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ABSTRACT After the European colonization of the Americas, there was a dramatic popula-
tion collapse of the Indigenous inhabitants caused in part by the introduction of new pathogens. 
Although there is much speculation on the etiology of the Colonial epidemics, direct evidence for 
the presence of specific viruses during the Colonial era is lacking. To uncover the diversity of viral 
pathogens during this period, we designed an enrichment assay targeting ancient DNA (aDNA) from 
viruses of clinical importance and applied it to DNA extracts from individuals found in a Colonial 
hospital and a Colonial chapel (16th–18th century) where records suggest that victims of epidemics 
were buried during important outbreaks in Mexico City. This allowed us to reconstruct three ancient 
human parvovirus B19 genomes and one ancient human hepatitis B virus genome from distinct indi-
viduals. The viral genomes are similar to African strains, consistent with the inferred morphological 
and genetic African ancestry of the hosts as well as with the isotopic analysis of the human remains, 
suggesting an origin on the African continent. This study provides direct molecular evidence of 
ancient viruses being transported to the Americas during the transatlantic slave trade and their 
subsequent introduction to New Spain. Altogether, our observations enrich the discussion about the 
etiology of infectious diseases during the Colonial period in Mexico.

Introduction
European colonization in the Americas resulted in a frequent genetic exchange mainly between Native 
American populations, Europeans, and Africans (Aguirre-Beltrán, 2005; Rotimi et al., 2016; Salas 
et al., 2004). Along with human migrations, numerous new species were introduced to the Americas 
including bacterial and viral pathogens, which played a major role in the dramatic population collapse 

RESEARCH ARTICLE

*For correspondence: 
​dblancom@​fredhutch.​org (DB-
M); 
​mavila@​liigh.​unam.​mx (MCÁA)

Competing interest: The authors 
declare that no competing 
interests exist.

Funding: See page 18

Preprinted: 06 June 2020
Received: 21 March 2021
Accepted: 30 July 2021
Published: 05 August 2021

Reviewing Editor: George 
H Perry, Pennsylvania State 
University, United States

‍ ‍ Copyright Guzmán-Solís 
et al. This article is distributed 
under the terms of the Creative 
Commons Attribution License, 
which permits unrestricted use 
and redistribution provided that 
the original author and source 
are credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/
https://doi.org/10.7554/eLife.68612
mailto:dblancom@fredhutch.org
mailto:mavila@liigh.unam.mx
https://doi.org/10.1101/2020.06.05.137083
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics | Microbiology and Infectious Disease

Guzmán-Solís et al. eLife 2021;0:e68612. DOI: https://​doi.​org/​10.​7554/​eLife.​68612 � 2 of 25

that afflicted the immunologically naïve Indigenous inhabitants (Acuña-Soto et al., 2004; Lindo et al., 
2016). Among these pathogens, viral diseases, such as smallpox, measles, and mumps, have been 
proposed to be responsible for many of the devastating epidemics during the Colonial period (Acuña-
Soto et al., 2004). Remarkably, the pathogen(s) responsible for the deadliest epidemics reported in 
New Spain (the Spanish viceroyalty that corresponds to Mexico, Central America, and the current US 
southwest states) remains unknown and is thought to have caused millions of deaths during the 16th 
century (Acuña-Soto et al., 2004). Indigenous populations were drastically affected by these myste-
rious epidemics, generically referred to as Cocoliztli (‘pest’ in Nahuatl), followed by Africans and to 
a lesser extent European people (Acuña-Soto et al., 2004; Malvido and Viesca, 1982; Somolinos 
d’Árdois, 1982). Accounts of the 1576 Cocoliztli epidemic were described in autopsy reports of 
victims treated at the ‘Hospital Real de San José de los Naturales’ (HSJN) (Malvido and Viesca, 1982; 
Wesp, 2017), the first hospital in Mexico dedicated specifically to treat the Indigenous population 
(Malvido and Viesca, 1982; Wesp, 2017; Figure 1a and b).

The study of ancient viral genomes has revealed important insights into the evolution of specific 
viral families (Barquera et al., 2020; Duggan et al., 2016; Düx et al., 2020; Kahila Bar-Gal et al., 
2012; Krause-Kyora et al., 2018; Mühlemann et al., 2018a; Mühlemann et al., 2018a; Mühlemann 
et al., 2018b; Neukamm et al., 2020; Pajer et al., 2017; Patterson Ross et al., 2018; Xiao et al., 
2013), as well as their interaction with human populations (Spyrou et al., 2019). To explore the pres-
ence of viral pathogens in circulation during epidemic periods in New Spain, we leveraged the vast 
historical and archeological information available for the Colonial HSJN. These include the skeletal 
remains of over 600 individuals recovered from mass burials associated with the hospital’s architec-
tural remnants (Figure 1b). Many of these remains were retrieved from burial contexts suggestive of 
an urgent and simultaneous disposal of the bodies, as in the case of an epidemic (Meza, 2013; Wesp, 
2017). Prior bioarcheological research has shown that the remains of a number of individuals in the 
HSJN collection displayed dental modifications and/or morphological indicators typical of African 

eLife digest The arrival of European colonists to the Americas, beginning in the 15th century, 
contributed to the spread of new viruses amongst Indigenous people. This led to massive outbreaks 
of disease, and millions of deaths that caused an important Native population to collapse. The 
exact viruses that caused these outbreaks are unknown, but smallpox, measles, and mumps are all 
suspected.

During these times, traders and colonists forcibly enslaved and displaced millions of people mainly 
from the West Coast of Africa to the Americas. The cruel, unsanitary, and overcrowded conditions on 
ships transporting these people across the Atlantic contributed to the spread of infectious diseases 
onboard. Once on land, infectious diseases spread quickly, partly due to the poor conditions that 
enslaved and ndigenous people were made to endure. Native people were also immunologically 
naïve to the newly introduced pathogens, making them susceptible to severe or fatal outcomes. The 
new field of paleovirology may help scientists identify the viruses that were circulating in the first years 
of colonization and trace how viruses arrived in the Americas.

Using next-generation DNA sequencing and other cutting-edge techniques, Guzmán-Solís et al. 
extracted and enriched viral DNA from skeletal remains dating back to the 16th century. These remains 
were found in mass graves that were used to bury epidemic victims at a colonial hospital and chapel in 
what is now Mexico City. The experiments identified two viruses, human parvovirus B19 and a human 
hepatitis B virus. These viral genomes were recovered from human remains of first-generation African 
people in Mexico, as well as an individual who was an Indigenous person.

Although the genetic material of these ancient viruses resembled pathogens that originated in 
Africa, the study did not determine if the victims died from these viruses or another cause. On the 
other hand, the results indicate that viruses frequently found in modern Africa were circulating in the 
Americas during the slave trade period of Mexico. Finally, the results provide evidence that colonists 
who forcibly brought African people to the Americas participated in the introduction of viruses to 
Mexico. This constant influx of viruses from the old world, led to dramatic declines in the populations 
of Indigenous people in the Americas.

https://doi.org/10.7554/eLife.68612
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Figure 1. Metagenomic analysis of Colonial individuals reveal HBV-like and B19V-like hits. (a) Location of the archeological sites used in this study, 
HSJN (19.431704–99.141740) is shown as a yellow triangle and COY (19.347079–99.159017) as a yellow circle, lines in pink map show current division of 
Mexico City. (b) Several individuals discovered in mass burials archaeologically associated with the Hospital Real de San José de los Naturales (HSJN) 
and Colonial epidemics. (c) Metagenomic analysis performed with MALT 0.4.0 based on the Viral NCBI RefSeq. Viral abundances were compared and 
normalized automatically in MEGAN between shotgun (sample_name) and capture (sample_name-c) next-generation sequencing (NGS) data. Only HBV 
or B19V-positive samples are shown (all samples analyzed are shown in Figure 1—figure supplements 2–3). A capture negative control (HSJN177) is 
shown.

© 2016, Secretaria de Cultura INAH, SINAFO, Fototeca DSA. Panel b was taken by Salvador Pulido Méndez and is reproduced from the "Proyecto 
Metro Línea 8" with permission from "Secretaria de Cultura INAH, SINAFO, Fototeca DSA". This panel is not covered by the CC-BY 4.0 licence and 
further reproduction of this panel would need permission from the copyright holder.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Pipeline followed for ancient viral genomes reconstruction.

Figure supplement 2. Individuals with DNA traces of clinical important viral families.

Figure supplement 3. Target viral abundances post-capture.

Figure 1 continued on next page
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ancestry (Meza, 2013), consistent with historical and archeological research that documents the pres-
ence of a large number of both free and enslaved Africans and their descendants in Colonial Mexico 
(Aguirre-Beltrán, 2005). Indeed, a recent paleogenomics study reported a sub-Saharan African origin 
of three individuals from this collection (Barquera et al., 2020).

Here we describe the recovery and characterization of viral pathogens that circulated in New Spain 
during the Colonial period, using ancient DNA (aDNA) techniques (Figure 1—figure supplement 
1). For this work, we sampled skeletal human remains recovered from the HSJN where archeological 
context suggest victims of epidemics were buried (Meza, 2013) and from ‘La Concepcion’ chapel, 
one of the first catholic conversion centers in New Spain (Moreno-Cabrera et al., 2015; Figure 1a). 
We report the reconstruction of ancient hepatitis B virus (HBV) and human parvovirus B19 (B19V) 
genomes recovered from these remains, providing a direct molecular evidence of human viral patho-
gens of African origin being introduced to New Spain during the transatlantic slave trade.

Results
We sampled the skeletal remains from two archeological sites, a Colonial Hospital and a Colonial 
chapel in Mexico City (Figure 1a and b). For the HSJN, 21 dental samples (premolar and molar teeth) 
were selected based on previous morphometric analyses and dental modifications that suggested 
an African ancestry (Hernández-Lopez and Negrete, 2012; Karam-Tapia, 2012; Meza, 2013; Ruíz-
Albarrán, 2012). The African presence in the Indigenous Hospital might reflect an urgent response 
to an epidemic outbreak since hospitals treated patients regardless of the origin of the affected 
individuals during serious public health crises (Meza, 2013). Dental samples of five additional individ-
uals were selected (based on their conservation state) from ‘La Concepción’ chapel (COY), which is 
located 10 km south of the HSJN in Coyoacán, a Pre-Hispanic Indigenous neighborhood that became 
the first Spanish settlement in Mexico City after the fall of Tenochtitlan (Moreno-Cabrera et  al., 
2015). Following strict aDNA protocols, we processed these dental samples to isolate aDNA for 
next-generation sequencing (NGS) (Figure 1—figure supplement 1, Materials and methods). Tooth 
roots (which are vascularized) can be a good source of pathogen DNA (Key et al., 2017), especially 
in the case of viruses that are widespread in the bloodstream during systemic infection. Accordingly, a 
number of previous studies have successfully recovered ancient viral DNA from tooth roots (Barquera 
et al., 2020; Krause-Kyora et al., 2018; Mühlemann et al., 2020; Mühlemann et al., 2018a; Mühle-
mann et al., 2018b).

Metagenomic analyses with MALT (Herbig et  al., 2018) (Materials and methods) on the NGS 
data using the Viral NCBI RefSeq database as a reference (Pruitt et al., 2007) revealed 17 samples 
containing at least one normalized hit to viral DNA (abundances were normalized to the smallest 
library since each sample had different number of reads) (Materials and methods), particularly similar 
to Hepadnaviridae, Herpesviridae, Parvoviridae, and Poxviridae viral families (Figure 1c, Figure 1—
figure supplement 2, Materials and methods). These viral hits revealed the potential to recover 
ancient viral genomes from these samples. We selected 12 samples for further screening (Figure 1c, 
Figure 1—figure supplement 3) based on the DNA concentration of the NGS library and the quality 
of the hits to a clinically important virus (HBV, B19V, papillomavirus, smallpox).

To isolate and enrich the viral DNA fraction in the sequencing libraries, biotinylated single-stranded 
RNA probes designed to capture sequences from diverse human viral pathogens were synthesized 
(Supplementary file 1A). The selection of the viruses included in the capture design considered 
the following criteria: (1) DNA viruses previously retrieved from archeological human remains (i.e., 
hepatitis B virus, human parvovirus B19, variola virus), (2) representative viruses from families capable 
of integrating into the human genome (i.e., Herpesviridae, Papillomaviridae, Polyomaviridae, Circo-
viridae), or (3) RNA viruses with a DNA intermediate (i.e., Retroviridae). Given the size constraints of 

Figure supplement 4. Bacterial metagenomic analysis from HSJN194.

Figure supplement 5. Bacterial metagenomic analysis from HSJNC81.

Figure supplement 6. Bacterial metagenomic analysis from HSJN240.

Figure supplement 7. Bacterial metagenomic analysis from COYC4.

Figure 1 continued

https://doi.org/10.7554/eLife.68612
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the probe kit, only a couple of genes were selected from some viral families (Materials and methods, 
Supplementary file 1A). Additionally, a virus-negative aDNA library, which showed no hits to any 
viral family included in the capture assay (except for a frequent Poxviridae-like region identified as 
an Alu repeat; Tithi et  al., 2018) was captured and sequenced as a negative control (HSJN177) 
to estimate the efficiency of our capture assay. Only one post-capture library had an ~100  -fold 
increase of Hepadnaviridae-like hits (HBV), while three more libraries had an ~50–200 -fold increase 
of Parvoviridae-like hits (B19V) (Figure 1c, Supplementary file 1B), compared to their corresponding 
pre-capture libraries (Materials and methods). In contrast, the captured negative control (HSJN177) 
presented a negligible enrichment of these viral hits (Figure 1c, Supplementary file 1B).

Independently, a metagenomic analysis using Kraken2 (Wood et al., 2019) and Pavian (Breitwi-
eser and Salzberg, 2020) was performed on the non-human (unmapped) reads as part of a different 
study (Bravo-Lopez et al., 2020). Our samples presented bacterial constituents of human oral and 
soil microbiota at different proportions between the samples (Figure 1—figure supplements 4–7). 
Although no lethal bacterial pathogen was retrieved, some ancient dental pathogens (Tannerella 
forsythia) were reconstructed and described in more detail by Bravo-Lopez et al., 2020 (Figure 1—
figure supplements 4–7).

We verified the authenticity of the reads mapped to HBV (BWA) or B19V (BWA/blastn) in the 
enriched libraries (Materials and methods) by querying the reads against the non-redundant (nr) NCBI 
database using megaBLAST (Altschul et al., 1990). This step was performed to avoid including in 
the genome assembly reads that were mapped by BWA or blastn as HBV or B19V, but with a similar 
identity to a different taxon in the nr database (and absent in DS1; Materials and methods). Therefore, 
we only retained reads for which the top hit was to either B19V or HBV (Supplementary file 1C). To 
confirm the ancient origin of these viral reads, we evaluated the misincorporation damage patterns 
using the program mapDamage 2.0 (Jónsson et al., 2013), which revealed an accumulation of C to 
T mutations towards their 5′ terminal site with an almost symmetrical G to A pattern on the 3′ end 
(Figure 2a, Figure 2—figure supplement 1), as expected for aDNA (Briggs et  al., 2007). Three 
ancient B19V genomes were reconstructed (Figure 2b, Supplementary file 1C) with sequence cover-
ages between 92.37% and 99.1%, and average depths of 2.98–15.36×  along their single-stranded 
DNA (ssDNA) coding region, which excludes the double-stranded DNA (dsDNA) hairpin regions at 
each end of the genome (Luo and Qiu, 2015). These dsDNA inverse terminal repeats (ITRs) displayed 
considerably higher depth values (<218× ) compared to the coding region consistent with the better 
postmortem preservation of dsDNA compared to ssDNA (Lindahl, 1993; Figure 2b). In addition, we 
reconstructed one ancient HBV genome (Figure 2c, Supplementary file 1C) at 30.8×  average depth 
and with a sequence coverage of 89.9%, including its ssDNA region at a reduced depth (<10× ).

The reconstructed ancient HBV genome shows a 6 nucleotide (nt) insertion in the core gene, which 
is characteristic of the genotype A (Kramvis, 2014). Further phylogenetic analyses (Materials and 
methods) revealed that the Colonial HBV genome clustered with modern sequences corresponding 
to sub-genotype A4 (previously named A6) (Pourkarim et al., 2014; Figure 3a, Figure 3—figure 
supplement 1). The genotype A (HBV/GtA) has a broad diversity in Africa reflecting its long history 
in this continent (Kostaki et al., 2018; Kramvis, 2014), while the sub-genotype A4 has been recov-
ered uniquely from African individuals in Belgium (Pourkarim et al., 2010) and has never been found 
in the Americas. Regarding the three Colonial B19V genomes from individuals HSJN240, COYC4, 
and HSJNC81 (C81A), these were phylogenetically closer to modern B19V sequences belonging to 
genotype 3 (Figure  3b, Figure  3—figure supplements 2–3). This B19V genotype is divided into 
two sub-genotypes: 3a, which is mostly found in Africa, and 3b, which is proposed to have spread 
outside Africa recently (Hübschen et al., 2009). The viral sequences from the individuals HSJN240 
and COYC4 are similar to sub-genotype 3b genomes sampled from immigrants (Morocco, Egypt, 
and Turkey) in Germany (Schneider et  al., 2008; Figure 3b, Figure 3—figure supplements 2–3) 
while the sequence of the individual HSJNC81 is more similar to a divergent sub-genotype 3a strain 
(Figure 3b, Figure 3—figure supplements 2–3) retrieved from a child with severe anemia born in 
France (Nguyen et al., 1999). These observations support the African origin of the reconstructed 
Colonial viral genomes.

In order to use our reconstructed viral genomes as molecular fossils to recalibrate each virus 
phylogeny and perform evolutionary inferences, we first needed to estimate if the phylogenetic 
relationships among B19V or HBV genomes had a temporal structure (i.e., sufficient genetic change 

https://doi.org/10.7554/eLife.68612
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between sampling times to reconstruct a statistical relationship between genetic divergence and 
time) (Rambaut et al., 2016). In the context of viruses, temporal structure is canonically tested with 
a root-to-tip distance and date randomization analyses (see Firth et al., 2010; Rieux and Balloux, 
2016). Similarly to previous studies (Krause-Kyora et al., 2018; Patterson Ross et al., 2018), we 
found little or no temporal structure for this HBV phylogeny containing all genotypes (R2 = 0.1351; 
correlation coefficient = 0.3676) (Figure 3—figure supplement 5a-c). The complex evolution of HBV 
may not be prone to an appropriate genetic dating since multiple inter-genotype recombination and 
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Figure 2. Ancient B19V and HBV ancient genomes. (a) Superimposed damage patterns of ancient HBV (HSJN194) and B19V (HSJNC81, HSJN240, 
COYC4). X-axis shows the position (nt) on the 5′ (left) and 3′ (right) end of the read, and Y-axis shows the damage frequency (raw individual damage 
patterns are shown in Figure 2—figure supplement 1). (b) B19V ssDNA linear genome. X-axis shows position (nt) based on the reference genome 
(AB550331), and Y-axis shows depth (as number of reads). GC content is shown as a percentage of each 100 bp windows. Coverage and average depth 
for the CDS are shown under each individual ID. Schematic of the B19V genome is shown at the bottom. Highly covered regions correspond to dsDNA 
ITRs shown as crossed arrows. (c) HBV circular genome. Outer numbers show position (nt) based on reference genome (GQ331046), outer bars show 
genes with names, blue bars represent coverage, and gray bars shows GC content each 10 bp windows. Coverage and average depth are shown in the 
center. Low covered region between S and X overlaps with ssDNA region.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Damage patterns of ancient viral genomes.

Figure supplement 2. Damage patterns of mitochondria.

https://doi.org/10.7554/eLife.68612
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cross-species transmission (Human-Ape) events (Krause-Kyora et al., 2018) occurred throughout its 
evolution. Since the entire genotype A has been identified as a recombinant genotype before (Mühle-
mann et al., 2018a), we analyzed it independently and identified a stronger temporal signal within 
this genotype (R2 = 0.722; correlation coefficient = 0.8498) (Figure 3—figure supplement 5d-f). In 
the case of B19V, we identified a temporal structure when including all three genotypes (R2 = 0.3837; 
correlation coefficient = 0.6194) (Figure 3—figure supplement 6a-c), in agreement with previous 
studies (Mühlemann et al., 2018b). Furthermore, we corroborated this temporal structure was not 
an artifact by a set of tip-dated randomized analyses (Rieux and Balloux, 2016), where none of the 
95% highest posterior density (HPD) intervals of the clock rate overlapped with the correctly dated 
dataset (Figure 3—figure supplement 7).

Given its strong temporal structure, we then performed a dated coalescent phylogenetic analysis 
for B19V (Supplementary file 1D). We inferred a median substitution rate for B19V of 1.03 × 10–5 
(95 % HPD: 8.66 × 10–6–1.21 × 10–5) s/s/y under a strict clock and a constant population prior, and a 
substitution rate of 2.62 × 10–5 (95 % HPD: 1.50 × 10–5–3.98 × 10–5) s/s/y under a relaxed log normal 

Figure 3. Viral Colonial genomes are similar to modern African genetic diversity. (a, b) Maximum likelihood trees performed on RAxML 8.2.10 (1000 
bootstraps) with a midpoint root Genotypes are named in bold letters and sub-genotypes in italics. Bootstrap values are shown at the node center, and 
triangles represent collapsed sequences from other genotypes. Sequences are named as follows: genotype_ID_sampling.year_country.of.origin_area.
of.origin_host. Sequences from this study are highlighted with a red circle on the right. (a) Based on the HBV whole genome, genotypes are named with 
letters and each is colored differently, while ancient sequences are shown in red. NHP: non-human primates. (b) Based on B19V CDS, genotypes are 
named with numbers, and only ancient genomes are colored.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Phylogenetic analysis of HBV.

Figure supplement 2. Neighbor-joining analysis of B19V.

Figure supplement 3. Dated coalescent phylogenetic analysis for B19V.

Figure supplement 4. Posterior probability densities of B19V dated coalescent phylogeny.

Figure supplement 5. Root-to-tip regression analysis of HBV temporal structure.

Figure supplement 6. Root-to-tip regression analysis of B19V temporal structure.

Figure supplement 7. Date randomization test B19V.

https://doi.org/10.7554/eLife.68612
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clock and a constant population prior. The divergence times from the most recent common ancestor 
of genotypes 1, 2, and 3 under a strict clock were 7.19 (95% HPD: 6.98–7.46), 2.11 (95% HPD: 1.83–
2.51), and 3.64 (95% HPD: 3.04–4.33) ka, respectively. The inferred substitution rates and divergence 
times from the most recent common ancestor for genotypes 1 and 2 were similar to previous estima-
tions (Mühlemann et al., 2018b) that included much older sequences, while the divergence of geno-
type 3 was subtly older since no other ancient genotype 3 had been reported previously.

Next, we used the shotgun data generated to determine the mitochondrial haplogroup of the 
hosts, as well as their autosomal genetic ancestry using the 1000 Genomes Project (1000 Genomes 
Project Consortium, 2015) as a reference panel (Figure 4a, Supplementary file 2A). The nuclear 
genetic ancestry analysis showed that all three HSJN individuals, from which the reconstructed 
viral genomes were isolated, fall within African genetic variation in a principal component analysis 
(PCA) plot (Figure 4a), while their mitochondrial aDNA belong to the L haplogroup, which has high 
frequency in African populations (Supplementary file 2A, Figure 2—figure supplement 2). Addi-
tionally, we performed 87Sr/86Sr isotopic analysis on two of the HSJN individuals using tooth enamel as 
well as phalanx (HSJN240) or parietal bone (HSJNC81) to provide insights on the places of birth (adult 
enamel) and where the last years of life were spent (phalanx/parietal). The 87Sr/86Sr ratios measured 
on the enamel of the individual HSJNC81 (0.71098) and HSJN240 (0.71109) are similar to average 
87Sr/86Sr ratios found in soils and rocks from West Africa (average of 0.71044, Figure 4—figure supple-
ment 1, Supplementary file 2), as well as to 87Sr/86Sr ratios described in first-generation Africans in 
the Americas (Barquera et al., 2020; Bastos et al., 2016; Fricke et al., 2020; Price et al., 2012; 
Schroeder et al., 2009). In contrast, the 87Sr/86Sr ratios on the parietal and phalange bones from the 
HSJNC81 (0.70672) and HSJN240 (0.70755) show lower values similar to those observed in the Trans 
Mexican Volcanic Belt where the Mexico City Valley is located (0.70420–0.70550, Figure 4—figure 
supplement 1, Supplementary file 2). Moreover, radiocarbon dating of HSJN240 (1442–1608 CE, 
years calibrated for 1σ) and HSJN194 (1472–1625 CE, years calibrated for 1σ) (Supplementary file 
2A, Figure 4—figure supplement 2) indicates that these individuals arrived during the first decades 
of the Colonial period, when the number of enslaved individuals arriving from Africa was particularly 
high (Aguirre-Beltrán, 2005).

Strikingly, Colonial individual COYC4, who was also infected with an African B19V strain, clusters 
with present-day Mexicans and Peruvians from the 1000 Genomes Project (Figure 4a). An ADMIX-
TURE (Alexander and Lange, 2011) analysis with these data confirmed a Native American genetic 
component (Figure 4b), as expected for an indigenous individual. The B19V ancient genome from the 
individual COYC4 is the first genotype 3 genome obtained from a non-African individual and suggests 
that following the introduction from Africa, the virus (B19V) spread and infected people of different 
ancestries during the Colonial period.

Discussion
In this study, we reconstructed one HBV and three B19V ancient genomes from four different indi-
viduals using NGS, metagenomics, and in-solution targeted enrichment methods (Figure  2b,c, 
Figure 1—figure supplement 1). Several lines of evidence support the ancient nature of these viral 
sequences, in contrast to environmental contamination or a capture artifact. First, our negative control 
was not enriched for B19V or HBV hits in our capture sequencing (Figure 1c). For those samples that 
showed an enrichment in viral sequences after capture, the reads covered the reference genomes 
almost in their entirety and displayed deamination patterns at the terminal ends of the reads, as 
expected for aDNA (Figure 2a). Moreover, it is important to notice that B19V and HBV are blood-
borne human pathogens that are not present in soil or the environment, and that DNA from these 
viruses had never been extracted before in the aDNA facilities used for this study.

The recovery of aDNA from B19V, which has a ssDNA genome (with dsDNA terminal repeats), 
in previous studies (Mühlemann et al., 2018b) as well as in our samples is noteworthy considering 
the NGS libraries were constructed using dsDNA as a template. Therefore, we would not expect to 
recover the ssDNA from B19V with this library building method. However, it is known that dsDNA 
intermediates form during the B19V replication cycle (Ganaie and Qiu, 2018), and that throughout 
the viral infection the replicating genomes are present in both the ssDNA and dsDNA forms. The 
sequences we retrieved must therefore correspond to the cell-free dsDNA replication intermediates. 
This is coherent with the peculiar coverage pattern on the B19V genome, where the dsDNA hairpins 

https://doi.org/10.7554/eLife.68612
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Figure 4. Human hosts are similar to modern African genetic diversity. (a) Principal component analysis (PCA) 
showing genetic affinities of ancient human hosts compared to the 1000 Genomes Project reference panel. 
Crosses (X) show individuals from the reference panel while other shapes show human hosts from which ancient 
HBV (HSJN194) and B19V (HSJNC81, HSJN240, COYC4) sequences were recovered. Clusters are colored in five 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.68612
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at its terminal sites and are highly covered, reflecting a better stability of these regions over time 
(Figure 2b). Similarly, the partially circular dsDNA genome from HBV was poorly covered at the ssDNA 
region (Figure 2c), which also goes through a dsDNA phase during replication, a similar coverage is 
reported in three previous ancient HBV genomes (Krause-Kyora et al., 2018). Although HBV and 
B19V are also capable of integrating into the human host genome (Yuen et al., 2018; Janovitz et al., 
2017), the uneven read coverage observed for all reconstructed viruses (higher coverage in dsDNA 
regions) suggests that these sequences do not correspond to integration events. If the B19V or HBV 
reads we recovered derived from integrated sequences in the human genome, we would expect an 
even coverage along the reference viral genome, which is not the case. Further analyses would be 
needed to determine if the aDNA retrieved in this and other studies comes from systemic circulating 
virions or from systemic cell-free DNA intermediates (Cheng et al., 2019) produced after viral repli-
cation in the bone marrow or liver for B19V and HBV, respectively (Broliden et al., 2006; Yuen et al., 
2018).

The ancient B19V genomes were assigned to genotype 3. This genotype is most prevalent in 
West Africa (Ghana: 100%, n = 11; Burkina Faso: 100%, n = 5) (Candotti et al., 2004; Hübschen 
et al., 2009; Rinckel et al., 2009) and a potential African origin has been suggested (Candotti et al., 
2004). It has also been sporadically found outside of Africa (Jain et al., 2015),(Candotti et al., 2004; 
Rinckel et al., 2009) in Brazil (50%, n = 12) (Freitas et al., 2008; Sanabani et al., 2006), India (15.4%, 
n = 13) (Jain et al., 2015), France (11.4%, n = 79) (Nguyen et al., 1999; Servant et al., 2002), and 
the USA (0.85%, n = 117) (Rinckel et al., 2009) as well as in immigrants from Morocco, Egypt, and 
Turkey in Germany (6.7%, n = 59) (Schneider et al., 2008). Two other genotypes, 1 and 2, exist for 
this virus. Genotype 1 is the most common and is found worldwide, while the almost extinct genotype 
2 is mainly found in elderly people from Northern Europe (Pyöriä et al., 2017). Ancient genomes 
from genotypes 1 and 2 have been recovered from Eurasian samples, including a genotype 2 B19V 
genome from a 10th-century Viking burial in Greenland (Mühlemann et al., 2018b). 87Sr/86Sr isotopes 
on individuals from this burial revealed that they were immigrants from Iceland (Mühlemann et al., 
2018b), suggesting an introduction of the genotype 2 to North America during Viking explorations 
of Greenland.

While serological evidence indicates that B19V currently circulates in Mexico, only the presence of 
genotype 1 has been formally described using molecular analyses (Valencia Pacheco et al., 2017). 
Taken together, our results are consistent with an introduction of the genotype 3 to New Spain as a 
consequence of the transatlantic slave trade imposed by European colonization. This hypothesis is 
supported by the 87Sr/86Sr isotopic analysis, which suggests that the individuals from the HSJN with 
B19V (HSJN240, HSJNC81) were born in West Africa and spent their last years of life in New Spain 
(Figure  4—figure supplement 1). Furthermore, the radiocarbon analysis for individuals HSJN240 
and HSJN194 (Figure 4—figure supplement 2) support this notion as they correspond to the Early 
Colonial period, during which the number of enslaved Africans arriving was higher compared to 
later periods (Aguirre-Beltrán, 2005). Remarkably, a B19V genome belonging to the genotype 3 
was recovered from an individual (COYC4) with 100 % Indigenous ancestry (Figure 4b). COY4 was 
excavated in an independent archeological site 10 km south of the HSJN (Figure 1a), supporting the 
notion that viral transmissions between African individuals and Native Americans occurred during the 
Colonial period in Mexico City.

super populations. EUR: Europeans (IBS, CEU); EAS: East Asian (CHB); AMR: Admixed populations from the 
Americas (MXL, PEL); SAS: South Asians (CHS); and AFR: Africans (YRI, MSL). Three-letter code is based on the 
1000 Genomes Project nomenclature. (b) ADMIXTURE analysis with COYC4 intersected sites with 1000 Genomes 
MEGA array, run with k = 4 for 100 replicates. Each color shows a different component using the same colors as in 
the PCA. In the center, a pie chart shows the proportion of Native American (green).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. 87 Sr/86 Sr and Sr concentrations from HSJN individuals.

Figure supplement 2. Radiocarbon dating.

Figure supplement 3. Individuals from the HSJN positive for ancient viruses.

Figure 4 continued
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The HBV genotype A is highly diverse in Africa, reflecting its long evolutionary history, and likely 
originated somewhere between Africa, the Middle East, and Central Asia (Kostaki et al., 2018). The 
introduction of the genotype A from Africa to the Americas has been proposed based on phyloge-
netic analysis of modern strains from Brazil (Freitas et al., 2008; Kostaki et al., 2018) and Mexico 
(Roman et  al., 2010), and more precisely of the sub-genotype A1 using sequences from Marti-
nique (Brichler et al., 2013), Venezuela (Quintero et al., 2002), Haiti (Andernach et al., 2009), and 
Colombia (Alvarado-Mora et al., 2012). Recently, a similar introduction pattern was proposed for 
the quasi genotype A3 based on an ancient HBV genome recovered from an ancient African indi-
vidual sampled in Mexico (Barquera et al., 2020). The origin of the sub-genotype A4 is controversial 
since the apparent African origin is based on modern sequences recovered from African immigrants 
living in Europe (Pourkarim et al., 2010). The Colonial ancient HBV genome reconstructed in our 
work represents the first ancient A4 linked to the transatlantic slave trade (Figure 3a, Figure 3—
figure supplement 1), and the only report of this sub-genotype in the Americas, further supporting 
its African origin. The introduction of pathogens from Africa to the Americas has been proposed 
for other human-infecting viruses such as smallpox (Mandujano-Sánchez et  al., 1982; Somolinos 
d’Árdois, 1982), based on historical records; or yellow fever virus (Bryant et al., 2007), HTLMV-1 
(Gadelha et al., 2014), hepatitis C virus (genotype 2) (Markov et al., 2009), and human herpes simplex 
virus (Forni et al., 2020) based on phylogenetic analysis of modern strains from Afro-descendant or 
admixed human populations.

Although we cannot assert where exactly the African-born individuals in this study contracted B19V 
or HBV (Africa, America, or the Middle Passage) nor if the cause of their deaths can be attributed 
to such infections, the identification of ancient B19V and HBV in contexts associated with Colonial 
epidemics in Mexico City is still relevant in light of their paleopathological marks and the clinical 
information available for the closest sequences in the phylogenetic analyses. Notably, individual 
HSJNC81 displayed cribra orbitalia in the eye sockets and porotic hyperostosis on the cranial vault 
(Figure 4—figure supplement 3). The reconstructed ancient B19V genome from this individual is 
closest to the V9 strain, which was isolated from an infant with severe anemia and G6PD deficiency 
(Nguyen et al., 1999; GenBank: AJ249437; Figure 3b). The HSJN skeletal collection has a notably 
higher rate of cribra orbitalia and porotic hyperostosis compared to other Colonial archeological 
sites, marks that were proposed to be caused by an unknown infectious disease (Castillo-Chavez, 
2000). These skeletal indicators are caused by irregular hematopoiesis in the bone marrow and are 
typically associated with genetic anemias such as thalassemia and sickle cell anemia (Angel, 1966), 
as well as to nutritional stress or parasitic infections (Walker et al., 2009). It is acknowledged that 
B19V infection can cause severe or even fatal anemia due to the low level of hemoglobin in individ-
uals with other blood disorders, such as thalassemia, sickle cell anemia, malaria, or iron deficiency 
(Broliden et al., 2006; Heegaard and Brown, 2002). Therefore, since B19V infects precursors of 
the erythroid lineage (Broliden et al., 2006), it is possible that the morphological changes found 
in HSJNC81 might be the result of a severe anemia caused or enhanced by a B19V infection. With 
our data we cannot discard the simultaneous presence of a genetic disease since the loci for thal-
assemia, sickle cell anemia, and G6PD deficiency were not covered with our human-mapped NGS 
data. Nevertheless, the identification of ancient B19V in a Colonial context is noteworthy considering 
several recent reports reveal that measles-like cases were actually attributable to B19V (De Los 
Ángeles Ribas et al., 2019; Rezaei et al., 2016) or rubella (Anderson et al., 1985; Davidkin et al., 
1998; De Los Ángeles Ribas et al., 2019; Rezaei et al., 2016), which produce a similar kind of rash 
and fever. Therefore, it is possible that B19V might have been responsible for some of the numerous 
cases attributed to measles that were described in early 16th-century Mexico (Acuña-Soto et al., 
2004; Mandujano-Sánchez et al., 1982; Wesp, 2017), in particular historical records that document 
the treatment of an outbreak of measles at the HSJN in 1531 CE (Meza, 2013). Our study, however, 
does not reject the notorious role that measles played during the Colonial outbreaks (as it is strongly 
supported by historical records), but provides evidence of the presence of B19V during the Colonial 
period in Mexico City to facilitate discussions about the paradigmatic etiology of the supposed 
measles epidemics reported in historical records (Malvido and Viesca, 1982; Mandujano-Sánchez 
et al., 1982; Somolinos d’Árdois, 1982). This hypothesis requires additional comprehensive studies 
aimed at characterizing the presence of measles and rubella viruses from ancient remains, a task that 
currently poses difficult technical challenges given that RNA is known to degrade rapidly. In fact, 
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most ancient viral RNA genomes have been recovered only from formalin-fixed tissue (Düx et al., 
2020; Xiao et al., 2013).

Furthermore, historical records of the autopsies of the victims of the 1576 CE Cocoliztli epidemic 
treated at the HSJN describe the presence of enlarged hard liver and jaundice (Acuña-Soto et al., 
2002; Acuña-Soto et al., 2004; Malvido and Viesca, 1982; Marr and Kiracofe, 2000; Somolinos 
d’Árdois, 1982) as well as a black spleen and lungs and heart with yellow liquid and black blood 
(Acuña-Soto et al., 2000; Malvido and Viesca, 1982; Somolinos d’Árdois, 1982). This is noteworthy 
given that both HBV and B19V viruses proliferate in the liver and are associated with hepatitis and 
jaundice (Broliden et al., 2006; Yuen et al., 2018). The radiocarbon dating of individuals HSJN194 
(HBV) and HSJN240 (B19V) suggests that these individuals died between 1472–1625 CE and 1442–
1608 CE (years calibrated for 1σ), respectively (Figure 4—figure supplement 2), which overlaps with 
the period of time when the hepatitis symptoms were reported in the autopsies after the 1576 Coco-
liztli epidemic at the HSJN (Acuña-Soto et al., 2004; Marr and Kiracofe, 2000; Somolinos d’Árdois, 
1982). However, additional analyses are needed before being able to establish a link between these 
viruses and the wide array of symptoms described for Cocoliztli. Currently, technological limitations 
prevent the direct identification of ancient RNA viruses in bone or dental remains. However, future 
studies, with larger sample sizes from different contexts associated with the outbreak, should explore 
a wider range of pathogens previously suggested as potential causative agents, like arthropod-borne 
pathogens (malaria, yellow fever virus, and dengue virus) (Marr and Kiracofe, 2000) or hemorrhagic 
fever RNA viruses (Acuña-Soto et al., 2004).

Furthermore, it is important to acknowledge that both viruses have also been previously identified 
in aDNA datasets not necessarily associated with disease or epidemic contexts (Kahila Bar-Gal et al., 
2012; Krause-Kyora et al., 2018; Mühlemann et al., 2018a; Patterson Ross et al., 2018). Addition-
ally, our data is not sufficient to elucidate the age when the individuals acquired the viruses or if it is 
related to their cause of death.

In the case of HSJN194, we cannot establish if he acquired HBV vertically or horizontally, nor if 
this individual presented an acute or chronic infection. Finally, although our data does not allow us to 
associate these viruses to a specific epidemic outbreak, the identification of HBV and B19V in Post-
Contact remains opens up new opportunities for investigating their presence in similar contexts and 
expand our knowledge on their evolution and potential link to disease in Colonial Mexico. This type of 
research is particularly relevant when considering previous hypotheses favoring the synergistic action 
of different types of pathogens in these devastating Colonial epidemics (Somolinos d’Árdois, 1982).

It is important to emphasize that our findings should be interpreted with careful consideration of 
the historical and social context of the transatlantic slave trade. This cruel episode in history involved 
the forced displacement of millions of individuals to the Americas (ca. 250,000 to New Spain; Aguirre-
Beltrán, 2005) under inhumane, unsanitary, and overcrowded conditions that, with no doubt, favored 
the spread of infectious diseases (Mandujano-Sánchez et al., 1982). Therefore, the introduction of 
these and other pathogens from Africa to the Americas should be attributed to the brutal and harsh 
conditions of the Middle passage that enslaved Africans were subjected to by traders and colonizers, 
and not to the African peoples themselves. Moreover, the adverse life conditions for enslaved Africans 
and Native Americans, especially during the first decades after colonization, surely favored the spread 
of diseases and emergence of epidemics (Mandujano-Sánchez et al., 1982). Integrative and multidis-
ciplinary approaches are thus needed to understand this phenomenon in full.

In summary, our study provides direct aDNA evidence of HBV and B19V introduced to the Amer-
icas from Africa during the transatlantic slave trade. The isolation and characterization of these ancient 
HBV and B19V genomes represent an important contribution to the ancient viral genomes reported in 
the Americas (Barquera et al., 2020; Duggan et al., 2020; Schrick et al., 2017). Our results expand 
our knowledge on the viral agents that were in circulation during Colonial epidemics like Cocoliztli, 
some of which resulted in the catastrophic collapse of the immunologically naïve Indigenous popu-
lation. Although we cannot assign a direct causality link between HBV and B19V and Cocoliztli, our 
findings confirm that these potentially harmful viruses were indeed circulating in individuals found 
in archeological contexts associated with this epidemic outbreak. Further analyses from different 
sites and samples will help understand the possible role of these and other pathogens in Colonial 
epidemics, as well as the full spectrum of pathogens that were introduced to the Americas during 
European colonization.

https://doi.org/10.7554/eLife.68612
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Materials and methods
Sample selection and DNA extraction
Dental samples (premolars and molars) were obtained from 21 individuals from the skeletal collection 
associated with the HSJN and were selected based on morphological features indicating a possible 
African origin (Hernández-Lopez and Negrete, 2012; Karam-Tapia, 2012; Meza, 2013; Ruíz-
Albarrán, 2012). Five additional samples were taken from ‘La Concepción’ chapel, based on their 
conservation state. Permits 401.1 S.3-2018/1373 and 401.1 S.3-2020/1310 to carry out this sampling 
and aDNA analyses were obtained from the Archeology Council of the National Institute of Anthro-
pology and History (INAH) for the Hospital San Jose de los Naturales and ‘La Concepción’ chapel, 
respectively. Two of the individuals from whom the ancient viral genomes were retrieved (HSJN194 
and HSJN240) are mostly complete articulated skeletons and one individual (HSJNC81) is an isolated 
cranium recovered during the early excavation stage and does not have any associated postcranial 
elements. The archeologists suggest that all of the individuals were deposited during an infectious 
disease epidemic in a mass burial context (Figure 1b; Cabrera-Torres and García-Martínez, 1998).

DNA extraction and NGS library construction
Bone samples were transported to a dedicated ancient DNA clean-room laboratory at the International 
Laboratory for Human Genome Research (LIIGH-UNAM, Querétaro, Mexico), where DNA extraction 
and NGS library construction was performed under the guidelines on contamination control for aDNA 
studies (Warinner et al., 2017). Teeth were carefully cleaned with NaClO (70%) and ethanol (70%) 
superficially and later exposed to UV light for 1.5 min. The tooth root was sectioned from the crown 
and fragmented by mechanical pressure. Previously reported aDNA extraction protocols were used 
on approximately 200 mg of tooth root powder obtained from the HSJN and COY samples (Dabney 
et al., 2013; Rohland and Hofreiter, 2007). A blank extraction control per batch was used to identify 
the presence of environmental and cross-sample contamination. dsDNA indexed (6 bp) sequencing 
libraries were constructed using 30 µl of the DNA extract, as previously reported (Meyer and Kircher, 
2010).

Next-generation sequencing
Pooled libraries were sequenced on an Illumina NextSeq550 at the ‘Laboratorio Nacional de Genómica 
para la Biodiversidad’ (LANGEBIO, Irapuato, Mexico), with a mid-output 2 × 75 format (paired-end). 
The reads obtained (R1 and R2) were merged (>11 bp overlap) and trimmed with AdapterRemoval 
1.5.4 (Schubert et  al., 2016). Overlapping reads (>30  bp in length, quality filter  >30) were kept 
and mapped to the human genome (hg19) using BWA 0.7.13 (aln Algorithm) (Li and Durbin, 2009). 
Mapped reads were used for further human analysis (genetic ancestry and mitochondrial haplogroup 
determination), whereas unmapped reads were used for metagenomic analysis and viral genome 
reconstruction.

Metagenomic analyses
The Viral RefSeq database was downloaded from the NCBI ftp server on February 2018; this included 
7530 viral genomes, including human pathogens. MALT 0.4.0 (Herbig et al., 2018) software was used 
to taxonomically classify the reads using the viral genomes database as a reference. The viral database 
was formatted automatically with malt-build once, and non-human (unmapped) reads were aligned 
with malt-run using the blastn and SemiGlobal mode with an 85 minimal percent identity (--minPer-
centIdentity) and e-values of 0.001 (--e). The RMA files were used for the normalization of the viral 
abundances based on the library with the smallest number of reads (default, (count of class/total count 
of sample)* count of smallest sample) and compared to all the samples from the same archeological 
site with MEGAN 6.8.0 (Huson et al., 2016).

Independently, unmapped reads (non-human) were taxonomically classified with Kraken2 (Wood 
et  al., 2019) using a reference database composed of NCBI RefSeq bacterial, archaea, and viral 
genomes (downloaded on November 3, 2017). The Kraken2 output was transformed to a BIOM-
format table using Kraken-biom (https://​github.​com/​smdabdoub/​kraken-​biom; Dabdoub et  al., 
2018) and then visualized with Pavian (Breitwieser and Salzberg, 2020). Detailed description of the 
results can be found in Bravo-Lopez et al., 2020.

https://doi.org/10.7554/eLife.68612
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In-solution enrichment assay design
Twenty-nine viruses were included in the design of biotinylated probes (Supplementary file 1A), 
including viral genomes previously recovered from archeological remains like B19V, B19V-V9, and HBV 
(consensus genomes), selected VARV genes, as well as clinically important viral families that are able 
to integrate into the human genome, have dsDNA genomes, or dsDNA intermediates.

The HBV majority consensus genome (>50% conservation per site) was constructed using an align-
ment of modern references (A–H genotype) and a well-covered (>5×  coverage) ancient genotype 
(Mühlemann et al., 2018a; LT992459).

Thirty VARV genes were chosen for a consensus sequence construction based on three cate-
gories; replication (J6R, A24R, A29L, E4L, A50R, A5R, D7R, H4L, E9L), structural (A27L, A25, D8L, 
H3L, L1R, A33R, B5R, A16L), and immune host regulation (B18R, A46R, B15R, K7R, N1L, M2L, E3L, 
H1L, B8R, D9R, D10, K3L), and were obtained from all the available VARV genomes including three 
ancient genomes (NCBI GenBank 2019 Duggan et al., 2016; Pajer et al., 2017). The selected genes 
were aligned in AliView (MUSCLE algorithm Edgar, 2004; Larsson, 2014) to generate a majority 
consensus for every gene. The generated consensus sequences targeted <20% of the VARV whole 
genome.

For the Herpesviridae family, a total of 19 genes were selected, 6 from herpes simplex virus 1 
(UL30, UL31, UL19, UL27, US6, UL10), 6 from human cytomegalovirus (UL54, UL53, UL86, UL115, 
UL75, UL83), and 7 from Epstein–Bar virus (ORF9, ORF69, ORF25, ORF47, ORF8, vIRF2, K5). GenBank 
IDs are shown in Supplementary file 1A.

Selected genes from VARV and Herpesviridae were defined as 40 bp or 60 bp upstream the start 
codon, and downstream the stop codon, respectively, in order to ensure a uniform coverage of the 
entire coding region in case of a positive sample.

The resulting design comprised 19,147 ssRNA 80 nt probes targeting, with a 20 nt interspaced 
distance, the whole or partial informative regions of eight viral families (Poxviridae, Hepadnavir-
idae, Parvoviridae, Herpesviridae, Retroviridae, Papillomaviridae, Polyomaviridae, Circoviridae). To 
avoid a simultaneous false-positive DNA enrichment, low-complexity regions and human-like (hg38) 
sequences were removed (in silico). The customized kit was produced by Arbor Biosciences (Ann 
Arbor, MI, USA).

Capture-enrichment assay
Capture-enrichment was performed on 30–90 ng (depending the availability) of the indexed libraries 
to pull-down viral aDNA using 60  °C during 48  hr for hybridization, based on the manufacturer’s 
protocol (version 4). Libraries were amplified with 18–20 cycles (Phusion U Hot Start DNA Polymerase 
by Thermo Fischer Scientific) using primers for the adaptors of each post-capture library. PCR products 
were purified with SPRISelect Magnetic Beads (Beckman Coulter) and quantified with a Bioanalyzer 
2100 (Agilent). Amplified libraries were then pooled in different concentrations and deep sequenced 
on an Illumina NextSeq550 (2 × 75 middle output) yielding >1 × 106 non-human reads (Supplementary 
file 1C). In order to saturate the target viral genome, one or two non-consecutive rounds of capture 
were performed for HBV and B19V, respectively. Reads generated from each enriched library were 
analyzed exactly as the shotgun (not-enriched) libraries. Normalized abundances between shotgun 
and captured libraries were compared in MEGAN 6.8.0 (Huson et al., 2016) to evaluate the efficiency 
and specificity of the enrichment assay.

Viral datasets
HBV-Dataset-1 (HBV_DS1)
This comprises 38 HBV genomes from modern A–J human genotypes, 2 well-covered ancient HBV 
genomes, and a wholly monkey genome. Genotype A: HE974381, HE974383, AY934764, GQ331046. 
Genotype B: B602818, AB033555, AB073835, AB287316, AB241117. Genotype C: AB111946, 
X75656, AB048704, AF241411, AP011102, AP011106, AP011108, AB644287. Genotype D: FJ899792, 
GQ477453, JN688710, HE974373, FJ904430, AB033559. Genotype E: HE974384. Genotype F: 
AY090458, AB116654, AY090455, DQ899144, HE974369, AB116549, AF223962, AB166850. Geno-
type G: AP007264. Genotype H: AB516395. Genotype J: AB486012. Ancient: LT992443, LT992459. 
Outgroup (Woolly Monkey): AF046996.

https://doi.org/10.7554/eLife.68612


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics | Microbiology and Infectious Disease

Guzmán-Solís et al. eLife 2021;0:e68612. DOI: https://​doi.​org/​10.​7554/​eLife.​68612 � 15 of 25

HBV-Dataset-2 (HBV_DS2)
This comprises 593 whole genomes downloaded from the NCBI database in August 2020 that included 
the union of curated datasets used in four previous studies (Drexler et al., 2013; Krause-Kyora et al., 
2018; Mühlemann et  al., 2018a; Paraskevis et  al., 2015), from which only non-duplicated HBV 
genomes were considered. This dataset contains genomes from A–J genotypes as well as non-human 
primate HBV genomes (gibbon, gorilla, and chimpanzee). Additionally, 19 ancient HBV genomes 
(Barquera et al., 2020; Kahila Bar-Gal et al., 2012; Krause-Kyora et al., 2018; Mühlemann et al., 
2018a; Neukamm et al., 2020; Patterson Ross et al., 2018) and 1 ancient HBV genome from this 
study (HSJN194) were included.

HBV_DS2.1
56 genomes assigned to genotype A, based on our ML analysis plus the ancient genome from the 
present study (HSJN194).

B19V-Dataset-1 (B19V_DS1)
This comprises 13 B19V sequences of genotypes 1–3: KT268312, AY504945, FJ591158, EF216869, 
AY064476, DQ333427, AB550331, AY582124, DQ408305, FJ265736, AJ249437, NC_004295, 
NC_0008831, plus one outgroup (Bovine Parvovirus): NC_001540.

B19V-Dataset-2 (B19V_DS2)
All B19V genomes retrieved from the NCBI database were downloaded (August 2020) using the next 
search command “human parvovirus b19[organism] not rna[title] not clone[title] not clonal[title] not 
patent[title] not recombinant[title] not recombination[title] and 3000:6000[sequence length],” which 
considers only whole genomes (3–6 kb), resulting in a total of 109 B19V genomes from genotypes 1–3. 
This dataset included the 10 best-covered ancient genomes from genotypes 1 and 2 (Mühlemann 
et al., 2018b) as well as 3 ancient B19V from this study. Since many of the reported genomes in our 
dataset are not complete, only the whole coding region (CDS) was used for phylogenetic analyses.

Genome reconstruction and authenticity
HBV
Non-human reads were simultaneously mapped to HBV_DS1 with BWA (aln algorithm) with seedling 
disabled (-l 1050) (Schubert et al., 2012). The reference sequence with the most hits was used to 
map uniquely to this reference and generate a BAM alignment without duplicates (ref: GQ331046), 
from which damage patterns were determined and damaged sites rescaled using mapDamage 2.0 
(Jónsson et al., 2013). The rescaled alignment was used to produce a consensus genome. All the 
HBV mapped reads were analyzed through megaBLAST (Altschul et al., 1990) using the whole NCBI 
nr database to verify if they were assigned uniquely to HBV (carried out with Krona 2.7; Ondov et al., 
2011).

B19V
The reconstruction of the B19V ancient genome was done as previously reported from archeological 
skeletal remains (Mühlemann et al., 2018b), but with increased stringency of some parameters, which 
are described here. Non-human reads were mapped against B19V_DS1 with BWA (aln algorithm) 
with seedling disabled (Schubert et al., 2012). If more than 50 % of the genome was covered, the 
sample was considered positive to B19V. Reads from the B19V-positive libraries were aligned with 
blastn (-evalue 0.001) to B19V_DS1 to recover all the parvovirus-like reads. To avoid local alignments, 
only hits covering >85% of the read were kept and joined to the B19V mapped reads (from BWA). 
Duplicates were removed. The resulting reads were analyzed with megaBLAST (Altschul et al., 1990) 
using the whole NCBI nr database to verify the top hit was to B19V (carried out with Krona 2.7; Ondov 
et  al., 2011). This pipeline was applied for two independent enrichments assays per sample and 
the filtered reads from the two capture rounds were joined. The merged datasets per sample were 
mapped using as a reference file the three known B19V genotypes with GeneiousPrime 2019.0.4 
(Kearse et al., 2012) using median/fast sensibility and iterate up to five times. The genotype with the 
longest covered sequence was selected as the reference for further analysis (ref: AB550331).

https://doi.org/10.7554/eLife.68612
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Deamination patterns for HBV and B19V were determined with mapDamage 2.0 (Jónsson et al., 
2013) and damaged sites were rescaled in the same program to produce a consensus whole genome 
using SAMtools 1.9 (Li et al., 2009).

Phylogenetic analyses
HBV_DS2 and B19V_DS2 were aligned independently in Aliview (Larsson, 2014; MUSCLE algorithm; 
Edgar, 2004) and curated manually to have the same lengths. The alignments were evaluated in 
jModelTest 2.1.10 (Darriba et al., 2012) using a corrected Akaike information criterion (AICc) and 
Bayesian information criterion (BICc) tests that supported with 100 % confidence the evolutionary 
models used in our maximum likelihood analysis in RAxML (Stamatakis, 2014).

To test the temporal structure of our ML trees, a root-tip-dated analysis was performed on 
Tempest 1.5.3 (Rambaut et al., 2016) for both DS2 (B19V, HBV) in the presence or absence of ancient 
sequences and without the sequences presented in this study (Figure 3—figure supplements 5–6). 
In the case of HBV, an additional analysis was performed only on the genotype A to find a higher 
temporal structure in the presence or absence of ancient sequences and without the HSJN194 HBV 
genome presented in this study (Figure 3—figure supplement 5). For the B19V_DS2, the temporal 
structure suggested by root-tip distance analysis was corroborated using a date randomization test 
(DRT) with TipDatingBeast 1.0.5 (Rieux and Khatchikian, 2017) and BEAST 2.5.1 (Drummond et al., 
2012; Figure 3—figure supplement 6).

Since the DRT and the root-tip-dated analysis suggested a temporal structure for the B19V_DS2, 
a coalescent dated tree was generated in BEAST 2.5.1 (Drummond et al., 2012) for B19V using a 
relaxed and strict clock; both with different priors (coalescent constant, exponential, and Bayesian 
skyline population priors), with an a priori substitution rate interval of 1 × 10–3–1 × 10–7 s/s/y (Mühle-
mann et  al., 2018b). For the Colonial genomes used in this study, a uniform sampling was indi-
cated using the radiocarbon dates for HSJN240 (495 ± 166 ybp). When radiocarbon dating was not 
possible, an archeological date interval was set for HSJNC81 (332.5 ± 269 ybp) and COYC4 (320 ± 
400 ybp), based on the archeological estimates of both sites. The strict molecular clock analyses were 
performed with a 50 million MCMC sampled each 5000 generations, while the relaxed molecular 
clock with exponential population was run with a 250 million MCMC sampled each 5000 generations, 
and the relaxed molecular clock with coalescent constant and Bayesian Skyline population priors 
were run with 250 million MCMC and with 350 million MCMC sampled each 5000 generations. Both 
files were mixed with a 25 % burn-in LogCombiner (Drummond et al., 2012). All the Bayesian anal-
yses were mixed and reached convergence (>200 ESS) as estimated in Tracer 1.7 (Rambaut et al., 
2018; Supplementary file 1D). The first 25 % of the generated trees were discarded (burn in) and 
a Maximum Clade Credibility Tree with median ages was created with TreeAnnotator (Drummond 
et al., 2012; Figure 3—figure supplements 3–4).

Radiocarbon dating
Radiocarbon analysis was conducted at the Physics Institute of the National Autonomous University 
of Mexico (UNAM) for the individuals in this study with complete skeletons (HSJN194 and HSJN240). 
From these individuals, phalanx bones (left hand) were cleaned, dried, and powdered to be digested 
in a HCl 0.5 M solution followed by a NaOH 0.01 M and HCl 0.2 M treatment. Collagen was then 
filtered (>30 kDa) and graphitization was performed on an AGEIII (Ion Plus). 14C, 13C, and 12C isotopes 
were analyzed from graphite in a Tandetron (High Voltage Engineering Europa B.V.) mass spectrom-
eter with a 1 V energy accelerator. Radiocarbon dates were estimated based on InCal13 (Reimer 
et al., 2013) calibration curve and corrected with OxCal v4.2.4. (Bronk Ramsey, 2013).

Sr isotope analysis
Tooth enamel was carefully extracted with the aid of dental tools. The material underwent several 
cleaning procedures before crushing to a 50 μm grain size with an agate mortar. Chemicals used for 
this purpose included 30 % H2O2 and 1–1.5 N HNO3. In between, rinses were performed with deion-
ized water (Milli-Q). Ultrasonic bath (USB) was used to accelerate these processes. After obtaining 
the desired grain size, samples were treated with 30 % H2O2, 1 N NH4Cl, and alternated with water 
washes. To get rid of any secondary contaminant or any postmortem external agent that could alter 
the Sr isotopic values, tooth samples were treated with a three-step leaching technique: the first 

https://doi.org/10.7554/eLife.68612
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leachate is obtained with 0.1 N acetic acid for 30 min (USB). The solution is decanted and dried under 
infrared light (Lix 1). The residue was leached for 15 min in 1 N acetic acid (USB) and subsequently 
stored overnight for 12 hr in the same acid. The solution was decanted and dried to obtain the second 
leachate (Lix 2). The residue (Res) is dissolved in 8 N HNO3 as well as Enamel Lix 1 and Enamel Lix 
2 in closed Teflon beakers on a hot plate at 90 °C. A total of three aliquots from each molar were 
obtained from this leaching process. After sample digestion, Sr from teeth and bone samples was 
extracted with Sr-Spec (EICHROM) ion exchange column chemistry. Detailed analytical procedures 
are described in Solís-Pichardo et al., 2017. Sr isotope analysis was carried out with a Triton Plus 
(Thermo Scientific) thermal ionization mass spectrometer with 9 Faraday collectors at the ‘Labora-
torio Universitario de Geoquímica Isotópica’ (LUGIS, UNAM). Sr was measured as metallic ions with 
60 isotopic ratios that were normalized for mass fractionation to 86Sr/88Sr = 0.1194. The mean value 
for the NBS 987 Sr standard was 87Sr/86Sr = 0.710254 ± 0.000012 (±1 sdabs, n = 86) and the analytical 
blank yielded 0.23 ng Sr. 87Sr/86Sr ratios were performed on the tooth enamel (crowns) of individuals 
HSJNC81 and HSJN240. Similar analyses were done for HSJNC81 and HSJN240 using the parietal 
and phalanx bone, respectively. In the case of the two individuals analyzed in this study, bone 87Sr/86Sr 
values 0.70672 (HSJNC81) and 0.70755 (HSJN240) (Table S6) are comparable to those obtained from 
soil samples from the eastern TMVB rim in Veracruz with a mean 87Sr/86Sr of 0.70703 (n = 6) (Solís-
Pichardo et al., 2017). For West African igneous and metamorphic rocks, a mean value 87Sr/86Sr of 
0.71044 was obtained (n = 20, Figure 4—figure supplement 1). Data are compiled in Supplemen-
tary file 2 with their corresponding references.

Principal component analysis
Human-mapped reads (BWA aln) obtained from the pre-capture sequence data of viral-positive 
samples were used to infer the genetic ancestry of the hosts using PCA. The genomic alignments (to 
hg19) of the four ancient individuals (HSJNC81, HSJN240, HSJN194, and COYC4) was intersected 
with the genotype data of 400 present-day individuals from eight populations (50 individuals per 
population) in the 1000 Genomes Project (1000 Genomes Project Consortium, 2015; IBS: Iberian 
from Spain; CEU: Utah Residents with Northern and Western European Ancestry; CHB: Han Chinese 
in Beijing; CHS: Southern Han Chinese, YRI: Yoruba in Ibadan; MSL: Mende in Sierra Leone, MXL: 
Mexican Ancestry from Los Angeles; and PEL: Peruvians from Lima; Supplementary file 2A). Pseudo 
haploid genotypes were called by randomly selecting one allele at each intersected site, both in the 
reference panel and in the genomic alignments, and filtering by a base quality >30 in the latter. The 
merged dataset was processed using PLINK (Purcell et al., 2007) with the following parameters: a 
linkage disequilibrium filter (--indep-pairwise 200 25 0.2), genotype missingness filter of 5 % (--geno 
0.05), and minor allele frequency of 5 % (--maf 0.05). This resulted in 904,258 SNVs passing the filters. 
PCA was then performed on with the program smartpca (EIGENSOFT package) (Patterson et al., 
2006; Price et al., 2006) using the option lsqproject to project the ancient individuals into the PC 
space defined by the modern individuals.

Ancestry composition of individual COYC4
A total of 58,670 SNPs intersected between the 1000 Genomes Project reference panel and the 
COYC4 ancient genome (see previous section for details). The program ADMIXTURE (Alexander and 
Lange, 2011) was run on these intersected data with K values between 2 and 5, and 100 replicates 
for each K using a different random seed number. For each K, the ADMIXTURE run with the best like-
lihood was chosen to be plotted using AncestryPainter (Feng et al., 2018).

Mitochondrial haplogroup and sex determination
NGS reads were mapped to the human mitochondrial genome reference (rCRS) with BWA (aln algo-
rithm, -l default), the alignment file was then used to generate a consensus mitochondrial genome 
with the program Schmutzi (Renaud et al., 2015) The assignment of the mitochondrial haplogroup 
was carried out with Haplogrep (Kloss-Brandstätter et al., 2011; Weissensteiner et al., 2016) using 
the consensus sequence as the input. Assignment of biological sex was inferred based on the number 
of reads mapped to the Y-chromosome (Ry) relative to those mapping to the Y and X-chromosome 
(Skoglund et al., 2013). Ry <0.016 and Ry >0.075 were considered XX or XY genotype, respectively. 
The resulting XY sex was coherent with the one inferred morphologically (Supplementary file 2A).

https://doi.org/10.7554/eLife.68612
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