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Abstract Population receptive field (pRF) modeling is a popular fMRI method to map the retino-
topic organization of the human brain. While fMRI-based pRF maps are qualitatively similar to 
invasively recorded single-cell receptive fields in animals, it remains unclear what neuronal signal 
they represent. We addressed this question in awake nonhuman primates comparing whole-brain 
fMRI and large-scale neurophysiological recordings in areas V1 and V4 of the visual cortex. We 
examined the fits of several pRF models based on the fMRI blood-oxygen-level-dependent (BOLD) 
signal, multi-unit spiking activity (MUA), and local field potential (LFP) power in different frequency 
bands. We found that pRFs derived from BOLD-fMRI were most similar to MUA-pRFs in V1 and V4, 
while pRFs based on LFP gamma power also gave a good approximation. fMRI-based pRFs thus 
reliably reflect neuronal receptive field properties in the primate brain. In addition to our results in 
V1 and V4, the whole-brain fMRI measurements revealed retinotopic tuning in many other cortical 
and subcortical areas with a consistent increase in pRF size with increasing eccentricity, as well as a 
retinotopically specific deactivation of default mode network nodes similar to previous observations 
in humans.

Editor's evaluation
This study is a detailed, systematic comparison of visually evoked population receptive fields (pRFs) 
measured non-invasively with MRI and invasively with electrophysiology in the same primate species. 
The authors show that MRI pRFs provide a good estimate of receptive fields based on multi-unit 
spiking activity in early visual areas. These results make an important contribution to our under-
standing of human imaging data in research and in the clinic.

Introduction
The concept of a receptive field (RF) is crucial for our understanding of the mechanisms underlying 
perception, cognition, and action. RFs (Hartline, 1938; Sherrington, 1906) typically describe stim-
ulus locations that evoke or modulate neuronal responses, but they can be generalized to different 
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stimulus features such as color or spatial frequency. RFs are usually measured by determining the 
neuronal firing rate elicited by visual stimuli (Hubel and Wiesel, 1998; Hubel and Wiesel, 1968; 
Hubel and Wiesel, 1959), but they can also be defined based on other neuronal signals such as 
subthreshold activity (Priebe, 2008), properties of the local field potential (LFP; Victor et al., 1994), 
or calcium levels that can, for instance, be measured with fluorescent calcium indicators (van Beest 
et al., 2021; Bonin et al., 2011).

Noninvasive methods lack the spatial resolution to measure the RF properties of single neurons, 
but they can characterize the RF properties of the aggregate neural signals being measured. The 
retinotopic organization of the human brain has now been characterized with functional magnetic 
resonance imaging for decades (Wandell et al., 2007; Wandell and Winawer, 2011). Early studies 
used phase-encoding with ‘rotating wedge’ and ‘expanding or contracting ring’ stimuli to identify 
RF position (Engel, 2012; Engel et al., 1994; Sereno et al., 1995), while later studies increasingly 
used the ‘population receptive field’ (pRF) method that estimates RF size in addition to position 
(Dumoulin and Wandell, 2008; Wandell et al., 2007; Wandell and Winawer, 2015; Wandell and 
Winawer, 2011). The method is popular and has been used to map a range of visual and cognitive 
functions (Binda et al., 2018; Ekman et al., 2020; Harvey et al., 2020; Harvey et al., 2015; He 
et al., 2019; Hughes et al., 2019; Mo et al., 2018; Poltoratski et al., 2019; Poltoratski and Tong, 
2020; Puckett et al., 2020; Shao et al., 2013; Shen et al., 2020; Silson et al., 2018; Stoll et al., 
2020; Thomas et al., 2015; Welbourne et al., 2018; Zuiderbaan et al., 2017), dysfunctions (Ahmadi 
et al., 2020; Alvarez et al., 2020; de Best et al., 2019; Dumoulin and Knapen, 2018; Green et al., 
2019; Schwarzkopf et al., 2014), mechanisms of brain development (Dekker et al., 2019), cortical 
evolution (Keliris et  al., 2019; Kolster et  al., 2014; Zhu and Vanduffel, 2019), and information 
transfer across different brain areas (Haak et al., 2013).

The term ‘pRF’ highlights the analogy to neuronal RFs. It assumes that the blood-oxygen-level-
dependent (BOLD) signal measured with fMRI reflects the aggregate response of a large population 
of neurons within a voxel. Indeed, pRFs of the human visual cortex are qualitatively similar to the RFs 
of single neurons or multi-unit activity (MUA) in animals (Dumoulin and Wandell, 2008). However, 
most of the previous comparisons were between species, and between studies that used different 
techniques to measure pRFs/RFs (Barlow et al., 1966; Hubel and Wiesel, 1968). Exceptions are pRF 
studies based on intracranial recordings in human patients (Harvey et al., 2013; Winawer et al., 
2013), which used a limited number of surface electrodes to measure ECoG or intracranial EEG, but 
not spiking activity. The pRFs derived from the LFP exhibited similar properties to pRFs derived from 
BOLD signals, including similar spatial summation characteristics (Winawer et  al., 2013). Another 
study compared BOLD-based pRFs in monkeys to the RF properties of single units in published work 
(Kolster et al., 2014). Furthermore, Keliris et al., 2019 found that single-unit RFs in one of their 
monkeys were smaller than pRFs measured with BOLD and proposed another method to estimate 
RF sizes. Their study included MUA but not the LFP. A systematic within-species comparison of pRFs 
derived from BOLD, MUA, and LFP has however never been carried out.

Here, we fill that gap with extensive pRF modeling based on BOLD, MUA, and LFP signals in 
macaque monkeys. The question that neuronal signal forms the basis of the fMRI-BOLD signal has far-
reaching consequences for the interpretation of human neuroimaging results and is therefore a topic 
of ongoing debate and rigorous investigation (Arthurs and Boniface, 2002; Bartels et al., 2008; 
Boynton, 2011; Drew, 2019; Ekstrom, 2010; Goense and Logothetis, 2008; Logothetis, 2010; 
Logothetis, 2003; Logothetis et  al., 2001; Logothetis and Wandell, 2004; Maier et  al., 2008; 
Schölvinck et al., 2010; Sirotin and Das, 2009; Winawer et al., 2013; Winder et al., 2017). Some 
studies reported that properties of the BOLD signal resemble features of both neuronal spiking and 
the LFP (Mukamel et al., 2005; Nir et al., 2007; Rees et al., 2000), others that they resemble the LFP 
but not spiking (Bartolo et al., 2011; Maier et al., 2008; Niessing et al., 2005; Viswanathan and 
Freeman, 2007), and yet others that they resemble spiking rather than the LFP (Lima et al., 2014). 
Here, we examine the degree to which pRFs based on the BOLD signal resemble pRFs based on 
spiking activity and distinct frequency bands of the LFP (Buzsáki, 2006; Buzsáki and Draguhn, 2004; 
Einevoll et al., 2013; van Kerkoerle et al., 2014). In nonhuman primates, we measured BOLD-pRFs 
using whole-brain fMRI and determined neuronal pRFs with large-scale neurophysiological record-
ings in V1 and V4 (Figure 1). Besides showing the presence of retinotopic information throughout 
the brain based on the fMRI data, we could directly compare V1 and V4 pRFs obtained with fMRI 

https://doi.org/10.7554/eLife.67304


 Research article﻿﻿﻿﻿﻿ Neuroscience

Klink et al. eLife 2021;10:e67304. DOI: https://​doi.​org/​10.​7554/​eLife.​67304 � 3 of 35

Figure 1. Experimental setup and study design. (A) Monkeys maintained fixation on a red dot while bars with high-contrast-moving checkerboards 
moved across the screen in eight different directions behind a virtual aperture (dashed line, not visible in the real stimulus). (B) Two animals performed 
the task in the MRI scanner. Two other animals were each implanted with 16 Utah arrays (1024 electrodes/animal) in the left visual cortex. The 
approximate locations of 14 V1 arrays (red) and 2 V4 arrays (blue) for one animal are depicted on the NMT standard macaque brain. For more detailed 
array configurations, see Chen et al., 2020. (C) Four population receptive field (pRF) models were fit to the data, differing in their pRF parameters 

Figure 1 continued on next page
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and electrophysiology. This intraspecies comparison provides new insight into the neurophysiological 
basis of the BOLD-defined pRFs and offers a benchmark for visual field maps obtained with fMRI.

The original method of estimating pRFs from BOLD responses (Dumoulin and Wandell, 2008) uses 
a forward modeling approach to fit the location and size of a symmetrical two-dimensional Gaussian to 
the BOLD responses. This approach is often used to predict neuronal activity elicited by moving bar-
shaped stimuli. The RF model minimizes the difference between measured and predicted responses 
by multiplying the pRF with the stimulus and convolving the result with a hemodynamic response func-
tion (HRF), which accounts for the time course of neurovascular coupling (Figure 1). Later refinements 
implemented a difference-of-Gaussians pRF profile (DoG) to account for center-surround interactions 
(Zuiderbaan et al., 2012; Figure 1C), with substantial improvements in early visual cortex. Another 
refinement is the introduction of a static nonlinearity that models nonlinear spatial summation across 
RFs (Britten and Heuer, 1999; Kay et al., 2013; Oleksiak et al., 2011; Winawer et al., 2013). In such 
a model, the best parameters indicate subadditive spatial summation in all visual areas (Kay et al., 
2013). This means that if stimulus S1 elicits a response R1 and a nonoverlapping stimulus S2 elicits 
response R2, the response to the combined stimulus, S1 + S2, is smaller than the sum, R1 + R2. For this 
reason, the nonlinear spatial summation model has also been called the ‘compressive spatial summa-
tion’ (CSS) model. A third extension has been the modeling of negative pRFs. Standard approaches 
tend to only include voxels that show increases in the BOLD signal in response to a stimulus. The 
inclusion of ‘negative’ pRFs with decreased BOLD activity has revealed the retinotopic organization of 
a number of areas in the so-called default mode network (DMN) (Szinte and Knapen, 2020). In our 
analysis of pRFs based on BOLD, MUA, and LFPs, we explored several pRF models, allowing us to 
investigate the potential presence of nonlinear spatial summation and negative pRFs.

Results
Four macaque monkeys (Macaca mulatta) participated in this study. They were rewarded with fluid for 
maintaining their gaze inside a 1.5° window around a fixation point that was presented at the center 
of a frontoparallel screen. While they fixated, a 2° wide bar containing full-contrast moving checker-
boards traversed the screen in eight different directions (Figure 1). Two animals performed this task 
in a 3T horizontal bore MRI scanner. Two other monkeys were each implanted with 1024 electrodes in 
the visual cortex (V1, V4). They performed the same task while neuronal activity (MUA and LFP) was 
recorded simultaneously from all electrodes. In the MRI setup, the stimulus covered 16° of the visual 
field, which was the maximum possible with the monitor located just outside of the scanner bore. The 
bar traveled across this screen in 20 steps of 2.5 s (1 TR). In the electrophysiology setup, the monitor 
was closer to the animal, allowing a visual field coverage of 28°. The stimulus bar moved across this 
aperture in 30 steps of 500 ms. For both the MRI and electrophysiology recordings, we only included 
data from epochs when the animals maintained fixation for >80% of the time.

After preprocessing (see Materials and methods), we independently fit four pRF models to the 
average BOLD time courses. These models were (1) a linear pRF model constrained to have positive 

(location: x, y; size: σ) and spatial summation characteristics. The difference-of-Gaussians (DoG) pRFs are described by an excitatory center and an 
inhibitory surround (both 2D Gaussians with σ1 and σ2 as size parameters; dark and light gray circles in the left panel, respectively). Other models fitted 
single Gaussians that were either constrained to be positive (second panel: solid line) or allowed to be negative (unconstrained linear U-LIN, dashed 
line). The compressive spatial summation (CSS) model implemented nonlinear spatial summation across the receptive field (RF) (fourth panel: dashed 
line), while all other models implemented linear summation (solid line). (D) The pRF model fitting procedure. A model pRF is multiplied with an ‘aperture 
version’ of the bar stimulus to generate a predicted response. For fMRI data, this prediction was convolved with a monkey-specific hemodynamic 
response function (HRF). The difference between the recorded neural signal (blood-oxygen-level-dependent [BOLD], multi-unit activity [MUA], local field 
potential [LFP]) and the predicted response was minimized by adjusting the pRF model parameters. (E) Examples of data and model fits for a V1 voxel 
(top panel) and a V1 electrode (middle and bottom panels). Average activity (gray data points) depicts the BOLD signal (top), MUA (middle), and LFP 
power in the low gamma band (bottom). Black lines are the model fits for a P-LIN pRF model. Light and dark gray areas depict visual stimulation periods 
(bar sweeps as indicated by the icons above). In the white epochs, the animals viewed a uniform gray background to allow the BOLD signal to return to 
baseline (these epochs were not necessary in the electrophysiology recordings). Note that that in MRI trials the bar stimuli had a lower speed (1 TR or 
2.5 s per stimulus location) than during electrophysiology (500 ms per stimulus location).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Comparison of hemodynamic response functions (HRFs).

Figure 1 continued
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responses (P-LIN) (Dumoulin and Wandell, 2008), (2) an unconstrained version of the linear pRF 
model that can also model negative responses (U-LIN), (3) a DoG pRF model (Zuiderbaan et al., 
2012), and (4) a nonlinear CSS pRF model (Kay et al., 2013; Figure 1). We used the fitting method 
to determine pRF size, shape, and location. A cross-validated goodness of fit (R2) was determined 
by fitting the model to one half of the data and calculating R2 using the other half of the data. 
Cross-validation allows the comparison of fit quality between models with different numbers of 
parameters.

Figure 2. Population receptive field (pRF) model fits and retinotopic maps. (A) R2 value map of the compressive spatial summation (CSS) pRF model 
projected on the surface rendering of the brains of two monkeys (M1, M2). The lower panel illustrates that the R2 value in the visual cortex is generally 
much higher than 5%  (going up to ~90%). The color range in the upper panels also reveals the weaker retinotopic information elsewhere in the cortex. 
AS, arcuate sulcus; CS, central sulcus; IPS, intraparietal sulcus; LatS, lateral sulcus; LuS, lunate sulcus; STS, superior temporal sulcus. (B) Polar angle maps 
for both subjects from the CSS model, thresholded at R2 > 5%, displayed on the inflated cortical surfaces. Functional delineation of several visual areas 
is superimposed. FEF, frontal eye fields. (C) Number of (resampled) voxels with R2 > 5%  per brain area and subject for each model. Note the logarithmic 
scale. See Figure 2—figure supplement 1 for proportions per region of interest (ROI), and Supplementary file 1 for a table with all ROI abbreviations.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Proportion of voxels with R2 > 5%  per region of interest (ROI).

https://doi.org/10.7554/eLife.67304
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pRFs measured with BOLD-fMRI
All models provided good fits to the BOLD time courses in a range of cortical and subcortical areas 
known to be involved in visual processing. For both monkeys (M1 and M2), we found robust retino-
topic information in occipital, temporal, and parietal cortex (Figure 2). pRFs in all these areas were in 
the contralateral visual field and retinotopic maps were consistent with previous reports (Figure 2B), 
some of which were more extensive (Arcaro et al., 2011; Arcaro and Livingstone, 2017; Brewer 
et al., 2002; Janssens et al., 2014; Kolster et al., 2014; Rima et al., 2020; Zhu and Vanduffel, 
2019). Weaker and sparser retinotopic information was also observed in the frontal cortex, for 
example, around the arcuate sulcus (area 8, including the frontal eye fields [FEF]) and in the ventro-
lateral prefrontal cortex (VLPFC). Throughout this study, we will use a voxel inclusion criterion of R2 > 
5%  unless otherwise noted. While R2 was generally much higher in visual areas (Figure 2A, bottom 
panel), this relatively low threshold also reveals retinotopic information in more frontal areas and 
some subcortical regions (where the signal picked up by surface coils has a lower signal-to-noise ratio 
[SNR]). Figure 2C shows the number of voxels within a range of areas for which the models explained 
more than 5%  of the variance (Figure 2—figure supplement 1 shows the proportion per region of 
interest [ROI]). The functional parcellation of visual areas based on field sign inversions around hori-
zontal and vertical meridians lined up well with a probabilistic atlas, co-registered to the individual 
animal’s anatomy (D99, Reveley et al., 2017).

Subcortically, we could segregate the lateral geniculate nucleus (LGN), pulvinar and some striatal 
regions from their surrounding areas on the basis of a higher R2. In both monkeys, the LGN of both 
hemispheres contained clear retinotopic maps (Figure 3A). Retinotopic information was also evident 
in the bilateral pulvinar of M1, but some of the pRFs in the pulvinar of M2 were large and crossed 
the vertical meridian, resulting in noisy polar angle maps (Figure  3B). Striatal retinotopy was less 
pronounced in M1 and even more variable in terms of polar angle maps (Figure 3—figure supple-
ment 1).

We calculated cross-validated R2 values to compare the four pRF models: P-LIN, U-LIN, DoG, and 
CSS (Figure 1C). A comparison of model performance pooled over subjects and voxels confirmed 
that there were significant differences across models, with the CSS model outperforming the P-LIN 
model (Kruskal–Wallis test on all four models, H = 21.33, df = 3, p<0.0001; post-hoc Tukey’s HSD 
multiple comparisons of mean rank, R2

CSS > R2
P-LIN, p<0.0001). Indeed, the CSS model fit was better 

than that of P-LIN in all ROIs in M1 and in 38 out of 39 ROIs in M2 (Wilcoxon signed-rank, p<0.05; no 
difference in premotor area F7 in M2) (Figure 4). Since the CSS model also provided the best fits for 
the neurophysiological signals (described later), we report results from this model and only extend the 
analysis to other models where this is useful (e.g., in the case of negative gain values). The advantage 
of the CSS model over the P-LIN model generally increased in higher visual areas (Figure 4—figure 
supplement 1).

The static nonlinearity parameter, or ‘pRF exponent’ that models the nonlinearity of spatial summa-
tion (Materials and methods: Equation 4), was in the range of 0.2–0.4 and significantly below 1 in all 
areas (Wilcoxon signed-rank, one-tailed, all ROIs with more than four voxels R2 > 5%, p<0.001). These 
values of the pRF exponent represent subadditive (compressive) spatial summation, in accordance 
with observations in the human visual cortex (Kay et al., 2013; Winawer et al., 2013). The pRF expo-
nent in early visual cortex is comparable to previously reported values for human V1. The exponent 
value in higher visual areas was similar to that in early visual cortex of the two monkeys, and higher 
than previously observed in human extrastriate cortex, which suggests that spatial suppression is 
less pronounced in higher areas of the monkey visual cortex than in higher areas of the human visual 
cortex.

Both the U-LIN model and the DoG model also performed better than the standard P-LIN model 
(Kruskal–Wallis, Tukey’s HSD, both ps<0.0001). The DoG had slightly better fits across all pooled 
voxels than the U-LIN model (Kruskal–Wallis, Tukey’s HSD, p<0.0001). The advantage of the DoG 
model over the P-LIN model was most pronounced in V1 and decreased in higher visual areas.

Negative pRFs from suppressed BOLD responses
There was a subset of voxels with negative BOLD responses for which both the U-LIN and DoG models 
provided much better pRF fits than the P-LIN and CSS models (arrows in Figure 4A, Figure 4—figure 
supplement 1C). We inspected the voxels for which the R2 in the U-LIN/DOG models was at least 

https://doi.org/10.7554/eLife.67304
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5%  higher than in the P-LIN model (gray, dashed triangles in Figure 4A). The U-LIN model estimated 
a negative gain for these voxels (median gain = –0.31, Wilcoxon signed-rank, one-tailed, z = –43.9, 
p<0.0001) (Figure 4B) and the DoG model returned a high level of inhibition (median normalized 
suppressive amplitude = 1.14, interquartile range [IQR], 0.98–1.29).

Figure 3. Retinotopy in the thalamus. Thalamic population receptive fields (pRFs) in M1 (A) and M2 (B). The lateral geniculate nucleus (LGN, top 
rows) contained retinotopic maps of the contralateral visual field in both monkeys (M1: 38/38; M2: 73/80 voxels with contralateral pRFs). Retinotopic 
information was also present in the pulvinar (PULV, bottom rows), but its organization was much less structured, especially in M2 (M1: 23/32; M2: 61/131 
voxels with contralateral pRFs). Voxels were thresholded at R2 > 3%  for these polar angle visualizations due to the generally poorer fits in subcortex 
compared to visual cortex. Results from the compressive spatial summation (CSS) model are masked by region of interest (ROI) and shown both in a 
‘glass’ representation of the individual animals’ brains (left), and on selected sagittal and coronal slices (monkey-specific T1-weighted images, cross-hairs 
indicate slice positions). Dashed lines indicate the boundaries of the LGN and pulvinar.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Striatal population receptive fields (pRFs).

https://doi.org/10.7554/eLife.67304
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There were two categories of voxels with negative responses (Figure 4—figure supplement 2). 
For the first category of voxels, the P-LIN model estimated pRFs outside the boundaries of the stim-
ulated visual field. This result suggests that the negative response represents surround suppression 
that is particularly strong around the fovea (Sereno et al., 1995; Shmuel et al., 2006; Smith et al., 
2004). The retinotopy of these voxels is consistent with this explanation. In V1, for instance, the 
voxels were on the medial side of the occipital pole, which represents the peripheral visual field 
(Figure 4C). The second category of voxels with negative pRFs appeared to be different. Here, P-LIN 
and CSS models could not fit any pRF, suggesting purely negative BOLD responses. These voxels were 
primarily located in the medial occipital parietal cortex (mOP), at the superior border of the superior 
temporal sulcus in the lateral occipital parietal cortex (lOP) and around the lateral sulcus (LatS), which 
includes parts of the insula, cingulate, parietal, and premotor cortices (Figure 4D). These areas have 

Figure 4. Comparison of the four population receptive field (pRF) models. (A) Comparison across pRF models. R2 data are in bins of 1% × 1%, and color 
indicates the number of voxels per bin. The compressive spatial summation (CSS) model fits the data best, while U-LIN and difference-of-Gaussians 
(DoG) models give better fits for voxels that are poorly characterized by the P-LIN model (arrows). Dashed triangle, voxels for which R2 of the U-LIN/
DoG models was at least 5%  higher than that of the P-LIN model. (B) Gain values of the U-LIN pRF fits for all voxels (black) and the voxels in the gray 
triangle in (A.) The negative gain values indicate visual suppression of the blood-oxygen-level-dependent (BOLD) signal. Arrows, medians. (C) Clusters 
of voxels for which the U-LIN model fit better than the P-LIN model were located in the medial occipital lobe (left panel). The pRFs of these voxels had a 
high eccentricity according to the P-LIN model, beyond the stimulated visual field. (D) Clusters of voxels with negative pRFs in the U-LIN model (without 
positive pRFs in the P-LIN model) were present around the lateral sulcus (LatS), in the medial occipital parietal cortex (mOP) and in the lateral occipital 
parietal cortex (lOP).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Comparison of fit performance across pRF models.

Figure supplement 2. Location of negative pRFs.

https://doi.org/10.7554/eLife.67304
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all previously been identified as being part of the monkey DMN (Mantini et al., 2011). This finding 
aligns with recent research in humans that revealed similar negatively tuned pRFs in corresponding 
nodes of the human DMN (Szinte and Knapen, 2020).

pRF size as a function of eccentricity
As expected, pRF sizes were larger at higher eccentricities. This relationship was evident in all areas 
with larger numbers of well-fit voxels. pRFs were also larger in higher areas, which exhibited a steeper 
slope of the eccentricity-size relationship (Figure 5, Figure 5—figure supplements 1 and 2). The 
differences between the slopes in V1 and V2 are smaller than expected based on previous electro-
physiological studies, but this is not uncommon with fMRI (Kay et al., 2013). In one animal, we also 
unexpectedly observed retinotopy in a number of higher areas, such as the anterior cingulate cortex 
(Figure 5—figure supplements 1 and 2). This brain region has been studied predominantly in the 
context of decision-making (Amiez et al., 2006; Fouragnan et al., 2019), but it does have resting 
state correlations with V1 (Griffis et al., 2017). Our design lacked the power for a more detailed 
investigation of this retinotopic organization, but this result may inspire future work on brain-wide 
retinotopic tuning.

Multi-unit spiking activity RFs
We determined the RFs of MUA recorded with chronically implanted electrode arrays (Utah arrays) in 
areas V1 and V4 in two additional monkeys (M3 and M4) that did not participate in the fMRI experi-
ments. We used a 1024-channel cortical implant, consisting of a titanium pedestal that was connected 
to 16 Utah arrays (Rousche and Normann, 1998). Each Utah array had 8 × 8 shanks with a length of 
1.5 mm. In both monkeys, 14 arrays were placed in V1 and 2 in V4 of the left hemisphere (Figure 6). 
The stimulus was similar to that used in the fMRI experiments with some small differences due to 
constraints of the two setups (in the electrophysiology setup, the stimulus covered a larger portion of 
the visual field because the screen was closer to the animal) and the intrinsic nature of the recorded 
signals (stimulus steps were faster in the electrophysiology experiments because the electrophys-
iology signals are much faster than the BOLD response). We fit the four pRF models to the MUA 
responses and to the LFP power in five distinct frequency bands. We compared the MUA pRFs to a 
more conventional MUA RF-mapping method (cRFs). For this cRF method, we selected channels with 
an SNR larger than 3 (i.e., visual responses that were more than three times larger than the standard 
deviation of the spontaneous activity) and derived the RF borders from the onset and offset of the 
neuronal activity elicited by a smoothly moving light bar (see Materials and methods). Whenever both 
methods were able to estimate a pRF and cRF (R2 > 25%  for the pRF method, SNR > 3 and R2 > 25%  
for the cRF method), the estimated locations were highly similar (median distance between pRF and 
cRF center, V1: 0.34, IQR 0.18–0.49 dva; V4: 0.90, IQR 0.40–1.41 dva). Compared to the P-LIN pRF 
model, the moving bar method estimated smaller cRFs (median size difference pRFsz-cRFsz: 0.50, IQR: 
0.08–0.92) (Figure 7). The CSS model, however, returned pRF size estimates that were very similar to 
the cRF sizes or even a little bit smaller (median size difference pRFsz-cRFsz: –0.13; IQR: –0.41–0.14), 
suggesting that nonlinear spatial summation might indeed be better at capturing the RF properties of 
a small population of neurons than linear summation.

The pRF models that were used in this study are all based on circular (symmetric) RFs. A recent 
study (Silson et al., 2018) suggested that pRFs in human early visual cortex might be elliptical rather 
than circular, although this suggestion goes against previous work (Greene et  al., 2014; Merkel 
et al., 2018; Zeidman et al., 2018). A later study demonstrated that the elliptical fits were an artifact 
of the software that had been used in the analysis (Lerma-Usabiaga et al., 2021). The cRF method 
separately estimates the width and height of the RF, and can thus be used to calculate a simplified 
RF aspect ratio to investigate RF symmetry. While this measure differs from RF ellipticity (a 45° tilted 
ellipse has the same aspect ratio as a circle), it does provide some insight into the symmetry of the 
MUA RFs. We did observe a few cRFs with aspect ratios (σlarge/σsmall) that were larger than 2 (M3: 
18/753; M4: 10/527; together 2.2%  of all cRFS), but the vast majority of cRFs in both animals had 
aspect ratios close to 1 (M3 median: 1.12, IQR: 1.04–1.20; M4 median 1.13, IQR: 1.03–1.22) indicating 
near-symmetric RFs.

We obtained excellent fits to the MUA for all pRF models (see Figure  1E for an example fit). 
These pRFs covered a large proportion of the lower-right visual field (Figure 6, Figure 6—figure 

https://doi.org/10.7554/eLife.67304
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Figure 5. Population receptive field (pRF) size as a function of eccentricity according to the compressive spatial summation (CSS) model. (A) 
Eccentricity-size relationship for early and mid-level visual areas. (B) Eccentricity-size relationship for areas in the temporal and parietal lobes. (C) 
Eccentricity-size relationship for subcortical areas. (D) Eccentricity-size relationship for frontal cortical areas. Data points are pRF sizes binned in 2-dva-
eccentricity bins; error bars denote SEM. Lines are linear fits with a significant slope (p<0.01). Slope values are shown between square brackets in the 
legend. The dashed line that separates the white and gray areas indicates the extent of the visual stimulus used to estimate pRFs. Data points in the 
gray regions come for pRFs that fell partially outside the region with a visual stimulus. The small panels show the same data for individual areas and 
include confidence intervals of the linear fit (shaded red area). Numbers denote the number of voxels per animal. The displayed areas were selected 
based on the presence of at least 20 voxels in each animal, with R2 > 5%  for (A, B) and R2 > 3%  for (C, D) due to the generally lower fit quality in the 
subcortex and frontal lobe. Figure 5—figure supplements 1 and 2 plot all suprathreshold voxels.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Eccentricity-size relationship for all regions of interest (ROIs).

Figure supplement 2. Eccentricity-size relationship for all regions of interest (ROIs).

https://doi.org/10.7554/eLife.67304
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supplement 1). As expected, the pRFs from electrodes of the same arrays (shown in the same color in 
Figure 6) were clustered in space, and their locations were in accordance with established retinotopy 
(e.g., Hubel and Wiesel, 1974). The average R2 (over all electrodes with R2 > 0) was 64%  in V1 (M3: 
54%; M4: 73%) and 53%  in V4 (M3: 37%; M4: 68%), which is substantially higher than the average R2 
of 11%  in both V1 and V4 for the MRI data (all voxels with R2 > 0; V1 M1: 14%, M2: 8%;  V4 M1: 14%, 
M2: 8%).

Cross-validated comparisons revealed significant differences between the four models (Krus-
kal–Wallis test on all four models: HV1 = 204, dfV1 = 3, pV1 < 0.0001; HV4 = 13.4, dfV4 = 3, pV4 < 0.01) 

Figure 6. Visual field coverage of population receptive fields (pRFs) with Utah arrays. (A) In both monkeys (M3, M4), 14 Utah arrays were implanted 
on the left operculum that is partly V1. Different colors represent the center of multi-unit activity (MUA)-based pRFs for the individual arrays. Only 
electrodes with R2 > 50%  in the compressive spatial summation (CSS) model are shown. (B) Same as in (A), but for V4 electrodes. Note the different 
scale in the lower-right panel, with the gray arc indicating the extent of the visual stimulus. See Figure 6—figure supplement 1 for pRF sizes.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Heatmaps of visual field coverage of the Utah arrays.

https://doi.org/10.7554/eLife.67304
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(Figure 8; similar patterns were present in each individual animal). Post-hoc pairwise comparisons 
(Tukey’s HSD) revealed that the CSS and DoG models provided a better fit than the linear models, 
although for V4 the advantage of the CSS model over the P-LIN model was only significant when 
electrodes with a poor fit (R2 < 25%) were excluded (V1, all electrodes: CSS vs. P-LIN, p<0.001, DoG 

Figure 7. Comparison of multi-unit activity (MUA) population receptive field (pRF) sizes with conventionally determined RF (cRF) sizes (moving bar 
stimulus). Data points represent recording sites of individual animals (black: M3; blue: M4) and brain areas (closed circles: V1; open circles: V4). (A) pRF 
sizes estimated with the P-LIN model (X-axis in left panel) are larger than cRF sizes obtained with a thin moving luminance bar (Y-axis in left panel). The 
median difference between pRF and cRF sizes across all electrodes (pooled across animals and areas) was 0.50 (interquartile range [IQR]: 0.08–0.92) and 
the median ratio was 1.41 (IQR: 0.99–1.83), as shown in the top and bottom-right panels, respectively. (B) As in (A), but for pRF sizes estimated with the 
compressive spatial summation (CSS) model, which are slightly smaller than the cRFs (median difference: –0.13, IQR: –0.41–0.14; median ratio 0.90, IQR: 
0.67–1.12).

https://doi.org/10.7554/eLife.67304
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vs. P-LIN, p<0.001; V4, all electrodes: CSS vs. P-LIN, p=0.16, DoG vs. P-LIN, p<0.001; V1, electrodes 
with R2 > 25%: CSS vs. P-LIN, p<0.001, DoG vs. P-LIN, p<0.001; V4, electrodes with R2 > 25%: CSS vs. 
P-LIN, p<0.02, DoG vs. P-LIN, p<0.01) (Figure 8). The improved fit of the DoG model was caused by 
the suppressive surround (median normalized suppressive amplitude = 0.71, IQR 0.56–0.86).

The pRF exponent of the CSS model was 0.38 ± 0.23 in V1 (mean ± SD; 1358 electrodes with R2 > 
25%), which was significantly smaller than 1 (Wilcoxon signed-rank, one-tailed, z = –31.59, p<0.0001) 
and similar to the MRI-based values, which had a mean of 0.34 ± 0.19 (6341 voxels). Likewise, in V4, 
MUA pRF exponent values were significantly smaller than 1 (0.33 ± 0.19; z = 11.13, p<0.0001; n = 
165), and comparable to MRI-based values in the same area (0.30 ± 0.16; n = 2324). The similarity in 
the values of the pRF exponent indicates that subadditive spatial summation is a prominent feature 
in these areas.

The size of the estimated MUA pRFs increased with eccentricity (Figure 9). However, the pRF sizes 
for two of the V1 arrays in both monkeys were approximately three times smaller than expected when 
compared to the data from the other arrays. These outlying arrays were located on the posterior-medial 

Figure 8. Comparison of multi-unit activity (MUA)-based fit results from the four population receptive field (pRF) models. Scatterplots compare R2 of 
pRF models. Each dot represents an electrode (black: V1; green: V4).

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Comparison of local field potential (LFP) fits for the four population receptive field (pRF) models in V1.

Figure supplement 2. Comparison of local field potential (LFP)-based fit results from the four population receptive field (pRF) models in V4.

Figure supplement 3. Comparison of population receptive field (pRF) fit accuracies for multi-unit activity (MUA) and local field potential (LFP) signals at 
the same recording sites.

https://doi.org/10.7554/eLife.67304
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side of the surface of V1 in both monkeys where the gray matter is relatively thin (Figure 9A). We 
therefore suspect that the 1.5-mm-long shanks of the Utah arrays were pushed into the white matter, 
where they picked up activity of thalamic afferents (i.e., the geniculostriate pathway). We therefore 
excluded these electrodes from the analyses of pRF sizes. The remaining MUA pRF sizes and eccen-
tricities were highly similar to RFs reported in previous electrophysiology studies at similar eccentric-
ities (Gattass et al., 1987; Gattass et al., 1981; Van Essen et al., 1984; Victor et al., 1994). Next, 
we compared pRFs between the electrophysiological signals and the fMRI-BOLD signal.

Local field potential pRFs
The LFP was split into five frequency bands: θ (4–8 Hz), α (8–16 Hz), β (16–30 Hz), γlow (30–60 Hz), and 
γhigh (60–120 Hz). We fit the four models to estimate pRFs for each frequency band. The results for γlow 
and γhigh resembled those for the MUA with high R2 values for a large proportion of the electrodes 
(especially in V1). The CSS model again outperformed the other models, and we did not observe 
negative pRFs in these V1 and V4 regions (Figure 8—figure supplements 1 and 2). Electrodes with 
good MUA-pRF fits usually also had good LFP-pRFs, but the opposite was not always true (Figure 8—
figure supplement 3). The pRFs in lower frequency bands differed. Whereas θ generally yielded 
low R2 values, α and β yielded good fits for a substantial number of electrodes. Interestingly, there 
were two classes of electrodes in these frequency bands. For the first class, the power increased 
with visual stimulation and CSS model fits were best. In contrast, the second class of electrodes had 
negative pRFs, that is, the stimulus suppressed power (Figure 8—figure supplement 1). Given the 
few electrodes with good low-frequency LFP-pRFs in V4, we focused our analysis on the positive and 
negative responses on V1 (the split into positive/negative pRF was based on the parameters of the 
U-LIN model; Figure 10, Figure 10—figure supplement 1).

We observed a number of remarkable differences between the positive and negative pRFs. First, 
negative pRFs generally had lower eccentricities than positive pRFs (Figure 10B, Figure 10—figure 
supplement 1B). Second, negative pRFs were larger than positive pRFs (Figure 10C, Figure 10—
figure supplement 1C). Third, there was a systematic difference in the distance from the γ-pRF of the 
same electrode. Specifically, we calculated a ‘separation index’ by dividing the distance between the 
centers of the low- and high-frequency LFP-pRFs by their summed size estimates (SI = Distance/(σlf + 
σhf)). A separation index of less than 1 indicates pRF overlap. For both α and β power, the negative pRFs 
were farther from the γ-pRFs than the positive pRFs (Figure 10D, Figure 10—figure supplement 1D) 

Figure 9. V1 arrays with outlying population receptive field (pRF) sizes. (A) Schematic representation of the location of the craniotomy made during 
surgery (dashed line) and the implanted electrode arrays (rectangles) depicted on the NMT standard brain. The color map indicates the thickness of the 
cortical gray matter of the NMT. (B) For both monkeys, the estimated pRF sizes of V1 electrode arrays in the posterior medial corner of the craniotomy 
(red and orange data points correspond to red and orange rectangles in panel A) were surprisingly small for their eccentricity compared to the size-
eccentricity relationship seen in the other arrays (gray circles, linear fit with 95% CI as black line and gray area). Given the length of the electrodes 
(1.5 mm), the typical thickness of the striate cortex, and these small pRF sizes, it is likely that the outlying pRFs do not reflect the tuning of V1 neurons, 
but that of the geniculostriate pathway in the white matter. The pRF sizes were estimated by the compressive spatial summation (CSS) model (recording 
sites shown have R2 > 70%).

https://doi.org/10.7554/eLife.67304
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Figure 10. Characteristics of local field potential (LFP)-α population receptive fields (pRFs) in V1 split by positive and negative gain values. (A) 
Distribution of gain values for LFP-α pRFs of V1 electrodes estimated with the U-LIN model. Electrodes with positive gain pRFs are classified as α+, 
electrodes with negative gain pRFs as α-. (B, C) pRF eccentricities (B) and size (C) for α- and α+ electrodes (yellow shades). Colored boxes indicate 
interquartile range (IQR), and the median is shown as a thick horizontal line. Wilcoxon rank-sum tests were used for comparisons between α- and α+ 
electrodes. (D) Distance between the centers of LFP-α and LFP-γ pRFs from the same electrode, divided by the sum of their respective sizes. Values 
smaller than 1 indicate overlapping receptive fields. Nonshaded boxes are comparisons with LFP-γlow pRFs, shaded boxes are comparisons with LFP-
γhigh pRFs. (E) Difference in eccentricity between LFP-γ and LFP-α pRFs from the same electrodes (calculated as Eccγ-Eccα). Positive values indicate 

Figure 10 continued on next page
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and generally shifted in the direction of fixation (Figure 10E, Figure 10—figure supplements 1E and 
2). These results suggest that the positive pRFs represent visually driven activity, whereas the negative 
pRFs signal a form of suppression that is strongest at smaller eccentricities, close to the fixation point. 
One possible explanation is that the monkeys directed attention to the fixation point, which may 
have caused a ring of suppression closely surrounding it. Another possibility is that the negative pRFs 
might be a consequence of small eye movements around the fixation point. The size of α-pRFs did not 
depend on eccentricity (Figure 10F), whereas the size of β-pRFs increased with eccentricity, although 
this relation was very weak for positive pRFs (Figure 10—figure supplement 1F).

The pRFs derived from all electrophysiology signals on the same electrode had similar locations, 
with less than 1 dva between their centers on average (CSS model, Figure 11A). We next analyzed 
RF sizes, normalizing the size estimates to the MUA-cRF. All LFP-pRFs estimates were larger than 
MUA-pRFs, and lower frequency LFP components yielded larger pRFs than the higher frequencies 
(Figure 11B; we observed the same pattern present in each animal). The pRF exponent was well 
below 1 for all LFP components (V1 and V4 electrodes with R2 > 25%;  Wilcoxon signed-rank, one-
tailed <1, p<0.001) and smaller at lower frequencies, indicative of stronger CSS. We also compared 
the exponents to those of the MRI-pRFs. The exponent of the MRI was not significantly different from 
that of γlow in V1, and both γlow and γhigh in V4 (p>0.05, Figure 11C). Differences between the MRI 
exponent and those of the other LFP bands were significant (V1: Kruskal–Wallis, H = 505.49, df = 6, 
p<0.0001; V4: Kruskal–Wallis, H = 21.65, df = 3, p<0.001; Tukey’s HSD for multiple comparisons).

Comparison of pRF eccentricity-size relationship between fMRI and 
electrophysiology signals
We next compared the eccentricity-size relationship of the electrophysiological signals to that of the 
BOLD-fMRI pRFs using linear mixed models (LMMs) to evaluate the pRF estimates of the CSS model, 
separately for V1 and V4 (electrodes with R2 > 50%  and R2 > 5%  for MRI). We included voxels for 
which the pRF was in the lower-right visual quadrant where we had electrode coverage. In V1, posi-
tive eccentricity-size relationships existed for MRI, MUA, β, γlow, and γhigh (Figure 12A). We compared 
these signals with a single LMM, revealing an interaction between signal type and eccentricity (F = 
14.44, df = 4, p<0.0001), which indicated that the slopes differed. We further used pairwise LMMs to 
compare the slope of the MRI-pRFs to the electrophysiological signals with a significant eccentricity-
size relationship. The fMRI eccentricity-size relationship was similar to that of MUA (F = 0.38, df = 1, 
p=0.54), whereas it was significantly different from all LFP signals (β: F = 7.97, df = 1, p<0.01; γlow, F = 
20.02, df = 1, p<0.001; γhigh, F = 20.05, df = 1, p<0.001) (Figure 12C). We repeated this analysis in V4 
(Figure 12B) where we had fewer electrodes. We obtained positive eccentricity-size slopes for MUA, 
γlow, and γhigh but did not obtain fits of sufficient quality for the θ, α, and β bands. In contrast to V1, 
there was no clear difference across these signals (F = 1.11, df = 3, p=0.24). Pairwise comparisons with 
the MRI size-eccentricity relationship did not reveal a difference between those for γlow (F = 0.36, df = 
1, p=0.55), γhigh (F = 0.28, df = 1, p=0.60), or MUA (F = 2.40, df = 1, p=0.12). Because the visual field 
coverage in V4 differed between the two animals that were used for electrophysiology, we repeated 
the analysis in both individuals and observed similar results (not shown).

To further investigate the robustness of these results, we repeated the analysis (1) with the inclusion 
of either all V1 and V4 voxels or a subset of the voxels in approximately the same anatomical location 
as the electrode arrays and (2) by varying the R2-based inclusion criteria for electrodes and voxels 

that LFP-α pRFs are closer to fixation than LFP-γ pRFs. Wilcoxon signed-rank, one-tailed test (ΔEcc > 0), for individual cases; Wilcoxon rank-sum test 
for comparisons between α- and α+ electrodes. See Figure 10—figure supplement 2 for a visualization of the shifts per recording site. (F) Eccentricity-
size relationship for α- (left) and α+ (right) electrodes. Dots indicate individual electrodes. Figure 10—figure supplement 1 shows the same pattern of 
results for the LFP-β pRFs.

The online version of this article includes the following figure supplement(s) for figure 10:

Figure supplement 1. Characteristics of local field potential (LFP)-β population receptive fields (pRFs) in V1 split by positive and negative gain values.

Figure supplement 2. Negative population receptive fields (pRFs) based on low-frequency local field potential (LFP) components are shifted toward 
the fixation point compared to the positive pRFs based on the high-frequency LFP at the same recording site.

Figure 10 continued
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(Figure 12—figure supplement 1). MUA-pRFs in V1 and V4 were generally similar to the BOLD-pRFs, 
although in V4 γlow and γhigh also approximated the fMRI results in some of the comparisons.

Discussion
The current study conducted a systematic comparison of pRFs obtained with fMRI and electrophys-
iological recordings in V1 and V4 of awake behaving macaque monkeys. Within the same species, 
we fit several pRF models to seven different signal types (BOLD, MUA, and the power in five LFP 
frequency bands) to gain insight into the neuronal basis of MRI-BOLD-pRF measurements (Wandell 

Figure 11. Comparison of population receptive field (pRF) location and size of different electrophysiological signals at the same electrode, estimated 
by the compressive spatial summation (CSS) model. (A) Median distance between receptive field (RF) estimates. Electrodes were only included if R2 > 
25%  (multi-unit activity [MUA], local field potential [LFP]) or signal-to-noise ratio (SNR) > 3 (MUA-cRF). (B) RF size for the electrodes of (A), normalized to 
the MUA-cRF (dashed line). Horizontal lines indicate the median, colored rectangles depict the interquartile range (IQR). (C) pRF exponent from the CSS 
model (indicating nonlinearity of spatial summation). The horizontal dashed line indicates linear summation. The exponent was significantly lower than 1 
for all signals. Gray arrows indicate signals for which the exponent did not significantly differ from that of the MRI pRFs. A similar pattern was present in 
the electrophysiological data of each animal.

https://doi.org/10.7554/eLife.67304


 Research article﻿﻿﻿﻿﻿ Neuroscience

Klink et al. eLife 2021;10:e67304. DOI: https://​doi.​org/​10.​7554/​eLife.​67304 � 18 of 35

and Winawer, 2015). Our results demonstrate retinotopic tuning in many brain regions and the pres-
ence of negative pRFs in areas of the DMN. We found that subadditive spatial summation is a promi-
nent feature of many measures of brain activity. Furthermore, the results establish a clear relationship 
between BOLD-pRFs and electrophysiologically determined pRFs, with MUA-pRFs being most similar 
to BOLD-pRFs (as discussed below).

Cortical and subcortical retinotopic tuning of the BOLD signal
Retinotopic information was present in occipital, temporal, parietal, and frontal cortex as well as in 
a subcortical areas. We could differentiate the LGN and pulvinar from their surrounding areas based 
on their higher R2. Retinotopic maps in the LGN were roughly in line with previously published retino-
topic organization of the macaque LGN (Erwin et  al., 1999), but they comprised few voxels and 
the variability across animals prohibited detailed inferences. In the pulvinar, the organization of the 
retinotopic information was even more variable across animals. In humans, subcortical retinotopic 
maps have been observed in LGN, pulvinar, superior colliculus (SC), thalamic reticular nucleus (TRN), 
and substantia nigra (SN) (Cotton and Smith, 2007; DeSimone et al., 2015; Schneider et al., 2004). 
Here, we also observed voxels with pRFs located lateral and medial to the pulvinar, but more targeted 
investigations are necessary for detailed individual-subject segmentation of the thalamus (DeSimone 
et al., 2015; Tani et al., 2011).

We obtained good pRF fits in the occipital, temporal, and parietal cortical areas, regions for which 
previous studies demonstrated retinotopic organization with phase-encoded retinotopic mapping 
(Arcaro et  al., 2011; Janssens et  al., 2014; Kolster et  al., 2014; Kolster et  al., 2010; Kolster 
et al., 2009; Patel et al., 2010). Despite the fact that checkerboard stimuli may not be ideal for the 

Figure 12. Eccentricity-size relationship for population receptive fields (pRFs) across signal types. (A) The pRF size-eccentricity relation for V1 electrodes 
(compressive spatial summation [CSS] model, R2 > 50%). Dots are individual electrodes, colored lines represent the slope of the eccentricity-size 
relationship. The dashed black line represents the relationship for V1 MRI voxels with a pRF in the lower-right visual quadrant and an R2 > 5%.  We only 
included signals with >25 electrodes meeting the R2 threshold. (B) Same as in (A), but now for the V4 electrodes and voxels. (C) Eccentricity-size slopes 
(left: V1; right: V4). The dashed line represents the slope for MRI-based pRFs with the 95%  confidence interval depicted in gray shading. Colored 
rectangles indicate the 95%  confidence intervals for the electrophysiological signals and the horizontal black line the slope estimate. The lower bound 
of the 95%  confidence interval of the LFP-θ is not visible. Asterisks indicate significant difference with the size-eccentricity relation of the MRI-based 
pRFs.

The online version of this article includes the following figure supplement(s) for figure 12:

Figure supplement 1. Cross-signal comparisons of population receptive field (pRF) eccentricity-size relationship.
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activation of frontal areas, which are better driven by more complex stimuli (Janssens et al., 2014; 
Saygin and Sereno, 2008), we also observed retinotopy in several frontal areas, including the insula, 
cingulate cortex, FEFs (area 8), orbitofrontal cortex, ventromedial prefrontal cortex, and dorsolateral 
prefrontal cortex. These areas are thought to be involved in visual processing and visual attention. 
Retinotopic maps have previously been reported in the cerebellum in humans (van Es et al., 2019). 
We did not detect such maps, likely because of a lower SNR in the cerebellum due to lower field 
strength, a less optimal coil placement, and the sphinx position of the monkeys.

Negative pRFs
We observed negative pRFs in the MRI data and in the low-frequency LFP, but they were of a different 
nature. We identified two classes of negative pRFs in the MRI data. Negative pRFs in the visual cortex 
were usually accompanied by positive responses at peripheral visual field locations, close the bound-
aries of the visual display. Similar negative visual BOLD responses have been reported in human 
visual cortex (Smith et al., 2004) and are presumably caused by surround suppression (Allman et al., 
1985; Cavanaugh et al., 2002; Hubel and Wiesel, 1962; Knierim and van Essen, 1992). We found 
a second class of negative pRFs around the LatS, in the mOP, and at the superior border of the supe-
rior temporal sulcus in the IOP, all areas previously implicated in the monkey’s DMN (Mantini et al., 
2011). A similar retinotopy of negative responses was recently found in the human DMN (Szinte and 
Knapen, 2020). The retinotopy of nodes of the DMN in humans and monkeys implies a sensory-based 
organization of this part of the DMN, which could play a role in visual cognition (Arsenault et al., 
2018).

Negative pRFs were also observed for a subset of the electrodes in the α and β range of the LFP, 
although pRF fits were generally of lower quality than those for the γ-LFP or MUA signals. It is conceiv-
able that these negative pRFS reflect shifts of attention, which are known to modulate α and β power 
(Griffiths et al., 2019; Siegel et al., 2008; Womelsdorf and Fries, 2007; Worden et al., 2000). In 
accordance with this idea, negative α/β pRFs were larger than their positive counterparts and shifted 
towards the fixation point. Future studies are needed for a closer examination of this phenomenon.

The relation between BOLD-based pRFs and electrophysiologically 
determined pRFs
We compared BOLD-based pRFs to electrophysiological measures in terms of their spatial summa-
tion characteristics, size, and the relationship between eccentricity and size (Amano et  al., 2009; 
Dumoulin and Wandell, 2008; Felleman and Van Essen, 1987; Gattass et al., 2005; Kay et al., 
2013; Larsson and Heeger, 2006; Van Essen et al., 1984; Victor et al., 1994). Eye movements can 
have an effect on the pRF size estimates, and it is therefore important to note that (1) we only included 
data from recordings where the animals maintained a high fixation performance (IQR-span of the 
horizontal and vertical eye position, M1: 0.23, 0.34 dva; M2: 0.36, 0.49 dva; M3: 0.18, 0.38 dva; M4: 
0.37, 0.60 dva), and (2) we averaged across multiple stimulus presentations to obtain robust response 
profiles. Hence, variations in eye position can have had only minor effects on the present results.

Compressive spatial summation
The CSS pRF model includes nonlinear spatial summation (Kay et al., 2013). Previous studies observed 
subadditive spatial summation, also known as spatial compression, throughout the human visual 
cortex in BOLD-based pRFs, with stronger compression in higher visual areas than in V1 (Kay et al., 
2013; Winawer et al., 2013). In the present study, spatial compression was present in subcortical and 
cortical areas with good BOLD-pRF fits, indicating that it is a widespread, if not universal, character-
istic of the primate visual system. The strength of compression did not differ much across areas, and 
it was similar to that in human V1. For the MUA data, the CSS model estimated pRF sizes that were 
very similar to RF size estimates derived from conventional methods that use moving luminance bars, 
whereas the P-LIN model systematically returned larger pRF estimates. This difference might indicate 
that spatial compression indeed better captures the neuronal RF properties, at least in V1 and V4.

In human iEEG recordings, spatial compression in the broadband iEEG signal was reported to be 
similar in strength to that of the BOLD signal (Winawer et al., 2013). We also observed CSS in both 
the MUA-pRFs and in all frequency bands of the LFP, and the pRF exponent tended to be smaller 
for lower-frequency components, indicative of stronger compression. The lower frequencies also 
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exhibited stronger suppression than the BOLD signal. In contrast, the pRF exponent of MUA and γlow 
was similar to that of BOLD-fMRI in both V1 and V4, but in V1 the exponent for γhigh was larger. Hence, 
MUA and γlow were the two electrophysiological markers for which spatial compression resembled that 
of BOLD-fMRI most.

pRF size and the eccentricity-size relationship
As expected, pRFs were larger at higher eccentricities, with a larger slope in higher visual cortical 
areas. The pRF sizes and the eccentricity-size relationships that we found in visual cortex were in line 
with previous results from human and monkey neuroimaging studies (Amano et al., 2009; DeSimone 
et al., 2015; Dumoulin and Wandell, 2008; Kay et al., 2013; Keliris et al., 2019; Kolster et al., 
2014; Kolster et al., 2010; Welbourne et al., 2018; Zhu and Vanduffel, 2019; Zuiderbaan et al., 
2012). Furthermore, the results are in keeping with previous electrophysiological recordings of single 
units and MUA in early visual areas such as V1 (Gattass et al., 1987; Gattass et al., 1981; Van Essen 
et al., 1984; Victor et al., 1994), V2 (Burkhalter and Van Essen, 1986; Gattass et al., 1981; Rosa 
et al., 1988), V3 (Burkhalter and Van Essen, 1986; Felleman and Van Essen, 1987; Newsome et al., 
1986; Rosa et al., 2000), and V4 (Gattass et al., 1988). Finally, they also match the results of human 
electrophysiology with subdural electrodes (Harvey et al., 2013; Yoshor et al., 2007).

The spatial scope of fMRI-BOLD, MUA, and LFP
The spatial scale of recorded neural signals depends both on the nature of the signal and the recording 
method. For extracellular electrophysiology recordings, the impedance and size of an electrode deter-
mine its sensitivity for single-unit spiking activity or MUA. This relationship is complex (Viswam et al., 
2019; Ward et al., 2009), but high-impedance (~1 MΩ) electrodes are generally better suited for the 
detection of spiking activity, with smaller contact sites and higher impedance thought to sample from 
smaller neural populations and being more likely to pick up single-neuron activity. The spatial range of 
the MUA signal is ~140 µm (Buzsáki and Draguhn, 2004). Electrode impedance, size, and shape are 
less important for LFP recordings, at least within commonly used ranges (Nelson and Pouget, 2010; 
Viswam et al., 2019). The spatial extent of the LFP signal is a topic of ongoing debate (Kajikawa 
and Schroeder, 2011) with some authors estimating it as low as 120–250 µm in visual cortex (Katzner 
et al., 2009; Xing et al., 2009), while others suggest it may stretch up to several millimeters (Berens 
et al., 2008; Katzner et al., 2009; Kreiman et al., 2006), and may even be detected more than a 
centimeter away from the source (Kajikawa and Schroeder, 2011). The hypothesis that low-frequency 
components of the LFP have a larger spatial reach than high-frequency components is supported by 
computational modeling (Leski et al., 2013), although it has also been challenged (Dubey and Ray, 
2016). Yet, the exact origin of the LFP and its relationship to spiking remain to be completely under-
stood (Einevoll et al., 2013).

Given the larger spatial spread of the LFP compared to MUA, one would expect pRFs based on 
LFPs to be larger than those based on MUA. This is indeed what we found. The size of LFP-pRFs 
furthermore depended on the frequency component of the LFP, with lower frequencies yielding larger 
pRFs, suggesting a frequency-dependent spread of visual information in the LFP signal. In fMRI, there 
is a trade-off between spatial and temporal resolution. While higher magnetic field strengths and 
specialized acquisition methods are continuously increasing spatiotemporal resolution, studies with 
voxel sizes on the order of 1–2 mm isotropic and a repetition time of 2–3  s at 3T field strengths 
are still common. Due to the complex relationship between the hemodynamic BOLD signal and the 
underlying neural activity, it is difficult to predict its stimulus sensitivity from neuroimaging parameters 
such as voxel size. Nonetheless, a comparison of the eccentricity-size relationship between MRI and 
electrophysiology in V1 revealed that the BOLD-based pRFs resembled MUA in V1 and V4. In V4, 
however, the BOLD slope was also very similar to that of the LFP gamma power (Figure 12—figure 
supplement 1). One possible reason for this difference between areas is that V4 is smaller and more 
heterogeneous (Kolster et  al., 2014; Zhu and Vanduffel, 2019) than V1. A V4 voxel; therefore, 
samples from a neuronal population with more heterogeneous spatial tuning than an equally sized V1 
voxel may therefore reflect the activity of a larger population of neurons, which is better approximated 
by gamma power. Other factors that might play a role are potential differences in the quality of the 
recorded signal across areas or partial volume effects that are likely to be more prevalent in V4 than 
in V1.

https://doi.org/10.7554/eLife.67304
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Conclusions
Our comparison of fMRI with large-scale neurophysiological recordings in visual cortex revealed that 
pRFs derived from the BOLD signal resemble MUA RFs. Subadditive spatial summation is a general 
feature of many brain areas and occurs for BOLD, MUA, and LFP. We observed negative pRFs in the 
monkey DMN and as part of center-surround organization of pRFs in early visual areas. The spatial 
compression and the eccentricity-size relationship of BOLD resembles that of MUA, but also bears a 
resemblance to gamma power. We conclude that BOLD-pRFs accurately represent the spatial tuning 
of the underlying neuronal populations.

Materials and methods

 Continued on next page

Key resources table 

Reagent type 
(species) or 
resource Designation Source or reference Identifiers

Additional 
information

Biological sample
(Macaca mulatta)

Rhesus macaque (Macaca 
mulatta), male

Biomedical Primate 
Research Center, the 
Netherlands n/a -

Other
Philips Ingenia 3.0T MR 
system Philips n/a

At Spinoza Centre 
for Neuroimaging, 
Amsterdam, the 
Netherlands

Other
8-channel phased array 
receive MR coil system KU Leuven n/a Custom-built

Other
16-channel MR pre-
amplifier MR Coils BV n/a Custom-built

Other ETL-200 ISCAN RRID:SCR_021044
MR-compatible eye 
tracker

Other E3X-NH Omron n/a Fiber optic amplifiers

Other
5-RLD-E1 Liquid Reward 
System

Crist Instrument 
Company, Inc n/a Juice reward system

Other
BOLDscreen 32 LCD for 
fMRI

Cambridge Research 
Systems n/a

MR-compatible 
display

Other Utah array (electrodes)
Blackrock 
Microsystems n/a -

Other
128-channel CerePlex M 
head-stages

Blackrock 
Microsystems n/a Data acquisition

Other
128-channel CerePlex M 
head-stages

Blackrock 
Microsystems n/a Data acquisition

Other 128-channel Digital Hub
Blackrock 
Microsystems n/a Data acquisition

Other
128-channel Neural Signal 
Processor (NSP)

Blackrock 
Microsystems n/a Data acquisition

Software, 
algorithm

Blackrock Central Software 
Suite

Blackrock 
Microsystems n/a -

Other ET-49C Tomas Recording n/a Eye tracker

Software, 
algorithm MATLAB MathWorks RRID:SCR_001622 -

Other LISA cluster SURFsara n/a Computing cluster

Software, 
algorithm dcm2niix

https://github. 
com/rordenlab/
dcm2niix RRID:SCR_01409 -

Software, 
algorithm Nipype

http://​nipy.​org/​
nipype/ RRID:SCR_002502

Used as the basis 
of the custom NHP-
BIDS pipeline
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers

Additional 
information

Software, 
algorithm NHP-BIDS

Netherlands Institute 
for Neuroscience RRID:SCR_021813

In-house developed, 
available via: 
https://​github.​com/​
VisionandCognition/​
NHP-​BIDS

Software, 
algorithm FreeSurfer

http://​surfer.​nmr. 
​mgh.​harvard.​edu/ RRID:SCR_001847

Used as the basis 
of the custom NHP-
Freesurfer

Software, 
algorithm NHP-Freesurfer

Netherlands Institute 
for Neuroscience RRID:SCR_021814

In-house developed, 
available via: 
https://​github.​com/​
VisionandCognition/​
NHP-​Freesurfer

Software, 
algorithm Pycortex

https://gallantlab. 
​github.​io/​pycortex/ n/a

Used as the basis of 
the customized NHP-
Pycortex

Software, 
algorithm NHP-Pycortex

Netherlands Institute 
for Neuroscience RRID:SCR_021815

In-house developed, 
available via: 
https://​github.​com/​
VisionandCognition/​
NHP-​pycortex

Software, 
algorithm analyzePRF

https://​kendrickkay.​
net/​analyzePRF/ n/a

Toolbox was edited 
for this study and 
made available with 
the code and data

Software, 
algorithm Jupyter Notebook https://​jupyter.​org/ RRID:SCR_018315 -

Software, 
algorithm FSL

http://www.​fmrib.​ox.​
ac.​uk/​fsl/ RRID:SCR_002823 -

Software, 
algorithm

Tracker-MRI: Experiment 
control software

Netherlands Institute 
for Neuroscience RRID:SCR_021816

In-house developed, 
available via: 
https://​github.​com/​
VisionandCognition/​
Tracker-​MRI

Other NMT v1.3 NIH, AFNI https://​
afni.​nimh.​nih.​gov/​
pub/​dist/​doc/​
htmldoc/​nonhuman/​
macaque/​template_​
nmtv1.​html#​nmt-​v1-3

n/a Macaque Brain 
Template and Atlas

 Continued

Subject details
Four male macaques (M. mulatta; 7–12  kg, 5–8  years old) participated in this study. Animal care 
and experimental procedures were in accordance with the ILAR’s Guide for the Care and Use of 
Laboratory Animals, the European legislation (Directive 2010/63/EU), and approved by the Institu-
tional Animal Care and Use Committee of the Royal Netherlands Academy of Arts and Sciences 
and the Central Authority for Scientific Procedures on Animals (CCD) in the Netherlands (license 
numbers AVD8010020173789 and AVD8010020171046). The animals were socially housed in an 
enriched specialized primate facility with natural daylight, controlled temperature and humidity, and 
fed with standard primate chow, supplemented with raisins, fresh fruits, and vegetables. Their access 
to fluid was controlled, according to a carefully designed regime for fluid uptake. During weekdays, 
the animals received diluted fruit juice in the experimental setup. We ensured that the animals drank 
sufficient fluid in the setup and received extra fluid after experimental sessions if needed. On the 
weekends, animals received at least 700 ml of water in the home cage. The animals were regularly 
checked by veterinary staff and animal caretakers, and their weight and general appearance were 
recorded in an electronic logbook on a daily basis during fluid-control periods.
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Surgical procedures
Two animals (M1 and M2) participated in the MRI experiments and were implanted with an MRI-
compatible plastic (PEEK) head-post, fixed to the skull with ceramic bone screws and acrylic (Papa-
georgiou et al., 2014; Vanduffel et al., 2001). Anesthetics, analgesics, and monitoring procedures 
were similar to previous surgical procedures in our laboratory and are described in detail elsewhere 
(Klink et al., 2017; Poort et al., 2012; Supèr and Roelfsema, 2005). Two other animals (M3 and M4) 
participated in the electrophysiology experiments. They were implanted with a custom 3D-printed tita-
nium head-post that was designed in-house based on a CT scan of the skull, aligned to a T1-weighted 
anatomical MRI scan of the brain (Chen et al., 2020; Chen et al., 2017). The titanium head-post was 
attached to the skull with titanium bone screws, and the skin was closed around the implant without 
the use of any acrylic. In a second surgery, each animal was additionally implanted with a total of 1024 
electrodes in 16 Utah electrode arrays (Blackrock Microsystems) in their visual cortices (14 arrays in V1, 
2 arrays in V4; Figure 1B). Each array contained an 8-by-8 grid of 64 iridium oxide electrodes with a 
length of 1.5 mm spaced at a distance of 400 μm from each other. Pre-implantation electrode imped-
ances ranged from 6 to 12 kΩ. A custom-designed 1024-channel pedestal was attached to the skull 
with titanium bone screws, and the skin was closed around it. More details on the surgical procedures 
have been published elsewhere (Chen et al., 2020; Chen et al., 2017).

Visual stimuli and procedures
In the MRI experiment, animals were head-fixed, sitting in the sphinx position (Papageorgiou et al., 
2014; Vanduffel et al., 2001), and viewing a 32″ screen (1920 × 1080 pixels, 100 Hz) (Cambridge 
Research Systems) at the end of the bore, 130 cm away. pRFs were measured using conventional 
moving bar stimuli that traversed the screen in eight different directions behind a large virtual circular 
aperture (Figure 1). The borders of this virtual aperture were invisible because both the foreground 
and background had the same gray level (22.3 cd/m2) (Dumoulin and Wandell, 2008). In the MRI 
experiments, the bar sweep spanned 16° (diameter) in 20 steps (Dumoulin and Wandell, 2008). The 
moving bars were 2° wide and contained a checkerboard pattern (100%  contrast; 0.5° checkers; lumi-
nance of white checkers: 106.8 cd/m2; luminance of black checkers: 0.2 cd/m2) that moved parallel to 
the bar’s orientation. Each bar position was on the screen for 2.5 s (1 TR), making one full bar sweep 
last 50 s. Bar sweep series (all directions presented once) were preceded and followed by 37.5 s (15 
TRs) of neutral gray background. Each horizontal or vertical bar sweep was followed by a neutral gray 
background period of 25 s. The order of the bar sweep directions was 270°, 315°, 180°, 225°, 90°, 
135°, 0°, 45° on most runs, but for one animal we inverted the directions to 90°, 135°, 0°, 45°, 270°, 
315°, 180°, 225° on some runs to compensate for the animal’s tendency to fall asleep near the end 
of runs. We included data from 8 scanning sessions for monkey M1 (34 runs, 268 bar sweeps) and 10 
sessions for monkey M2 (66 runs, 406 bar sweeps). During stimulus presentation, the animals received 
fluid rewards (Crist Instruments, Hagerstown, MD) for maintaining fixation within a circular fixation 
window with a diameter of 2°, centered on a 0.15° red fixation dot, surrounded by a 0.75° (diameter) 
aperture of neutral gray background color. In the electrophysiology experiments, the stimulus and 
task were very similar, but bar sweeps now spanned 28°, which was possible because the animals were 
closer to the monitor (luminance values of this monitor were black: 0 cd/m2; white: 92.1 cd/m2, neutral 
gray: 14.8 cd/m2). Bars traveled along this path in 30 steps of 500 ms, and the neutral gray luminance 
intervals were reduced to 2.5 s due to the much faster neuronal responses (compared to the BOLD 
signal). The fixation window in the electrophysiology experiments was slightly smaller with a diameter 
of 1.5°. In the MRI experiment, eye position and pupil diameter were tracked with an MRI-compatible 
infrared eye-tracking system at 120 Hz (ISCAN ETL-200). Hand positions were also monitored using 
fiber optic amplifiers (Omron E3X-NH) and optic fibers. To reduce body movement-related imaging 
artifacts, the animals were trained to maintain their hands inside a response box by making reward 
delivery contingent on both eye and hand position. In the electrophysiology experiments, animals 
were head-fixed in a conventional vertical primate chair and viewed a 21″ CRT monitor (1024 × 768, 
85 Hz) at a distance of 64 cm while their eye position and pupil diameters were tracked at 230 Hz using 
an infrared eye tracker (TREC ET-49B, Thomas Recording GmbH).

https://doi.org/10.7554/eLife.67304
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MRI acquisition
MRI was performed in a standard Philips Ingenia 3.0T horizontal bore full-body scanner (Spinoza 
Center for Neuroimaging, Amsterdam, the Netherlands). We used a custom-built eight-channel 
phased array receive coil system (Ekstrom et al., 2008; Kolster et al., 2009) (KU Leuven) and the 
scanner’s full-body transmit coil. Functional images were obtained using a gradient-echo T2* echo-
planar sequence (44 horizontal slices, in-plane 72 × 68 matrix, TR = 2500 ms, TE = 20 ms, flip angle 
= 77.2°, 1.25 × 1.25 × 1.25 mm isotropic voxels, SENSE-factor of 2 in the AP direction, and phase-
encoding in the AP direction).

fMRI preprocessing
All fMRI data were preprocessed with a custom-written Nipype pipeline that we have made available 
online (RRID:021813; https://​github.​com/​visionandcognition/​NHP-​BIDS). In short, MRI scans were 
exported from the scanner as DICOM images and converted to NIFTI files with the dcm2niix tool (Li 
et al., 2016). The volumes were then reoriented to correct for the animal being in the sphinx position 
and resampled to 1 mm3 isotropic voxels. The resulting images were realigned using a nonrigid slice-
by-slice registration algorithm based on AFNI tools (Cox, 1996) followed by an FSL-based motion 
correction procedure MCFLIRT (Jenkinson et al., 2002). Functional volumes were linearly aligned to 
the individual high-resolution anatomical volumes, which were in turn nonlinearly registered to the 
NMT standard space (Seidlitz et al., 2018). Preprocessed data were further processed with a combi-
nation of custom-written MATLAB (MathWorks, Natick, MA) and shell scripts (https://​gin.​g-​node.​
org/​ChrisKlink/​NHP-​PRF). BOLD time courses for each voxel were normalized to percentage signal 
change and averaged across runs (or parts of runs) for which fixation was maintained at 80%  of the 
time or more. We averaged odd and even runs separately to allow for a cross-validation approach 
in the evaluation of the pRF model fits. Anatomical ROIs were defined based on a probabilistic atlas 
(Reveley et al., 2017; Seidlitz et al., 2018) and refined using individual retinotopic maps.

Post-fit comparisons across pRF models, HRFs, and ROIs were performed in MATLAB based on 
the volumetric results. For visualization of the fMRI data, volumetric results were also projected to 
the individual cortical surfaces. To create these surfaces, we averaged multiple anatomical scans 
(T1-weighted, 3D-FFE, TE = 6 ms, TR = 13 ms, TI = 900 ms, flip angle = 8°, 100 horizontal slices, 
in-plane 224 × 224 matrix, 0.6 × 0.6 × 0.6 mm isotropic voxels, and phase-encoding in the AP direc-
tion) and processed the result with customized tools based on FreeSurfer (Fischl, 2012) and Pycortex 
(Gao et al., 2015) that were adjusted to handle our NHP data. These tools and their documentation 
can be found at https://​github.​com/​VisionandCognition/​NHP-​Freesurfer; (Klink, 2021; copy archived 
at swh:1:rev:8d4b89337b865fb194e196cf1b2af4967e14d607) and https://​github.​com/​VisionandCog-
nition/​NHP-​pycortex, respectively (Messinger et al., 2021).

Electrophysiology acquisition
Neuronal activity was acquired from 1024 channels simultaneously at a 30 kHz sampling rate. The 
1024-channel pedestal was connected to eight 128-channel CerePlex M head-stages through an elec-
tronic interface board. Each head-stage processed signals from two 64-channel electrode arrays with 
a 0.3–7500 Hz analog filter at unity gain (i.e., no amplification). After analog-to-digital conversion, the 
signal from each head-stage was sent to a 128-channel Digital Hub (Blackrock Microsystems) where it 
was converted into an optical output signal and sent to a 128-channel Neural Signal Processor (NSP, 
Blackrock Microsystems) for storage and further processing. The eight NSPs were controlled with 
eight simultaneously running instances of the Blackrock Central Software Suite (Blackrock Microsys-
tems) distributed over two computers (four instances each) (Chen et al., 2020).

Electrophysiology data preprocessing
The neuronal signal that was acquired using different software instances was temporally aligned using 
common TTL pulses sent by the stimulus computer. The data were then separated in (1) envelope 
MUA and (2) broadband LFP. MUA represents the spiking activity of a local population of neurons 
around the electrode (Cohen and Maunsell, 2009; Palmer et  al., 2007; Supèr and Roelfsema, 
2005). To extract MUA, we amplified the raw neuronal signal, band-pass filtered it between 500 Hz 
and 9 kHz, full-wave rectified it, and applied a low-pass filter of 200 Hz. The resulting time series 
were downsampled to 1 kHz. We subtracted the baseline MUA activity in a 1000 ms prestimulus time 
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window. Baseline-corrected MUA responses were then averaged, first across runs and then within 
a 50–500 ms time window for each stimulus position. The broadband LFP signal was generated by 
low-pass filtering the raw signal at 150 Hz and downsampling it to 500 Hz. The LFP signal was further 
processed with a multi-taper method using the Chronux toolbox (Bokil et al., 2010). Power spectra 
were calculated in a 500 ms moving window (step size 50 ms), using a time bandwidth product of five 
and nine tapers. LFP power was averaged within five distinct frequency bands: 4–8 Hz (theta), 8–16 Hz 
(alpha), 16–30 Hz (beta), 30–60 Hz (low gamma), and 60–120 Hz (high gamma). Baseline power in 
a 1000 ms prestimulus period was subtracted and the power for each recording site was averaged 
across runs, within a 50–500 ms time window during each stimulus position.

pRF models and fitting procedure
We fit four pRF models to all the data (voxels and electrode channels) using a customized version of the 
analyzePRF toolbox (Kay et al., 2013) for MATLAB. In the fitting procedure, the stimuli were spatially 
downsampled to a resolution of 10 pixels per dva and converted to ‘effective stimuli,’ consisting of 
binary representations that encode stimulus position. Response predictions were calculated as the 
product of the effective stimulus and the pRF shape (Equation 1). This method also yields a predic-
tion for pRFs that are only partially stimulated, and the best-fitting pRF can have a center location 
outside of the stimulus aperture. Because pRF estimates are generally more reliable for pRF that are 
strongly driven by a visual stimulus, we include indications of the directly stimulated visual field in our 
figures. The four pRF models differed in the pRF shape. Linear models (Equations 1–3) describe a 
single isotropic 2D Gaussian-shaped pRF and assume linear spatial summation across the visual field 
(Dumoulin and Wandell, 2008). We implemented two linear model versions. For the first model, 
responses were constrained to be positively related to the visual stimuli (P-LIN). A second version 
lacked this constraint and also allowed negative responses, that is, stimulus-driven activity reductions 
(U-LIN). Negative BOLD responses have been demonstrated in some brain areas (Shmuel et al., 2006; 
Szinte and Knapen, 2020). The nonlinear spatial summation model (Kay et al., 2013) expands the 
linear model by capturing nonlinear summation of signals across the visual field. It has previously been 
shown that the value of the exponent is generally smaller than 1 in human visual cortex, indicating 
subadditive spatial summation or CSS (Kay et al., 2013). This model is therefore generally referred 
to as the CSS model. Because the pRF size and static nonlinearity interact in the nonlinear model, the 
pRF size is defined as the standard deviation of the predicted Gaussian response profile to a point 
stimulus for all models (Equation 3; Kay et al., 2013). The mathematical descriptions of the linear and 
nonlinear pRF models are in Equations 1–3, where Resppred indicates the predicted response, g is a 
gain factor to scale the response, S(x,y) is the effective stimulus, G(x,y) is the Gaussian pRF profile, 
and n is the exponent that determines the static spatial nonlinearity. For the P-LIN model, the gain g 
was constrained to positive values, while for the U-LIN model, gain values could be negative as well. 
Negative gain factors imply stimulus-induced reductions of activity. In both linear models, the expo-
nent n was fixed to be 1. In the definition of the Gaussian, (x0,y0) defines the center and σ the standard 
deviation of the pRF.

Linear and nonlinear spatial summation pRF models:

	﻿‍
Resppred = g ·

[∑
x,y S

(
x, y

)
G
(
x, y

)]n
,

P-LIN, U-LIN: n = 1

P-LIN, CSS: g > 0 ‍� (1)

	﻿‍ G
(
x, y

)
= e

−
(

x−x0
)2+

(
y−y0

)2

2σ2
‍� (2)

	﻿‍
pRFsize = σ√

n‍� (3)

The DoG model uses a standard linear Gaussian (G1 in Equation 4) to describe the excitatory center of 
a pRF and subtracts a second Gaussian profile (G2) to model an inhibitory surround component (Zuid-
erbaan et al., 2012). This second Gaussian is by definition broader than the one describing the center. 
The size σ2 and amplitude a of the surround Gaussian are additional parameters (Equations 4–6).
DoG pRF model:

	﻿‍
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The models assume a near-instantaneous link between the stimulus and the response dynamics, 
which holds for the electrophysiological signals. For these signals, the stimulus changes position every 
500 ms, much slower than the onset or decay of activity. The BOLD response is much slower than the 
speed with which the stimulus traverses the screen in the fMRI experiments (2500 ms per position). 
We therefore convolved the predicted response with an HRF at a resolution of 1.25 s per sample 
(twice the acquisition rate of TR = 2.5  s). We used both a canonical human HRF and a standard 
monkey HRF that we derived from separate scanning sessions (Figure 1—figure supplement 1). In 
short, we presented the animals with brief (0.1 s) full-contrast and full-screen checkerboard stimuli. 
We then used FMRIB’s Linear Optimal Basis Sets (FLOBS) (Woolrich et al., 2004) toolkit from the FSL 
software package to estimate the relative contributions of a set of basis functions for those voxels in 
the primary visual cortex that were activated by the stimulus. We then calculated a single weighted 
average HRF function based on these basis functions and used it as the standard monkey HRF. The 
monkey HRF was narrower than the canonical human HRF. It had a faster time-to-peak (4.2 s vs. 4.8 s) 
and peak-to-fall time (6.2 s vs. 12.6 s). The fits with the monkey HRF were slightly better, especially in 
the lower visual areas (Figure 1—figure supplement 1). However, size and location estimates were 
highly similar for the two HRFs for all models, and we only report results from model fits based on the 
monkey HRF.

Model fitting was performed on a cluster computer (LISA, SURFsara) using nonlinear optimization 
(MATLAB Optimization Toolbox). The accuracy of the different model fits was quantified as the cross-
validated percentage of variance (R2) explained of the BOLD response (Equation 6: DATA) by the 
model prediction (Equation 6: MODEL). For cross-validation, we divided the data into two nonover-
lapping sets (odd and even runs) and tested the prediction of a model that was fit one data set against 
the time series of the other data set and vice versa. This yielded two R2 values per voxel or electrode 
that were averaged. The cross-validated comparison of model performance is valid for models with 
different numbers of parameters and prevents overfitting. Fit results are available as voxel-based 
maps warped to the NMT template space on ​Neurovault.​org (Fox et al., 2021; Gorgolewski et al., 
2015) at https://​identifiers.​org/​neurovault.​collection:​8082.

Model accuracy:

	﻿‍ pRFcenter-size = σ1, pRFsurr-size = σ2‍� (6)

Comparison of pRF (and cRF) estimates
After fitting the pRF models to all voxels and recording sites, we compared the pRF estimates both 
within and across recording modalities. We pooled voxels and recording sites across subjects and 
used nonparametric statistical tests (Wilcoxon signed-rank, Wilcoxon rank-sum, or Kruskal–Wallis) with 
post-hoc Tukey’s HSD tests to correct for multiple comparisons. For the fMRI data, we compared R2 
across models and HRFs. We constructed retinotopic maps using the best pRF model and HRF and 
investigated the relationship between pRF eccentricity and size for a subset of ROIs with good model 
fits (R2 > 5%). For the electrophysiological data, we compared model accuracy and pRF estimates 
across MUA and LFP components to unravel to which extent retinotopic information is available in the 
different neuronal signals. We also compared the pRF estimates to a more conventional RF mapping 
technique for MUA based on responses to thin, moving bar stimuli (cRF). For recording sites with 
an SNR larger than 3 (i.e., visual responses that were more than three times larger than the stan-
dard deviation of the spontaneous activity), we fitted a Gaussian to the averaged MUA traces and 
determined the onset and offset of the visual response as the mean of this Gaussian plus or minus 
its standard deviation (SD). Horizontal and vertical RF boundaries were then derived from the onset 
and offset times for stimuli moving in opposite directions (Supèr and Roelfsema, 2005). RF centers 
were defined as the midpoint between the horizontal and vertical borders. For comparison with the 
pRFs, we calculated RF sizes as half the diagonal of the rectangular area between the horizontal and 

vertical cRF borders (
‍
cRFsz =

√(
width2 + height2

)
/2

‍
). This measure approximates the RF radius based 

on the SD of a Gaussian response profile and can be directly compared to the sigma estimated by 
pRF models (Figure 7). It is smaller than cRF sizes typically reported in electrophysiological studies 
because neurons are activated by stimuli farther than 1 SD from their RF center (our lab usually defines 
cRF diameter as 3.3 * SD).

https://doi.org/10.7554/eLife.67304
https://neurovault.org/
https://identifiers.org/neurovault.collection:8082


 Research article﻿﻿﻿﻿﻿ Neuroscience

Klink et al. eLife 2021;10:e67304. DOI: https://​doi.​org/​10.​7554/​eLife.​67304 � 27 of 35

To compare pRFs based on fMRI-BOLD and electrophysiology, we combined data from individual 
animals to create one pool of BOLD-based voxel pRFs and six pools of electrophysiology-based elec-
trode pRFs (MUA, and the different frequency bands of the LFP) for V1 and V4 data. We compared 
the relationship between RF eccentricity and size with a set of LMMs. We first tested for a correlation 
between eccentricity and size for the different signal types. Signal types with a significant correlation 
were subsequently tested together in a single LMM to determine whether the eccentricity-size rela-
tionship differed between signal types (interaction SIGNAL × ECC). Finally, we compared electrophys-
iological signals with the MRI results. For this analysis, we only selected V1 and V4 voxels with pRFs 
falling within the eccentricity range of the electrode arrays and voxels and electrodes with a fit accu-
racy above a predetermined threshold (fMRI threshold: R2 > 5%, electrophysiology threshold: R2 > 
50%). To test the robustness of the results for this analysis, we repeated it with different combinations 
of criteria for initial voxel inclusion (i.e., including only voxels that roughly correspond to the location 
of the electrode arrays, or including all V1 and V4 voxels) and fit quality (fMRI threshold: R2 > 5%  or 
10%, electrophysiology threshold: R2 > 25%  or 50%;  Figure 12—figure supplement 1).
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