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Abstract Actions often require the selection of a specific goal amongst a range of possibilities,

like when a softball player must precisely position her glove to field a fast-approaching ground ball.

Previous studies have suggested that during goal uncertainty the brain prepares for all potential

goals in parallel and averages the corresponding motor plans to command an intermediate

movement that is progressively refined as additional information becomes available. Although

intermediate movements are widely observed, they could instead reflect a neural decision about

the single best action choice given the uncertainty present. Here we systematically dissociate these

possibilities using novel experimental manipulations and find that when confronted with

uncertainty, humans generate a motor plan that optimizes task performance rather than averaging

potential motor plans. In addition to accurate predictions of population-averaged changes in motor

output, a novel computational model based on this performance-optimization theory accounted for

a majority of the variance in individual differences between participants. Our findings resolve a

long-standing question about how the brain selects an action to execute during goal uncertainty,

providing fundamental insight into motor planning in the nervous system.

Introduction
We often plan actions before knowing the exact goal. For example, in baseball, a pitch can take as

little as 400 ms to reach the batter. With a reaction time of at least 200 ms and a 150 ms swing dura-

tion, the batter must initiate the swing based on visual information from only the first 10–20% of the

ball’s flight, amidst considerable uncertainty surrounding the ultimate timing and positioning of the

ball’s arrival at the plate. Nonetheless, batters deftly make use of this uncertain information and

often make good contact with the ball. But what are the mechanisms that underlie this ability?

To study how motor planning proceeds when goal information is ambiguous, controlled experi-

ments have introduced uncertainty in several different ways: by delaying goal information

(Chapman et al., 2010; Ghez et al., 1997), pairing potential goals with distractor stimuli

(Arai et al., 2004; Walker et al., 1997), displaying noisy visual cues (Hudson et al., 2007;

Resulaj et al., 2009), or incorporating high-level cognitive decision-making events during movement

(Song and Nakayama, 2009). In response to this uncertainty, which prompts consideration of multi-

ple potential goals, movements frequently begin in directions that are intermediate between them.

These intermediate movements – widely considered a telltale sign of motor planning under uncer-

tainty (Chapman et al., 2010; Hudson et al., 2007; Stewart et al., 2014; Wong and Haith, 2017;

McPeek and Keller, 2004; Tipper et al., 1998; Gallivan et al., 2011; Hening et al., 1988;

Favilla et al., 1990) – are thought to provide fundamental insight into the neural processes by which

the brain prepares an action to achieve a desired goal (Chapman et al., 2010; Arai et al., 2004;

Stewart et al., 2014; Wong and Haith, 2017; McPeek and Keller, 2004).

The prevailing interpretation of intermediate movements during uncertainty is that they represent

an average of the individual motor plans that arise from each potential target (Chapman et al.,

2010; Ghez et al., 1997; Arai et al., 2004; Stewart et al., 2014; Tipper et al., 1998;

Gallivan et al., 2011; Hening et al., 1988; Favilla et al., 1990; Gallivan et al., 2016;
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Gallivan et al., 2017; Gallivan and Chapman, 2014; Stewart et al., 2013; Chou et al., 1999;

Van der Stigchel et al., 2006; Eggert et al., 2002; Findlay, 1982; Godijn and Theeuwes, 2002;

Ottes et al., 1984; Sailer et al., 2002; Coren and Hoenig, 1972). This idea, termed motor

averaging (MA), has been reported to occur for a number of key movement-related variables includ-

ing a movement’s direction (Chapman et al., 2010; Ghez et al., 1997; Van der Stigchel et al.,

2006), path shape (Stewart et al., 2014; Gallivan and Chapman, 2014), effector orientation

(Stewart et al., 2013), and even the feedback gains modulating how the motor system responds to

errors induced by noise and external perturbations (Gallivan et al., 2016). Moreover, MA has been

reported in a diverse array of behavioral paradigms, including point-to-point reaching arm move-

ments (Chapman et al., 2010; Gallivan and Chapman, 2014), saccadic eye movements (Arai et al.,

2004; Van der Stigchel et al., 2006; Coren and Hoenig, 1972), and isometric force control

(Hening et al., 1988). In line with the MA hypothesis, neurophysiological work has suggested senso-

rimotor activity reflecting the parallel planning of movements to different potential targets

(McPeek and Keller, 2004; Cisek and Kalaska, 2005; Cisek, 2007; Baumann et al., 2009;

Coallier et al., 2015; Pastor-Bernier and Cisek, 2011), with the assertion that parallel plans are

automatically combined via MA to form the final action plan (Chapman et al., 2010; Stewart et al.,

2014; Gallivan et al., 2011; Stewart et al., 2013; Gallivan et al., 2015).

An alternative explanation for the occurrence of intermediate movements is that they instead

reflect a deliberate plan that seeks to optimize task performance (Hudson et al., 2007; Haith et al.,

2015a). A previous attempt to decouple this performance optimization (PO) hypothesis from MA

demonstrated that during goal uncertainty intermediate movements are abandoned when high-

threshold movement speed criteria are imposed or when potential goals have a wide spatial separa-

tion (Wong and Haith, 2017). These findings show that behavior at odds with MA can occur, and

thus indicate that MA is not obligatory, which is a key result. However, because these tasks incentiv-

ize direct movements towards a single potential target for success, they are likely to promote a

high-level explicit choice between targets before movement onset rather than low-level motor plan-

ning under uncertainty. Thus, the mechanisms underlying the formation of intermediate movements

– a hallmark of movement planning during uncertainty – remain unclear.

It has been difficult to dissociate between MA and PO because the motor plan that leads to task

success often resembles an average of individual-target motor plans (Hudson et al., 2007). Indeed,

close examination of studies supporting MA reveals that the findings were, in fact, consistent with

PO. For example, Chapman et al., 2010 examined motor planning during goal uncertainty by

employing a task where participants were asked to make rapid reaching movements towards one of

several potential target locations, with the final target cued only after movement onset (i.e., ‘go-

before-you-know’). Analogously, Gallivan et al., 2016 studied motor planning at the level of feed-

back control policies in an analogous go-before-you-know task, but used targets of different widths

in order to modulate the gain of feedback responses (Knill et al., 2011). In both cases, intermediate

actions were elicited when the goal was uncertain. In the Chapman study, the resulting movement

was directed at the midpoint between the potential target locations, and in the Gallivan study, the

resulting feedback gain was sized at the midpoint between the gains associated with each potential

target. Although the authors interpreted these behaviors as evidence for MA, in both cases the

results can also be explained by PO: in the Chapman study, initial movements towards the spatial

midpoint brings the hand closer to all potential targets, thus reducing the size of the subsequent

movement required to reach the final target once identified, and in the Gallivan study, intermediate

feedback gains balance the cost of the effort needed for movements executed with high-feedback

gains, against the likelihood that this effort will be necessary.

In another example, Stewart et al., 2014 used the go-before-you-know paradigm to create goal

uncertainty, but in combination with obstacles that were positioned to alter motor planning to one

of the potential targets. In trials where the goal was initially uncertain, the obstacle placements

resulted in intermediate movements that were deflected in a manner consistent with MA, and this

was taken as evidence for the MA hypothesis. However, the obstacles were configured in such a way

that the observed deflections on goal-uncertain trials, which were interpreted as evidence for MA,

also happened to improve the safety margin around the obstacle. Therefore, PO for the goal-uncer-

tain trials, which would result in motor planning that improved safety margins to minimize the likeli-

hood of obstacle collisions, would also readily predict the experimentally observed deflections,

calling the evidence for MA into question.
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The interpretational and methodological issues of the studies outlined above are emblematic of

the pervasive confound between MA and PO in studies examining motor planning under uncertainty.

In the current study, we resolve the debate between these hypotheses by designing two sets of

experiments that each perturbed the individual-target motor plans, as in previous studies

(Stewart et al., 2014; Gallivan et al., 2016; Gallivan et al., 2017; Nashed et al., 2017), but in a

manner that led to distinct predictions for MA and PO during goal uncertainty in both experiments.

In one, we employ obstacle-based perturbations of motor planning, like in Stewart et al., 2014, but

using novel obstacles that break the congruence between the predictions for PO and MA. In

another, we create a novel dynamic environment that induces adaptive responses that make

completely opposite predictions for PO vs. MA. In both cases, we find clear evidence that, when

faced with uncertainty, humans form a motor plan that optimizes task performance.

Results
To decouple motor averaging (MA) from performance optimization (PO) in both experiments (Expt 1

and Expt 2), we created modifications of the popular go-before-you-know task (Hudson et al.,

2007; Stewart et al., 2014; Wong and Haith, 2017; Gallivan et al., 2011; Gallivan et al., 2016;

Gallivan et al., 2017; Gallivan and Chapman, 2014; Stewart et al., 2013), where uncertainty is

introduced on some trials by presenting participants with multiple potential reach targets and dis-

closing the final goal location only after movement onset. We designed paradigms that altered

motor plans in such a way that the MA and PO theories would make contrasting predictions when

the reach goal was uncertain. In Expt 1, we accomplished this by pre-training a force-field (FF) envi-

ronment that physically perturbed 1-target movements to left and right lateral target locations with

one FF environment (FFLATERAL), but perturbed movements to a center target location with the

opposite FF environment (FFCENTER). Consequently, when the left and right target locations were

presented as potential targets under uncertainty, MA predicts that intermediate movements incor-

porate the learned adaptive response to FFLATERAL. However, PO predicts that these intermediate

movements should be planned so that they travel towards the midpoint of the potential targets in

order to maximize the probability of final target acquisition. This would, in contrast to MA, predict

that intermediate movements incorporate the learned adaptive response to FFCENTER, appropriate

for center-directed movements, allowing us to decisively dissociate PO from MA.

In Expt 2, we achieved a second dissociation between MA and PO by placing a virtual obstacle

that induced deflections as it blocked direct movements to one target. Consequently, when that

obstacle-obstructed target was used as a potential target under uncertainty, MA predicts that inter-

mediate movements inherit a portion of this deflection, even if it would steer them closer to the

obstacle. In contrast, PO would predict that intermediate movements be consistently steered away

from the obstacle to maintain a sufficient safety margin around it, as optimizing for task success

would act to reduce the chance of obstacle collision. We thus present two distinct approaches that

powerfully dissociate the predictions of the MA and PO theories for motor planning under

uncertainty.

Adaptation to novel physical dynamics can elucidate the mechanisms
for motor planning under uncertainty
In Expt 1 (n = 16), we employed a version of the ‘go-before-you-know’ task in which a combination

of different FF environments was used to investigate movement planning under uncertainty. While

gripping a robotic manipulandum that could apply forces to the hand (Figure 1a), participants initi-

ated 20 cm cued-onset reaching movements towards either a single prespecified target (1-target tri-

als; Figure 1b, left) or two potential targets (2-target trials; Figure 1b, right). On 1-target trials, the

target, located at a left (+30˚), right (�30˚), or center (0˚) eccentricity from the midline, was displayed

for 1000 ms before an auditory go cue was delivered. On 2-target trials, the same pair of potential

targets always appeared in the left and right target locations for 1000 ms before the auditory go

cue, but one (randomly selected) was extinguished 3 cm after movement onset, leaving only the final

reach target on-screen. Comparing the data from 1- and 2-target trials thus allowed us to infer how

uncertainty about the final target location influences motor planning on 2-target trials.

We designed a novel physical environment composed of multiple FFs that would result in very dif-

ferent predictions from MA vs. PO for motor planning on 2-target trials. Specifically, we trained
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participants to adapt to a viscous curl FF (see Materials and methods) that perturbed the left/center/

right movements during 1-target trials with a FFLATERAL/FFCENTER/FFLATERAL composite environment

(Figure 1c), where FFCENTER = -FFLATERAL, and the sign of the FFs was balanced across participants.

For 2-target trials, MA would predict that participants average the force patterns (FFLATERAL in both

cases) learned for the left and right (lateral) targets, which correspond to the potential target loca-

tions on 2-target trials (Figure 1d, left). In contrast, PO would predict that participants produce the

force pattern (FFCENTER) appropriate for optimizing the planned intermediate movement since this

movement maximizes the probability of successful target acquisition (Hudson et al., 2007;

Haith et al., 2015a; Figure 1d, right). Importantly, and in contrast to previous studies

(Gallivan et al., 2017; Nashed et al., 2017; Stewart et al., 2013; Stewart et al., 2014), we were

Experiment 1 setup
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for 1-target trilas

Predicted effects of FF learning from 1-target trials 

on feedforward motor planning for 2-target trials
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Figure 1. Multiple force-field (multi-FF) environment paradigm. (a) Setup for the multi-FF environment experiments. We altered environmental

dynamics by exposing participants to viscous curl FFs in which the force vector perturbing reaching movements was proportional in magnitude and

perpendicular in direction to the velocity of the hand (see Materials and methods). (b) Diagram of unperturbed 1- and 2-target trial types. On 1-target

trials (left panel), a single target located in the left (+30˚), right (�30˚), or center (0˚) direction was presented, and participants were instructed to initiate

rapid 20 cm reaching movements to the target after an auditory go cue. On 2-target trials (right panel), a pair of potential targets, always in the left and

right target directions, was presented before the go cue. Then, 3 cm after movement onset, we extinguished one target and highlighted the other to

indicate the final goal. Delaying the precise goal information in this manner typically leads to initial reaching movements directed in-between potential

target locations before participants produce in-flight movement corrections towards the final target. (c) Individual-target FF perturbations. During 1-

target trials, we perturbed movements to the left and right targets with FFLATERAL (light blue and pink arrow and dotted trace sets, respectively) and the

center target with FFCENTER (light gray arrow and dotted trace sets). The directions of FFLATERAL and FFCENTER were counterbalanced across participants,

but always with FFCENTER = -FFLATERAL. Training in this composite environment alters the adaptive responses (darker solid arrow trace sets) in

accordance with the FF imposed on each target. Note that the adaptive response on 1- and 2-target trials was measured as the force patterns

participants produced on error clamp and partial error clamp trials, respectively (see Materials and methods). (d) Predictions for motor averaging (MA)

and performance optimization (PO) for feedforward motor planning during uncertainty. Because both potential targets (left and right) were associated

with FFLATERAL, MA (purple arrows) predicts a force pattern consistent with FFLATERAL on 2-target trials. However, since the initial motion on these 2-

target trials is in the direction of the center target, PO (green arrows) predicts the force pattern consistent with FFCENTER, which is opposite the MA

prediction.
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able to reliably elicit intermediate movements during uncertainty in all our experiments by control-

ling the reward rate with sliding scales for movement time criteria (see Materials and methods).

Participants first performed baseline 1- and 2-target trials to gain familiarity with them, and then

completed an FF training block, where we imposed the multi-FF environment on 1-target trials as

outlined above. Note that, because we differentially perturbed movements to the center target com-

pared to the lateral targets, adaptation to the FFs associated with the lateral targets, FFLATERAL in

both bases, would interfere with adaptation to the FF associated with the center target, FFCENTER.

To elicit similar levels of FF adaptation for all three target locations, we included a greater number

of training trials for the center target (using a ratio of 1:2:1 for left, center, and right target direc-

tions; see Materials and methods). The adaptive compensation to the FFs administered during train-

ing was measured with pseudorandomly interspersed error clamp trials (Scheidt et al., 2000). After

training, participants experienced a test epoch, which included 2-target partial error clamp trials, on

which the initial force pattern could be measured (see Materials and methods). The test epoch also

included intermittent 1-target FF and error clamp trials, used to maintain the adaptive change in

motor output developed during the training epoch and measure its ongoing state.

Adaptive responses in a multi-FF environment are consistent with
motor planning during uncertainty driven by performance optimization
rather than motor averaging
Training within the multi-FF environment resulted in substantial levels of motor adaptation in all

three target directions throughout both the training and test epochs as demonstrated in Figure 2a.

We measured this adaptation with an adaptation coefficient, a regression-based metric for compar-

ing each movement’s force profile relative to the imposed FF perturbation (see

Materials and methods) (Smith et al., 2006; Sing et al., 2009). We found that the final adaptation

coefficient levels achieved at the end of the training period (defined as the last 10% of EC trials)

were within ~9% for all three target directions (0.73 ± 0.15 [95% C.I.], 0.80 ± 0.15, and 0.73 ± 0.12

for training in the left, center, and right target directions, respectively). Importantly, these adapta-

tion levels were largely maintained during the test epoch (0.71 ± 0.13, 0.68 ± 0.13, and 0.74 ± 0.09

for training in left, center, and right target directions, respectively). Therefore, we used the popula-

tion-averaged force profiles measured on 1-target error clamp trials (i.e., the adaptive response) dur-

ing this test epoch to construct our predictions for MA vs. PO, as shown in Figure 2b. Note that all

force data are aligned to target cue onset (TON), the time at which one of the potential targets was

extinguished for 2-target trials, which corresponds to the 3 cm excursion point shown in Figure 1b.

Also note that all force profile data are shown for the time that feedforward motor output was

observed on 2-target trials since forces due to feedback corrections do not reflect movement plan-

ning. We defined the time of feedback response onset (TRESP) as the point in time where we could

detect statistically significant feedback responses during 2-target trials (150 ms after target cue

onset; see Materials and methods). In line with the adaptation coefficient measure we used to char-

acterize overall learning, the more detailed analysis that we present of how force profiles evolve in

time also normalizes raw force measurements by the level of the ideal compensation.

To specifically determine how movements are planned in uncertain conditions, we examined the

force patterns predicted by MA and PO for 2-target trials and compared them to the force patterns

we measured on 2-target trials (Figure 2c). The MA and PO predictions are essentially opposite,

consistent with the FFLATERAL/FFCENTER/FFLATERAL environment we imposed during training. The MA

prediction corresponds to the average of the force profiles (adaptive responses) associated with the

left and right 1-target EC trials plotted in Figure 2b, and we note that because the left and right 1-

target trial force profiles were remarkably similar, differential weighting for these motor plans would

have little effect on the MA prediction. On the other hand, the PO prediction corresponds to the

force profile associated with the center target plotted in Figure 2b as this is appropriate for optimiz-

ing a planned intermediate movement. Experimental data on 2-target trials show that participants

systematically produce positive forces that are at odds with MA-based predictions, but in line with

PO-based predictions for motor planning during uncertainty. We quantified the similarity between

the 2-target trial data and the predictions using a prediction index that produces a value of +1 if the

mean force from the experimental data were perfectly similar to the PO prediction, –1 if was per-

fectly similar to the MA prediction, and 0 if the data were halfway between both predictions (see

Materials and methods). We measured this prediction index over two intervals. One extended out to
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Figure 2. The effects of motor adaptation induced by novel environmental dynamics indicate performance optimization (PO) during uncertainty. (a)

Learning curves for 1-target trials. Participants (n = 16) readily adapted left (blue), right (red), and center (gray) 1-target trial movements during the

training period and maintained this adaptation during the test period. Note that experiments were balanced with +15/–15/+15 Ns/m force-fields (FFs)

applied for the left/center/right targets in half the participants and �15/+15/�15 Ns/m in the other half, and that adaptation coefficients of +1 refer to

ideal learning for the center target FF, and adaptation coefficients of �1 refer to ideal learning for the left/right target FFs. (b) Population-averaged

force profiles from 1-target error clamp trials measured during the test period. Data is normalized so that +1 refers to the amplitude of the maximum

force in the ideal adaptive response for the FF associated with the center target. (c) Raw predictions (green and purple) and force profile data (black)

for 2-target partial error clamp trials. The raw PO prediction is based on the adaptive response for the center target, and the raw motor averaging (MA)

prediction is based on averaging the adaptive responses for the two (right and left) potential targets. The midpoint between the MA and PO

predictions provides a neutral prediction reference (brown dashed trace), indicating that the experimental data are more closely aligned with PO than

MA. (d) Randomly selected trajectories from an example participant demonstrate non-trivial variability for movement directions in both 1- and 2-target

trials. (e) Generalization data (magenta) from Expt 1-GEN (n = 10) is well characterized by a function obtained by summing Gaussians centered on each

Figure 2 continued on next page
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the greatest duration that we could reasonably use to examine feedforward motor output (see

Materials and methods), spanning from movement onset to feedback response onset (TRESP), and

the other, more conservative, spanned from movement onset to target cue onset (TON). Using the

prediction index values measured during both time intervals, we found that the observed 2-target

trial force pattern is markedly more consistent with the PO prediction compared to the MA predic-

tion (TON: prediction index = +0.77 ± 0.21 [95% C.I.], p=1.41 � 10�6, t(15) = 7.25; TRESP: prediction

index = +0.54 ± 0.16, p=4.78 � 10�6, t(15) = 6.52; 1-sample t-test; Figure 2g, left).

Refinement of model predictions based on movement direction
variability
Observation of participant hand trajectories, exemplified in Figure 2d, reveals that there is appreci-

able variability in movement directions on both 1-target FF trials and 2-target trials. This is important

to consider because directional deviation from the intended target direction would lead to small but

definite biases in the amount of adaptation for all three trained target locations (left/center/right),

consequently biasing both the MA and PO predictions. Biases would occur, for example, because

movements directed exactly in the 0˚ direction, towards the center target, would be associated with

FFCENTER after training; however, off-target movements on either side of the 0˚ direction would be

associated with an FF in-between FFLATERAL and FFCENTER. Thus, a distribution of movement direc-

tions centered around the 0˚ direction would, on average, be associated with an FF in-between

FFLATERAL and FFCENTER, rather than an FF comprised solely FFCENTER. This effect would be greater

for movements farther off-target, resulting in a small but definite variability-dependent bias in the FF

intended to be associated with a given target. We thus performed an additional experiment (Expt 1-

GEN, n = 10) where we measured the adaptation associated with a range of ‘off-target’ movements

to determine the size of this variability-induced bias (Figure 2e). Specifically, we employed a task

design identical to Expt 1, with multi-FF training in the left/center/right target directions, but we

replaced 2-target trials with 1-target error clamp trials and positioned them in directions that

enabled a dense sampling for generalization of the trained adaptation (every 7.5˚ in-between the

trained target directions). The resulting adaptation levels, shown in Figure 2e, show that the multi-

FF environment generalizes nonlinearly across movement directions, with noticeable changes in

adaptation around the trained target directions (we found an ~34% change 7.5˚ from the 0˚ trained

target and 38–42% changes 7.5˚ from the ±30˚ trained targets).

The pattern of generalization observed in Figure 2e is well approximated (R2 = 0.98) by a model

based on the additive combination of Gaussians centered around the three trained target locations,

in line with previous work examining the generalization of motor adaptation (Hwang et al., 2003;

Pearson et al., 2010). We therefore used this model to estimate the average adaptation level over

the distribution of movement directions associated with left/right 1-target FF trials for the MA pre-

diction and 2-target trials for the PO prediction from Expt 1 (see Materials and methods). Each par-

ticipant’s expected level of adaptation was then used to scale the raw force profiles that comprise

the predictions. We found that this refinement reduced the magnitude of the predicted peak forces

by 20-25% for both the MA and PO models (see Figure 2c vs. f). Although the data were clearly

more in line with the raw PO prediction than the raw MA prediction, there was still a noticeable mis-

match between the PO prediction and the data (Figure 2c, g). However, taking generalization into

account results in a refined PO prediction that is in even greater alignment with the data,

Figure 2 continued

trained direction (+30˚/0˚/�30˚). Blue and red dots indicate movement direction distributions for left and right 1-target trials, and black dots indicate the

corresponding distribution for 2-target trials across all participants. (f) Generalization-refined predictions and force profile data from 2-target partial

error clamp trials, where we used data from Expt 1-GEN to account for the effect of movement direction variability on the MA and PO predictions from

Expt 1 (see Materials and methods). (g) Summary comparison between the data (black squares) and predictions (dashed lines). Both panels show a

prediction index where �1 corresponds to the MA prediction and +1 corresponds to the PO prediction. This index was calculated by comparing the

mean value for the force profile in the data to that from both model predictions, with means computed from the time of the go cue until either the

target cue onset (TON) or when target-specific responses were first statistically detectable (TRESP). The left panel shows results based on the raw

predictions in panel (c), and the right panel shows results based on the refined predictions in panel (f). The experimental data are significantly closer to

the PO prediction than the nearly opposite MA prediction for both raw and generalization-refined versions of the predictions. In all panels, the shaded

regions and error bars represent 95% CIs.

Alhussein and Smith. eLife 2021;10:e67019. DOI: https://doi.org/10.7554/eLife.67019 7 of 32

Research article Neuroscience

https://doi.org/10.7554/eLife.67019


corresponding to prediction indices that are closer to +1 at both TON and TRESP (TON: prediction

index = +1.0 ± 0.4 [95% C.I.], p=1.58 � 10�5, t(15) = 5.85; Figure 2g, left; TRESP: prediction index =

+0.76 ± 0.3, p=1.72 � 10�5, t(15) = 5.80; 1-sample t-test; Figure 2g, right). Together these findings

indicate that movements performed under uncertainty arise from an action plan that optimizes task

performance.

Obstacle avoidance can elucidate the mechanisms for motor planning
under uncertainty
In Expt 1, the MA prediction that we tested against PO was based on the idea that the motor system

performs a motor average at the level of motor output or force output, which could be viewed as a

low-level version of MA. However, a higher-level version of MA is also possible, where the motor sys-

tem may instead average the kinematics of the movements associated with the potential target loca-

tions, and then generate the motor output required for this averaged motion. In Expt 2, we test this

higher-level version of MA against PO. To do so, we used an experimental approach based on the

perturbation of movement kinematics rather than the perturbation of environmental force dynamics

while assessing whether MA or PO can explain the intermediate movements that arise from motor

planning in uncertain conditions. Specifically, we imposed kinematic perturbations by placing

obstacles to block and deflect direct movements to targets or potential targets. We designed this

experiment based on a subtle variation of an influential study that supported MA (Stewart et al.,

2014). However, here we show that the original instantiation of this experiment, which we replicate

(Expt 2a), fails to make readily dissociable predictions for MA vs. PO, but that a single modification

of it (Expt 2b) leads to highly dissociable, and in fact essentially opposite, predictions for these two

models of motor planning under uncertainty.

In Expts 2a (n = 8) and 2b (n = 26), participants made 20 cm cued-onset reaching arm movements

(Figure 3a) towards either a single prespecified target or two potential targets, as in Expt 1. After a

baseline period in which participants practiced these trial types without obstacles present (obstacle-

free trials; Figure 3b), we began placing obstacles on some trials that would obstruct direct move-

ments to a target or a potential target (Figure 3c, d). Please note that for simplicity the subsequent

explanations in this section reference a left-side obstacle condition; however, the experimental

design was balanced within participants to include an equal number of interspersed right-side obsta-

cle trials. In Expt 2a, we used an obstacle with the same size and positioning as that in

Stewart et al., 2014. This obstacle protruded 2 cm to the right and effectively infinitely far to the

left of the direct path between the start position and the left target (i.e., the obstacle-obstructed tar-

get), and thus required rightward deflections for left 1-target trials, as shown in the upper panels of

Figure 3c, d. By contrast, in Expt 2b, we used a pared-down version of this obstacle that protruded

2 cm to the right but 0 cm to the left of the direct path between the start position and left target, as

shown in the lower panels of Figure 3c, d. This smaller obstacle permitted both leftward and right-

ward travel paths around it, but critically, promoted the less circuitous leftward deflections (see

Figure 3c). Accordingly, all 8 participants in Expt 2a consistently veered rightward as required

around the obstacle, and all 26 participants in Expt 2b consistently veered leftward around the

obstacle, in line with the intent of the experiment design. Hand paths from example participants are

shown in Figure 4a, and data indicating deflections observed for all participants are shown in

Figure 5b, f.

The contrasting movement deflections produced by the different obstacles on 1-target trials in

Expt 2a vs. Expt 2b result in contrasting predictions for the MA hypothesis in these two experiments.

On 2-target trials, where uncertainty in motor planning is present, MA predicts that participants

would average the motor plans associated with obstacle-obstructed left 1-target trials and the unob-

structed right 1-target trials (Equation 1 – baseline MA model prediction):

�̂2 ¼
1

2
��1Aþ

1

2
��1B (1)

where �̂2 represents the predicted deflection, or safety margin, around the obstacle on 2-target tri-

als, �1A and �1B represent the observed deflections, or safety margins, on obstacle-obstructed and

unobstructed 1-target trials, respectively, and the 1

2
coefficient for each term indicates that �1A and

�1B are equally weighted in the motor average. Note that the baseline MA model is parameter-free
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in that both �1A and �1B, which serve as inputs to the model, are experimentally measured on obsta-

cle-obstructed and unobstructed 1-target trials. In Expt 2a, where movements on obstacle-

obstructed left 1-target trials were deflected rightward, MA consequently predicts a rightward

movement deflection on obstacle-present 2-target trials. And in Expt 2b, where movements on

obstacle-obstructed left 1-target trials were deflected leftward, MA consequently predicts a leftward

movement deflection on obstacle-present 2-target trials (see Figure 3d).

Importantly, the obstacles in Expts 2a and 2b were designed not only to induce opposite deflec-

tions on obstacle-obstructed 1-target trials, but also to display identical protrusions in the direction

of the intermediate movements that occur during uncertainty. Thus a motor plan optimizing task

performance for intermediate movements during uncertainty would not be differentially affected by

these obstacles. Specifically, a model for PO would have two objectives on obstacle-present 2-target

trials: (1) to reach the final target within the required timing criteria and (2) to avoid obstacle collision

as these two objectives form the basis of task success (see Materials and methods). We therefore

modeled the PO predictions as an average of the movement deflections that would arise if PO were

Experiment 2 setup Obstacle-free 1-target trials Obstacle-free 2-target trialsba
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Figure 3. Obstacle avoidance paradigm. (a) Setup for the obstacle avoidance experiments, where virtual obstacles could obstruct movements to on-

screen targets. (b) Illustration of obstacle-free 1-target and 2-target trials, similar to Figure 1b. (c) Diagram of left-side obstacle-present 1-target trials.

The obstacle in Expt 2a was designed to elicit rightward movement deflections for left 1-target trials. The obstacle in Expt 2b, which included an

identical protrusion towards the midline, was designed to promote a leftward deflection for left 1-target target trials. (d) Predictions during uncertainty.

Left panels: motor averaging (MA; purple arrow) would average the plans for the obstacle-obstructed left and unobstructed right 1-target

trial movements. It thus predicts initial movement directions on 2-target trials with opposite deflections from the midline for Expts 2a and 2b (away from

the obstacle in Expt 2a, but towards the obstacle in Expt 2b, where the safety margin around the obstacle would be reduced). Right panels:

performance optimization (PO; green) would promote task success by balancing the costs of safely avoiding the obstacle and rapid target acquisition. It

thus predicts initial movement directions on 2-target trials to be consistently deflected away from the obstacle. Thus, PO and MA make similar

predictions in Expt 2a, but opposite predictions in Expt 2b. Note that (c) and (d) depict a left-side obstacle condition, but that the experiments were

balanced within participants, with an equal number of trials for left- and right-side obstacles. A right-side obstacle condition would lead to mirror-

opposite predictions for both MA and PO.
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to independently prioritize each objective, expressing the PO prediction as an equal balance of the

two motor costs associated with the determinants of task performance. Prioritization of movement

timing, or rapid target acquisition, would predict a movement direction midway between the two

potential targets (i.e., a net 0˚ deflection) as this would maximize the probability of successful target

acquisition during uncertainty (Haith et al., 2015a). However, prioritization of obstacle avoidance

would predict deflections that incorporate a safety margin around the obstacle that is proportional

to an internal estimate of variability (Hadjiosif and Smith, 2015). We therefore estimated the senso-

rimotor system’s safety margin for the obstacle avoidance priority on 2-target trials by scaling the

margin observed on 1-target trials, �1A; based on the relative variability observed on 2-target vs. 1-

target trials, s2

s1A
:

(Equation 2a – baseline PO model prediction):

�̂2 ¼
1

2
� 0� þ

1

2
� �1A �

s2

s1A

� 15
�

� �

; if �1A �
s2

s1A

� 15
�

� �

>0� (2a)

(Equation 2b – baseline PO model prediction):

�̂2 ¼ 0
�; if �1A �

s2

s1A

� 15
�

� �

� 0
� (2b)

where �̂2 again represents the predicted deflection, or safety margin, on obstacle-present 2-target

trials, the 1

2
coefficient on each priority term confers equal weighting of the two priorities, the 0˚ term

corresponds to full prioritization of movement timing, and the �1A �
s2

s1A
term is the safety margin cor-

responding to full prioritization of obstacle avoidance – within that term, s2 and s1A represent the

observed motor variability on obstacle-present 2-target trials and obstacle-obstructed 1-target trials,

respectively, and �1A represents the observed deflection, or safety margin, on obstacle-obstructed

1-target trials. Like the baseline MA model, the baseline PO model is parameter-free in that �1A, s2,

and s1A, which serve as inputs to the model, are experimentally measured on obstacle-obstructed 1-

target trials and obstacle-present 2-target trials. Note that the population-averaged variability ratio
s2

s1A
was calculated as the ratio of the mean of the individual participant values for s2 and s1A. Inter-

estingly, we found population-averaged values of 1.02 and 1.00 for this ratio in Expts 2a and 2b,

respectively, indicating that at the population level motor variability on obstacle-present 2-target tri-

als and obstacle-obstructed 1-target trials were quite similar. Thus, inclusion of the factor s2

s1A
in the

PO model does not meaningfully influence the prediction for the population-averaged 2-target trial

movement direction, �̂2. However, although s2 and s1A are similar on average, we found that they

can vary considerably across individuals and even more so across movement directions within indi-

viduals. Oddly, individuals often displayed idiosyncratic but consistent differences in motor variability

for different movement directions. Thus, differences in s2 and s1A are not entirely surprising given

the large differences in movement direction that can be observed on obstacle-obstructed 1-target

trials and obstacle-present 2-target trials. Importantly, taking this idiosyratic direction-specific motor

variability into account substantially enhances the ability to predict the safety margin observed in

one movement direction from motor variability observed at another across individuals. Thus the fac-

tor s2

s1A
is important for predicting inter-individual differences in 2-target trial movement directions

(see Equations 5 and 6).

The inclusion of the safety margin in motor planning for PO predicts deflections that skew away

from the obstacle in both Expts 2a and 2b. In Expt 2a, MA, like PO, predicts rightward deflections

that skew away from the obstacle on 2-target trials. However, in Expt 2b, MA predicts leftward

deflections that skew towards the obstacle, whereas PO continues to predict rightward deflections

that skew away from the obstacle. The 15˚ offset term that is subtracted from the �1A �
s2

s1A
safety mar-

gin term is present because the obstacle protruded 15˚ away from the 0˚, straight-ahead movement.

Because of this 15˚ obstacle offset, the predicted movement deflection driven by full prioritization of

obstacle avoidance would be 15˚ less than the �1A �
s2

s1A
safety margin for that priority. Relatedly, if the

�1A �
s2

s1A
safety margin was 15˚ or smaller, corresponding to �1A �

s2

s1A
� 15

�
� �

� 0
� in Equation 2b,

then the 0˚ straight-ahead movement that fully satisfies the movement timing objective would

already provide a safety margin at or above the level required for the obstacle avoidance objective,
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removing the need to compromise between the two objectives because a 0˚ straight-ahead move-

ment would simulatensously optimize both. For simplicity, however, we drop this conditional second-

ary equation from the PO model variants presented below (Equations 4–6) as the condition

required for using it is never met when applying these equations to the data from Expts 2a or 2b.

Performance optimization predicts motor planning for obstacle
avoidance
Like in Expt 1, we focused our analysis on the initial portion of motor output, measured as the initial

movement direction, as this reflects feedforward motor planning. We calculated the movement

direction as the direction of the hand at the midpoint of the movement (i.e., along the axis of the

obstacle protrusion) relative to the direction of the hand at movement onset (but note that we

obtained qualitatively similar results for all analyses when the movement direction was calculated

4 cm into the movement). In estimating each participant’s mean 2-target trial movement direction,

we combined the left-side and right-side obstacle data. To facilitate a balanced comparison between

the obstacle-free and obstacle-present 2-target trial conditions, we randomly assigned each obsta-

cle-free 2-target trial a left-side or right-side obstacle condition label and combined the data accord-

ingly. Correspondingly, on obstacle-present 2-target trials, we found that participants displayed

movement directions that were consistently biased away from the obstacle compared to obstacle-

free movement directions in both Expt 2a (6.84 ± 4.51˚ vs. 0.32 ± 0.50˚ [mean ± 95% CI], p=9.40 �

10�3, t(7) = –3.04) and Expt 2b (2.7 ± 0.80˚ vs. 0.056 ± 0.29˚, p=8.01 � 10�7, t(25) = –6.51; paired

t-test). This is consistent with the predictions of PO, but at odds with the predictions of MA. Sample

trajectory data are shown in Figure 4a, and population-averaged movement direction data are

shown in Figure 4b.

As in Expt 1, we quantified the relative accuracy of the model predictions for MA and PO using a

prediction index that attained a value of +1 if the experimental data matched the PO prediction, –1

if they matched the MA prediction, and 0 if they were midway between these two predictions (see

Materials and methods). Correspondingly, we tested whether the data were significantly closer to

the prediction of one model or the other by determining whether this prediction index was signifi-

cantly above or below zero. We found that the experimentally observed movement directions on 2-

target trials, which characterize motor planning in uncertain conditions, were far closer to the PO

prediction than the MA prediction in Expt 2b, where gross differences in the PO and MA predictions

were expected, with mean squared prediction errors of 4.24 ± 1.47 deg2 (mean ± SEM) for the PO

model and 163.50 ± 11.49 deg2 for MA (see the ’baseline’ MA and PO predictions in Figure 4b).

Correspondingly, the mean prediction index was close to +1 (+0.96 ± 0.12; p=4.31 � 10�14, t(25) =

15.13; t-test). In Expt 2a, however, where gross differences between the MA and PO predictions

were not expected, the mean obstacle-present 2-target trial data were fourfold closer to the PO pre-

diction than the MA prediction, but the individual participant data was more variable than in Expt

2b. Furthermore, the span between the MA and PO predictions was smaller, providing less leverage

to dissociate between them. These effects resulted in no significant difference between the models

(prediction index = +0.59 ± 1.19; p=0.37, t(7) = 0.96; t-test; squared errors of 39.49 ± 32.18 deg2 for

PO and 73.04 ± 14.54 deg2 for MA). Collectively, these findings suggest that during uncertainty, par-

ticipants form an action plan that optimizes task performance instead of automatically averaging

potential motor plans.

Refinement of the motor averaging and performance optimization
models
To allow the MA and PO models to make predictions without free parameters, we assumed equal

weighting for both potential targets in the MA model, in line with previous work (Chapman et al.,

2010; Ghez et al., 1997; Gallivan et al., 2016; Van der Stigchel et al., 2006), and analogously, for

both objectives in the PO model (obstacle avoidance and rapid target acquisition), as specified in

Equations 1 and 2. While this is reasonable, it is possible that this constraint might provide an expla-

nation for why the baseline MA model could not accurately predict the experimental data. We there-

fore evaluated a refined version of the baseline MA model that removed this constraint by including

a weighting parameter, a, that permitted differential weighting of the obstacle obstructed and

unobstructed targets, as shown in Equation 3:
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Equation 3 – refined MA model:

�̂2 ¼ a ��1Aþ 1�að Þ ��1B (3)

Thus a¼ 1 would indicate that all weight is assigned to the motor plan associated with the obstacle-

obstructed target �1A, a¼ 0 would indicate that all weight is assigned to the motor plan associated

with the unobstructed target �1B, and a¼ 1

2
would indicate equal weighting, as in Equation 1. Note

that the value for a and that for b (defined below) was constrained to be between 0 and 1 to avoid

any negative weighting. We found weighting coefficients of 0.26 and 0.74 for the obstacle-

obstructed and unobstructed targets, respectively (a¼ 0:26 when fitting to the Expt 2a data, and 0

and 1, a¼ 0 when fitting to the Expt 2b data). However, to avoid the effects of overfitting, we evalu-

ated these parameter estimates not based on their ability to explain the data on which they were fit,

but instead, based on the ability of the parameter estimate obtained from one experiment’s data to
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Figure 4. Obstacle avoidance patterns indicate performance optimization (PO) during uncertainty. (a) Hand paths showing the effect of obstacles on 1-

and 2-target trials for sample participants in Expts 2a and 2b. Thin lines indicate a random sampling of trajectories on individual trials where the left

(blue) or right (red) targets were cued, and bold traces indicate trial-averaged trajectories. On 1-targets, the obstacles induce substantial deflections for

movements towards the obstacle-obstructed target, but in opposite directions for Expt 2a (n = 8) and Expt 2b (n = 26). Motor averaging (MA) PO

predictions for the initial movement direction (IMD) on obstacle-present 2-target trials are displayed as purple and green arrows. These two predictions

are similar in Expt 2a, but more distinct in Expt 2b. (b) Population-averaged IMDs on obstacle-free (gray squares) and obstacle-present (black squares)

2-target trials are shown alongside model predictions by MA (purple lines) and PO (green lines). Predictions from two versions of the MA model and

two versions of the PO model are displayed. The ‘baseline’ predictions (which were used in panel a) were parameter-free and used equal weighting of

the two potential motor plans for MA and of the two objectives for PO (see Equations 1 and 2). The ‘refined’ predictions each incorporated a single

weighting parameter that determined the relative contributions of the two potential motor plans for MA and of the two objectives for PO (see

Equations 3 and 4). Cross-validated predictions are shown for these ‘refined’ single-parameter models, where the weighting parameter applied to the

Expt 2a data was determined from the Expt 2b data, and vice versa (see Materials and methods). Results indicate that on obstacle-present 2-target

trials, IMDs were systematically biased away from the obstacle and were significantly larger than the IMDs observed on obstacle-free 2-target trials

(compare black vs grey squares). Both the baseline and refined PO models predict the obstacle-present 2-target trial data significantly better than the

baseline and refined MA models in Expt 2b, where gross differences in the model predictions were expected (compare black squares vs purple and

green lines). In Expt 2a, where qualitative differences between the model predictions were not expected, we found that the baseline and refined PO

models predicted the obstacle-present 2-target trial data only nominally better than the baseline and refined MA models. Error bars represent 95% CIs.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Model sensitivity analysis.
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predict the results of the other experiment. The findings from this cross-validation are discussed

below.

Analogous to the refinement of the MA model, we assessed whether including differential

weighting for the obstacle avoidance and rapid target acquisition objectives might improve the

already-accurate predictions from the baseline PO model. We therefore also evaluated a refined ver-

sion of the PO model that incorporated a weighting parameter, b, that allowed for differential

weighting of these objectives:

Equation 4 – refined PO model:

�̂2 ¼ b � 0� þ 1�bð Þ � �1A �
s2

s1A

� 15
�

� �

(4)

Thus b¼ 1 would indicate full prioritization of movement timing, b¼ 0 would indicate full prioritiza-

tion of obstacle avoidance, and b¼ 1

2
would indicate equal weighting of these priorities as in Equa-

tion 2. We found weighting coefficients for movement timing and obstacle avoidance of 0.66 and

0.34, respectively b¼ 0:66ð Þ, when fitting to the Expt 2a data, and 0.46 and 0.54 b¼ 0:46ð Þ when fit-

ting to the Expt 2b data. These weighting parameters suggest similar priority levels for movement

timing and obstacle avoidance in Expts 2a and 2b. However, like for the refined MA model, we eval-

uated these parameter estimates not based on their ability to explain the data on which they were

fit, but instead, based on the ability to predict the results of the other experiment (see Figure 4b).

Unsurprisingly, we found that when the parameters a and b were fit onto the Expt 2a data, the

resulting refined versions of the MA and PO models both exactly matched the mean data from Expt

2a, corresponding to mean squared errors of 37.03 ± 14.31 deg2 across participants for both refined

models. However, when the parameter estimates obtained from the Expt 2b data were cross-vali-

dated on the Expt 2a data, the prediction from the PO model increased the mean squared error by

only 11%, whereas that from the MA model increased it by 115%. Accordingly, the experimental

data from Expt 2a were noticeably closer to the cross-validated PO prediction than the cross-vali-

dated MA prediction, as shown in Figure 4b. The difference, however, was not significant (with a

prediction index of +1.11 ± 1.98; p=0.11, t(7) = 1.85; t-test; and mean squared errors of 79.52 ±

53.71 deg2 vs. 40.93 ± 33.89 deg2 for MA vs. PO). This finding was not surprising as Expt 2a was not

expected to clearly dissociate the models.

In contrast, the data from Expt 2b, which was specifically designed to dissociate MA from PO,

yielded clear results. First, due to the grossly opposite predictions for MA and PO in Expt 2b, the

MA model was unable to exactly match the mean 2-target trial data when fit to the Expt 2b data,

unlike the PO model (see Figure 4b). More importantly, when parameter estimates obtained from

the same Expt 2a data were cross-validated on the Expt 2b data, the PO model prediction increased

the mean squared error by 29%, whereas the MA model prediction increased it by 750% (squared

error of 5.42 ± 1.16 deg2 vs. 4.19 ± 1.59 deg2 for PO compared to 58.10 ± 7.20 deg2 vs. 6.78 ± 2.67

deg2 for MA). Correspondingly, we found that the Expt 2b data were far better explained by the

prediction from the PO model than by the prediction from the MA model (prediction index =

+0.74 ± 0.19; p=5.79 � 10�8, t(25) = 7.61), with mean squared errors that were 10-fold smaller for

the PO model’s prediction (squared errors of 58.10 ± 7.20 deg2 vs. 5.42 ± 1.16 deg2, for the MA

and PO models, respectively).

These results show that the assumption of equal weighting was not the reason that the baseline

MA model failed to outperform the baseline PO model, and they provide further support for the

hypothesis that PO rather than MA explains motor planning under uncertain conditions. We note

that to better understand each model’s sensitivity to its weighting parameter we also examined pre-

dictions that were based on 1:2 and 2:1 weightings for the obstacle-obstructed and -unobstructed

targets in the MA model, and for the movement timing and obstacle avoidance objectives in the PO

model. However, we found that these predictions led to a similar pattern of results (see Figure 4—

figure supplement 1).

Performance optimization predicts individual differences in obstacle
avoidance
After finding that the PO model accurately predicts the group-averaged data from Expt 2, we pro-

ceeded to examine whether it might also be able to explain inter-individual differences in motor
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planning during uncertain conditions in Expts 2a and 2b. To study the ability of the PO model to

explain inter-individual differences in motor planning, we created a version of it that combined the

effects of using the group-averaged data and each individual participant’s data, as shown below:

�̂2i
� ��2 ¼

1

2
k�1Ai

þ 1� kð Þ��1Að Þ � ks2i
þ 1� kð Þ�s2ð Þ � k

1

s1Ai

þ 1� kð Þ
1

�s1A

� �

�K0 (5)

Here, the relative weighting between the group-averaged and the individual participant data is

given by a single parameter k, which we refer to as the individuation index. k = 1 corresponds to full

individuation, whereas k = 0 corresponds to no individuation, that is, full weighting of the group-

average data. The other variables in Equation 5 are the same as those in Equation 2, but note that

here the subscript i refers to individualized data from participant i, and that a horizontal bar over a

variable indicates the group-average value. Unlike Equations 2 and 4, this version of the PO model

encodes the individual participant measurements of motor variability in s2i
and s1Ai

, which allows

the model to account for individual differences in variability between 1- and 2-target trials that result

from idiosyncratic spatial differences in movement direction. Note that the left side of Equation 5

represents predicted inter-individual differences from the group-averaged obstacle-present 2-target

trial movement direction because ��2 is subtracted from �̂2i
, and analogously, that the right side rep-

resents inter-individual differences from the group-averaged model prediction because K0, the

group-averaged model prediction, is subtracted. Also note that the inclusion of this offset parame-

ter, K0, is necessary so that the model’s ability to explain variance in the data is well-posed. The par-

tial weighting of individual and group-averaged data that k allows is often used for optimal

estimation with noisy data, corresponding to the fact that the experimental estimates made for vari-

ables, like the mean or variability of the initial movement directions in our data, are affected by mea-

surement noise to a far greater extent for individual participant measurements than for group

averages.

Remarkably, when we fit this one-parameter-plus-offset model to the experimental data, we

found that it was able to explain 87% of the variance for inter-individual differences in movement

direction on 2-target trials in the Expt 2a dataset (F(1,6) = 39.4, p=7.60 � 10�4, first bar in

Figure 5a) and 57% of this variance in the Expt 2b dataset (F(1,24) = 31.9, p=8.21 � 10�6, first bar

in Figure 5e). This indicates that a majority of the inter-individual variability in the initial direction of

intermediate movements planned under uncertain conditions in our experiments can be explained

by a PO model that takes individual differences in 1-target trial safety margins, 1-target trial motor

variability, and 2-target trial motor variability into account.

We next examined the extent to which the model’s ability to predict inter-individual differences

accrued from each of its input variables: 1-target trial safety margins (�1A), 1-target trial motor vari-

ability (s1A), and 2-target trial motor variability (s2). To accomplish this, we compared a more com-

plex three-parameter-plus-offset version of this model that included different individuation indices

(k�, ks1
, ks2

) for each input variable to two-parameter versions where the remaining individuation

index was held at zero. This removed individuation for one of the three input variables and allowed

us to calculate each input variable’s partial R2 value, which characterizes the contribution of that vari-

able to the explained variance in a nested model. The three-parameter-plus-offset model is shown in

Equation 6:

�̂2i
� ��2 ¼

1

2
k��1Ai

þ 1� k�
� �

��1A

� �

� ks2
s2i

þ 1� ks2
ð Þ�s2ð Þ � ks1

1

s1Ai

þ 1� ks1
ð Þ

1

�s1A

� �

�K0 (6)

Analysis of the three-parameter-plus-offset version of the PO model revealed two key observations.

First, we found that the three-parameter-plus-offset model resulted in only marginal improvement in

its ability to explain inter-individual differences in the data compared to the one-parameter-plus-off-

set model, suggesting that any true differences in individuation between the three input variables

were relatively small (compare the first and second bars in Figure 5a, e). Second, we found that two

of the three input variables – 1-target trial safety margins and 2-target trial motor variability – con-

tributed significantly to explaining individual differences in the data, whereas 1-target trial motor

variability did not. This was separately true for both Expt 2a (we found partial R2 values of 0.90,

0.81, and 0.00 for k�, ks2
, and ks1

, respectively; p=4.02 � 10�3, 1.50 � 10�2, and 1.000; F(1,4) =

35.3, 16.7, 0.0) and Expt 2b (we found partial R2 values of 0.32, 0.65, and 0.00 for k�, ks2
, and ks1

,
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respectively; p=3.78 � 10�3, 3.18 � 10�6, and 0.763; F(1,22) = 10.5, 38.2, 0.09). Scatter plots of the

relationships between each of the three input variables and the inter-individual differences that

remain when the other two input variables are accounted for are shown in Figure 5b–d for Expt 2a

and in Figure 5f–h for Expt 2b.
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Figure 5. Performance optimization (PO) predicts individual differences in obstacle avoidance. (a–d) show analogous analyses to (e–h), for Expts 2a and

2b, respectively. (a, e) The first and second bars show the proportion of variance explained (R2) for inter-individual differences in mean movement

directions on obstacle-present 2-target trials, �2, for the one-parameter-plus-offset and the three-parameter-plus-offset versions of the PO model

(Equations 5 and 6). The remaining three bars show the proportion of variance explained (partial-R2) for the three-parameter-plus-offset PO model

attributable to each of the three input variables: the safety margin observed on obstacle-obstructed 1-target trials (�1A), the motor variability observed

on obstacle-obstructed 1-target trials (s1A), and the motor variability observed on obstacle-present 2-target trials (s2). The contributions of each input

variable are illustrated in (b–d) for Expt 2a and (f–h) for Expt 2b, where the relationship is shown between each input variable and the individual

differences in �2 that remain after controlling for the effects of the other two input variables (see Materials and methods). In both Expts 2a and 2b,

results indicate that �1A and s2 contribute significantly but s1A does not. The lack of contribution from s1A may be due to its small dynamic range seen

in (c) and (g). Notably, the results in (f) are odds with motor averaging (MA), which predicts a negative relationship between �2 and �1A in Expt 2b, as

are the results in (d) and (h), where MA would predict no relationship between �2 and s2. Green lines show linear fits to the data and ellipses show 95%

CIs.
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We were initially surprised to find that individuation using ks1
did not meaningfully contribute to

explaining the individual differences in 2-target trial movement directions. However, examination of

the scatter plots in Figure 5 reveals that the individual differences in 1-target trial motor variability

were considerably smaller than those for the other two input variables. Thus, individual differences

in 1-target trial motor variability, s1A; had considerably less leverage to explain individual differences

in the 2-target trial movement direction, �2, than the other input variables.

Importantly, these individual participant results provide further evidence at odds with the MA

hypothesis. First, the clear positive relationship between the 2-target trial movement direction and

the 1-target trial safety margin in Expt 2b (see Figure 5e) is opposite of the negative relationship

that MA would predict (in line with the opposite predictions for MA and PO for the Expt 2b data

illustrated in Figure 4a, b). Second, the clear positive relationships between the mean movement

direction and the amount of motor variability on 2-target trials found in both in the Expt 2a data

(Figure 5d) and the Expt 2b data (Figure 5h) are consistent with PO, but are at odds with MA, which

predicts that there should be no relationship between these variables.

In summary, we find that PO provides an explanation not only for population-averaged motor

planning for the intermediate movements that result from uncertainty about the target location, but

also for a majority of the variance in inter-individual differences in this planning observed in Expts 2a

and 2b. A detailed analysis reveals that individualized information about 1-target trial safety margins

and 2-target trial motor variability both contribute significantly to the ability to explain these individ-

ual differences in motor planning.

Discussion
We designed two novel experimental paradigms that powerfully dissociated between the hypothe-

ses proposed to underlie motor planning under uncertainty: motor averaging (MA)

and performance optimization (PO). In Expt 1, we designed an environment that physically per-

turbed motion in the direction of potential target locations off-course, and motion in the direction of

intermediate movements oppositely off-course. Participants readily adapted to this composite envi-

ronment on 1-target trials. Critically, on trials with two potential targets, participants displayed

motor output strongly aligned with adaptive responses for intermediate movements, which was con-

sistent with the PO prediction, but grossly opposite the MA prediction for motor planning under

uncertainty (see Figure 2). An effort to refine the model predictions by taking the observed spread

of movement directions into account resulted in even greater alignment between the observed

motor output and the PO prediction.

A potential issue with Expt 1 was that, since motor output at the level of force production was

measured, the MA model we considered was based on the averaging of force output. Thus the

results cannot rule out the possibility of MA occurring for a higher level of motor output – that of

motion planning. Therefore, we designed Expt 2 to dissociate between versions of the MA and PO

models that were instead based on the kinematics of motion planning. Specifically, instead of per-

turbing environmental force dynamics, we used an obstacle avoidance task to perturb movement

kinematics. In doing so, we replicated (Expt 2a) the paradigm from a well-known study that provided

support for MA (Stewart et al., 2014) but did not qualitatively dissociate the predictions for MA

and PO, and then made a seemingly minor modification (Expt 2b) that allowed for MA and PO to be

powerfully dissociated. Specifically, in Expt 2a, we positioned an obstacle so that single-target

movements would be skewed in a direction consistent with increasing the safety margin for interme-

diate movements during uncertainty. Thus, qualitatively, the PO prediction based on creating an

appropriate safety margin for intermediate movements during uncertainty and the MA prediction

based on averaging the motor plans for potential targets were in the same direction. Critically, how-

ever, in Expt 2b, we altered the obstacle from Expt 2a so that single-target movements would be

skewed in a direction opposite to that needed for increasing the safety margin for intermediate

movements during uncertain 2-target trials, resulting in opposite predictions for MA and PO (Fig-

ure 3). Experimentally, we found that the presence of this obstacle altered motor output during 2-

target trials by consistently increasing the safety margin for intermediate movements in accord with

the PO prediction, but grossly opposite from the MA prediction. An attempt to refine the MA model

to allow for different weightings of the motor plans associated with the obstacle-obstructed and -

unobstructed targets did not lead successfully lead to predictions consistent with the experimental
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data. On the other hand, the PO model accurately predicted the population-averaged changes in

motor output for both experiments as well as a remarkable ~65–94% of the variance for individual

differences between participants. In line with previous work investigating the determinants of task

optimization (Trommershäuser et al., 2003; Hamilton and Wolpert, 2002; Harris and Wolpert,

1998; Todorov and Jordan, 2002), this finding suggests that internal estimates of variability and

uncertainty can be critical for motor planning. Collectively, our results provide clear evidence that

humans generate a motor plan that reflects optimization of task performance rather than averaging

over multiple potential plans.

Previous work suggesting motor averaging for motor planning under
uncertainty
Our finding that PO underlies movements executed during uncertainty challenges the long-standing

idea that the intermediate movements executed during uncertain conditions reflect MA. However,

many studies suggesting that either sensory or motor representations of movement plans are aver-

aged did not dissociate these possibilities from selecting a single plan that optimizes motor perfor-

mance. For example, the Stewart et al., 2014 study that we replicate in Expt 2a attempted to

dissociate whether motor output might reflect an average of sensory or motor representations of

movement plans (i.e., sensory averaging vs. MA) by using obstacles to perturb these motor plans,

but did not dissociate either sensory averaging or MA from PO.

Another study, by Gallivan et al., 2017, applied a visuomotor rotation to movements towards

one potential target to perturb motor planning without affecting the sensory representation of the

target. This resulted in initial movement directions that were altered during 2-target trials in accor-

dance with the perturbed motor plans, and thus in line with the prediction for MA rather than sen-

sory averaging. However, PO predicts a movement direction identical to that predicted by MA:

since the imposed visuomotor rotation shifts the final hand position associated with acquisition of

the potential target to which it was applied, a corresponding shift in the movement direction that

accounts for this visuomotor rotation would optimize performance by minimizing the cost of correc-

tive movements following disclosure of the final target location. Therefore, this experimental manip-

ulation, like that in Stewart et al., 2014 and a number of other studies (Chapman et al., 2010;

Stewart et al., 2014; Gallivan et al., 2011; Gallivan et al., 2016; Gallivan and Chapman, 2014;

Stewart et al., 2013; Chou et al., 1999; Van der Stigchel et al., 2006), fails to dissociate MA from

PO.

Previous work on performance optimization for motor planning under
uncertainty
Haith et al., 2015a examined motor planning under uncertainty using a timed-response reaching

task where the target suddenly shifted on a fraction (30%) of trials (150–550 ms) before movement

initiation. The authors observed intermediate movements when the target shift was modest (±45˚),

but direct movements towards either the original or shifted target position when the shift was large

(±135˚). The authors argued that because intermediate movements were not observed under condi-

tions in which they would impair task performance, that motor planning under uncertainty generally

reflects PO. This interpretation is somewhat problematic, however. In this task, like in the current

study, the goal location was uncertain when initially presented. However, the final target was pre-

sented far enough before movement onset that this uncertainty was no longer present during the

movement itself, as evidenced by the direct-to-target motion observed when the target location was

shifted by ±135˚. Therefore, the intermediate movements observed when the target location shifted

by ±45˚ are unlikely to reflect motor planning under uncertain conditions. Instead, these intermediate

movements likely arose from a motor decision to supplement the plan elicited by the initial target

presentation with a corrective augmentation when the plan for this augmentation was certain. The

results thus provide beautiful evidence for the ability of the motor system to flexibly modulate the

correction of existing motor plans, ranging from complete inhibition to conservative augmentation,

when new information becomes available, but provide little information about the mechanisms for

motor planning under uncertain conditions.

The challenge of examining motor planning under uncertainty has persisted even for studies that

made deliberate attempts at dissociating MA from PO. For example, in Wong and Haith, 2017,
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motor planning under uncertainty was examined under conditions where participants were required

to reach towards one of two potential targets with a movement completion time that was small

enough to preclude movements with corrective adjustments from being successful. The results

showed that under these conditions participants frequently abandoned intermediate movements

that subsequently require corrective adjustments on 2-target trials in favor of direct movements

towards one of the potential targets. These findings indicate that MA is not obligatory, and that con-

ditions can be created where intermediate movements themselves are abandoned. This stands in

contrast to the present study, in which intermediate movements were allowed, yet were found to be

inconsistent with MA, suggesting that MA is unlikely to occur at all. In addition, it is likely that the

task conditions used in Wong and Haith simply induced participants to make a strategic decision to

guess the final target location and aim at that guess. While this would indeed improve performance

and could therefore be considered a type of performance optimization, such strategic decision mak-

ing does not provide information about the implicit neural processing involved in programming the

motor output for the intermediate movements that are normally planned under uncertain conditions.

In another study, performed by Nashed et al., 2017, motor planning under uncertainty was stud-

ied using a task that was based on grip force control. Specifically, participants grasped an object,

capable of measuring grip force, and made reaching movements while environmental dynamics

were experimentally manipulated with robotically applied load forces that affected the required grip

force. This task design resembles Expt 1 from the current study in which different environmental

dynamics were used to perturb movements towards the left/right vs. center targets in order to disso-

ciate MA from PO. However, grip force control is known to be substantially more sensitive to the

variability in environmental dynamics than to the mean dynamics (Hadjiosif and Smith, 2015), yet

this study examined the MA and PO hypotheses for motor planning under uncertainty using predic-

tions that were based entirely on the mean environmental dynamics. Unfortunately, this study did

not provide information about motor variability or its effect on required grip forces, obscuring the

driver for the observed changes in grip force. Thus, it is unclear how this study can elucidate the

mechanisms that drive motor planning under uncertainty.

Implicit and explicit contributions to motor planning under uncertainty
An important consideration for the present results is that sensorimotor control engages both implicit

and explicit adaptive processes to generate motor output (Mazzoni and Krakauer, 2006). Because

motor output reflects combined contributions of these processes, determining their individual contri-

butions can be difficult. In particular, the experiments in the present study used environmental per-

turbations to induce adaptive changes in motor output, but these changes may have been partially

driven by explicit strategies, and thus the extent to which the motor output measured on 2-target

trials reflects implicit vs. explicit feedforward motor planning requires further investigation. One

method for examining implicit motor planning during goal uncertainty might take inspiration from

recent work showing that in visuomotor rotation tasks, restricting the amount of time available to

prepare a movement appears to limit explicit strategization from contributing to the motor response

(Haith et al., 2015b; Huberdeau et al., 2019; Leow et al., 2017; Fernandez-Ruiz et al., 2011).

Future work could dissociate the effects of MA and PO on intermediate movements in uncertain con-

ditions at movement preparation times short enough to isolate implicit motor planning.

We note that Gallivan et al., 2017 attempted to control for the effects of explicit strategies by

(1) applying the perturbation gradually, so that it might escape conscious awareness, and (2) enforc-

ing a 325 ms preparation time. Intermediate movements persisted under these conditions, suggest-

ing that intermediate movements during goal uncertainty may indeed be driven by implicit

processes. However, it is difficult to be certain whether explicit strategy use was, in fact, effectively

suppressed as the study did not assess whether participants were indeed unaware of the

perturbation. On one hand, the single study we are aware of that assessed the extent to which

reduced movement preparation times can suppress strategization during motor learning, showed

that participants can successfully execute a re-aiming strategy when specifically instructed to do so,

even down to movement preparation times as small as 150 ms. On the other hand, when a specific

strategy was not instructed, the same study found that a 250 ms preparation time yielded perfor-

mance that was indistinguishable from implicit learning measured using an aim-report paradigm with

a long (1000 ms) preparation time, suggesting that active strategization was effectively suppressed.

It should be noted, however, that the difference between 250 and 325ms is considerable and its
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effect unclear, and also that any claim of full suppression in the 250ms data would depend on a neg-

ative statistical comparison (note further that the 250ms and 325ms nominal preparation times

quoted in these papers are larger than the true preparation times as the quoted times include both

display latencies and data-acquisition latencies; neither of these were reported in Gallivan et al., and

only the former was reported in Leow et al. (27.6 ± 1.8 ms)).

Neural representations of motor planning under uncertainty
Studies suggesting motor or sensory averaging have been motivated by reports of simultaneous

deliberation of competing potential goals in sensorimotor brain areas (i.e., parallel planning)

(Chapman et al., 2010; Stewart et al., 2014; Gallivan et al., 2011; Stewart et al., 2013;

Gallivan et al., 2015). These studies argue that the motor plans prepared in parallel are averaged,

resulting in the intermediate movements observed when uncertainty is present during motor plan-

ning. The neural evidence for parallel planning is based on studies of delay period activity associated

with motor planning when multiple potential targets were present (Cisek and Kalaska, 2005;

Cisek, 2007; Coallier et al., 2015; Pastor-Bernier and Cisek, 2011). However, because this activity

was measured using single-electrode recordings, only a small number of cells could be recorded

simultaneously, and thus data from same-type trials were aggregated to make population-based

estimates of the planned motion. The results suggested that this aggregate delay period activity

was tuned to both potential targets in sensorimotor areas, in particular dorsal premotor cortex

(PMd) and parietal reach region, in monkeys. However, the observed tuning could arise from simul-

taneous parallel planning for both potential targets, as the authors argued, or from planning-related

activity associated with one target on some trials and with the alternate target on other trials.

Recently, Dekleva et al., 2018 studied parallel planning using an electrode array to record simul-

taneously from 100 to 160 neurons in PMd, allowing planning-related neural activity to be examined

for individual movements when two potential targets were present. Critically, they found that neural

activity during the delay period encoded motor plans directed to either one target or the other on

individual trials, rather than simultaneous parallel plans for both potential targets. While these results

cannot rule out parallel planning in other brain areas, they call into question the evidence for parallel

planning from previous studies that relied on trial-aggregated data. Taken together with the results

from the current study, it is plausible that during uncertainty the brain forms a single motor plan that

optimizes task performance rather than multiple parallel motor plans for MA.

In summary, the current findings indicate that motor planning during uncertain conditions does

not proceed from averaging parallel motor plans, but instead, incurs the creation of a motor plan

that optimizes task performance given knowledge of the current environment. These findings are

compatible with the current neurophysiological data and offer a mechanistic framework for under-

standing motor planning in the nervous system.

Materials and methods

Participants
26 participants (25 right-handed; 15 females; age range 18–42) performed the multi-force-field

(multi-FF) adaptation experiments, with 16 participants in Expt 1 and 10 participants in Expt 1-GEN.

34 participants (32 right-handed; 18 females; age range 18–33) performed the obstacle avoidance

experiments, with 8 participants in Expt 2a and 26 participants in Expt 2b. Participants were

assigned to experiments based on when they responded to advertisements and their availability for

scheduling. When different experiments were running concurrently, participants were randomly

assigned for participation. The sample sizes used for each experiment were determined based on

pilot data and existing literature (Stewart et al., 2014; Smith et al., 2006; Sing et al., 2009). All

participants used their right hands to perform the experiments, were naı̈ve to the purpose of the

experiments, and were without known neurological impairment. The study protocol was approved

by the Harvard University Institutional Review Board (protocol number: IRB16-2128), and all partici-

pants provided written informed consent.
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Experiment protocols
Apparatus for multi-FF adaptation experiments (Expt 1 and Expt 1-GEN)
Participants were instructed to grasp the handle of a two-joint robotic manipulandum with their right

hands and make rapid 20 cm point-to-point reaching arm movements in the horizontal plane to

either a single prespecified target (1-target trials) or two potential targets (2-target trials). All visual

information, including veridical feedback of hand motion provided in the form of a white 3-mm-

diameter cursor, was displayed on a vertically oriented LCD computer monitor (refresh rate of 75

Hz). Participants were positioned such that their midlines were aligned with the middle of the moni-

tor, and their right arms were always supported with a ceiling-mounted sling. The manipulandum

measured hand position, velocity, and force, and its motors were used to dynamically apply pre-

scribed force patterns to the hand, all of which were updated at a sampling rate of 200 Hz.

Targets and feedback (Expt 1 and Expt 1-GEN)
On 1-target trials, the target was located at a left (+30˚), right (�30˚), or center (0˚) eccentricity from

the midline, and on 2-target trials, a pair of potential targets always appeared at the left and right

target locations. Participants were instructed to initiate a trial by moving the cursor to a start posi-

tion (green filled-in circle, 10-mm-diameter), after which the target or targets (yellow hollow circles,

10-mm-diameter) were presented. 1000 ms after target presentation, an auditory go cue signaled

participants to initiate a movement. Movement onset was subsequently determined online as the

time when the hand velocity exceeded 5 cm/s or the time when the hand traveled 3 cm from the

start position (whichever occurred first). Participants were required to initiate movements after the

onset of the go cue, but no later than 425 ms after the go cue finished playing. If movement onset

was detected outside these bounds, a message that either read ‘Too Soon!’ or ‘Too Late!’ was dis-

played above the start position, and was accompanied with a unique sound tone. Furthermore,

because pilot data showed that participants may sporadically stop and initiate a discrete reach to

the final target immediately following its disclosure on 2-target trials, we also required participants

to maintain their velocity throughout the first half of every movement (i.e., while the displacement

was less than 10 cm). Specifically, during each trial, if the instantaneous maximum velocity declined

more than 33% during the first half of the movement, we played a unique buzzer tone. If any of

these requirements were not fulfilled, the trial was discarded.

For the 2-target go-before-you-know trials, the final target (randomly selected on each trial) was

filled in with yellow, and the distractor target was simultaneously extinguished once a 3-cm displace-

ment between the hand and start position was achieved. For consistency, on 1-target trials, the

target also filled in with yellow at the same point in the movement. After the hand reached the final

target, we provided performance feedback based on the movement time, determined as the time

interval between movement onset, as defined above, and movement offset, defined as the first time-

point when the hand was both within 6 mm of the final target, and the hand speed in the subse-

quent 300 ms period was below a threshold of 6.35 cm/s. Following movement offset, visual and

auditory feedback were presented by changing the fill color of the target and playing a sound,

depending on whether the movement time was faster than (red fill-in color, buzzer tone), within

(green fill-in color, chirp tone), or slower than (blue fill-in color, buzzer tone) the required interval.

This movement time interval was based on thresholds that were adjusted online per participant as

described below. After feedback was delivered, the robotic manipulandum guided participants’

hands back to the start position. Participants completed blocks of trials throughout the experiments

but were allotted 1 min rest breaks in-between each block (see Training schedules [Expt 1 and Expt

1-GEN] below).

Movement time thresholds
We used data-driven updating for specifying the movement time thresholds. The ‘too-slow’ thresh-

old was set at the 70th percentile of the movement times associated with the last 18 trials of the

same type (1-target or 2-target). Thus, separate thresholds were maintained for 1-target vs. 2-target

trials. The 1-target trial movement time threshold ranged from 225 to 585 ms in Expt 1 and 225 to

608 ms in Expt 1-GEN (on average across participants). In Expt 1, the 2-target trial movement time

thresholds ranged from 225 to 655 ms. We used this 70th percentile updating to individualize the

movement time thresholds for different participants because we found that, in pilot data, individuals
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with a large fraction of ‘too-slow’ feedback sometimes exhibited erratic, seemingly exploratory

behavior on 2-target trials, and abandoned intermediate movements. Individuals with a smaller frac-

tion of ‘too-slow’ feedback, however, did not. Intermediate movements are of fundamental interest

for the examination of motor planning during uncertainty as these movements have been previously

taken to indicate deliberation between potential goals, but unfortunately, abandonment of interme-

diate movements has remained an issue in studies with standard implementations of go-before-you-

know tasks, consequently leading to striking data exclusion criteria (e.g., removal of 10-40% of par-

ticipants in previous work; Gallivan et al., 2017; Nashed et al., 2017;Stewart et al., 2013;

Stewart et al., 2014). Individualized movement time thresholding allowed us to evoke intermediate

movement behavior consistently within and across all participants.

Multi-FF environment
To dissociate between performance optimization (PO) of intermediate movements during goal

uncertainty and motor averaging (MA) of actions associated with each potential goal presented dur-

ing uncertainty, we differentially perturbed the 1-target motor plans in a manner that resulted in dis-

tinct predictions for each hypothesis in Expt 1. To create such a perturbation, we used the robot

motors to produce a dynamic environment comprising multiple curl FFs that acted on the manipula-

ndum to perturb hand motion off-course in opposite directions depending on the cued target direc-

tion during 1-target trials in Expt 1 and Expt 1-GEN. This multi-FF environment levied velocity-

dependent FFs that were proportional in magnitude and directionally orthogonal to the velocity of

hand motion,

Fx

Fy

� �

¼ k �
0 �B

�B 0

� �

�
_x

_y

� �

Fx

Fy

� �

where x
_

and y
_

denote the hand velocities, B¼ 15
Ns
m
denotes the velocity-dependent gain, and k¼�1

denotes a binary switch variable that was set to opposite values for center target trials vs. left target

or right target trials for each participant. Setting k¼þ1 results in clockwise (CW) FFs, whereas set-

ting k¼�1 results in counterclockwise (CCW) FFs. We balanced the directions of the applied FFs

across participants so that half experienced the multi-FF environment with k¼þ1 for left target or

right target trials (e.g., see FFLATERAL in Figure 1c) and k¼�1 for center target trials (e.g., see

FFCENTER in Figure 1c), and the other half experienced the multi-FF environment with k¼�1 for left

target or right target trials and k¼þ1 center target trials. Data associated with each target were

then combined from each subgroup.

Error clamp and partial error clamp trials
Because actions made during reaching movements may result from both feedforward motor plan-

ning and online feedback corrections to movement errors, we used error clamp trials to restrict devi-

ations from the straight-line path towards the target during 1-target trials. We implemented these

error clamp trials as a highly stiff (6000 N/m), viscous (250 Ns/m) one-dimensional spring and

damper system in the direction orthogonal to the straight-line path between the initial hand position

and the cued target. In line with previous work, these error clamp trials effectively eliminated move-

ment errors (average maximum absolute deviation, <1.9 mm) and allowed for a high-accuracy mea-

surement of feedforward participant-produced forces patterns (Scheidt et al., 2000; Sing et al.,

2009).

Unlike 1-target trials, feedback corrections are to be expected during 2-target trials if task suc-

cess is to be achieved because participants must reflexively correct their movements following divul-

gence of the ultimate target. We thus devised a variant of the error clamp, which we term the partial

error clamp, to measure the initial segment of force output during 2-target trials that reflects feed-

forward motor planning before these feedback corrections occur. As the initial motion on these 2-

target trials was directed towards the center target, we aligned the partial error clamps to the

straight-line path connected to the center target location, but we smoothly transitioned the hand

from the highly stiff and viscous environment into a null environment (i.e., the robot motors were dis-

abled) after a 11-cm distance threshold. Note that the 11-cm point was selected based on an analy-

sis of pilot data to determine the onset of feedback corrections to the final target. These partial

error clamp trials allowed us to measure feedforward force patterns early in the movement, while
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motor errors were minimized (average maximum absolute deviation, <2.3 mm), but still permitted

participants to carry out feedback corrections later in the movement for final target acquisition.

Post-hoc surveys indicated that 5/16 participants noticed partial error clamps, whereas 6/16 partici-

pants noticed the standard error clamps.

Training schedules (Expt 1 and Expt 1-GEN)
We divided the experiment into baseline, training, and test epochs with a total of 1305 outward-

reaching movements. The experiment began with the baseline epoch, which consisted of nine

blocks. The first three blocks comprised 120 null 1-target trials that familiarized participants with the

basic experimental setup and feedback structure described above. The next four blocks comprised

200 2-target trials, the first 50 of which were null trials, and the remaining 150 were 80% null trials

and 20% partial error clamp trials. The last three blocks of the baseline period reacquainted partici-

pants with 1-target trials before the training period started and comprised 85 1-target trials, in which

80% were null trials and 20% were error clamp trials. The force patterns measured on error clamp

and partial error clamp trials throughout this epoch were used as a baseline for estimating learning-

related changes in force patterns during subsequent blocks. Note that in this epoch all blocks

that comprised 1-target trials probed each target direction in equal amounts.

The baseline epoch was followed by the training epoch, which was separated into seven blocks

and comprised exclusively of 1-target trials. The purpose of the training epoch was to elicit robust

adaptation to the multi-FF environment we designed. However, because this environment differen-

tially perturbs movements to the center target compared to the lateral (left/right) targets (see Multi-

FF environment), interference effects for adaptation to the FFs associated with the lateral targets

would arise from center target training. Importantly, whereas the source of interference for left/right

target training is singular, center target training would suffer interference effects from the FFs associ-

ated with both lateral targets. Interference effects would limit the overall level of adaptation that

can be achieved, and because these effects are non-uniformly distributed across the trained target

directions, straightforward application of the multi-FF environment may lead to dissimilar levels of

adaptation across target directions. These issues would consequently limit the statistical power in

dissociating MA from PO and would bias their predictions. We therefore sought to create a training

schedule that would avoid this bias and elicit similar levels of adaptation to the FFs associated with

each target. To do so, we tested various training schedules in a pilot study that was guided by simu-

lations from a linear state-space model with local motor primitives for predicting the effects of gen-

eralization in our composite environment. We correspondingly employed the FF training schedule

we found successful, which included 500 training trials (with 80% FF trials and 20% error clamp trials),

and twice the number of center target trials compared to the number of left or right target trials.

Note that this distribution of target directions (1:2:1 for left, center, and right target directions,

respectively) carried into the next epoch.

After the training epoch, participants completed the test epoch, which was separated into five

blocks. The purpose of the test epoch was to probe participants’ initial force patterns during 2-tar-

get trials while approximately maintaining the level of adaptation to the multi-FF environment

achieved for 1-target trials during the training epoch. We thus included 400 trials in this epoch, of

which 300 were 1-target FF trials, 50 were 1-target error clamp trials, and 50 were 2-target partial

error clamp trials. Note that during all epochs error clamps and partial error clamps were inter-

spersed in a pattern that was random (frequency of one in five during the baseline and training

epochs, and one in four during the test epoch) but which avoided consecutive error clamps or partial

error clamps trials to prevent adaptation decay.

The training schedule of Expt 1-GEN was analogous to that of Expt 1, but 2-target trials were

replaced with 1-target trials that were positioned at one of nine different directions (from �30˚ to

30˚ every 7.5˚). Thus the training epoch of Expt 1-GEN was identical to that of Expt 1, but during the

baseline epoch, participants reached towards each of the nine targets, presented in random order,

for an equal number of trials. Baseline force patterns associated with each target were probed with

error clamps on 20% of trials after the third baseline block as in Expt 1. During the test epoch, the 2-

target partial error clamp trials from Expt 1 were replaced with 1-target error clamp trials that

probed generalization to the ‘off-targets’ positioned in-between the trained target directions (i.e.,

these trials probed the targets located at ±22.5˚, ±15˚, and ±7.5˚).
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Apparatus for obstacle avoidance experiments (Expts 2a and 2b)
Participants were instructed to grasp a lightweight plastic handle that sheathed a digital stylus and

make reaching movements with their right hands in the horizontal plane. We instructed participants

to slide the handle across the surface of a tablet capable of recording hand position at 200 Hz with a

resolution of 0.01 mm. All visual stimuli, including targets, obstacles, and a real-time cursor showing

hand position, were displayed on a horizontally oriented LCD computer monitor (with a screen

refresh rate of 120 Hz and a motion display latency of ~25 ms) that was mounted above the tablet at

the shoulder level and therefore obstructed view of the hand. Participants were positioned such that

their midlines were aligned with the middle of the monitor and tablet.

Design of obstacles (Expts 2a and 2b)
In Expts 2a and 2b, participants made reaching movements using the 1-target and 2-target trial con-

figurations from Expt 1, but on some trials, we presented visual obstacles that we instructed partici-

pants to avoid. As illustrated in Figure 3c, the obstacle in Expt 2a was rectangular in shape (width 1

cm and length 12 cm) and was oriented so that its long axis was perpendicular to the vector

between the start position and the target. Moreover, it was positioned midway between the start

location and the target, and from this location, protruded 2 cm towards the midline and 10 cm away

from it so that movements around the obstacle would be consistently deflected towards the midline.

In Expt 2b, we modified the obstacle from Expt 2a by clipping off the 10 cm away-from-midline pro-

trusion, so that it still protruded 2 cm towards the midline, but now 0 cm away from it (see

Figure 3c, bottom panel). This modification promoted deflections that, relative to the target directly

blocked by the obstacle, were away from the midline and opposite in direction to those in Expt 2a.

This dichotomy allowed us to dissociate the MA and PO hypotheses for motor planning under

uncertainty.

Trial types and feedback (Expts 2a and 2b)
Expts 2a and 2b included obstacle-free and obstacle-present 1- and 2-target trials. Visual stimuli and

feedback were identical to those of Expt 1. Participants were instructed to rapidly reach the final tar-

get but while avoiding a virtual obstacle, if present. A custom collision-detection algorithm was cre-

ated so that if a collision with the obstacle was detected, a message that read ‘You hit the obstacle!’

was displayed, a buzzer tone was played, and the trial was disqualified from movement time reward

feedback. Otherwise, the movement time feedback and the individualized thresholding procedure

was identical to Expt 1, but with separate thresholds maintained for 2-target trials, obstacle-

obstructed 1-target trials, and all remaining 1-target trials (i.e., all obstacle-free 1-target trials and all

obstacle-present 1-target trials in which the obstacle did not directly block the target). We did not

maintain separate thresholds for obstacle-free vs. obstacle-present 2-target trials because pilot stud-

ies indicated that the differences in movement completion times were small. The 2-target trial move-

ment time thresholds ranged from 225 to 645 ms in Expt 2a and 225 to 598 ms in Expt 2b (on

average across participants). The obstacle-obstructed 1-target trial movement time threshold ranged

from 225 to 450 ms in Expt 2a and 225 to 360 ms in Expt 2b. The movement time threshold for the

remaining 1-target trials ranged from 225 to 380 ms in Expt 2a and 225 to 382 ms in Expt 2b. After

participants reached the final target, they were instructed to move the handle back to the starting

position to begin the next trial.

Note that all participants in both experiments completed an equal number of trials in which the

obstacle was positioned between the start target and the left target (left-side obstacle condition)

and between the start target and right target (right-side obstacle condition). The experiments were

therefore balanced within participants to cancel out any target-specific effects that might lead to

biases in movement direction. Figure 3 displays the MA and PO predictions based on a left-side

obstacle condition, but for a right-side obstacle condition, the geometry of the predictions would

simply be left/right mirror-reversed. Data shown in Figure 4b and Figure 5 correspondingly com-

bine the left-side and right-side obstacle conditions for each participant.

Training schedules (Expts 2a and 2b)
Expts 2a and 2b had identical training schedules, and thus the experiments only differed in the

obstacle geometry, as described above, and shown in Figure 3. Both experiments were divided into
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a baseline and test epoch with a total of 760 outward-reaching movements. The baseline epoch

included nine blocks (460 trials total) and was designed to familiarize participants with the basic task

and feedback structure before obstacle-present 2-target trials were presented in the test epoch. The

first two blocks comprised 120 obstacle-free 1-target trials, and the next two blocks comprised 100

obstacle-present 1-target trials. Of the five blocks that followed, which included a total of 240 trials,

three comprised obstacle-free 1- and 2-target trials (with 40% 1-target trials and 60% 2-target trials,

180 trials total) and the remaining two blocks comprised solely obstacle-present 1-target trials (60

trials total). Note that across all baseline blocks, the 1-target trials probed each target direction in

equal amounts.

The test epoch included six blocks (300 trials total) and was designed to probe motor planning

for obstacle-present 2-target trials so that predictions for MA and PO could be compared. All blocks

in this epoch comprised solely obstacle-present trials, with 60% obstacle-present 1-target trials and

40% obstacle-present 2-target trials. Of the obstacle-present 1-target trials, we probed movements

towards the obstacle-obstructed target more often (50% of trials) because our analyses were more

sensitive to movements towards this target compared to movements towards the center or unob-

structed targets. The remaining 50% of obstacle-present 1-target trials probed the center and unob-

structed targets in equal amounts. Note that, in both the baseline and test epochs, left-side and

right-side obstacle conditions were separated into different blocks, and the ordering of these blocks

was balanced across participants.

Analysis
Outlier analysis
No participants were excluded from any dataset. Individual movements that did not comply with the

task requirements, outlined in Targets and feedback (Expt 1 and Expt 1-GEN), were not eligible for

analysis (<3% of trials in Expt 1, <2% of trials in Expt 1-GEN, <1% of trials in Expt 2a, and <2% of tri-

als in Expt 2b). In addition, we discarded a small fraction of highly atypical movements based on two

key features. For all experiments, we required that the movement time was between 225 ms and

2000 ms (<1% of trials in Expt 1, <1% of trials in Expt 1-GEN, <1% of trials in Expt 2a, and <1% of

trials in Expt 2b) and for Expt 1 and Expt 1-GEN, we also required that peak velocity was between

0.2 m/s and 1 m/s (<1% of trials in Expt 1 and <1% of trials in Expt 1-GEN). Note that only move-

ments performed after the familiarization blocks in each experiment were used for analysis, and for

those movements, these criteria collectively resulted in the omission of <3% of trials in Expt 1, <2%

of trials in Expt 1-GEN, <1% of trials in Expt 2a, and <2% of trials in Expt 2b.

Analysis of force patterns in Expt 1
We examined the lateral force profiles participants produced that were orthogonal to the cued tar-

get direction for 1-target EC trials and to the center target direction for 2-target partial error clamp

trials, corresponding to the axis of the imposed perturbations (see Multi-FF environment). We

aligned all force profiles to the onset of the target cue (TON, 40–50 ms after movement onset) and

used the population-averaged force profiles measured during the test period, after participants

became acclimated to the multi-FF environment, to construct the MA and PO predictions. Specifi-

cally, we constructed the MA prediction by averaging the force profiles associated with the left and

right targets, and then constructed the PO prediction by directly using the force profiles associated

with the center target (Figure 2c). Since we sought to isolate the feedforward component of the

data and predictions, before feedback responses to the target cue occurred, we analyzed all force

profiles until the minimum time (across participants) that differences in force output on left and right

cued 2-target partial error clamp trials were significantly different from zero (TRESP, ~150 ms after

TON). In addition, because the imposed FF environment was velocity-dependent, and adaptive

responses to velocity-dependent dynamics are known to be scaled by movement velocity from one

trial to the next (Joiner et al., 2011), we normalized each force profile by the velocity-dependent

level of ideal compensation.

For a simple determination of how participants compensated for the multi-FF environment we

imposed, we characterized the adaptive response on 1-target trials with an adaptation coefficient,

calculated as the slope from a linear regression of the baseline-subtracted force profiles participants

made during error clamp trials onto the ideal compensatory force (Smith et al., 2006; Sing et al.,
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2009; Hadjiosif and Smith, 2015). For trials that were associated with the FF perturbations imposed

during movements towards the center target, we defined the adaptation coefficient so that full FF

compensation would yield an adaptation coefficient of +1. For trials that were associated with the

FF perturbations imposed during movements towards the left or right target, we defined the adap-

tation coefficient so that full FF compensation would yield an AC of �1.

To quantify the similarity between the 2-target trial force data and the predictions, as shown in

Figure 2g, we devised a prediction index that results in a value of +1 if the 2-target trial data is per-

fectly similar to the PO prediction, �1 if it is perfectly similar to the MA prediction, and 0 would if

the data were halfway between both predictions,

PI ¼
�2 ��C

�D

�C ¼
�PO þ�MA

2
; �D ¼

�PO ��MA

2

where �C and �D correspond to the common and differential modes, respectively, of predicted

mean force levels based on the PO (�PO) and MA (�MA) models, and �2 corresponds to the mean

force level of the 2-target trial data. In Expt 1, we calculated the prediction index over two intervals:

one spanned movement onset until TON, and the other spanned movement onset until TRESP.

Refinement of predictions based on generalization of adaptive responses
(Expt 1 and Expt 1-GEN)
Due to non-trivial variability in motor output, participants occasionally deviated from the intended

target direction on 1-target trials and from the center target direction on 2-target trials. Directional

deviations consequently bias both the MA and PO predictions since adjacent targets were associ-

ated with different FFs in the composite environment we designed. To account for this variability-

induced effect and refine our predictions, we first measured how the multi-FF environment general-

izes to nine different movement directions in Expt 1-GEN (see Training schedules [Expt 1 and Expt

1-GEN]). We then estimated the generalization of adaptation throughout our composite environ-

ment by fitting the population-averaged adaptation coefficients (from the test period) associated

with every probed target direction onto a model that was based on the additive combination of

Gaussians centered around the trained target directions (+30˚/0˚/�30˚),

g �ð Þ ¼�A1e
�

��30ð Þ2

2s2 þA2e
� �2

2s2 �A1e
�

�þ30ð Þ2

2s2 þA0

This equation describes the amount of generalization, g, as a function of the probed target direction,

�. There are four free parameters: s is the width of each Gaussian, A1 and A2 are the heights of the

Gaussians associated with left/right target training and center target training, respectively, and A0 is

an offset. This model uses equal width Gaussians for the adaptation at each target, which is reason-

able since FFs levied in each target direction were structurally identical. We allowed different heights

to be associated with the left/right vs. center target directions since movements towards the center

target were perturbed twice as many times as movements towards the left or right targets (see

Training schedules [Expt 1 and Expt 1-GEN]).

We used the model for g �ð Þ to determine how the force profiles associated with the MA and PO

predictions from Expt 1 would be refined given each participant’s distribution of movement direc-

tions. We determined the movement direction as the direction of the hand when it was 10 cm away

from the start position relative to the direction of the hand at movement onset (and note that the

distributions of movement directions shown in Figure 2e were based on random samples from the

pooled aggregate of participant data). We used each participant’s distribution of movement direc-

tions on left and right 1-target FF trials (from the test epoch) to refine the MA predictions, and the

movement directions on null 2-target trials to refine the PO predictions. We applied the model for

g �ð Þ to predict the pattern of generalization up to ±42.5˚ (~ 2:5s) away from the center target direc-

tion to obtain an estimate of generalization that encompassed the space of movement directions

explored by participants. We then convolved the resulting model-estimated generalization function

with each participant’s distribution of movement directions from Expt 1 to determine each partici-

pant’s distribution of adaptive responses conditioned on their observed directional variability. Using
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each participant’s expected value of adaptation from this distribution, we scaled the force profiles

that previously formed what we refer to as the raw MA and PO predictions, and ultimately deter-

mined what we refer to as the refined predictions plotted in Figure 2f.

Motor averaging and performance optimization models in Expts 2a and 2b
As outlined in the Results, the MA model posits that on 2-target trials, where uncertainty about the

final goal location is present, individuals exhibit a motor plan that reflects an average of the motor

plans associated with each potential goal,

�̂2 ¼ a ��1Aþ 1�að Þ ��1B

where �̂2 represents the predicted mean deflection, or safety margin, around the obstacle on 2-tar-

get trials, and �1A and �1B represent each participant’s observed mean movement deflection, or

safety margin, on obstacle-obstructed and unobstructed 1-target trials, respectively. Note that the

hat symbol indicates a prediction, whereas variables without a hat symbol indicate an observed vari-

able; subscript values of 1 and 2 indicate 1- and 2-target trial types, respectively; subscript charac-

ters of A and B indicate trial types associated with the obstacle-obstructed and -unobstructed

targets, respectively. Also note that a is a weighting parameter that controls the influence of the

motor plans associated with the obstacle-obstructed and -unobstructed target. Thus a¼ 1 indicates

that participants assigned all weight to the motor plan associated with the obstacle-obstructed tar-

get and a¼ 0 indicates that participants assigned all weight to the motor plan associated with the

unobstructed target. In line with canonical MA theories (Nashed et al., 2017; Gallivan et al., 2017;

Stewart et al., 2013; Stewart et al., 2014), we assumed a¼ 1

2
for the baseline MA model presented

in Equation 2 and for the corresponding predictions presented in Figure 4b.

The PO model posits that on 2-target trials, individuals exhibit a motor plan that attempts to

achieve task success given knowledge of the environment. Thus, on obstacle-present 2-target trials,

PO of intermediate movements would have two objectives: (1) to reach the final target within the

required timing criteria and (2) to avoid obstacle collision because as outlined in Trial types and

feedback (Expts 2a and 2b), these two objectives determined reward on each obstacle-present trial.

We modeled the PO prediction as a combination of the predicted movement directions that would

arise if PO were to independently optimize each objective. Optimization of (1) movement timing for

task performance would lead to movement directions in the center target direction (0˚) as this move-

ment direction maximizes the probability of successful target acquisition during uncertainty

(Hudson et al., 2007; Haith et al., 2015a). On the other hand, to determine the movement direc-

tion predicted if individuals were to optimize (2) obstacle avoidance, we exploited the observation

that the motor system linearly modulates the size of safety margins for actions based on internal esti-

mates of variability (Hadjiosif and Smith, 2015). Accordingly, we determined the expected safety

margin around the obstacle during uncertainty by scaling the magnitude of safety margins observed

during goal certainty by the change in variability that is induced during goal uncertainty. Thus the

PO model took the following form:

�̂2 ¼ b � 0� þ 1�bð Þ � �1A �
s2

s1A

� 15
�

� �

where �̂2 again represents the predicted mean deflection, or safety margin, on obstacle-present 2-

target trials, s2 and s1A represent the observed variabilities on obstacle-present 2-target trials and

obstacle-obstructed 1-target trials, respectively, and �1A again represents the observed mean deflec-

tion, or safety margin, on obstacle-obstructed 1-target trials. The variability ratio s2

s1A
was calculated

as the ratio of the mean of the individual participant values for s2 and s1A. However, because the

population-averaged values for s2 and s1A were nearly identical, the variability ratio s2

s1A
was close to

one (1.02 and 1.00 in Expts 2a and 2b, respectively) and thus had little effect on the output, �̂2, of

the population-averaged version of the PO model shown above. However, the inclusion of this vari-

ability ratio in the participant-individualized version of the model (see below) is critical because on

an individual participant level, variability differences between obstacle-obstructed 1-target trial and

obstacle-present 2-target trial data, although largely idiosyncratic, do occur. And when taken into

account, they afford a substantially improved ability to predict individual differences in the size of
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safety margins on both trial types. The 0˚ term in the model reflects the movement direction midway

between the potential targets that would optimize movement timing, the �1A �
s2

s1A
variability-adjusted

safety margin term reflects optimization of obstacle avoidance, and the 15˚ offset term that is sub-

tracted from the �1A �
s2

s1A
safety margin term is present because the obstacle is offset 15˚ from the 0˚

direction midway between the potential targets. Analogous to the MA model, we included a param-

eter b to weigh the priority levels for the optimization of movement timing and optimization of

obstacle avoidance objectives. b¼ 1 would indicate full prioritization of movement timing, b¼ 0

would indicate full prioritization of obstacle avoidance, and b¼ 1�b¼ 1

2
would indicate equal

weighting of these priorities. We used this equal weighting for the baseline PO model presented in

Equation 2 and for the corresponding predictions presented in Figure 4b, corresponding to an

equal balance of the two motor costs associated with the determinants of task performance. How-

ever, note that it is possible that 1-target trials display a safety margin that may already be some-

what of a balance between motor costs. If such weighting on obstacle-obstructed 1-target trials

were present, the weighting coefficient b for 2-target trials could be more precisely interpreted as

the relative weighting between the motor costs on 2-target compared to 1-target trials. That said,

we would expect the weighting of movement timing that b provides to be considerably stronger for

2-target trials compared to 1-target trials as the time pressure to reach the correct target on 2-tar-

get trials should be considerably greater given that the final target location is revealed only after

movement onset.

We further note that because the movement direction that optimizes movement timing on 2-tar-

get trials (0˚) would not be directly obstructed by the obstacle, it already affords some amount of

safety margin around the obstacle. Thus the movement direction that optimizes movement timing

would also correspond to the movement direction that optimizes obstacle avoidance if the expected

safety margin during uncertainty is sufficiently small (i.e., b ¼ 1). However, if the safety margin pro-

vided by the 0˚ movement is not large enough to optimize obstacle avoidance, then the movement

direction that optimizes both determinants of task success would indeed be based on a combination

of the 0˚ movement direction associated with optimization of movement timing and a unique,

positively valued movement direction (i.e., skewed away from the obstacle) that optimizes obstacle

avoidance based on variability. This feature of the PO model would lead to predictions that evolve

in a piece-wise linear fashion with respect to the variability-scaled 1-target trial safety margin, as out-

lined in Equation 1, but we note that the safety margin estimate associated with optimization of

obstacle avoidance went beyond the 0˚ direction for the participants in both Expts 2a and 2b. Thus,

for simplicity, we withheld displaying this condition from Equations 4–6.

The baseline MA and PO models assumed equal weightings for both potential targets in the

baseline MA model, and analogously, for both determinants of task performance in the baseline PO

model (obstacle avoidance and rapid target acquisition). In addition, however, we also assessed how

differential weighting for the obstacle-obstructed and -unobstructed targets might affect the MA

prediction, and analogously, how differential weighting for obstacle avoidance and rapid target

acquisition might affect the PO prediction. To accomplish this, we fitted the MA and PO models to

both the Expt 2a and 2b participant data to obtain two separate estimates of a and b that reflect

participants’ own subjective valuations for the motor plans, or constituents, that comprise each

model. Importantly, the values for a and b were restricted to within the range of 0 and 1 to prevent

negative weighting. To estimate a in the MA model, we regressed the difference between the indi-

vidual participant 2-target trial and the unobstructed 1-target trial movement directions onto the dif-

ference between the individual participant obstacle-obstructed and -unobstructed 1-target trial

movement directions. To estimate b in the PO model, we regressed the individual participant 2-tar-

get trial movement directions onto the obstacle-obstructed 1-target trial movement directions.

The parameter estimates for a and b were used to form refined predictions for both the Expt 2a

and 2b data (shown in Figure 4b). However, for each experiment’s dataset, we evaluated refined

model predictions that were based on parameter estimates obtained from the other experiment’s

dataset. This cross-validation procedure allowed us to form predictions while avoiding the possibility

of overfitting. However, we note that the predictions drawn for the sample participant data in

Figure 4a were based on the baseline, not refined, MA and PO models. As an aside, we note that

the trial-averaged trajectories displayed in this panel were determined by linearly interpolating the
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x-positions of the hand path onto a vector of y-positions every 0.254 mm to align the hand path

measurements across trials, allowing us to control for variations in hand velocity.

Like in Expt 1, we determined the consistency of the data to the MA and PO model predictions

with the prediction index (see Analysis of force patterns in Expt 1), where the common and differen-

tial modes (�C and �D) corresponded to the predicted population-averaged movement directions

for obstacle-present 2-target trials based on the respective PO and MA models being compared,

and the data (�2) corresponded to the observed population-averaged movement directions on

obstacle-present 2-target trials. In addition, we evaluated each model’s performance by calculating

the squared error between a given model’s population-averaged prediction and each participant’s

mean observation. We calculated the squared error in this manner to report both the mean-

squared-error and an associated SEM.

Because we found that the PO model was able to accurately predict the population-averaged

obstacle-present 2-target trial movement direction (see Figure 4b), we explored how well the model

might be able to predict individual differences in movement direction as well. Extending the baseline

PO model (in which b ¼ 1

2
) to predict each participant’s movement direction yields the following,

�̂2i
¼
1

2
� 0� þ

1

2
� �1Ai

�
s2i

s1Ai

� 15
�

� �

where �̂2i
represents the predicted mean deflection, or safety margin, on obstacle-present 2-target

trials for each participant i, s2i
and s1Ai

represent each participant’s observed variabilities on obsta-

cle-present 2-target trials and obstacle-obstructed 1-target trials, respectively, and �1Ai
represents

each participant’s observed mean deflection, or safety margin, on obstacle-obstructed 1-target tri-

als. A linear combination of this participant-individualized model, with a model based on population-

averaged input variables, yields the following hybrid,

�̂2i
� ��2 ¼

1

2
k�1Ai

þ 1� kð Þ��1Að Þ � ks2i
þ 1� kð Þ�s2ð Þ � k

1

s1Ai

þ 1� kð Þ
1

�s1A

� �

�K0

where the individuation index k indicates the relative weighting between the population-averaged

input variables (variables with hat symbols) and the individualized input variables, and the parameter

K0 is the offset. We fit this one-parameter-plus-offset model separately onto the Expt 2a and 2b

datasets to determine the amount of variance in inter-individual differences on obstacle-present 2-

target trials that can be explained by a PO model that accounts for individual differences in �1A, s2,

and s1A. This fitting procedure, like all other others, was based on minimization of model errors in a

least-squares sense.

Remarkably, we found that the one-parameter-plus-offset model was able to explain a majority of

the variance in individual differences, with estimated values of 0.69 and 0.38 for k in Expts 2a and

2b, respectively. We next examined the extent to which this ability was driven by each of its input

variables: �1A, s2, and s1A. We thus devised a simple extension of the one-parameter-plus-offset

model that took the following form,

�̂2i
� ��2 ¼

1

2
k��1Ai

þ 1� k�
� �

��1A

� �

� ks2
s2i

þ 1� ks2
ð Þ�s2ð Þ � ks1

1

s1Ai

þ 1� ks1
ð Þ

1

�s1A

� �

�K0

This three-parameter-plus-offset model differed from the one-parameter-plus-offset variant in that

each of the input variables (�1A, s2, and s1A) was assigned a unique individuation index in k�, ks1
,

and ks2
. When fitting this model, we found that estimates for k�, ks2

, and ks1
led to values of 0.64,

and 0.51, and 0 in Expt 2a, and values of 0.30, 0.45, and 0.04 in Expt 2b, respectively. Using these

parameter estimates, we then compared the amount of variance in inter-individual differences on 2-

target trials explained by this model to nested forms of the model in which one of the input varia-

ble’s individuation effects was held constant, allowing us to calculate that variable’s associated

partial R2 value (see Figure 5a, e). Correspondingly, we also visualized these contributions by plot-

ting the relationship between each of the three input variables and the inter-individual differences in

obstacle-present 2-target trials that remain when the other two input variables are held constant

(see Figure 5b–d, f–h). Specifically, for each input variable, we determined predictions from a

nested model in which the individuation indices associated with the other two input variables were

set to 0, which effectively removes their ability to drive model predictions based on individual
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differences between participants, and instead drives the model predictions based entirely on popu-

lation means for those variables. We then added each of these reduced model predictions with the

residuals accrued from the full three-parameter-plus-offset model to isolate the effects of the

reduced model for each variable of interest. As indicated in the equations above, these predictions

were subsequently mean-subtracted, resulting in predictions for individual differences on 2-target

trials expressly linked to each respective input variable.

Statistical tests
t-tests were used for most statistical comparisons as indicated in the Results section. A one-sided t-

test was used to compare obstacle-present versus baseline obstacle-free 2-target trial movement

direction data in Expt 2 (Figure 4b), and the remaining t-tests were two-sided. When we assessed

nested forms of the full PO model in Expt 2 (see Equations 5 and 6), we used F-tests. In all statistical

tests, the significance level (alpha) was set to 0.01, and normality assumptions for the tests were veri-

fied with Kolmogorov–Smirnov tests. Experiments were programmed in C++ or MATLAB, and all

data were analyzed in MATLAB (RRID:SCR_001622).
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Trommershäuser J, Maloney LT, Landy MS. 2003. Statistical decision theory and the selection of rapid, goal-
directed movements. Journal of the Optical Society of America A 20:1419–1433. DOI: https://doi.org/10.1364/
JOSAA.20.001419, PMID: 12868646

Van der Stigchel S, Meeter M, Theeuwes J. 2006. Eye movement trajectories and what they tell us.
Neuroscience & Biobehavioral Reviews 30:666–679. DOI: https://doi.org/10.1016/j.neubiorev.2005.12.001,
PMID: 16497377

Walker R, Deubel H, Schneider WX, Findlay JM. 1997. Effect of remote distractors on saccade programming:
evidence for an extended fixation zone. Journal of Neurophysiology 78:1108–1119. DOI: https://doi.org/10.
1152/jn.1997.78.2.1108, PMID: 9307138

Wong AL, Haith AM. 2017. Motor planning flexibly optimizes performance under uncertainty about task goals.
Nature Communications 8:14624. DOI: https://doi.org/10.1038/ncomms14624, PMID: 28256513

Alhussein and Smith. eLife 2021;10:e67019. DOI: https://doi.org/10.7554/eLife.67019 32 of 32

Research article Neuroscience

https://doi.org/10.1152/jn.00131.2013
http://www.ncbi.nlm.nih.gov/pubmed/23699052
https://doi.org/10.1016/j.cub.2014.08.046
http://www.ncbi.nlm.nih.gov/pubmed/25291634
https://doi.org/10.1098/rstb.1998.0292
https://doi.org/10.1098/rstb.1998.0292
https://doi.org/10.1038/nn963
http://www.ncbi.nlm.nih.gov/pubmed/12404008
https://doi.org/10.1364/JOSAA.20.001419
https://doi.org/10.1364/JOSAA.20.001419
http://www.ncbi.nlm.nih.gov/pubmed/12868646
https://doi.org/10.1016/j.neubiorev.2005.12.001
http://www.ncbi.nlm.nih.gov/pubmed/16497377
https://doi.org/10.1152/jn.1997.78.2.1108
https://doi.org/10.1152/jn.1997.78.2.1108
http://www.ncbi.nlm.nih.gov/pubmed/9307138
https://doi.org/10.1038/ncomms14624
http://www.ncbi.nlm.nih.gov/pubmed/28256513
https://doi.org/10.7554/eLife.67019

