogenous model is in 
line with theoretical derivations (Figure 1—figure supplement 3). The HIT overall is reached in this 
model after cumulative incidence has disproportionately increased in certain minority groups: at the 
HIT, 75% of Hispanics or Latinos and 63% of non-Hispanic Black people were infected compared to 
46% of non-Hispanic whites in NYC, and 77% of Hispanics or Latinos and 48% of non-Hispanic Black 
people were infected compared to 29% of non-Hispanic whites in Long Island (Figure 2).

The estimated total contact rate ratios indicate increased contacts for minority groups such as 
Hispanics or Latinos and non-Hispanic Black people, which is in line with studies using cell phone 
mobility data (Chang et al., 2021); however, the magnitudes of the ratios are substantially higher than 
one would expect given the findings from those studies. This may reflect some of the limitations of 
the proportionate mixing assumption, which does not allow for preferential within-group contacts and 
hence must fit observed seropositivity differences solely by scaling total contact rates. To address this, 

Figure 1. Incorporating assortativity in variable exposure models results in increased herd immunity thresholds across a range of R0 values. Variable 
exposure models were fitted to New York City and Long Island serosurvey data.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. ‍Rt‍calculation accounting for ‍α‍ (top) and without accounting for ‍α‍ (bottom) for a mitigated epidemic trajectory.

Figure supplement 2. Models incorporating variable susceptibility to COVID-19 fitted to New York City and Long Island serosurvey data result in 
reduced herd immunity thresholds (top) and final epidemic sizes (bottom) across a range of R0 values.

Figure supplement 3. Comparison of herd immunity thresholds (HITs) from simulations to theoretical HIT curves for models with gamma distributed 
exposure and susceptibility (Tkachenko et al., 2020).

Figure supplement 4. Incorporating assortativity in variable exposure models results in increased final epidemic sizes across a range of R0 values.

Figure supplement 5. Herd immunity thresholds versus R0 in variable exposure models with mitigation measures for ‍α = 0.3‍ (top) and ‍α = 0.6‍ 
(bottom).

Figure supplement 6. Final epidemic sizes versus R0 in variable exposure models with mitigation measures for ‍α = 0.3‍ (top) and ‍α = 0.6‍ (bottom).

Figure supplement 7. Sensitivity analysis on the impact of intensity and duration of non-pharmaceutical interventions (NPIs) on final epidemic sizes.

https://doi.org/10.7554/eLife.66601
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we augment the model by partitioning a specified fraction ‍ϵ‍ of contacts to be exclusively within-group, 
with the remaining contacts distributed proportionately. This assortative mixing model captures more 
realistic patterns of interactions due to neighborhood structure. After fitting the models across a range 
of ‍ϵ‍ values, we observed that as ‍ϵ‍ increases, HITs and epidemic final sizes shifted higher back towards 
the homogeneous case (Figure 1, Figure 1—figure supplement 4); this effect was less pronounced 
for R0 values close to 1. This observation can be understood by comparing the epidemic cumulative 
incidence trajectories (Figure 3—figure supplement 1) and next-generation matrices (Figure 2—
figure supplement 5 and 6): under proportionate mixing (‍ϵ = 0‍), lower-risk demographic groups are 
protected from further infection due to built-up immunity in higher-risk demographic groups, but the 
magnitude of this indirect protection decreases as the proportion of exclusively within-group contacts 
increases and groups become more isolated.

We assessed a range of values for ‍ϵ‍ because the serosurvey data cannot be used to also fit the 
optimal ‍ϵ‍ value; given limited numbers of data points, any value of ‍ϵ‍ can fit exactly to the single 
seroprevalence time point we consider. To inform plausible assortativity levels, we instead used addi-
tional data on demographic population distributions from the American Community Survey US census 
stratified at the census block group level, which represents a small geographic area and popula-
tion (Figure 2—figure supplement 7). We first calculated the exposure index, which represents the 

Figure 2. Cumulative incidence is disproportionately higher in some racial and ethnic minorities when the overall herd immunity threshold (HIT) is 
reached across model types and locations. Results are shown for an epidemic with R0 = 3. The HIT for the population is indicated with a black line, and 
the HIT for a homogeneous model with the same R0 is indicated with a gray line.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Sensitivity analysis on timing of the serosurvey relative to the start of the epidemic.

Figure supplement 2. Sensitivity analysis on initial number of infected individuals in each group.

Figure supplement 3. Sensitivity analysis on race or ethnicity of first infected individual.

Figure supplement 4. First iteration of fitting ‍ϵ‍ in social contact matrices to census data for New York City (top) and Long Island (bottom).

Figure supplement 5. Next-generation matrices for variable susceptibility (top), proportionate mixing (middle), and census-informed assortativity 
(bottom) models fitted to New York City seroprevalence data.

Figure supplement 6. Next-generation matrices for variable susceptibility (top), proportionate mixing (middle), and census-informed assortativity 
(bottom) models fitted to Long Island seroprevalence data.

Figure supplement 7. Distribution of census block group sizes in New York City (NYC; left) and Long Island (right).

Figure supplement 8. Cumulative incidence is disproportionately higher in some racial and ethnic minorities when the overall herd immunity threshold 
(HIT) is reached across model types and locations.

https://doi.org/10.7554/eLife.66601
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average neighborhood’s demographic composition from the perspective of an individual from a given 
racial or ethnic group; the proportion of contacts within group were elevated, suggesting assortativity 
in the census data (Supplementary file 1). To directly fit ‍ϵ‍ with these data, we assumed proportionate 
mixing within census block groups and ran an iterative fitting approach to jointly fit ‍ϵ‍ and the ai total 
contact rates using both census and serosurvey data (see Materials and methods and Supplementary 
file 3). This approach accounts for contacts based on geographic proximity using strong assumptions 
on mixing patterns, but may not capture contacts in other settings, such as work, beyond one’s imme-
diate neighborhood of residence. The models jointly fitted to serosurvey and census data indicated 
that 46 and 39% of contacts were exclusively within-group in NYC and Long Island, respectively. The 
same groups had elevated total contact rates as under proportionate mixing, but the magnitudes of 
differences were now lower and more concordant with reported mobility differences (Chang et al., 
2021): model estimates indicated Hispanics or Latinos, non-Hispanic Black people, non-Hispanic 
Asians, and multiracial or other people had 1.62, 1.35, 0.90, and 1.17 times the total contact rate rela-
tive to non-Hispanic whites in NYC, respectively, and 2.60, 1.63, 0.93, and 1.90 times the total contact 
rate relative to non-Hispanic whites in Long Island, respectively. For an epidemic with ‍R0 = 3‍, the HITs 
for NYC and Long Island using these census-informed assortativity models were 61 and 45%, respec-
tively. Similar to previous models, at the HIT, 76% of Hispanics or Latinos and 66% of non-Hispanic 
Black people were infected compared to 50% of non-Hispanic whites in NYC, and 81% of Hispanics 
or Latinos and 56% of non-Hispanic Black people were infected compared to 34% of non-Hispanic 
whites in Long Island (Figure 2).

Using these census-informed assortative mixing models, we then considered how the relative inci-
dence rates of infection in demographic groups could change over the course of the epidemic. Early 
comparisons of infection and mortality rates have helped to identify racial and ethnic groups at high 
risk and the risk factors for infection (Chamie et al., 2020; Moore et al., 2020; Millett et al., 2020a; 
Pan et al., 2020; Chen and Krieger, 2020; Bassett et al., 2020; Hanage et al., 2020), but these 
studies often rely on cross-sectional snapshots of epidemiological patterns. The challenge is that 
these metrics can change over time: for instance, multiple studies indicate decreasing disparities 
in incidence rate over time across racial and ethnic groups relative to non-Hispanic whites (Krieger 

Figure 3. Dynamics of incidence rate ratios relative to non-Hispanic whites in assortative mixing models fitted to census and serosurvey data. Dashed 
line represents the peak overall incidence for the epidemic.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Comparison of cumulative incidence trajectories for proportionate mixing (top) and assortative mixing (‍ϵ = 0.7‍; bottom) models 
fitted to Long Island seroprevalence data.

Figure supplement 2. Dynamics of cumulative incidence rate ratios relative to non-Hispanic whites in census-informed assortative mixing models, fitted 
to New York City (top) and Long Island (bottom) seroprevalence data.

Figure supplement 3. Dynamics of incidence rate ratios relative to non-Hispanic whites in census-informed assortative mixing models with mitigation 
measures.

https://doi.org/10.7554/eLife.66601
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et al., 2020a; Van Dyke et al., 2021). The reasons for these changes are multifaceted, but even inde-
pendent of the effect of interventions, behavioral changes, or differential access to testing, models 
of epidemic spread in structured populations imply that incidence rate ratios for high-risk groups can 
decrease substantially as the epidemic progresses because of depletion of susceptible individuals 
from these groups (Goldstein et al., 2017; Koopman et al., 1991). In line with this, we observe that 
instantaneous incidence rate ratios are elevated initially in high-contact groups relative to non-Hispanic 
whites, but this trend reverses after the epidemic has peaked and overall incidence is decreasing – a 
consequence of the fact that a majority of individuals have already become infected (Figure 3). Simi-
larly, cumulative incidence ratios remain elevated in high-contact racial and ethnic groups throughout 
the epidemic, but the magnitude decreases as the epidemic progresses (Figure 3—figure supple-
ment 2). Although these trajectories are not meant to be taken as predictive estimates, these results 
highlight the importance of controlling for dynamics-induced changes in epidemiological measures 
of disease burden when evaluating the impact of interventions for reducing inequities in SARS-CoV-2 
infections (Kahn et al., 2020); otherwise, ineffective interventions – depending on their timing – might 
still be associated with declines in relative measures of disease burden.

Finally, we assessed how robust these findings were to the impact of social distancing and other 
NPIs. We modeled these mitigation measures by scaling the transmission rate by a factor ‍α‍ beginning 
when 5% cumulative incidence in the population was reached. Setting the duration of distancing to 
be 50 days and allowing ‍α‍ to be either 0.3 or 0.6 (i.e., a 70% or 40% reduction in transmission rates, 
respectively), we assessed how the R0 versus HIT and final epidemic size relationships changed. We 
found that the R0 versus HIT relationships were similar comparing a mitigated to an unmitigated 
epidemic (Figure 1—figure supplement 5). In contrast, final epidemic sizes depended on the inten-
sity of mitigation measures, though qualitative trends across models (e.g., increased assortativity 
leads to greater final sizes) remained true (Figure 1—figure supplement 6). To explore this further, 
we systematically varied ‍α‍ and the duration of NPIs while holding R0 constant at 3. We found again 
that the HIT was consistent, whereas final epidemic sizes were substantially affected by the choice 
of mitigation parameters (Figure 1—figure supplement 7); the distribution of cumulative incidence 
at the point of HIT was also comparable with and without mitigation measures (Figure 2—figure 
supplement 8). The most stringent NPI intensities did not necessarily lead to the smallest epidemic 
final sizes, an idea which has been explored in studies analyzing optimal control measures (Neuwirth 
et al., 2020; Handel et al., 2007). Longitudinal changes in incidence rate ratios also were affected by 
NPIs, but qualitative trends in the ordering of racial and ethnic groups over time remained consistent 
(Figure 3—figure supplement 3).

Discussion
Here, we explored how incorporating heterogeneity in SARS-CoV-2 spread across racial and ethnic 
groups could affect epidemic dynamics using deterministic transmission models. Models incorporating 
variable exposure generally decreased the HIT and final epidemic size, but incorporating preferential 
within-group contacts shifted HITs and final epidemic sizes higher, approaching the homogeneous 
case. Epidemiological measures of disease burden such as incidence rate ratios and cumulative inci-
dence ratios also changed substantially over the course of the epidemic, highlighting the need to 
account for these trends when evaluating interventions (Kahn et al., 2020). These results illustrate the 
varied effects of different structured heterogeneity models, but are not meant to be best estimates 
given the limited seroprevalence data.

Across all model variants, the observed higher cumulative incidence among Hispanics or Latinos 
and non-Hispanic Black people compared to non-Hispanic whites led to estimates of higher estimated 
contacts relative to non-Hispanic whites, mirroring existing inequities in housing, education, health-
care, and beyond (Khazanchi et al., 2020; Millett et al., 2020a; Millett et al., 2020b; Boyd et al., 
2020; Bailey et  al., 2021). The estimated contact rate differences also concord with reports that 
frontline workers, who are unable to engage in physical or social distancing to the same degree as 
other types of workers, are disproportionately from minority backgrounds (Blau et al., 2020; Chang 
et al., 2021; Kissler et al., 2020). The assortativity we observed in the census data has root causes 
in many areas, including residential segregation arising from a long history of discriminatory prac-
tices (Yang et al., 2020; Millett et al., 2020b; Bailey et al., 2021; Benfer et al., 2021). Projecting 
the epidemic forward indicated that the overall HIT was reached after cumulative incidence had 
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increased disproportionately in minority groups, highlighting the fundamentally inequitable outcome 
of achieving herd immunity through infection. All of these factors underscore the fact that incorpo-
rating heterogeneity in models in a mechanism-free manner can conceal the disparities that underlie 
changes in epidemic final sizes and HITs. In particular, overall lower HIT and final sizes occur because 
certain groups suffer not only more infection than average, but more infection than under a homoge-
neous mixing model; incorporating heterogeneity lowers the HIT but increases it for the highest-risk 
groups (Figure 2).

These results also suggest that public health interventions for reducing COVID-19 inequities can 
have synergistic effects for controlling the overall epidemic (Richardson et al., 2020). For instance, 
from a transmission-control perspective, age-structured models indicate that vaccination of high-
contact age groups – such as young adults – is optimal for controlling the spread of SARS-CoV-2 
(Bubar et al., 2021). Similar interventions are being explored for disadvantaged populations because 
of how increased exposure underlies much of the higher infection risk that racial and ethnic minorities 
experience. For instance, Mulberry et al. used a structured SEIR model to evaluate the impact of pref-
erentially vaccinating essential workers, finding that such a strategy was more effective in reducing 
morbidity, mortality, and economic cost due to COVID-19 compared to age-only vaccination priori-
tization strategies (Mulberry et al., 2021). Because racial and ethnic minorities are overrepresented 
among essential workers (Blau et al., 2020; Chang et al., 2021; Kissler et al., 2020), further modeling 
studies could evaluate the impact of such strategies on also reducing inequities in COVID-19 infection 
rates. Wrigley-Field et al. took a different methodological approach, projecting demographically strat-
ified death rates from 2020 into 2021 assuming various vaccination strategies (Wrigley-Field et al., 
2021). In line with the prior study, they found that vaccination strategies that prioritized geographic 
areas based on socioeconomic criteria or prior COVID mortality rates outperformed age-based strat-
egies in reducing overall mortality and inequities in mortality. Because populations here were consid-
ered independently, these results could be extended using a transmission modeling framework, such 
as the one we have described, that accounts for interactions between racial and ethnic groups and 
thus allows for synergistic benefits from vaccinating high-risk populations. All policy proposals in this 
space should, of course, carefully consider the legal and ethical dimensions of vaccinations or other 
interventions targeted by race or ethnicity (Schmidt et al., 2020).

We note several limitations with this study. First, biases in the serosurvey sampling process can 
substantially affect downstream results; any conclusions drawn depend heavily on the degree to which 
serosurvey design and post-survey adjustments yield representative samples (Clapham et al., 2020). 
For instance, because the serosurvey we relied on primarily sampled people at grocery stores, there 
is both survival bias (cumulative incidence estimates do not account for people who have died) and 
ascertainment bias (undersampling of at-risk populations that are more likely to self-isolate, such as 
the elderly) (Rosenberg et al., 2020; Accorsi et al., 2021). These biases could affect model estimates 
if, for instance, the capacity to self-isolate varies by race or ethnicity – as suggested by associations 
of neighborhood-level mobility versus demographics (Kishore et al., 2020a; Kissler et al., 2020) 
– leading to an overestimate of cumulative incidence and contact rates in whites. Other sources of 
uncertainty, such as antibody test sensitivity and specificity, could also be incorporated into transmis-
sion models in future work (Larremore et al., 2020; Accorsi et al., 2021). Second, we have assumed 
that seropositivity implies complete immunity and that immunity does not wane. These are strong 
assumptions that can be revisited as empirical studies on the length of natural immunity are conducted. 
Third, we have assumed the impact of NPIs such as stay-at-home policies, closures, and the like to 
equally affect racial and ethnic groups. Empirical evidence suggests that during periods of lockdown 
certain neighborhoods that are disproportionately wealthy and white tend to show greater declines in 
mobility than others (Kishore et al., 2020a; Kissler et al., 2020). These simplifying assumptions were 
made to aid in illustrating the key findings of this model, but for more detailed predictive models, the 
extent to which contact rate differences change could be evaluated using longitudinal contact survey 
data (Feehan and Mahmud, 2020) since granular mobility data are typically not stratified by race and 
ethnicity due to privacy concerns (Kishore et al., 2020b). Fourth, due to data availability, we have 
only considered variability in exposure due to one demographic characteristic; models should ideally 
strive to also account for the effects of age on susceptibility and exposure within strata of race and 
ethnicity and other relevant demographics, such as socioeconomic status and occupation (Mulberry 
et  al., 2021). These models could be fit using representative serological studies with detailed 
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cross-tabulated seropositivity estimates. Finally, we have estimated model parameters using a single 
cross-sectional serosurvey. To improve estimates and the ability to distinguish between model struc-
tures, future studies should use longitudinal serosurveys or case data stratified by race and ethnicity 
and corrected for underreporting; the challenge will be ensuring that such data are systematically 
collected and made publicly available, which has been a persistent barrier to research efforts (Krieger 
et al., 2020b). Addressing these data barriers will also be key for translating these and similar models 
into actionable policy proposals on vaccine distribution and NPIs.

In summary, we have explored how deterministic transmission models can be extended to study the 
dynamics of infection in racial and ethnic groups, and how the impact of heterogeneity on the HIT and 
final epidemic size depends strongly on the details of how heterogeneity is modeled. We have shown 
that due to early infections in individuals from the most at-risk group, relative measures of incidence 
may decline and even reverse, but inequities in the cumulative burden of infection persist throughout 
the epidemic as the HIT is reached. These results describe a framework that can be extended to other 
cities and countries in which racial and ethnic disparities in seropositivity have been observed (Hallal 
et al., 2020; Flannery et al., 2020; Chan et al., 2021) and are a step towards using transmission 
models to design policy interventions for reducing disparities in COVID-19 and other diseases.
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