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Abstract Remembering the temporal order of a sequence of events is a task easily performed

by humans in everyday life, but the underlying neuronal mechanisms are unclear. This problem is

particularly intriguing as human behavior often proceeds on a time scale of seconds, which is in

stark contrast to the much faster millisecond time-scale of neuronal processing in our brains. One

long-held hypothesis in sequence learning suggests that a particular temporal fine-structure of

neuronal activity — termed ‘phase precession’ — enables the compression of slow behavioral

sequences down to the fast time scale of the induction of synaptic plasticity. Using mathematical

analysis and computer simulations, we find that — for short enough synaptic learning windows —

phase precession can improve temporal-order learning tremendously and that the asymmetric part

of the synaptic learning window is essential for temporal-order learning. To test these predictions,

we suggest experiments that selectively alter phase precession or the learning window and

evaluate memory of temporal order.

Introduction
It is a pivotal quality for animals to be able to store and recall the order of events (‘temporal-order

learning’, Kahana, 1996; Fortin et al., 2002; Lehn et al., 2009; Bellmund et al., 2020) but there is

only little work on the neural mechanisms generating asymmetric memory associations across behav-

ioral time intervals (Drew and Abbott, 2006). Putative mechanisms need to bridge the gap between

the faster time scale of the induction of synaptic plasticity (typically milliseconds) and the slower time

scale of behavioral events (seconds or slower). The slower time scale of behavioral events is mir-

rored, for example, in the time course of firing rates of hippocampal place cells (O’Keefe and Dos-

trovsky, 1971), which signal when an animal visits certain locations (‘place fields’) in the

environment. The faster time scale is given by the temporal properties of the induction of synaptic

plasticity (Markram et al., 1997; Bi and Poo, 1998) — and spike-timing-dependent plasticity (STDP)

is a common form of synaptic plasticity that depends on the millisecond timing and temporal order

of presynaptic and postsynaptic spiking. For STDP, the so-called ‘learning window’ describes the

temporal intervals at which presynaptic and postsynaptic activity induce synaptic plasticity. Such pre-

cisely timed neural activity can be generated by phase precession, which is the successive across-

cycle shift of spike phases from late to early with respect to a background oscillation (Figure 1). As

an animal explores an environment, phase precession can be observed in the activity of hippocampal

place cells with respect to the theta oscillation (O’Keefe and Recce, 1993;

Buzsáki, 2002; Qasim et al., 2021). Phase precession is highly significant in single trials

(Schmidt et al., 2009; Reifenstein et al., 2012) and occurs even in first traversals of a place field in

a novel environment (Cheng and Frank, 2008). Interestingly, phase precession allows for a temporal

compression of a sequence of behavioral events from the time scale of seconds down to milliseconds

(Figure 1; Skaggs et al., 1996; Tsodyks et al., 1996; Cheng and Frank, 2008), which matches the

widths of generic STDP learning windows (Abbott and Nelson, 2000; Bi and Poo, 2001;
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Froemke et al., 2005; Wittenberg and Wang, 2006). This putative advantage of phase precession

for temporal-order learning, however, has not yet been quantified. To assess the benefit of phase

precession for temporal-order learning, we determine the synaptic weight change between pairs of

cells whose activity represents two events of a sequence. Using both analytical methods and numeri-

cal simulations, we find that phase precession can dramatically facilitate temporal-order learning by

increasing the synaptic weight change and the signal-to-noise ratio by up to an order of magnitude.

We thus provide a mechanistic description of associative chaining models (Lewandowsky and Mur-

dock, 1989) and extend these models to explain how to store serial order.

Results
To address the question of how behavioral sequences could be encoded in the brain, we study the

change of synapses between neurons that represent events in a sequence. We assume that the tem-

poral order of two events is encoded in the asymmetry of the efficacies of synapses that connect

Figure 1. Rationale for temporal-order learning via phase precession. Top: Behavioral events (A to D) happen on a time scale of seconds. Middle:

These events are represented by different cells (a–d), which fire a burst of stochastic action potentials in response to the onset of their respective event.

We assume that each cell shows phase precession with respect to the LFP’s theta oscillation (every second cycle is marked by a greay box). When the

activities of multiple cells overlap, the sequence of behavioral events is compressed in time to within one theta cycle (two examples highlighted in the

dashed, shaded boxes). Bottom: This faster time scale can be picked up by STDP and strengthen the connections between the cells of the

sequence. Figure adapted from Korte and Schmitz, 2016.
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neurons representing the two events (Figure 1). After the successful encoding of a sequence, a neu-

ron that was activated earlier in the sequence has a strengthened connection to a neuron that was

activated later in the sequence, whereas the connection in the reverse direction may be unchanged

or is even weakened. As a result, when the first event is encountered and/or the first neuron is acti-

vated, the neuron representing the second event is activated. Consequently, the behavioral

sequence could be replayed (as illustrated by simulations for example in Tsodyks et al., 1996;

Sato and Yamaguchi, 2003; Leibold and Kempter, 2006; Shen et al., 2007; Cheng, 2013;

Chenkov et al., 2017; Malerba and Bazhenov, 2019; Gillett et al., 2020) and the memory of the

temporal order of events is recalled (Diba and Buzsáki, 2007; Schuck and Niv, 2019). We note,

however, that in what follows we do not simulate such a replay of sequences, which would depend

also on a vast number of parameters that define the network; instead, we rather focus on the under-

lying change in connectivity, which is the very basis of replay, and draw connections to ‘replay’ in the

Discussion.

Let us now illustrate key features of the encoding of the temporal order of sequences. To do so,

we consider the weight change induced by the activity of two sequentially activated cells i and j that

represent two behavioral events (dashed lines in Figure 2A). Classical Hebbian learning

(Hebb, 1949), where weight changes Dwij depend on the product of the firing rates fi and fj, is not

suited for temporal-order learning because the weight change is independent of the order of cells:

Dwij / fi � fj ¼ fj � fi / Dwji :

Therefore, a classical Hebbian weight change is symmetric, that is, Dwij �Dwji ¼ 0. This result can

be generalized to learning rules that are based on the product of two arbitrary functions of the firing

rates. We note that, although not suited for temporal-order learning, Hebbian rules are able to

achieve more general ‘sequence learning’, where an association between sequence elements is cre-

ated — independent of the order of events. To become sensitive to temporal order, we use spike-

timing dependent plasticity (STDP; Markram et al., 1997; Bi and Poo, 1998). For STDP, average

weight changes depend on the cross-correlation function of the firing rates (example in Figure 2C,

D),

CijðtÞ :¼
Z

¥

�¥
dt0 fiðt0Þ fjðt0þ tÞ ;

which is anti-symmetric: CijðtÞ ¼Cjið�tÞ. Assuming additive STDP, that is, weight changes resulting

from pairs of pre- and postsynaptic action potentials are added, the average synaptic weight change

Dwij between the two cells in a sequence can then be calculated explicitly (Kempter et al., 1999):

Dwij ¼
Z þ¥

�¥
dtWðtÞCijðtÞ (1)

where W is the STDP learning window (example in Figure 2E). We aim solve Equation 1 for given fir-

ing rates fi and fj. To do so, we assume that the synaptic weight wij is generally small and thus only

has a weak impact on the cross-correlation of the cells during encoding, that is, for the ‘encoding’ of

a sequence the cross-correlation function is dominated by feedforward input, whereas the recurrent

inputs are neglected.

Next, let us show that the symmetry of W is essential for temporal-order learning. Any learning

window W can be split up into an even part Weven, with WevenðtÞ ¼ Wevenð�tÞ, and an odd part Wodd,

with WoddðtÞ ¼ �Woddð�tÞ, such that W ¼ Weven þWodd. For even learning windows, one can derive

from Equation 1 and the anti-symmetry of Cij that weight changes are symmetric, that is,

Dwij ¼ Dwji; therefore, only the odd part Wodd of W is useful for learning temporal order.

To further explore requirements for encoding the temporal order of a sequence of events, we

restrict our analysis to odd learning windows. We then can relate the weight change Dwij to the

essential features of CijðtÞ. To do so, we integrate Equation 1 by parts (with W replaced by Wodd),

Dwij ¼ WoddðtÞ �CijðtÞ
h iþ¥

�¥
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

þ
Zþ¥

�¥

dt �WoddðtÞ
h i

C0
ijðtÞ ; (2)
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with the primitive WoddðtÞ :¼
R t

�¥ dt
0Woddðt0Þ and the derivative C0

ijðtÞ :¼ d
dt
CijðtÞ. Because WoddðtÞ can be

assumed to have finite support (note that
Rþ¥
�¥ dtWoddðtÞ ¼ 0), the first term in Equation 2 vanishes.

Also the learning window has finite support, and therefore we can restrict the integral in the second

term in Equation 2 to a finite region of width K around zero:

Dwij ¼
Z

jtj<K

dt �WoddðtÞ
h i

C0
ijðtÞ (3)

Figure 2. Model of two sequentially activated phase-precessing cells. (A) Oscillatory firing-rate profiles for two cells (solid blue and cyan lines). The

black curve depicts the population theta oscillation. For easier comparison of the two different frequencies, the population activity’s troughs are

continued by thin gray lines, and the peaks of the cell-intrinsic theta oscillation are marked by dots. Dashed lines depict the underlying Gaussian firing

fields without theta modulation. (B) Phase precession of the two cells (same colors as in A). The compression factor c describes the phase shift per theta

cycle for an individual cell (2pc). For the temporal separation Tij of the firing fields and the theta frequency !, the phase difference between the cells is

!cTij. The dots depict the times of the maxima in (A). (C) Resulting cross-correlation for the two firing rates from (A). The solid red curve shows the full

cross-correlation. The dashed line depicts the cross-correlation without theta-modulation. The gray region indicates small (t<20 ms) time lags. (D) Same

as in (C), but zoomed in. Note that the first peak of the theta modulation is at a positive non-zero time lag, reflecting phase precession. The dashed

black curve shows the approximation of the cross-correlation for the analytical treatment (Materials and methods, Equation 17). (E) Synaptic learning

window. The gray region indicates the region in which the learning window is large, and this region is also indicated in (C) and (D). Positive time lags

correspond to postsynaptic activity following presynaptic activity. Parameters for all plots: Tij ¼ 0:3 s, ! ¼ 2p � 10 Hz, s ¼ 0:3 s, t ¼ 10 ms, � ¼ 1,

c ¼ 0:042, A ¼ 10.
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where K describes the width of the learning window W (gray region in Figure 2E). The integral in

Equation 3 can be interpreted as the cross-correlation’s slope around zero, weighted by the sym-

metric function �WoddðtÞ; interestingly, features of Cij for jtj �K, for example whether side lobes of

the correlation function are decreasing or not, are irrelevant.

As a generic example of sequence learning, let us consider the activities of two cells i and j that

encode two behavioral events, for example the traversal of two place fields of two hippocampal

place cells. In general, the cells’ responses to these events are called ‘firing fields’. We model these

firing fields as two Gaussian functions G0;s and GTij;s that have the same width s but different mean

values 0 and Tij (we note that Tij and s are measured in units of time, that is, seconds; Figure 2A,

dashed curves). In this case of identical Gaussian shapes of the two firing fields, the cross-correlation

CijðtÞ is also a Gaussian function, denoted by GTij;
ffiffi
2

p
s, but with mean Tij and width

ffiffiffi
2

p
s (dashed curve

in Figure 2C). The value s ¼ 0:3 s, which we use in the example of Figure 2, matches experimental

findings on place cells (O’Keefe and Recce, 1993; Geisler et al., 2010).

It is widely assumed that phase precession facilitates temporal-order learning (Skaggs et al.,

1996; Dragoi and Buzsáki, 2006; Schmidt et al., 2009), but it has never been quantitatively shown.

To test this hypothesis and to calculate how much phase precession contributes to temporal-order

learning, we consider Gaussian firing fields that exhibit oscillatory modulations with theta frequency

! (Figure 2A, solid curves). The time-dependent firing rate of cell i is described by

fiðtÞ / G�i;sðtÞ 1þ cos½!ðt � c�iÞ�f g, that is, a Gaussian that is multiplied by a sinusoidal oscillation; see

also Equation 11 in Materials and methods. Phase precession occurs with respect to the population

theta, which oscillates at a frequency of ð1� cÞ! that is slightly smaller than !, with a ‘compression

factor’ c that is usually small: 0 � c � 1 (Dragoi and Buzsáki, 2006; Geisler et al., 2010). This com-

pression factor c describes the average advance of the firing phase — from theta cycle to theta cycle

— in units of the fraction of a theta cycle; c thus determines the slope !c of phase precession

(Figure 2B). A typical value is c »p=ð4s!Þ, which accounts for ‘slope-size matching’ of phase preces-

sion (Geisler et al., 2010); that is, c is inversely proportional to the field size L :¼ 4s of the firing

field, and the total range of phase precession within the firing field is constant and equals p � 180
�.

If there are multiple theta oscillation cycles within a firing field (!s � 1), which is typical for place

cells, the cross-correlation CijðtÞ is a theta modulated Gaussian (solid curve in Figure 2C; see also

Equation 15 in Materials and methods).

The generic shape of the cross-correlation Cij in Figure 2C allows for an advanced interpretation

of Equation 3, which critically depends on the width K of the learning window W. We distinguish

here two limiting cases: narrow learning windows (K � 1=! � s), that is, the width K of the learning

window is much smaller than a theta cycle and the width of a firing field, and wide learning windows

(K � s), that is, the width K of the learning window exceeds the width of a firing field. Let us first

consider narrow learning windows. Only later in this manuscript, we will turn to the case of wide

learning windows.

Dependence of temporal-order learning on the overlap of firing fields
for narrow learning windows (K � 1=! � s)
We first show formally that sequence learning with narrow learning windows requires that the two fir-

ing fields do overlap, that is, their separation Tij should be less than or at least similar to the width s

of the firing fields. In Equation 3, which was derived for odd learning windows, the weight change

Dwij is determined by C0
ijðtÞ around t ¼ 0 in a region of width K. For narrow learning windows

(K � 1=!), this region is small compared to a theta oscillation cycle and much smaller than the width

s of a firing field. Because the envelope of the cross-correlation CijðtÞ is a Gaussian with mean Tij

and width
ffiffiffi

2
p

s, the slope C0
ijðt ¼ 0Þ scales with the Gaussian factor GTij;

ffiffi
2

p
sð0Þ / exp ½�T2

ij=ð4s2Þ�. The
weight change Dwij therefore strongly depends on the separation Tij of the firing fields. When the

two firing fields do not overlap (Tij � s), the factor exp ½�T2

ij=ð4s2Þ� quickly tends to zero, and

sequence learning is not possible. On the other hand, when the two firing fields do have consider-

able overlap (Tij <
~

s) we have exp ½�T2

ij=ð4s2Þ� <
~

1. In this case, sequence learning may be feasible

with narrow learning windows. In this section, we will proceed with the mathematical analysis for

overlapping fields, which allows us to assume exp ½�T2

ij=ð4s2Þ� » 1.
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For overlapping firing fields (Tij <
~

s), let us now consider the fine structure of the cross-correlation

CijðtÞ for jtj<K, as illustrated in Figure 2D. Importantly, phase precession causes the first positive

peak (i.e. for t>0) of Cij to occur at time c Tij with c � 1 (Dragoi and Buzsáki, 2006; Geisler et al.,

2010); phase precession also increases the slope C0
ijðtÞ around t ¼ 0, which could be beneficial for

temporal-order learning according to Equation 3. To quantify this effect, we calculated the cross-

correlation’s slope at t ¼ 0 (see also Equation 18 in Materials and methods):

C0
ijð0Þ /GTij;

ffiffi
2

p
sð0Þ

Tij

s
þ!s sin !cTij

� �
þ Tij

2s
cosð!cTijÞ

� �

: (4)

How does C0
ijð0Þ depend on the temporal separation Tij of the firing fields? If the two fields over-

lap entirely (Tij ¼ 0) the sequence has no defined temporal order, and thus C0
ijð0Þ is zero. For at least

partly overlapping firing fields (Tij <
~

s) and typical phase precession where c¼p=ð4!sÞ� 1, we will

show in the next paragraph (and explain in Materials and methods in the text below Equation 18)

that the second addend in Equation 4 dominates the other two. In this case, C0
ijð0Þ is much higher as

compared to the cross-correlation slope in the absence of phase precession (c¼ 0), leading to a

clearly larger synaptic weight change for phase precession. The maximum of C0
ijð0Þ is mainly deter-

mined by this second addend (multiplied by GTij ;
ffiffi
2

p
sð0Þ) and it can be shown (see Materials and meth-

ods) that this maximum is located near Tij »
ffiffiffi
2

p
s .

The increase of C0
ijð0Þ induced by phase precession can be exploited by learning windows W that

are narrower than a theta cycle (e.g. gray regions in Figure 2C,D,E). To quantify this effect, let us

consider a simple but generic shape of a learning window, for example, the odd STDP window

WðtÞ ¼ � signðtÞ expð�jtj=t Þ with time constant t and learning rate �>0 (Figure 2E); this STDP win-

dow is narrow for t � 1=!. Equations 3 and 4 then lead to (see Materials and methods, Equa-

tion 19) the average weight change

Dwij ¼ A2�t 2
GTij ;

ffiffi
2

p
sð0Þ

s

Tij

s
þ!s sinð!cTijÞ

1þ!2
t

2
þ Tij

2s
cosð!cTijÞ �

1�!2
t

2

ð1þ!2
t

2Þ2

" #

(5)

where A depicts the number of spikes per field traversal. Note that, according to Equation 3, the

weight change Dwij in Equation 5 can be interpreted as a time-averaged version of C0
ijðtÞ near t¼ 0

from Equation 4. Thus, Equations 4 and 5 have a similar structure, but Equation 5 includes multiple

incidences of the term !2
t

2 that account for this averaging. This term is small for narrow learning

windows (t � 1=!) and can thus be neglected (!2
t

2 � 1) in this limiting case; however, for typical

biological values of t � 10 ms and !¼ 2p � 10 Hz, the peculiar structure of the !2
t

2-containing factor

in the third addend in the square brackets is the reason why this addend can be neglected com-

pared to the first one; as a result, the cases of ‘phase locking’ (c¼ 0) and ‘no theta’ (only the first

addend remains) are basically indistinguishable. Moreover, for narrow odd learning windows, Dwij in

Equation 5 inherits a number of properties from C0
ijð0Þ in Equation 4: the second addend still

remains the dominant one for Tij <
~

s; inherited are also the absence of a weight change for fully

overlapping fields (Dwij ¼ 0 for Tij ¼ 0), the maximum weight change for Tij »
ffiffiffi
2

p
s, and Dwij ! 0 for

Tij !¥ (Figure 3A). Furthermore, the prefactor A2�t 2 in Equation 5 suggests that the average

weight change increases with increasing width t of the learning window, but we emphasize that this

increase is restricted to t � 1=! (as we assumed for the derivation), which prohibits a generalization

of the quadratic scaling to large t ; the exact dependence on t will be explained later.

To quantify how much better a sequence can be learned with phase precession as compared to

phase locking, we use the ratio of the weight change Dwij with phase precession (c>0) and the

weight change Dwijðc ¼ 0Þ without phase precession (Figure 3A), and define the benefit B of phase

precession as

B :¼ Dwij

Dwijðc¼ 0Þ� 1: (6)

By inserting Equation 5 in Equation 6, we can explicitly calculate the benefit B of phase preces-

sion (see Equation 20 in Materials and methods and solid line in Figure 3B). For Tij <
~

s and !4
t

4 � 1
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Figure 3. Temporal-order learning for narrow learning windows (t � 1

!). (A) The average synaptic weight change Dwij depends on the temporal

separation Tij between the firing fields. Phase precession (blue) yields higher weight changes than phase locking (red). Simulation results (circles,

averaged across 104 repetitions) and analytical results (lines, Equation 5) match well. The vertical lines mark time lags of s and 4s, respectively, where

4s approximates the total field width. (B) The benefit B of phase precession is determined by the ratio of the average weight changes of two scenarios

from (A). The solid and dashed lines depict the analytical expression for the benefit (Equation 20) and its approximation for small Tij (Equation 7),

respectively. (C) Signal-to-noise ratio (SNR) of the weight change as a function of the firing-field separation Tij. The SNR is defined as the mean weight

change divided by the standard deviation across trials in the simulation. Colors as in (A). Parameters for all plots: ! ¼ 2p � 10 Hz, s ¼ 0:3 s, t ¼ 10 ms,

� ¼ 1, c ¼ 0:042, A ¼ 10.

Reifenstein et al. eLife 2021;10:e67171. DOI: https://doi.org/10.7554/eLife.67171 7 of 39

Research article Neuroscience

https://doi.org/10.7554/eLife.67171


(see Materials and methods) the benefit B is well approximated by a Taylor expansion up to third

order in Tij (dashed line in Figure 3B),

B»
2

3
!2s2c 1� c

4s2
� 1�!2

t

2

1þ!2
t

2
þ 1

6
!2c2

� �

T2

ij

� �

: (7)

The maximum of B as a function of Tij is obtained for Tij ¼ 0 (fully overlapping fields), but the aver-

age weight change Dwij is zero at this point. We note, however, that B decays slowly with increasing

Tij, so B Tij ¼ 0
� �

can be used to approximate the benefit for small field separations Tij (i.e. largely

overlapping fields). For narrow (!t � 1) odd STDP windows and slope-size matching (!sc¼p=4), we

find the maximum Bmax »!s=2, which has an interesting interpretation: If we relate s to the field size

L of a Gaussian firing field through L¼ 4s and if we relate the frequency ! to the period T� of a theta

oscillation cycle through T� ¼ 2p=!, we obtain Bmax »0:82L=T�, that is, the maximum benefit of phase

precession is about the number of theta oscillation cycles in a firing field. The example in Figure 3B

(with firing fields in Figure 2A) has the maximum benefit Bmax »10 and the benefit remains in this

range for partly overlapping firing fields (0<Tij <
~

s). We thus conclude that phase precession can

boost temporal-order learning by about an order of magnitude for typical cases in which learning

windows are narrower than a theta oscillation cycle and overlapping firing fields are an order of mag-

nitude wider than a theta oscillation cycle.

So far, we have considered ‘average’ weight changes that resulted from neural activity that was

described by a deterministic firing rate. However, neural activity often shows large variability, that is,

different traversals of the same firing field typically lead to very different spike trains. To account for

such variability, we have simulated neural activity as inhomogeneous Poisson processes (see Materi-

als and methods for details). As a result, the change of the weight of a synapse, which depends on

the correlation between spikes of the presynaptic and the postsynaptic cells, is a stochastic variable.

It is important to consider the variability of the weight change (‘noise’) in order to assess the signifi-

cance of the average weight change. For this reason, we utilize the signal-to-noise ratio (SNR),

that is, the mean weight change divided by its standard deviation (see Materials and methods for

details). To do so, we perform stochastic simulations of spiking neurons and calculate the average

weight change and its variability across trials. This is done for phase-precessing as well as phase-

locked activity. To connect this approach to our previous results, we confirm that the average weight

changes estimated from many fields traversals matches well the analytical predictions (Figure 3A

and B, see Materials and methods for details).

The SNR shown in Figure 3C summarizes how reliable is the learning signal in a single traversal of

the two firing fields — for the assumed odd learning window. The SNR further depends on Tij and

follows a similar shape as the weight changes in Figure 3A. For phase precession, there is a maxi-

mum SNR that is slightly shifted to larger Tij; for phase locking, SNR is always much lower. For the

synapse connecting two cells with firing fields as in Figure 2A where Tij ¼ s, we find an SNR of 0.27,

which is insufficient for a reliable representation of a sequence.

To allow reliable temporal-order learning, one possible solution is to increase the number of

spikes per field traversal A (SNR /
ffiffiffi
A

p
, as shown in Appendix 1). Another possibility is to increase

the number of synapses. In Materials and methods we show that SNR /
ffiffiffiffiffi
M

p
where M is the number

of identical and uncorrelated synapses. Therefore, to achieve SNR >
~

1 for A ¼ 10, one needs M >
~

14

synapses.

In summary, for narrow, odd learning windows (t � 1=! � s), temporal-order learning could

benefit tremendously from phase precession as long as firing fields have some overlap. Average

weight changes and the SNR are highest, however, for clearly distinct but still overlapping firing

fields. It should be noted that any even component of the learning window would increase the noise

and thus further decrease the SNR.

Dependence of temporal-order learning on the width of the learning
window for overlapping firing fields
To investigate how temporal-order learning for an odd learning window depends on its width, we

vary the parameter t and quantify the average synaptic weight change Dwij and the SNR both ana-

lytically and numerically. We first study overlapping firing fields (Figure 4) and later consider non-

overlapping firing fields (Figure 5).
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For partly overlapping firing fields (e.g. Tij ¼ s), we find numerically that the average synaptic

weight change Dwij (the ‘learning signal’) increases monotonically for increasing t and saturates (col-

ored curves in Figure 4A). This is because for increasing t the overlap between the learning window

Figure 4. Effect of the learning-window width on temporal-order learning for overlapping fields (here: Tij ¼ s). (A)

Average weight change Dwij as a function of width t (for the asymmetric window W in Equation 14) for phase

precession and phase locking (colored curves). The solid black line depicts the theoretical maximum for large t

(Dwij » 52, Equation 8). The dashed curves show the analytical small-tau approximations (Equation 5). The dotted

curve depicts the analytical approximation for the ’no theta’ case (Equation A2-46 in Appendix 2). The vertical

dashed lines mark 1=!» 0:016 s and the value of s ¼ Tij ¼ 0:3s, respectively. (B) The benefit B of phase precession

is largest for narrow learning windows, and it approaches 0 for wide windows. Simulations (gray line) and analytical

result (black line, small-tau approximation from Equation 20) match well. (C) The signal-to-noise ratio (SNR; phase

precession: blue, phase locking: red, no theta: cyan) takes into account that only the asymmetric part of the

learning window is helpful for temporal-order learning. For large t , all three coding scenarios induce the same

SNR. The horizontal dashed black line depicts the analytical limit of the SNR for large t and overlapping firing

fields (SNR» 1:6, Equation A1-17 of Appendix 1). The dotted black line depicts the analytical expression for the

’no theta’ case (Equation A2-48 in Appendix 2, the curve could not be plotted for t <
~

0:1 s due to numerical

instabilities). Dots represent the SNR for experimentally observed learning windows. The learning windows were

taken from ‘B&P’, Bi and Poo, 2001: their Figure 1, ‘F’, Froemke et al., 2005: their Figure 1D bottom, ‘W&W’,

Wittenberg and Wang, 2006: their Figure 3, ‘P&G’, Pfister and Gerstner, 2006: their Table 4, ‘All to All’,

‘minimal model’, and ‘B’, Bittner et al., 2017: their Figure 3D. For ‘B&P’, ‘F’, and ‘B’, the position of the dots on

the horizontal axis was estimated as the average time constants for positive and negative lobes of the learning

windows. Wittenberg and Wang modeled their learning rule by a difference of Gaussians — we approximated the

corresponding time constant as 30 ms. For the triplet rule by Pfister and Gerstner, we used the average of three

time constants: the two pairwise-interaction time constants (as in Bi and Poo) and the triplet-potentiation time

constant. Parameters for all plots: Tij ¼ 0:3 s, ! ¼ 2p � 10 Hz, s ¼ 0:3 s, c ¼ 0:042, A ¼ 10, � ¼ 1. Colored/gray

curves and dots are obtained from stochastic simulations; see Materials and methods for details.
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and the cross-correlation function grows, and this overlap begins to saturate as soon as the learning

window is wider than Tij, that is, the value at which the cross-correlation assumes its maximum (cmp.

dashed curve in Figure 2C). To analytically calculate the saturation value of Dwij for large learning-

window widths (t � s), we can approximate the learning window as a step function (see Materials

and methods for details) and find the maximum

Dwmax
ij »A2�erf

Tij

2s

� �

(8)

that provides an upper bound to the weight change for overlapping firing fields (solid line in

Figure 4A). For t <
~

1=! (and actually well beyond this region), the analytical small-tau approximation

of Dwij (Equation 5, dashed curves in Figure 4A) matches the numerical results well.

The results in Figure 4A confirm that Dwij is increased by phase precession for narrow learning

windows but is independent of phase precession for t � 1=!. Thus, the benefit B becomes small for

large t (Figure 4B) because, for large enough t , the theta oscillation completes multiple cycles

within the width of the learning window. To better understand this behavior, let us return to Equa-

tion 1: if the product of a wide learning window and the cross-correlation Cij is integrated to obtain

the weight change, the oscillatory modulation of the cross-correlation (e.g. as in Figure 2C) becomes

irrelevant; similarly, according to Equation 3, the particular value of the derivative C0
ijðtÞ near t ¼ 0

can be neglected. Consequently, for t � 1=! phase precession and phase locking as well as the sce-

nario of firing fields that are not theta modulated yield the same weight change (Figure 4A), and

the benefit approaches 0 (Figure 4B). Wide learning windows thus ignore the temporal (theta) fine-

structure of the cross-correlation.

How noisy is this learning signal Dwij across trials? Figure 4C shows that for odd learning windows

the SNR increases with increasing t and, for t � 1

!, approaches a constant value. This constant value

is the same for phase precession, phase locking, or no theta oscillations at all. Taken together, for

large enough t , the advantage of phase precession vanishes. For small enough t , phase precession

increases the SNR, which confirms and generalizes the results in Figure 3C. Remarkably, the SNR for

‘phase locking’ is lower than the one for ‘no theta’, which means that theta oscillations without phase

precession degrade temporal-order learning, even though theta oscillations as such were empha-

sized to improve the modification of synaptic strength in many other cases (e.g. Buzsáki, 2002;

D’Albis et al., 2015).

Figure 4C predicts that a large t yields the biggest SNR, and thus wide learning windows are the

best choice for temporal-order learning; however, we note that this conclusion is restricted to odd

(i.e. asymmetric) learning windows. An additional even (i.e. symmetric) component of a learning win-

dow would increase the noise without affecting the signal, and thus would decrease the SNR (dots in

Figure 4C). It is remarkable that the only experimentally observed instance of a wide window (with

t » 1 s in Bittner et al., 2017) has a strong symmetric component, which leads to a low SNR (dot

marked ‘B’ in Figure 4C).

Taken together, we predict that temporal-order learning would strongly benefit from wide, asym-

metric windows. However, to date, all experimentally observed (predominantly) asymmetric windows

are narrow (e.g. Bi and Poo, 2001; Froemke et al., 2005; Wittenberg and Wang, 2006; see

Abbott and Nelson, 2000; Bi and Poo, 2001 for reviews).

Temporal-order learning for wide learning windows (K � s)
We finally restrict our analysis to wide learning windows, which allows us then to also consider non-

overlapping firing fields (Figure 5A, we again use two Gaussians with widths s and separation Tij).

To allow for temporal-order learning in this case, the spikes of two non-overlapping fields can only

be ‘paired’ by a wide enough learning window. As already indicated in Figure 4, phase precession

does not affect the weight change for such wide learning windows where the width t of the learning

window obeys t � 1=! (note that we always assumed many theta oscillation cycles within a firing

field, that is, 1=! � s). Furthermore, Figure 4 indicated that only the asymmetric part of the learning

window contributes to temporal-order learning. For the analysis of temporal-order learning with

non-overlapping firing fields and wide learning windows, we thus ignore any theta modulation and

phase precession and evaluate, again, only the odd STDP window WðtÞ ¼ � signðtÞ expð�jtj=t Þ. In this

case, the weight change (Equation 1) is still determined by the cross-correlation function and the

Reifenstein et al. eLife 2021;10:e67171. DOI: https://doi.org/10.7554/eLife.67171 10 of 39

Research article Neuroscience

https://doi.org/10.7554/eLife.67171


learning window (examples in Figure 5B,C). The resulting weight change Dwij as a function of the

temporal separation Tij of firing fields is shown in Figure 5D: with increasing Tij, the weight Dwij

quickly increases, reaches a maximum, and slowly decreases. The initial increase is due to the

increasing overlap of the Gaussian bump in Cij with the positive lobe of the learning window. The

Figure 5. Temporal-order learning for non-overlapping firing fields using wide, asymmetric learning windows. (A)

Firing rates of two example cells with non-overlapping firing fields. (B) Cross-correlation Cij of the two cells from

(A). (C) Asymmetric learning window with large width (t ¼ 5 s). (D) Resulting weight change Dwij for wide learning

window and non-overlapping firing fields. The solid gray line depicts the average weight change. The dashed gray

lines represent ±1 standard deviation across 1000 repetitions of stochastic spiking simulations. The analytical curve

(dashed black line, Equation 9) matches the simulation results. (E) SNR of the weight change. Results of the

stochastic simulations are shown by the gray curve. The SNR saturates for larger Tij, which fits the analytical

expectation (dashed black line, Equation 10). Parameters, unless varied in a plot: Tij ¼ 6 s, s ¼ 0:3 s, t ¼ 5 s,

� ¼ 1, A ¼ 10.
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decrease, on the other hand, is dictated by the time course of the learning window. For t � s,

these two effects can be approximated by

Dwij »A
2�erf

Tij

2s

� �

exp �Tij

t

� �

(9)

in which the error function describes the overlap of the cross-correlation with the learning window

and the exponential term describes the decay of the learning window (dashed black curve in

Figure 5D, see also Equation 25 in Materials and methods for details).

How does the SNR of the weight change depend on the separation Tij of firing fields? For Tij ¼ 0,

the signal is zero and thus also the SNR. As Tij increases, both signal and noise increase, but quickly

settle on a constant ratio. The value of the SNR height of this plateau can be approximated by

SNR»

A
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aþ 1

p (10)

(dashed line in Figure 5E), where A is the number of spikes within a firing field (Equation 11). For

A¼ 10, we find SNR»2:2, allowing for temporal-order learning with a single synapse. We note that

this conclusion is limited to asymmetric STDP windows. A symmetric component (like in

Bittner et al., 2017) decreases the SNR and makes temporal-order learning less efficient.

Taken together, temporal-order learning can be performed with wide STDP windows, and phase

precession does not provide any benefit; but temporal-order learning requires a purely asymmetric

plasticity window. For non-overlapping firing fields, wide learning windows are essential to bridge a

temporal gap between the fields.

Discussion
In this report, we show that phase precession facilitates the learning of the temporal order of behav-

ioral sequences for asymmetric learning windows that are shorter than a theta cycle. To quantify this

improvement, we use additive, pairwise STDP and calculate the expected weight change for synap-

ses between two activated cells in a sequence. We confirm the long-held hypothesis (Skaggs et al.,

1996) that phase precession bridges the vastly different time scales of the slow sequence of behav-

ioral events and the fast STDP rule. Synaptic weight changes can be an order of magnitude higher

when phase precession organizes the spiking of multiple cells at the theta time scale as compared to

phase-locking cells.

Other mechanisms and models for sequence learning
As an alternative mechanism to bridge the time scales of behavioral events and the induction of syn-

aptic plasticity, Drew and Abbott, 2006 suggested STDP and persistent activity of neurons that

code for such events. The authors assume regularly firing neurons that slowly decrease their firing

rate after the event and show that this leads to a temporal compression of the sequence of behav-

ioral events. For stochastically firing neurons, this approach is similar to ours with two overlapping,

unmodulated Gaussian firing fields. In this case, sequence learning is possible, but the efficiency can

be improved considerably by phase precession.

Sato and Yamaguchi, 2003 as well as Shen et al., 2007 investigated the memory storage of

behavioral sequences using phase precession and STDP in a network model. In computer simula-

tions, they find that phase precession facilitates sequence learning, which is in line with our results.

In contrast to these approaches, our study focuses on a minimal network (two cells), but this simplifi-

cation allows us to (i) consider a biologically plausible implementation of STDP, firing fields, and

phase precession and (ii) derive analytical results. These mathematical results predict parameter

dependencies, which is difficult to achieve with only computer simulations.

Related to our work is also the approach by Masquelier and colleagues Masquelier et al., 2009

who showed that pattern detection can be performed by single neurons using STDP and phase cod-

ing, yet they did not include phase precession. They consider patterns in the input whereas, in our

framework, it might be argued that patterns between input and output are detected instead.
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Noisy activity of neurons and prediction of the minimum number of
synapses for temporal-order learning
To account for stochastic spiking, we use Poisson neurons. We find that a single synapse is not suffi-

cient to reliably encode a minimal two-neuron sequence in a single trial because the fluctuations of

the weight change are too large. Fortunately, the SNR scales with
ffiffiffiffiffiffiffi
MA

p
, that is, the square root of

the number M of identical, but independent synapses and the number A of spikes per field traversal

of the neurons. For generic hippocampal place fields and typical STDP, we predict that about 14

synapses are sufficient to reliably encode temporal order in a single traversal. Interestingly, peak fir-

ing rates of place fields are remarkably high (up to 50 spikes/s; e.g. O’Keefe and Recce, 1993,

Huxter et al., 2003). Taken together, in hippocampal networks, reliable encoding of the temporal

order of a sequence is possible with a low number of synapses, which matches simulation results on

memory replay (Chenkov et al., 2017).

Width, shape, and symmetry of the STDP window are critical for
temporal-order learning
Various widths have been observed for STDP learning windows (Abbott and Nelson, 2000; Bi and

Poo, 2001). We show that for all experimentally found STDP time constants phase precession can

improve temporal-order learning. However, for learning windows much wider than a theta oscillation

cycle, the benefit of phase precession for temporal-order learning is small. Wide learning windows,

where the width can be even on a behavioral time scale of » 1 s (Bittner et al., 2017) or larger,

could, on the other hand, enable the association of non-overlapping firing fields. Alternatively, non-

overlapping firing fields might also be associated by narrow learning windows if additional cells (with

firing fields that fill the temporal gap) help to bridge a large temporal difference, much like ’time

cells’ in the hippocampal formation (reviewed in Eichenbaum, 2014).

STDP windows typically have symmetric and asymmetric components (Abbott and Nelson,

2000; Mishra et al., 2016). We find that only the asymmetric component supports the learning of

temporal order. In contrast, the symmetric component strengthens both forward and backward syn-

apses by the same amount and thus contributes to the association of behavioral events independent

of their temporal order. For example, the learning window reported by Bittner et al., 2017 shows

only a mild asymmetry and is thus unfavorable to store the temporal order of behavioral events.

Only long, predominantly asymmetric STDP windows would allow for effective temporal-order learn-

ing (Figure 4).

Generally, the shape of STDP windows is subject to neuromodulation; for example, cholinergic

and adrenergic modulation can alter its polarity and symmetry (Hasselmo, 1999). Also dopamine

can change the symmetry of the learning window (Zhang et al., 2009). Therefore, sequence learning

could be modulated by the behavioral state (attention, reward, etc.) of the animal.

Key features of phase precession for temporal order-learning:
generalization to non-periodic modulation of activity
For STDP windows narrower ( <

~

10 ms) than a theta cycle ( >
~

100 ms), we argue that the slope of the

cross-correlation function at zero offset controls the change of the weight of the synapse connecting

two neurons; and we show that phase precession can substantially increase this slope. This result

predicts that features of the cross-correlation at temporal offsets that are larger than the width of

the learning window are irrelevant for temporal-order learning. It is thus conceivable to boost tem-

poral-order learning even without phase precession, which is weak if theta oscillations are weak, as

for example in bats (Ulanovsky and Moss, 2007) and humans (Herweg and Kahana,

2018; Qasim et al., 2021). In this case, temporal-order learning may instead benefit from two other

phenomena that could create an appropriate shape of the cross-correlation: (i) Spiking of cells is

locked to common (aperiodic) fluctuations of excitability. (ii) Each cell responds the faster to an

increase in its excitability the longer ago its firing field has been entered, which may be mediated by

a progressive facilitation mechanism. Together, these phenomena can make the cross-correlation

exhibit a steeper slope around zero and could even give rise to a local maximum at a positive offset.

This temporal fine structure is superimposed on a slower modulation, which is related to the widths

of the firing fields. In summary, a progressively decreasing delay of spiking with respect to non-

rhythmic fluctuations in excitation generalizes the notion of phase precession. Interestingly, synaptic
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short-term facilitation, which could generate the described fine structure of the cross-correlation,

has also been proposed as mechanism underlying phase precession (Leibold et al., 2008).

Model assumptions
In our model, we assumed that recurrent synapses (e.g. between neurons representing a sequence)

are plastic but weak during encoding, such that they have a negligible influence on the postsynaptic

firing rate; and that the feedforward input dominates neuronal activity. These assumptions seem jus-

tified as Hasselmo, 1999 indicated that excitatory feedback connections may be suppressed during

encoding to avoid interference from previously stored information (see also Haam et al., 2018). Fur-

thermore, neuromodulators facilitate long-term plasticity (reviewed, e.g. by Rebola et al., 2017),

which also supports our assumptions.

The assumption of weak recurrent connections implies that these connections do not affect the

dynamics. Consequently (and in contrast to Tsodyks et al., 1996), we thus hypothesize that phase

precession is not generated by the local, recurrent network (see also, e.g. Chadwick et al., 2016);

instead, we assume that phase precession is inherited from upstream feedforward inputs

(Chance, 2012; Jaramillo et al., 2014) or generated locally by a cellular/synaptic mechanism

(Magee, 2001; Harris et al., 2002; Mehta et al., 2002; Thurley et al., 2008). After temporal-order

learning was successful, the resulting asymmetric connections could indeed also generate phase pre-

cession (as demonstrated by the simulations in Tsodyks et al., 1996), and this phase precession

could then even be similar to the one that has initially helped to shape synaptic connections. Finally,

inherited or local cellularly/synaptically generated phase precession and locally network-generated

phase precession could interact (as reviewed, for example in Jaramillo and Kempter, 2017).

We assumed in our model that the widths of the two firing fields that represent two events in a

sequence are identical (see, e.g. Figure 2A). But firing fields may have different widths, and in this

case a slope-size matched phase precession would fail to reproduce the timing of spikes required

for the learning of the correct temporal order of the two events. For example, the learned temporal

order of events (timed according to field entry) would even be reversed if two fields with different

sizes are aligned at their ends. How could the correct temporal order nevertheless be learned in our

framework? In the hippocampus, theta oscillations are a traveling wave (Lubenov and Siapas, 2009;

Patel et al., 2012) such that there is a positive phase offset of theta oscillations for the wider firing

fields in the more ventral parts of the hippocampus. This traveling-wave phenomenon could preserve

the temporal order in the phase-precession-induced compressed spike timing, as also pointed out

earlier (Leibold and Monsalve-Mercado, 2017; Muller et al., 2018).

Our results on learning rules for sequence learning rely on pairwise STDP in which pairs of presyn-

aptic and postsynaptic spikes are considered. Conversely, triplet STDP considers also motifs of three

spikes (either 2 presynaptic - 1 postsynaptic or 2 postsynaptic - 1 presynaptic) (Pfister and Gerstner,

2006). Triplets STDP models can reproduce a number of experimental findings that pairwise STDP

could not, for example the dependence on the repetition frequency of spike pairs (Sjöström et al.,

2001). To investigate the influence of triplet interactions on sequence learning, we implemented the

generic triplet rule by Pfister and Gerstner, 2006. We used their ‘minimal’ model, which was

regarded as the best model in terms of number of free parameters and fitting error; for the parame-

ters they obtained from fitting the triplet STDP model to hippocampal data, we found only mild dif-

ferences to our results (see, e.g. Figure 4C). Differences are small because the fitted time constant

of the triplet term (40 ms) is smaller than typical inter-spike intervals ( >
~

50 ms, minimum in field cen-

ters) in our simulations.

Replay of sequences and storage of multiple and overlapping
sequences
A sequence imprinted in recurrent synaptic weights can be replayed during rest or sleep

(Wilson and McNaughton, 1994; Nádasdy et al., 1999; Diba and Buzsáki, 2007; Peyrache et al.,

2009; Davidson et al., 2009), which was also observed in network-simulation studies

(Matheus Gauy et al., 2020; Malerba and Bazhenov, 2019; Gillett et al., 2020). Replay could thus

be a possible readout of the temporal-order learning mechanism. However, replay depends on the

many parameters of the network, and a thorough investigation of is beyond the scope of this
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manuscript. Therefore, we focus on synaptic weight changes that represent the formation of sequen-

ces in the network, which underlies replay, and we do not simulate replay.

We have considered the minimal example of a sequence of two neurons. Sequences can contain

many more neurons, and the question arises how two different sequences can be told apart if they

both contain a certain neuron, but proceed in different directions — as they might do for sequences

of spatial or non-spatial events (Wood et al., 2000). In this case, it may be beneficial to not only

strengthen synapses that connect direct successors in the sequence but also synapses that connect

the second-to-next neuron. In this way, the two crossing sequences could be disambiguated, and

the wider context in which an event is embedded becomes associated, which is in line with

retrieved-context theories of serial-order memory (Long and Kahana, 2019). More generally, it is an

interesting question of how many sequences can be stored in a network of a given size.

Gillett et al., 2020 were able to analytically calculate the storage capacity for the storage of sequen-

ces in a Hebbian network.

In conclusion, our model predicts that phase precession enables efficient and robust temporal-

order learning. To test this hypothesis, we suggest experiments that modulate the shape of the

STDP window or selectively manipulate phase precession and evaluate memory of temporal order.

Materials and methods

Experimental design: model description
We model the time-dependent firing rate of a phase precessing cell i (two examples in Figure 2A)

as

fiðtÞ ¼ A �G�i;sðtÞ � 1þ cos½!ðt� c�iÞ�f g ; (11)

where the scaling factor A determines the number of spikes per field traversal and

G�i;sðtÞ ¼ 1=ð
ffiffiffiffiffiffi
2p

p
sÞ � exp½�ðt��iÞ2=ð2s2Þ� is a Gaussian function that describes a firing field with cen-

ter at �i and width s. The firing field is sinusoidally modulated with theta frequency ! (but the sinu-

soidal modulation is not a critical assumption, see Discussion), with typically many oscillation cycles

in a firing field (!s� 1). The compression factor c can be used to vary between phase precession

(c>0), phase locking (c¼ 0), and phase recession (c<0) because the average population activity of

many such cells oscillates at frequency of ð1� cÞ! (Geisler et al., 2010; D’Albis et al., 2015), which

provides a reference frame to assign theta phases (Figure 2A). Usually, jcj � 1 with typical values

c <
~

1=ðs!Þ (Geisler et al., 2010); for a pair of cells with overlapping firing fields (centers separated

by Tij :¼ �j��i) the phase delay is !cTij (Figure 2B).

To quantify temporal-order learning, we consider the average weight change Dwij of the synapse

from cell i to cell j, which is (Kempter et al., 1999)

Dwij ¼
Z

¥

�¥
dtWðtÞCijðtÞ (12)

where CijðtÞ is the cross-correlation between the firing rates fi and fj of cells i and j, respectively

(Figure 2C,D):

CijðtÞ ¼
Z

¥

�¥
dt0 fiðt0Þ fjðtþ t0Þ : (13)

WðtÞ denotes the synaptic learning window, for example the asymmetric window

WðtÞ ¼ �
þexpð�t=t Þ; t�0

�expðþt=t Þ; t<0 ,

�

(14)

where t is the time constant and �>0 is the learning rate (Figure 2E).

For the following calculations, we make two assumptions that are reasonable in the hippocampal

formation (O’Keefe and Recce, 1993; Bi and Poo, 2001; Geisler et al., 2010) :

1. The theta oscillation has multiple cycles within the Gaussian envelope of the firing field in
Equation 11 (1=! � s).
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2. The window W is short compared to the theta period (t � 1=!).

Analytical approximation of the cross-correlation function
To explicitly calculate the cross-correlation CijðtÞ as defined in Equation 13, we plug in the firing-

rate functions (Equation 11) for the two neurons:

CijðtÞ ¼
Z

¥

�¥
dt0A �G0;sðt0Þ � ½1þ cosð!t0Þ� �A �GTij ;sðtþ t0Þ � 1þ cos !ðtþ t0� cTijÞ

� �� 	

¼ A2

Z
¥

�¥
dt0 G0;sðt0ÞGTij ;sðtþ t0Þ
�

þG0;sðt0ÞGTij ;sðtþ t0Þcosð!t0Þ

þG0;sðt0ÞGTij ;sðtþ t0Þcos !ðtþ t0� cTijÞ
� �

þG0;sðt0ÞGTij ;sðtþ t0Þcosð!t0Þcos !ðtþ t0� cTijÞ
� �

�

:

The first term (out of four) describes the cross-correlation of two Gaussians, which results in a

Gaussian function centered at Tij and with width s
ffiffiffi
2

p
. For the second term, we note that the product

of two Gaussians yields a function proportional to a Gaussian with width s=
ffiffiffi

2
p

, and then use

assumption (i). When integrated, the second term’s contribution to CijðtÞ is negligible because the

cosine function oscillates multiple times within the Gaussian bump, that is, positive and negative

contributions to the integral approximately cancel. The same argument applies to the third term.

For the fourth term, we use the trigonometric property cosðaÞ � cosðbÞ ¼ 1

2
cosðaþbÞþ cosða�bÞð Þ.

We set a¼ !t0, b¼ !ðtþ t0� cTijÞ and find

G0;sðt0ÞGTij;sðtþ t0Þcosð!t0Þcos½!ðtþ t0� cTijÞ�
¼ 1

2
G0;sðt0ÞGTij ;sðtþ t0Þcos½!ðtþ 2t0� cTijÞ�þ

1

2
G0;sðt0ÞGTij ;sðtþ t0Þcos½!ðt� cTijÞ� :

Again, we use assumption (i) and neglect the first addend on the right-hand side. Notably, the

cosine function in the second addend is independent of the integration variable t0. Taken together,

we find

CijðtÞ» A2GTij ;s
ffiffi
2

p ðtÞ 1þ 1

2
cos½!ðt� cTijÞ�

� �

: (15)

Thus, the cross-correlation can be approximated by a Gaussian function (center at Tij, width s
ffiffiffi
2

p
)

that is theta modulated with an amplitude scaled by the factor 1

2
.

To further simplify Equation 15, we note that the time constant t of the STDP window is usually

small compared to the theta period (assumption (ii), Figure 2C,D,E). Structures in CijðtÞ for jtj � t

thus have a negligible effect on the synaptic weight change. Therefore, we can focus on the cross-

correlation for small temporal lags. In this range, we approximate the (slow) Gaussian modulation of

CijðtÞ (Figure 2C,D, dashed red line) by a linear function, that is,

GTij;
ffiffi
2

p
sðtÞ »

d

dt
GTij;

ffiffi
2

p
sðtÞ

�
�
�
�
�
t¼0

�tþGTij ;
ffiffi
2

p
sð0Þ

¼GTij ;
ffiffi
2

p
sð0Þ

Tij

2s2
� tþ 1

� �

:

(16)

Inserting this result in Equation 15, we approximate the cross-correlation function CijðtÞ for jtj <
~

t

as (Figure 2D, dashed black line)

CijðtÞ»A2GTij ;
ffiffi
2

p
sð0Þ

Tij

2s2
� tþ 1

� �

1þ 1

2
cos !ðt� cTijÞ
� �

� �

: (17)

In the Results, we show that the slope of the cross-correlation function at t¼ 0 is important for

temporal-order learning. From Equation 17 we find
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C0
ijð0Þ»

A2Tij

2s2
GTij;

ffiffi
2

p
sð0Þ 1þ!s!cs

sin !cTij
� �

!cTij
þ cosð!cTijÞ

2

� �

; (18)

which has three addends within the square brackets. Let us estimate the relative size of the second

and third terms with respect to the first one. The third term is at most of the order of 0.5 because

jcosð!cTijÞj � 1. For the second addend, we note that sinð!cTijÞ=ð!cTijÞ approaches 1 for Tij ! 0 and

remains in this range for j!cTijj<
~

p=4. This condition is fulfilled for jTijj<
~

s if we assume slope-size

matching of phase precession (Geisler et al., 2010), that is, !cs»

p
4
»0:79. Then, the size of the sec-

ond addend is dictated by the factor !s, which is large according to assumption (i). In other words,

for typical phase precession and jTijj <
~

s, the second addend is much larger than the other two.

To further understand the structure of C0
ijð0Þ, which is also shaped by the prefactors in front of the

square brackets, we first note that C0
ijð0Þ is zero for fully overlapping firing fields (Tij �! 0). On the

other hand, for very large field separations (Tij � s), the Gaussian term G causes C0
ijð0Þ to become

zero. The prefactors have a maximum at jTijj ¼
ffiffiffi
2

p
s. The maximum’s exact location is slightly shifted

by the second addend but remains near
ffiffiffi
2

p
s. This peak will be important because it is inherited by

the average weight change (Equation 3).

Average weight change
Having approximated the cross-correlation function and its slope at zero (Equations 17,18), we are

now ready to calculate the average synaptic weight change (Equation 3) for the assumed STDP win-

dow (Equation 14). Standard integration methods yield

Dwij ¼
A2�t 2Tij

s2
GTij;

ffiffi
2

p
sð0Þ 1þ !2s2c

!2
t

2þ 1

sinð!cTijÞ
!cTij

þð1�!2
t

2Þcosð!cTijÞ
2ð1þ!2

t

2Þ2

" #

: (19)

Because Dwij is a temporal average of C0
ijðtÞ for small t (see interpretation of Equation 3), the

weight change’s structure resembles the previously discussed structure of C0
ijð0Þ. The averaging

introduces additional factors proportional to 1�!2
t

2, but for !t � 1 [assumption (ii)] those have

only minor effects on the relative size of the three addends. The second term still dominates. Impor-

tantly, Dwij ¼ 0 for Tij ¼ 0 and the position of the peak at Tij <
~

ffiffiffi

2
p

s is inherited from C0
ijð0Þ

(Figure 3A).

The benefit of phase precession
To quantify the benefit B of phase precession, we consider the expression Dwij=Dwijðc ¼ 0Þ � 1,

because Dwij describes the overall weight change (including phase precession), and Dwijðc ¼ 0Þ
serves as the baseline weight change due to the temporal separation of the firing fields (without

phase precession). We subtract 1 to obtain B ¼ 0 when the weight changes are the same with and

without phase precession. From Equation 19 we find

B¼ 2

3
!2s2c � sinð!cTijÞ

!cTij
� 1þ!2

t

2

1þ!2
t

2 þ 2

3
!4

t

4
þ cosð!cTijÞ� 1

3
� 1�!2

t

2

1þ!2
t

2 þ 2

3
!4

t

4
: (20)

To better understand the structure of B, we Taylor-expand it in Tij up to the third order and

assume !4
t

4 � 1 [assumption (ii)]. The result is

B»
2

3
!2s2c 1� 1

6
!2c2 þ c

4s2
� 1�!2

t

2

1þ!2
t

2

� �

T2

ij

� �

: (21)

Thus, B assumes a maximum for Tij ¼ 0 and slowly decays for small Tij (Figure 3B). Using slope-

size matching (!sc¼p=4), the maximal benefit is

Bmax »
p

6
!s¼p2

12

L

T�
»0:82

L

T�
; (22)

where L¼ 4s depicts the total field size and T� ¼ 2p
! is the period of the theta oscillation. Thus, the
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number of theta cycles per firing field determines the benefit for small separations of the firing

fields.

Average weight change for wide learning windows
In this paragraph we relax assumption (ii), that is, we consider wide asymmetric learning windows W

(Equation 14 with t � s). Furthermore, we neglect any theta-oscillatory modulation of the firing

fields in Equation 11 and, thus, Cij in Equation 15.

First, for non-overlapping fields (Tij � s), the learning window can be approximated to be con-

stant near the peak of the Gaussian bump of Cij. We can thus rewrite Equation 1 as

Dwij »WðTijÞ
Z

¥

�¥
CijðtÞdt¼ A2� exp �Tij

t

� �

: (23)

Second, for overlapping fields (0<Tij <
~

s), the Gaussian bump of Cij partly lies on the negative

lobe of W. We can approximate WðtÞ ¼ signðtÞ, and the average weight change in Equation 1 then

reads

Dwij »A
2�erf

Tij

2s

� �

: (24)

Combining the two limiting cases in Equations 23 and 24 yields

Dwij »A
2�erf

Tij

2s

� �

exp �Tij

t

� �

: (25)

Signal-to-noise ratio
To correctly encode the temporal order of behavioral events, the average weight change Dwij of a

forward synapse needs to be larger than the average weight change Dwji of the corresponding back-

ward synapse. We thus define the signal-to-noise ratio as

SNR¼ Dwij�Dwji

std Dwk
ij

� �

þ std Dwk
ji

� � ;

where std() denotes the standard deviation and Dwk
ij, Dwk

ji are the weight changes for trial

k 2 ½1;N�, the averages across trials being Dwij ¼ hDwk
ijik and Dwji ¼ hDwk

jiik. This expression for the

SNR ‘punishes’ the non-sequence-specific strengthening of backward synapses. Specifically, SNR¼ 0

for a symmetric (even) learning window, because the numerator (which represents the ‘signal’) is

zero. On the other hand, a perfectly asymmetric learning window, like the one used throughout this

study (Equation 14), yields SNR¼ Dwij

stdðDwk
ij
Þ, because Dwk

ij ¼�Dwk
ji. Asymmetric learning windows thus

recover the classical definition of the SNR as the ratio between the average weight change and the

standard deviation of the weight change.

We note that the generalized definition above can be used to calculate the SNR for arbitrary win-

dows, such as the learning window from Bittner et al., 2017, Figure 4C.

Assuming an asymmetric window and M uncorrelated synapses with the same mean and variance

of the weight change, we can write the signal-to-noise ratio as

SNR¼ M �Dwij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var
XM

k¼1
Dwk

ij

� �
r ¼

ffiffiffiffiffi

M
p

Dwij

stdðDwk
ijÞ

;

because the variance of the sum can be decomposed into the sum of variances and covariances.

All covariances are zero because synapses are uncorrelated. This leaves a sum of M variances, which

are identical. Therefore, the standard deviation, and consequently also the SNR, scale with
ffiffiffiffiffi
M

p
.

Numerical simulations
To numerically simulate the synaptic weight change, spikes were generated by inhomogeneous Pois-

son processes with rate functions according to Equation 11. For every spike pair, the contribution to
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the weight change was calculated according to Equation 14. We repeated the simulations for

N ¼ 10
4 trials, and the mean weight change as well as the standard deviation across trials and the

SNR were estimated. All simulations were implemented in Python 3.8 using the packages NumPy

(RRID:SCR_008633) and SciPy (RRID:SCR_008058). Matplotlib (RRID:SCR_008624) was used for plot-

ting; Inkscape (RRID:SCR_014479) was used for final adjustments to the Figures. The Python code is

available at https://gitlab.com/e.reifenstein/synaptic-learning-rules-for-sequence-

learning (Reifenstein and Kempter, 2021; copy archived at swh:1:rev:

157c347a735a090f591a2b77a71b90d7de65bca5).
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Appendix 1

The signal-to-noise ratio of Dwij

A synapse with weight wij is assumed to connect neuron i to neuron j. Here, we aim to derive the sig-

nal-to-noise ratio (SNR) of the weight changes Dwij, which is defined as (Materials and methods)

SNR¼ hDwiji� hDwjii
std Dwij

� �
þ std Dwji

� � : (A1-1)

where hDwiji is the average signal. The noise is described by the standard deviation of the weight

change,

std Dwij

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðDwijÞ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hDw2
iji� hDwiji2

q

:

Signal and noise are generated by additive STDP and spiking activity that is modeled by two

inhomogeneous Poisson processes with rates fiðtÞ and fjðtÞ that have finite support. The average

weight change is calculated by hDwiji ¼
R
dtWðtÞCijðtÞ where WðtÞ is the synaptic learning window and

CijðtÞ depicts the cross-correlation function CijðtÞ ¼
R
dt0fiðt0Þfjðt0þ tÞ. From Kempter et al., 1999, we

use

hDw2

ijiðtÞ ¼�Dwijðt0Þ2þ 2Dwijðt0ÞhDwijiðtÞþ
Z t

t0

dt0
Z t

t0

du

hSiðt0ÞSiðuÞiðwinÞ2 þhSjðt0ÞSjðuÞiðwoutÞ2 þhSiðt0ÞSjðuÞi2winwout

�

þ2

Z

dsWðsÞ hSiðt0ÞSiðuþ sÞSjðuÞiwinþhSjðt0ÞSiðuþ sÞSjðuÞiwout
� �

þ
Z

ds

Z

dvWðsÞWðvÞhSiðt0þ sÞSiðuþ vÞSjðt0ÞSjðuÞi
�

;

(A1-2)

where SiðtÞ ¼
P

n dðt� t
ðnÞ
i Þ and SjðtÞ ¼

P

n dðt� t
ðnÞ
j Þ are the presynaptic and postsynaptic spike trains,

respectively. To simplify, we set t0 ¼�¥ and Dwijðt0Þ ¼ 0. Furthermore, we are interested in paired

STDP and thus set win ¼wout ¼ 0. For hDw2

iji ¼ limt!¥hDw2

ijiðtÞ, Equation A1-2 reduces to

hDw2

iji ¼
Z

¥

�¥
dt0
Z

¥

�¥
du

Z

ds

Z

dvWðsÞWðvÞhSiðt0þ sÞSiðuþ vÞSjðt0ÞSjðuÞi: (A1-3)

Because both spike trains are drawn from different Poisson processes, Si and Sj are statistically

independent, and therefore we can simplify

hSiðt0þ sÞSiðuþ vÞSjðt0ÞSjðuÞi ¼ hSiðt0 þ sÞSiðuþ vÞihSjðt0ÞSjðuÞi:

Moreover, in a spike train the spikes at different times are uncorrelated,

hSiðt0þ sÞSiðuþ vÞi ¼ hSiðt0þ sÞihSiðuþ vÞiþ hSiðt0 þ sÞidðt0þ s� u� vÞ

and

hSjðt0ÞSjðuÞi ¼ hSjðt0ÞihSjðuÞiþ hSjðt0Þidðt0� uÞ:

As Si and Sj are realizations of inhomogeneous Poisson processes with rates fiðtÞ and fjðtÞ, respec-
tively, we find

hSiðt0þ sÞSiðuþ vÞi ¼ fiðt0þ sÞ fiðuþ vÞþ fiðt0 þ sÞdðt0þ s� u� vÞ

and

hSjðt0ÞSjðuÞi ¼ fjðt0Þ fjðuÞþ fjðt0Þdðt0� uÞ:

We insert these expressions into Equation A1-3:
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hDw2

iji ¼
Z

¥

�¥
dt0
Z

¥

�¥
du

Z

ds

Z

dvWðsÞWðvÞFðt0; s;u;vÞ (A1-4)

where

Fðt0; s;u;vÞ ¼ fiðt0þ sÞ fiðuþ vÞþ fiðt0þ sÞdðt0 þ s� u� vÞ½ � � fjðt0Þ fjðuÞþ fjðt0Þdðt0� uÞ
� �

:

To explicitly calculate the SNR, we parameterize the firing rates as

fiðtÞ ¼
A
ffiffiffiffiffiffi
2p

p
s
exp � t2

2s2

� �

� 1þ cosð!tÞ½ � (A1-5)

and

fjðtÞ ¼
A
ffiffiffiffiffiffi
2p

p
s
exp �ðt�TijÞ2

2s2

 !

� 1þ cosð!ðt� cTijÞÞ
� �

: (A1-6)

See main text for definitions of symbols. Furthermore, we assume WðsÞ ¼WoddðsÞþWevenðsÞ with

WoddðsÞ ¼ �
þexpð�s=t Þ; s�0

�expðþs=t Þ; s <0 ,

�

(see Equation 14 in Materials and methods) and

Weven ¼ lexpð�jsj=kÞ :

In what follows we consider a limiting case of wide learning windows, for which we can explicitly

calculate the SNR. The results obtained in this case match well to the numerical simulations for wide

learning windows (Figures 4 and 5 in the main text).

Wide learning windows

For wide windows (formally: t ! ¥, k ! ¥), we can approximate Weven ¼ l and WoddðtÞ ¼ � sgnðtÞ
and neglect the sinusoidal modulations of fi and fj in Equation A1-5 and A1-6; phase precession

does not affect the SNR in this case.

The following calculations are similar for odd and even windows. We elaborate the calculations in

detail for odd windows and use ‘±’ and ‘�’ to include the similar calculations for even windows. The

top symbol (‘+’ and ‘—’, respectively) corresponds to odd windows; the bottom symbol corresponds

to even windows.

To start, we split the third and fourth integral in Equation A1-4 into positive and negative time

lags s and v, respectively:

1

�2
hDw2

ijiðtÞ ¼
Z

¥

�¥
dt0
Z

¥

�¥
du

Z

ds

Z

dv sgnðsÞsgnðvÞFðt0; s;u;vÞ

¼
Z

¥

�¥
dt0
Z

¥

�¥
du

Z
¥

0

ds

Z
¥

0

dvFðt0; s;u;vÞ
�

�
Z

¥

0

ds

Z
0

�¥
dvFðt0; s;u;vÞ

�
Z

0

�¥
ds

Z
¥

0

dvFðt0; s;u;vÞ

þ
Z

0

�¥
ds

Z
0

�¥
dvFðt0; s;u;vÞ

�

(A1-7)

We rewrite F as

Fðt0; s;u;vÞ ¼ fiðt0þ sÞ fiðuþ vÞ fjðt0Þ fjðuÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

ðiÞ

þ fiðt0 þ sÞ fiðuþ vÞ fjðt0Þdðt0 � uÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

ðiiÞ

þ
fiðt0þ sÞdðt0 þ s� u� vÞ fjðt0Þ fjðuÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðiiiÞ

þ fiðt0þ sÞdðt0 þ s� u� vÞ fjðt0Þdðt0 � uÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðivÞ

;
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which has four addends and occurs in four integrals in Equation A1-7. Thus, there are 16 terms

we need to evaluate. We label these terms (1.i) to (1.iv) for the first integral, (2.i) to (2.iv) for the sec-

ond integral and so on until (4.iv).

For the term (1.i) we find

Z
¥

�¥
dt0
Z

¥

�¥
du

Z
¥

0

ds

Z
¥

0

dv fiðt0 þ sÞ fiðuþ vÞ fjðt0Þ fjðuÞ

¼
Z

¥

�¥
dt0fjðt0Þ

Z
¥

�¥
dufjðuÞ

Z
¥

0

ds fiðt0þ sÞ
Z

¥

0

dv fiðuþ vÞ

¼ A2

4

Z
¥

�¥
dt0fjðt0Þ 1� erf

t0
ffiffiffi
2

p
s

� �� �Z
¥

�¥
dufjðuÞ 1� erf

u
ffiffiffi
2

p
s

� �� �

¼ A2

4

Z
¥

�¥
dt0fjðt0Þ 1� erf

t0
ffiffiffi
2

p
s

� �� �� �2

¼ A2

4

Z
¥

�¥
dt0fjðt0Þ�

Z
¥

�¥
dt0fjðt0Þerf

t0
ffiffiffi
2

p
s

� �� �2

:

(A1-8)

The first integral is
R
¥

�¥ dt
0fjðt0Þ ¼ A. The second integral can be solved by taking the derivative

with respect to Tij:

Z
¥

�¥
dt0fjðt0Þerf

t0
ffiffiffi

2
p

s

� �

¼
Z

dTij

Z
¥

�¥
dt0

d

dTij
fjðt0Þerf

t0
ffiffiffi

2
p

s

� �

¼
Z

dTij

Z
¥

�¥
dt0 �f 0j ðt0Þ
h i

erf
t0
ffiffiffi
2

p
s

� �

ðbecause d

dTij
fjðt0Þ ¼� d

dt0
fjðt0Þ ��f 0j ðt0ÞÞ (A1-9)

¼
Z

dTij erf
t0
ffiffiffi
2

p
s

� �

�fjðt0Þ
� �

� �
¥

�¥
�
Z

¥

�¥
dt0

2

A
fiðt0Þ �fjðt0Þ

� �
� �

ðintegration by partsÞ

¼
Z

dTij 1 � 0�ð�1Þ � 0½ �þ 2

A
� A2

2
ffiffiffiffi
p

p
s
exp �

T2

ij

4s2

 !( )

¼ A
ffiffiffiffi
p

p
s

Z

dTij exp �
T2

ij

4s2

 !

¼Aerf
Tij

2s

� �

(A1-10)

Term (1.i) (Equation A1-8) thus reads:

Z
¥

�¥
dt0
Z

¥

�¥
du

Z
¥

0

ds

Z
¥

0

dv fiðt0þ sÞ fiðuþ vÞ fjðt0Þ fjðuÞ

¼ A2

4
A�Aerf

Tij

2s

� �� �2

¼ A4

4
1� erf

Tij

2s

� �� �2

For (2.i) we find

�
Z

¥

�¥
dt0
Z

¥

�¥
du

Z
¥

0

ds

Z
0

�¥
dv fiðt0þ sÞ fiðuþ vÞ fjðt0Þ fjðuÞ

¼ �
Z

¥

�¥
dt0fjðt0Þ

Z
¥

�¥
du fjðuÞ

Z
¥

0

ds fiðt0 þ sÞ
Z

0

�¥
dv fiðuþ vÞ

¼ �A2

4

Z
¥

�¥
dt0fjðt0Þ 1� erf

t0
ffiffiffi
2

p
s

� �� �Z
¥

�¥
du fjðuÞ 1þ erf

u
ffiffiffi
2

p
s

� �� �

¼ �A2

4
A�Aerf

Tij

2s

� �� �

AþAerf
Tij

2s

� �� �

ðusing Equation A1-10Þ

¼ �A4

4
1� erf2

Tij

2s

� �� �
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Term (3.i) is symmetric to (2.i) and thus yields the same result. For (4.i) we find (in analogy to the

term (1.i)):

Z
¥

�¥
dt0
Z

¥

�¥
du

Z
0

�¥
ds

Z
0

�¥
dv fiðt0þ sÞ fiðuþ vÞ fjðt0Þ fjðuÞ

¼ A2

4

Z
¥

�¥
dt0fjðt0Þ 1þ erf

t0
ffiffiffi

2
p

s

� �� �� �2

¼ A4

4
1þ erf

Tij

2s

� �� �2

We sum the contributions (1.i) to (4.i) for the odd learning window:

A4

4
1� erf

Tij

2s

� �� �2

�2 �A
4

4
1� erf2

Tij

2s

� �� �

þA4

4
1þ erf

Tij

2s

� �� �2

¼ A4

4
1� 2erf

Tij

2s

� �

þ erf2
Tij

2s

� �

� 2þ 2erf2
Tij

2s

� �

þ 1þ 2erf
Tij

2s

� �

þ erf2
Tij

2s

� �� �

¼ A4 erf2
Tij

2s

� �

(A1-11)

Let us continue with the second term of F, which is labeled by ‘(ii)’, and consider the first (of four)

integrals in Equation A1-7, that is, we continue with contribution (1.ii):

Z
¥

�¥
dt0
Z

¥

�¥
du

Z
¥

0

ds

Z
¥

0

dv fiðt0þ sÞ fiðuþ vÞ fjðt0Þdðt0� uÞ

¼
Z

¥

�¥
dt0fjðt0Þ

Z
¥

�¥
dudðt0� uÞ

Z
¥

0

ds fiðt0 þ sÞ
Z

¥

0

dv fiðuþ vÞ

¼ A2

4

Z
¥

�¥
dt0fjðt0Þ 1� erf

t0
ffiffiffi

2
p

s

� �� �Z
¥

�¥
dudðt0� uÞ 1� erf

u
ffiffiffi

2
p

s

� �� �

¼ A2

4

Z
¥

�¥
dt0fjðt0Þ 1� 2erf

t0
ffiffiffi
2

p
s

� �

þ erf2
t0
ffiffiffi
2

p
s

� �� �

¼ A3

4
1� 2erf

Tij

2s

� �

þC

A

� �

ðusing Equation A1-10Þ;

with

C¼
Z

¥

�¥
dt0fjðt0Þerf2

t0
ffiffiffi
2

p
s

� �

;

which will be solved later for special cases. Note that C depends on Tij because fjðt0Þ depends on
Tij. For (2.ii) we find:

�
Z

¥

�¥
dt0
Z

¥

�¥
du

Z
¥

0

ds

Z
0

�¥
dv fiðt0þ sÞ fiðuþ vÞ fjðt0Þdðt0� uÞ

¼ �A2

4

Z
¥

�¥
dt0fjðt0Þ 1� erf

t0
ffiffiffi
2

p
s

� �� �

1þ erf
t0
ffiffiffi
2

p
s

� �� �

¼ �A2

4

Z
¥

�¥
dt0fjðt0Þ 1� erf2

t0
ffiffiffi

2
p

s

� �� �

¼ �A3

4
1�C

A

� �

:

For (3.ii) we find the same:

�
Z

¥

�¥
dt0
Z

¥

�¥
du

Z
0

�¥
ds

Z
¥

0

dv fiðt0þ sÞ fiðuþ vÞ fjðt0Þdðt0� uÞ

¼ �A2

4

Z
¥

�¥
dt0fjðt0Þ 1þ erf

t0
ffiffiffi

2
p

s

� �� �

1� erf
t0
ffiffiffi

2
p

s

� �� �

¼ �A3

4
1�C

A

� �

:

For (4.ii) we find:
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Z
¥

�¥
dt0
Z

¥

�¥
du

Z
0

�¥
ds

Z
0

�¥
dv fiðt0 þ sÞ fiðuþ vÞ fjðt0Þdðt0 � uÞ

¼ A2

4

Z
¥

�¥
dt0fjðt0Þ 1þ erf

t0
ffiffiffi
2

p
s

� �� �2

¼ A2

4

Z
¥

�¥
dt0fjðt0Þ 1þ 2erf

t0
ffiffiffi
2

p
s

� �

þ erf2
t0
ffiffiffi
2

p
s

� �� �

¼ A3

4
1þ 2erf

Tij

2s

� �

þC

A

� �

:

Summing contributions (1.ii) to (4.ii) for the odd window yields:

A3

4
1� 2erf

Tij

2s

� �

þC

A

� �

� 2 �A
3

4
1�C

A

� �

þA3

4
1þ 2erf

Tij

2s

� �

þC

A

� �

¼ A3

4
� 4C
A

¼CA2

(A1-12)

We continue with contribution (1.iii):

Z
¥

�¥
dt0
Z

¥

�¥
du

Z
¥

0

ds

Z
¥

0

dv fjðt0Þ fjðuÞ fiðt0þ sÞdðt0 þ s� u� vÞ

¼
Z

¥

�¥
dt0fjðt0Þ

Z
¥

�¥
du fjðuÞ

Z
¥

0

ds fiðt0þ sÞ
Z

¥

0

dvdðt0 þ s� u� vÞ

Contribution (1.iii) is non-zero if the argument t0 þ s� u� v of the delta function in the last integral

(across v) is zero for some v, which varies from 0 to ¥. The argument of the delta function is thus

zero for some v if 0� t0þ s� u<¥, which we can rewrite as u� t0 þ s and then use it in the integral

across u, which leads to

Z
¥

�¥
dt0fjðt0Þ

Z
¥

0

ds fiðt0þ sÞ
Z t0þs

�¥
dufjðuÞ

¼ A

2

Z
¥

�¥
dt0fjðt0Þ

Z
¥

0

ds fiðt0þ sÞ 1þ erf
sþ t0�Tij

ffiffiffi
2

p
s

� �� �

¼ A

2

Z
¥

�¥
dt0fjðt0Þ

Z
¥

0

ds fiðt0þ sÞþ
Z

¥

0

ds fiðt0þ sÞerf sþ t0�Tij
ffiffiffi

2
p

s

� �� �

¼ A

2

Z
¥

�¥
dt0fjðt0Þ

A

2
1� erf

t0
ffiffiffi
2

p
s

� �� �

þ
Z

¥

0

ds fiðt0 þ sÞerf sþ t0 �Tij
ffiffiffi
2

p
s

� �� �

¼ A2

4

Z
¥

�¥
dt0fjðt0Þ 1� erf

t0
ffiffiffi
2

p
s

� �� �

þA

2

Z
¥

�¥
dt0fjðt0Þ

Z
¥

0

ds fiðt0þ sÞerf sþ t0 �Tij
ffiffiffi
2

p
s

� �

¼ A3

4
1� erf

Tij

2s

� �� �

þD �A
2

ðusing Equation A1-10Þ

with D :¼
R
¥

�¥ dt
0fjðt0Þ

R
¥

0
ds fiðt0 þ sÞerf sþt0�Tijffiffi

2
p

s

� �

. D will be evaluated later for special cases.

Similarly to (1.iii), we treat (2.iii):

�
Z

¥

�¥
dt0
Z

¥

�¥
du

Z
¥

0

ds

Z
0

�¥
dv fjðt0Þ fjðuÞ fiðt0þ sÞdðt0þ s� u� vÞ

¼ �
Z

¥

�¥
dt0fjðt0Þ

Z
¥

0

ds fiðt0þ sÞ
Z

¥

t0þs

du fjðuÞ

¼ �A

2

Z
¥

�¥
dt0fjðt0Þ

Z
¥

0

ds fiðt0þ sÞ 1� erf
sþ t0�Tij

ffiffiffi

2
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s

� �� �

¼ �A

2
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2

p
s

� �
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4
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dt0fjðt0Þ 1� erf

t0
ffiffiffi
2

p
s
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�A

2

Z
¥

�¥
dt0fjðt0Þ

Z
¥

0

ds fiðt0þ sÞerf sþ t0�Tij
ffiffiffi
2

p
s

� �

¼ �A3

4
1� erf

Tij

2s
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�D �A
2

For (3.iii) we find:
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�
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Z
0

�¥
ds fiðt0þ sÞ

Z t0þs

�¥
dufjðuÞ

¼ �A

2

Z
¥

�¥
dt0fjðt0Þ

Z
0

�¥
ds fiðt0þ sÞ 1þ erf

sþ t0�Tij
ffiffiffi

2
p

s

� �� �

¼ �A2

4

Z
¥

�¥
dt0fjðt0Þ 1þ erf

t0
ffiffiffi
2

p
s

� �� �

�A

2

Z
¥

�¥
dt0fjðt0Þ
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ffiffiffi
2

p
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2s
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:

with D0 :¼
R
¥

�¥ dt
0fjðt0Þ

R
0

�¥ ds fiðt0 þ sÞerf sþt0�Tijffiffi
2

p
s

� �

, which we will evaluate later for special cases.

Finally, for (4.iii) we find
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:

To sum the four contributions (1.iii) to (4.iii) for the odd window, we note that the first terms

(square brackets) of (1.iii) and (2.iii) cancel, as well as the first terms of (3.iii) and (4.iii). We thus

obtain:

D �A
2

þD �A
2

�D0 �A
2

�D0 �A
2

¼ AðD�D0Þ :

We continue with contribution (1.iv):
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ðusing Equation A1-10Þ

By similar arguments, (2.iv) yields:
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(3.iv) yields
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(4.iv) yields

Z
¥

�¥
dt0
Z

¥

�¥
du

Z
0

�¥
ds

Z
0

�¥
dv fiðt0 þ sÞdðt0 þ s� u� vÞ fjðt0Þdðt0� uÞ

¼
Z

¥

�¥
dt0fjðt0Þ

Z
0

�¥
ds fiðt0 þ sÞ

Z
¥

t0þs

dudðt0� uÞ

¼
Z

¥

�¥
dt0fjðt0Þ

Z
0

�¥
ds fiðt0 þ sÞ � 1; for s>0

0; else

�

¼
Z

¥

�¥
dt0fjðt0Þ

Z
0

�¥
ds fiðt0 þ sÞ

¼ A

2

Z
¥

�¥
dt0fjðt0Þ 1þ erf

t0
ffiffiffi
2

p
s

� �� �

¼ A2

2
1þ erf

Tij

2s

� �� �

ðusing Equation A1-10Þ :

We sum the contributions (1.iv) and (4.iv) and obtain A2. We now collect all terms for the odd

window:

1

�2
hDw2

iji ¼ A4erf2
Tij

2s

� �

þCA2 þAðD�D0ÞþA2:

So far, we have calculated the second moment of Dwij. In order to determine the variance, we

need to calculate the average weight change for the odd window:
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hDwiji ¼
Z

¥

�¥
dtWðtÞCijðtÞ

¼ �

Z
¥

�¥
dt sgnðtÞCijðtÞ

¼ �

Z
¥

�¥
dt sgnðtÞ

Z
¥

�¥
dt0fiðt0Þ fjðt0þ tÞ

¼ A2�

2
ffiffiffiffi
p

p
s

Z
¥

�¥
dt sgnðtÞexp �ðt�TijÞ2

4s2

 !

ðusing Equation 15 of the main textÞ

¼ A2�

2
ffiffiffiffi
p

p
s

Z
¥

0

dt exp �ðt�TijÞ2
4s2

 !

�
Z

0

�¥
dt exp �ðt�TijÞ2

4s2

 !" #

¼ A2�

2
1þ erf

Tij

2s

� �

� 1� erf
Tij

2s

� �� �� �

¼ A2�erf
Tij

2s

� �

:

(A1-13)

The variance thus reads:

1

�2
varðDwijÞ ¼ hDw2

iji� hDwiji2

¼ A4erf2
Tij

2s

� �

þCA2þAðD�D0ÞþA2 �A4erf2
Tij

2s

� �

¼ ðCþ 1ÞA2 þAðD�D0Þ :

(A1-14)

For the signal-to-noise ratio, we note that the definition from Equation A1-1, for odd learning

windows, simplifies to

SNR¼ hDwiji� hDwjii
std Dwij

� �
þ std Dwji

� �¼ hDwiji
std Dwij

� � ;

because Dwij ¼�Dwji for odd learning windows.

We insert Equation A1-13 and A1-14 and find

SNR¼
A2 erf

Tij
2s

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCþ 1ÞA2 þAðD�D0Þ
p :

To obtain the final result, we have to evaluate C, D, and D0. We distinguish the two cases Tij � s

and Tij ¼ s to approximate these three terms:

1. Tij � s:

erf
Tij

2s

� �

»1 (A1-15)

C¼
Z

¥

�¥
dt0fjðt0Þerf2

t0
ffiffiffi

2
p

s

� �

»A ;

because the Gaussian function fj is shifted far into the positive lobe of the error function.
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D ¼
Z

¥

�¥
dt0fjðt0Þ

Z
¥

0

ds fiðt0þ sÞerf t0þ s�Tij
ffiffiffi
2

p
s

� �

»

Z
¥

�¥
dt0fjðt0Þ

Z
¥

0

ds �fiðt0þ sÞ½ �

¼ �A

2

Z
¥

�¥
dt0fjðt0Þ 1� erf

t0
ffiffiffi
2

p
s

� �� �

¼�A

2
A�Aerf

Tij

2s

� �� �

ðusing Equation A1-10Þ

» �A

2
A�A½ � ðusing Equation A1-15Þ

¼ 0 :

D0 ¼
Z

¥

�¥
dt0fjðt0Þ

Z
0

�¥
dsfiðt0 þ sÞerf t0þ s�Tij

ffiffiffi
2

p
s

� �

¼�A

2

Z
¥

�¥
dt0fjðt0Þ 1þ erf

t0
ffiffiffi
2

p
s

� �� �

» �A

2
AþA½ � ðusing Equations A1-10 and A1-15Þ

¼�A2 :

Thus,

SNR»

A2 � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAþ 1ÞA2 þAð0þA2Þ
p ¼ A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2A3 þA2
p ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aþ 1

p : (A1-16)

This number (for A¼ 10) is indicated as the analytical comparison in Figure 5E. For large A, the

SNR (Equation A1-16) approaches
ffiffiffiffiffiffiffiffi

A=2
p

.

2. Tij ¼ s:

erf
Tij

2s

� �

¼ erf
1

2

� �

»0:52

C»0:494A;

D» � 0:013A2 ;

D0
» � 0:507A2 ;

all of which we calculated numerically.

It follows:

SNR »

A2 erf 1

2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCþ 1ÞA2 þAðD�D0Þ
p

»

0:52A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:494A3 þA2þ 0:494A3
p

»

0:52A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:99A3þA2
p

»

A¼10
1:58

(A1-17)

This number is plotted as the large-tau approximation in Figure 4C. For large A, we find

SNR/
ffiffiffi
A

p
.

Even windows
As argued in the main text, for even windows, the weight change Dwij contains no information about

the order of events because Dwij ¼ Dwji. This can be seen from Equation A1-1 of Appendix 1. The

SNR is zero for purely even windows because the signal is zero. Nonetheless, we can calculate the
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variance of the weight change. To do so, we collect all terms of hDw2

iji for even windows (indicated

by the bottom symbol of all occurences of ‘�’ and ‘�’ in the previous section). Again, we assume

wide windows (k ! ¥).

Collecting the terms (1.i) to (4.i) yields

A4

4
1� erf

Tij

2s

� �� �2

þ2 �A
4

4
1� erf2

Tij

2s

� �� �

þA4

4
1þ erf

Tij

2s

� �� �2

¼ A4 :

Similarly, we sum the terms (1.ii) to (4.ii):

A3

4
1� 2erf

Tij

2s

� �

þC

A

� �

þ 2 �A
3

4
1�C

A

� �

þA3

4
1þ 2erf

Tij

2s

� �

þC

A

� �

¼ A3 :

We continue to collect the contributions (1.iii) to (4.iii):

A3

4
1� erf

Tij

2s

� �� �

þD �A
2

þ A3

4
1� erf

Tij

2s

� �� �

�D �A
2

þ A3

4
1þ erf

Tij

2s

� �� �

þD0 �A
2

þ A3

4
1þ erf

Tij

2s

� �� �

�D0 �A
2

¼ A3

Finally, summing (1.iv) to (4.iv) yields the same result as for the odd window: A2.

Overall,

1

l2
hDw2

iji ¼
1

l2
hDw2

jii ¼ A4þ 2A3 þA2 :

Together with

1

l
hDwiji ¼

1

l
hDwjii ¼ A2 ;

the variance reads:

1

l2
varðDwijÞ ¼

1

l2
varðDwjiÞ ¼ 2A3 þA2 :

We now insert these variances in the denominator of Equation A1-1:

1

l
std Dwij

� �
þ std Dwji

� �� �
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2A3 þA2

p

;

which, assuming �¼ l, is twice the noise as for odd windows (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2A3 þA2
p

, Equation A1-16).

In summary, for a complex learning window with even and odd contributions, the signal solely

depends on the odd part, whereas both parts, even and odd, contribute to the noise. Any even con-

tribution thus only decreases the SNR.
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Appendix 2

Calculating SNR for learning windows of arbitrary width
We again consider odd learning windows of the shape

WoddðsÞ ¼ �
þexpð�s=t Þ; s� 0

�expðþs=t Þ; s<0 :

�

(A2-1)

As in the case of wide learning windows, we again consider the second moment of the weight

change (similar to Equation A1-4 of Appendix 1):

hDw2

ijiðtÞ
�2

¼ 1

�2

Z
¥

�¥
dt0
Z

¥

�¥
du

Z

ds

Z

dvWoddðsÞWoddðvÞFðt0; s;u;vÞ

¼
Z

¥

�¥
dt0
Z

¥

�¥
du

Z
¥

0

ds

Z
¥

0

dvexp �s=tð Þexp �v=tð ÞFðt0; s;u;vÞ
�

�
Z

¥

0

ds

Z
0

�¥
dvexp �s=tð Þexp v=tð ÞFðt0; s;u;vÞ

�
Z

0

�¥
ds

Z
¥

0

dvexp s=tð Þexp �v=tð ÞFðt0; s;u;vÞ

þ
Z

0

�¥
ds

Z
0

�¥
dvexp s=tð Þexp v=tð ÞFðt0; s;u;vÞ

�

(A2-2)

We write F similarly as before, neglecting the theta modulation of the firing rate:

Fðt0; s;u;vÞ ¼ fiðt0þ sÞ fiðuþ vÞ fjðt0Þ fjðuÞþ fiðt0þ sÞ fiðuþ vÞ fjðt0Þdðt0� uÞþ
fiðt0þ sÞdðt0 þ s� u� vÞ fjðt0Þ fjðuÞþ fiðt0 þ sÞdðt0þ s� u� vÞ fjðt0Þdðt0� uÞ

(A2-3)

with

fiðtÞ ¼
A
ffiffiffiffiffiffi

2p
p

s
exp � t2

2s2

� �

(A2-4)

and

fjðtÞ ¼
A
ffiffiffiffiffiffi

2p
p

s
exp �ðt�TijÞ2

2s2

 !

: (A2-5)

We label the addends of Equation A2-2 as f1;2;3;4g and the addends of Equation A2-3 as

fi; ii; iii; ivg. In evaluating the second moment of the weight change, we realize that many integrands

have similar forms, that is, products of exponentials, error functions, and delta functions. Conse-

quently, we will first state the integral identities we use, and will then explicitly derive the term ð2:iiiÞ
as an example. The other terms can be evaluated in a similar manner.

Integral identities
For the evaluation of the second moment of the weight change, many integrands consist of expo-

nential functions containing linear and squared terms. To tackle these integrals, we use

Albano et al., 2011

Z
¥

a

exp �q2x2 � px
� �

dx¼
ffiffiffiffi
p

p

2q
exp

p2

4q2

� �

1� erf
pþ 2aq2

2q

� �� �

with q>0; a>0; p>0: (A2-6)

The second recurring form of integrals is

Z
¥

�¥
dt exp �a2ðt2 þ btÞ

� �
erf �a tþ cf gð Þ with a>0 and b;c2R: (A2-7)

Substituting
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x :¼�aðtþ cÞ dx¼�adt

t :¼�c� x

a
t2 ¼ c2 þ 2

c

a
xþ x2

a2
;

we can rewrite

Z
¥

�¥
dt exp �a2ðt2 þ btÞ

� �
erf �a tþ cf gð Þ ¼ 1

a
exp

a2b2

4

� �Z
¥

�¥
dx exp � xþ a c� b

2

� �� �2
" #

erf x½ � : (A2-8)

We now use an integral identity by Ng and Geller, 1969 (their section 4.3, eq. 13):

Z
¥

�¥
dx erfðxÞexp �ðpxþ qÞ2

h i

dx¼�
ffiffiffiffi
p

p

p
erf

q
ffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ 1

p

" #

; (A2-9)

which yields the desired solution (p¼ 1; q¼ a c� b=2f g):
Z

¥

�¥
dt exp �a2ðt2 þ btÞ

� �
erf �a tþ cf gð Þ ¼�

ffiffiffiffi
p

p

a
exp

a2b2

4

� �

erf
a
ffiffiffi

2
p c� b

2

� �� �

: (A2-10)

Example: deriving the term (2.iii)
For the term (2:iii), we have

ð2:iiiÞ ¼�
Z

¥

�¥
dt0
Z

¥

�¥
du

Z
¥

0

ds

Z
0

�¥
dv exp � s

t

h i

exp
v

t

h i

fiðt0 þ sÞdðt0þ s� u� vÞ fjðt0Þ fjðuÞ

¼� A
ffiffiffiffiffiffi
2p

p
s

� �3Z ¥

�¥
dt0 exp �ðt0 �TijÞ2

2s2

" #

exp � t02

2s2

� �Z
¥

�¥
du exp �ðu�TijÞ2

2s2

" #

Z
¥

0

ds exp � 1

2s2
s2þ 2s t0 þs2

t

� �� �� �Z
0

�¥
dv exp

v

t

h i

dðt0þ s� u� vÞ

(A2-11)

When applying the sifting property of the Dirac delta function, we note that the integral over v is

nonzero for �¥<t0 þ s� u� 0, that is, for t0 þ s� u. Thus we have:

ð2:iiiÞ ¼� A
ffiffiffiffiffiffi
2p

p
s

� �3Z ¥

�¥
dt0 exp �ðt0�TijÞ2

2s2

" #

exp � t02

2s2

� �Z
¥

0

ds

Z
¥

t0þs

du exp �ðu�TijÞ2
2s2

" #

exp � 1

2s2
s2þ 2s t0þs2

t

� �� �� �

exp
t0þ s� u

t

� �

¼� A
ffiffiffiffiffiffi
2p

p
s

� �3

exp �
T2

ij

s2

" #
Z

¥

�¥
dt0 exp � 1

2s2
2t02 � 2t0 Tijþ

s2

t

� �� �� �

Z
¥

0

ds exp � 1

2s2
s2 þ 2t0s
� �

� �Z
¥

t0þs

du exp � 1

2s2
u2 � 2u Tij �

s2

t

� �� �� �

(A2-12)

The integral over u can be evaluated by using Equation A2-6, which yields:

ð2:iiiÞ ¼� A3

4ps2
exp

s2

2t 2
�

T2

ij

2s2
�Tij

t

" #
Z

¥

�¥
dt0 exp � 1

2s2
2t02 � 2t0 Tijþ

s2

t

� �� �� �

Z
¥

0

ds exp � 1

2s2
s2 þ 2t0s
� �

� �

1� erf
1
ffiffiffi
2

p
s

t0þ s�Tijþ
s2

t

� �� �� � (A2-13)

The second part of the integral over s (involving the error function) will be solved numerically. For

this purpose, we define D0
2
as:

D0
2
:¼ 1

ps2

Z
¥

�¥
dt0 exp � 1

2s2
2t02� 2t0 Tij þ

s2

t

� �� �� �

Z
¥

0

ds exp � 1

2s2
s2 þ 2t0s
� �

� �

erf
1
ffiffiffi
2

p
s

t0þ s�Tij þ
s2

t

� �� � (A2-14)
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For the first part of the integral over s in Equation A2-13, we again use Equation A2-6, which

results in:

ð2:iiiÞ ¼� A3

4
ffiffiffiffiffiffi

2p
p

s
exp

s2

2t 2
�

T2

ij

2s2
�Tij

t

" #
Z

¥

�¥
dt0 exp � 1

2s2
t02� 2t0 Tij þ

s2

t

� �� �� �

1þ erf � t0
ffiffiffi
2

p
s

� �� �

þA3

4
exp

s2

2t 2
�

T2

ij

2s2
�Tij

t

" #

D0
2

(A2-15)

The first part of the integral over t can be solved by applying Equation A2-6 in the limit of

a!�¥. For the second part we use Equation A2-10.

ð2:iiiÞ ¼�A3

4
exp

s2

t

2

� �

1� erf
1

2s
Tij þ

s2

t

� �� �� �

þA3

4
exp

s2

2t 2
�

T2

ij

2s2
�Tij

t

" #

D0
2

(A2-16)

We now observe that defining D2 in the following way:

D2 ¼
1

ps2

Z
¥

�¥
dt0 exp � 1

2s2
t0� Tij þ

s2

t

� �� �2
" #

Z
¥

0

ds exp � 1

2s2
sþ t0ð Þ2

� �

erf
1
ffiffiffi

2
p

s
t0þ s� Tij�

s2

t

� �� �� � (A2-17)

allows us to write ð2:iiiÞ as:

ð2:iiiÞ ¼�A3

4
exp

s2

t

2

� �

1� erf
1

2s
Tij þ

s2

t

� �� �

�D2

� �

(A2-18)

Addends of the second moment
By similar logic, all four addends of Equation A2-2 (with four parts each) can be obtained. We list

the results here:

First Addend

ð1:iÞ ¼ A4

4
exp 2

s2

t

2
þTij

t

� �� �

1� erf
1

2s
Tij þ 2

s2

t

� �� �� �2

(A2-19)

ð2:iÞ ¼�A4

4
exp 2

s2

t

2

� �

1� erf
1

2s
Tij þ 2

s2

t

� �� �� �

1þ erf
1

2s
Tij� 2

s2

t

� �� �� �

(A2-20)

ð3:iÞ ¼�A4

4
exp 2

s2

t

2

� �

1� erf
1

2s
Tij þ 2

s2

t

� �� �� �

1þ erf
1

2s
Tij� 2

s2

t

� �� �� �

(A2-21)

ð4:iÞ ¼ A4

4
exp 2

s2

t

2
�Tij

t

� �� �

1þ erf
1

2s
Tij � 2

s2

t

� �� �� �2

(A2-22)

Second Addend

ð1:iiÞ ¼ A3

4
exp 3

s2

t

2
þ 2

Tij

t

� �

1� 2erf
1

2s
Tijþ 3

s2

t

� �� �

þC1

� �

(A2-23)

ð2:iiÞ ¼�A3

4
exp

s2

t

2

� �

1� erf
1

2s
Tijþ

s2

t

� �� �

þ erf
1

2s
Tij �

s2

t

� �� �

�C2

� �

(A2-24)
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ð3:iiÞ ¼�A3

4
exp

s2

t

2

� �

1� erf
1

2s
Tijþ

s2

t

� �� �

þ erf
1

2s
Tij �

s2

t

� �� �

�C2

� �

(A2-25)

ð4:iiÞ ¼ A3

4
exp 3

s2

t

2
� 2

Tij

t

� �

1þ 2erf
1

2s
Tij� 3

s2

t

� �� �

þC4

� �

(A2-26)

with the integral terms:

C1 ¼
1
ffiffiffiffiffiffi
2p

p
s

Z
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Third Addend
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with the integral terms:
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Fourth Addend
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ð2:ivÞ ¼ ð3:ivÞ ¼ 0 (A2-39)
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By collecting all 16 terms, we will obtain the average squared weight change. To calculate the

variance, we also need the squared average weight change, which we will calculate in the next

section.

Average weight change
The average weight change for odd learning windows is given by (cmp. Equation 1 in the main

text):

hDwiji ¼
Z

¥

�¥
dtWðtÞCijðtÞ

¼ �

Z
¥

0

dt exp � t

t

� �

CijðtÞ��

Z
0

�¥
dt exp

t

t

� �

CijðtÞ

¼ �

Z
¥

0

dt exp � t

t

� �Z ¥

�¥
dt0fiðt0Þ fjðt0þ tÞ

��

Z
0

�¥
dt exp

t

t

� �Z ¥

�¥
dt0fiðt0Þ fjðt0þ tÞ

(A2-41)

We again neglect the theta modulation of the firing fields. Evaluating the first addend yields:
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The second addend can be similarly evaluated:
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The average weight change thus reads:
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Equation A2-44 might show numerical instabilities for small t . These instabilities can be fixed

using the following approximation for the error function proposed by Abramowitz, 1974:

erfðxÞ»1�ða1tþ a2t
2 þ a3t

3Þexp �x2
� �

; t¼ 1

1þ px
; x� 0 ; (A2-45)

where p¼ 0:47047, a1 ¼ 0:3480242, a2 ¼�0:0958798, a3 ¼ 0:7478556. Along with a new set of variables
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the approximation yields
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Note that the exponential with the s2

t

2 term vanishes when x1 � 0, and only one addend contains

the term for x1<0. Therefore, this approximation results in improved numerical stability for small t .

Equation A2-46 is shown in Figure 4A.

Variance and signal-to-noise ratio of the weight change
With all of the above results, we are now ready to state the variance and signal-to-noise ratio of the

weight change:
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The signal-to-noise ratio is then given by:

SNR ¼ hDwiji
stdðDwijÞ

¼ hDwiji
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðDwijÞ

p (A2-48)

Equation A2-48 (with the variance from Equation A2-47 and the mean from Equation A2-44) is

shown in Figure 4C. We observe that the analytical solution fits the numerical solution well for

t
>
~

0:1 s but numerical instabilities cause it to diverge for t <
~

0:1 s.

The numerical instability for t <
~

0:1 s is likely due to a combination of two factors: the exponential

terms exp s2=t 2½ � become very large for small tau, and large arguments in the error function cause

the terms (1� erfð:Þ) to be very close to zero. The product of the two is numerically unstable for

small tau. Unfortunately, unlike in the case of the average weight change, we did not find an approx-

imation which canceled out these exponential terms in the noise.
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