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Abstract

Direct brain recordings have provided important insights into how high frequency activity captured through intracra-

nial EEG (iEEG) supports human memory retrieval. The extent to which such activity is comprised of transient

fluctuations that reflect the dynamic coordination of underlying neurons, however, remains unclear. Here, we si-

multaneously record iEEG, local field potential (LFP), and single unit activity in the human temporal cortex. We

demonstrate that fast oscillations within the previously identified 80-120 Hz ripple band contribute to 70-200 Hz high

frequency activity in the human cortex. These ripple oscillations exhibit a spectrum of amplitudes and durations

related to the amount of underlying neuronal spiking. Ripples in the macro-scale iEEG are related to the number

and synchrony of ripples in the micro-scale LFP, which in turn are related to the synchrony of neuronal spiking. Our

data suggest that neural activity in the human temporal lobe is organized into transient bouts of ripple oscillations

that reflect underlying bursts of spiking activity.
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Introduction1

A fundamental premise in interpreting the various fluctuations and temporal dynamics observed in direct record-2

ings from the human brain is that these signals must be related to the underlying synaptic currents and spiking3

activity of individual neurons (Buzsaki et al., 2012; Parvizi & Kastner, 2018). Arguably the most robust link be-4

tween intracranial EEG (iEEG) signals and neuronal activity has been that increases in high frequency activity are5

associated with overall increases in underlying neuronal spiking (Burke et al., 2015; Manning et al., 2009). This6

relation has shaped the insights we have gained regarding the neural substrates of human memory (Jacobs & Ka-7

hana, 2010). Successful episodic memory formation, for example, is accompanied by increases in broadband activity8

that progress from poster to anterior along the temporal cortex, which has consequently suggested that successful9

memory involves increases in neuronal spiking in these regions (Burke et al., 2014; Greenberg et al., 2015; Long et10

al., 2014).11

The relation between widespread and prolonged increases in 70-200 Hz high frequency activity and successful12

memory formation has largely rested upon averaging neural data over multiple similar trials or events. This approach,13

however, obscures the moment to moment fluctuations that can arise as individuals try to encode or retrieve individual14

memories. Individual trials often exhibit increases in oscillatory and broadband activity that can be quite transient,15

as has been observed in recent studies of working memory (Jones, 2016; Lundqvist et al., 2016). Given the relation16

between broadband power and neuronal spiking, these short bouts of broadband activity may reflect brief bursts of17

population spiking activity. Bursts of spiking are in fact common in cortical recordings in animals and may represent18

packets of information that are used as the building blocks for neural coding in the brain (Luczak et al., 2009, 2015).19

The possibility that punctate events observed in the cortical iEEG signal may reflect underlying packets of spiking,20

however, has not been well explored in the human brain.21

A parallel and extensive line of research, however, has explicitly demonstrated the presence of bouts of fast22

oscillations known as ripples that have been identified using smaller scale local field potential (LFP) recordings in23

the rodent medial temporal lobe (MTL) in studies of spatial navigation (Colgin, 2016). These ripples are strongly24

associated with underlying bursts of spiking activity (Buzsáki, 2015). Ripples have been implicated in memory25

formation, consolidation, and retrieval (Buzsáki, 2015; Joo & Frank, 2018) and the bursts of spiking activity that26

accompany ripples are often organized into specific temporal sequences that have been hypothesized to represent the27

content of memory (Carr et al., 2011; Pfeiffer, 2020; Vaz et al., 2020). Recent reports have identified similar fast28

oscillations in the human brain even at larger spatial scales, and have suggested that these may be analogous to29

the ripples identified in rodents (Axmacher et al., 2008; Norman et al., 2019; Vaz et al., 2019; Zhang et al., 2018).30

Moreover, fast oscillations that appear similar to MTL ripples can also be identified in the cortex both in animals31

and in humans (Khodagholy et al., 2017; Vaz et al., 2019). Whether these cortical ripples should be considered the32

same as ripples in the MTL is still a matter of debate, although recent evidence has demonstrated that such cortical33

ripples observed in the human cortex are similarly accompanied by underlying bursts of spiking (Vaz et al., 2020).34

One of the challenges in resolving the nature of these fast oscillations that are observed in the human cortex35

and that appear similar to ripples observed in the MTL, however, is that ripple characteristics themselves can vary36
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significantly across brain areas, behavioral states, and arousal levels (Buzsáki, 2015). Ripples likely do not exist37

as static entities, and behaviorally relevant changes in ripple characteristics have already been observed in humans38

(Ngo et al., 2020). This ambiguity of ripple morphology, especially during the awake state, is reflected in the39

variety of approaches used to identify ripples in both rodents and humans, in both the hippocampus and cortex40

(Axmacher et al., 2008; Buzsáki, 2015; Jiang et al., 2020; Staresina et al., 2015; Vaz et al., 2019). The variability in41

the amplitude and duration of ripples often makes it unclear whether any one event should be classified as a ripple,42

how to systematically identify thresholds for detecting them, and how to distinguish these bursts of activity from43

background activity.44

Instead, the morphological features of ripples more likely exist on a continuum that reflects the activity and45

interactions among underlying neurons. Ripples depend on the extent of oscillatory coupling between pyramidal46

neurons and interneurons (Csicsvari et al., 1999; Stark et al., 2014), which can also change based on brain state and47

can differ between species and across brain regions (Klausberger et al., 2003). Cortical ripples in rodents exist on a48

spectrum of amplitudes that are highly correlated with underlying spiking activity (Khodagholy et al., 2017). Hence,49

a more direct approach for determining whether ripple oscillations identified in human cortical iEEG recordings might50

be functionally meaningful is to explicitly link the presence and characteristics of these observed cortical ripples with51

underlying spiking activity.52

Here we recorded macro-scale iEEG, micro-scale LFP, and single unit spiking activity in the human temporal53

lobe in order to examine the relation between cortical ripples and underlying neuronal spiking. We find that a54

major contributor to the changes in high frequency power observed with successful memory retrieval are temporally55

punctate ripple events. These ripples exist on a spectrum of amplitudes and durations that are related to the56

extent of underlying spiking activity. The amplitude of ripples in the larger scale iEEG is related to the extent57

of synchronization across the underlying micro-scale LFP ripple oscillations, and neuronal spiking is locked to the58

trough of each ripple at the micro-scale. Together, our data suggest that many of the changes in 70-200 Hz high59

frequency power observed in direct recordings of the human brain during cognition may reflect ripple events.60
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Results61

High Frequency Activity Reflects 80-120 Hz Ripples62

We examined intracranial EEG (iEEG) recordings in twenty-one participants with intracranial electrodes placed63

for seizure monitoring as they performed a verbal episodic memory task (Figure 1A; see Methods). In an example64

electrode in the medial temporal lobe, we observed transient increases in high frequency activity (70-200 Hz; HFA)65

in individual trials immediately before participants vocalize their response during the retrieval period (Figure 1C).66

When averaging across all trials, the increases in HFA prior to vocalization appear sustained, consistent with previous67

studies of episodic memory retrieval (Burke et al., 2014; Yaffe et al., 2014).68

We hypothesized that the transient increases in HFA observed in individual trials may be related to narrowband69

80-120 Hz ripples that have been previously associated with human memory retrieval (Vaz et al., 2019). We therefore70

identified ripples in each iEEG electrode in each participant (ripple rate .35± .04 Hz (mean ± SEM) across electrodes71

across all participants; Figure 1B; Figure 1–Supplement 1 to Figure 1–Supplement 5; see Methods). In the same72

example electrode, the transient increases in HFA observed in each trial correspond to the detection of individual73

ripples (Figure 1C). Across all trials, ripple rates demonstrate a clear increase that coincides with the sustained74

increase in HFA. We examined whether the changes in HFA and ripple rate were similarly modulated by successful75

memory retrieval in this examplar electrode (Figure 1D). Both HFA and ripple rates increase prior to vocalization76

during successful memory retrieval trials compared to trials in which the participant failed to successfully retrieve77

the correct word.78

Since ripple characteristics can vary significantly across brain regions, we examined whether the differences in79

HFA and ripple rate between correct and incorrect retrieval trials exhibit a similar spatial pattern across the brain.80

Across participants, HFA increases during the one second prior to vocalization are greater during correct memory81

retrieval compared to incorrect memory retrieval in several anatomic regions (Figure 1E; see Methods). When82

examining ripple rates, we also found significant increases during correct compared to incorrect trials in similar83

anatomic regions during this same time period (Figure 1E; Figure 1–Supplement 6B). Across regions of interest84

(ROIs) from the entire cortex, the participant average difference in HFA between correct and incorrect trials is85

positively correlated with the difference in ripple rate (r = .13, p = 6.1× 10−4; Figure 1F). Within two specific brain86

regions, the medial temporal lobe and the anterior temporal lobe, this positive correlation between the participant87

average difference in HFA between correct and incorrect trials and the average difference in the ripple rate is greater88

than the average difference across the whole brain (medial temporal lobe, MTL: r = .60, p = .00072; anterior89

temporal lobe, ATL: r = .23, p = .026; Figure 1G; Figure 1–Supplement 6C,D). Together, these data suggest that90

the changes in HFA and ripple rate observed with successful memory retrieval obey a similar anatomic distribution.91

We then examined this relation between HFA and 80-120 Hz ripples within retrieval trials in all individual92

electrodes in all participants. In each electrode, we computed the Pearson correlation between the average HFA93

and ripple rate across all retrieval trials, performed a Fisher’s z-transform to normalize the correlation coefficients94
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Figure 1. High Frequency Activity Reflects Ripples. (A) Paired-associates verbal episodic memory task.
(B) Average iEEG signal locked to detected ripples in an anterior temporal lobe electrode in two participants.
(C) Time-frequency power spectrograms for two clips of iEEG data from one electrode in medial temporal lobe
(MTL) with corresponding iEEG voltage signal (black), 80-120 Hz band signal (blue), and detected ripple events
(shaded). Location of the representative channel is shown. Trial-averaged power spectrogram of the single channel in
medial temporal lobe during retrieval (top right) and corresponding spike raster of iEEG ripples across trials prior to
vocalization (bottom right). Black contour indicates significant clusters (cluster-based permutation, p < 0.01). (D)
Trial-averaged power spectrograms and corresponding ripple raster plots for correct and incorrect retrieval. Average
70 to 200 Hz power time series (top right) and average ripple rate time series (bottom right) for correct and incorrect
retrieval. Black contour indicates significant clusters (cluster-based permutation, p < 0.01). (E) Cortical topographic
plots of difference in 70-200 Hz power and 80-120 Hz ripple rate between correct and incorrect memory retrieval.
Each data point reflects the across-participant t-statistic for a region of interest (ROI). (F) Pearson correlation
between 70-200 Hz power and 80-120 Hz ripple rate across all ROIs. Each data point represents the average across
participants for each ROI. Line represents the least-squares regression. (G) Pearson correlation between 70-200 Hz
power and 80-120 Hz ripple rate across all ROIs in the medial temporal lobe (MTL) and anterior temporal lobe
(ATL). Lines represent least-squares regression. (H) Fisher z-transformed Pearson correlation between 70-200 Hz
power and 80-120 Hz ripple rate across all electrodes at baseline and during memory retrieval. Each participant is
represented by a data point (*** p < .001). (I) Fisher z-transformed Pearson correlation between 70-200 Hz power
and 80-120 Hz ripple rate across all electrodes during correct and incorrect memory retrieval (* p < .05). (J) Average
70-200 Hz power across all electrodes during correct compared to incorrect memory retrieval in true data (Orig) and
after removal of the temporal indices of detected ripples (Control); (*** p < .001; * p < .05). Code and data is
provided in Figure 1—source code 1 and Figure 1-source data 1.
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across participants, and then computed an average across all electrodes in each participant. We similarly computed95

this correlation across random three second epochs throughout the experimental session, which we designated as96

baseline. In both cases, the distribution of correlations across participants was consistent and significantly greater97

than zero (baseline r = .085 ± .018; retrieval r = .093 ± .020; t(20) > 4.6, p < 1 × 10−6, one-tailed t-test; Figure98

1H). The relation between HFA and ripple rate was similar during memory retrieval and baseline (retrieval-baseline99

.0079 ± .0016, t(20) = 1.44, p = 0.083, paired t-test). However, the relation was stronger during correct retrieval100

as compared to incorrect retrieval (correct r = .316 ± .0339, incorrect r = .259 ± .0296; t(20) > 8.7, p < 2 × 10−8;101

correct-incorrect .057± .004, t(20) = 2.40, p = .013, paired t-test; Figure 1I).102

To explicitly examine the extent to which 80-120 Hz ripples contribute to 70-200 Hz power, we conducted a103

control analysis by removing the time indices in which ripples were detected from the iEEG trace and recomputed104

HFA power. While the distribution of 70-200 Hz power averaged across electrodes in each participant is significantly105

greater during correct compared to incorrect memory retrieval (correct-incorrect .0051±.0049, t(20) = 2.39, p = .013),106

removing the 80-120 Hz ripples eliminates this difference (correct-incorrect: .0075 ± .0053, t(20) = 1.42, p = .086;107

Figure 1J; Figure 1–Supplement 6E). HFA power during correct retrieval is significantly reduced when removing the108

80-120 Hz ripples (original correct-control correct: .0096 ± .0023, t(20) = 4.21, p = 2.2 × 10−4). We also examined109

the correlation across all ROIs between the participant average difference in ripple rate between correct and incorrect110

trials and the difference in HFA after removal of the ripples and found that this relation is no longer significant111

(r = −.042, p = .270; Figure 1–Supplement 6F,G). Finally, to confirm that much of the 70-200 Hz power is driven112

by relatively band limited 80-120 Hz ripples, we repeated our analysis after detecting ripple events in a higher 120-113

200 Hz frequency band. Across ROIs from the entire cortex, we did not find a significant correlation between the114

participant average difference in HFA between correct and incorrect trials and the difference in 120-200 Hz ripple115

rate (Figure 1–Supplement 6H).116

Ripple Band Amplitudes Reflect a Spectrum of Underlying Local Spiking Activity117

In a subset of six participants, we had the opportunity to record micro-scale local field potentials (LFPs) and single118

unit spiking activity from a micro-electrode array (MEA) implanted in the anterior lateral temporal lobe underneath119

the iEEG electrodes (Figure 2A; Figure 2–Supplement 1; see Methods). In an example participant, ripples present120

in a single iEEG recording electrode overlying the MEA clearly occur simultaneously with ripples in the LFP across121

multiple micro-electrodes within the MEA (Figure 2B; Figure 2–Supplement 2). events are accompanied by increases122

in spiking activity across multiple units, and therefore transient increases in the overall population spiking rate across123

the MEA (Figure 2–Supplement 3 and Figure 2–Supplement 4).124

The continuous time data of iEEG activity at the macro-scale and LFP and spiking activity at the micro-scale125

suggest that 80-120 Hz ripples at both spatial scales are related to single unit spiking activity. To examine this126

relation, we computed z-scored 80-120 Hz ripple band amplitude in both the overlaying iEEG electrode and the127

average z-scored ripple band amplitude and spike rate in each of the MEA electrodes during 100 ms non-overlapping128

windows over all retrieval trials (ripple rate 0.84 ± 0.43 Hz across micro-electrodes across all participants). Across129
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all time windows in this participant, the average spike rate across MEA electrodes is significantly correlated with130

iEEG and LFP ripple band amplitude (spike rate v LFP amplitude r = .61, p < 1 × 10−18; spike rate v iEEG131

amplitude r = .12; p < 1 × 10−18, Pearson correlation; Figure 2C). We found that the relation between spiking132

activity and ripple band amplitude at both spatial scales is consistent and significant across participants (spike rate133

v LFP amplitude, Fisher z-transform: r = .751 ± .188; t(5) = 4.00, p = .0051, one-tailed t-test; spike rate v iEEG134

amplitude: r = .118± .049; t(5) = 2.39, p = .031; Figure 2D).135

These data demonstrate that the continuous time measure of 80-120 Hz ripple band amplitude is related to136

spiking activity. However, we were interested in understanding whether the amplitude and duration of ripples may137

exist on a continuum reflecting underlying neuronal activity. We therefore relaxed our criteria for identifying ripple138

events in order to detect ripples that are smaller and shorter duration, which are often assumed to be noise. (see139

Methods). We found ripples at both the macro- and micro-scale with a range of amplitudes and durations (Figure 1–140

Supplement 2). During every ripple detected in each LFP trace, we collected the average spike rate of units recorded141

in the respective MEA electrode and computed the Pearson correlation between LFP ripple amplitude and spike rate142

across all ripples. Across participants, LFP ripple amplitude is consistently and significantly correlated with spike143

rate (Fisher z-transform, r = .10± .02; t(5) = 3.62, p = .008 one-tailed t-test; Figure 2E; Figure 2–Supplement 5A).144

Even when ripples have amplitudes or durations below previously used thresholds, spiking activity is present in the145

microelectrode recording (Figure 2–Supplement 5B).146

While we found a strong relation between spiking activity and ripple amplitude, this observation could be con-147

founded by a correlation between ripple amplitude and duration (Figure 1–Supplement 2E). Larger amplitude ripples148

are larger in duration and therefore may have more opportunity to co-occur with spikes by chance. To account for149

this, we shuffled the time indices of the detected spike times and computed the correlation between LFP ripple am-150

plitude and the spike rate. The true relation between LFP ripple band amplitude and the spike rate is significantly151

greater than the shuffled distribution (true-shuffled r = .096± .020; t(5) = 3.312, p = .011, paired one-tailed t-test;152

Figure 2F).153

In a similar manner, during every iEEG ripple we determined how many individual units spike as a proportion154

of the total number of units identified in each experimental session (Figure 2–Supplement 5C). We measured the155

proportion of units that are active since the iEEG reflects the aggregate activity of the underlying neural population.156

We computed the Pearson correlation between the percentage of actively firing units and the iEEG ripple band157

amplitude and duration across all detected iEEG ripples in every participant (Figure 2H; Figure 2–Supplement158

5D). Across participants, this correlation is significant (Fisher z-transform, r = .15 ± .03; t(5) = 4.679, p = .003,159

one-tailed t-test). We performed the same shuffling procedure to account for ripple duration, and found that the160

true correlations across participants are significantly larger than the shuffled data (true-shuffled r = .069 ± .027;161

t(5) = 2.517, p = .027, paired one-tailed t-test; Figure 2H). Together, these data demonstrate a strong relation162

between underlying unit spiking activity and ripples observed at the micro- and macro-scale in the human temporal163

cortex.164

8



C

Electrode-Averaged
Spike Rate (z)

El
ec

tr
od

e-
Av

er
ag

ed
 

LF
P 

Ri
pp

le
 A

m
pl

itu
de

 (z
)

Electrode-Averaged
Spike Rate (z)

LFP

iEEG

B

iE
EG

 R
ip

pl
e 

Am
pl

itu
de

 (z
)

iEEGLFP

r = 0.61
p < 1 x 10-18

r = 0.12
p < 1 x 10-188

4

0

0 2 4 6

*

**
1.5

1.0

0.5

0.0

A 40

20

0

-20
0 4

D

*

Pe
ar

so
n 

co
rr

el
at

io
n

(z
-t

ra
ns

fo
rm

ed
)

orig shu�ed

0.4

0.2

0.0

Pe
ar

so
n 

co
rr

el
at

io
n

(z
-t

ra
ns

fo
rm

ed
)

*
0.4

0.2

0.0
orig shu�ed

G

LFP Ripple Amplitude
v Spike Rate

iEEG Ripple Amplitude 
v % Spiking Units

E

Spiking Units (%)

Ri
pp

le
 A

m
pl

itu
de

 (z
)

Number of Spikes

LFP

Ri
pp

le
 D

ur
at

io
n 

(m
s)

Ri
pp

le
 A

m
pl

itu
de

 (z
)

Ri
pp

le
 D

ur
at

io
n 

(m
s)

iEEG

F

H

Ripple Amplitude v
Spike Rate 

50 μV

50 μV

200 μV

100 ms

1-200 Hz iEEG

80-120 Hz iEEG

80-120 Hz LFP

spike
micro-LFP ripple

z-
sc

or
e 100 ms

LFP ripple amplitude
spike rate

Pe
ar

so
n 

co
rr

el
at

io
n

(z
-t

ra
ns

fo
rm

ed
)

10
 m

m

12 11

20 19

3 mm

4 mm

r equivalent

Pa
rt

ic
ip

an
t

Pa
rt

ic
ip

an
t

r equivalent

LS.DT.M
PT.KPT.APT

1 mm

Figure 2. Ripple Amplitudes Reflect A Spectrum of Underlying Local Spiking activity. (A) Locations
of the microelectrode arrays (MEA) in six participants (top left). Location of the MEA with respect to four nearby
iEEG channels in one participant (bottom left). Intraoperative photo of implanted MEA in the ATL (top right)
and after placement of an iEEG grid over the MEA (bottom right, arrow). Schematic of scalp, skull and cortex
with respect to one iEEG channel on the cortical surface and one MEA that extends into cortex (bottom, colors
represent different spatial scales). (B) Brief 1500 ms window of 1-200 Hz iEEG signal (black), 80-120 Hz band iEEG
signal (blue), 80-120 Hz band LFP signals across all MEA electrodes (purple), and raster plot for sorted units (red).
(C) Pearson correlation between average spike rate and average LFP ripple amplitude across all MEA electrodes
in one participant (blue). Pearson correlation between average spike rate and iEEG ripple band amplitude for one
nearby iEEG electrode in one participant (purple). Each data point represents a 100 ms non-overlapping window.
(D) Fisher z-transformed Pearson correlation between continuous spike rate and LFP and iEEG ripple amplitude.
Group level statistics are shown as mean ± SEM across six participants. Each data point represents a participant
(∗ ∗ p < 0.01, ∗p < 0.05). (E) Average duration and amplitude of ripples in the LFP signal related to the number
of spikes during the ripple. Each data point represents a participant. (F) Fisher z-transformed Pearson correlation
between spike rate and amplitude of coincident LFP ripple. Group level results are shown as mean ± SEM across
six participants. Each data point represents a participant. True data (orig) compared to correlations when shuffling
the spike time indices (shuffled; ∗p < 0.05). Forest plot of the r equivalent effect size and 95% CI for each participant
and random-effect (RE) mean estimate across all participants (right), demonstrating a significant effect size across
participants. (G) Average duration and amplitude of ripples in the iEEG signal related to the number of spikes
during the ripple. Each data point represents a participant. (H) Fisher z-transformed Pearson correlation between
percentage of spiking units and amplitude of coincident iEEG ripple. Group level results are reported as mean ±
SEM across participants. True data (orig) compared to correlations when shuffling the spike time indices (shuffled;
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Macro-Scale Ripples Reflect Number and Alignment of Micro-Scale Ripples165

Our data suggest that ripples observed at both spatial scales may be related to one another. We hypothesized that166

the amplitude of the ripple observed in the iEEG signal in a region is related to both the total number of LFP ripples167

and the extent to which the LFP ripples observed across the underlying MEA electrodes in the same local region are168

aligned (Figure 3A).169

We first examined the relation between the amplitude of the iEEG ripple and the number of LFP ripples simulta-170

neously present in the MEA electrodes. In every participant, we detected ripples in each of the four iEEG electrodes171

closest to the MEA. For every detected ripple, we computed the mean 80-120 Hz ripple band amplitude across the172

iEEG electrodes and the number of LFP ripples simultaneously observed across the MEA (Figure 3–Supplement 1A).173

In each participant, the iEEG ripple amplitude is positively correlated with the percent of MEA electrodes exhibiting174

LFP ripples across all detected iEEG ripples (% MEA electrodes with ripples, Fisher z-transform; r = .11 ± .02;175

t(5) = 3.947, p = .005; Figure 3B; Figure 3–Supplement 1B,C). We accounted for the possibility that the longer176

durations observed in higher amplitude iEEG ripples may result in a larger number of detected LFP ripples by using177

a similar shuffling procedure. In this case, during each shuffle we performed a random circular shift of the time178

indices of the detected LFP ripples. After accounting for these longer durations, we still found that the true relation179

between iEEG ripple amplitude and the number of simultaneously detected LFP ripples is significantly greater than180

the shuffled distribution (true-shuffled r = .05± .02; t(5) = 2.543, p = .026, paired one-tailed t-test; Figure 3B).181

We then examined the relation between the amplitude of the iEEG ripple and the extent to which the LFP182

ripples in the underlying MEA are synchronized. For every detected iEEG ripple, we extracted the LFP 80-120183

ripple band instantaneous phase for all 96 MEA electrodes and computed the maximum pairwise phase consistency184

(PPC) over all time points within the duration of that iEEG ripple (Figure 3C,D; see Methods). Across participants,185

the PPC is significantly correlated with the maximum amplitude of the observed iEEG ripples (Fisher z-transform;186

r = 1.06 ± .43; t(5) = 2.34, p = .033, one-tail t-test; Figure 3E-F; Figure 3–Supplement 1D). In addition, the187

correlations across participants are significantly greater than those that would be observed by chance (true-shuffled188

r = .03± .01; t(5) = 2.28, p = .036, paired one-tail t-test; Figure 3E; see Methods). We repeated this analysis using189

only microelectrodes with detected ripples and found that, across participants, the PPC is still significantly correlated190

with the maximum amplitude of the observed iEEG ripples (Fisher z-transform; r = .066± .02; t(5) = 3.71, p = .014,191

one-tail t-test). These data together suggest that the iEEG ripple reflects both the aggregate sum and alignment of192

the underlying LFP ripples.193

To further examine the relation between ripples detected in the LFP signal and ripples detected in the iEEG ex-194

plicitly, we measured the coincidence of ripples detected at the two spatial scales by computing the cross-correlogram195

of ripples detected in the LFP and iEEG traces. We found that ripples are coincident above chance for all detection196

parameters tested (Figure 3–Supplement 2; see Methods). Moreover, the extent to which ripples are coincident197

between electrodes at the two spatial scales is significantly related to the distance between them (all participants:198

r = −.572, p = .0035; across each participant, n = 6: r = −.595 ± 0.271, mean ± SEM, t(5) = −2.40, p = .0615;199

Figure 3G; Figure 3–Supplement 3).200
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Figure 3. Macro-Scale Ripple Amplitude Reflects Number and Alignment of Micro-Scale Ripples.
(A) Brief window around one iEEG ripple showing unfiltered iEEG signal (black), ripple band iEEG signal (blue)
and ripple LFPs for one nearby iEEG channel and six microelectrode array (MEA) electrodes with coincident LFP
ripples. (B) Fisher z-transformed Pearson correlations for percentage of MEA electrodes containing LFP ripples
and amplitude of coincident iEEG ripple. Group level results reported as mean ± SEM persists when duration of
the iEEG ripple is accounted for by shuffling (∗p < 0.05). Each data point represents a participant. (C) Schematic
of calculation of pairwise phase differences across all microelectrodes to compute pairwise phase consistency. (D)
Brief window around one iEEG ripple showing ripple band iEEG signal (blue), instantaneous phase of a pair of
MEA electrodes (purple; out of many pairs, not shown) and instantaneous phase difference of the ch 1 and ch 2 pair
(black). Maximum of iEEG ripple indicated with small black square in the shaded window above the ripple band
iEEG signal. Polar histogram of all pairwise phase differences during a detected iEEG ripple is centered around 0
(blue). Polar histogram all pairwise phase differences outside of a iEEG ripple is more uniform (black). (E) Fisher
z-transformed Pearson correlations between maximum pairwise phase consistency across all MEA electrode pairs
and maximum amplitude of iEEG ripples. Group level results, reported as mean ± SEM, persists when duration of
the iEEG ripple is accounted for by shuffling (∗p < 0.05). Each data point represents a participant. (F) Forest plot
of the r equivalent effect size and 95% CI for each participant and random-effect (RE) mean estimate demonstrate
a significant effect across all participants. (G) Relation between distance between MEA and iEEG electrode and
LFP-iEEG ripple synchrony. Each data point represents the relation between a MEA and iEEG electrode in the
MTL or ATL, and each color represents a different patient. Code and data is provided in Figure 3—source code 1
and Figure 3-source data 1.
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Spiking Activity is Phase-Locked to Ripples201

Given that synchronization of LFP ripples was associated with increased ripple amplitudes, we also hypothesized202

that spike timing during ripples would be phase locked (Quyen et al., 2008). In individual participants, we often203

observed that unit firing preferentially occurs at the trough of the corresponding LFP ripples (Figure 4A). When204

the LFP ripples are aligned, spiking activity also appears to preferentially occur at the trough of the overlying iEEG205

ripple. In all participants, spikes from all units are locked to the trough of the 80-120 Hz ripple band in the LFP206

signal (p < 10−4, Rayleigh test across all units in each participant; p = 4.8× 10−4, Rayleigh test across six complex207

means, one from each participant; Figure 4B). We did not observe such phase consistency when examining the extent208

to which spiking activity is locked to the phase of 80-120 Hz ripple band activity in the macro-scale iEEG signal209

(p = .12, Rayleigh test across all units and across participants; Figure 4B).210

When we visualized the spike triggered average of the LFP signal in individual participants, we often observed211

that spiking activity also appeared locked to negative deflections in the LFP (Figure 4C). These negative deflections212

contain spectral power within low frequencies. We therefore also examined the distribution of 2-10 Hz low frequency213

phases present in the LFP signal around each spike and found significant locking to the trough in all participants214

(p < 10−4, Rayleigh test; p = 5.4× 10−4, Rayleigh test across six complex means, one from each participant; Figure215

4D). Spikes from all units appear locked around the trough of the 2-10 Hz low frequency iEEG signal when pooled,216

which reflects the negative deflection in the iEEG signal, but when examined separately for each participant, the217

apparent spike locking to the 2-10 Hz iEEG signal is not consistently at the same phase across participants (p < 10−4,218

Rayleigh test across all units in each participant; p = .70, Rayleigh test across six complex means, one from each219

participant; Figure 4D).220

To examine the relation between spiking activity and individual frequencies within the LFP signal, we computed221

PPC across all spikes within each MEA electrode for each frequency between 2 Hz and 400 Hz (see Methods) (Vinck222

et al., 2010). Across participants, spiking activity is significantly locked to specific high frequency bands in the LFP223

(peak 86.9 Hz, p < 0.05, permutation test; see Methods Figure 4E). We confirmed that spiking activity is locked224

to this high frequency band across participants by also computing the phase-locking value (Figure 4–Supplement225

1A). This observed locking between spikes and this high frequency band in the LFP signal was robust to different226

detection thresholds (Figure 4–Supplement 2). Spikes also appear locked to a low frequency band, but this likely227

represents the sharp negative deflections observed in the iEEG and LFP traces that accompany burst of spiking228

activity. Spikes are significantly more locked to high frequencies when they arise during ripples as compared to229

between ripples (p < 0.05, permutation test; Figure 4F, Figure 4–Supplement 1B).230

We next examined the relation between the extent to which spiking activity locks to the 80-120 Hz frequency231

within each ripple and the amplitude of the ripple. Across participants, mean spike-LFP PPC within the 80-120232

Hz ripple band is significantly correlated with 80-120 Hz ripple amplitude across all MEA electrodes (Fisher z-233

transform, r = .084± .026, t(5) = 3.27, p = .011; Figure 4G). To account for any possible effects of ripple duration on234

the calculation of PPC, we compared this true distribution to a chance distribution and found that across participants235

LFP ripple amplitude exhibits a significantly stronger correlation with spike locking to the 80-120 Hz band in the true236
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ripple (right) across spike times for all units. (inset) Complex mean of the distribution of phases for each participant
is depicted in a polar plot. Circles filled with a star if the distribution within a participant shows significant phase-
locking (Rayleigh test, p < 0.001). Black line shows the average of six distributions across participants. (C) Spike
triggered average (STA) for spikes detected within LFP ripples, in pink. Brief 500 ms window of 2-10 Hz filtered
LFP (green) across MEA electrodes with neuronal activity. Red dots mark spikes occurring preferentially at trough
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spike times for all units. (inset) Complex mean of the distribution of phases for each participant is depicted in a
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∗p < 0.05). Code and data is provided in Figure 4—source code 1 and Figure 4-source data 1.
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data as compared to the chance distribution (t(5) = 2.64, p = .023; see Methods). Together with our data examining237

the relation between spiking activity and ripple amplitude, these data suggest that the amplitude of ripples in the238

LFP signal may reflect both the sum and alignment of underlying spiking.239

Finally, given the observed relation between spiking activity and ripples, we then examined whether ripples240

themselves also exhibit a phase preference. As with the individual spikes, we considered each LFP ripple as an event241

and visualized the ripple-triggered average of the iEEG and LFP signal (Figure 4–Supplement 1C). Ripples appear to242

exhibit a clear relation with negative deflections in the iEEG and LFP trace. We therefore examined the distribution243

of 2-10 Hz low frequency phases present in the LFP signal during each LFP ripple and found significant locking to244

the trough in all participants (p < 10−4, Rayleigh test across all ripples in each participant; p = .0099, Rayleigh test245

across complex means, one from each participant; Figure 4–Supplement 1E). Micro-scale ripples are also locked to246

the 2-10 Hz low frequency band in the iEEG signal within individual participants but at variable phases (p < 10−4,247

Rayleigh test across all ripples in each participant; p = .72, Rayleigh test across six complex means, one from each248

participant).249
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Discussion250

Despite significant advances over the past several decades, how to accurately interpret the various fluctuations251

and dynamics observed through direct recordings of the human brain has remained challenging. With simultaneous252

recordings of the same brain region using iEEG electrodes and MEA electrodes, we examine how high frequency253

activity captured through direct macroscale recordings in humans that are typically collected with iEEG reflect254

LFP and local spiking activity at the micro-scale, which are less commonly measured and more difficult to measure255

in humans. Our results demonstrate that many of the changes in 70-200 Hz high frequency activity captured256

through iEEG reflect transient 80-120 Hz oscillations. These short bouts of neuronal activity exist on a continuum257

of amplitudes and durations, and reflect underlying bursts of neuronal spiking.258

We consider the possibility that these brief neuronal events are ripple oscillations that may be contributing to259

human cognition. One of the challenges, however, in examining the role of ripple oscillations in cognition, especially in260

the human brain, has been determining whether any particular event does or does not qualify as a ripple. Many of the261

criteria used for defining ripples in human recordings have been drawn from the more developed literature examining262

ripple oscillations in the rodent MTL (Buzsáki, 2015; Joo & Frank, 2018). Researchers interested in studying ripples,263

whether in the cortex or in the MTL, often choose fixed parameters based on these previous studies. However, fixed264

criteria may not accommodate the reality that ripples are dynamic entities with morphologies that can vary based on265

brain region or behavior (Buzsáki, 2015; Ngo et al., 2020). Moreover, it is not clear how these parameters that have266

been well established in rodents translate across different species, as ripples in human brain recordings for example267

have only been relatively recently described (Axmacher et al., 2008; Jiang et al., 2020; Norman et al., 2021, 2019;268

Staresina et al., 2015; Vaz et al., 2019).269

Our data demonstrate that cortical ripples captured through human brain recordings exist on a continuum of270

amplitudes and durations. Our results do not prescribe a fixed set of criteria for identifying ripples, but instead271

highlight the point that strictly adhering to predefined criteria for what constitutes a ripple may run the risk of272

overlooking functionally meaningful events. Indeed, we explicitly explore this point here by using more liberal273

thresholds for ripple detection. By recording neural activity across spatial scales, we find that even ripples with274

smaller amplitudes or shorter durations are associated with bursts of spiking activity. The amplitude and duration275

of each ripple in the micro-scale LFP signal is related to the amount of neuronal spiking activity and the extent276

to which such spiking is synchronous. In turn, the amplitude and duration of each ripple in the macro-scale iEEG277

recording is related to the number and synchrony of ripples at the micro-scale. These results are consistent with278

previous studies of ripples conducted through both in vivo and slice recordings of rodent MTL structures which have279

suggested that ripples reflect the synchronous interactions and overall activity of underlying neurons (Csicsvari et al.,280

1999; Khodagholy et al., 2017; Nitzan et al., 2020; Stark et al., 2014). Although the durations of ripples we observe281

in our human recordings are shorter than those observed in the rodent MTL, this could be related to differences in282

the neural architecture, and therefore differences in the latencies of activation among individual neurons, between283

species or between brain regions.284

The discovery that such transient bouts of narrow band oscillatory activity may be functionally relevant, both in285
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the human MTL but also in the human cortex, has raised the possibility that these events are similar to MTL ripples286

that have been extensively described in rodents (Axmacher et al., 2008; Buzsáki, 2015; Jiang et al., 2020; Norman et287

al., 2021; Staresina et al., 2015; Vaz et al., 2019). Whether ripples are specific to the MTL or whether they are a more288

general feature of neural processing is still a matter of debate. Our data demonstrate similar events in the human289

cortex, fast oscillations within a narrow 80-120 Hz band of activity that we identify using multiple complementary290

analyses. We excluded the possibility that these events are related to epilepsy and interictal epileptiform discharges,291

and we find that these events are associated with ripples in the MTL. Importantly, these events are related to bursts292

of underlying spiking activity. We consequently label them as ripples given their similarity and relation with MTL293

ripples. Regardless of their exact label, however, these events appear to reflect transient bouts of spiking activity294

that are related to information processing in the brain.295

Our work is also consistent with several prior studies demonstrating a strong association between gamma power,296

70-200 Hz high frequency power, and spiking activity (Berens et al., 2008; Burke et al., 2014; Manning et al., 2009;297

Panagiotaropoulos et al., 2012). We similarly find a strong relation between spiking activity and ripples, which in our298

analyses occupy a narrow band of frequencies between 80-120 Hz. It is possible that these phenomena are related,299

and that the previously described gamma band or broadband activity simply includes this narrow ripple band. We300

find that this narrow band activity accounts for many of the changes observed in the broadband power, and, of note,301

the cortical spiking activity in our data is locked to this narrow band.302

By examining both iEEG and LFP recordings in the human brain for the presence of ripples, our data therefore303

support the hypothesis that many of the dynamics observed in 70-200 Hz high frequency activity captured from the304

human brain are driven by well-defined and brief bouts of neural oscillatory activity that reflect bursts of synchronized305

spiking. A common approach for investigating the neural correlates of human cognition has been to average neural306

activity over multiple trials and over broad frequency ranges (Burke et al., 2014, 2015; Greenberg et al., 2015; Long et307

al., 2014; Wittig et al., 2018). This approach has guided our understanding of human episodic memory formation, for308

example, but fails to account for the possibility that the neural mechanisms of memory may be more punctate (Jones,309

2016; Lundqvist et al., 2016). The relation between band limited 80-120 Hz ripples and 70-200 Hz high frequency310

activity that we observe in our data suggests that many of the interpretations regarding the neural substrates of311

human memory may be better served by considering these transient events. It is important to recognize, however,312

that this relation is not absolute and appears less robust outside of the MTL and ATL. Even within these brain313

regions, this relation is clearer only during correct compared to incorrect memory retrieval. Hence, while 80-120 Hz314

ripples may underlie many of the phenomena observed through 70-200 Hz high frequency activity, there are likely315

other neural mechanisms that contribute to the dynamics observed in the iEEG signal.316

The possibility that information is neurally encoded through bursts of activity has been relatively under-explored317

in human brain recordings. Recent evidence captured through animal recordings related to both memory and318

perception, however, supports this possibility (Luczak et al., 2009, 2015; Lundqvist et al., 2016). These advances319

are partly due to the more sophisticated tools that are available for in vivo recordings of large populations of320

spiking neurons in animals. By recording spiking activity from a population of neurons in the human temporal321
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cortex through microelectrode arrays, we find direct evidence that 80-120 Hz ripples that we observe in our data are322

accompanied by bursts of neuronal spiking. Hence, our data demonstrate that neural activity in the human temporal323

cortex may be temporally organized into bursts of spiking. Our data focus on these bursts of spiking activity as324

participants form and retrieve memories since the information contained within these bursts has been linked with325

memory retrieval (Pfeiffer, 2020; Vaz et al., 2020). However, our data cannot address whether the relation between326

ripples and underlying bursts of synchronized spiking is unique to just the temporal lobe or just to memory. Ripples327

have been most studied in the MTL in both animals and humans, but appear to jointly occur in brain regions that328

either process or receive the same information (Khodagholy et al., 2017; Lisman & Jensen, 2013; Swanson et al.,329

2020; Vaz et al., 2019). It is possible that this relation between ripples and spiking activity is unique to brain regions330

that communicate directly with the MTL or that are directly involved in memory. Our results, however, raise the331

possibility that such bursts of spiking may be a general feature of neural coding in the human brain.332

Given previous evidence demonstrating that spiking activity within ripples appears locked to the trough of each333

cycle, it is not surprising that we observe similar locking in our data (Nitzan et al., 2020; Quyen et al., 2008). We find334

more consistent locking of spiking activity to higher frequencies in the micro- compared to macro-scale. This may be335

because synchronous spiking can occur within local neuronal ensembles while varying across ensembles. However, we336

also find that spikes, and consequently ripples themselves, appear to coincide with large deflections in the iEEG and337

LFP trace that appear to have spectral power within a low frequency band. Such locking of both spiking activity338

and ripples to the trough of these deflections can account for several phenomena that have been previously described339

in human brain recordings. For example, phase amplitude coupling between low frequency oscillations and high340

frequency activity is ubiquitous in human recordings and has been linked to behavior (Canolty et al., 2006; He et341

al., 2010; Vaz et al., 2017). If many of the increases in 70-200 Hz high frequency activity are related to ripples,342

then phase amplitude coupling may emerge simply because ripples, and therefore spiking activity, coincide with large343

deflections, or sharp waves, in human brain recordings that reflect periods of concentrated synaptic inputs (Buzsáki,344

2015).345

It is also possible that some of the locking we observe between low frequency power and spiking, bursts of346

spiking, and therefore ripples, also reflects locking to true low frequency oscillations. If so, then this could also347

suggest a possible mechanism by which bursts of spiking activity may be conveyed from one brain region to another.348

Oscillations observed in the iEEG have been hypothesized to facilitate communication between brain regions and349

modulate the excitability or timing of neuronal spiking (Chapeton et al., 2019; Fries, 2015). Indeed, low frequency350

coherence may be related to successful memory formation (Fell et al., 2011; Lega et al., 2011; Shirvalkar et al., 2010).351

In this framework, these oscillations could open gates of communication, allowing the brain to convey a volley of352

neuronal spiking from one region to another. Recent evidence has also suggested that higher frequency oscillations353

that are synchronous across brain regions may also facilitate communication, although the evidence for this still354

remains unclear (Bosman et al., 2012; Buzsáki, 2015; Fries, 2015; Ray & Maunsell, 2015). Our data has implications355

for interpreting such higher frequency coherence, as two brain regions that each exhibit bursts of spiking activity,356

either conveyed from one to the other directly or driven by a third region, can each generate high frequency ripple357
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oscillations. If the underlying neuronal interactions in each brain region are similar, the ripples may appear coherent358

and at the same high frequency. Conversely, if the underlying architecture of each region is different, then any359

resulting higher frequency oscillations may differ in morphology and frequency, and the ripples may therefore appear360

not to be coherent even though they may be related.361

Together, our data offer insights into the dynamic fluctuations observed in direct recordings from the human362

brain and suggest that neural activity may be organized into 80-120 Hz ripple events that reflect underlying bursts363

of neuronal spiking. Our data argue against using fixed criteria to identify these ripples, and instead demonstrate364

that these ripples exist on a continuum of activity.365
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Materials and Methods366

Participants367

Twenty-one participants with drug resistant epilepsy underwent a surgical procedure in which platinum recording368

contacts were implanted on the cortical surface as well as within the brain parenchyma. In each case, the clinical369

team determined the placement of the contacts to localize epileptogenic regions. In all the participants investigated370

here, the clinical region of investigation was the temporal lobes.371

For research purposes, in six of these participants (4 female; 34.8±4.7 years old) we placed one or two 96-channel372

microelectrode arrays (MEA; 4 x 4 mm, Cereplex I; Blackrock Microsystems, Inc., Salt Lake City, UT) in the373

anterior temporal lobe (ATL) in addition to the subdural contacts. We implanted MEAs only in participants with a374

presurgical evaluation indicating clear seizure localization in the temporal lobe and the implant site in the ATL was375

chosen to fall within the expected resection area. Each MEA was placed in an area of cortex that appeared normal376

both on the pre-operative MRI and on visual inspection. Across participants, MEAs were implanted 14.6 ± 3.7 mm377

away from the closest subdural electrode with any ictal or interictal activity identified by the clinical team. Four378

out of the six participants received a surgical resection which includes the tissue where the MEAs were implanted.379

One participant had evidence of focal cortical seizure activity and received a localized resection posterior to the380

MEA site. One participant did not have a sufficient number of seizures during the monitoring period to justify a381

subsequent resection. Neither participant experienced a change in seizure type or frequency following the procedure,382

or experienced any noted change in cognitive function. The data captured from these MEA’s in these participants383

were included in a previous study (Vaz et al., 2020).384

Data were collected at the Clinical Center at the National Institutes of Health (NIH; Bethesda, MD). The Insti-385

tutional Review Board (IRB) approved the research protocol (11-N-0051), and informed consent was obtained from386

the participants and their guardians. All analyses were performed using custom built Matlab code (Natick, MA).387

Data are reported as mean ± SEM unless otherwise specified.388

389

Paired-Associates Memory Task390

Each participant performed a paired associates verbal memory task (Jang et al., 2017; Vaz et al., 2020; Yaffe et al.,391

2014). Previous studies have demonstrated that correct memory retrieval in this task is associated with increases392

in high frequency activity (Jang et al., 2017; Vaz et al., 2020; Yaffe et al., 2014). Here, we replicate these previous393

findings using a subset of participants that were included in these previous studies (n = 14) as well as additional394

new participants (n = 7). During the study period, participants were sequentially shown a list of word pairs and395

instructed to remember the novel associations between each pair of words (encoding). Later during testing, they396

were cued with one word from each pair selected at random and were instructed to say the associated word into a397

microphone (retrieval).398
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A single experimental session for each participant consisted of 25 lists, where each list contained six pairs of399

common nouns shown on the center of a laptop screen. The number of pairs in a list was kept constant for each400

participant. Words were chosen at random and without replacement from a pool of high-frequency nouns and were401

presented sequentially and appearing in capital letters at the center of the screen. We separated the study and test of402

each word pair by a minimum lag of two study or test items. During the study period, each word pair was preceded403

by an orientation stimulus (’+’) that appeared on the screen for 250-300 ms followed by a blank interstimulus interval404

(ISI) between 500-750 ms. Word pairs were then presented stacked in the center of the screen for 4000 ms followed405

by a blank ISI of 1000 ms. Following the presentation of the list of word pairs, participants completed an arithmetic406

distractor task of the form A + B + C = ? for 20 seconds.407

During the test period, one word was randomly chosen from each of the presented pairs and presented in random408

order, and the participant was asked to recall the other word from the pair by vocalizing a response. Each cue409

word was preceded by an orientation stimulus (a row of question marks) that appeared on the screen for 4000 ms410

followed by a blank ISI of 1000 ms. Participants could vocalize their response any time during the recall period after411

cue presentation. We manually designated each recorded response as correct, intrusion, or pass. A response was412

designated as pass when no vocalization was made, when the participants made an unintelligible vocalization like413

’umm’, or when the participant vocalized the word ’pass’. During pass trials where no vocalization was present, we414

assigned a response time by randomly drawing from the distribution of correct response time during that experimen-415

tal session. We did not include such pass trials where no vocalization was present in our analysis of incorrect trials.416

We defined all intrusion and other pass trials as incorrect trials. A single experimental session contained 150 total417

word pairs. Each participant completed between 1-3 sessions (2.2 ± 0.3 per participant). Participants studied 93 ±418

8 word pairs, and successfully recalled 30.1 ± 4.1% of words. While patients were presented with 150 words pairs in419

each experimental session, the number of word pairs they actually studied was reduced if they did not complete the420

session due to interruptions or participant fatigue.421

422

Intracranial EEG (iEEG) Recordings423

We collected intracranial EEG (iEEG) data from a total of 1660 subdural and depth recording contacts (79 ± 4 per424

participant; Figure 1–Supplement 6). Subdural contacts were arranged in both grid and strip configurations with425

an inter-contact spacing of 10 mm. We captured iEEG signals sampled at 1000 Hz. For clinical visual inspection of426

the recording, signals were referenced to a common contact placed subcutaneously, on the scalp, or on the mastoid427

process. The recorded raw iEEG signals used for analyses were referenced to the system hardware reference, which428

was set by the recording amplifier (Nihon Kohden, Irvine CA) as the average of two intracranial electrode channels.429

We used the Chronux toolbox to apply a local detrending procedure to remove slow fluctuations (/ 2Hz) from430

the time series of each electrode and a regression-based approach to remove line noise at 60Hz and 120Hz (Mitra431

& Bokil, 2009). We did not see a noticeable peak at the 180 Hz harmonic when we surveyed the power spectral432

density of several electrodes for noise and therefore did not remove line noise at that harmonic to avoid introducing433
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artifacts. We implemented additional thresholds to remove movement artifacts and pathological activity related to434

the patient’s epilepsy.435

We quantified spectral power and phase in the iEEG signals by convolving the voltage time series with 200 lin-436

early spaced complex valued Morlet wavelets between 2 and 200 Hz (wavelet number 6). We extracted data from437

all retrieval periods, beginning four seconds preceding vocalization to one second following vocalization and included438

a 1000 ms buffer on both sides of the clipped data. We squared and log-transformed the continuous-time wavelet439

transform to generate a continuous measure of instantaneous power for each frequency. To account for changes in440

power across experimental sessions, we z-scored power values separately for each frequency and for each session using441

the mean and standard deviation of all respective values for that session. When examining the average changes442

in high frequency activity (70-200 Hz) during memory retrieval across trials, we temporally smoothed the z-scored443

spectrogram for each iEEG channel using a sliding 600 ms window (90% overlap) as a point of comparison with444

previous studies of human memory retrieval (Greenberg et al., 2015).445

446

Anatomic Localization447

We localized electrodes in each participant by identifying high-intensity voxels in a post-operative CT image, which448

was co-registered to a pre-operative T1-weighted MRI. Electrode locations were adjusted to account for routine post-449

operative parenchymal shift by applying a standardized algorithm combining intraoperative photography, electrode450

spatial arrangement, and dural and pial surface reconstructions (Trotta et al., 2017). Pial surfaces were reconstructed451

using FreeSurfer (http://surfer.nmr.mgh.harvard.edu) (Fischl, 2012) and were resampled and standardized using the452

AFNI SUMA package (Cox, 1996). The resulting surfaces each contained 198812 vertices per hemisphere, with453

vertices indexed in a standardized fashion, such that for any vertex i, the ith vertex is located in an anatomically454

analogous location across participants. We identified the location of each MEA on each participant’s surface recon-455

struction. We co-registered the individual participant reconstructions with a standard template brain, and visualized456

the locations of each participant’s MEA on the template brain.457

We aggregated vertices from the surface reconstruction into a standard set of surface-based regions of interest458

(ROIs) as previously described (Figure 1–Supplement 6) (Trotta et al., 2017). Briefly, we sampled 2400 equally-459

spaced vertices per hemisphere to use as ROI centers. ROI centers were uniformly distributed across the surface460

at an average geodesic distance of approximately 5 mm. We assigned all vertices within a 10 mm geodesic radius461

of an ROI center to that ROI, which achieves a coverage of 99.9% coverage or greater of the pial surface in each462

participant (Trotta et al., 2017). Because ROIs overlap, vertices may be assigned to multiple ROIs. On average,463

there were 669.44± 74.30 vertices per ROI and each vertex mapped to 8.08± 0.90 ROIs. We modeled each electrode464

as a cylinder with radius 1.5 mm, found the pial vertices closest to it, and then assigned each electrode to the same465

ROIs as its nearest pial vertices. Due to the overlap between ROIs, each electrode is assigned to multiple ROIs and466

each ROI may contain more than one electrode. For analyses within ROIs across participants, we only included ROIs467

that contained electrodes from at least five participants.468
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469

iEEG Artifact Removal470

We implemented several measures to provide the most conservative sampling of non-pathological signals possible.471

We implemented a previously reported automated trial and electrode rejection procedure based on excessive kurtosis472

or variance of iEEG signals to exclude high frequency activity associated with epileptiform activity (Jang et al., 2017;473

Vaz et al., 2019; Wittig et al., 2018). We calculated and sorted the mean iEEG voltage across all trials, and divided474

the distribution into quartiles. We identified trial outliers by setting a threshold, Q3+w*(Q3-Q1), where Q1 and Q3475

are the mean voltage boundaries of the first and third quartiles, respectively. We empirically determined the weight476

w to be 2.3. We excluded all trials with mean voltage that exceeded this threshold. The average percent removed477

across all sessions in each participant due to either system-level noise or transient epileptiform activity was 5.17 ±478

0.86% of all electrodes and 2.89 ± 0.34% of all trials.479

In addition, system level line noise, eye-blink artifacts, sharp transients, and inter-ictal epileptic discharges (IEDs)480

can confound the interpretation of our results. We therefore implemented a previously reported automated event-481

level artifact rejection (Staresina et al., 2015; Vaz et al., 2019). We calculated a z-score for every iEEG time point482

based on the gradient (first derivative) and amplitude after applying a 250 Hz high pass filter (for identification of483

IEDs). All time points within 100 ms of any time point that exceeded a z-score of 5 with either gradient or high484

frequency amplitude were marked as artifactual. We visually inspected the resulting iEEG traces and found that the485

automated procedure reliably removed IEDs and other artifacts. In total, following exclusion of electrodes because of486

artifact, we retained 1577 electrodes (75 ± 4 per participant) for analysis. We approximated a reference-free montage487

within each participant by subtracting the common average reference of all retained electrodes from the voltage trace488

of each individual electrode for that participant.489

Microelectrode Recordings490

In six participants, we additionally captured spiking activity and micro-scale local field potentials (LFP) from the491

MEAs implanted in the anterior temporal lobe. Microelectrodes were arranged in a 10x10 grid with each electrode492

spaced 400 µm apart and extending 1.5 mm into the cortical surface (1.0 mm for one participant). Post-operative493

paraffin blocks of the resected tissue demonstrated that the electrodes extended approximately halfway into the 3494

mm-thick gray matter. We digitally recorded microelectrode signals at 30 kHz using the Cereplex I and a Cerebus495

acquisition system (Blackrock Microsystems), with 16-bit precision and a range of ±8 mV.496

To extract unit spiking activity, we re-referenced each electrode’s signal offline by subtracting the mean signal497

of all the electrodes in the MEA, and then used a second order Butterworth filter to bandpass the signal between498

0.3 to 3 kHz. Using a spike-sorting software package (Plexon Offline Sorter, Dallas, TX, USA), we identified spike499

waveforms by manually setting a negative or positive voltage threshold depending on the direction of putative action500

potentials. The voltage threshold was set to include noise signals used in calculating unit isolation quality (see below).501

Waveforms (duration, 1.067 ms; 32 samples per waveform) that crossed the voltage threshold were stored for spike502
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sorting. Spike clusters were manually identified by viewing the first two principal components, and the difference in503

peak-to-trough voltage (voltage versus time) of the waveforms. We manually drew a boundary around clusters of504

waveforms that were differentiable from noise throughout the experimental session. In this manner, we identified a505

total of 989 putative single units across all sessions (average of 72 ± 21 units per participant). The average spike506

rate across all units was 2.82 ± 0.01 Hz. In addition to the spiking data, we also used a 500 Hz low pass filter to507

extract the LFP signals from each microelectrode, down-sampled to 1000 Hz, and then performed a similar line noise508

removal and channel selection procedure to that used for the iEEG channels to exclude artifacts related to epilep-509

tiform activity or other system level noise. Across the six participants, after pre-processing we retained recordings510

from 78 ± 27 MEA electrodes for further analysis.511

512

Single-unit Recording Quality Measures513

Due to variability in the signal quality across recordings and the subjective nature of spike sorting, we quantified514

the quality of each unit by calculating an isolation score and signal to noise ratio (SNR) (Joshua et al., 2007). The515

isolation score quantifies the distance between the spike and noise clusters in a 32-dimensional space, where each516

dimension corresponds to a sample in the spike waveform. The spike cluster consisted of all waveforms that were517

classified as belonging to that unit, and the noise cluster consisted of all waveforms that crossed the threshold that518

were not classified as belonging to any unit. The isolation score is normalized to be between 0 and 1, and serves519

as a measure to compare the isolation quality of all units across all experimental sessions and participants. Across520

participants, the mean isolation score for all units was 0.93 ± 0.1.521

In addition to isolation quality, we computed the SNR for each unit:522

SNR =
Vpeak − Vtrough
Noise ∗ C

where Vpeak and Vtrough are the maximum and minimum voltage values of the mean waveform, and C is a scaling523

factor (set as 5). To obtain Noise, we subtracted the mean waveform from each individual waveform for each524

identified unit, concatenated these waveform residuals, and then computed the standard deviation of this long525

vector. Therefore, the noise term quantifies the within-unit variability in waveform shape. Across participants, the526

mean SNR for all units was 1.71 ± 0.12.527

We estimated the instantaneous spike rate for each unit by convolving the spike rasters with a Gaussian kernel528

(σ = 25 ms). We used the mean and standard deviation of the spike rate over an entire experimental session to529

generate a z-scored spike rate for each unit.530

531

23



Ripple Detection532

We detected ripples in both the iEEG and LFP signals as previously reported (Vaz et al., 2019). We first bandpass533

filtered the voltage time series in the ripple band (80-120 Hz) using a second order Butterworth filter, and then534

applied a Hilbert transform to extract the instantaneous amplitude and phase within that band. We selected events535

where the Hilbert envelope exceeded 2 standard deviations above the mean amplitude of the filtered traces. We536

only retained events that were at least 25 ms in duration and had a maximum amplitude greater than 3 standard537

deviations as ripples for analysis. We did not specify an upper limit for ripple duration. We joined adjacent ripples538

that were separated by less than 15 ms. We identified every ripple that satisfied these criteria in every electrode539

contact, and assigned each such identified ripple a start time index and an end time index when the ripple crosses540

the detection threshold. The difference between them defined the duration of each ripple.541

To assess the overlap between detected ripples and inter-ictal epileptic discharge (IED) artifacts, we computed542

the joint probability of iEEG and LFP ripples and the identified IEDs for each participant. We found that IEDs543

overlapped with 0.79 ± 0.11% of iEEG ripples and with 1.38 ± 0.11% of LFP ripples across the six participants544

with MEAs (Figure 1–Supplement 5A-B). We excluded all IEDs and high frequency oscillations associated with545

IEDs (ripple on spike waveforms, pathologic ripples) and any detected ripple that overlapped with an IED from our546

analyses. The remaining ripples that we retained for our analyses therefore occurred without an associated IED and547

are more likely to be physiologic.548

To examine the relation between ripple amplitude and spiking activity, as well as to examine the relation between549

ripples across spatial scales, we used the Hilbert phase and amplitude of the 80-120 Hz ripple band signal extracted550

from both the iEEG and LFP signals. The amplitude of individual ripples was measured by taking the maximum551

Hilbert amplitude of detected 80-120 Hz ripple events. To assess for a spectrum of ripple amplitudes and durations,552

we relaxed the detection thresholds to include all events during which the Hilbert amplitude of the LFP signal553

exceeded only one standard deviation above the mean amplitude of the filtered traces. We designated all such events554

with a minimum duration of 10 ms and with a maximum amplitude at least two standard deviations above the mean555

as putative ripples for these analyses.556

To account for the possibility that ripples with higher amplitudes and therefore longer durations may be associ-557

ated with more spiking activity by chance, we compared the true correlation between ripple amplitude and spiking558

activity to the correlations we would observe by chance. In each of 1000 permutations, we performed a random559

circular shift of the spike indices in each trial and computed the correlation between LFP ripple amplitude and spike560

rate across units and MEA electrodes. We compared the true correlation to the mean of the distribution of 1000561

shuffled correlations in each participant. We determined that 1000 permutations was sufficient by initially examin-562

ing the mean correlation as a function of the number of permutations in a single participant, and found that the563

mean value for the correlation observed by chance converged after only 500 permutations. We performed a similar564

permutation procedure when examining the relation between iEEG ripple amplitude and the proportion of active565

units, and between iEEG ripple amplitude and the number of underlying LFP ripples.566

567
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Pairwise Phase Consistency568

To examine the extent to which individual events such as spikes or ripples are aligned to consistent phases in the LFP569

or iEEG oscillations, we computed the pairwise phase consistency (PPC) (Vinck et al., 2010). Briefly, for each spike570

or ripple, we extracted the instantaneous phase of the LFP or iEEG signal either of individual frequencies or within571

low (2-10 Hz) or ripple band (80-120 Hz) frequency bands. For individual frequencies, we used the instantaneous572

phase extracted by convolving the LFP or iEEG time series with complex valued Morlet wavelets (wavelet number573

6) for 60 frequencies logarithmically spaced between 2 and 400 Hz. To extract the instantaneous phase of the two574

frequency bands, 2-10 Hz and 80-120 Hz, we filtered the LFP and iEEG signal into each frequency band and then575

extracted the instantaneous phase from the complex time series generated by the Hilbert transform of the filtered576

time series. Across multiple spikes or ripples, we therefore generate a distribution of phases. To calculate the PPC,577

we computed the average angular distance, or vector dot product, for all pairs of phases in each distribution. We578

defined the preferred phase for each distribution as the phase angle of the complex mean of the distributions of579

these phases. In addition to PPC, we also assessed phase consistency by testing whether each distribution of phases580

significantly deviated from a uniform distribution using a Rayleigh test of uniformity.581

We used PPC to examine the extent to which 80-120 Hz ripple band phases are aligned across all microelectrodes582

in each MEA during each ripple detected in the larger scale iEEG signal. In this case, during every time point583

within each iEEG ripple, we collected a distribution of 80-120 Hz ripple band phases from all 96 microelectrodes,584

and computed the PPC on that distribution. We assigned the maximum PPC computed over the duration of each585

iEEG ripple as the microelectrode 80-120 Hz PPC for that iEEG ripple. In each participant, we then computed586

the correlation between iEEG ripple amplitude and 80-120 Hz PPC in the underlying LFP across all iEEG ripples587

identified from all retrieval trials. We compared these true correlations to chance using a shuffling procedure. In each588

of 100 permutations, we circularly shifted the time series of LFP phase by a random amount within each detected589

iEEG ripple and then computed the correlation between iEEG ripple amplitude and LFP PPC. We calculated the590

average correlation across permutations in each participant as the chance level. We performed an identical procedure591

when examining the extent to which the alignment of spiking activity to the 80-120 Hz ripple band signal in the LFP592

is correlated with the 80-120 Hz ripple band amplitude.593

To examine the extent to which spiking activity is locked to individual frequencies in the LFP and iEEG signal,594

we computed PPC using the instantaneous phases of each spike from each unit. In each participant, we computed595

the average spike PPC across all units in each trial, and then computed the average across trials to generate a spike596

PPC value for each participant. In order to compare PPC values across participants, we converted the raw PPC to a597

z-score in each participant by using the mean and standard deviation of a null distribution of 100 spike PPC values598

generated by randomly shuffling the trial labels associated with the spike indices.599

We then assessed whether the distribution of spike PPC values is significant across participants using a non-600

parametric cluster-based procedure. For each frequency, we compared the distribution of z-scored spike PPC values601

to zero using a t-test, thus generating a true t-statistic and p-value for each frequency. We then randomly permuted the602

participant-specific values by randomly reversing the sign of z-scored PPC within each participant and recomputing603
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the average value of the distribution of permuted PPC values across participants. For n participants, this results in604

an empiric distribution of 2n possible values that are all equally probable under the null hypothesis. We generated an605

empiric distribution from 1000 permutations for each frequency and calculated t-statistics for each of the permuted606

frequencies.607

To correct for multiple comparisons across frequencies, we identified clusters of adjacent frequencies that exhibited608

a significant difference between the average PPC across participants and zero (where in each frequency cluster,609

p < 0.05). For each cluster of significant frequencies identified in the true and permuted cases, we defined a cluster610

statistic as the sum of the t-statistics within that frequency cluster. We retained the maximum cluster statistic611

during each of the 1000 permutations to create a distribution of maximum cluster statistics. We assigned p-values612

to each identified cluster of the true data by comparing its cluster statistic to the distribution of maximum cluster613

statistics from the permuted cases. We determined clusters to be significant and corrected for multiple frequency614

comparisons if their p-value calculated in this manner was less than 0.05.615

We also compared spike PPC between two sets of conditions - PPC for spikes that occurred during an identified616

LFP ripple as compared to PPC for spikes that occurred outside an LFP ripple, and PPC for spikes that occurred617

during correct versus incorrect memory retrieval. We only included units for this analysis that exhibited a minimum618

of 10 spikes in each condition during an experimental session. In addition, because each condition tends to have a low619

total number of spikes in each trial, we computed PPC in these analyses by aggregating spiking events across trials620

rather than initially computing PPC within individual trials. Because we are making a direct comparison between621

PPC values within individual participants, we used the raw PPC rather than the z-scored value for these tests. In622

all cases, we computed the average PPC across all units separately for each condition in each participant. We then623

compared the average PPC between conditions by using a similar permutation procedure that corrects for multiple624

comparisons described above. In this case, in each permutation we randomly switched the label for each condition625

in each participant. To ensure that lower spike counts in one condition would not bias our results, we identified626

which condition had the lower total number of spikes, and randomly subsampled the spikes from the other condition.627

We performed this subsampling 200 times, computed PPC for each iteration, and assigned the average of the PPC628

from the 200 iterations of subsampling to the condition with the larger number of spikes. We repeated all of these629

analyses when examining the extent to which ripples are locked to individual frequencies, and to compare the extent630

of locking between conditions.631

632

Pairwise Phase Consistency of Spiking633

In order to obtain a measure of phase locking that does not depend on number of observations, we look at pairs of634

phases. Phases that are consistently clustered around a mean phase have a small angular distance to each other.635

The absolute angular distance is expressed as636

df (ϕf , ωf ) = |ϕf − ωf |modπ, (Eq.1)
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where ϕ represents the phase of spike to a frequency bin and ω represents the phase of another spike from the637

same neuron to the same frequency bin. For each neuron, we can compute this for all frequency bins.638

We compute the average pairwise circular distance (APCD), or the absolute angular distance between relative639

phases, which can be expressed as:640

D̂ =
2

N(N − 1)

N−1∑
j=1

N∑
k=j+1

d(θj , θk), (Eq.2)

The pairwise phase consistency (PPC) is equivalent to the population statistic of the APCD, which is equivalent641

to the population statistic of the square of the phase-locking value.642

We compute the sample estimate of the PPC by evaluating:643

γ̂ =
2

N(N − 1)

N−1∑
j=1

N∑
k=j+1

f(θj , θk), (Eq.3)

where f(ϕ, ω) = cos(ϕ)cos(ω) + sin(ϕ)sin(ω) and N represents the number of spikes.644

To efficiently compute the PPC of spikes to one frequency bin of the local field potential, we express each spike645

phase as a unit vector and evaluate the dot product for all pairs of unit vectors. We compute the spike-LFP PPC646

from the resulting symmetric matrix by removing the values along the diagonal and then taking the mean.647

Pairwise Phase Consistency of Ripple Oscillations648

To measure the phase consistency of ripple oscillations across MEA electrodes, we compute the absolute angular649

distance using Eq. 3 where θj represent the phase of the ripple band signal for one MEA electrode, θk represents the650

phase of ripple band signal for a different MEA electrode for one time point, and N represents the number of MEA651

electrodes. Each time point within a iEEG ripple was treated as an observation for the MEA electrode. In other652

words, for a 50 ms long iEEG ripple, we evaluate the dot product for the pairs of ripple phases across all pairs of653

MEA electrodes. To efficiently compute the PPC of ripple oscillations across MEA electrode pairs, we express each654

ripple oscillation phase as a unit vector and compute the mean dot product for all pairs of unit vectors in a similar655

manner as spike-LFP PPC.656

MTL-ATL Ripple Cross-Correlation657

To measure the extent to which ripples in the anterior temporal lobe (ATL) are coupled with ripples in the medial658

temporal lobe (MTL), we identified the time index of peak ripple power for each rippled detected in both regions.659

We then generated cross-correlograms between MTL and ATL ripples (Vaz et al., 2019). For each electrode in the660

MTL, we computed a cross-correlogram with each electrode in the ATL. We then pooled these cross-correlograms661

across trials for each electrode pair in each participant. This generates a cross-correlogram for each pair of electrodes662

that we can compare between conditions and to a chance distribution (see below). To generate a single cross-663

correlogram representing the relation between the ATL and the MTL in each participant, we computed the average664
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cross-correlogram across all electrode pairs.665

For every pair of electrodes, we calculated a shift predictor for the cross-correlogram that characterizes the cross-666

correlation that would be expected by chance given the presentation of a stimulus (Brody, 1999; Morris et al., 2004;667

Steinmetz et al., 2000; Vaz et al., 2019). This chance distribution was generated by cross-correlating the time indices668

relative to the presentation of the stimulus for each ripple in an ATL electrode during an individual trial with the669

time indices of each ripple in an MTL electrode in every other trial. For n trials, we create n− 1 cross-correlations,670

which are then averaged to create a chance cross-correlogram (the shift predictor) for that trial. This procedure was671

repeated for all trials, and the average across all trials represents the average shift predictor for that trial condition.672

We aggregated these chance cross-correlograms (shift predictors) across all electrode pairs that involve each region673

of interest to generate a shift predictor for each region.674

The ratio between the true cross-correlogram and the shift predictor reflects the extent to which two signals675

are synchronized greater than would be expected by chance given the presentation of a stimulus. We calculated a676

normalized synchronization metric by finding the sum of the true cross-correlation values in a ± 50 ms window and677

then dividing by the corresponding area of the chance distribution. In this manner, our metric directly quantifies678

how much more synchronized the true case is relative to chance, which would result in a value of 1. To test the effect679

of a range of detection parameters on the correlation, we detected ripples using duration thresholds ranging from 10680

to 40 ms, increasing in increments of 10 ms, and max amplitude thresholds ranging from 2 to 4 SD, increasing in681

increments of 1 SD. We used the same detection threshold for LFP and iEEG ripple detection. We used this metric682

to compare synchronization between detection parameters.683

LFP-iEEG Ripple Cross-Correlation684

To measure the coincidence of LFP and iEEG ripples, we identified the time index of peak ripple power for each685

rippled detected in each microelectrode (LFP ripple) and iEEG electrode (iEEG ripple). We then generated cross-686

correlograms between LFP and iEEG ripples. For each participant, we included four iEEG electrodes nearest to687

the MEA. To generate a single cross-correlogram representing the relation between the LFP and iEEG ripples in688

each participant, we computed the average across all electrode pairs. For every pair, we calculated chance cross-689

correlograms by randomly shifting in time each trial of the ripples detected in the microelectrode. We computed690

the average across trials for each electrode pair. We calculated a normalized synchronization metric by finding the691

average true cross-correlation values in a ± 50 ms window and then dividing by the corresponding area of the chance692

distribution. The ratio between the true and chance cross-correlograms quantifies how much more synchronous the693

LFP and iEEG ripples are relative to chance, with a value of 1 indicating a measurement equal to chance.694

Population Spiking Auto-Correlation695

To measure the extent to which units spike together in bursts within detected iEEG ripples, we summed the spiking696

across all units and computed the auto-correlogram of the population spiking within each detected iEEG ripple. We697

detected ripples using a duration threshold of 10 ms and an amplitude threshold of 1 SD with a maximum of at least698
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2 SD in four iEEG electrodes nearest to the MEA. To compare this auto-correlogram within ripples to spiking outside699

of ripples, we generated random duration matched windows between ripples and computed the chance population700

spiking auto-correlograms. We calculated a burst metric by finding the average of the true auto-correlogram in a ±701

25 ms window centered around zero and then dividing by the corresponding area of the chance correlogram.702

Hartigan’s Test for Bimodal Distribution703

To assess whether distributions of population spike rate, LFP ripple power and iEEG ripple power are bimodal, we704

used Hartigan’s dip test. We postulated that these distributions would be bimodal if there were indeed transient705

bursts of activity and periods of little activity in between. The dip test computes the maximum difference between706

the empirical distribution function and the unimodal distribution function that minimizes that maximum difference707

(Hartigan & Hartigan, 1985). To compute the dip statistic, we generated a probability density function (PDF) of708

samples aggregated across all four second trials in 200 bins over the range of the data. We computed a true dip709

statistic for spike rate and for LFP ripple power for each microelectrode and for iEEG ripple power for each iEEG710

channel. We generated a chance distribution of dip statistics for unimodal distributions to quantify the significance711

of the true dip statistic. For this procedure, we randomly generated 10000 uniform PDFs and z-scored the true dip712

statistic using the mean and standard deviation of the chance distribution. The average z-scored dip statistic across713

all microelectrodes was used for the spike rate and LFP ripple power for each participant. The average z-scored714

dip statistic across four iEEG channels in the anterior temporal lobe and iEEG channels in the medial temporal715

lobe were used to compute the z-scored dip statistic for each participant. This analysis was performed on the six716

participants with a MEA.717

Multiple Oscillations Detection Algorithm Detection of Narrowband Oscillations718

We used an independent and previously validated method for detecting transient episodes of narrowband oscillations719

to assess whether ripples detected using duration and amplitude thresholds in the 80-120 Hz frequency range capture720

similar events detected using other approaches. For this procedure, we used the continuous-time wavelet transform721

(wavelet number 6) to compute the mean power spectrum over the trial, which is then used to generate a background722

1/f fit. We generated a 1/f fit to the 70-200 Hz range of the power spectrum for each trial and identify narrowband723

oscillations that exceed it. The signal is then bandpass filtered within the identified narrowband frequency ranges and724

a Hilbert transform is used to compute the instantaneous power and phase. The instantaneous frequency is estimated725

using a frequency sliding estimation method previously described (Cohen, 2014). Periods in which the power is below726

the 1/f fit is removed. Given we perform this for each trial, we identify a unique narrowband oscillation for each trial727

for each iEEG electrode. For each participant, we aggregate the oscillations across trials across iEEG electrodes to728

generate a distribution of center frequencies of narrowband oscillations and a distribution of durations of the periods729

when the oscillations exceeds 1/f background signal.730
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Meta analysis731

Given the variability in number of ripples and other characteristics across participants, we quantified within and732

across participant variability and computed an estimate of the total true correlations. We assessed whether random733

variation accounts for the observed correlations by performing a meta-analysis where we used restricted maximum-734

likelihood estimation to fit a random effects model (Viechtbauer, 2010). For each participant, we computed the true735

correlation and z-scored it using a distribution of correlation values for shuffled data to generate the r equivalent, a736

measure of effect size. We computed the sampling variance for each participant from the number of samples (Rosen-737

thal & Rubin, 2003). These measures were used to fit the random effects model.738

739

Data and code availability740

Data and accompanying custom written Matlab code are available for download at:741

https://neuroscience.nih.gov/ninds/zaghloul/downloads.html.742

Except where otherwise noted, computational analyses were performed using custom written MatLab (MathWorks,743

Natick MA) scripts.744
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Figure 1-source code 1. Matlab code of ripple events in the iEEG signal.887

Figure 1-source data 1. Ripples detected during memory retrieval. iEEG recordings were collected in mul-888

tiple brain areas including medial temporal lobe as participants retrieved a studied word during a paired-associates889

verbal memory task.890

891

Figure 2-source code 1. Matlab code of correlations between continuous spiking, LFP and iEEG.892

Figure 2-source data 1. Continuous spiking, LFP and iEEG. Moving average spiking activity, LFP and893

iEEG in 100 ms epochs without overlap in ATL during memory retrieval.894

895

Figure 3-source code 1. Matlab code of pairwise phase consistency between LFP ripple signal and896

iEEG ripple amplitude.897

Figure 3-source data 1. LFP and iEEG ripples. Concurrent LFP and nearby iEEG recordings in ATL during898

memory retrieval.899

900

Figure 4-source code 1. Matlab code of pairwise phase consistency between spiking and LFP.901

Figure 4-source data 1. Spike-LFP phase locking. Phases of spikes to LFP in ATL during successful and902

unsuccessful memory retrieval.903
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Figure 1-Supplement 1. Ripple-Triggered Average iEEG and LFP Signals. (A) Average intracranial EEG
(iEEG) signal locked to each ripple detected in the anterior temporal lobe iEEG electrodes in each session across six
participants. (B) Average local field potential (LFP) signal captured using microelectrode recordings locked to each
LFP ripple detected using MEAs in the anterior temporal lobe in each session across six participants.
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Figure 1-Supplement 2. iEEG and LFP Ripple Characteristics with Different Detection Thresholds.
(A) Distribution of iEEG ripple durations from all electrodes in all participants. (B) Distribution of iEEG ripple
amplitudes from all electrodes in all participants. (C) Distribution of LFP ripple durations from all electrodes in
all participants. (D) Distribution of LFP ripple amplitudes from all electrodes in all participants. (E) Pearson
correlation between amplitude and duration of iEEG ripples (left) and LFP ripples (right) compared to Pearson
correlations after random circular shifts of ripple indices by trial. The true relation between ripple band amplitude
and duration is significantly greater than the shuffled distribution (true r = .372 ± .033; true-shuffled t(5) = 9.07,
p = 1.4 × 10−4, paired one-tailed t-test). (F) Total count of iEEG ripple events (left) and LFP ripple events
(right) detected using different amplitude and duration thresholds. (G) iEEG ripple amplitude (left) and LFP ripple
amplitude (right) distributions of all events detected using different amplitude and duration thresholds.
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Figure 1-Supplement 3. Multiple Oscillations Detection Algorithm Detected Narrowband Oscillations.
To complement our ripple detection method, we used the Multiple Oscillations Detection Algorithm, or MODAL,
to detect narrowband oscillations (Watrous et al., 2018). This method identifies transient periods in which narrow
band oscillations exceed the background noise. (A) Example trials for three participants, each showing raw iEEG
signal (top left) of one electrode in anterior temporal lobe, envelope of MODAL detected narrowband oscillations
(middle left), and ripple band iEEG signal (bottom left) with periods of ripple events detected by ripple threshold
(dark blue), MODAL detected events (red), and overlapping ripple and MODAL events (cyan). MODAL events are
characterized by periods in which narrow band oscillations exceed 1/f noise. A power spectral density of the trial
from 70-200 Hz (black), 1/f fit (blue), and frequencies exceeding 1/f (red) is shown on the top right. The ripple
amplitude distribution composed of all samples in the trial (grey), amplitudes within detected ripples (blue), and
amplitudes within MODAL detected events (red). The dotted line in the distribution is the amplitude threshold that
maximizes d’ when considering the hit rate and false alarm rate of detected ripples when compared to the MODAL
detected events. (B) Distribution of duration of iEEG ripples (blue) and MODAL events (red) detected across all
iEEG electrodes, showing similar range in duration of events. Individual subplots are labeled with participant ID and
session number; text shows mean ± SEM duration of ripples (blue) and MODAL events (red) for each participant.
The mean duration of the events detected by the MODAL method was 33.5± 3.0 ms across participants, compared
to a duration of 32.8±6.3 ms for the ripples that we detected using our standard approach(C) Distribution of center
frequency of MODAL narrow band oscillations across all trials for ATL iEEG electrodes in each session in the six
participants with MEAs. The mean center frequency of the identified events was 87.3± 3.5 Hz
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Figure 1-Supplement 4. MTL-ATL Cross-Correlograms with Different Detection Thresholds. To
assess whether the ripples we detect in the cortex are associated with ripples observed in the MTL, we measured
the coupling of ripples between MTL and ATL by computing the cross-correlogram for events detected across these
regions. (A) Mean ripple cross-correlograms for one participant for each channel in anterior temporal lobe (ATL;
electrodes labeled as temporal grid, TG) to all channels in medial temporal lobe (MTL). (B) Average ripple cross-
correlograms for one participant for each channel in MTL (electrodes labeled as temporal tip, TT) to all channels in
ATL. (C) Synchronization metric average across all channel pairs for each participant. We computed the average
synchronization across participants using ripple detection amplitude thresholds ranging from 2 to 4 SD and duration
thresholds ranging from 10 to 40 ms. Ripples are coincident across these regions above chance for all detection
parameters tested, as indicated by a synchronization metric above one.
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Figure 1-Supplement 5. Interictal Epileptiform Discharge Detection and Overlap with Ripples. To
confirm that the detected ripples are not an artifact of interictal epileptiform discharges (IEDs), we separately
detected IEDs (see Methods) and computed the overlap between detected ripples and detected IEDs. (A) From top
to bottom, two example trials of raw iEEG, 80-120 Hz filtered iEEG with detected ripples shown in blue, ¿250 Hz
filtered iEEG with detected IED windows in red, and first derivative of iEEG with detected IEDs in red. Horizontal
red lines represent a threshold of 5 SD above the mean. The periods indicated as an IED represent a 500 ms window
around time points when the threshold is crossed. (B) Example ripple raster before removal of ripples that overlap
with IEDs (left), raster of IED events (middle), and overlap between ripples and IED (right). IEDs overlapped with
0.79 ± 0.11 % of iEEG ripples and with 1.38 ± 0.11 % of LFP ripples across participants.
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Figure 1-Supplement 6. High Frequency Activity Reflects Ripples. (A) Surface-based regions of interest
(ROIs) showing electrode coverage across 21 participants. (B) ROI plots of across-participant t-statistic for 70-200
Hz power and 80-120 Hz ripple rate for correct (left) and incorrect (right) retrieval. (C) Across-participant t-statistic
ROI plots from (B) for medial temporal lobe (MTL) and anterior temporal lobe (ATL) ROIs. (D) Relation between
70-200 Hz power and 80-120 Hz ripple rate for across-participant t-statistic ROIs in MTL and ATL for correct and
incorrect memory retrieval. Each data point represents the average across participants for each ROI in the two brain
regions. (E) 70-200 Hz power spectra after removal of temporal indices of ripples for correct and incorrect retrieval
for representative iEEG electrode in MTL shown in Figure 1C. (F) Correlation between difference in 70-200 Hz
power between correct and incorrect memory retrieval after removal of temporal indices of ripples with the difference
in 80-120 Hz ripple rate between conditions. Each data point represents the average across participants for each ROI.
(G) The true correlation between the difference in 70-200 Hz power and the difference in 80-120 Hz ripple rate is
significantly greater than the correlation when ripples are removed (t(5) = 3.89, p = 0.0115). We also compared the
two correlations as dependent groups and found a significant difference in correlation (r(true)− r(control) = 0.172,
95% CI = [0.06910.2764], z = 3.2677, p = 0.0011). We accounted for potential interaction effects using the correlation
between 70-200 Hz and 70-200 Hz with ripple removed (r = −0.031). (H) Correlation between 70-200 Hz Power
and 120-200 Hz ripple rate separately for correct and incorrect memory retrieval. Each point represents the across-
participant average in each ROI. 42
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Figure 2-Supplement 1. MEA Position with Respect to iEEG Channels. Position of MEA with respect
to nearby iEEG channels in each participant.
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Figure 2-Supplement 2. Raw iEEG and LFP Trace. Example raw iEEG in an anterior temporal lobe electrode
and simultaneous LFP traces for one representative trial.
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Figure 2-Supplement 3. Spiking Auto-Correlograms Within and Outside Ripples. To confirm that ripples
correspond to underlying bursts of spiking activity, we computed the population spiking auto-correlogram within
and outside of each detected ripple event. (A) Population spiking auto-correlogram within and outside detected
iEEG ripples in one representative participant. Shaded ± 25 ms values of the correlogram was used to compute
the extent to which spiking activity bursts within ripples compared to outside of ripples (see Methods). (B) Mean
spiking auto-correlogram across participants within and outside ripples. Inset plot shows power spectral density for
windows within and outside ripple events that were used to compute population spiking auto-correlogram in one
representative participant. (C) Ratio of spike auto-correlograms within compared to outside of ripples when using
different ripple duration and amplitude detection thresholds. Data represent mean ± SEM across participants for
different detection thresholds.
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Figure 2-Supplement 4. Ripple Power and Spike Rate Distributions. We examiend whether the distribution
of ripple band power in the iEEG and LFP signals, and the distribution of spiking activity, exhibit evidence of
bimodality (see Methods). (A) Representative trials of 80-120 Hz band iEEG signal (blue) in anterior temporal lobe
electrodes and concurrent population spiking (red), showing macro-scale ripple amplitude increases are coincident
with bursts of spiking. Distribution of ripple amplitude (blue) and population spiking (red) for each representative
trial. (B) Representative trials of ripple LFP signal (purple) for a MEA channel and concurrent spiking (red) of
units recorded in the channel, showing micro-scale ripple amplitude increases are coincident with bursts of spiking.
Distribution of ripple amplitude (purple) and local spiking (red) for each representative trial. (C) Dip statistics (z-
score) characterizing bimodality of population spiking, LFP ripple amplitude, and iEEG ripple amplitude averaged
over channels for each participant, represented by different colors. The dip test for the bimodality of population
spiking is significant in and across all participants (6.802 ± 1.013 z). The test for the bimodality of iEEG and LFP
ripple amplitude is significant across participants, and significant within individual participants in at least four of
the six participants with MEAs (LFP: 4.323 ± 1.257 z; iEEG: 3.236 ± 0.669 z).
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Figure 2-Supplement 5. Ripples Reflect Underlying Neuronal Spiking. (A) Pearson correlation between
spike rate and continuous measures of the average LFP ripple amplitude over all micro-electrodes. Group level
statistics are shown as mean ± SEM across six participants. Given the concern that spikes in the signal may
generate spectral artifacts in the ripple band, we performed two control analyses to confirm that the significant
correlation between LFP ripple amplitude and spike rate was not due to bandpass filtering over spikes. In the
first, we removed spikes from the LFP data and in the second we restricted our analysis only to MEA electrodes
that exhibited no spiking. We compared the true correlation between spike rate and LFP ripple amplitude with
the correlations observed after spike removal and interpolation (top) and channels without spiking (bottom; paired
t-test, t(5) = 1.29, p = .254; orig, t(5) = 5.32, p = .003; spike removal, t(5) = 4.78, p = .005). (B) Relation between
number of spikes and LFP ripple duration (top) and amplitude (bottom) for all ripples in all participants. Each color
represents a participant (n = 6). (C) Distribution of percentage of spiking units that co-occur with iEEG ripples
across all ripples in all participants. (D) Relation between percentage of spiking units and iEEG ripple duration
(left plot) and amplitude (right plot) for all ripples in all participants. Each data point represents a ripple and each
color represents a participant (n = 6).
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Figure 3-Supplement 1. Macro-Scale Ripple Amplitude Reflects Number and Alignment of Micro-
Scale Ripples. (A) Distribution of percentage of MEA electrodes containing LFP ripples that co-occur with iEEG
ripples across all iEEG ripples in all participants. (B) Relation between percentage of MEA electrodes with LFP
ripples and iEEG ripple duration (top) and amplitude (bottom) for all iEEG ripples in all participants. Each color
represents a different participant (n = 6). (C) Relation between percentage of MEA electrodes containing LFP
ripples and iEEG ripple duration (top) and amplitude (bottom). Each data point represents an average amplitude
for each percentage and each color represents a participant (n = 6). (D) Relation between peak pairwise phase
consistency (PPC) and peak iEEG ripple amplitude for each participant. Each data point represents a LFP ripple
in each participant.
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Figure 3-Supplement 2. LFP-iEEG Ripple Cross-Correlations for Different Detection Thresholds. (A)
Example LFP-iEEG ripple cross-correlogram of true and shuffled events for one participant using a 2 SD amplitude
and 10 ms duration ripple detect threshold (top) and a 3 SD amplitude and 25 ms duration threshold (bottom). (B)
LFP-iEEG ripple synchrony using ripple detection thresholds with amplitudes ranging from 2-4 SD and durations
ranging from 10-40 ms.
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Figure 3-Supplement 3. LFP-iEEG Ripple Cross-Correlations With Respect to Distance. (A) Intra-
operative photo of implanted MEA in the ATL (top) and after placement of an iEEG grid over the MEA (bottom).
(B) Location of the MEA with respect to four nearby iEEG channels. (C) Subgroups of micro-electrodes in one
MEA for assessment of LFP-iEEG cross-correlograms across the MEA. (D) LFP-iEEG ripple synchronization, de-
fined as the ratio of the true cross-correlogram over a chance correlogram (see Methods), between each subgroup of
micro-electrodes in the MEA and four nearby iEEG electrodes.
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Figure 4-Supplement 1. Spiking Activity is Phase-Locked to Ripples and Low Frequencies. (A) Spike-
LFP phase-locking value (PLV) for each frequency shown as mean ± SEM across participants. PLV confirms that
spiking activity is locked to low and high frequency activity across participants (peak at 2.6 Hz and 86.9 Hz, p ¡ .05,
permutation test). (B) Spike-LFP pairwise phase consistency (PPC) for spikes that occur with LFP ripples and for
spikes that do not occur with LFP ripples for each participant, shown as mean ± SEM across MEA electrodes. (C)
LFP ripple-triggered average (RTA) for LFP ripples that co-occur with iEEG ripples, in purple, with the bandpass
filtered signal, in black, for one representative participant. Also shown is the bandpass filtered RTA during correct
memory retrieval (green) and incorrect trials (orange). Distribution of phases of LFP low frequency (lower left
histogram) and iEEG low frequency (lower right histogram) signals across LFP ripple times for all MEA electrodes.
Complex mean of the distribution of phases for each participant is depicted in a polar plot with circles filled with a
star if the distribution shows significant phase-locking (Rayleigh test, p ¡ 0.001). Black line shows the average of six
distributions across participants.

51



Sp
ik

e-
LF

P 
PP

C
Amplitude

Figure 4-Supplement 2. Spike-LFP PPC for different ripple detection thresholds. Each bar shows the
mean +/- SEM spike-LFP PPC across participants.

52


