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Abstract Bacteria live in environments that are continuously fluctuating and changing. Exploiting

any predictability of such fluctuations can lead to an increased fitness. On longer timescales,

bacteria can ‘learn’ the structure of these fluctuations through evolution. However, on shorter

timescales, inferring the statistics of the environment and acting upon this information would need

to be accomplished by physiological mechanisms. Here, we use a model of metabolism to show

that a simple generalization of a common regulatory motif (end-product inhibition) is sufficient both

for learning continuous-valued features of the statistical structure of the environment and for

translating this information into predictive behavior; moreover, it accomplishes these tasks near-

optimally. We discuss plausible genetic circuits that could instantiate the mechanism we describe,

including one similar to the architecture of two-component signaling, and argue that the key

ingredients required for such predictive behavior are readily accessible to bacteria.

Introduction
Organisms that live in changing environments evolve strategies to respond to the fluctuations. Many

such adaptations are reactive, for example sensory systems that allow detecting changes when they

occur and responding to them. However, adaptations can be not only reactive, but also predictive.

For example, circadian clocks allow photosynthetic algae to reorganize their metabolism in prepara-

tion for the rising sun (Bell-Pedersen et al., 2005; Husain et al., 2019). Another example is the

anticipatory behavior in E. coli, which allows it to prepare for the next environment under its normal

cycling through the mammalian digestive tract (Savageau, 1983); similar behaviors have been

observed in many species (Tagkopoulos et al., 2008; Mitchell et al., 2009).

All these behaviors effectively constitute predictions about a future environment: the organism

improves its fitness by exploiting the regularities it ‘learns’ over the course of its evolution

(Mitchell and Lim, 2016). Learning such regularities can be beneficial even if they are merely statisti-

cal in nature. A prime example is bet hedging: even if the environment changes stochastically and

without warning, a population that learns the statistics of switching can improve its long-term fitness,

for example, by adopting persistor phenotypes with appropriate probability (Kussell and Leibler,

2005; Veening et al., 2008). The seemingly limitless ingenuity of evolutionary trial-and-error makes

it plausible that virtually any statistical structure of the environment that remains constant over an

evolutionary timescale could, in principle, be learnt by an evolving system, and harnessed to improve

its fitness (Watson and Szathmáry, 2016).

However, the statistical structure of the environment can itself change, and this change can be

too quick to be learned by evolution (Figure 1A). For example, an organism might experience a

period of stability followed by a period of large fluctuations, or an environment where two resources
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are correlated, and then another where they are not. Note that there are two key timescales here –

that of the fluctuations themselves (which we assume to be fast), and the slower timescale on which

the structure of those fluctuations changes. One expects such scenarios to be common in an eco-

evolutionary context. As an example, consider a bacterium in a small pool of water. Its immediate

environment, shaped by local interactions, is fluctuating on the timescale at which the bacterium

changes neighbors. The statistical properties of these fluctuations depend on the species composi-

tion of the pool. As such, the fast fluctuations are partially predictable, and learning their structure

could help inform the fitness-optimizing strategy: a neighbor encountered in a recent past is likely to

be seen again in the near future. However, these statistics change on an ecological timescale, and

such learning would therefore need to be accomplished by physiological, rather than evolutionary,

mechanisms.

On a physiological timescale, this problem is highly nontrivial: the organism would have to per-

form inference from prior observations, encode them in memory, and act upon this knowledge

(Figure 1B). It is clear that solutions to this problem do exist: such behaviors, common in neural sys-

tems, can be implemented by neural-network-like architectures; and these known architectures can

be translated into biochemical networks (Hjelmfelt et al., 1991; Kobayashi, 2010; Fages et al.,

2017; Katz and Springer, 2016; Katz et al., 2018). But single-celled organisms operate in a

severely hardware-limited regime rarely probed by neuroscience. Streamlined by evolution, bacterial

genomes quickly shed any unused complexity. Whether we could expect learning-like behaviors

from bacteria depends on whether useful networks could be simple enough to plausibly be

beneficial.

Known examples of phenotypic memory, for example, when the response is mediated by a long-

lived protein, can be interpreted as a simple form of learning (Lambert et al., 2014; Hoffer et al.,

2001); circuits capable of adapting to the current mean of a fluctuating signal, as in bacterial chemo-

taxis (Barkai and Leibler, 1997), also belong in this category. Prior theory work has also proposed

that simple genetic circuits could learn more subtle binary features, such as a (transient) presence or

absence of a correlation between two signals (Sorek et al., 2013).

Here, we show that a simple generalization of a ubiquitous regulatory motif, the end-product inhi-

bition, can learn, store, and ‘act upon’ the information on continuous-valued features such as time-

scales and correlations of environmental fluctuations, and moreover, can do so near-optimally. We

eLife digest Associations inferred from previous experience can help an organism predict what

might happen the next time it faces a similar situation. For example, it could anticipate the presence

of certain resources based on a correlated environmental cue.

The complex neural circuitry of the brain allows such associations to be learned and unlearned

quickly, certainly within the lifetime of an animal. In contrast, the sub-cellular regulatory circuits of

bacteria are only capable of very simple information processing. Thus, in bacteria, the ‘learning’ of

environmental patterns is believed to mostly occur by evolutionary mechanisms, over many

generations.

Landmann et al. used computer simulations and a simple theoretical model to show that bacteria

need not be limited by the slow speed of evolutionary trial and error. A basic regulatory circuit

could, theoretically, allow a bacterium to learn subtle relationships between environmental factors

within its lifetime. The essential components for this simulation can all be found in bacteria –

including a large number of ‘regulators’, the molecules that control the rate of biochemical

processes. And indeed, some organisms often have more of these biological actors than appears to

be necessary. The results of Landmann et al. provide new hypothesis for how such seemingly

‘superfluous’ elements might actually be useful.

Knowing that a learning process is theoretically possible, experimental biologists could now test

if it appears in nature. Placing bacteria in more realistic, fluctuating conditions instead of a typical

stable laboratory environment could demonstrate the role of the extra regulators in helping the

microorganisms to adapt by ‘learning’.
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identify the key ingredients giving rise to this behavior, and argue that their applicability is likely

more general than the simple metabolically inspired example used here.

Results

The setup
For a simple model capturing some of the challenges of surviving in a fluctuating environment, con-

sider a situation where some internal physiological quantities ~P ¼ ðP1; . . . ;PNÞ must track fluctuating

external variables ~D ¼ ðD1; . . . ;DNÞ. For example, the expression of a costly metabolic pathway

would ideally track the availability of the relevant nutrient, or the solute concentration in the cyto-

plasm might track the osmolarity of the environment. In abstract terms, we describe these environ-

mental pressures by the time-dependent ~DðtÞ, and postulate that the organism fitness is determined

by the average mismatch �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h
PN

i¼1
ðPi � DiÞ2i

q

, a quantity we will henceforth call ‘performance’. Here

and below, angular brackets denote averaging over time.

In this simple model, a given static ~D clearly defines a unique optimal state ~P; the regulatory chal-

lenge is entirely due to ~D being a fluctuating quantity. The challenges faced by real organisms are

certainly vastly more rich: even in the static case, the optimal behavior may not be unique, or even

well-defined (optimal under what constraints?); and in the dynamic case, the future state of the envi-

ronment could be affected by past actions of the organism. These considerations can add layers of

complexity to the problem, but our minimal model is sufficient to focus on the basic issues of sens-

ing, learning and responding to changing fluctuation statistics of external factors.

If ~D changes sufficiently slowly, the organism can sense it and adapt ~P accordingly. We, instead,

are interested in the regime of rapid fluctuations. When changes in ~D are too rapid for the organism
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Figure 1. Learning environment statistics can benefit living systems, but is a difficult problem. (A) An environment is characterized not only by its

current state, but also by its fluctuation structure, such as variances and correlations of fluctuating environmental parameters. In this work, we consider

an environment undergoing epochs that differ in their fluctuation structure. Epochs are long compared to the physiological timescale, but switch faster

than the evolutionary timescale. (B) The fluctuation structure can inform the fitness-maximizing strategy, but cannot be sensed directly. Instead, it would

need to be learned from past observations, and used to inform future behavior. (C) To formalize the problem, we consider a situation where some

internal physiological quantities ~PðtÞ must track fluctuating external factors ~DðtÞ undergoing a random walk. Since it is impossible to react

instantaneously, ~P always lags behind ~D. The dashed ellipse illustrates the fluctuation structure of ~D (encoded in parameters M and G, see text), and

changes on a slower timescale than the fluctuations of ~D. (D, E) The optimal behavior in the two-dimensional version of our problem, under a

constrained maximal rate of change k _Pk2. For a given current ~D (blue dot), the optimal control strategy would steer any current ~P (green arrows) toward

the best guess of the future ~D, which depends on the fluctuation structure (red ellipse: (D) fluctuations are uncorrelated and isotropic; (E) fluctuations

have a preferred direction). The optimal strategy is derived using control theory (Appendix 1, section ’Control theory calculation’).
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to match ~P to ~D exactly, it can rely on statistical structure. At the simplest level, the organism could

match the mean, setting ~P � h~Di. However, information on higher-order statistics, for example corre-

lations between D1 and D2, can further inform the behavior and improve fitness.

To see this, in what follows, we will consider the minimal case of such structured fluctuations,

namely a N-dimensional vector ~D ¼ ðD1; . . . ;DNÞ undergoing a random walk in a quadratic potential

(the Ornstein—Uhlenbeck process):

~DðtþDtÞ ¼~DðtÞ�M � ~DðtÞ�~D
� �

Dtþ
ffiffiffiffiffiffiffiffiffiffi

2GDt
p

~h; (1)

with mean ~D, fluctuation strength G, independent Gaussian random variables ~h with zero mean and

unit variance, and the matrix M defining the potential.

In this system, the relevant ‘fluctuation structure’ is determined by M and G. In one dimension,

Equation (1) gives D a variance of G=M. In two dimensions, denoting the eigenvalues of M as l1;2,

the stationary distribution of the fluctuating ~D is a Gaussian distribution with principal axes oriented

along the eigenvectors of M, and standard deviations along these directions given by
ffiffiffiffiffiffiffiffiffiffi

G=l1
p

and
ffiffiffiffiffiffiffiffiffiffi

G=l2
p

. Intuitively, we can think of the fluctuating ~D as filling out an ellipse (Figure 1C). Going for-

ward, when we refer to learning fluctuation structure, we mean learning properties of M and G.

If M and G are known, the optimal strategy minimizing hð~P� ~DÞ2i, where ~DðtÞ is set by Equa-

tion (1), can be computed exactly, as a function of the maximum allowed rate of change

k _Pk2 (Liberzon, 2011). (If we do not constrain k _Pk2, the optimal behavior is of course ~P ¼ ~D.) Briefly,

the optimal behavior is to steer ~P toward the best guess of the expected future ~D (see Appendix 1,

section ’Control theory calculation’). This best guess depends on the fluctuation structure, as illus-

trated by the comparison between Figure 1D and E for an isotropic and an anisotropic M.

However, in our problem, we will assume that M and G do not stay constant long enough to be

learned by evolution, and thus are unknown to the system. In this regime, it is not clear that the

behavior of an M- and G-optimized system is relevant. Nevertheless, we will describe a regulatory

architecture consisting of common regulatory elements that will adapt its responsiveness to the fluc-

tuation structure of its input (‘learn’); for example, in the two-dimensional case, it will indeed develop

the anisotropic response shown in Figure 1E. Moreover, we will find the steady-state performance

of our architecture to be near-optimal, when compared to the theoretical ceiling of a system that

knows M and G perfectly.

Proposed architecture: end-product inhibition with an excess of
regulators
The section above was intentionally very general. To discuss solutions available to cells, it is conve-

nient to restrict the scope from this general formulation to a more specific metabolically-inspired

case. From here onwards, let Di be the instantaneous demand in metabolite xi (determined by exter-

nal factors), and Pi be the rate at which the metabolite is produced, with both defined in units of

metabolite concentration per unit time. The number of components of the vector ~D now has the

meaning of the number of metabolites, and we will denote it as Nx. The cell needs to match ~P to ~D

(or, equivalently, maintain the homeostasis of the internal metabolite concentrations xi).

The simplest way to solve this problem is via feedback inhibition. Consider first the case of a sin-

gle metabolite x. If an accumulation of x inhibits its own synthesis, a decreased demand will automat-

ically translate into a decreased production. For our purposes, we will model this scenario by placing

the synthesis of metabolite x under the control of a regulator a (e.g. a transcription factor), which is,

in turn, inhibited by x (Figure 2A). For simplicity, we will measure regulator activity a directly in units

of equivalent production of x. The dynamics of this system, linearized for small fluctuations of metab-

olite concentration x, can be written in the following form (see Appendix 1, section ’Simple end-

product inhibition):

_x¼ P�D
x

x0
source-sink dynamics of metabolite x (2a)

P¼ aP0 definition of regulator activity a (2b)

_a¼ x0 � x

l
regulator activity inhibited by x (2c)
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Here, we introduced P0 with dimension of production (concentration per time) to render a dimen-

sionless. In Equation 2c, l has the units of concentration � time, and setting l� x0t a defines a time

scale for changes in regulator activity. Assuming the dynamics of metabolite concentrations x are

faster than regulatory processes, and choosing the units so that x0 ¼ 1 and P0 ¼ 1, we simplify the

equations to:

x ¼ P=D

P ¼ a

t a _a ¼ 1� x:

(3)

We will refer to this architecture as simple end-product inhibition (SEPI). For two metabolites

~x¼ ðx1;x2Þ, the straightforward generalization is to have two independent copies of this circuit, with

two regulators a1, a2 (Figure 2B). Denoting the number of regulators as Na, we note that in the SEPI

architecture, there are as many regulators as there are metabolites: Na ¼Nx.

The architecture we will describe builds on this widely used regulatory motif, and relies on three

added ingredients:

1. An excess of regulators: Na>Nx;
2. Self-activation of regulators;
3. Nonlinear activation/repression of the regulators a� by the metabolite concentrations xi.

Here and below, we use index m for regulators (� ¼ 1 . . .Na) and index i for metabolites

(i ¼ 1 . . .Nx).

These three ingredients, we claim, will be sufficient for the circuit to both learn higher order sta-

tistics and to use this information appropriately when matching the production to demand. It is

important to emphasize that all three are readily accessible to cells. In fact, there are multiple ways

to build regulatory circuits exhibiting the proposed behavior using common regulatory elements. To

focus on the general mechanism rather than any one particular implementation, we will defer

describing these example circuits until later in the text (Figure 6); here, we will consider a minimal

modification of Equation (3) that contains the required ingredients:

a2
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P2

P1

x1

x2

D1

D2

a2

a1

x1

x2

D1

D2
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B

C D
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D P1
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1
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Figure 2. The regulatory architecture we consider is a simple generalization of end-product inhibition. (A) Simple

end-product inhibition (SEPI) for one metabolite. Green arrows show activation, red arrows inhibition. (B) Natural

extension of SEPI to several metabolites. (C) We consider regulatory architectures with more regulators than

metabolites, with added self-activation (circular arrows) and a nonlinear activation/repression of regulators a� by

the metabolite concentrations xi (pictograms in circles). (D) Visualizing a regulation matrix s�i for two metabolites.

In this example, the first regulator described by ~s1 activates the production of x1; the second inhibits x1 and

activates x2. For simplicity, we choose vectors of unit length, which can be represented by a dot on the unit circle.

This provides a convenient way to visualize a given regulatory architecture. (E) The nonlinear dependence of

regulator activity dynamics _a�=a� on metabolite concentrations xi in our model (see Equation 4).
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xi ¼ Pi=Di (4a)

Pi ¼ S�s�ia� (4b)

t a _a� ¼ a�max d;
X

i

s�ið1� xiÞ
 !

�ka�: (4c)

This architecture bears a similarity to neural networks, and, as we will see, the familiar intuition

about the value of extra ‘hidden nodes’ indeed holds. However, we caution the reader not to rely

too heavily on this analogy. For example, here s�i is a constant matrix describing how the activities

of regulators a� control the synthesis of metabolites xi.

For two metabolites (Nx ¼ 2) as in Figure 2C, each regulator is summarized by a 2-component

vector ~s� ¼ ðs�1;s�2Þ; its components can be of either sign (or zero) and specify how strongly the

regulator a� is activating or repressing the synthesis of metabolite xi. For simplicity, below, we will

choose these vectors to be of unit length. Then, each regulator ~s� is fully characterized by an angle

in the ðx1; x2Þ plane, which allows for a convenient visualization of the regulatory systems

(Figure 2D). The s�i defines the regulatory logic of our system and does not change with time. The

parameter d � 0 allows us to tune the strength of the simple nonlinearity (Figure 2E); below we set

d ¼ 0 (strong nonlinearity) unless explicitly stated otherwise. As we will show later, the learning

behavior is also observed for more realistic functions such as the Hill function, but the simple piece-

wise linear form of Equation (4) will help us relate the observed behavior to specifically nonlinearity

as opposed to, for example, cooperativity (the Hill parameter tunes both simultaneously). Finally, the

parameter k reflects degradation and is assumed to be small: k � x0. Previously, for SEPI, it could

be neglected, but here, it will matter due to the nonlinearity; for more details, see Appendix 1, sec-

tion ’Simple end-product inhibition’. The parameters used in simulations are all listed in Appendix 1,

section ’Parameters used in figures’.

Just like simple end-product inhibition in Equation (3), the modified system Equation (4) will cor-

rectly adapt production to any static demand (see Appendix 1, section ’Adaptation to static

demand’). In the following, we will show that the added ingredients also enable learning the struc-

ture of fluctuating environments. For this purpose, we expose our system to demands DðtÞ with fixed

means (Di ¼ 1) but a changing fluctuation structure.

The regulatory architecture described above outperforms simple end-
product inhibition by learning environment statistics
To show that our system is able to adapt to different fluctuation structures, we probe it with chang-

ing environmental statistics, and show that it, first, learns these statistics, and, second, is able to

make use of this information in its behavior.

For simplicity, we start with the 1-dimensional case (Figure 3A–F). In dimension Nx ¼ 1, an excess

of regulators means we have both an activator aþ and a repressor a� for the production of x

(Figure 3A). This is reminiscent of paradoxical regulation (Hart et al., 2012). We probe our system

with changing environmental statistics by exposing it to a demand DðtÞ with an increasing variance

(Figure 3B,C). As a reminder, here and below, the mean demand is fixed at 1.

Faced with a faster fluctuating input, our system upregulates both aþ and a� while keeping

aþ � a� constant (aþ � a� »D ¼ 1; Figure 3D). In this way, the two activity levels aþ and a� encode

both the mean and the variance of fluctuations. Crucially, the system makes use of the information it

stores: The increased regulator activities allow future changes in P to be faster. The system’s respon-

siveness, which we can define as R � d _P
dD
, increases as aþ þ a� (Figure 3E; see also Appendix 1, sec-

tion ’Defining the system’s responsiveness’). As a result, as shown in Figure 3F, our system is able to

perform approximately equally well (after adaptation time) in each environment, unlike a system like

simple end-product inhibition, which is unable to adapt its sensitivity. In summary, Figure 3D–F

show that the simple architecture of Figure 3A can not only learn the statistics of environment fluc-

tuations, but also ‘act upon this knowledge,’ effectively performing both computations of Figure 1B.

The idea of learning the fluctuation structure is perhaps clearer in dimension Nx ¼ 2, since the two

demands can now be correlated with each other, and it seems intuitive that a system able to learn

the typical direction of fluctuations (the angle a in Figure 3H) should be able to track the input bet-

ter. Indeed, as we saw in Figure 1D–E, when environment fluctuations are anisotropic, the
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Figure 3. The regulatory architecture we consider successfully learns environment statistics, and outperforms

simple end-product inhibition. Left column in one dimension, right column in two. (A) Regulation of a single

metabolite x with one activator aþ and one repressor a�. (B, C) The variance of D is increased step-wise (by

increasing G). (D) Regulator activities a� respond to the changing statistics of ~D. For SEPI, the activity of its single

Figure 3 continued on next page
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responsiveness of a well-adapted strategy must be anisotropic as well: the preferred direction must

elicit a stronger response. Mathematically, the responsiveness R is now a matrix Rij ¼ d _Pi

dDj
, and for a

well-adapted system we expect its eigenvectors to align with the principal directions of M. In

Figure 3G–L, Figure 4 and Figure 5, our discussion will focus on this two-dimensional case.

Figure 3G–L show the behavior of our system (Equation 4) with Na ¼ 5 regulators (Figure 3G),

exposed to an input structured as shown in Figure 3H, where we vary a. As represented pictorially

in Figure 3I, we rotate the fluctuation structure matrix M in Equation (1), keeping its eigenvalues

l1;2 fixed with
ffiffiffiffiffiffiffiffiffiffiffiffi

l1=l2
p

¼ 10 (this fixes the ratio of major to minor semi-axis lengths).

With Na ¼ 5 regulators, matching the mean value of ~D would leave Na � 2 ¼ 3 degrees of freedom

that can be influenced by other parameters (such as variance in each dimension and correlation

between different demands). And indeed, changing environment statistics induces strong changes in

the regulator state adopted by the system, with regulators better aligned to the input fluctuations

reaching higher expression (Figure 3J; note the diagrams at the top, where dot size reflects the

activity reached by the corresponding regulator at the end of each epoch; compare to the diagrams

Figure 3 continued

regulator is unchanged. (E) Faced with larger fluctuations, our system becomes more responsive. (F) As

fluctuations increase, SEPI performance drops, while the circuit of panel A retains its performance. (G) In the 2d

case, we consider a system with Na ¼ 5 regulators; visualization as in Figure 2D. (H) Cartoon of correlated

demands with a dominant fluctuation direction (angle a). (I) We use a to change the fluctuation structure of the

input. (J) Regulator activities respond to the changing statistics of ~D. Colors as in panel G. (K) The direction of

largest responsiveness (‘learned angle’; see text) tracks the a of the input. (L) The system able to learn the

dominant direction of fluctuations outperforms the SEPI architecture, even if the timescale t a of SEPI is adjusted

to match the faster responsiveness of the Na ¼ 5 system (see Appendix 1, section ’Parameters used in figures’).

Panels B and H are cartoons.

Figure 4. The ability to learn statistics is most useful when fluctuations are large and/or strongly correlated. (A)

The performance of different circuits shown as a function of G, which scales the fluctuation magnitude (input is

two-dimensional and correlated, angle a ¼ p=4, anisotropy
ffiffiffiffiffiffiffiffiffiffiffiffi

l1=l2
p

¼ 10). Once the fluctuations become large

enough to activate the learning mechanism, performance stabilizes; in contrast, the SEPI performance continues to

decline. Arrows indicate the theoretical prediction for the threshold value of G; see Appendix 1, section ’The

minimal G needed to initiate adaptation’. Dashed lines indicate the theoretical performance ceiling (calculated at

equivalent Control Input Power, see text). (B) Comparison of circuit performance for inputs of the same variance,

but different correlation strengths. Na ¼ 4 regulators arranged as shown can learn the variance but not correlation;

the SEPI architecture is unable to adapt to either. Parameter G is held constant at 0.05; the marked points are

identical to those highlighted in panel A (and correspond to fluctuation anisotropy
ffiffiffiffiffiffiffiffiffiffiffiffi

l1=l2
p

¼ 10).
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in Figure 3I). This activity pattern shapes the responsiveness matrix R. Figure 3K plots the ‘learned

angle’, defined as the direction of the dominant eigenvector of R; we find that it tracks the stimulus

angle. Finally, Figure 3L demonstrates that our architecture is able to make use of this learning, out-

performing the SEPI system, whose responsiveness is isotropic and fixed.

The performance is near-optimal
In the previous section, we have shown by example (Figure 3) that the proposed regulatory architec-

ture can learn the statistics of the environment. We now characterize systematically the conditions

under which learning improves performance and compare our system to the theoretical performance

ceiling. Note that unlike the general statement that learning correlations improves performance, the

optimal performance ceiling is necessarily specific to a given model of the environmental fluctua-

tions. Nevertheless, this comparison is informative.

The fluctuation structure in our model is defined by G and M. We first investigate the dependence

of performance on G (Figure 4A), exposing our system to a two-dimensional input structured as in

Figure 3H with
ffiffiffiffiffiffiffiffiffiffiffiffi

l1=l2
p

¼ 10 as before, a ¼ p=4, and a changing G.

Although the input is two-dimensional, changing G scales the overall magnitude of fluctuations,

and the behavior is analogous to the simpler one-dimensional example shown in the first column of

Figure 3. At G ¼ 0 (static input), and by extension, for G finite but small, examining the steady state

of Equation (4) shows that only Nx ¼ 2 out of Na regulators can be active. In this regime, our system

is essentially identical to SEPI—the extra regulators, though available, are inactive—and in fact per-

forms slightly worse. This is because at nonzero k, the steady state of Equation (4) is slightly offset

from the ideal state hxii ¼ 1. (While this effect can be corrected, it is only relevant in the parameter

regime where no learning occurs, so we chose to keep Equation (4) as simple as possible; for addi-

tional discussion, see Appendix 1, section ’Performance penalty from the degradation term’).

When G becomes sufficiently large, the first term in Equation (4) (proportional to the fluctuation

size
ffiffiffi

G
p

) for one of the inactive regulators finally exceeds, on average, the degradation term. At this

point, the system enters the regime where the number of active regulators exceeds Nx, and its per-

formance deviates from the SEPI curve. Beyond this point, further changes to the stimulus no longer

affect performance, as our system is able to adapt its responsiveness to the changing fluctuation

Figure 5. The key ingredients enabling learning are an excess of regulators, nonlinearity, and self-activation. (A)

System performance in the two-dimensional case Nx ¼ 2, shown as a function of the number of regulators Na

(vertical axis) and the strength of nonlinearity d (horizontal axis; d ¼ �10 is indistinguishable from a linear system

with d ¼ �¥). Color indicates performance gain relative to the SEPI architecture; performance is averaged over

angle a (see Figure 3H). (B) Same as panel A, for a model without self-activation (see text). The SEPI-like

architecture (linear with Na ¼ 2) is highlighted.
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magnitude (compare to Figure 3F). The threshold value of G satisfies
ffiffiffi

G
p

/ k; the proportionality

coefficient of order 1 depends on the specific arrangement of regulators but can be estimated ana-

lytically (see Appendix 1, section ’The minimal G needed to initiate adaptation’). The theoretically

predicted deviation points are indicated with arrows, and are in agreement with the simulation

results. When a regulator in the system is particularly well-aligned with the dominant direction of

fluctuations, the deviation occurs sooner, explaining the better performance of our system when the

regulators are more numerous.

To better assess the performance of our system, we compare it to the theoretical optimum

derived from control theory, which we represent with dotted lines in Figure 4A. For given M and G,

the family of optimal behaviors is parameterized by Control Input Power (CIP), defined as
R

k _Pk2 dt. If
~P could react infinitely fast, it would track ~D perfectly, but increasing response speed necessarily

comes at a cost (of making more sensors, or more enzymes for faster synthesis / degradation of xi);

constraining the CIP is thus a proxy for specifying the maximum tolerable cost. In order to compare

our system with the optimal family of solutions, we compute 1

T

R T

0
k _Pk2 dt of our system at each G (T is

the simulation time), and compare to the performance of the optimally steered solution with a

matched CIP; details of the calculation can be found in Appendix 1, section ’Control theory calcula-

tion’. Figure 4A demonstrates that the simple architecture we described not only benefits from

matching its responsiveness to its input, but is in fact near-optimal when compared to any system of

equivalent responsiveness.

It is important to note that for low G, the performance of the SEPI architecture also tracks the

optimal curve. Throughout this work, our intention is not to demonstrate that SEPI is a ‘poor’ archi-

tecture. To the contrary, the surprising efficiency of SEPI has been noted before (Goyal et al., 2010;

Pavlov and Ehrenberg, 2013), and Figure 4 similarly shows that at its own CIP, its performance is

virtually optimal. The advantage of our learning-capable architecture derives from its ability to

increase responsiveness when necessary, in the correct direction. Our simplified treatment of the

SEPI architecture is not a strawman we seek to dismiss, but an example of a system that exhibits no

learning.

Having investigated the effect of fluctuation variance (changing G), we turn to the effect of their

correlation. Up to now, we subjected our system to a strongly correlated two-dimensional input with

anisotropy
ffiffiffiffiffiffiffiffiffiffiffiffi

l1=l2
p

¼ 10 (illustrated, to scale, in Figure 1E). We will now consider a range of anisot-

ropy values, down to anisotropy 1 (uncorrelated fluctuations, Figure 1D), keeping the variances of

D1 and D2 constant, a ¼ p=4 as before, and G ¼ 0:05.

The result is presented in Figure 4B. With Na ¼ 5 or larger, our system is able to take advantage

of the correlation, assuming it is strong enough to activate the learning mechanism. (In fact, its per-

formance can reach values that exceed the theoretical ceiling achievable by any system that assumes

the two dimensions of ~D to be independent, and thus must be exploiting the correlation in its inputs;

see Appendix 1, section ’The system makes use of correlations in the input’ and Appendix 1—figure

1). For Na ¼ 4, the performance curve remains flat. This is because the four regulators are arranged

as two independent copies of the system shown in Figure 3A (one faþ; a�g pair for each of the two

inputs); this architecture can take advantage of the learned variance, but not the correlation. Finally,

the SEPI architecture can adapt to neither variance nor correlation; its performance curve is also flat,

but is lower. As expected, the advantage of our architecture manifests itself in environments with

periods of large and/or strongly correlated fluctuations.

The behavior is generalizable
The model described above was a proof of principle, showing that simple regulatory circuits could

learn the fluctuation structure of their inputs. Given the simplicity of our model, it is not to be

expected that the exact dynamics of Equation (4) are replicated in real cells. However, the benefit

of this simplicity is that we can now trace this behavior to its key ingredients, which we expect to be

more general than the model itself: an excess of regulators, nonlinearity, and self-activation. In this

section, we examine their role: first in our model (Figure 5), and then in more realistic circuits, relax-

ing our simplifying assumptions (Figure 6).

In Figure 5, the parameter d on the horizontal axis is the strength of nonlinearity (see Figure 2E),

from perfectly linear at d ¼ �¥, to strongly nonlinear at d ¼ 0. The vertical axis corresponds to an

increasing number of regulators Na, which we label as in Figure 2D; for completeness, we also
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include the simplest system with a single regulator co-activating both x1 and x2 (bottom row). Panel

A examines the performance of our system as defined in Equation (4), that is, with self-activation

included. In panel B, we remove self-activation by omitting the prefactor a� in front of the max func-

tion in Equation (4). The color scheme is chosen so that red indicates an improvement, and blue a

deterioration, of the circuit performance relative to the SEPI architecture, which approximately

corresponds to the point highlighted in Figure 5B. The difference between the labeled point and

the SEPI architecture is that all models represented in Figure 5 include a small degradation term,

which becomes important in the nonlinear regime. For the SEPI-like case, its effect on performance

is negligible (see Appendix 1, section ’Performance penalty from the degradation term’) . Perfor-

mance is averaged over five angles a; see Appendix 1, section ’Parameters used in figures’.

Unsurprisingly, the performance of the simple SEPI-like architecture can be improved by adding

extra regulators (pink region in Figure 5B): each new regulator allows the system to respond more

quickly in a yet another direction of perturbation, with which it is ‘aligned’. However, such a strategy

would have limited utility in a biological setting, since the marginal improvement per regulator must

offset the cost of added complexity. The mechanism described here corresponds to the red area in

Figure 5A. Importantly, in the presence of both nonlinearity and self-activation, even a single extra

regulator (Na ¼ 3) can already provide a significant benefit.

Figure 5A shows that in the context of our model, the reported behavior requires Na to exceed

Nx, and d to be sufficiently large. However, these ingredients are more general than the specific

implementation in Equation (4). In our model, additional regulators were required because they sup-

plied the slow degrees of freedom to serve as memory; such degrees of freedom could be imple-

mented in other ways, for example, as phosphorylation or methylation (Barkai and Leibler, 1997).

Similarly, while nonlinearity is essential (linear dynamics cannot couple to higher-order terms, such as

fluctuation magnitude), its exact functional form may be changed while retaining the learning behav-

ior (see Appendix 1, section ’Nonlinearity acts as a sensor of fluctuation variance’). Finally, the explic-

itly self-catalytic behavior of a� in our model is only one possible strategy for translating the stored

memory into a faster response.

To demonstrate the generality of these ingredients, we constructed two circuits with very differ-

ent architectures (Figure 6A,B), both reproducing the results of Figure 3C–F. These are not the only

ways that the logic described above can be implemented; rather, our intention is to show that as
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Figure 6. Realistic implementations. (A) An alternative circuit that implements the logic described above, but with different forms of the key

ingredients, including a Hill-function nonlinearity. Here, the circuit is based on a pair of self-activating enzymes which can be in an active (E�) or inactive

state (E). For details see Equation (5). (B) Another circuit capable of learning fluctuation variance to better maintain homeostasis of a quantity x.

Synthesis and degradation of x are catalyzed by the same bifunctional enzyme, whose production is regulated nonlinearly by x itself. For more details

see Equations (6) and (7). (C) The circuit in panel A performs well at the homeostasis task of maintaining x’s concentration at 1, despite the changing

variance of the input. For comparison, we’ve included a SEPI analogue of the circuit, described in Appendix 1, section ’Realistic biochemical

implementations’. (D) Same as panel C, but with the circuit from panel B. Note that the ’SEPI’ line is different here, and is now a SEPI analogue of the

circuit in panel B. (E) Solid arrows: a common two-component architecture of bacterial sensory systems with a bifunctional histidine kinase (X) and its

cognate response regulator (Y). Adding an extra regulatory link (nonlinear auto-amplification, dashed arrow) can endow this system with self-tuned

reactivity learning the statistics of the input; see text.
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long as we keep the key elements, we can relax our simplifying assumptions, such as the form of the

nonlinearity and self-activation, while still retaining the ability to learn.

The first of these proposed circuits (Figure 6A) is based on a pair of allosteric enzymes with the

toy nonlinearity of Figure 2E replaced by more realistic cooperative binding, and implements

dynamics otherwise very similar to those shown above. In this circuit, the enzymes Eþ and E� can be

in an active or inactive state: The active form of Eþ, which we denote E�
þ, catalyzes the production of

x; similarly, E�
� catalyzes degradation of x. In addition, the active enzymes can bind to molecules of

the metabolite x to control the self-catalytic activity. The total concentration of E�
þ, bound and

unbound, then plays the role of the activating regulator aþ from above (aþ ¼ ½E�
þ� þ ½xE�

þ�), while E�
�

plays the role of the inhibitor a� (a� ¼ ½E�
�� þ ½xE�

��). The equations defining the dynamics are then:

t x _x¼ gþaþ �g�xa� � xDðtÞ;

t a _aþ ¼ aþ
cnþ

cnþ þ xn
� aþkþ;

t a _a� ¼ a�
xm

cm� þ xm
� a�k�:

8

>

>

>

>

>

<

>

>

>

>

>

:

(5)

Despite the extensive changes relative to Figure 3A, the system is still able to learn. Figure 6C

compares its performance to a non-learning version with only the activating branch aþ, which is anal-

ogous to the single-activator SEPI architecture (compare to Figure 3F). For a detailed discussion of

this more biologically plausible model, see Appendix 1, section ’A pair of allosteric enzymes’.

Our other proposed circuit (Figure 6B) differs significantly. Here, instead of seeking to match P

to D, the system maintains the homeostasis of a concentration x perturbed by external factors. In

this implementation, the production and degradation of x are both catalyzed by a single bifunctional

enzyme; the responsiveness of this circuit scales with the overall expression of the enzyme E, and

larger fluctuations of x lead to upregulation of E due to the nonlinearity, as before. (For a detailed

discussion, see e Appendix 1, section ’An architecture based on a bifunctional enzyme’.) Defining

A ¼ aþ þ a� ¼ ½E� þ ½xE� as the total concentration of the enzyme E in both its bound and unbound

states, the bound and unbound fractions are described by Hill equations,

aþ ¼ A
cm

xmþ cm
; a� ¼ A� aþ: (6)

The dynamics of our system are:

t x _x¼ P0 þgþaþ �g�xa� � xDðtÞ
t A

_A¼ �Akþ f ðxÞ:

�

(7)

Despite its compactness, this circuit is also able to learn (Figure 6D; compare to Figures 3F and 6C).

Interestingly, this particular logic is very similar to a small modification of the standard two-com-

ponent signaling architecture (Figure 6E). In this architecture, the signal s determines the concentra-

tion of the phosphorylated form YP of the response regulator Y; the rapidity of the response is

determined by the expression of the histidine kinase X, present at a much lower copy number.

Although the signaling architecture of Figure 6E, at least in some parameter regimes, is known to

be robust to the overall concentrations of X and Y (Batchelor and Goulian, 2003), this robustness

property applies only to the steady-state mapping from s to YP, not the kinetics. Thus, much like in

Figure 6B,a nonlinear activation of X by YP (known as autoregulation [Goulian, 2010] or autoamplifi-

cation [Hoffer et al., 2001], and shown as a dashed arrow in Figure 6E) would endow this signaling

system with self-tuned reactivity that learns the statistics of the input.

Discussion
In this paper, we have studied a regulatory architecture which is able to infer higher-order statistics

from fluctuating environments and use this information to inform behavior. For concreteness, we

phrased the regulatory task as seeking to match the production ~P of one or two metabolites to a

rapidly fluctuating demand ~D. Alternatively, and perhaps more generally, the circuits we constructed

can be seen as maintaining the homeostasis in a quantity~x that is continually perturbed by external
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factors. We demonstrated that a simple architecture was capable of learning the statistics of fluctua-

tions of its inputs and successfully using this information to optimize its performance. We considered

one-dimensional and two-dimensional examples of such behavior.

In one dimension, learning the statistics of the input meant our circuit exhibited a self-tuned reac-

tivity, learning to become more responsive during periods of larger fluctuations. Importantly, we

have shown that this behavior can be achieved by circuits that are highly similar to known motifs,

such as feedback inhibition (Figure 2A–C) or two-component signaling (Figure 6B,E). The latter con-

nection is especially interesting: There are at least a few examples of two-component systems where

autoamplification, a necessary ingredient for the learning behavior discussed here, has been

reported (Shin et al., 2006; Williams and Cotter, 2007). Moreover, in the case of the PhoR/PhoB

two-component system in E. coli, such autoamplification has been experimentally observed to allow

cells to retain memory of a previously experienced signal (phosphate limitation; Hoffer et al., 2001),

a behavior the authors described as learning-like. As reported, this behavior constitutes a response

to the signal mean and is similar to other examples of simple phenotypic memory (e.g.

Lambert et al., 2014); however, our analysis demonstrates that a similar architecture may also be

able to learn more complex features. Such a capability would be most useful in contexts where the

timescale of sensing could plausibly be the performance bottleneck. Since transcriptional processes

are generally slower than the two-component kinetics, we expect our discussion to be more relevant

for two-component systems with non-transcriptional readout, such as those involved in chemotaxis

or efflux pump regulation.

In the two-dimensional case, our simple circuit was able to learn and unlearn transient correlation

structures of its inputs, storing this information in expression levels of different regulators. Our argu-

ment was a proof of principle that, for example, the gut bacteria could have the means to not only

sense, but also predict nutrient availability based on correlations learned from the past, including

correlations that change over faster-than-evolutionary timescales, such as the life cycle (or dietary

preferences) of the host. Importantly, we showed that this ability could come cheaply, requiring only

a few ingredients beyond simple end-product inhibition.

The mechanism described here could suggest new hypotheses for the functional role of systems

with an excess of regulators, as well as new hypotheses for bacterial function in environments with

changing structure.

Materials and methods
All simulations performed in Python 3.7.4. Simulation scripts reproducing all figures are included as

Source code 1.
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Appendix 1
This text contains supplementary information on modeling details, the analytical calculations, and

the exact parameters used in figures.

S1 Simple end-product inhibition
As the starting point of our regulatory architecture, we consider a basic form of end-product inhibi-

tion (SEPI). The environment is modeled by a time-dependent (externally induced) demand DðtÞ for
metabolite x which is produced at a rate P (controlled by the system); both D and P are defined in

units of metabolite concentration per unit time. The depletion of the metabolite depends on its con-

centration x and the demand D. Assuming first-order kinetics (or, alternatively, expanding a general

function to linear order in small fluctuations of x) the dynamics of x is:

_x¼ P�D
x

x0
: (S1)

Further, we consider the temporal evolution of the regulator activity a

_a¼ hðx;aÞ: (S2)

By linearizing hðx;aÞ around the stationary values ðx0;a0Þ we get

_a¼ lxðx0 � xÞþlaða0 � aÞ: (S3)

To examine this equation, we introduce the Fourier transforms ~að!Þ ¼ F½aðtÞ� a0� and ~xð!Þ ¼
F½xðtÞ� x0� and get

i!~a¼�lx~x�la~a ) ~að!Þ ¼�lx~xð!Þðla� i!Þ
l2a þ!2

: (S4)

Equation (S4) shows that if the support of ~xð!Þ is restricted to high frequencies, !� la, then the

degradation term laða0� aÞ in Equation (S3) is negligible. Including it would only add a restoring

force, reducing the amplitude of fluctuations of a, and decreasing the performance of the system.

Since we are interested in the regime of fast fluctuations of x, we choose to omit this term in the

SEPI system. With lx ¼ 1=l we arrive at the dynamics used in the main text:

_x ¼ P�D
x

x0
source-sink dynamics of metabolite x

P ¼ aP0 definition of regulator activity a

_a ¼ x0� x

l
regulator activity inhibited by x

8

>

>

<

>

>

:

In the nonlinear system (Equation (3) of the main text), however, fast fluctuations of x can cause

the growth of a (as discussed in the section ‘The nonlinearity as a sensor of the fluctuation variance’),

thereby inducing slow frequency modes to its dynamics. Thus, in the nonlinear case, we cannot omit

the degradation term.

S2 Performance penalty from the degradation term
The model considered in the main text modifies the SEPI architecture as follows:

xi ¼ Pi=Di (S5)

Pi ¼ S�s�ia� (S6)

t a _a� ¼ a�max d;
X

i

s�iðx0 � xiÞ
 !

�ka�: (S7)

Consider the case of a static input. We observe that if x0 is set to 1, as in the main text, the pres-

ence of the degradation term causes the equilibrium point of these dynamics to be displaced away
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from xi ¼ 1. Therefore, for a static input, the performance of this system—the degree of mismatch

between Pi and Di, or, equivalently, the deviation of xi from 1—is actually worse than the perfor-

mance of the original SEPI.

While the case of a static input is irrelevant for the discussion in the main text, this slight offset

leads to a performance penalty also for a fluctuating input. Indeed, time-averaging Equation (S7)

shows that for any active regulator, we must have

f
X

i

s�ið1� xiÞ
 !* +

¼ k; (S8)

where f is the nonlinearity in our equation, f ðgÞ ¼maxðd;gÞ. Clearly, we will in general again have

hxii 6¼ 1; this is particularly obvious in the limit of small fluctuations when the nonlinearity is ‘not

active’, such that f ðgÞ ¼ g.

This effect could be corrected by shifting x0. In the interest of keeping our model as close to SEPI

as possible, we chose not to do so: this penalty is only significant in the regime where no learning

occurs, and is otherwise outweighed by the performance increase due to self-tuned responsiveness,

with the additional benefit of simplifying the discussion in the main text. Even if optimizing x0 could

make the performance slightly closer to the optimal bound, this kind of fine-tuning seems irrelevant

in a biological context.

S3 Defining the system’s responsiveness
In the main text, we use a measure for the ‘responsiveness’ of our system to changes in the demand

DðtÞ. In this section it is shown in detail how this measure is defined. The central aim of the consid-

ered regulatory model is to match the time-dependent demand ~D with the regulated production ~P.

The temporal evolution of ~P is given by:

_Pi ¼
X

�

si� _a�; (S9)

with

t a _a� ¼ a�max d;
X

i

s�ið1�Pi=DiÞ
 !

�ka�: (S10)

For a static demand Di ¼ 1 the production relaxes to a constant value Pi »1 (where we assumed

small k) and consequently _Pi ¼ 0. A deviation dDi from the static demand will lead to a change of the

production Pi - the larger _Pi, the faster the response to the changed demand. Therefore, we define

the responsiveness of the production Pi to the demand Dj as Rij ¼ d _Pi

dDj
. When assuming small fluctua-

tions the explicit expression for the responsiveness is then given by:

d _Pi

dDj

¼
X

�

si�
d _a�

dDj

»
X

�

si�a�s�j
Pi

D2
j

»
X

�

si�a�s�j: (S11)

As an example we consider the one-dimensional system studied in Figure 3A-F in the main text

for which the responsiveness is

R¼ d _P

dD
¼ s1þaþsþ1 þs1�a�s�1 ¼ aþ þ a�; (S12)

where we used that s1þ ¼ 1 and s1� ¼�1.

S4 Control theory calculation
The calculation below follows the standard procedure known as Linear-Quadratic Optimal Control

(LQC). For more details, we refer the reader to standard sources (e.g. Liberzon, 2011).

The problem we set is minimizing hð~P� ~DÞ2i, where ~D follows the dynamics of Equation (1) in the

main text,
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~DðtþDtÞ ¼~DðtÞþM � ~D�~DðtÞ
� �

Dtþ
ffiffiffiffiffiffiffiffiffiffi

2GDt
p

~h: (S13)

We then wish to calculate the optimal way of steering ~P. For simplicity, we will set the mean D¼ 0

(in the context of this abstract problem, this is equivalent to working with mean-shifted variables

d~D�~D�~D and similarly d~P�~P�~D). We can start by discretizing the above equation,

Dtþ1 ¼Dt � ~MDt þ �t;

(S14)

where ~M �MDt, and � has variance 2GDt. We seek to determine the optimal way to steer P; in other

words, the function ftðPt;DtÞ (‘control policy’) dictating how P should be changed in a given time

step:

Ptþ1 ¼ Pt þ ut (S15)

ut ¼ftðPt;DtÞ: (S16)

We then can define our cost function, which combines a cost for the magnitude of ut (how quickly

we can change ~P), and the difference between ~P and ~D:

Cost¼E �
X

N�1

t¼0

kut k2þ
X

N

t¼0

kPt �Dt k2
 !

: (S17)

The fðPt;DtÞ describing the optimal behavior is the one that minimizes this cost. In order to solve

for fðPt;DtÞ, we follow standard control theory techniques and define the ‘cost-to-go’ function,

Vtðpt;dtÞ ¼ min
ft ...fN�1

E �
X

N�1

t¼t

kut k2þ
X

N

t¼t

kPt �Dt k2
 !

Pt ¼ pt; Dt ¼ dt

Dtþ1 ¼ ð11� ~MÞDt þ �t

Ptþ1 ¼ Pt þ ut

ut ¼ft ðPt ;Dt Þ

�

�

�

�

�

�

�

�

�

2

6

6

6

4

3

7

7

7

5

: (S18)

This function defines the smallest cost of all remaining steps; in particular, the total cost that we

are trying to minimize is V0ð0;0Þ. The cost-to-go satisfies the boundary condition

VNðp;dÞ ¼ kp� dk2 (S19)

and the following recursive relation:

Vtðp;dÞ ¼ ðp� dÞ2þmin
v

f�kvk2þE� Vtþ1ðpþ v; ð1� ~MÞdþ �Þg: (S20)

Since our system is Gaussian, this recursive relation can be solved by adopting a quadratic ansatz:

Vtðp;dÞ ¼ p>Atp� 2d>Btpþ d>CtdþQt; (S21)

Solving for the matrices At, Bt, Ct, and Qt, gives us the following recursive relations:

Qt ¼Qtþ1 þ 2GDt tr Ctþ1

At ¼ 11þ �Atþ1ð�þAtþ1Þ�1

Bt ¼ 11þ � ð11� ~MÞBtþ1ð�þAtþ1Þ�1

Ct ¼ 11þð11� ~MÞ Ctþ1 �Btþ1ð�þAtþ1Þ�1
B>
tþ1

h i

ð11� ~MÞ

8

>

>

>

>

<

>

>

>

>

:

(S22)

Since our problem is to minimize the cost at steady state (known in control theory as an ‘infinite

horizon’ problem, N 7!¥), we are interested in the fixed point of this mapping, specifically the matri-

ces A�¥; B�¥ to which this mapping converges when we start from AN ¼ BN ¼CN ¼ 11 and QN ¼ 0 (as

defined by Equation (S19)).
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Since AN is the identity matrix, all At are proportional to the identity matrix as well: At ¼ at 11,

where at ¼ 1þ �atþ1

�þatþ1

. The fixed point of this mapping is a ¼ 1þ
ffiffiffiffiffiffiffiffi

1þ4�
p
2

� 1. Similarly, the fixed point of

Bt is B ¼ ½11� �
�þa

ð11� ~MÞ��1. Expressing this in terms of a only:

B¼ a 11þða� 1Þ ~M
� ��1

With these expressions, the optimal ‘control policy’ is defined by the value of v that minimizes

Equation S20. This defines the optimal way to change ~P for a given observed ~D:

u¼ 1

a
½11þða� 1Þ ~M��1ð11� ~MÞ~D�~P
� �

; (S23)

or, restoring the notations of the main text, including a non-zero D:

u¼ 1

a
½11þða� 1ÞMDt��1ð11�MDtÞð~D�~DÞ�~P
� �

; (S24)

This u is the exact solution to the discrete version of the problem we considered. Since our simu-

lations in this work use a discrete timestep, this is the form we use. Nevertheless, it is instructive to

consider the small-Dt, large-CIP limit such that Dt and ða� 1ÞDt are both small compared to inverse

eigenvalues of M. In this case we have, to first order in Dt:

u¼ 1

a
½11�aMDt�ð~D�~DÞ�~P
� �

:

This leads to the following, and very intuitive, form of the optimal control dynamics:

~D 7!~D�MDtð~D�~DÞþ �;

~P7!~P�MDtð~D�~DÞþ 1

a
ðð~D�~DÞ�~PÞ:

(S25)

In other words, at every step the change in ~P mirrors the average expected change in ~D, with an

extra term seeking to reduce their deviation. Note also that setting a¼ 1 (infinite CIP) corresponds

to steering ~P directly to the expected value of ~D at the next timestep, as expected.

S5 The system makes use of correlations in the input
Figure 4B in the main text demonstrated that, as the fluctuating inputs become increasingly corre-

lated, our architecture is able to outperform SEPI by an increasingly wide margin. The natural inter-

pretation of this result is that the system is able to learn and exploit this correlation. Technically,

however, one might note that this observation alone does not yet prove that our architecture is able

to appropriately use the information it learned about specifically correlation. For example, it could

be that strongly correlated inputs are somehow inducing a stronger increase in reactivity, causing

the system to be generally faster, but without benefiting specifically from the correlated nature of its

inputs.

Rather than focusing on excluding this specific scenario (which could be done by comparing the

CIP values along the curves shown in Figure 4B), we will show that with a sufficient number of regu-

lators, our architecture can perform better than the theoretical ceiling achievable by any strategy

that assumes the inputs to be independent. This will formally prove that, at least for some parame-

ters, our system’s improved performance must necessarily make use of the correlation of its inputs.

Although the argument is somewhat academic in nature (we will prove our point using Na ¼ 25 regu-

lators), it is theoretically pleasing, and so we present it here.

Specifically, we consider a system subjected to inputs structured as shown in Figure 3H, with

angle a ¼ p=4 so that the two inputs have the same variance. Appendix 1—figure 1 shows the per-

formance of our architecture for several values of the number of regulators Na, plotted as curves

parameterized by the degradation rate k. The degradation rate controls how large the a� can

become: a high value of k leads to lower average steady-state values of the regulator activities, caus-

ing the system to be less responsive to changes in D. Thus, k can be used to set the CIP of the
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regulatory system, allowing us to plot these performance curves in the ‘performance vs. CIP’ axes

traditional for control theory.

Appendix 1—figure 1. The adapting system can perform better than the best independence-assum-

ing strategy.

Reassuringly, all these performance curves are located below the optimal control-theory ceiling

computed for the true correlation structure of the input. However, the plot also shows the ‘best

independent’ curve, defined as follows. Consider all possible matrices M corresponding to uncorre-

lated inputs: M ¼ l1 0

0 l2

� �

. Each such M defines a family of control strategies (that would have

been optimal if this M were the true M governing the dynamics of the input); this family is indexed

by a parameter � as described above. A system following an (independence-assuming) strategy M ¼

l1 0

0 l2

� �

while faced with the actual (partially correlated) inputs will exhibit a certain performance

Pðl1; l2; �Þ and a certain CIP, which we denote CIPðl1; l2; �Þ. With these notations, the ‘best inde-

pendent’ curve is defined as

PðCIP¼ �Þ ¼max
l1;l2

Pðl1;l2;�Þ for � such that CIPðl1;l2; �Þ ¼ �f g

We note that the correlated-input CIP is different from the independent-input CIP that a given

strategy would have incurred if faced by the input for which it is optimal. In particular, while the lat-

ter can be computed analytically, the former has to be evaluated in simulations. This makes the opti-

mization procedure computationally costly; thankfully, the symmetry ensured by choosing a¼p=4

allows restricting the search to isotropic strategies M ¼ l 0

0 l

� �

, reducing the problem dimensional-

ity from three parameters fl1;l2; �g to more manageable two fl; �g.
The result is shown in Appendix 1—figure 1 as a dashed line. As highlighted in the inset, with

enough regulators, our architecture is indeed able to outperform the theoretical ceiling of the best

independence-assuming strategy. Although N ¼ 25 regulators is of course a regime irrelevant for

biological applications, the aim of this argument was to formally prove a theoretical point, namely

that the system as constructed must necessarily be making use of the correlation in the input signal,

at least for some values of the parameters; by construction, the ‘best independent’ curve is a high

bar to clear.
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S6 Model predictive control
When framing the problem in the main text, we discussed it as consisting of two tasks, learning the

fluctuation structure of the environment and ‘applying that knowledge’ (Figure 1B), and treated the

two as conceptually separate. In particular, the calculation in section ‘S4 Control theory calculation’

is known as linear-quadratic Gaussian control (LQG) that assumes the correct model of the environ-

ment to already be known. This separation was done to simplify presentation, allowing us to encap-

sulate the control theory discussion, potentially less familiar to our audience, to a smaller portion of

the narrative. In addition, the LQG calculation is simple, exact, and provides an upper bound on how

well any other control strategy could perform.

Mechanistically, however, the two tasks are inseparable. In the language of control theory, our

architecture implements an example of model predictive control: a strategy where the system

response is governed by a continually updated internal model of the environment (here, the activity

levels of the regulators, which encode the learned correlations between the inputs).

How could one distinguish a predictive vs. non-predictive control scheme in practice, when mea-

suring all internal variables to decipher whether or not they encode an ‘internal model of the envi-

ronment’ is infeasible? For our scheme, its ‘predictive’ ability manifests itself as follows. Imagine

exposing our system to two inputs ~DðtÞ ¼ h~Di þ ðdD1ðtÞ; dD2ðtÞÞ which for a period of time are

strongly correlated, with dD1ðtÞ» dD2ðtÞ. The learning process will drive the responsiveness matrix

from one that was initially isotropic to one aligned with the correlated direction (in the notation of

the main text, a ¼ p=4). Compare now the response of the system to an increase in D1:

ðdD1; dD2Þ ¼ ða; 0Þ. The naÃve (untrained) system would respond by increasing P1 only, as would the

SEPI architecture. In contrast, the ‘trained’ system, having learned the correlation between D1 and

D2, responds by upregulating both P1 and P2 together. In this hypothetical example, our analysis

predicts that deleting seemingly superfluous regulators would hinder or remove this ability (depend-

ing on the implementation, possibly without even affecting fitness in a static environment).

This is the behavior expected of a predictive controller: Under a model where dD1 and dD2 are

strongly correlated, one expects this state of the environment to relax back to the diagonal dD1 ¼
dD2 in the near future. This kind of associative learning is experimentally measurable and, on an evo-

lutionary scale, is well-known. Our scheme provides a mechanism for implementing this behavior on

a physiological timescale. Another mechanism focusing on binary associations was previously

described by Sorek et al., 2013.

S7 Nonlinearity acts as a sensor of fluctuation variance
In the main text, we argue that the nonlinearity in the dynamics of the regulator concentrations acts

as a senor for the variance of the fluctuations. To see this, we consider the dynamics of one regulator

that is controlling the production of one metabolite:

t a _a¼ amax d; 1�P=Dð Þ�ka: (S26)

To simplify notation, we define g :¼ 1�P=D. Since the dynamics of a are slow compared to D, the

fluctuations of g are on a faster timescale than the regulator dynamics. If the fluctuations of g are

small, the nonlinearity in the max function is ‘not activated’: max d; gð Þ ¼ g. In this case, the temporal

average of max d; gð Þ is zero. In contrast, if the fluctuations are strong enough, the nonlinearity is

activated (see Appendix 1—figure 2). Then, the temporal average is positive, leading to an addi-

tional growth of a. Due to the resulting larger values of a, the response of the system becomes

faster, making the match between P and D better and thus serving to decrease the variance of g. As

a result, the final average steady-state regulator concentration is reached if the system has

decreased the variance of g sufficiently by increasing the rapidity of its response.
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d

max( d , )

Appendix 1—figure 2. The nonlinearity in the regulatory architecture. If the fluctuations of the input

g ¼
P

i s�i 1� xið Þ are large enough, the average over the nonlinearity is positive, causing additional

growth of the regulator concentration a.

This argument makes it clear why the specific choice of nonlinearity is not particularly important.

If _a ¼ f ðxÞ, then the static steady state satisfies f ðx0Þ ¼ 0. For a fast-fluctuating input this becomes

_a¼ hf ðxÞi ¼ f ðx0Þþ
1

2
hðx� x0Þ2if 00ðx0Þþ . . .

For any nonlinear f , as long as f ðx0Þ ¼ 0, the displacement of the original steady state will be

determined by higher order statistics of the input. In particular, the rectified-linear nonlinearity in our

equations can be replaced, for example, by a Hill function. Note that for the argument presented

here, the eventual saturation of the response at large argument is irrelevant: the system will retain all

the relevant behavior as long as the new nonlinearity is cup-convex in a sufficiently large vicinity of

its static fixed point; see section ‘S9.1 A pair of allosteric enzymes’ for an explicit example.

The assumption f ðx0Þ ¼ 0 is not innocuous; in general, of course, the value of hf ðxÞi is sensitive

not only to the variance of x (or other higher-order terms), but also to its mean, and building a sys-

tem that is sensitive to specifically the variance requires adapting to the mean first. In our model,

this is automatically accomplished by the underlying end-product inhibition architecture, which

adapts the mean P to mean D ¼ D, after which x fluctuates around 1, no matter the value of D.

S8 The minimal G needed to initiate adaptation
Figure 4A in the main text includes arrows indicating theoretically derived threshold values of G

above which our system (with a given s�i) will begin to adapt its timescale of response, deviating

from SEPI in its behavior. Here, we show how this threshold value of G can be determined.

As discussed in the main text, at static input (G ¼ 0) only Nx out of Na regulators can be active.

Consider the regulators that remain inactive in the static case, and imagine gradually increasing the

fluctuation magnitude. Recall the equation for regulator activity dynamics:

t a _a� ¼ a�max d;
X

i

s�ið1�Pi=DiÞ
 !

�ka�: (S27)

After introducing g� ¼
P

is�ið1�Pi=DiÞ we can write

t a _a� ¼ a� max d; g�

� �

�k�
� �

¼ a�D�: (S28)

If we chose a� as one of the regulators that remained inactive in the static case, we have D�<0 at

G¼ 0; as we begin increasing the fluctuation magnitude, the time-averaged D� will at first remain

negative. The threshold G we seek is the one where the first (time-averaged) D� crosses into positive

values. It is clear that if the fluctuations of g� are so small that maxðd;g�Þ ¼ g� at all times, the system

does not adapt. On the other hand, if the fluctuations are large enough and fast compared to the

response of the system, they generate an effective additional growth of a�. To first order, this addi-

tional growth term is proportional to the standard deviation
ffiffiffiffiffiffi

!�
p

of g�. Therefore, we expect the

fluctuations to cause a growth of a� if the additional growth term is large compared to k, i.e.
ffiffiffi

!
p

c �k,
with c a constant of order 1.
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The approximate value of c can be determined using the following argument. With d ¼ 0, and

assuming that g� is, first, fluctuating on a fast timescale compared to t a and, second, is Gaussian

with mean g� and variance !�, we can average over the fluctuations in Equation (S28):

hD�i ¼
g�

2
þ

ffiffiffiffiffiffi

!�

2p

r

exp �
g2

�

2!�

 !

þ
g�

2
erf

g�
ffiffiffiffiffiffiffiffi

2!�

p

 !

�k: (S29)

The system is in a stable steady state if either hD�i ¼ 0 and a� � 0 or hD�i<0 and a� ¼ 0. In the non-

trivial first case we get the condition g� � k. Approximating g� »0 one sees that the average growth

rate hD�i is positive if
ffiffiffiffiffiffi

!�
p

>
ffiffiffiffiffiffi

2p
p

k, so that c¼
ffiffiffiffiffiffi

2p
p

. If this condition is satisfied, a� continues its

growth until the separation of timescales between g� and t a becomes invalid and !� decreases; this

is the mechanism by which the system adapts to fast fluctuations.

The variance !� can be derived from the statistical properties of D. If the fluctuations of the

demand D are small it holds that !� » dD̂
T~s�dD̂ where dD̂ is the covariance matrix of the stationary

probability distribution of the fluctuations d~D with hdD2

1
i ¼ G cos2 a

l1
þ sin2 a

l2

� �

and

hdD1dD2i ¼ G cosa sina l1�l2
l1l2

� �

. The variance !� is then given by !� ¼ ~sT
�dD̂~s� and the minimal value

of G is set by the largest !� of the considered system.

S9 Realistic biochemical implementations
In the main text, we proposed a simple model of metabolic regulation which highlighted the neces-

sary properties for learning environment statistics, namely an excess of regulators a�, self-activation,

and a nonlinear regulation of a� by the metabolite concentrations xi. To show how these properties

can enable more realistic systems to learn the statistics of a fluctuating environment, here we present

two biochemical implementations. The first of these implements dynamics nearly identical to those

described in the main text, and the second, illustrated in Figure 5b, bears resemblance to two-com-

ponent systems. As described in the main text, we do not necessarily expect either of these net-

works to be implemented in real biological systems ‘as is’. Instead, we use these to illustrate the

diversity of systems that could use the logic described in this paper to learn statistics of their envi-

ronment. For simplicity, we consider the one-dimensional case (first column of Figure 3 in the main

text).

S9.1 A pair of allosteric enzymes

The circuit is shown in Appendix 1—figure 3. The enzymes Eþ and E� can be in an active or inactive

state: The active form of Eþ, which we denote E�
þ, catalyzes the production of x; similarly, E�

� cata-

lyzes degradation of x. In addition, we postulate that active enzymes can bind to molecules of the

metabolite x, which controls self-catalytic activity (see diagram). The total concentration of E�
þ,

bound and unbound, plays the role of the activating regulator aþ from the main text

(aþ ¼ ½E�
þ� þ ½xE�

þ�), while E�
� plays the role of the inhibitor a� (a� ¼ ½E�

�� þ ½xE�
��).

x

xE + xE −

E + E −E + E −
*

*

E +
*

*

*

xE −
*

κ+ κ−

x x
E +
* xE −

*

κ+ κ−

Appendix 1—figure 3. Implementation of the regulatory mechanism based on a pair of self-activat-

ing enzymes which can be in an active (E�) or inactive state (E). Gray shading indicates catalysts of

reactions.
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The same regulatory structure could be realized with transcription factor regulation, with the role

of the active enzymes (Eþ and E�) played by two transcription factors. In this version, activation/

deactivation of enzymes is replaced by the simpler process of transcription factor synthesis/degrada-

tion. For concreteness, here, we focus on the enzymatic case, largely because we expect architec-

tures like ours to be more relevant in fast-responding circuits, which tend to be non-transcriptional.

However, except for the difference of timescales, the dynamics of the two versions would otherwise

be identical; in particular, both implementations would ‘learn’ in the same way.

For this discussion, it is convenient to have timescales of dynamics of a� and xi encoded as explicit

parameters. Assuming first-order kinetics, the dynamics of the network can then be described by:

t x _x¼ gþaþ �g�xa� � xDðtÞ;

t a _aþ ¼ aþ
cnþ

cnþ þ xn
� aþkþ;

t a _a� ¼ a�
xm

cm� þ xm
� a�k�:

8

>

>

>

>

>

<

>

>

>

>

>

:

(S30)

Here, we assume that the metabolite x is much more abundant than the active enzymes E�
þ and

E�
�, meaning that the relative amount of bound x is very small. This allows us to neglect, in the

dynamics of x, the source and sink terms due to binding and unbinding of x to the enzymes. We also

assume that this binding and unbinding occurs on a much faster timescale than all other processes.

Appendix 1—figure 4 shows an example of simulation results for these dynamics (for the full list

of parameters used, see section ‘S11 Parameters used in figures’). We see that the system reacts to

an increasing variance of environmental fluctuations (A) by increasing regulator activities (B). The fig-

ure also shows the behavior of a SEPI system which only consists of one aþ regulator described by

the dynamics in Equation (S30). Appendix 1—figure 4C shows that the response strength, defined

as discussed in the SI section ‘Defining the system’s responsiveness,’

R¼ d _P

dD
»gþaþ

ncnþ
ðcnþ þ 1Þ2

þg�a�
mcm�

ðcm� þ 1Þ2
; (S31)

is increasing due to the changed regulator activities. Finally, Appendix 1—figure 4D compares the

performance of the system Equation (S30) with the corresponding SEPI system (which, again, we

define by the same equations as Equation (S30), except without the a� regulator). Similar to

Figure 3F in the main text, the performance of the adapting system does not change as the variance

of the stimulus increases, while the SEPI system becomes worse.
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Appendix 1—figure 4. Adaptation of responsiveness to an increasing variance of environmental

fluctuations. (A) Step-wise increase of the variance of D. (B) Time-series of regulator concentrations,

where aþ and a� correspond to the total concentrations of tþ and t� respectively. (C) The

responsiveness of the system as defined in Equation (S31). (D) The deviation of the metabolite

concentration x from its target value.

S9.2 An architecture based on a bifunctional enzyme

For the reader’s convenience, we reproduce this circuit in Appendix 1—figure 5 (identical to

Figure 6B in the main text). As described in the main text, for greater generality, we will here

rephrase the task: instead of matching production to demand, we will think of maintaining the

homeostasis of a quantity x perturbed by external factors. For example, instead of being a metabo-

lite concentration, x could be osmolarity mismatch, and our circuit a hypothetical architecture for

active control of osmotic pressure. In this interpretation, the enzyme E might be a mechanosensor

triggered by tension in the membrane or cell wall, while ‘production’ and ‘degradation’ of x could

be activities of opposing pumps, or regulators of glycerol export or metabolism.

x

nonlinear
E

κ
x

xE

κ

x

Appendix 1—figure 5. Regulation by allosteric forms of one enzyme E. The unbound form E

activates the production of x, while the bound form xE promotes its degradation. The synthesis of E

is regulated nonlinearly by the metabolite concentration x.

To simplify our language when describing the terms in the specific equations we simulate, we will

still talk of a metabolite x being produced and degraded. However, to better accommodate alterna-

tive interpretations, the regulator activities will now be defined so that aþ and a� would be equal on

average (for example, the activities of pumps in opposite directions should, on average, balance).
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This homeostasis-maintaining formulation is in contrast to Figure 3D in the main text, where regula-

tors satisfied the constraint haþ � a�i ¼ D ¼ 1.

The production and degradation of x are catalyzed by a bifunctional enzyme that changes its

activity when bound to x forming the compound xE. The concentration of the unbound form E corre-

sponds to the activating regulator, aþ ¼ ½E�, and increases the production P of x, while xE plays the

role of the inhibiting regulator, a� ¼ ½xE�, and promotes the degradation of x.

As above, we assume first-order kinetics for the production and degradation of x, and that the

binding kinetics are fast compared to the other timescales in the problem. Defining A ¼ aþ þ a� ¼
½E� þ ½xE� as the total concentration of the enzyme E in both its bound and unbound states, the

bound and unbound fractions are described by Hill equations:

aþ ¼ A
cm

xmþ cm
; a� ¼ A� aþ ¼ A

xm

xmþ cm
: (S32)

These expressions make it explicit that a small change in the concentration x induces a change in

aþ and a� that is proportional to their sum, A¼ aþ þ a�. In this way, the circuit shown in Appen-

dix 1—figure 6 does include an element of self-activation (one of our ‘key ingredients’), even

though no interaction in the diagram is explicitly self-catalytic.

Appendix 1—figure 6. Adaptation of responsiveness for the circuit architecture based on a bifunc-

tional enzyme. (A) The variance of D is increased step-wise. (B) Change of regulator activities. The

regulator activities aþ and a� overlap strongly and cannot be distinguished in this panel. (C) The

response strength of the system. (D) The mismatch of the metabolite concentration x from its target

value.

With these notations, the dynamics of our system are:

t x _x¼ P0 þgþaþ �g�xa� � xDðtÞ
t A

_A¼ �Akþ f ðxÞ;

�

(S33)

where we assumed that modifying the enzyme E does not significantly affect the quantity x. (In

the metabolic formulation, this corresponds to the assumption that x is much more abundant than E,

so that the sequestration of x by E has negligible effect on the free concentration of x; in the osmotic

formulation, the act of triggering a mechanosensor has negligible instantaneous effect on pressure).

In the second equation, the synthesis of the enzyme E depends nonlinearly on the metabolite con-

centration x. The specific form of nonlinearity does not significantly affect the results, as long as it is

sufficiently cup-convex in the vicinity of the operating point: As described in the section ‘S7 Nonline-

arity acts as a sensor of fluctuation variance’, we can think of the nonlinearity f ðxÞ as a ‘sensor’ for
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the variance of environmental fluctuations. Whenever fluctuations in DðtÞ increase such that the cur-

rent responsiveness of the system fails to maintain the homeostasis of x within previous bounds of

fluctuation magnitude, the fluctuations of x will lead to growth of A, increasing the responsiveness

until it is again able to reduce the fluctuations of x. In our simulations we chose a Hill function with

cooperativity 4 (see section ‘S11 Parameters used in figures’).

Appendix 1—figure 6 shows simulation results for this system. As in the first column of Figure 3,

the variance of D is increased and the response of the system to this change is monitored. We see

that the regulator concentrations correspondingly increase, causing a larger response strength

j d _x
dx
j » 1þ 2gEcmm

ð1þcmÞ2. The increase in response strength is able to compensate for most of the perfor-

mance loss, which shows that the system successfully adapts its timescale of response. This is in con-

trast to the ‘SEPI-like’ system with a fixed value A ¼ 1, which cannot adapt its responsiveness and

whose performance drops with every increase in fluctuation variance.

S10 Adaptation to static demand

In the main text, we argue that the production ~P of the proposed system Equation (3) adapts to any

static demand ~D. The full dynamics of the system is

t a _a� ¼ a�max d;
X

i

s�ið1�Pi=DiÞ
 !

�ka�: (S34)

With a static demand, Equation (S34) possesses the same fixed points as the simplified

dynamics:

t a _a� ¼ a�
X

i

s�ið1�Pi=DiÞ�k

 !

: (S35)

These dynamics have a Lyapunov-function

F fa�g
� �

¼�
X

i

1

2Di

Pi�Dið Þ2�k
X

�

a�: (S36)

This can be verified by considering the temporal change of F

dF

dt
¼
X

�

qF

qa�

da�

dt
¼
X

�

a�D
2

�>0; (S37)

with D� ¼
P

is�ið1�Pi=DiÞ�k. Thus, F always increases and is obviously bound from above. For

small k, the maximum of F is reached for ~P»~D, showing that the system adapts to any static

demand.

S11 Parameters used in figures

If not stated otherwise, we use the following parameters: D ¼ 1, G ¼ 0:35, d ¼ 0, k ¼ 0:015, t a ¼ 3,

a ¼ 45
�, l1 ¼ 8:75, l2 ¼ 875, dt ¼ 1=l2 » 1:14 � 10�3. Since the demand Di is modeled by a stochastic

process which is, in principle, unbounded, there is a non-zero probability that the demand Di

becomes negative. To prevent this behavior in the simulations we set Di ¼ 0:01 if Di<0:01.

Figure 3C–F

Fluctuations: In 1D the matrix M only has one element which we set to M ¼ 7:5,

G ¼ ½0:048; 0:082; 0:16; 0:3�.
System: k ¼ 0:03.

Timescales: t a ¼ t SEPI
a ¼ 1.

Figure 3F shows a running average over 100 steps.
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Figure 3I–L

Fluctuations: a ¼ ½�60; 30;�30; 60�
System: Na ¼ 5, t a ¼ 1=l1, k ¼ 0:02.

SEPI: For a fair comparison, the timescale of SEPI is chosen such that its responsiveness matches the

faster responsiveness of the Na ¼ 5 adapting system (measured in an environment with an isotropic

M with the same determinant as used in Figure 3J–L): t SEPI
a ¼ t a=4:9.

For visualization purposes, to prevent long transients after changes of the activation angle, the regu-

lator activities were capped from below at a� ¼ 0:1.

Figure 3L shows a running average over 100 steps.

Figure 4A

Fluctuations: G from 0 to 0.1 in 40 equidistant steps.

Timescale SEPI: t SEPI
a ¼ t a ¼ 3.

Simulation length: 5 � 107 steps.

Figure 4B

Fluctuations: G ¼ 0:05, anisotropy A=[ 1, 1.05,1.1, 1.15, 1.2 , 1.25, 1.3 , 1.35, 1.4, 1.45, 1.5, 1.55, 1.6

, 1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.25, 3.5, 4, 4.5, 5, 6,

7, 8, 9, 10]. For each value of A and l2 are chosen as: l1 ¼ 1þA2

rA2 , l2 ¼ A2l1 with r ¼ 1=8:75þ 1=875.

Timescale SEPI: t SEPI
a ¼ t a ¼ 3.

Simulation length: 5 � 107 steps.

Figure 5A and B

Fluctuations: Results averaged over activation angles a ¼ ½45; 85; 125; 165; 205�.
System: k ¼ 0:02, t a ¼ 1=l1.

Simulation length: 107 steps.

Figure 6C and Appendix 1—figure 4

The parameters in the simulation were chosen so as to ensure that, first, t x � t a; and second, the

steady-state x stays at 1 (this is analogous to setting x0 ¼ 1 in the main text). Specifically, we used:

t x ¼ 0:01, t a ¼ 1, gþ ¼ g� ¼ 1, n ¼ 2, m ¼ 2, cnþ ¼ 0:5, cm� ¼ 2, kþ ¼ 1:0025 1

cnþþ1
, k� ¼ 1:0025

cm�
cm�þ1

. The

parameters describing the fluctuations of D are chosen as: D ¼ 1, M ¼ 1,

G ¼ ½0:015; 0:025; 0:04; 0:055�.
A brief explanation: While the parameter list is long, there is a simple reasoning which sets most

of these choices, and explains how the parameters of this model need to be related to each other in

order for the adaptation of responsiveness to occur. First of all, we assume that the concentration x

changes on a much faster timescale than the regulator concentrations a; here we choose t a ¼ 1 and

t x ¼ 0:01. Further, the average of DðtÞ is chosen to be equal to one. Then, for small fluctuations of D

we have x» gðaþ � a�Þ. On the other hand, the non-trivial fixed points of the regulator concentration

dynamics are reached if

cnþ
cnþ þ xn

¼ kþ and
xm

cm� þ xm
¼ k�: (S38)

Thus, we can set the equilibrium point of x by choosing kþ, k�, cþ and c�. Here, without loss of

generality, we choose that the fixed point is reached at x¼ x0 ¼ 1 by setting

cnþ
cnþ þ 1

¼ kþ and
1

cm� þ 1
¼ k�: (S39)

For the sought-after effect to occur, the fast fluctuations of x around x0 ¼ 1 need to result in an

effective additional growth of aþ and a�, providing a ‘sensor’ for the variance of D. One possibility
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to get this behavior is to set cm� ¼ 2 and cnþ ¼ 0:5. To avoid the regulator concentrations to grow

indefinitely, kþ and k� need to be a little larger than the determined values in Equation (S39).

Finally, the parameter g can be chosen rather freely; here we choose g¼ 1. Simulation length:

3.2 � 107 steps with dt¼ 3 � 10�3. Panels 6C and S4 D show a running average over 100 timesteps.

Figure 6D and Appendix 1—figure 6:

We used the following parameters for the simulations: t x ¼ 1, t A ¼ 25, P0 ¼ 1, gþ ¼ g� ¼ 5,

k ¼ 10
�3, cm ¼ 1, m ¼ 1. The nonlinearity was chosen as: f ðxÞ ¼ d xn

xnþcn
1

� b with d ¼ 10, cn
1
¼ 10, n ¼ 4,

b ¼ 5 � 10�4. The parameters describing the fluctuations of D are set to: M ¼ 3,

G ¼ ½0:025; 0:05; 0:1; 0:2�. For the mechanism to work, the timescales need to fulfill t A � t x. The

parameters P0, m and c are set by the choice of the fixed-point x0 (here x0 ¼ 1). Simulation length:

3.2 � 107 steps with dt ¼ 3 � 10�3. Panels 6D and S6 D show a running average over 100 timesteps.

Appendix 1—figure 1

System: k from 0.01 to 0.025 in steps of size 1.25 � 10�4.

Simulation length = 5 � 107 steps.
For each simulation, the performance was averaged over the last 107 time steps.

Appendix 1—figure 1 inset

All system parameters as in Figure S1 except for: k from 0.013 to 0.014 in steps of size 2.5 � 10�5.

Simulation length: 108 steps.

For each simulation, the performance was averaged over the last 2 � 107 steps.
The results are binned in 20 equal-width bins.
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