
REMODELING SYNAPSES

Frommice to men
All-trans retinoic acid induces functional and structural plasticity of

synapses in human cortical circuits through the engagement of the spine

apparatus.

J CHRISTIAN ALTHAUS AND MICHAEL A SUTTON

O
ver the last decade, the synapses that

connect neurons have emerged as

important therapeutic targets in a

host of neurological disorders ranging from

autism to Alzheimer’s disease. Synaptic signaling

can either excite or inhibit the postsynaptic neu-

ron, and the vast majority of excitatory synapses

in the mammalian brain rely on structures called

dendritic spines (Figure 1). The ’head’ of each

dendritic spine contains receptors for the chemi-

cal neurotransmitter glutamate, which is

released by the presynaptic neuron. Neurons

can contain different types of glutamate recep-

tors, but the AMPA-type glutamate receptor

(AMPAR) is responsible for the majority of fast

synaptic transmission and also controls the

strength of the synapse.

Many forms of synaptic plasticity – the pro-

cess that allows specific synapses to become

stronger or weaker over time – rely on the addi-

tion and removal of AMPARs (Diering and

Huganir, 2018). These changes are often

accompanied by an increase or decrease in the

size of the dendritic spine head

(Matsuzaki et al., 2004). Changes in synapse

number or strength are a pathological hallmark

of several diseases, including neurodevelopmen-

tal disorders and Alzheimer’s disease

(Forrest et al., 2018), which means that mole-

cules that can consistently modify synapses are

attractive as potential therapeutics. Among the

most promising of these is a derivative of vita-

min A called all-trans retinoic acid, which can

potently increase synaptic strength in cultured

rodent neurons (Aoto et al., 2008). This mole-

cule appears to function as part of a homeostatic

pathway that engages the protein translation

machinery in dendritic spines to increase the

strength of synapses when synaptic input drops

(Jakawich et al., 2010; Wang et al., 2011).

Since all-trans retinoic acid is a potent synap-

tic regulator with a well-defined mechanism of

action, it offers tremendous promise to guide

therapeutic development for disorders charac-

terized by synaptic dysfunction. But the critical

question is whether these effects and mecha-

nisms are readily translatable to the human

brain. Now, in eLife, Andreas Vlachos of the Uni-

versity of Freiburg and colleagues – including

Maximilian Lenz as first author – report striking

parallels between human and rodent neurons in

the synaptic effects of all-trans retinoic acid

(Lenz et al., 2021).

The researchers prepared slices from surgi-

cally resected brain tissue from patients under-

going neurosurgery to ask whether all-trans

retinoic acid has the same effects on human

pyramidal neurons from layer 2/3 of the cortex

as it has on rodent neurons. They found that the

molecule enhanced synaptic currents, without

altering many other features of neuronal excit-

ability. Along with these changes, Lenz et al.

found that all-trans retinoic acid drove enlarge-

ment of dendritic spine heads, but the overall
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density of dendritic spines did not change: this

suggests that all-trans retinoic acid drives

AMPAR accumulation and structural plasticity at

pre-existing synaptic sites. Finally, Lenz et al.

demonstrated that the changes in synaptic

strength induced by all-trans retinoic acid in

human neurons depended on mRNA translation

but not on transcription, a mechanistic signature

first seen in rodent neurons.

Next, Lenz et al. – who are based at the Uni-

versity of Freiburg and Goethe-University Frank-

furt – explored the relationship between

synaptic modulation by all-trans retinoic acid

and the spine apparatus, an organelle that is

present in a subset of dendritic spines and

whose function has remained enigmatic

(Jedlicka and Deller, 2017). They found that all-

trans retinoic acid enlarged the spine apparatus

and, strikingly, that the cross-sectional area of

the spine apparatus varied with the size of the

dendritic spine itself. This suggests that the

spine apparatus might have a key role in the

modulation of synaptic strength by all-trans reti-

noic acid.

To test this hypothesis, Lenz et al. examined

the effects of all-trans retinoic acid in synaptopo-

din knockout mice, which lack the spine appara-

tus. They found that all-trans retinoic acid did

not enhance synaptic currents in cortical pyrami-

dal neurons in the knockout mice; however,

when synaptopodin was reintroduced, all-trans

retinoic acid was able to increase synaptic cur-

rents. Curiously, losing the spine apparatus did

not prevent all-trans retinoic acid from enlarging

dendritic spines, even though spine size was

reduced in the synaptopodin knockout mice.

These results suggest that the spine appara-

tus helps regulate synaptic architecture, but that

all-trans retinoic acid can induce structural

remodeling of synapses independently of this

Figure 1. Remodeling human cortical synapses with all-trans retinoic acid. Left: the synapse modulating effects of

all-trans retinoic acid (atRA) first reported in rodent neurons are preserved in human cortical neurons in intact

cortical circuits. Right: all-trans retinoic acid increases the strength (measured as the number of AMPA-type

glutamate receptors; AMPARs, green) and size of excitatory synapses in layer 2/3 pyramidal neurons in human

cortical slices. All-trans retinoic acid also increases the size of the spine apparatus, a synaptic organelle found in

dendritic spines and previously linked to synapse remodeling (orange). To test whether the spine apparatus is

important for the effects of all-trans retinoic acid on synapses, Lenz et al. compared wild-type (Synpo +, top), and

synaptopodin-deficient (Synpo -, bottom) mice, which lack the spine apparatus. Synapses lacking the spine

apparatus were smaller and failed to increase in strength after applying all-trans retinoic acid. However, applying

the molecule still enlarged the spines without a spine apparatus, demonstrating that this organelle has a specific

role in regulating changes in synaptic strength induced by all-trans retinoic acid.
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organelle. This finding was particularly intriguing

because the enlargement of spines and the

enhancement of synaptic function often go

hand-in-hand. These results underscore the fact

that while morphological and functional changes

are highly coordinated at cortical synapses, they

likely rely on distinct mechanistic pathways.

These results provide a clear answer as to

whether the effects of all-trans retinoic acid in

rodents can be translated to humans. The mole-

cule is a potent regulator of excitatory synapses

in human cortical neurons and uses a mechanism

for synaptic regulation that appears largely con-

served from rodents to humans. The work of

Lenz et al. also raises some important questions

about the role of the spine apparatus in the reg-

ulation of synapses by all-trans retinoic acid in

particular, and by other modulators more

generally.

It is tempting to speculate that the spine

apparatus may be part of a satellite secretory

pathway that delivers locally-translated mem-

brane proteins, such as AMPARs, in dendrites.

However, future studies are needed to address

the specific role of the spine apparatus relative

to other secretory mechanisms that might also

operate in dendrites (Pierce et al., 2001;

Mikhaylova et al., 2016).
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