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Abstract Circular RNAs (circRNAs) are found across eukaryotes and can function in post-

transcriptional gene regulation. Their biogenesis through a circle-forming backsplicing reaction is

facilitated by reverse-complementary repetitive sequences promoting pre-mRNA folding.

Orthologous genes from which circRNAs arise, overall contain more strongly conserved splice sites

and exons than other genes, yet it remains unclear to what extent this conservation reflects

purifying selection acting on the circRNAs themselves. Our analyses of circRNA repertoires from

five species representing three mammalian lineages (marsupials, eutherians: rodents, primates)

reveal that surprisingly few circRNAs arise from orthologous exonic loci across all species. Even the

circRNAs from orthologous loci are associated with young, recently active and species-specific

transposable elements, rather than with common, ancient transposon integration events. These

observations suggest that many circRNAs emerged convergently during evolution – as a byproduct

of splicing in orthologs prone to transposon insertion. Overall, our findings argue against

widespread functional circRNA conservation.

Introduction
First described more than 40 years ago, circular RNAs (circRNAs) were originally perceived as a curi-

osity of gene expression, yet they have gained significant prominence over the last decade

(reviewed in Kristensen et al., 2019; Patop et al., 2019). Large-scale sequencing efforts have led to

the identification of thousands of individual circRNAs with specific expression patterns and, in some

cases, specific functions (Conn et al., 2015; Du et al., 2016; Hansen et al., 2013; Piwecka et al.,

2017). CircRNA biogenesis involves so-called ‘backsplicing’, in which an exon’s 3’ splice site is

ligated onto an upstream 5’ splice site of an exon on the same RNA molecule (rather than down-

stream, as in conventional splicing). Backsplicing occurs co-transcriptionally and is guided by the

canonical splicing machinery (Guo et al., 2014; Ashwal-Fluss et al., 2014; Starke et al., 2015). It

can be facilitated by complementary, repetitive sequences in the flanking introns (Dubin et al.,

1995; Jeck et al., 2013; Ashwal-Fluss et al., 2014; Zhang et al., 2014; Liang and Wilusz, 2014;

Ivanov et al., 2015). Through intramolecular base-pairing and folding, the resulting hairpin-like

structures can augment backsplicing over the competing, regular forward-splicing reaction. Back-

splicing seems to be rather inefficient in most cases, as judged by the low circRNA expression levels

found in many tissues. For example, it has been estimated that about 60% of circRNAs exhibit

expression levels of less than 1 FPKM (fragments per kilobase per million reads mapped) – a com-

monly applied cut-off below which genes are usually considered to not be robustly expressed

(Guo et al., 2014). Due to their circular structure, circRNAs are protected from the activity of cellular

exonucleases, which is thought to favour their accumulation to detectable steady-state levels and,
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together with the cell’s proliferation history, presumably contributes to their complex spatiotemporal

expression patterns (Alhasan et al., 2016; Memczak et al., 2013; Bachmayr-Heyda et al., 2015).

Overall higher circRNA abundances have been reported for neuronal tissues (Westholm et al.,

2014; Gruner et al., 2016; Rybak-Wolf et al., 2015) and during ageing (Gruner et al., 2016;

Xu et al., 2018; Cortés-López et al., 2018).

All eukaryotes (protists, fungi, plants, animals) produce circRNAs (Wang et al., 2014). Moreover,

it has been reported that circRNAs are frequently generated from orthologous genomic regions

across species such as mouse, pig, and human (Rybak-Wolf et al., 2015; Venø et al., 2015), and

that their splice sites have elevated conservation scores (You et al., 2015). In these studies, circRNA

coordinates were transferred between species to identify ‘conserved’ circRNAs. However, the analy-

ses did not distinguish between potential selective constraints actually acting on the circRNAs them-

selves, from those preserving canonical splicing features of genes in which they are formed (termed

‘parental genes’ in the following). Moreover, even though long introns containing reverse comple-

ment sequences (RVCs) appear to be a conserved feature of circRNA parental genes (Zhang et al.,

2014; Rybak-Wolf et al., 2015), the rapid evolutionary changes occurring on the actual repeat

sequences present a considerable obstacle to a thorough evolutionary understanding. Finally, con-

crete examples for experimentally validated, functionally conserved circRNAs are still rather scarce.

At least in part, the reason may lie in the difficulty to specifically target circular vs. linear transcript

isoforms in loss-of-function experiments; only recently, novel dedicated tools for such experiments

have been developed (Li et al., 2021). Currently, however, the prevalence of functional circRNA con-

servation remains overall unclear.

Here, we set out to investigate the origins and evolution of circRNAs; to this end, we generated a

comprehensive set of circRNA-enriched RNA sequencing (RNA-seq) data from five mammalian spe-

cies and three organs. Our analyses unveil that circRNAs are typically generated from a distinct class

of genes that share characteristic structural and sequence features. Notably, we discovered that

circRNAs are flanked by species-specific and recently active transposable elements (TEs). Our find-

ings support a model according to which the integration of TEs is preferred in introns of genes with

similar genomic properties, thus facilitating circRNA formation as a byproduct of splicing around the

same exons of orthologous genes across different species. Together, our work suggests that most

circRNAs – even when occurring in orthologs of multiple species and comprising the same exons –

may nevertheless not trace back to common ancestral circRNAs but have rather emerged conver-

gently during evolution, facilitated by independent TE insertion events.

Results

A comprehensive circRNA dataset across five mammalian species
To explore the origins and evolution of circRNAs, we generated paired-end RNA-seq data for three

organs (liver, cerebellum, testis) in five species (grey short-tailed opossum, mouse, rat, rhesus

macaque, human) representing three mammalian lineages with different divergence times (marsu-

pials; eutherians: rodents, primates) (Figure 1A). For optimal cross-species comparability, all organ

samples originated from young, sexually mature male individuals; we used biological triplicates

(Supplementary file 1), with the exception of human liver (single sample) and rhesus macaque cere-

bellum (duplicates). From the RNA extracted from each sample, we generated two types of libraries;

that is, with and without prior treatment of the RNA with the exoribonuclease RNase R. This strategy

allowed us to enrich for circRNAs (in libraries with RNase R treatment) and to calculate the actual

enrichment factors (from the ratio with/without RNase R treatment). Using a custom pipeline that

took into account RNase R enrichment and other factors to remove likely false-positives and low

expression noise (see Materials and methods and Supplementary file 2), we then identified circR-

NAs from backsplice junction (BSJ) reads, estimated circRNA steady-state abundances, and recon-

structed their isoforms (Supplementary file 3, Figure 1—figure supplement 1, Figure 1—figure

supplement 2).

In total, following rigorous filtering, we identified 1535 circRNAs in opossum, 1484 in mouse,

2038 in rat, 3300 in rhesus macaque, and 4491 circRNAs in human, with overall higher numbers in

cerebellum, followed by testis and liver (Figure 1A, Supplementary file 4). Identified circRNAs were
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Figure 1. Study design, samples, datasets, and characterisation of circRNA properties and hotspots. (A) Phylogenetic tree of species analysed in this

study and detected circRNAs. CircRNAs were identified and analysed in five mammalian species (opossum, mouse, rat, rhesus macaque, human) and

three organs (liver, cerebellum, testis). Each sample was split and one half treated with RNase R to enrich BSJs. A dataset of high confidence circRNAs

was established, based on the enrichment of BSJs in RNase R-treated over untreated samples. To the right of the panel, the total number of circRNAs

for each species in liver (brown), cerebellum (green), and testis (blue) is shown. (B) CircRNA hotspot loci by CPM (human and rhesus macaque). The

graph shows, in grey, the proportion (%) of circRNA loci that qualify as hotspots and, in purple, the proportion (%) of circRNAs that originate from such

hotspots, at three different CPM thresholds (0.01, 0.05, 0.1). The average number of circRNAs per hotspot is indicated above the purple bars. (C)

Number of circRNA hotspot loci found in multiple tissues. The graph shows the proportion (%) of circRNAs (light grey) and of hotspots (dark grey) that

are present in at least two tissues. (D) Contribution of top-1 and top-2 expressed circRNAs to overall circRNA expression from hotspots. The plot shows

the contribution (%) that the two most highly expressed circRNAs (indicated as top-1 and top-2) make to the total circRNA expression from a given

hotspot. For each plot, the median is indicated with a grey point. (E) Example of the Kansl1l hotspot in rat. The proportion (%) for each detected

circRNA within the hotspot and tissue (cerebellum = green, testis = blue) are shown. The strongest circRNA is indicated by an asterisk. rnCircRNA-819

is expressed in testis and cerebellum.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure 1 continued on next page
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generally small in size, overlapped with protein-coding exons, frequently detectable only in one of

the tissues, and were flanked by long introns (Figure 1—figure supplement 3).

The identification of circRNA heterogeneity and hotspot frequency is
determined by sequencing depth and detection thresholds
Many genes give rise to multiple, distinct circRNAs (Venø et al., 2015). Such ‘circRNA hotspots’ are

of interest as they may be enriched for genomic features that drive circRNA biogenesis. A previous

study defined hotspots as genomic loci that produced at least ten structurally different, yet overlap-

ping circRNAs (Venø et al., 2015). Reaching a specific number of detectable circRNA species for a

given locus (e.g. 10 distinct circRNAs, as in the cited example) is likely strongly dependent on overall

sequencing depth and on the CPM (counts per million) detection cut-off that is applied. We there-

fore compared circRNA hotspots identified at different CPM values (0.1, 0.05, and 0.01 CPM); more-

over, to capture in a comprehensive fashion the phenomenon that multiple circRNAs can be

generated from a gene, we considered genomic loci already as hotspots if they produced a mini-

mum of two different, overlapping circRNAs at the applied CPM threshold. As expected, the num-

ber of hotspots – and the number of individual circRNAs that they give rise to – depend on the

chosen CPM threshold (Figure 1B for human and rhesus macaque data; Figure 1—figure supple-

ment 4 for other species). Thus, at 0.1 CPM only 16–27% of all detected circRNA-generating loci are

classified as hotspots. Decreasing the stringency to 0.01 CPM increases the proportion of hotspot

loci to 32–45%. At the same time, the fraction of circRNAs that originate from hotspots (rather than

from non-hotspot loci) increases from 34–49% (0.1 CPM) to 59–76% (0.01 CPM), and the number of

circRNAs per hotspot increases from 2 to 6. Together, these analyses show that with lower CPM

thresholds, the number of distinct circRNAs that become detectable per locus increases substan-

tially; the number of detectable individual circRNA-generating loci increases as well, yet this effect is

overall smaller. Furthermore, we observed that in many cases the same hotspots produces circRNAs

across multiple organs (Figure 1C), with typically one predominant circRNA expressed per organ

(Figure 1D). The Kansl1l hotspot locus is a representative example: it is a hotspot in rat, where it

produces six different circRNAs (Figure 1E). It is also a hotspot in all other species and produces 8,

5, 7, and 6 different circRNAs in opossum, mouse, rhesus macaque and human, respectively (data

not shown).

Overall, we concluded that the expression levels of many circRNAs are low. Increasing the sensi-

tivity of detection (i.e. lowering CPM thresholds) led to a substantial gain in the detectability of addi-

tional, low-expressed circRNA species, but less so of additional circRNA-generating genomic loci.

These findings raised the question whether many of the circRNAs that can be identified reflected a

form of gene expression noise that occurred preferentially at hotspot loci, rather than functional

transcriptome diversity.

CircRNAs formed in orthologous loci across species preferentially
comprise constitutive exons
We therefore sought to assess the selective preservation – and hence potential functionality – of

circRNAs. For each gene, we first collapsed circRNA coordinates to identify the maximal genomic

locus from which circRNAs can be produced (Figure 2A). In total, we annotated 5428 circRNA loci

across all species (Figure 2A). The majority of loci are species-specific (4103 loci; corresponding to

75.6% of all annotated loci); there are only comparatively few instances where circRNAs arise from

orthologous loci in the different species (i.e. from loci that share orthologous exons in corresponding

1:1 orthologous genes; Figure 2A). For example, only 260 orthologous loci (4.8% of all loci) give rise

to circRNAs in all five species (Figure 2A). A considerable proportion of these shared loci also corre-

spond to circRNA hotspots (opossum: 28.0%, mouse: 43.6%, rat: 53.0%, rhesus macaque: 46.2%,

Figure 1 continued

Figure supplement 1. Overview of the reconstruction pipeline.

Figure supplement 2. Mapping summary of RNA-seq reads.

Figure supplement 3. General circRNA properties.

Figure supplement 4. CircRNA hotspot loci by CPM (opossum, mouse, rat).
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Figure 2. Evolutionary properties of circRNAs. (A) CircRNA loci overlap between species. Upper panel: Schematic representation of the orthology

definition used in our study. CircRNAs were collapsed for each gene, and coordinates were lifted across species. Lower panel: Number of circRNA loci

that are species-specific (red) or circRNAs that arise from orthologous exonic loci of 1:1 orthologous genes (i.e. circRNAs sharing 1:1 orthologous exons)

across lineages (purple) are counted. We note that in the literature, other circRNA ‘orthology’ definitions can be found, too. For example, assigning

Figure 2 continued on next page
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human: 61.6%; calculated from hotspot counts in Figure 1B and loci counts in Figure 2A). Thus,

despite applying circRNA enrichment strategies for library preparation and lenient thresholds for

computational identification, the number of potentially conserved orthologous circRNAs is surpris-

ingly low. At first sight, this outcome is at odds with previous reports of higher circRNA conservation

that were, however, frequently based on more restricted cross-species datasets (e.g. comparison

human-mouse in Rybak-Wolf et al., 2015). Further analyses confirmed that also in our datasets, it

was the use of additional evolutionary species that drove the strong reduction in potentially con-

served circRNA candidates – see for example how the addition of the rat or of rhesus macaque data-

sets affect the human-mouse comparison (Figure 2—figure supplement 1B).

We next analysed the properties of circRNA exons and started with phastCons scores, which are

based on multiple alignments and known phylogenies and describe conservation levels at single-

nucleotide resolution (Siepel et al., 2005). To assess whether circRNA exons were distinct from non-

circRNA exons in their conservation levels, we calculated phastCons scores for different exon types

(circRNA exons, non-circRNA exons, UTR exons). CircRNA exons showed higher phastCons scores

than exons from the same genes that were not spliced into circRNAs (Figure 2B). This would be the

expected outcome if purifying selection acted on functionally conserved circRNAs. However, other

mechanisms may be relevant as well; constitutive exons, for example, generally exhibit higher con-

servation scores than alternative exons (Modrek and Lee, 2003; Ermakova et al., 2006). We thus

analysed exon features in more detail. First, the comparison of phastCons scores between exons of

non-parental genes, parental genes and circRNAs revealed that parental genes were per se highly

conserved (Figure 2B): 85–95% of the observed median differences between circRNA exons and

non-parental genes could be explained by the parental gene itself. Next, we compared the usage of

parental gene exons across organs (Figure 2C). We observed that circRNA exons are more fre-

quently used in isoforms expressed in multiple organs than non-circRNA parental gene exons.

Finally, we analysed the sequence composition at the splice sites, which revealed that GC amplitudes

(i.e. the differences in GC content at the intron-exon boundary) are significantly higher for circRNA-

internal exons than for parental gene exons that were located outside of circRNAs (Figure 2D).

Collectively, these observations (i.e. increased phastCons scores, expression in multiple tissues,

increased GC amplitudes) prompt the question whether the exon properties associated with circR-

NAs actually reflect at their core an enrichment for constitutive exons. Under this scenario, the sup-

posed high conservation of circRNAs may not be directly associated with the circRNAs themselves,

but with constitutive exons that the circRNAs contain. Thus, even many of the circRNAs ‘shared’

across species might actually not be homologous. That is, rather than reflecting (divergent) evolution

from common ancestral circRNAs (Figure 2E, left panel), they may frequently have emerged inde-

pendently (convergently) during evolution in the lineages leading to the different species, thus

potentially representing ‘analogous’ transcriptional traits (Figure 2E, right panel).

Figure 2 continued

circRNA orthology simply based on parental gene orthology implies calling also those circRNAs ‘orthologous’ that do not share any orthologous exons,

which directly argues against the notion of circRNA homology; that is, a common evolutionary origin (see Figure 2—figure supplement 1A). Overall,

the orthology considerations we applied largely follow the ideas sketched out in Patop et al., 2019. (B) Distribution of phastCons scores for different

exon types. PhastCons scores were calculated for each exon using the conservation files provided by ensembl. PhastCons scores for non-parental exons

(grey), exons in parental genes, but outside of the circRNA (pink) and circRNA exons (purple) are plotted. The difference between circRNA exons and

non-parental exons that can be explained by parental non-circRNA exons is indicated above the plot. (C) Mean tissue frequency of different exon types

in parental genes. The frequency of UTR exons (grey), non-UTR exons outside of the circRNA (pink) and circRNA exons (purple) that occur in one, two,

or three tissues was calculated for each parental gene. (D) Distribution of splice site amplitudes for different exon types. Distribution of median splice

site GC amplitude (log2-transformed) is plotted for different exon types (np = non-parental, po = parental, but outside of circRNA, pi = parental and

inside circRNA). Red vertical bars indicate values at which exon and intron GC content would be equal. (E) Different evolutionary models explaining the

origins of overlapping circRNA loci.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. CircRNA loci overlap between species.

Figure supplement 2. Amplitude correlations.
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CircRNA parental genes are associated with low GC content and high
sequence repetitiveness
To explore whether convergent evolution played a role in the origination of circRNAs, we set out to

identify possible structural and/or functional characteristics that may establish a specific genomic

environment (a ‘parental gene niche’) that would potentially favour analogous circRNA production.

To this end, we compared GC content and sequence repetitiveness of circRNA parental vs. non-

parental genes.

GC content is an important genomic sequence characteristic associated with distinct patterns of

gene structure, splicing and function (Amit et al., 2012). We realised that the increased GC ampli-

tudes at circRNA exon-intron boundaries (see above, Figure 2D) were mainly caused by a local

decrease of intronic GC content rather than by an increase in exonic GC content

(Supplementary file 5, Figure 2—figure supplement 2). We subsequently explored the hypothesis

that GC content could serve to discriminate parental from non-parental genes and grouped all

genes into five categories from low (L) to high (H) GC content (isochores; L1 <37%, L2 37–42%, H1

42–47%, H2 47–52% and H3 >52% GC content) (Figure 3A). Non-parental genes displayed a unimo-

dal distribution in the two rodents (peak in H1), were generally GC-poor in opossum (peak in L1),

and showed a more complex isochore structure in rhesus macaque and human (peaks in L2 and H3),

in agreement with previous findings (Galtier and Mouchiroud, 1998; Mikkelsen et al., 2007). Nota-

bly, circRNA parental genes showed a distinctly different distribution than non-parental genes and a

consistent pattern across all five species, with the majority of genes (82–94% depending on species)

distributing to the GC-low gene groups, L1 and L2 (Figure 3A).

We next analysed intron repetitiveness – a structural feature that has previously been associated

with circRNA biogenesis. We used megaBLAST to align all annotated coding genes with themselves

in order to identify regions of complementarity in the sense and antisense orientations of the gene

(reverse complement sequences, RVCs) (Ivanov et al., 2015). We then compared the level of self-

complementarity between parental and non-parental genes within the same GC isochore of note,

self-complementarity generally shows negative correlations with GC-content. This analysis revealed

more pronounced self-complementarity for parental genes than for non-parental genes (Figure 3B).

CircRNA parental genes may also show an association with specific functional properties. Using

data from three human cell studies (Steinberg et al., 2015; Pai et al., 2012; Koren et al., 2012),

our analyses revealed that circRNA parental genes are biased towards early replicating genes,

showed higher steady-state expression levels, and are characterised by increased haploinsufficiency

scores (Figure 3—figure supplement 1). Collectively, we conclude that circRNA parental genes

exhibit not only distinct structural features (low GC content, high repetitiveness), but also specific

functional properties associated with important roles in human cells.

Among the multiple predictors of circRNA parental genes, low GC
content distinguishes circRNA hotspots
The above analyses established characteristic sequence, conservation and functional features for

circRNA parental genes. Using linear regression analyses, we next determined which of these prop-

erties represented the main predictor(s). We used parental vs. non-parental gene as the response

variable of the model, and several plausible explanatory variables. These were: GC content; exon

and transcript counts; genomic length; number of repeat fragments in sense/antisense; expression

level; phastCons score; tissue specificity index. After training the model on a data subset (80%),

circRNA parental gene predictions were carried out on the remainder of the dataset (20%) (see

Materials and methods). Notably, predictions occurred with high precision (accuracy 72–79%, sensi-

tivity of 75%, specificity 71–79% across all species) and uncovered several significantly associated

features (Table 1, Supplementary file 6, Figure 3—figure supplement 2). Consistently for all spe-

cies, the main parental gene predictors are low GC content (log-odds ratio -1.84 to -0.72) and

increased number of exons in the gene (log-odds ratio 0.30 to 0.45). Furthermore, features positively

associated with circRNA production are increased genomic length (log-odds ratio 0.17 to 0.26),

increased proportion of reverse-complementary areas (repeat fragments) within the gene (log-odds

ratio 0.20 to 0.59), increased expression levels (log-odds ratio 0.25 to 0.38) and higher phastCons

scores (log-odds ratio 0.45 to 0.58) (Table 1, Figure 3C–D, Supplementary file 6). Notably, parental

genes of previously reported functional human circRNAs – for example, circHipk3 (Zheng et al.,
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Figure 3. Characterisation of circRNA parental gene properties. (A) GC content of parental genes. Coding genes were classified into L1-H3 based on

their GC content, separately for non-parental (grey) and parental genes (purple). The percentage of parental genes in L1-L2 (opossum, mouse, rat) and

L1-H1 (rhesus macaque, human) is indicated above the respective graphs. (B) Complementarity in coding genes. Each coding gene was aligned to itself

in sense and antisense orientation using megaBLAST. The proportion of each gene involved in an alignment was calculated and plotted against its

Figure 3 continued on next page
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2016) and circMbnl1 (Ashwal-Fluss et al., 2014) that sequester miRNAs and proteins, respectively –

obtain high prediction values in our model and share the above specific properties (Figure 3—figure

Figure 3 continued

isochore. (C-D) Examples of parental gene predictors for linear regression models. A generalised linear model (GLM) was fitted to predict the

probability of the murine coding gene to be parental, whereby x- and y-axis represent the strongest predictors. Colour and size of the discs correspond

to the p-values obtained for 500 genes randomly chosen from all mouse coding genes used in the GLM. (E) Model of circRNA niche.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Replication time, gene expression steady-state levels and GHIS of human parental genes.

Figure supplement 2. Distribution of prediction values for non-parental and parental circRNA genes.

Figure supplement 3. Properties of ‘functional circRNAs’ from literature.

Figure supplement 4. Validation of parental gene GLM on Werfel et al. dataset.

Figure supplement 5. Properties of highly expressed circRNAs.

Table 1. Generalised linear model predicting the probability of coding genes to be a parental gene.

A generalised linear model was fitted to predict the probability of coding genes to be a parental

gene (nopossum = 18807, nmouse = 22015, nrat = 11654, nrhesus = 21891, nhuman = 21744). The model was

trained on 80% of the data (scaled values, cross-validation, 1000 repetitions). Only the best predictors

were kept and then used to predict probabilities for the remaining 20% of data points (validation set,

shown in table). Genomic length, number of exons and GC content are based on the respective

ensembl annotations; number of repeats in antisense and sense orientation to the gene was esti-

mated using the RepeatMasker annotation, phastCons scores taken from UCSC (not available for

opossum and rhesus macaque) and expression levels and the tissue specificity index based on

Brawand et al., 2011. An overview of all log-odds ratios and p-values calculated in the validation set

of each species is provided in the table, further details can be found in Supplementary file 6. Abbre-

viations: md = opossum, mm = mouse, rn = rat, rm = rhesus macaque, hs = human. Significance lev-

els: ‘***’ < 0.001, ‘**’ < 0.01, ‘*’ < 0.05, ‘ns’ >= 0.05.

Predictor Log-odds range (significance) Species with significant predictor

Genomic gene length (bp) rn: 0.26 (***)
rm: 0.17 (***)
hs: 0.26 (***)
md, mm: ns

rn, rm, hs

Number of exons md: 0.45 (***)
mm: 0.38 (***)
rn: 0.30 (***)
rm: 0.42 (***)
hs: 0.32 (***)

md, mm, rn, rm, hs

GC content md: -1.84(***)
mm: -1.09(***)
rn: -0.72(***)
rm: -1.44(***)
hs: -1.42(***)

md, mm, rn, rm, hs

Repeat fragments (antisense) md: 0.28 (**)
mm: 0.20 (**)
rm: 0.59 (***)
rn, hs: ns

md, mm, rm

Repeat fragments (sense) hs: 0.58 (***)
md, mm, rn, rm: ns

hs

PhastCons scores mm: 0.58 (***)
rn: 0.51 (***)
hs: 0.45 (***)

mm, rn, hs

Mean expression levels md: 0.34 (**)
rm: 0.38 (***)
hs: 0.25 (**)
mm, rn: ns

md, rm, hs

Tissue specificity index md, mm, rn, rm, hs: ns -
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supplement 3). In addition, the identified circRNA parental gene predictors were not restricted to

our datasets but could be determined from independent circRNA data as well. Thus, the analysis of

mouse and human heart tissue data (Werfel et al., 2016) – on which our linear regression models

predicted parental genes with comparable accuracy (74%), sensitivity (75%), and specificity (74%) –

revealed that circRNA parental genes were low in GC content, exon-rich, and showed enrichment

for repeats (Figure 3—figure supplement 4). In conclusion, the identified properties likely represent

generic characteristics of circRNA parental genes that are suitable to distinguish them from non-

parental genes.

Many circRNAs are formed from circRNA hotspots (Figure 1C). We therefore asked whether

among the features that our regression analysis identified for parental genes, some would be suit-

able to further distinguish hotspots. First, we assessed whether hotspots were more likely to be

shared between species than parental genes that produced only a single circRNA isoform. The

applied regression model indeed detected a positive correlation between the probability of a paren-

tal gene being a hotspot and having orthologous parental genes across multiple species

(Supplementary file 7); moreover, log-odds ratios increased with the distance and number of spe-

cies across which the hotspot was shared (e.g. mouse: 0.29 for shared within rodents, 0.67 for shared

with eutherian species and 0.72 for shared within therian species). We next interrogated whether

any particular feature would be able to specify circRNA hotspots among parental genes. A single

factor, low GC content, emerged as a consistent predictor for circRNA hotspots among all circRNA-

generating loci (Supplementary file 8). As expected, the predictive power was lower than that of

the previous models, which were designed to discriminate parental vs. non-parental genes and

which had identified low GC content as well. These findings imply that hotspots emerge across spe-

cies in orthologous loci that offer similarly favourable conditions for circRNA formation, most impor-

tantly low GC content. The increased number of circRNAs that become detectable when CPM

thresholds are lowered (see above, Figure 1C) is also in agreement with the sporadic formation of

different circRNAs whenever genomic circumstances allow for it. Overall, our observations suggest

that differences between hotspot and non-hotspot loci, or between high and low abundance circR-

NAs, are quantitative rather than qualitative in nature. Thus, the comparison of high vs. low expres-

sion circRNAs (based on 90% expression quantile; below = low, above = high expression) indicated

the same set of properties, albeit amplified, in the highly expressed circRNAs (Supplementary file

9). Parental genes of highly expressed circRNAs in opossum, rhesus macaque and human yielded

higher prediction values in our generalised linear model, which was consistently driven by low GC

content (Supplementary file 9). High expression circRNAs were also more likely to be expressed in

all three tissues (Figure 3—figure supplement 5A) and to originate from a hotspot (Figure 3—fig-

ure supplement 5B), and they were more often shared across multiple species (Figure 3—figure

supplement 5C, Supplementary file 10).

Collectively, our analyses thus reveal that circRNA parental genes are characterised by a set of

distinct features: low GC content, increased genomic length and number of exons, higher expression

levels and increased phastCons scores (Figure 3E). These features were detected independently

across species, suggesting the presence of a unique, syntenic genomic niche in which circRNAs can

be produced (‘circRNA niche’). While helpful to understand the genomic context of circRNA produc-

tion, these findings do not yet allow us to distinguish between the two alternative models of diver-

gent and convergent circRNA evolution (Figure 2E). To elucidate the evolutionary trajectory and

timeline underlying the emergence of the circRNAs, we sought to scrutinize the identified feature

‘complementarity and repetitiveness’ of the circRNA niche. Previous studies have associated repeti-

tiveness with an over-representation of small TEs – such as primate Alu elements or the murine B1

elements – in circRNA-flanking introns; these TEs may facilitate circRNA formation by providing

RVCs that are the basis for intramolecular base-pairing of nascent RNA molecules (Ivanov et al.,

2015; Jeck et al., 2013; Zhang et al., 2014; Wilusz, 2015; Liang and Wilusz, 2014). Interestingly,

while the biogenesis of human circRNAs has so far been mainly associated with the primate-specific

(i.e. evolutionarily young) Alu elements, a recent study has highlighted several circRNAs that rely on

the presence of the more ancient, mammalian MIR elements (Yoshimoto et al., 2020). A compre-

hensive understanding of the evolutionary age of TEs in circRNA-flanking introns could thus provide

important insights into the modes of circRNA emergence: the presence of common (i.e. old) repeats

would point towards divergent evolution of circRNAs from a common circRNA ancestor, whereas an
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over-representation of species-specific (i.e. recent) repeats would support the notion of convergent

circRNA evolution (Figure 3E).

CircRNA flanking introns are enriched in species-specific TEs
Using our cross-species datasets, we investigated the properties and composition of the repeat

landscape relevant for circRNA biogenesis – features that have remained poorly characterised so far.

As a first step, we generated for each species a background set of ‘control introns’ from non-

circRNA genes that were matched to the circRNA flanking introns in terms of length distribution and

GC content. We then compared the abundance of different repeat families within the two intron

groups. In all species, TEs belonging to the class of Short Interspersed Nuclear Elements (SINEs) are

enriched within the circRNA flanking introns as compared to the control introns. Remarkably, the

resulting TE enrichment profiles were exquisitely lineage-specific, and even largely species-specific

(Figure 4A). In mouse, for instance, the order of enrichment is from the B1 class of rodent-specific B

elements (strongest enrichment and highest frequency of >7.5 TEs per flanking intron) to B2 and B4

SINEs. In rat, B1 (strong enrichment, yet less frequent than in mouse) is followed by ID (Identifier)

elements, which are a family of small TEs characterised by a recent, strong amplification history in

the rat lineage (Kim et al., 1994; Kim and Deininger, 1996); B2 and B4 SINEs only followed in 3rd

and 4th position. In rhesus macaque and human, Alu elements are the most frequent and strongly

enriched TEs (around 14 TEs per intron), consistent with the known strong amplification history in

the common primate ancestor (reviewed in Batzer and Deininger, 2002; Figure 4A). The opossum

genome is known for its high number of TEs, many of which may have undergone a very species-spe-

cific amplification pattern (Mikkelsen et al., 2007). This is reflected in the distinct opossum enrich-

ment profile (Figure 4—figure supplement 1).

As pointed out above, TEs are relevant for circRNA formation because they can provide RVCs for

the intramolecular base-pairing of nascent RNA molecules (Ivanov et al., 2015; Jeck et al., 2013;

Zhang et al., 2014; Wilusz, 2015; Liang and Wilusz, 2014). Pre-mRNA folding into a hairpin with a

paired stem (formed by the flanking introns via the dimerised RVCs) and an unpaired loop region

(carrying the future circRNA) leads to a configuration that brings backsplice donor and acceptor sites

into close proximity, thus facilitating circRNA formation. In order to serve as efficient RVCs via this

mechanism, TEs likely need to fulfil certain criteria. Thus, the dimerisation potential is expected to

depend on TE identity, frequency, and position. In the simplest case, two integration events involv-

ing the same TE (in reverse orientation) will lead to an extended RVC stretch. Yet also different trans-

posons belonging to the same TE family will show a certain degree of sequence similarity that

depends on their phylogenetic distance; sequence differences that have evolved are likely to com-

promise the base-pairing potential. To account for such effects, we sought to calculate the actual

binding energies for RVC interactions and combine this analysis with phylogenetic distance informa-

tion, thus potentially allowing us to detect the most likely drivers of circRNA formation, as well as

their evolutionary age.

Our analyses revealed that relatively few specific dimers represented the majority of all predicted

dimers (i.e. top-5 dimers accounted for 78% of all dimers in flanking introns in opossum, and for

50%, 55%, 43%, and 38% in mouse, rat, rhesus macaque and human, respectively) (Figure 4B).

Given the high abundance of young, still active transposons in the respective genomes (Figure 4A),

we suspected that simply basing our further analyses of dimerisation potential on phylogenetic dis-

tance between different TEs would not provide sufficient resolution. Indeed, as shown for mouse

(Figure 4C–D), phylogenetic age separates large subgroups, but not TEs of the same family whose

sequences have diverged by relatively few nucleotides. By contrast, classification by binding affinities

creates more precise, smaller subgroups that lack, however, the information on phylogenetic age

(Figure 4E). Therefore, we combined both age and binding affinity information into an overall ‘pair-

ing score’ (see Materials and methods). Principal component analysis (PCA) showed that this mea-

sure efficiently separated different TE families and individual family members, with PC1 and PC2

explaining approximately 76% of observed variance (Figure 4F; Figure 4—figure supplement 2).

Importantly, this analysis suggests that the most frequently occurring dimers (top-5 dimers are

depicted with blue connecting lines in Figure 4F) are formed by recently active TE family members.

In mouse, an illustrative example are the dimers formed by the B1_Mm, B1_Mus1, and B1_Mus2 ele-

ments (Figure 4F), which are among the most recent (and still active) TEs in this species (Figure 4C).

Across species, our analyses allowed for the same conclusions. For example, the dominant dimers in
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A: Enrichment of transposable elements in flanking introns
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Figure 4. Analysis of the repeat landscape of circRNA parental genes. (A) Enrichment of TEs in flanking introns for mouse, rat, rhesus macaque and

human. The number of TEs was quantified in both intron groups (circRNA flanking introns and length- and GC-matched control introns). Enrichment of

TEs is represented by colour from high (dark purple) to low (grey). The red numbers next to the TE name indicate the top-3 enriched TEs in each

species. Enrichment was assessed using a Wilcoxon Signed Rank Test; p-values are indicated at the bottom of each plot. (B) Top-5 dimer contribution.

The graph shows the proportion of top-5 dimers (purple) vs. other, remaining dimers (white) to all predicted dimers in flanking introns. Top-5 dimers

thus account for 78, 50, 55, 43, and 38% of all dimers in opossum, mouse, rat, rhesus macaque and human, respectively. (C) Phylogeny of mouse TEs.

Clustal-alignment based on consensus sequences of TEs. Most recent TEs are highlighted. (D) PCA for phylogenetic age of mouse TE families. PCA is

Figure 4 continued on next page
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rat were the recently amplified ID elements, and not the more abundant (yet older in their amplifica-

tion history) B1 family of TEs (Figure 4—figure supplement 2B; Kim et al., 1994; Kim and Dein-

inger, 1996). In opossum, the most prominent dimers consisted of opossum-specific SINE1

elements, which are similar to the Alu elements in primates, but possess an independent origin (Fig-

ure 4—figure supplement 2A; Gu et al., 2007). Finally, within the primate lineage, the dimer com-

position was more uniform, probably due to the high amplification rate of the AluS subfamily

(>650000 copies) in the common ancestor of Old World monkeys and the relatively recent diver-

gence time of macaque and human (Figure 4—figure supplement 2C–D; Deininger, 2011).

In conclusion, the above analyses of RVCs revealed that dimer-forming sequences in circRNA

flanking introns were most frequently composed of recent, and often currently still active, TEs.

Therefore, the dimer repertoires were specific to the lineages (marsupials, rodents, primates) and/or

(as most clearly visible within the rodent lineage) even species-specific.

Flanking introns of shared circRNA loci are enriched in evolutionarily
young TEs
We next compared the dimer composition of introns from shared vs. species-specific circRNA loci.

We reasoned that in the case of shared circRNA loci that have evolved from a common, ancestral

circRNA, we would detect evidence for evolutionarily older TE integration events and shared dimers

as compared to species-specific, younger circRNA loci. For our analysis, we took into account the

frequency, enrichment, and age of the TEs and, moreover, their degradation rate (milliDiv; see

below) and the minimal free energy (MFE) of the dimer structure.

First, we analysed the dimer composition of flanking introns in shared and species-specific

circRNA loci. We extracted the top-100 most and least frequent dimers of all circRNA loci, and com-

pared their enrichment factors and mean age (categorised for simplicity into four groups: 1 = spe-

cies-specific, 2 = lineage-specific, 3 = eutherian, 4 = therian) across the two groups of parental

genes (shared and species-specific). The analysis revealed that the most frequent dimers are consis-

tently formed by the youngest elements in both groups of genes, and that the frequency distribution

of the top-100 dimers was significantly different between species (see Figure 5A for rat and human;

other species in Figure 5—figure supplement 1). In rat, for instance, all top-5 dimers are composed

of repeats from the youngest ID family members; in human, dimers involving AluY elements are

strongly enriched (Figure 5A). On average, most dimers occur at least once or twice per shared

circRNA gene, corresponding to a 1.4- to 2.1-fold enrichment in comparison to species-specific

circRNA loci (Supplementary file 11). Conceivably, the multiple resulting dimerisation possibilities

could act cumulatively to position circRNA exons for backsplicing. Furthermore, we observed that

many RVCs overlapped each other, so that one repeat in one RVC could dimerise with different

repeats in multiple other RVCs. Due to the increased frequency of young repeat elements in shared

circRNA loci, these ‘co-pairing possibilities’ further increase the number of possible dimers that can

be formed (Figure 5—figure supplement 2). A representative example for a shared circRNA-gener-

ating locus with its complex dimer interaction landscape, involving young species-specific repeats, is

the Akt3 locus (Figure 5B). Thus, although Akt3 circRNAs are shared between human (upper panel),

mouse (middle panel), and opossum (lower panel), the dimer landscapes are entirely specifies-spe-

cific (see top-5 dimers that are highlighted in the figure).

Figure 4 continued

based on the clustal-alignment distance matrix for the reference sequences of all major SINE families in mouse with the MIR family used as an

outgroup. TEs present in the top-5 dimers are labelled. (E) PCA based on binding affinity of mouse TE families. PCA is based on the minimal free

energy (MFE) for all major SINE families in mouse with the MIR family used as an outgroup. TEs present in the top-5 dimers are labelled. (F) PCA for TE

pairing score of mouse dimers. PCA is based on a merged and normalised score, taking into account binding strength of the dimer structure (=MFE)

and phylogenetic distance. Absolute frequency of TEs is visualised by circle size. TEs present in the five most frequent dimers (top-5) are highlighted by

blue lines connecting the two TEs engaged in a dimer (most frequent dimer in dark blue = rank 1). If the dimer is composed of the same TE family

members, the blue line loops back to the TE (=blue circle).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Enrichment of transposable elements in flanking introns for opossum.

Figure supplement 2. PCA and phylogeny of opossum, rat, rhesus macaque, and human repeat dimers.
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A: Dimer enrichment (shared vs. species-specific circRNA loci)
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Figure 5. Repeat analysis and dimer potential of shared and species-specific parental genes. (A) Dimer enrichment in shared vs. species-specific

repeats in rat and human (see Figure 5—figure supplement 1 for other species). The frequency (number of detected dimers in a given parental gene),

log2-enrichment (shared vs. species-specific) and mean age (defined as whether repeats are species-specific: age = 1, lineage-specific: age = 2,

eutherian: age = 3, therian: age = 4) of the top-100 most frequent and least frequent dimers in parental genes with shared and species-specific circRNA

Figure 5 continued on next page
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The above observations suggest that circRNA-producing genes act as ‘transposon sinks’ that are

prone to insertions of active repeats. Continuously attracting new transposons could contribute to

the mechanism that sustains backsplicing and underlies reproducible circRNA expression levels.

Moreover, through the recurring addition of new functional repeats, new dimerisation potential

would be generated that could make older TEs redundant and allow them to rapidly degrade, thus

explaining why ancient TE integration events are no longer detectable. If a circRNA is functionally

important for the organism, especially the young, dimerisation-competent repeats may evolve under

purifying selection and maintain their pairing ability. We therefore reasoned that low degradation

rates in young dimers of shared circRNA loci could hint at functionality. We followed up this idea by

analysing the degradation rates of repeats based on their milliDiv values. Briefly, the RepeatMasker

annotations (Smit et al., 2013) (http://repeatmasker.org; see Materials and methods) provide a

quantification of how many ‘base mismatches in parts per thousand’ have occurred between each

specific repeat copy in its genomic context and the repeat reference sequence. This deviation from

the consensus sequence is expressed as the milliDiv value. Thus, a high milliDiv value implies that a

repeat is strongly degraded, typically due to its age (the older the repeat, the more time its

sequence has had to diverge). Low milliDiv values suggest that the repeat is younger (i.e. it had less

time to accumulate mutations) or that purifying selection prevented the accumulation of mutations.

Following this rationale, we determined in each species the degradation rates for the repeats

forming the top-5 dimers. Comparing their milliDiv values species-specific parental genes revealed

no significant differences in any of the species (Figure 5C – left panel, Figure 5—figure supplement

3 – left panel). Because degradation rates alone may not fully capture the actual decline in pairing

strength within a dimer (e.g. compensatory changes and dimer length are not/poorly accounted for),

we further analysed actual binding energies. To this end, we selected the least-degraded dimer for

every parental gene in both groups (shared/species-specific) and calculated the minimal free ener-

gies (MFEs) of dimer formation. We detected no difference between the groups, suggesting that

dimers of shared circRNA loci are not subject to a specific selection pressure, but degrade identically

to dimers in species-specific circRNA loci (Figure 5C – right panel, Figure 5—figure supplement 3

– right panel). Furthermore, we observed that dimers comprising ‘intermediate age’ repeats (i.e.

B1_Mur2, B1_Mur3, B1_Mur4, present in Muridae) could be found in the species-specific ‘least-

degraded’ dimers, yet they were absent from the shared group, which rather contained the top-1/

top-2 most enriched and youngest dimers (e.g. AluSx+AluY and AluSx1+AluY in human Figure 5C;

ID_Rn1+ID_Rn1 and ID_Rn1+ID_Rn2 in rat) (Figure 5C, Figure 5—figure supplement 3C).

Taken together, we conclude that circRNAs are preferentially formed from loci that have

attracted transposons in recent evolutionary history. Even in the case of shared circRNA loci the

Figure 5 continued

loci in rat and human were analysed. The frequency is plotted on the x- and y-axis, point size reflects the age and point colour the enrichment (blue =

decrease, red = increase). Based on the comparison between shared and species-specific dimers (using a Wilcoxon Signed Rank Test), the top-5 dimers

defined by frequency and enrichment are highlighted and labelled in red. (B) Species-specific dimer landscape for the Akt3 gene in human, mouse and

opossum. UCSC genome browser view for the parental gene, circRNAs and top-5 dimers (as defined in panel B). Start and stop positions of each dimer

are connected via an arc. Dimers are grouped by composition represented by different colours, the number of collapsed dimers is indicated to the

right-side of the dimer group. Only dimers that start before and stop after a circRNAs are shown as these are potentially those that can contribute to

the hairpin structure. The human Akt3 gene possesses two circRNA clusters. For better visualisation, only the upstream cluster is shown. (C)

Degradation rates (MilliDivs) and minimal free energy (MFE) for top-5 dimers in human. MilliDiv values for all repeats composing the top-5 dimers

(defined by their presence in all parental genes) were compared between parental genes of species-specific (red) and shared (blue) circRNA loci in

human (see Figure 5—figure supplement 3 for other species). A Wilcoxon Signed Rank Test was used to compare dimers between parental genes

with shared and species-specific circRNA loci, with p-values plotted above the boxplots. MFE values were compared between the least degraded

dimers in parental genes of species-specific (red) and shared (blue) circRNA loci. MFE values were calculated using the genomic sequences of all top-5

dimers. For each parental gene, the least degraded dimer (based on its mean milliDiv value) was then chosen which let to a strong enrichment of only a

subset of the top-5 dimers (in this case AluSx+AluY and AluSx1+AluY). If enough observations for a statistical test were present, the two distributions

(shared/species-specific) were compared using a Student’s t-Test and plotted as violin plots with p-values above the plot.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Contribution of species-specific repeats to the formation of shared circRNA loci.

Figure supplement 2. Repeat interaction landscape in shared vs. species-specific circRNA loci.

Figure supplement 3. MilliDivs and MFE for dimers in shared and species-specific circRNA loci.
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actual repeat landscapes, dimer predictions, transposon ages and degradation rates, as well as RVC

pairing energies, are most consistent with the model that circRNAs are analogous features that have

been formed by convergent evolution, rather than homologous features originating from a common

circRNA ancestor.

Discussion
Different mechanistic scenarios to explain the origins and evolution of circRNAs have been consid-

ered in the field (reviewed in Patop et al., 2019). In our study, we have investigated this topic

through the analysis of novel, dedicated cross-species datasets. Notably, we propose that many

circRNAs have not evolved from common, ancestral circRNA loci, but have emerged independently

through convergent evolution, most likely driven by structural commonalities of their parental genes.

Thus, the modelling of parental genes uncovered features that are associated with circRNA biogene-

sis, in support of the concept of a ‘circRNA niche’ in which circRNAs are more likely to be generated:

genetic loci giving rise to circRNAs are generally long, exon-rich and located in genomic regions of

low GC content. In the case of orthologous parental genes, these structural characteristics are

shared as well, and they have led to shared integration biases for transposons, that is to shared,

genomic ‘TE hotspots’.

It is well established that intronic TE insertions are critical for circRNA biogenesis as they provide

reverse-complementary sequences for intramolecular pre-mRNA folding via TE dimers, giving rise to

the secondary structures that facilitate productive backsplicing. Important new insights that our

study provides on circRNA evolution come from the deep analysis of the transposon landscapes,

including the TE identities, their ages, degradation rates and dimerisation potentials. Thus, because

the actual TEs predicted as most relevant for dimerisation are mostly not shared across species and

are evolutionarily young, we propose that the resulting circRNAs are evolutionarily young as well. In

line with this interpretation, circRNAs from orthologous genes frequently do not involve exactly the

same 5’ and 3’ backsplice sites and thus do not encompass precisely the same orthologous exons,

but show partial exon overlap across species (see Figure 2—figure supplement 1). These findings

all argue for a model of convergent evolution at shared circRNA loci, with circRNAs and TEs co-

evolving in a species-specific and dynamic manner.

Our model provides an explanation for how circRNAs can arise from orthologous exonic loci

across species even if they themselves are not homologous (i.e. they do not stem from common evo-

lutionary precursors that emerged in common ancestors). Importantly, if most circRNAs are evolu-

tionarily young, then, by extension, it is overall rather unlikely that they fulfil crucial functions. This

idea is in agreement with the generally low expression levels of circRNAs that have been reported

and with accumulation patterns that are frequently tissue-specific and confined to post-mitotic cells

(Guo et al., 2014; Westholm et al., 2014). Importantly, these and other main conclusions of our

study overlap with those of two independent manuscripts (with complementary data and analyses)

that have appeared in press (Xu and Zhang, 2021) and as a publication preprint (Santos-

Rodriguez et al., 2021), respectively, while we were preparing the revised version of our

manuscript.

Why is it frequently the same (orthologous) genes that produce circRNAs, and why do the

circRNA hotspots often overlap between species, that is they share common exons? A plausible

explanation lies in how TE integration is tolerated. Briefly, intronic TE integration in the vicinity of an

intron-exon boundary will likely alter local GC content. For example, GC-rich SINE elements integrat-

ing close to a splice site would locally increase intronic GC and thereby decrease the GC amplitude

at the intron-exon boundary. Especially in GC-low environments, this can interfere with the intron-

defined mechanism of splicing and cause mis-splicing (Amit et al., 2012). By contrast, TE integration

close to a very strong splice site with a strong GC amplitude – as typically found in canonical exons –

would have lower impact. Hence, it would be tolerated better than integration close to alternative

exons, whose GC amplitudes are less pronounced. Indeed, our analyses show that circRNA exons

are typically canonical exons with strong GC amplitudes. While at first sight, circRNA exons thus

appear to be endowed with rather specific, evolutionarily relevant properties – most notably with

increased phastCons scores – it is probable that these are a mere consequence of a higher tolerance

for TE integration in introns flanking canonical exons.
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Many additional characteristics associated with circRNAs – identified in this study or previously by

others – can be linked to how the impact of TEs on splicing and transcript integrity is likely to be tol-

erated. Depending on the site of TE integration, potentially hazardous ‘transcript noise’ will arise,

and these instances will be subject to purifying selection. In particular, TE integration into exons

(changing the coding sequence) or directly into splice sites (affecting splicing patterns) will lead to

erroneous transcripts (Zhang et al., 2011). Thus, the probability that an integration event is toler-

ated, will be overall lower in short and compact genes as compared to genes with long introns; of

note, long genes are also GC-poor (Zhu et al., 2009). These characteristics overlap precisely with

those that we identify for circRNAs, which are also frequently generated from GC-poor genes with

long introns, complex gene structures, and that contain many TEs.

An interesting feature – not analysed in our study, but previously associated with circRNAs – is

RNA editing. In particular, introns bracketing circRNAs are enriched in A-to-I RNA editing events,

and the RNA-editing enzyme ADAR1 has been reported as a specific regulator of circRNA expres-

sion (Ivanov et al., 2015; Rybak-Wolf et al., 2015). However, A-to-I editing is also a well-known

defense mechanism that has evolved to suppress TE amplification. For example, A-to-I RNA editing

is associated with intronic Alu elements to inhibit Alu dimers (Lev-Maor et al., 2008;

Athanasiadis et al., 2004). Therefore, it is quite likely that associations between RNA editing and

circRNA abundances are a secondary effect from the primary purpose of A-to-I editing, namely the

inhibition of Alu amplification. A similar case can be made for DNA methylation that interferes with

TE amplification (Yoder et al., 1997) and has been linked to circRNA production (Enuka et al.,

2016). Or, in the case of N6-methyladenosine (m6A), it has recently been proposed that this highly

prevalent RNA modification is also involved in dynamically regulating circRNA abundances

(Zhou et al., 2017; Park et al., 2019; Di Timoteo et al., 2020). Yet the link of circRNAs to m6A,

which is known to influence many steps of mRNA metabolism (reviewed in Zaccara et al., 2019;

Lee et al., 2020), may simply reflect the general targeting of erroneous transcripts for degradation.

In summary, our evolutionary data and the above considerations lead us to conclude that many

circRNAs are likely a form of transcript noise – or, more precisely, of mis-splicing – that is provoked

by TE integration into parental genes. This conclusion is in full agreement with the observation that

in rat neurons, there is a direct correspondence between the pharmacological inhibition of canonical

splicing and increased circRNA formation, preferentially affecting circRNAs with long introns and

many transposons/RVCs (Wang et al., 2019). Altogether, these conclusions make it likely that the

majority of circRNAs do not have specific molecular functions, although functional circRNAs have

arisen during evolution, as demonstrated in several studies (e.g. Hansen et al., 2013; Conn et al.,

2015; Du et al., 2016), presumably from initially non-functional (noise) variants whose emergence

was facilitated by the aforementioned mechanisms. During this process, a functional circRNA may

ultimately even become independent from the original RVC-based regulation. Evolving from a

sequence-based backsplice mechanism to a protein-based one (i.e. relying on RNA-binding proteins,

RBPs) could render regulation more versatile and more controllable. Indeed, RBPs have emerged as

important regulators of several circRNAs (see e.g. Ashwal-Fluss et al., 2014; Conn et al., 2015;

Okholm et al., 2020). The functions of circRNAs seem to be diverse and may often involve the posi-

tive or negative regulation of their own parental genes at different expression layers (transcription/

splicing, translation, post-translational modification) through various mechanisms (e.g. competition

with linear mRNA splicing, microRNA sponge effects, mRNA traps) (Shao et al., 2021). For several

of these functional roles, the exact exons/exon portions that form the circRNA, or which elements in

the flanking introns drive the process, may not be important, but rather the general maintenance of

circularization at a locus during evolution. In this way, diverting mRNA output to non-functional,

dead-end circular transcripts could for example represent a mechanism to limit parental gene

expression or to control genes that have transformed into transposon sinks.

Finally, we would like to note that circRNAs have emerged as reliable disease biomarkers

(Memczak et al., 2015; Bahn et al., 2015), and their utility for such predictive purposes is not dimin-

ished by our conclusion that most circRNAs are unlikely to fulfil direct functions – on the contrary.

Even if an altered circRNA profile will likely not indicate causal involvement in a disease, it could hint

at misregulated transcription or splicing of the parental gene, at a novel TE integration event, or at

problems with RNA editing or methylation machineries. The careful analysis of the circRNA land-

scape may thus teach us about factors contributing to diseases in a causal fashion even if many or

perhaps most circRNAs may not be functional but rather represent transcript noise.
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Materials and methods

Data deposition, programmes, and working environment
The raw data and processed data files discussed in this publication have been deposited in NCBI’s

Gene Expression Omnibus (Edgar et al., 2002) and are accessible through the GEO Series accession

number GSE162152. All scripts used to produce the main figures and tables of this publication have

been deposited in the Git Repository circRNA_paperScripts (https://github.com/Frenzchen/

circRNA_paperScripts; Gruhl, 2021, copy archived at swh:1:rev:51584e2a107500b1a5807218a6-

ba4cc811d108f6). This Git repository also holds information on how to run the scripts, and links to

the underlying data files for the main figures. The custom pipeline developed for the circRNA identi-

fication can be found in the Git Repository ncSplice_circRNAdetection (https://github.com/Frenz-

chen/ncSplice_circRNAdetection; Gruhl, 2017). External programmes used for analyses are listed in

Table 2.

Library preparation and sequencing
We used 5 mg of RNA per sample as starting material for all libraries. For each biological replicate

(=tissue X of Animal 1 of a given species) two samples were taken: sample one was left untreated,

sample two was treated with 20 U RNase R (Epicentre/Illumina, Cat. No. RNR07250) for 1 hr at 37˚C

to degrade linear RNAs, followed by RNA purification with the RNA Clean and Concentrator-5 kit

(Zymo Research) according to the manufacturer’s protocol. Paired-end sequencing libraries were

prepared from the purified RNA with the Illumina TruSeq Stranded Total RNA kit with Ribo-Zero

Gold according to the protocol with the following modifications to select larger fragments: (1)

Instead of the recommended 8 min at 68˚C for fragmentation, we incubated samples for only 4 min

at 68˚C to increase the fragment size; (2) In the final PCR clean-up after enrichment of the DNA frag-

ments, we changed the 1:1 ratio of DNA to AMPure XP Beads to a 0.7:1 ratio to select for binding

of larger fragments. Libraries were analysed on the fragment analyzer for their quality and

sequenced with the Illumina HiSeq 2500 platform (multiplexed, 100 cycles, paired-end, read length

100 nt).

Identification and quantification of circRNAs
Mapping of RNA-seq data
The ensembl annotations for opossum (monDom5), mouse (mm10), rat (rn5), rhesus macaque (rhe-

Mac2) and human (hg38) were downloaded from Ensembl (see Table 3) to build transcriptome

indexes for mapping with TopHat2. TopHat2 was run with default settings and the –mate-inner-dist

and –mate-std-dev options set to 50 and 200 respectively. The mate-inner-distance parameter was

estimated based on the fragment analyzer report.

Table 2. Overview of external programmes.

Programme Version

Blast 2.2.29+

BEDTools 2.17.0

Bowtie2 2.1.0

Clustal Omega 1.2.4

Cufflinks 2.1.1

FastQC 0.10.1

Mcl 14.137

R 3.0 and 3.1

Ruby 2.0 and 2.1

SAMTools 0.1.19

TopHat2 2.0.11

ViennaRNA 2.1.8
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Analysis of unmapped reads
We developed a custom pipeline to detect circRNAs (Figure 1—figure supplement 1), which per-

forms the following steps: Unmapped reads with a phred quality value of at least 25 are used to gen-

erate 20 bp anchor pairs from the terminal 3’ and 5’-ends of the read. Anchors are remapped with

bowtie2 on the reference genome. Mapped anchor pairs are filtered for (1) being on the same chro-

mosome, (2) being on the same strand and (3) for having a genomic mapping distance to each other

of a maximum of 100 kb. Next, anchors are extended upstream and downstream of their mapping

locus. They are kept if pairs are extendable to the full read length. During this procedure, a maxi-

mum of two mismatches is allowed. For paired-end sequencing reads, the mate read not mapping

to the backsplice junction can often be mapped to the reference genome without any problem.

However, it will be classified as ‘unmapped read’ (because its mate read mapping to the backsplice

junction was not identified by the standard procedure). Next, all unpaired reads are thus selected

from the accepted_hits.bam file generated by TopHat2 (singletons) and assessed for whether the

mate read (second read of the paired-end sequencing read) of the anchor pair mapped between the

backsplice coordinates. All anchor pairs for which (1) the mate did not map between the genomic

backsplice coordinates, (2) the mate mapped to another backsplice junction or (3) the extension pro-

cedure could not reveal a clear breakpoint are removed. Based on the remaining candidates, a back-

splice index is built with bowtie2 and all reads are remapped on this index to increase the read

coverage by detecting reads that cover the BSJ with less than 20 bp, but at least 8 bp. Candidate

reads that were used to build the backsplice index and now mapped to another backsplice junction

are removed. Upon this procedure, the pipeline provides a first list of backsplice junctions. The set

of scripts, which performs the identification of putative BSJs, as well as a short description of how to

run the pipeline are deposited in the Git Repository ncSplice_circRNAdetection (https://github.com/

Frenzchen/ncSplice_circRNAdetection; Gruhl, 2017).

Trimming of overlapping reads
Due to small DNA repeats, some reads are extendable to more than the original read length. There-

fore, overlapping reads were trimmed based on a set of canonical and non-canonical splice sites.

For the donor site GT, GC, AT, CT were used and for the acceptor splice site AG and AC. The trim-

ming is part of our custom pipeline described above, and the step will be performed automatically if

the scripts are run.

Generation of high confidence circRNA candidates from the comparison of
RNase R-treated vs. -untreated samples
The detection of circRNAs relies on the identification of BSJs. These are, however, often only cov-

ered by a low number of reads, which carries considerable risk of mistaking biological or technical

noise for a real circRNA event. Their circular structure makes circRNAs resistant to RNase R treat-

ment – a feature that is not generally expected for spurious RNA molecules that are linear but may

nevertheless resemble BSJs. We therefore compared BSJs between RNase R-treated and -untreated

samples and determined whether BSJs detected in an untreated sample are enriched in the RNase

R-treated sample. To generate a high-confidence dataset of circRNA candidates from the compari-

son of untreated and treated samples (Figure 1—figure supplement 1), we applied the following fil-

tering steps (please also consult Supplementary file 2 for a step-by-step description of filtering

outcomes, using the mouse samples as an example.)

Table 3. Ensembl genome versions and annotation files for each species.

Species Genome Annotation

Opossum monDom5 ensembl release 75, feb 2014

Mouse mm10 ensembl release 75, feb 2014

Rat rn5 ensembl release 75, feb 2014

Rhesus macaque rheMac2 ensembl release 77, oct 2014

Human hg38 ensembl release 77, oct 2014
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Filtering step 1 - mapping consistency of read pairs. When mapping paired-end sequencing data,

both reads should ideally map to the genome (paired-end = ‘pe’). However, in some cases, one of

the mate reads cannot be mapped due to the complexity of the genomic locus. These reads are

reported as ‘singletons’ (‘se’). For each potential BSJ, we thus analysed the mapping behaviour of

both read mates. BSJs for which read pairs in the untreated and RNase R-treated sample of the

same biological replicate mapped both either in ‘pe’ or ‘se’ mode were kept; BSJs for which for

example a read pair mapped in ‘pe’ mode in the untreated biological sample, but in ‘se’ mode in

the RNase R-treated sample of the same biological replicate (and vise versa) were considered weak

candidates and removed. This filtering step removed approximately 1% of the total, unique BSJs

detected (Supplementary file 2).

Filtering step 2 - presence of a BSJ in untreated samples. We hypothesized that for circRNAs to

be functionally important, they should generally be expressed at levels that are high enough to

make them detectable in the normal samples, that is without RNase R treatment. We thus removed

all BSJs which were only present in RNase R-treated samples, but undetectable in any of the

untreated, biological replicates (cut-off for absence/presence = minimum one read mapping to BSJ).

This filtering step removed approximately 75% of the initially detected BSJs (Supplementary file 2).

Filtering step 3 - enrichment after RNase R treatment. RNase R treatment leads to the enrichment

of BSJs in the total number of detected junctions due to the preferential degradation of linear

RNAs. To calculate the enrichment factor, BSJs were normalised by the size factor (as described in

Materials and methods, section Reconstruction of circRNA isoforms) of each sample and the mean

normalised count was calculated for each condition (untreated and RNase R-treated). Next, the

log2-enrichment for RNase R-treated vs. -untreated samples was calculated. All BSJs for which the

log2-enrichment was below 1.5 were removed. This filtering step removed another 15% of the origi-

nally detected unique BSJs (Supplementary file 2).

Filtering step 4 - minimum expression levels. CPM (counts per million) values for BSJs were calcu-

lated for each tissue as follows:

counts ¼
counts rep1þ counts rep2þ counts rep3

3

totalMappedReads ¼
mappedReads rep1þmappedReads rep2þmappedReads rep3

3

CPM ¼
counts � 106

totalMappedReads

All BSJs with at least 0.05 CPM were kept. These loci were considered strong circRNA candidates

and used for all subsequent analyses. After this final filtering step, less than 1% of the original BSJs

are left (Supplementary file 2).

Manual filtering steps
We observed several genomic loci in rhesus macaque and human that were highly enriched in reads

for putative BSJs (no such problem was detected for opossum, mouse and rat). Manual inspection in

the UCSC genome browser indicated that these loci are highly repetitive. The detected BSJs from

these regions probably do not reflect BSJs, but instead issues in the mapping procedure. These can-

didates were thus removed manually; the concerned regions are listed in Table 4.

All following analyses were conducted with the circRNA candidates that remained after this step.

Reconstruction of circRNA isoforms
To reconstruct the exon structure of circRNA transcripts in each tissue, we made use of the junction

enrichment in RNase R treated samples. To normalise junction reads across libraries, the size factors

based on the geometric mean of common junctions in untreated and treated samples were calcu-

lated as

geometric mean ¼
Y

x
� � 1

lengthðxÞ

size factor ¼median
x

geometric mean

� �

with x being a vector containing the number of reads per junction. We then compared read
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coverage for junctions outside and inside the BSJ for each gene and used the log2-change of junc-

tions outside the backsplice junction to construct the expected background distribution of change in

junction coverage upon RNase R treatment. The observed coverage change of junctions inside the

backsplice was then compared to the expected change in the background distribution and junctions

with a log2-change outside the 90% confidence interval were assigned as circRNA junctions; a loose

cut-off was chosen, because involved junctions can show a decrease in coverage if their linear iso-

form was present at high levels before (degradation levels of linear isoforms do not correlate with

the enrichment levels of circRNAs). Next, we reconstructed a splicing graph for each circRNA candi-

date, in which network nodes are exons connected by splice junctions (edges) (Heber et al., 2002).

Connections between nodes are weighted by the coverage in the RNase R-treated samples. The

resulting network graph is directed (because of the known circRNA start and stop coordinates), acy-

clic (because splicing always proceeds in one direction), weighted and relatively small. We used a

simple breadth-first-search algorithm to traverse the graph and to define the strength for each possi-

ble isoform by its mean coverage. Only the strongest isoform was considered for all subsequent

analyses.

Reconstruction and expression quantification of linear mRNAs
We reconstructed linear isoforms based on the pipeline provided by Trapnell et al., 2012 (Cufflinks

+ Cuffcompare + Cuffnorm). Expression levels were quantified based on fragments per million

mapped reads (FPKM). Cufflinks was run per tissue and annotation files were merged across tissues

with Cuffcompare. Expression was quantified with Cuffnorm based on the merged annotation file.

All programs were run with default settings. FPKM values were normalised across species and tissues

using a median scaling approach as described in Brawand et al., 2011.

Identification of shared circRNA loci between species
Definition and identification of shared circRNA loci
Shared circRNA loci were defined on three different levels depending on whether the ‘parental

gene’, the ‘circRNA locus’ in the gene or the ‘start/stop exons’ overlapped between species (see

Figure 2A and Figure 2—figure supplement 1A). Overall considerations of this kind have recently

also been outlined in Patop et al., 2019.

Level 1 - Parental genes: One-to-one (1:1) therian orthologous genes were defined between

opossum, mouse, rat, rhesus macaque and human using the Ensembl orthology annotation (confi-

dence intervals 0 and 1, restricted to clear one-to-one orthologs). The same procedure was per-

formed to retrieve the 1:1 orthologous genes for the eutherians (mouse, rat, rhesus macaque,

human), for rodents (mouse, rat), and primates (rhesus macaque, human). Shared circRNA loci

between species were assessed by counting the number of 1:1 orthologous parental genes between

the five species. The analysis was restricted to protein-coding genes.

Table 4. Removed regions during mapping.

Species Tissue Chromosome Start Stop Strand

Rhesus macaque Testis 7 164261343 164283671 +

Rhesus macaque Testis 7 22010814 22092409 -

Rhesus macaque Testis 19 52240850 52288425 -

Rhesus macaque Testis 19 59790996 59834798 +

Rhesus macaque Testis 19 59790996 59847609 +

Human Testis 2 178535731 178600667 +

Human Testis 7 66429678 66490107 -

Human Testis 9 97185441 97211487 -

Human Testis 12 97492460 97561047 +

Human Testis 14 100913431 100949596 +

Human Testis 18 21765771 21849388 +
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Level 2 - circRNA locus: To identify shared circRNA loci, all circRNA exon coordinates from a

given gene were collapsed into a single transcript using the bedtools merge option from the BED-

Tools toolset with default options. Next, we used liftOver to compare exons from the collapsed tran-

script between species. The minimal ratio of bases that need to overlap for each exon was set to 0.5

(-minMatch=0.5). Collapsed transcripts were defined as overlapping between different species if

they shared at least one exon, independent of the exon length.

Level 3 - start/stop exon: To identify circRNAs sharing the same first and last exon between spe-

cies, we lifted exons coordinates between species (same settings as described above, liftOver, -min-

Match=0.5). The circRNA was then defined as ‘shared’, if both exons were annotated as start and

stop exons in the respective circRNAs of the given species. Note, that this definition only requires an

overlap for start and stop exons, internal circRNA exons may differ.

Given that only circRNAs that comprise corresponding (1:1 orthologous exons) in different spe-

cies might at least potentially and reasonably considered to be homologous (i.e. might have origi-

nated from evolutionary precursors in common ancestors) and the Level 3 definition might require

strong evolutionary conservation of splice sites (i.e. with this stringent definition many shared loci

may be missed), we decided to use the level 2 definition (circRNA locus) for the analyses presented

in the main text, while we still provide the results for the Level 1 and 3 definitions in the supplement

(Figure 2—figure supplement 1A). Importantly, defining shared circRNA loci at this level allows us

to also compare circRNA hostspots which have been defined using a similar classification strategy.

Clustering of circRNA loci between species
Based on the species set in which shared circRNA loci were found, we categorised circRNAs in the

following groups: species-specific, rodent, primate, eutherian, and therian circRNAs. To be part of

the rodent or primate group, the circRNA has to be expressed in both species of the lineage. To be

part of the eutherian group, the circRNA has to be expressed in three species out of the four species

mouse, rat, rhesus macaque and human. To be part of the therian group, the circRNA needs to be

expressed in opossum and in three out of the four other species. Species-specific circRNAs are

either present in one species or do not match any of the other four categories. The usage of multiple

species for defining shared loci, allowed to define ‘mammalian circRNAs’ with high confidence (Fig-

ure 2—figure supplement 1B). To define the different groups, we used the cluster algorithm MCL

(Enright et al., 2002; Dongen, 2000). MCL is frequently used to reconstruct orthology clusters

based on blast results. It requires input in abc format (file: species.abc), in which a corresponds to

event a, b to event b and a numeric value c that provides information on the connection strength

between event a and b (e.g. blast p-value). If no p-values are available as in this analysis, the connec-

tion strength can be set to 1. MCL was run with a cluster granularity of 2 (option -I).

$ mcxload -abc species.abc –stream-mirror -o species.mci -write-tab species.tab
$ mcl species.mci -I 2
$ mcxdump -icl out.species.mci.I20 -tabr species.tab -o dump.species.mci.I20

PhastCons scores
Codings exons were selected based on the attribute ‘transcript_biotype = protein_coding’ in the gtf

annotation file of the respective species and labelled as circRNA exons if they were in our circRNA

annotation. Exons were further classified into UTR-exons and non-UTR exons using the ensembl field

‘feature = exon’ or ‘feature = UTR’. Since conservation scores are generally lower for UTR-exons

(Pollard et al., 2010), any exon labelled as UTR-exon was removed from further analyses to avoid

bias when comparing circRNA and non-circRNA exons. Genomic coordinates of the remaining exons

were collapsed using the merge command from the BEDtools toolset (bedtools merge input_file -

nms -scores collapse) to obtain a list of unique genomic loci. PhastCons scores for all exon types

were calculated using the conservation scores provided by the UCSC genome browser (mouse:

phastCons scores based on alignment for 60 placental genomes; rat: phastCons scores based on

alignment for 13 vertebrate genomes; human: phastCons scores based on alignment for 99 verte-

brate genomes). For each gene type (parental or non-parental), the median phastCons score was

calculated for each exon type within the gene (if non-parental: median of all exons; if parental:

median of exons contained in the circRNA and median of exons outside of the circRNA).
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Tissue specificity of exon types
Using the DEXseq package (from HTSeq 0.6.1), reads mapping on coding exons of the parental

genes were counted. The exon-bins defined by DEXseq (filtered for bins >=10 nt) were then

mapped and translated onto the different exon types: UTR-exons of parental genes, exons of paren-

tal genes that are not in a circRNA, circRNA exons. For each exon type, an FPKM value based on

the exon length and sequencing depth of the library was calculated.

FPKM ¼
counts for exon type � 109

exon type length=sequencing depth

Exons were labelled as expressed in a tissue, if the calculated FPKM was at least 1. The maximum

number of tissues in which each exon occurred was plotted separately for UTR-exons, exons outside

the circRNA and contained in it.

GC amplitude
The ensembl annotation for each species was used to retrieve the different known transcripts in

each coding gene. For each splice site, the GC amplitude was calculated using the last 250 intronic

bp and the first 50 exonic bp (several values for the last n intronic bp and the first m exonic bp were

tested beforehand, the 250:50 ratio was chosen, because it gave the strongest signal). Splice sites

were distinguished by their relative position to the circRNA (flanking, inside or outside). A one-tailed

and paired Mann-Whitney U test was used to assess the difference in GC amplitude between

circRNA-related splice sites and others.

Definition of highly expressed circRNAs
For each species and tissues, circRNAs were grouped into lowly expressed and highly expressed

circRNAs based on whether they were found below or above the 90% expression quantile of the

respective tissue. Candidates from different tissues were then merged to obtain a unique list of

highly expressed circRNAs for each species.

Parental gene analysis
GC content of exons and intron
The ensembl annotation for each species was used to retrieve the different known transcripts in

each coding gene. Transcripts were collapsed per-gene to define the exonic and intronic parts.

Introns and exons were distinguished by their relative position to the circRNA (flanking, inside, or

outside). The GC content was calculated based on the genomic DNA sequence. On a per-gene level,

the median GC content for each exon and intron type was used for further analyses. Differences

between the GC content were assessed with a one-tailed Mann-Whitney U test.

Gene self-complementarity
The genomic sequence of each coding gene (first to last exon) was aligned against itself in sense

and antisense orientation using megaBLAST with the following call:

$ blastn -query seq.fa -subject seq.fa -task dc-megablast -word_size 12 -outfmt

"6 qseqid qstart qend sseqid sstart send sstrand length pident nident mismatch

bitscore evalue" > blast.out

The resulting alignments were filtered for being purely intronic (no overlap with any exon). The

fraction of self-complementarity was calculated as the summed length of all alignments in a gene

divided by its length (first to last exon).

Generalised linear models
All linear models were developed in the R environment. The presence of multicollinearity between

predictors was assessed using the vif() function from the R package car (version 3.0.3) to calculate

the variance inflation factor. Predictors were scaled to be able to compare them with each other

using the scale() function as provided in the R environment.
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For parental genes, the dataset was split into training (80%) and validation set (20%). To find the

strongest predictors, we used the R package bestglm (version 0.37). Each model was fitted on the

complete dataset using the command bestglm() with the information criteria set to ‘CV’ (CV = cross

validation) and the number of repetitions t = 1000. The model family was set to ‘binomial’ as we

were merely interested in predicting the presence (1) or absence (0) of a parental gene. Significant

predictors were then used to report log-odds ratios and significance levels for the validation set

using the default glm() function of the R environment. Log-odds ratios, standard errors and confi-

dence intervals were standardised using the beta() function from the reghelper R package (version

1.0.0) and are reported together with their p-values in Supplementary file 6. The same approach

was used to predict which parental genes are likely to be a circRNA hotspot with the only difference

that the underlying data was filtered for parental genes. All parental genes were then analysed for

the presence (1) or absence (0) of a hotspot. Log-odds ratios, standard errors, and confidence inter-

vals are reported together with their p-values in Supplementary file 8.

For the correlation of hotspot presence across the number of species, a generalised linear model

was applied using the categorical predictors ‘lineage’ (=circRNA loci shared within rodents or pri-

mates), ‘eutherian’ (=circRNA loci shared within rodents and primates) and ‘therian’ (=circRNA loci

shared within opossum, rodents, and primates). Log-odds ratios, standard errors, and confidence

intervals were standardised using the beta() function from the reghelper R package (version 1.0.0)

and are reported together with their p-values in Supplementary file 7.

Comparison to human and mouse circRNA heart dataset
The circRNA annotations for human and mouse heart as provided by Werfel et al., 2016 were,

based on the parental gene ID, merged with our circRNA annotations. Prediction values for parental

genes were calculated using the same general linear regression models as described above (section

Generalised linear models in Materials and methods) with genomic length, number of exons, GC

content, expression levels, reverse complements (RVCs), and phastCons scores as predictors. Predic-

tion values were received from the model and compared between parental genes predicted by our

and the Werfel dataset as well as between the predictors in non-parental and parental genes of the

Werfel dataset (Figure 3—figure supplement 4).

Integration of external studies

1. Replication time
Values for the replication time were used as provided in Koren et al., 2012. Coordinates of
the different replication domains were intersected with the coordinates of coding genes using
BEDtools (bedtools merge -f 1). The mean replication time of each gene was used for subse-
quent analyses.

2. Gene expression steady-state levels
Gene expression steady-state levels and decay rates were used as provided in Table S1 of
Pai et al., 2012.

3. GHIS
Genome-wide haploinsufficiency scores for each gene were used as provided in Supplemen-
tary Table S2 of Steinberg et al., 2015.

Repeat analyses
Generation of length- and GC-matched background dataset
Flanking introns were grouped into a matrix of i columns and j rows representing different genomic

lengths and GC content; i and j were calculated in the following way:

i ¼ seqðfrom¼ quantileðGCcontent;0:05Þ; to¼ quantileðGCcontent;0:95Þ;by¼ 0:01Þ
j ¼ seqðfrom¼ quantileðlength;0:05Þ; to¼ quantileðlength;0:95Þ;by¼ 1000Þ

Flanking introns were sorted into the matrix based on their GC content and length. A second

matrix with the same properties was created containing all introns of coding genes. From the latter,

a submatrix was sampled with the same length and GC distribution as the matrix for flanking introns.

The length distribution and GC distribution of the sampled introns reflect the distributions for the

flanking introns as assessed by a Fisher’s t Test that was non-significant.
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Repeat definition
The RepeatMasker annotation for full and nested repeats were downloaded for all genomes using

the UCSC Table browser (tracks ‘RepeatMasker’ and ‘Interrupted Rpts’) and the two files merged.

Nested repeats were included, because it was shown that small repetitive regions are sufficient to

trigger base pairing necessary for backsplicing (Liang and Wilusz, 2014; Kramer et al., 2015). For

rhesus macaque, the repeat annotation was only available for the rheMac3 genome. RVC coordi-

nates were thus lifted from rheMac2 to rheMac3 (liftOver, -minMatch=0.5), which led to a significant

drop of overlapping repeats and RVCs in comparison to the other species (only ~20% of RVCs could

be intersected with an annotated repeat). The complete list of full and nested repeats was then

intersected (bedtools merge -f1) with the above defined list of background and flanking introns for

further analyses.

Identification of repeat dimers
The complementary regions (RVCs) that were defined with megaBLAST as described above, were

intersected with the coordinates of individual repeats from the RepeatMasker annotation. To be

counted, a repeat had to overlap with at least 50% of its length with the region of complementarity

(bedtools merge -f 0.5). As RVCs can contain several repeats, the ‘strongest’ dimer was selected

based on the number of overlapping base pairs (=longest overlapping dimer).

We observed that the same genomic repeat can often be present in multiple RVCs. Assuming

that repeats are unlikely to form multiple active dimers in the genome at the same given time point,

we decided to correct dimer frequency for this ‘co-counting’ to not inflate our numbers and bias

subsequent analyses (see also Figure 5—figure supplement 2). We calculated an overestimation

factor based on the number of possible interactions each repeat had. Dimer frequency was then cal-

culated as;

overestimation factor ¼
co� countsRepeat1 þ co� countsRepeat2

2

dimer countcorrect ¼
dimer count

overestimation factor

The ‘dimer list’ obtained from this analysis for each species was further ranked according to the

absolute frequency of each dimer. The proportion of the top-5 dimer frequency to all detected

dimers, was calculated based on this list (ntop�5 / nall dimers).

Pairing scores of repeat dimers
Pairing scores for each TE class (based on the TE reference sequence) were defined by taking into

account the (1) phylogenetic distance to other repeat families in the same species and (2) its binding

affinity (the Minimal Free Energy = MFE of the dimer structure) to those repeats. We decided to not

include the absolute TE frequency into the pairing score, because it is a function of the TE’s age, its

amplification and degradation rates. Simulating the interplay between these three components is

not in scope of this study, and the integration of the frequency into the pairing score creates more

noise as tested via PCA analyses (variance explained drops by 10%).

(1) Phylogenetic distance: TE reference sequences were obtained from Repbase (Bao et al.,

2015) and translated into fasta-format for alignment (reference_sequences.fa). Alignments were

then generated with Clustal Omega (v1.2.4) (Sievers et al., 2011) using the following settings:

$ clustalo -i reference_sequences.fa –distmat-out = repeats.mat –guidetree-out =

repeats.dnd –full

The resulting distance matrix for the alignment was used for the calculation of the pairing score.

Visualisation of the distance matrix (Figure 4C, Figure 4—figure supplement 2) was performed

using the standard R functions dist(method=”euclidian’) and hclust(method=”ward.D2’). Since sev-

eral TE classes evolved independently from each other, the plot was manually modified to remove

connections or to add additional information on the TE’s origin from literature.
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(2) Binding affinity: To estimate the binding affinity of individual TE dimers, the free energy of the

secondary structure of the respective TE dimers was calculated with the RNAcofold function from

the ViennaRNA Package:

$ RNAcofold -a -d2 < dimerSequence.fa

with dimerSequence.fa containing the two TE reference sequences from which the dimer is com-

posed. The resulting MFE values were used to calculate the pairing score.

(3) Final pairing score: To generate the final pairing score, values from the distance matrix and

the binding affinity were standardised (separately from each other) to values between 0 and 1:

f ðxÞ ¼
x�minðvÞ

maxðvÞ�minðvÞ

with x being the pairing affinity/dimer frequency and minv and maxv the minimal and maximal

observed value in the distribution. The standardised values for the binding affinity and dimer fre-

quency were then summed up (=pairing score) and classified by PCA using the R environment:

$ pca <- prcomp(score, center=TRUE, scale.=FALSE)

PC1 and PC2 were used for subsequent plotting with the absolute frequency of dimers repre-

sented by the size of the data points (Figure 4D–F, Figure 4—figure supplement 2).

Dimer composition in shared and species-specific circRNA loci
Dimers were sorted by their frequency in all parental genes and the 100 most and least frequent

dimers were selected to be analysed for their enrichment in shared vs. species-specific circRNA loci.

The two dimer frequency distributions were compared using a Wilcoxon Signed Rank Test. Dimer

age was defined on whether the repeat family originated in a given species (=rank 1), lineage (=rank

2), in all eutherian species of this study (=rank 3) or all therian species (=rank 4). Since a dimer is

composed of two repeats, the ’mean dimer age’ based on the rank value was taken. Based on this

analysis, the top-5 most frequent and enriched dimers were then defined.

Calculation of TE degradation levels
We analysed repeat degradation levels for all TEs present in the top-5 dimers of each species.

RepeatMasker annotations were downloaded from the UCSC Table browser for all genomes (see

Materials and methods, section Repeat definition). The milliDiv values for each TE were retrieved

from this annotation for full and nested repeats. All indivudal TEs were then grouped as ‘species-

specific’ or ‘shared’ based on whether the circRNA parental gene produced species-specific or

shared circRNA loci. Significance levels for milliDiv differences between the TE groups were assessed

with a simple Mann-Whitney U test.

Binding affinity of dimers
The binding affinity of dimers was calculated with the RNAcofold function from the ViennaRNA

Package:

$ RNAcofold -a -d2 < dimerSequence.fa

with dimerSequence.fa containing the two TE genomic sequences from which the dimer is com-

posed. To reduce calculation time for human and opossum, the analysis was restricted to the respec-

tive top-5 dimers (see section Dimer composition in shared vs. species-specific circRNA loci). For

each gene of the two groups (shared/species-specific), the least degraded dimer based on its mean

milliDiv value was chosen. Filtering based on the least degraded dimer, let to a strong enrichment of

only a subset of the top-5 dimers in each species. If enough observations for a statistical test were

present, the two distributions (shared/species-specific) were compared using a Student’s t-Test.
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tal genes were filtered for circRNAs that were either species-specific or occurred in orthologous loci
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across therian species (nopossum = 869, nmouse = 503, nrat = 425, nrhesus = 912, nhuman = 1213). The

model was trained on 80% of the data (scaled values, cross-validation, 1000 repetitions, shown in

rows labeled as ‘prediction’). Only the best predictors were kept and then used to predict probabili-

ties for the remaining 20% of data points (validation set, shown in rows labeled as ‘validation’). Log-

odds ratios, standard error and 95% confidence intervals (CI) for the validation set have been (beta)

standardised.

. Supplementary file 9. Analysis of highly expressed circRNAs. Highly expressed circRNAs were

defined as the circRNAs present in the 90% expression quantile of a tissue in a species. Per species,

the circRNAs in the 90% expression quantiles from each of the three tissues were then pooled for

further analysis (nopossum = 158, nmouse = 156, nrat = 217, nrhesus = 340, nhuman = 471) and their prop-

erties compared to circRNAs outside the 90% expression quantile. Highly expressed circRNAs are

designated ‘1’, others ‘0’. Differences in genomic length, circRNA length, exon number and GLM

model performance were assessed with a Student’s t-Test; p-values are indicated in the table (ns =

non-significant).

. Supplementary file 10. GLM for highly expressed circRNAs based on ‘age groups’. A generalised

linear model was fitted on the complete dataset to predict the probability of parental genes of

highly expressed circRNAs to be produce circRNAs in multiple species (nopossum = 869, nmouse = 844,

nrat = 661, nrhesus = 1673, nhuman = 2016). The ‘sharedness’ definition is based on the phylogeny of

species as: present in only one species, in rodents (mouse, rat) or primates (rhesus, human), euthe-

rian species (rodents + at least one primate, or primates + at least one rodent) and therian species

(opossum + rodents + at least one primate, or opossum + primates + at least one rodents). Log-

odds ratios, standard error, 95% confidence intervals (CI) and p-values are shown.

. Supplementary file 11. Frequency and enrichment of top-5 dimers in shared and species-specific

circRNA loci. The total number of detected top-5 dimers in shared and species-specific circRNA loci

as well as their enrichment after correction for co-occurrence in multiple RVCs (see Materials and

methods) are shown. Loci were normalised by the number of detected genes in each category

before calculating the enrichment of dimers in shared over species-specific loci. The number of

parental genes in both categories is shown below the species name. For mouse, only the top-3

dimers, which are outside the 95% frequency quantile, are shown (see Materials and methods). For

rhesus, the analysis could only be done on a subset of genes due to lifting uncertainties between the

rheMac2 and the rheMac3 genome (see Materials and methods).

. Supplementary file 12. CircRNA annotation file for opossum. A gtf-file with all circRNA transcripts

including the transcript and exon coordinates.

. Supplementary file 13. CircRNA annotation file for mouse. A gtf-file with all circRNA transcripts

including the transcript and exon coordinates.

. Supplementary file 14. CircRNA annotation file for rat. A gtf-file with all circRNA transcripts includ-

ing the transcript and exon coordinates.

. Supplementary file 15. CircRNA annotation file for rhesus macaque. A gtf-file with all circRNA tran-

scripts including the transcript and exon coordinates.

. Supplementary file 16. CircRNA annotation file for human. A gtf-file with all circRNA transcripts

including the transcript and exon coordinates.

. Transparent reporting form

Data availability

Sequencing data have been deposited in GEO under accession code GSE162152.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and Identifier

Gruhl F, Janich P,
Kaessmann H,
Gatfield D

2021 Identification and evolutionary

comparison of circular RNAs in

five mammalian species and

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE162152

NCBI Gene Expression
Omnibus, GSE162152
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three organs.

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Koren A, Polak P,
Nemesh J,
Michaelson JJ,
Sebat J, Sunyaev
SR, McCarroll SA

2012 DNA replication time of the human
genome G1 phase

https://www.ncbi.nlm.
nih.gov/sra/SRX147697
[accn]

NCBI Sequence Read
Archive, SRA052697

Pai AA, Cain CE,
Mizrahi-Man O,
Leon S, Lewellen N,
Veyrieras J-B,
Degner JF, Gaffney
DJ, Pickrell JK,
Stephens M,
Pritchard JK, Gilad
Y

2012 The contribution of RNA decay
quantitative trait loci to inter-
individual variation in steady-state
gene expression levels

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE37451

NCBI Gene
Expression Omnibus,
GSE37451

Brawand D,
Soumillon M,
Necsulea A, Julien
P, Csardi G,
Harrigan P, Weier
M, Liechti A,
Aximu-Petri A,
Kircher M, Albert
FW, Zeller U,
Khaitovich P,
Grützner F,
Bergmann S,
Nielsen R, Pääbo S,
Kaessmann H

2011 The evolution of gene expression
levels in mammalian organs

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE30352

NCBI Gene
Expression Omnibus,
GSE30352
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