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7

Abstract Embryogenesis is a multiscale process during which developmental symmetry8

breaking transitions give rise to complex multicellular organisms. Recent advances in9

high-resolution live-cell microscopy provide unprecedented insights into the collective cell10

dynamics at various stages of embryonic development. This rapid experimental progress poses11

the theoretical challenge of translating high-dimensional imaging data into predictive12

low-dimensional models that capture the essential ordering principles governing developmental13

cell migration in complex geometries. Here, we combine mode decomposition ideas that have14

proved successful in condensed matter physics and turbulence theory with recent advances in15

sparse dynamical systems inference to realize a computational framework for learning16

quantitative continuum models from single-cell imaging data. Considering pan-embryo cell17

migration during early gastrulation in zebrafish as a widely studied example, we show how cell18

trajectory data on a curved surface can be coarse-grained and compressed with suitable19

harmonic basis functions. The resulting low-dimensional representation of the collective cell20

dynamics enables a compact characterization of developmental symmetry breaking and the21

direct inference of an interpretable hydrodynamic model, which reveals similarities between22

pan-embryo cell migration and active Brownian particle dynamics on curved surfaces. Due to its23

generic conceptual foundation, we expect that mode-based model learning can help advance the24

quantitative biophysical understanding of a wide range of developmental structure formation25

processes.26

27

Introduction28

Embryogenesis, the development of a multicellular organism from a single fertilized egg cell, re-29

quires coordinated collective motions of thousands of cells across a wide range of length and30

time scales (Gilbert and Barresi, 2016; Solnica-Krezel, 2005). Understanding how a highly repro-31

ducible and robust tissue organization arises from the dynamics and interactions of individual32

cells presents a major interdisciplinary challenge (Collinet and Lecuit, 2021). Recent advances in33

high-resolution live imaging make it possible to track the internal biological states and physical34

movements of many individual cells on pan-embryonic scales throughout various stages of devel-35

opment (Stelzer, 2015; Power and Huisken, 2017; Hartmann et al., 2019; Shah et al., 2019). This36

unprecedentedwealth of data poses two intertwined compression problems of equal practical and37

conceptual importance. The first concerns the efficient reduction of high-dimensional tracking data38

without loss of relevant information; the second relates to inferring predictive low-dimensional39

models for the developmental dynamics. Mathematical solutions to the first problem are aided by40
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taking into account the geometry and symmetries of the developing embryo, which suggest suit-41

able basis functions for a coarse-grained and sparse mode representation of raw data (Levy, 2006).42

Efficient algorithmic approaches tackling the second problem appear within reach thanks to recent43

advances in the direct inference of dynamical systems equations from data (Brunton et al., 2016;44

Rackauckas et al., 2021). Building on these ideas, we construct and demonstrate here a computa-45

tional framework that translates developmental single-cell trajectory data on curved surfaces into46

quantitative models for the dominant hydrodynamic modes.47

Widely applied in physics (Kac, 1966;Goldenfeld andWoese, 2011;Kantsler andGoldstein, 2012;48

Bhaduri et al., 2020), engineering (Soong and Grigoriu, 1993; Heydari et al., 2021) and spectral49

computing (Driscoll et al., 2014; Burns et al., 2020; Fortunato et al., 2021), mode representations50

(Schmid, 2010; Tu et al., 2014) provide a powerful tool to decompose and study system dynamics51

at and across different energetic, spatial and temporal scales. In quantum systems, for example,52

mode representations in the form of carefully constructed eigenstates are used to characterize53

essential energetic system properties (Slater and Koster, 1954; Jaynes and Cummings, 1963). Sim-54

ilarly, turbulence theory has seen significant progress by studying the coupling between Fourier55

modes that represent dynamics at different length scales. This approach enabled a better un-56

derstanding of energy cascades (Kolmogorov, 1941; Wang et al., 2021) and provided insights into57

the nature of turbulence in non-living (Kraichnan and Montgomery, 1980; Pope, 2000) and in liv-58

ing (Dunkel et al., 2013; Bratanov et al., 2015; Ramaswamy and Jülicher, 2016; Alert et al., 2020)59

systems. Additionally, the multi-scale nature of many biological processes make them particularly60

amenable to a representation in terms of spatial and temporal modes (Marchetti et al., 2013).61

Despite this fact, however, mode representations are not yet widely used to characterize and com-62

press cell tracking data, or to infer dynamic models from such data.63

To demonstrate the practical potential of mode representations for the description of multi-64

cellular developmental processes, we develop here a computational framework that takes cell65

tracking data as inputs, translates these data into a sparse mode representation by exploiting66

symmetries of the biological system, and utilizes recently developed ODE inference techniques67

(Rackauckas et al., 2021) to infer a predictive dynamical model. The model will be specified in68

terms of a learned Green’s function that propagates initial cell density and flux data forward in69

time. To validate the approach, we demonstrate that it correctly recovers the hydrodynamic equa-70

tions for active Brownian particle (ABP) dynamics on curved surfaces. Subsequently, as a first ex-71

ample application to experimental single-cell tracking data, we consider the pan-embryonic cell72

migration during early gastrulation in zebrafish (Shah et al., 2019), an important vertebrate model73

system for studying various morphogenetic events (Solnica-Krezel, 2005; Krieg et al., 2008;Morita74

et al., 2017). During gastrulation, complex migratory cell movements organize several thousand75

initially undifferentiated cells into different germlayers that lay out the primary body plan (Rohde76

andHeisenberg, 2007). The underlying high-dimensional single-cell datamake this process a proto-77

typical test problem for illustrating how spatio-temporal information can be efficiently compressed78

to analyze and model biological structure formation.79

Results80

Broadly, our goal is to translate experimentally measured single-cell trajectories on a curved sur-81

face into a quantitative model of collective cell migration dynamics. As a specific example, we82

consider recently published lightsheet microscopy data that captures the individual movements83

of thousands of cells during early zebrafish development from epiboly onset at 4 hours post-84

fertilization (hpf) to about 18 hpf (Shah et al., 2019). This developmental period is characterized85

by a collective symmetry breaking event during which cells collectively migrate over the yolk cell86

surface (Rohde and Heisenberg, 2007). Namely, they rearrange from an initial localization around87

the animal pole (AP) (Figure 1A, left) into a more elongated configuration that already indicates88

the basic geometry of the fully developed zebrafish larva (Figure 1A, right). Working with a two-89

dimensional (2D) sphere projection of the experimental data, we first describe a coarse-graining90
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approach that faithfully captures cell-mass transport on a curved surface. We then construct a91

sparse mode representation of the resulting hydrodynamic fields in terms of scalar and vector92

spherical harmonic basis functions, discuss mode signatures of morphogenetic symmetry break-93

ing events, and connect them to the dynamics of topological defects in the cellular flux. We validate94

this mode representation framework and the subsequent model inference using synthetic data of95

ABPs on a sphere, for which coarse-grained fields and learned models can be directly compared96

against analytical predictions. Finally, we infer a linear model for the mode dynamics of the exper-97

imental zebrafish data, which enables us to study the characteristics of cell interactions through98

kernels that couple cell density and flux and compare their features with the hydrodynamic mean-99

field signatures of ABPs on a sphere.100

Coarse-graining of cellular dynamics on a spherical surface101

The experimentally observed cell motions are approximately two-dimensional (2D): The radius of102

the yolk cell surface on which the dynamics takes place is much larger than the average height103

changes of the evolving cell mass (Shah et al., 2019). We therefore adopt a thin film approximation,104

in which the cellular motion is represented on an effective spherical mid-surface (gray surface in105

Figure 1B); refined futuremodels should aim to account for the full 3D dynamics. Focusing here on106

the in-plane dynamics, we project all cell positions and velocities onto a spherical mid-surface 107

of radius 𝑅𝑠 = 300𝜇m. On this spherical surface, each cell 𝛼 = 1, 2, ..., 𝑁 has a position 𝐫𝛼(𝑡) and108

in-plane velocity 𝐯𝛼(𝑡) = d𝐫𝛼∕d𝑡.109

As a second processing step, a coarse-grained representation of the single-cell dynamics on a110

spherical surface is determined. To facilitate the applicability of our framework to a wide range of111

experimental inputs, we propose a coarse-graining approach that can flexibly integrate cell num-112

ber variations stemming from cell divisions, but also those from experimental uncertainties in cell113

imaging and tracking. Consequently, we first consider an idealized scenario in which the total cell114

number is approximately constant. In this case, mass conservation informs the construction of115

self-consistent coarse-graining kernels on a spherical surface. In a second step, we describe how116

this approach generalizes when there are variations in the total cell number.117

Consistent coarse-graining of idealized microscopic data118

Our specific aim is to translate microscopic cell positions 𝐫𝛼(𝑡) and velocities 𝐯𝛼(𝑡) into a continuous119

cell surface density 𝜌(𝐫, 𝑡) and an associated flux 𝐉(𝐫, 𝑡) at any point 𝐫 of the spherical mid-surface.120

For an approximately constant total number of cells, the fields 𝜌 and 𝐉 are related by the mass121

conservation equation122

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ 𝐉 = 0. (1)
Here,∇ ⋅𝐉denotes the in-plane divergence of the cell number flux. To convert cell position 𝐫𝛼(𝑡) and123

velocities 𝐯𝛼(𝑡) into a normalized cell surface density 𝜌(𝐫, 𝑡) and an associated normalized flux 𝐉(𝐫, 𝑡),124

we consider a kernel coarse-graining of the form (Appendix 1)125

𝜌(𝐫, 𝑡) = 1
𝑁

𝑁
∑

𝛼=1
𝐾

[

𝐫, 𝐫𝛼(𝑡)
] (2a)

𝐉(𝐫, 𝑡) = 1
𝑁

𝑁
∑

𝛼=1

[

𝐫, 𝐫𝛼(𝑡)
]

⋅ 𝐯̄𝛼 , (2b)
where 𝑁 is the total number of cells and 𝐯̄𝛼 = 𝐯𝛼∕|𝐫𝛼| is the angular velocity of a given cell on a126

reference unit sphere (Appendix 1). The kernels 𝐾(𝐫, 𝐫′) and (𝐫, 𝐫′) are given by a scalar and a127

matrix-valued function, respectively. The matrix kernel (𝐫, 𝐫′) takes into account contributions128

of a particle with velocity 𝐯𝛼 at 𝐫′ = 𝐫𝛼 to nearby points 𝐫 on the sphere, which involves an addi-129

tional projection to ensure that 𝐉(𝐫, 𝑡) is everywhere tangent to the spherical surface (Appendix 1).130

Importantly, the mass conservation Eq. (1) implies a non-trivial consistency relation between the131

kernels 𝐾(𝐫, 𝐫′) and (𝐫, 𝐫′) in Eqs. (2). The kernels that obey this condition represent different132
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Figure 1. From single-cell tracking data to sparse mode amplitude representations | A: Microscopic imaging data of early zebrafishdevelopment (adapted from Figure 1b in Kobitski et al. (2015)) shows cell migration from an initially homogeneous pole of cells (left) towards anelongated structure that indicates the head-tail axis of the fully developed organism. Scale bar, 100𝜇𝑚. B: Experimental single-cell tracking datafrom (Shah et al., 2019) (blue dots) during similar developmental time points (±20min) as in A. 𝑡 = 0min for the indicated time points in Bcorresponds to a developmental time of 4 hours post fertilization. The 𝑧-axis points from the ventral pole (VP) to the animal pole (AP).
C: Coarse-grained relative cell density 𝜌(𝐫, 𝑡) (color) and associated coarse-grained flux 𝐉(𝐫, 𝑡) (streamlines) determined from single cell positionsand velocities from data in B via Eqs. (2). Thickness of streamlines is proportional to the logarithm of the spatial average of |𝐉| (see Video 1).
D: Dynamic harmonic mode representation of the relative density 𝜌(𝐫, 𝑡) (Eq. (4), left panel) and of the flux 𝐉(𝐫, 𝑡) (Eq. (5), middle and right panel)for fields shown in C. The modes 𝑗(1)𝑙𝑚 correspond to compressible, divergent cell motion, the modes 𝑗(2)𝑙𝑚 describe incompressible, rotational cellmotion. Mode amplitudes become negligible for 𝑙 ≥ 5 (Video 2). For all panels, horizontal black lines delineate blocks of constant harmonicmode number 𝑙 and black triangles denote the end of epiboly phase.
Figure 1–Figure supplement 1. Convergence of spectral representation
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coarse-graining length scales (Appendix 1–Figure 2). Throughout, we fix an intermediate coarse-133

graining length scale to enable a sparse representation of the experimental data, while ensuring134

that spatial details of the dynamics remain sufficiently well resolved. The final surface density 𝜌(𝐫, 𝑡)135

and the associated normalized flux 𝐉(𝐫, 𝑡), computed from Eqs. (2) using a kernel with an effective136

great-circle coarse-graining width of ∼ 70𝜇m, are shown in Figure 1C (see also Video 1).137

Consequences of cell number variations in experimental data138

Because cell divisions are essential to most developmental processes, total cell numbers will in139

many cases – including early zebrafish gastrulation (Kobitski et al., 2015) – vary over time. True140

cell numbers and cell number changes are often difficult to measure due to experimental uncer-141

tainties arising fromsingle-cell imaging and trackingwithin dense cellular aggregates. We therefore142

merely assume here that single cells are tracked in a representative fashion so that local relative143

surface densities found from Eq. (2a) reflect the probability that cells are present at a given point 𝐫.144

In the absence of further information on cell deaths and cell divisions, we additionally make the145

more restrictive assumption that cell appearances or disappearances are everywhere proportional146

to the local cell density. With these assumptions, we can define a cell number surface density147

𝜌̃(𝐫, 𝑡) = 𝑁(𝑡)𝜌(𝐫, 𝑡), where 𝑁(𝑡) is the cell number at time 𝑡 and 𝜌(𝐫, 𝑡) is the normalized surface den-148

sity given in Eq. (2a). Similarly, a cell number flux is given by 𝐉̃(𝐫, 𝑡) = 𝑁(𝑡)𝐉(𝐫, 𝑡), where the flux 𝐉(𝐫, 𝑡)149

is computed from the data as described by Eq. (2b). Using these definitions in Eq. (1), we find that150

the fields 𝜌̃(𝐫, 𝑡) and 𝐉̃(𝐫, 𝑡) obey a continuity equation151

𝜕𝜌̃
𝜕𝑡

+ ∇ ⋅ 𝐉̃ = 𝑘(𝑡)𝜌̃, (3)
where 𝑘(𝑡) = 𝑁̇(𝑡)∕𝑁(𝑡) denotes a time-dependent effective growth rate. Importantly, under the152

two above assumptions, Eq. (3) encodes for any time-dependent total cell number 𝑁(𝑡) > 0 the153

same information as Eq. (1) for coarse-grained normalized surface density 𝜌(𝐫, 𝑡) and associated154

flux 𝐉(𝐫, 𝑡) given by Eq. (2a) and (2b), respectively. In the following analysis, we hence focus on155

these normalized fields.156

Spatial mode representation on a spherical surface157

To obtain a sparse mode representation of the hydrodynamic fields 𝜌(𝐫, 𝑡) and 𝐉(𝐫, 𝑡) on the spheri-158

cal surface, we expand them in terms of scalar and vector spherical harmonics (SHs) (Arfken et al.,159

2013; Sandberg, 1978) (Appendix 2.A). SHs are defined on points 𝐫̂ = 𝐫∕𝑅𝑠 of the unit sphere, where160

𝑅𝑠 = 300𝜇m is the mid-surface radius. In this basis, the scalar density field is represented as161

𝜌(𝐫, 𝑡) =
𝑙max
∑

𝑙=0

𝑙
∑

𝑚=−𝑙
𝜌𝑙𝑚(𝑡)𝑌𝑙𝑚(𝐫̂), (4)

which conveniently separates the time- and space-dependence of 𝜌(𝐫, 𝑡) intomode amplitudes 𝜌𝑙𝑚(𝑡)162

and scalar harmonic functions 𝑌𝑙𝑚(𝐫̂), respectively. The maximal mode number 𝑙max is a proxy for163

the maximal spatial resolution at which 𝜌(𝐫, 𝑡) is faithfully represented. Similarly, the vector-valued164

flux 𝐉(𝐫, 𝑡) can be decomposed into time-dependent mode amplitudes 𝑗(1)𝑙𝑚 (𝑡) and 𝑗(2)𝑙𝑚 (𝑡), while its165

spatial dependence is described by vector SHs 𝚿𝑙𝑚(𝐫̂) and 𝚽𝑙𝑚(𝐫̂) (Sandberg, 1978) (Appendix 2,166

Video 2),167

𝐉(𝐫, 𝑡) =
𝑙max
∑

𝑙=1

𝑙
∑

𝑚=−𝑙

(

𝑗(1)𝑙𝑚 (𝑡)𝚿𝑙𝑚(𝐫̂) + 𝑗(2)𝑙𝑚 (𝑡)𝚽𝑙𝑚(𝐫̂)
)

. (5)
Besides the in-plane divergence ∇ ⋅𝐉 that leads to local density changes [see Eq. (1)], the cell num-168

ber flux 𝐉(𝐫, 𝑡) also contains an in-plane curl component ∇ × 𝐉 that is associated with locally rota-169

tional cell flux. The two sets of vector SHs {𝚿𝑙𝑚} and {𝚽𝑙𝑚} conveniently decompose the flux into170

these contributions: Because ∇ ⋅𝚽𝑙𝑚 = ∇ ×𝚿𝑙𝑚 = 0, and 𝐫̂ ⋅
(

∇ ×𝚽𝑙𝑚
)

= ∇ ⋅𝚿𝑙𝑚 = −𝑙(𝑙 + 1)𝑌𝑙𝑚∕𝑅𝑠171

(Sandberg, 1978), we see from Eq. (5) that 𝑗(1)𝑙𝑚 (𝑡) corresponds to modes that drive density changes172

and 𝑗(2)𝑙𝑚 (𝑡) representsmodes of local rotational cell motion that change relative cell positions but do173
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not change local density. Indeed, using harmonicmode representations of the cell number density174

Eq. (4) and the cell number flux Eq. (5) directly in the continuity Eq. (1), we find a set of ordinary175

differential equation in mode space176

d
d𝑡
𝜌𝑙𝑚(𝑡) =

𝑙(𝑙 + 1)
𝑅𝑠

𝑗(1)𝑙𝑚 (𝑡), (6)
where 𝑙 = 0, 1, ..., 𝑙max and for each value of 𝑙, 𝑚 = −𝑙,−𝑙 + 1, ..., 𝑙 − 1, 𝑙. Equation (6) offers an alter-177

native way of determining the modes 𝑗(1)𝑙𝑚 (𝑡) directly from the modes 𝜌𝑙𝑚(𝑡) of the coarse-grained178

cell number density [see Eqs. (2a) and (4)], while ensuring that the resulting fields obey mass con-179

servation exactly. In practice, the modes 𝑗(1)𝑙𝑚 (𝑡) found from a vector harmonic representation of180

the coarse-grained cell number flux Eq. (2b) will often deviate from modes 𝑗(1)𝑙𝑚 (𝑡) determined from181

Eq. (6), even if cell numbers are expected to be conserved. This can be, for example, due to limited182

accuracy in determining velocities 𝐯𝛼(𝑡) from noisy single-cell trajectories 𝐫𝛼(𝑡), or due to spatially183

inhomogeneous appearances and disappearances of cells in tracking data. Consistent with our184

simplifying assumption that cell number changes in the data can be sufficiently well approximated185

by a globally homogeneous growth rate [compare Eqs. (1) and (3)], the subsequent analysis uses186

the modes 𝑗(1)𝑙𝑚 (𝑡) as determined from the density modes 𝜌𝑙𝑚(𝑡) via Eq. (6), together with modes187

𝑗(2)𝑙𝑚 (𝑡) from the explicit velocity coarse-graining Eq. (2b). The complete construction is detailed in188

Appendix 2 and the full coarse-grained dynamics is shown in Video 1.189

The representation of 𝜌(𝐫, 𝑡) and 𝐉(𝐫, 𝑡) in terms of spherical harmonic modes with 𝑙 ≤ 𝑙max190

leads in total to 3(𝑙max + 1)2 mode amplitude trajectories, displaying only a few dominant contribu-191

tions (Figure 1D) with almost no signal remaining for 𝑙 ≥ 5 (Figure 1–Figure Supplement 1, Video 2).192

This demonstrates that the underlying coarse-grained experimental data is sufficiently smooth and193

implies that a spectral representations is indeed meaningful. Thus, the coarse-graining approach194

outlined above provides a sparse spectral representation of high-dimensional microscopic single-195

cell data. The associated harmonic basis functions and vectors have an intuitive physical meaning,196

convenient algebraic properties and, as we will see, encode information about the length scales197

and symmetries of the collective dynamics.198

Temporal mode representation199

We further compress the dynamical information by representing the time series of the modes in200

terms of Chebyshev polynomial basis functions 𝑇𝑛(𝑡) (Driscoll et al., 2014;Mason and Handscomb,201

2002). To simplify notation, we define a dynamic mode vector 𝐚(𝑡) = [𝜌𝑙𝑚(𝑡), 𝑗
(1)
𝑙𝑚 (𝑡), 𝑗

(2)
𝑙𝑚 (𝑡)]

⊤ that col-202

lects all the modes up to 𝑙 = 𝑙max determined in the previous section and consider an expansion203

𝐚(𝑡) =
𝑛max
∑

𝑛=0
𝑇𝑛(𝑡) 𝐚̂𝑛 (7)

in terms of the spatio-temporal mode coefficients 𝐚̂𝑛 with temporal mode number 𝑛 (Appendix 2).204

This compression allows us to accurately evaluate time derivatives of the mode amplitudes (Su-205

pekar et al., 2021), an important step when using Eq. (6) to determine flux modes 𝑗(1)𝑙𝑚 (𝑡) directly206

from density modes 𝜌𝑙𝑚. Fixing 𝑙max = 4 and 𝑛max = 30 in the remainder, the initial single-cell data207

set of about 1.4 million recorded cell position entries, or 4.2 million degrees of freedom, has thus208

been reduced to 2250 mode coefficients, corresponding to a compression ratio ≳ 1800. The final209

fields that can be reconstructed from this compressed representation are shown in Video 1.210

Characterization of the developmental mode dynamics211

A harmonic mode decomposition naturally integrates the geometry of the underlying domain and212

simultaneously provides useful insights into spatial scales and symmetries of the dynamics. For213

each mode (𝑙𝑚) in the sets of SHs {𝑌𝑙𝑚}, {𝚿𝑙𝑚} and {𝚽𝑙𝑚}, the integer index 𝑙 indicates the spatial214

scale of the harmonic, with 𝑙 = 0 being a constant and larger 𝑙 indicating progressively finer spatial215

scales. The second index𝑚 ∈ {−𝑙,−𝑙+1,… , 𝑙}provides additional information about the orientation216
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of the harmonic scalar function or vector field. The modes 𝑙 = 1 and 𝑙 = 2 are particularly useful217

for characterizing the symmetry of spatial patterns on a spherical surface (Mietke et al., 2019;218

Scholich et al., 2020): Modes with 𝑙 = 1 indicate patterns with a global polar symmetry, whereas219

modes with 𝑙 = 2 represent spatial patterns with a global nematic symmetry. We now exploit these220

features for a detailed characterization of the symmetry breaking that takes place during cellular221

rearrangements and to study the properties of the cellular flux in more detail. To this end, we222

discuss spatial averages223

⟨𝑂⟩𝑠(𝑡) =
1
𝐴𝑠 ∫

𝑑𝐴𝑠 𝑂(𝐫, 𝑡) (8)
of different real-space observables 𝑂(𝐫, 𝑡) over the mid-surface  .224

Mode signatures of developmental symmetry breaking225

To study how different developmental stages and their associated symmetry breaking events are226

reflected in themode representation, we first consider the average cell surface density fluctuations227

⟨

(

𝜌 − ⟨𝜌⟩𝑠
)2
⟩

𝑠
=

𝑙max
∑

𝑙=1

𝑙
∑

𝑚=−𝑙
𝜌2𝑙𝑚(𝑡). (9)

For each mode 𝑙, the power spectrum 𝑃𝜌,𝑙(𝑡) =
∑𝑙

𝑚=−𝑙 𝜌
2
𝑙𝑚(𝑡) in Eq. (9) provides a rotationally invariant228

quantity (Çetingül et al., 2012; Schwab et al., 2013) that can effectively serve as an order parame-229

ter to characterize the symmetry of cell density patterns on the spherical surface. The dynamics of230

the density fluctuations [Eq. (9)] broken down into contributions 𝑃𝜌,𝑙(𝑡) from each mode 𝑙 ≤ 𝑙max = 4231

is shown in Figure 2B. Several features of this representation are particularly striking and can be232

directly related to specific developmental stages. First, patterns of cell surface density fluctuations233

evolve from a dominantly polar symmetry (𝑙 = 1) into density patterns with a prominent nematic234

symmetry (𝑙 = 2). These mode signatures intuitively reflect the essential symmetry breaking that235

takes placewhen cells collectively reorganize froman initially localized cell dome (Figure 1B, 52min)236

into an elongated shape that wraps in an open ring-like pattern around the yolk cell (Figure 1B,237

760min). Second, during this transition at around 300min (9 hpf) (black triangle in Figure 2B), the238

cell surface density is most homogeneous as fluctuations becomeminimal for all modes 𝑙. Interest-239

ingly, this time point approximately marks the completion of epiboly, when the different cell layers240

have fully engulfed the yolk. Finally, although in a less pronouncedmanner, the power spectrum of241

the mode 𝑙 = 4 also exhibits an increased amplitude towards later times, indicating the formation242

of structures at finer spatial scales as development progresses. We find that mode signatures of243

the symmetry breaking and progression through developmental stages are robust (Figure 2–Figure244

Supplement 1B,D), illustrating that mode-based analysis can provide a systematic and meaningful245

characterization of developmental symmetry breaking events.246

Mode signatures of emergent topological defects in cellular flux247

The vectorial nature of the cell number flux 𝐉(𝐫, 𝑡) on a spherical surface implies the presence248

of topological defects (colored circles in Figure 2A, see Methods) (Kamien, 2002). Several recent249

experimental results pertaining to the self-organization of multicellular systems suggest an im-250

portant role of such topological defects in organizing morphogenetic events (Doostmohammadi251

et al., 2016; Saw et al., 2017; Guillamat et al., 2020; Copenhagen et al., 2021;Meacock et al., 2021;252

Maroudas-Sacks et al., 2021). We therefore analyze how defects within the cell number flux 𝐉(𝐫, 𝑡)253

are dynamically organized during early zebrafish gastrulation and if signatures of defect forma-254

tion and annihilation are present in the mode representation Eq. (5). We first consider the average255

squared divergence and curl of the cell number flux given by256

⟨

(

∇ ⋅ 𝐉
)2
⟩

𝑠
=

𝑙max
∑

𝑙=1

𝑚
∑

𝑚=−𝑙

[

𝑙(𝑙 + 1)
𝑅𝑠

𝑗(1)𝑙𝑚 (𝑡)
]2

, (10a)
⟨

(

∇ × 𝐉
)2
⟩

𝑠
=

𝑙max
∑

𝑙=1

𝑚
∑

𝑚=−𝑙

[

𝑙(𝑙 + 1)
𝑅𝑠

𝑗(2)𝑙𝑚 (𝑡)
]2

, (10b)
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Figure 2. Mode signatures of developmental symmetry breaking and topological defects in cellular flux| A: Two-dimensional Mollweideprojection of the compressed coarse-grained density field 𝜌(𝐫, 𝑡) (colormap) and of the coarse-grained cell flux 𝐉(𝐫, 𝑡) (streamlines) at differenttime points of zebrafish gastrulation. White circles depict topological defects of charge +1 in the flux vector field, red circles depict defects withcharge −1. The total defect charge is 2 at all times. Defects are seen to ‘lead’ the large-scale motion of cells and later localize mostly along thecurve defined by the forming spine. Animal pole (AP) and ventral pole (VP) are located at top and bottom, respectively. B: Density fluctuations asa function of developmental time [see Eq. (9)], broken down in contributions from different harmonic modes 𝑙. The underlying symmetrybreaking is highlighted prominently by this representation: During the first 75% of epiboly (0–280min) cells migrate away from, but are stillmostly located near the animal pole, presenting a density pattern with polar symmetry (𝑙 = 1). During the following convergent extension phasecells converge towards a confined elongated region that is ‘wrapped’ around the yolk, corresponding to a density pattern with nematicsymmetry (𝑙 = 2). Black triangles indicate transition from epiboly to convergent extension. C: Comparison of surface averaged divergence ∇ ⋅ 𝐉and curl ∇ × 𝐉 of the cellular flux computed via Eqs. (10) (top). A relative curl amplitude 𝑆𝑐𝑢𝑟𝑙 computed from these quantities via Eq. (11)correlates with the appearance of an increased number of topological defects in the cell flux (bottom), suggesting that incompressible,rotational cell flux is associated with the formation of defects.
Figure 2–Figure supplement 1. Analysis of the harmonic mode representation for a second experimental dataset.
Figure 2–Figure supplement 2. Validation of automated defect tracking.
Figure 2–Figure supplement 3. Analysis of fluxes and defects for different coarse-graining length scales (Sample 1)
Figure 2–Figure supplement 4. Analysis of fluxes and defects for different coarse-graining length scales (Sample 2)
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which are shown in Figure 2C (top). The two contributions to the collective cellular dynamics –257

locally compressible, divergent flux quantified by the divergence ∇ ⋅ 𝐉 and locally incompressible,258

rotational cellmotion characterized by the curl∇×𝐉 – are independently determined by themodes259

𝑗(1)𝑙𝑚 (𝑡) and 𝑗(2)𝑙𝑚 (𝑡). Therefore, each contribution can be evaluated conveniently and with high accu-260

racy from a representation of 𝐉(𝐫, 𝑡) in terms of vector SHs. From Figure 2C (top), we see that the261

most significant divergent flux (blue curve) occurs around 300min at the transition from epiboly262

towards the convergence and extension stage. A quantification of the incompressible rotational263

flux relative to the total cell number flux is shown in Figure 2C (bottom), where we plotted the264

relative curl amplitude265

𝑆curl(𝑡) =
∑

𝑙,𝑚

[

𝑗(2)𝑙𝑚 (𝑡)
]2

∑

𝑙,𝑚

[

𝑗(1)𝑙,𝑚(𝑡)
]2

+
∑

𝑙,𝑚

[

𝑗(2)𝑙,𝑚(𝑡)
]2
. (11)

This measure suggests a correlation between incompressible rotational cell motion and the occur-266

rence of topological defects (circles in Figure 2A) in the cell flux 𝐉(𝐫, 𝑡). The total number of topo-267

logical defects present at any time point is depicted in Figure 2C (bottom, blue curve). Because the268

vector-valued flux is defined on a sphere, we observe that the total topological charge always sums269

to+2 (Kamien, 2002), while additional defect pairs with opposite charge (red+1 andwhite−1 circles270

in Figure 2A) can be created, resulting in total defect numbers greater than two (see Figure 2C, bot-271

tom). Interestingly, the relative curl amplitude 𝑆curl defined in Eq. (11) indicates that increased con-272

tributions from incompressible rotational flux are associated with the formation of topological de-273

fects in the cell number flux, a feature that is robustly identified by our framework (Figure 2–Figure274

Supplement 1A,C,Figure 2–Figure Supplement 3,Figure 2–Figure Supplement 4). The appearance275

of additional defects at the end of epiboly, when the developing embryo begins to extrude more276

significantly in the radial direction, suggests that topological defects in the 2D projected cellular277

flux fields could signal the start of the formation of more complex structures in three dimensions.278

Learning a linear hydrodynamic model of the developmental mode dynamics279

The results in Figure 2 confirm that a low-dimensional mode representation can capture essen-280

tial characteristics of developmental symmetry breaking processes. The mode representation281

therefore provides a natural starting point for the inference of hydrodynamic models from coarse-282

grained cell-tracking data. For a given time-dependent mode vector 𝐚(𝑡) = [𝜌𝑙𝑚(𝑡), 𝑗
(1)
𝑙𝑚 (𝑡), 𝑗

(2)
𝑙𝑚 (𝑡)]

⊤ that283

contains all modes up to 𝑙 = 𝑙max, the simplest hydrodynamic model corresponds to the linear284

dynamical equation285

d𝐚(𝑡)
d𝑡

= 𝑀 ⋅ 𝐚(𝑡), (12)
where the constant coefficient matrix 𝑀 encodes the couplings between different modes. Intu-286

itively, Eq. (12) aims to describe an experimentally observed density and flux dynamics in terms287

of a relaxation process, starting from inhomogeneous initial conditions represented by 𝐚(0). The288

mathematical learning problem is then to find a coefficient matrix 𝑀 such that the linear model289

Eq. (12) holds for the mode vector time series 𝐚(𝑡) that was determined from the coarse-graining290

procedure described in the previous sections.291

Validation of the learning framework using active Brownian particle dynamics292

Before applying the combined coarse-graining and inference framework to experimental data, we293

illustrate and validate the learning approach on synthetic data for which coarse-graining results294

and hydrodynamic mean-field equations are analytically tractable. To this end, we consider the295

stochastic dynamics of non-interacting active Brownianparticles (ABPs) on the unit sphere of radius296

𝑅0 = 1 (Sknepnek and Henkes, 2015; Fily et al., 2016; Castro-Villarreal and Sevilla, 2018). Similar297

to a migrating cell, an ABP at position 𝐱(𝑡)moves across the unit sphere at constant speed 𝑣0 in the298

direction of its fluctuating orientation unit vector 𝐮(𝑡). The strength of the orientational Gaussian299

white noise is characterized by a rotational diffusion constant 𝐷𝑟 (Figure 3A, Appendix 3).300
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Figure 3. Learning active Brownian particle (ABP) dynamics on a sphere. | A: ABPs move on a unit sphere (radius 𝑅0 = 1) with angularspeed 𝑣0 = 1 along a tangential unit vector 𝐮(𝑡) that is subject to stochastic in-plane fluctuations (see Appendix 3 for further details). Examplesingle-particle trajectories are shown in the high-noise (orange, 𝐷𝑟 = 10 in units of 𝑅0𝑣0) and in the low-noise regime (blue, 𝐷𝑟 = 0.5). Time 𝑡 ismeasured in units of 𝑅0∕𝑣0 in all panels. B: Position correlation function ⟨𝐱(𝑡) ⋅ 𝐱(0)⟩ averaged over 3 × 104 independent ABP trajectories showdistinct oscillations of period ≈ 2𝜋 in the low-noise regime, as ABPs orbit the spherical surface more persistently (see Video 3). Standard error ofthe mean is smaller than symbol size. C: Analytically predicted (left) and inferred (right) dynamical matrices𝑀 [see Eq. (12)] describing themean-field dynamics of a large collection of non-interacting ABPs (see Eqs. (13) and Appendix 3) show good quantitative agreement.
D: Mollweide projections of coarse-grained ABP simulations with 𝑣0 = 1 and 𝐷𝑟 = 0.5 using cell positions from the first time point in the zebrafishdata (Figure 1) as the initial condition: At each position 60 particles with random orientation were generated and their ABP dynamics simulated,amounting to approximately 1.2 × 105 particles in total. The density fields homogenize over time, where the maximum density at 𝑡 = 12.3 hasdecayed to about 5% of the maximum density at 𝑡 = 1.02. Blue lines and arrows indicate streamlines of the cell flux 𝐉(𝐫, 𝑡). E: Simulation of thelearned linear model, Eq. (12) with𝑀 shown in Figure 3C (right), for the same initial condition as in D. Marked time points indicate intervals oflearning, validation and prediction phases of the model inference (see Appendix 4).
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Compared with conventional passive Brownian motion, self-propulsion of an ABP along its ori-301

entation direction 𝐮 introduces a persistence to the particle’s motion that is reduced as rotational302

noise 𝐷𝑟 is increased. Additionally, the topology of the spherical surface implies that in the low-303

noise regime, 𝑅0𝐷𝑟∕𝑣0 < 1, particles are expected to return to the vicinity of their starting points304

after a duration Δ𝑡 ≈ 2𝜋𝑅0∕𝑣0. The conjunction of persistent motion and topology then leads to305

oscillatory dynamics in the positional correlation ⟨𝐱(𝑡) ⋅ 𝐱(0)⟩ (blue dots in Figure 3B, Appendix 3).306

Comparing correlations from stochastic ABP simulations in different noise regimeswith theoretical307

predictions (solid lines in Figure 3B) validates our numerical ABP simulation scheme.308

To generate a test data set for our coarse-graining and inference framework, we simulated309

non-interacting ABPs in both the low-noise (𝑅0𝐷𝑟∕𝑣0 < 1) and the high-noise (𝑅0𝐷𝑟∕𝑣0 > 1) regime310

with initial positions drawn from the experimental data shown in Figure 1. Specifically, at each311

cell position present in the data, we generated 60 particles with random orientation, amounting312

to approximately 1.2 × 105 particles in total, and simulated their dynamics on a unit sphere. The313

resulting trajectory data were coarse-grained following the procedure outlined in the previous sec-314

tions, yielding dynamic density fields 𝜌(𝐫, 𝑡) and fluxes 𝐉(𝐫, 𝑡) (Video 3), together with their mode315

representations 𝜌𝑙𝑚(𝑡), 𝑗(1)𝑙𝑚 (𝑡) and 𝑗(2)𝑙𝑚 (𝑡).316

In the second ‘learning’ step, we infer a sparse mode coupling matrix𝑀 that approximates the317

dynamics Eq. (12) for the dynamical mode vectors 𝐚(𝑡) = [𝜌𝑙𝑚, 𝑗
(1)
𝑙𝑚 , 𝑗

(2)
𝑙𝑚 ]

⊤ obtained from the coarse-318

grained simulated ABP data. Our inference algorithm combines adjoint techniques (Rackauckas319

et al., 2021) and amulti-step sequential thresholding approach inspiredby the Sparse Identification320

of Nonlinear Dynamics (SINDy) algorithm introduced by Brunton et al. (2016). The full algorithm is321

detailed in Appendix 4 and illustrated in the summary flowchart Appendix 4–Figure 1. Importantly,322

we perform the sparse regression using dynamical mode vectors 𝐚(𝑡) rescaled by their median323

absolute deviation (MAD) to compensate for substantial scale variations between different modes.324

The final output matrix 𝑀 of this learning algorithm is shown in the right panel of Figure 3C and325

can be compared against the analytically coarse-grained dynamics of ABPs on curved surfaces (Fily326

et al., 2016; Castro-Villarreal and Sevilla, 2018). Under suitable closure assumptions (Appendix 3),327

the mean-field dynamics of ABPs on a unit sphere is given in harmonic mode space by328

d𝜌𝑙𝑚
d𝑡

=
𝑙(𝑙 + 1)
𝑅0

𝑗(1)𝑙𝑚 (13a)
d𝑗(1)𝑙𝑚

d𝑡
= −

𝑣20
2𝑅0

𝜌𝑙𝑚 −𝐷𝑟𝑗
(1)
𝑙𝑚 (13b)

d𝑗(2)𝑙𝑚

d𝑡
= −𝐷𝑟𝑗

(2)
𝑙𝑚 , (13c)

from which we can read off the mode coupling matrix 𝑀 shown in the left panel of Figure 3C. A329

direct comparison between the theoretical and the inferred matrices shows that our framework330

recovers both the structure and the quantitative values of𝑀 with good accuracy. Due to the finite331

number of ABPs used to determine the coarse-grained fields, we do not expect that the theoreti-332

cally predicted couplingmatrix is recovered perfectly from the data. Instead, somemode couplings333

suggested by Eqs. (13) may not be present or modified in the particular realization of the ABP dy-334

namics that was coarse-grained. Indeed, direct simulation of the learned model projected in real335

space (Figure 3E) reveals a density and flux dynamics that agrees very well with the dynamics of336

the the coarse-grained input data (Figure 3D). Altogether, these results demonstrate that the pro-337

posed inference framework enables us to to faithfully recover expectedmean-field dynamics from338

coarse-grained fields of noisy particle-based data.339

Learning developmental mode dynamics from experimental data340

The same inference framework can now be directly applied to the coarse-grained experimental ze-341

brafish embryo data shown in Figure 1C and D, yielding a sparse coefficient matrix𝑀 (Figure 4A,B)342

that encodes the dynamics of the developmental mode vector 𝐚(𝑡) = [𝜌𝑙𝑚(𝑡), 𝑗
(1)
𝑙𝑚 (𝑡), 𝑗

(2)
𝑙𝑚 (𝑡)]

⊤ according343
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to Eq. (12). The inferred coupling between the time derivative of density modes 𝜌𝑙𝑚 and fluxmodes344

𝑗(1)𝑙𝑚 faithfully recovers mass conservation [Figure 4C; see Eq. (6)]. Overall, the learnedmatrix𝑀 has345

395 non-zero elements, effectively providing further compression of the experimental data, which346

required 2250 spatio-temporal mode coefficients collected in 𝐚̂𝑛 [see Eq. (7)] for its representation.347

Using the mode vector 𝐚(𝑡 = 0) of the first experimental time point as the initial condition, the in-348

ferredminimal model Eq. (12) with𝑀 shown in (Figure 4A,B) faithfully recovers both themode and349

real-space dynamics seen in the coarse-grained fields of the experimental input data (Figure 4E–G,350

Video 4).351

It is instructive to analyze the inferred matrix 𝑀 and the linear model it encodes in more de-352

tail. Comparing the MAD-rescaled matrix (see Appendix 4) learned for the experimental zebrafish353

data (Figure 4B) with the non-dimensionalized matrix learned for the active Brownian particle dy-354

namics (Figure 3C), we find similar patterns of prominent diagonal and block-diagonal couplings.355

Consistent with the analysis of single cell trajectories (Shah et al., 2019), this suggests that a ran-356

dom, but persistent movement of cells akin to ABPs moving on a sphere partially contributes to357

the early gastrulation process in zebrafish. This is complemented in the minimal model of the ex-358

perimental dynamics by significant off-diagonal contributions (Figure 4B), which are absent in the359

non-interacting ABP model. Such off-diagonal contributions represent effective linear approxima-360

tions of cell-cell interactions, environmental influences or other external stimuli reflected in the361

experimental time-series data. Ultimately, such contributions to the mode coupling matrix𝑀 help362

realize the symmetry breaking process observed in the underlying experimental data (Figure 2).363

The inferred mode coupling matrix 𝑀 shown in Figure 4B together with Eq. (12) provides a364

highly robust minimal model. Specifically, despite being linear, it is numerically stable over a pe-365

riod approximately four times as long as the input data from which the matrix 𝑀 was learned.366

Furthermore, simulations with modified initial conditions (see Figure 4–Figure Supplement 1) still367

exhibit a characteristic symmetry breaking and lead to the emergence of density and flux patterns368

similar to those seen in Figure 4F,G. For example, simulating Eq. (12) using the initial condition of369

a different experimental data set (Figure 2–Figure Supplement 1) leads to final patterns with the370

same symmetry as in the original training data, further corroborating that the observed symmetry371

breaking is directly encoded in the interactions represented by the matrix𝑀 . A similar robustness372

is observed under moderate perturbations of the initial condition, such as a rotation of initial cell373

density patterns relative to the coordinate system in which𝑀 was inferred, or a local depletion of374

the initial density, emulating a partial removal of cells as experimentally realized in Morita et al.375

(2017). Taken together, these numerical experiments demonstrate that the inferredmode coupling376

matrix𝑀 meaningfully captures the dynamics and interactions of cells that facilitate the symmetry377

breaking observed during early zebrafish development.378

Green’s function representation of learned models in real space379

To characterize the inferred spatial interactions inmore detail, we can analyze the real-space repre-380

sentation of the learned mode coupling matrix𝑀 . While the density dynamics represented by𝑀381

(the first row in Figure 4AB) simply reflects mass conservation Eq. (1) in real space, the dynam-382

ics of the flux (the second and third row in Figure 4A,B) corresponds in real space to the integral383

equation (Appendix 4)384

𝜕
𝜕𝑡
𝐉(𝐫, 𝑡) = ∫ dΩ′ [𝐦𝜌(𝐫, 𝐫′)𝜌(𝐫′, 𝑡) +𝑀𝐽 (𝐫, 𝐫′) ⋅ 𝐉(𝐫′, 𝑡)

]

, (14)
where 𝑑Ω′ = sin 𝜃′𝑑𝜃′𝑑𝜙′ is the spherical surface area element. The vector-valued kernel 𝐦𝜌(𝐫, 𝐫′)385

in Eq. (14) connects the distribution of cell density 𝜌 across the surface to dynamic changes of the386

flux 𝐉 at a given point 𝐫. Similarly, the matrix-valued kernel𝑀𝐽 (𝐫, 𝐫′) describes how the distribution387

of cell fluxes at 𝐫′ affects temporal changes of the flux at 𝐫.388

To analyze the spatial range of interactions between points 𝐫 and 𝐫′, we use the fact that the389

matrix-valued kernel 𝑀𝐽 (𝐫, 𝐫′) has only one non-zero eigenvalue (Appendix 4–Figure 2). Conse-390

quently, the trace tr(𝑀𝐽 ) serves as a proxy for the distance-dependent interaction strength medi-391
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Figure 4. Model learning for experimental data of collective cell motion during early zebrafish development. | A: Visualization of theconstant mode coupling matrix𝑀 that was learned from experimental data (see Appendix 4) and describes the dynamics of the mode vector
𝐚 = [𝜌𝑙𝑚(𝑡), 𝑗

(1)
𝑙𝑚 (𝑡), 𝑗(2)𝑙𝑚 (𝑡)]𝑇 via Eq. (12). Dimensionless fields are defined by 𝜌̂𝑙𝑚 = 𝑅2

𝑠𝜌𝑙𝑚 and 𝑗(𝑖)𝑙𝑚 = 𝑅𝑠Δ𝑡𝑗
(𝑖)
𝑙𝑚 (𝑖 = 1, 2) with 𝑅𝑠 = 300𝜇m and Δ𝑡 = 2min.

B: Scaling the learned matrix𝑀 by the Mean Absolute Deviation (MAD) of the modes (see Appendix 4) reveals structures reminiscent of themode coupling matrix learned for ABPs (Figure 3C). C: The learned model recovers mass conservation in mode space [Eq. (6)]. D: Comparison oftheoretical and inferred real-space kernels (see Eq. (14) and Appendix 4) for the ABP dynamics and for the experimental data of collective cellmotion. The trace of the non-dimensional kernel 𝑀̂𝐽 (𝐫, 𝐫′) (the only non-zero eigenvalue, Appendix 4–Figure 2) indicates a localized flux-fluxcoupling with a similar profile among both systems. The oscillating magnitude of the non-dimensionalized density-flux kernel |𝐦̂𝜌(𝐫, 𝐫′)| (insets)in the ABP system indicates a gradient-like coupling and is consequence of the persistent ABP motion. In the experimental data, a first peakaround 𝜔 = 𝜋∕4 is also visible, but less pronounced. All kernel properties were computed by averaging over pairs of positions 𝐫, 𝐫′ that areseparated by the same angular distance 𝜔 = arccos(𝐫 ⋅ 𝐫′) ∈ [0, 𝜋]. Solid lines indicate mean, shaded areas indicate standard deviation.
E: Comparison of experimental mode dynamics (circles) with numerical solution (solid line) of the minimal model Eq. (12) for learned matrix𝑀visualized in Figure 4A. For clarity, the comparison is shown for the two dominant modes of each set of harmonic modes 𝜌𝑙𝑚, 𝑗(1)𝑙𝑚 and 𝑗(2)𝑙𝑚 .
F, G: Mollweide projections of the experimental data (F) and of the numerical solution of the learned model (F) show very goodagreement (Video 4). Blue lines and arrows illustrate streamlines defined by the cell flux 𝐉(𝐫, 𝑡), circles depict defects with topological charge
+1 (white) and −1 (red).
Figure 4–Figure supplement 1. Simulating the learned model with different initial conditions
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ated by𝑀𝐽 . Averages of tr(𝑀𝐽 ) over point-pairs with the same angular distance 𝜔 = acos(𝐫 ⋅𝐫′) are392

shown for the ABP dynamics and for the minimal model inferred from experimental data in Fig-393

ure 4D. Note that to make the models amenable to comparison, we compute 𝑀𝐽 (𝐫, 𝐫′) from the394

known mean-field model of ABPs Eqs. (13) using the same finite number of modes as used to rep-395

resent the ABP and the zebrafish data (𝑙max = 4). In theory, one expects for the ABP dynamics a396

highly localized, homogeneous kernel tr(𝑀𝐽 ) ∼ 𝛿(𝐫 − 𝐫′), so that an exact spectral representation397

would require an infinite number of modes (see Appendix 4). In practice, using a finite number398

of modes leads to a wider kernel range (Figure 4D ’ABP theory’) and introduces an apparent spa-399

tial inhomogeneity, as indicated by the non-zero standard deviation of tr(𝑀𝐽 ) at fixed distance 𝜔400

(blue shades). Both the quantitative profile of tr(𝑀𝐽 ) and its variation are successfully recovered401

by applying the inference framework to stochastic simulations of ABPs (Figure 4D ’ABP simulation’)402

where𝑀𝐽 (𝐫, 𝐫′) was computed from the learned mode coupling matrix𝑀 shown in Figure 3C. For403

the inferred minimal model of the cell dynamics (Figure 4D ’Zebrafish experiment’), we find a sim-404

ilar short-ranged flux-flux coupling mediated by 𝑀𝐽 . However, the increased variability of tr(𝑀𝐽 )405

at fixed distances 𝜔 indicates more substantial spatial inhomogeneities of the corresponding inter-406

actions. These inhomogeneities are absent in a non-interacting system of ABPs and represent an407

interpretable real-space signature of the symmetry-breakingmechanisms built into the underlying408

mode coupling matrix𝑀 .409

A similar analysis can be performed for the kernel𝐦𝜌(𝐫, 𝐫′) that couples the density at position 𝐫′410

to dynamics of fluxes at position 𝐫 [see Eq. (14)], where we average the magnitude |𝐦𝜌(𝐫, 𝐫′)| over411

pairs (𝐫, 𝐫′) with the same angular distance 𝜔 (Figure 4D insets). Using a finite number of modes to412

compute this kernel in the different scenarios again introduces apparent spatial inhomogeneities413

in all cases. Additionally, all kernel profiles exhibit a distinct maximum at short range, indicating414

a coupling between density gradients and the flux dynamics that emerges microscopically from a415

persistent ABP and cell motion (see Appendix 3&4) – an observations that is consistent with the416

similar block-diagonal structure of both inferred matrices𝑀 (compare Figure 3C and Figure 4B).417

In conclusion, the real-space analysis and comparison of inferred interaction kernels further418

highlights potential ABP-like contributions to the collective cellular organization during early ze-419

brafish development and reveals an effectively non-local coupling between density and flux dy-420

namics. The latter could result, for example, from unresolved fast-evolving morphogens (Hannezo421

and Heisenberg, 2019), through mechanical interactions with the surrounding material (Münster422

et al., 2019) or due to other relevant degrees of freedom that are not explicitly captured in this423

linear hydrodynamic model. More generally, a real-space representation of kernels provides an424

alternative interpretable way to study the interactions and symmetry-breaking mechanisms en-425

coded by models directly learned in mode space.426

Discussion427

Leveraging a sparse mode representation of collective cellular dynamics on a curved surface, we428

have presented a learning framework that translates single-cell trajectories into quantitative hydro-429

dynamic models. This work complements traditional approaches to find quantitative continuum430

models of complex multicellular processes (Etournay et al., 2015; Hannezo et al., 2015; Morita431

et al., 2017; Streichan et al., 2018; Münster et al., 2019) that match problem-specific constitutive432

relations of active materials in real-space with experimental observations. We have demonstrated433

here that length scales and symmetries associated with amode representation can directly inform434

about the character of symmetry breaking transitions and topological features of collective cellular435

motion even before a model is specified. The successful applications to synthetic ABP simulation436

data and experimental zebrafish embryo data show that model learning in mode space provides437

a promising and computationally feasible approach to infer quantitative interpretable models in438

complex geometries.439

The learned linear minimal model for cell migration during early zebrafish morphogenesis440

quantitatively recapitulates the spatiotemporal dynamics of a complex developmental process (Fig-441
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ure 4F,G), and highlights similarities between collective cell migration and analytically tractable ABP442

dynamics on a curved surface. An extension to nonlinear mode-coupling models or an integration443

of additional, experimentally measured degrees of freedom, such as concentration fields of mor-444

phogens involved in mechanochemical feedbacks (Hannezo and Heisenberg, 2019), is in principle445

straightforward by including nonlinear terms in Eq. (12). Furthermore, the above framework could446

be generalized to describe the dynamics within a spherical shell of finite height by complementing447

the surface vector SHs used in this work by their radial counterpart (Barrera et al., 1985).448

To provide a concrete example, we focused here on applying the model learning framework449

to single-cell tracking data of early zebrafish morphogenesis. However, the essentially spherical450

organization of cells during gastrulation observed in zebrafish is shared by many species whose451

early development occurs through a similar discoidal cleavage (Gilbert and Barresi, 2016), and the452

framework introduced here is directly applicable once tracking data becomes available for these453

systems. More generally, as novel imaging technologies are being developed (Keller et al., 2010;454

Royer et al., 2016; Shah et al., 2019), we expect that even larger andmore detailed imaging datawill455

further facilitate the exploration of finer scales and length-scale bridging processes (Lenne et al.,456

2020) through learning approaches that directly built on mode-based data representations.457

Materials and Methods458

Data pre-processing459

Weobtained two single-cell tracking data sets from the experiments described in (Shah et al., 2019).460

These data consist of the Cartesian coordinates of each cell together with a tracking ID. Some of the461

data is accessible at https://idr.openmicroscopy.org with ID number idr0068. We first denoised each462

cell trajectory using MATLAB’s (mat, 2019) wavelet denoiser function wdenoise, and centered the463

cloud of cells by least-squares fitting a spherical surface through it and shifting the origin at each464

time to coincide with the center of this sphere. We then computed the velocity of each cell by using465

Tikhonov-regularized differentiation as described in (Knowles and Renka, 2014) and implemented466

in the MATLAB third-party module rdiff (Wagner, 2020). After examination of the cells’ velocity467

distribution, we further removed outlier cells whose speed is in the 95th percentile or above and468

verified that this operation only removes aberrant cells. Finally, we rotated the data to align the469

animal pole of the embryo with the 𝑧-axis, as determined by the direction of the center of mass of470

the initial cell distribution. The resulting single cell data are shown as point clouds in Fig. 1B and in471

Video 1.472

Topological defect tracking473

We have developed a defect tracker that identifies topological defects in vector fields tangent to474

a spherical surface via integration along suitable Burger circuits. The corresponding software is475

available at https://github.com/NicoRomeo/surf-vec-defects.476
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Appendix 1659

Consistent coarse-graining on curved surfaces660

We describe the derivation of self-consistent coarse-graining kernels that are used in the
main text to convert single cell information into a continuous density field and its associated
fluxes on a spherical surface. We first motivate this problem for a flat surface and then
proceed with a detailed derivation for the case of a spherical surface.
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662

663

664

Kernel consistency in Euclidean space665

It is instructive to first consider a set of particles 𝛼 = 1, 2, 3, ... at positions 𝐗𝛼(𝑡)moving with
velocities𝐕𝛼(𝑡) = d𝐗𝛼∕d𝑡, where capitalized vectors indicate position and velocity in Euclideanspace, e.g. particles move on a flat surface or within some three-dimensional volume. A
coarse-grained density 𝜌(𝐗, 𝑡) and a mass flux 𝐉(𝐗, 𝑡) can be defined from this microscopic
information by

𝜌(𝐗, 𝑡) =
∑

𝛼
𝐾𝑒

[

𝐗,𝐗𝛼(𝑡)
]

, (15a)
𝐉(𝐗, 𝑡) =

∑

𝛼
𝑒

[

𝐗,𝐗𝛼(𝑡)
]

⋅ 𝐕𝛼(𝑡), (15b)
where 𝐾𝑒 (𝐗,𝐗′) and 𝑒 (𝐗,𝐗′) represent a scalar-valued and a matrix-valued kernel func-
tion, respectively. At the same time, in a system with a constant number of particles, mass
conservation implies, in general,

𝜕𝑡𝜌(𝐗, 𝑡) + ∇𝐗 ⋅ 𝐉(𝐗, 𝑡) = 0, (16)
relating the density 𝜌(𝐗, 𝑡) and the mass flux 𝐉(𝐗, 𝑡) of particles. Using the coarse-graining
prescriptions Eqs. (15) directly in Eq. (16) and assuming the resulting relation must hold for
any set of particle trajectories, one finds a general kernel consistency relation

∇𝐗′𝐾𝑒(𝐗,𝐗′) + ∇𝐗 ⋅𝑒(𝐗,𝐗′) = 0. (17)
This condition is automatically satisfied for any translationally invariant and isotropic pair of
kernels 𝐾𝑒(𝐗,𝐗′) = 𝐾𝑒(𝐗 −𝐗′) and 𝑒(𝐗,𝐗′) = 𝐾𝑒(𝐗 −𝐗′)𝕀, where 𝕀 is the unit matrix. Coarse-
graining with such kernels is frequently employed in practice: Positions and velocities can
be, for example, simply convolved with a Gaussian function of mean zero (Supekar et al.,
2021).
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Kernel consistency on a curved surface691

For a surface parameterized by 𝐫(𝑠1, 𝑠2) ∈ ℝ3 with generalized coordinates 𝑠1, 𝑠2, two tangen-
tial basis vectors are defined by 𝐞𝑖 = 𝜕𝐫∕𝜕𝑠𝑖 (𝑖 = 1, 2). Partial derivatives are, in the following,
denoted 𝜕𝑖 ∶= 𝜕∕𝜕𝑠𝑖. The metric tensor is given by 𝑔𝑖𝑗 = 𝐞𝑖 ⋅ 𝐞𝑗 . The mean curvature is defined
by𝐻𝐧 = −∇𝑖𝐞𝑖∕2, where 𝐧 = 𝐞1×𝐞2∕|𝐞1×𝐞2| denotes the unit surface normal and the Einstein
summation convention is used. The covariant form of mass conservation Eq. 1 (main text)
on a curved surface reads

𝜕𝑡𝜌 + ∇𝑖𝐽
𝑖 = 0, (18)

with 𝐽 𝑖 = 𝐞𝑖 ⋅ 𝐉 and ∇𝑖 denotes the covariant derivative. In general, we are interested in
describing an effective dynamics for cell positions and velocities that are projected onto a
common reference sphere of radius𝑅𝑠. Such a description can be found by first formulating
the coarse-graining approach for a unit sphere, onwhich particle positions and velocities are
fully determined by angular coordinates and corresponding angular velocities, and finally
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rescaling the density and flux fields by suitable factors of 𝑅𝑠. The corresponding coarse-
graining Eq. (2b) (main text) of in-plane angular velocities 𝐯̄𝛼(𝑡) = 𝐯𝛼(𝑡)∕|𝐫𝛼(𝑡)| for particles 𝛼on a unit sphere reads covariantly

𝐽 𝑖 =
∑

𝛼

(

𝐫, 𝐫𝛼
)𝑖
𝑗′ 𝑣̄

𝑗′
𝛼 , (19)

where 𝑣̄𝑖𝛼 = 𝐞𝑖 ⋅ 𝐯̄𝛼 and we drop the dependence on time to simplify the notation. The two-
point kernel tensor  (𝐫, 𝐫′)𝑖𝑗′ (a ‘bitensor’) is evaluated in the tangent space of 𝐫 for its firstindex and in the tangent space of 𝐫′ at the second, primed index (Appendix 1–Figure 1). Mass
conservation on a curved surface, Eq. (18), together with the coarse-graining prescriptions
Eqs. (2a) (main text) and (19) then implies a covariant kernel consistency relation

𝜕𝑗′𝐾(𝐫, 𝐫′) + ∇𝑖(𝐫, 𝐫′)𝑖𝑗′ = 0. (20)
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719

Solving the kernel consistency relation on a sphere720

We solve Eq. (20) in the following on the unit sphere, such that 𝐫 = 𝐧 corresponds to the
surface normal. The final result can simply be rescaled to any spherical surface of radius 𝑅𝑠.Furthermore, we note that the parameter

𝑥 = 𝐫 ⋅ 𝐫′ (21)
provides a measure for the great circle distance 𝜔(𝑥) = acos(𝑥) between two points on a
sphere. Hence, we consider an ansatz for the kernels in Eq. (20) of the form

𝐾(𝐫, 𝐫′) = 𝑓 (𝑥) (22a)
(𝐫, 𝐫′)𝑖𝑗′ = 𝑔(𝑥)𝐞𝑖 ⋅ 𝐞𝑗′ , (22b)

with two unknown scalar functions 𝑓 (𝑥) and 𝑔(𝑥). The relevant derivatives of the ansatz
Eqs. (22) can readily be evaluated to

𝜕𝑗′𝐾(𝐫, 𝐫′) = d𝑓 (𝑥)
d𝑥

𝐫 ⋅ 𝐞𝑗′ (23a)
∇𝑖(𝐫, 𝐫′)𝑖𝑗′ =

d𝑔(𝑥)
d𝑥

𝐫′ ⋅
(

𝐞𝑖 ⊗ 𝐞𝑖
)

⋅ 𝐞𝑗′ − 2𝑔(𝑥) 𝐫 ⋅ 𝐞𝑗′ . (23b)
Here, ⊗ denotes a dyadic product and we use 𝜕𝑖𝑥 = 𝐫′ ⋅ 𝐞𝑖 and 𝜕𝑖′𝑥 = 𝐫 ⋅ 𝐞𝑖′ , which follows
from Eq. (21), as well as ∇𝑖𝐞𝑖 = −2𝐫 in the second equation, which holds on a unit sphere
and follows from the definition of the mean curvature. We then use the expansion of the
identity matrix in ℝ3 on the spherical basis 𝕀 = 𝐞𝑖 ⊗ 𝐞𝑖 +𝐧⊗𝐧, such that in our case with 𝐫 = 𝐧
we have 𝐞𝑖 ⊗ 𝐞𝑖 = 𝕀 − 𝐫 ⊗ 𝐫. Hence, Eq. (23b) becomes

∇𝑖(𝐫, 𝐫′)𝑖𝑗′ = −
d𝑔(𝑥)
d𝑥

(𝐫′ ⋅ 𝐫)(𝐫 ⋅ 𝐞𝑗′ ) − 2𝑔(𝑥) 𝐫 ⋅ 𝐞𝑗′ . (24)
Using Eqs. (23a) and (24) in the kernel consistency relation Eq. (20) and dividing by 𝐫 ⋅ 𝐞𝑗′(at 𝐫 = 𝐫′, for which 𝐫 ⋅ 𝐞𝑗′ = 0, Eq. (20) is obeyed for any 𝑓 (𝑥), 𝑔(𝑥)), we find that the scalar
functions in the kernel ansatz Eqs. (22) have to obey

𝑥
d𝑔(𝑥)
d𝑥

+ 2𝑔(𝑥) =
d𝑓 (𝑥)
d𝑥

.

Hence, the general covariant consistency relation Eq. (20) implies for the kernel ansatz
Eqs. (22) that the weighting functions 𝑔(𝑥) and 𝑓 (𝑥)must be related by

𝑔(𝑥) = 1
𝑥2 ∫

𝑥

0
d𝑢 𝑢

d𝑓 (𝑢)
d𝑢

. (25)
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Kernel functions with compact support756

In the last step, we determine a family of kernel functions 𝑔(𝑥) and 𝑓 (𝑥) defined on the
interval 𝑥 ∈ [−1, 1] that satisfy (25), along with the requirements:

757

758

1. 𝑓 (𝑥) and 𝑔(𝑥)must be 𝐶1 regular on [−1, 1]759

2. 𝑓 ≥ 0 on [−1, 1]760

3. 𝑓 is normalized to 1 on the unit sphere.761

Recalling 𝑥 = cos[𝜔(𝐫, 𝐫′)] with angular distance 𝜔 between 𝐫 and 𝐫′, a family of functions
fulfilling these conditions is given by

𝑓𝑘(𝜔) =
𝑘 + 1
2𝜋

(cos𝜔)𝑘𝟏{cos𝜔>0} (26a)
𝑔𝑘(𝜔) =

𝑘
2𝜋

(cos𝜔)𝑘−1𝟏{cos𝜔>0}, (26b)
where 𝟏{cos𝜔>0} is an indicator function that is 1 if cos𝜔 > 0 and vanishes otherwise (Ap-
pendix 1–Figure 2). In this work, we have chosen the kernels Eqs. (22) with 𝑓 = 𝑓𝑘 and 𝑔 = 𝑔𝑘for 𝑘 = 6. For these kernels derived here, densities 𝜌(𝐫, 𝑡) and associated fluxes 𝐉(𝐫, 𝑡) that
are coarse-grained on a unit sphere can be converted into effective densities and fluxes on
a spherical surface of radius 𝑅𝑠 through the rescaling 𝜌 → 𝜌∕𝑅2

𝑠 and 𝐉 → 𝐉∕𝑅𝑠. Equivalently,rescaled kernels 𝐾(𝐫, 𝐫′) → 𝐾(𝐫, 𝐫′)∕𝑅2
𝑠 and (𝐫, 𝐫′)𝑖𝑗′ → (𝐫, 𝐫′)𝑖𝑗′∕𝑅𝑠 can be used directly, aswas done in Eqs. (2) of the main text to generate the data shown in Figure 1 (main text).
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776

Appendix 1 Figure 1. Illustration of the action of the coarse-graining tensor kernel (𝐫, 𝐫′)𝑖𝑗′ [Eq. (19)].Left: 𝑖𝑗′ acts in the two tangent space at points 𝐫 and 𝐫′ that are separated by an angular distance
𝜔 = acos(𝐫 ⋅ 𝐫′). Each tangent plane has corresponding basis vectors 𝐞𝑖, 𝐞𝑖′ for 𝑖 = 1, 2. Right: The tensorkernel 𝑖𝑗′ ∼ 𝐞𝑖 ⋅ 𝐞𝑗′ projects vectors 𝐮 in the tangent space of 𝐫′ and generates a vector 𝐯 tangent at 𝐫.
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784

Appendix 1 Figure 2. Family of kernel functions 𝑓𝑘(𝜔) and 𝑔𝑘(𝜔) given in Eqs. (26). These functionsrepresent weights of the coarse-graining kernels defined in Eqs. (22) and are defined such that thekernels satisfy the consistency relation Eq. (19). 𝜔 = acos(𝐫 ⋅ 𝐫′) denotes angular distances between 𝐫and 𝐫′. Coarse-graining of a conserved number of particles on a sphere to determine a density field 𝜌(Eq. (2a), main text) requires a different weighting – 𝑓𝑘(𝜔) – than the coarse-graining of an associatedflux 𝐉 (Eq. (2b), main text), which requires a weighting 𝑔𝑘(𝜔) instead to ensure that coarse-grainedfields obey mass conservation Eq. (18). A characteristic coarse-graining length scale associated withthese kernels is the half-width at half-maximum (HWHM), which is related to 𝑘 byHWHM= arccos(2−1∕𝑘).
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Appendix 2795

Spatio-temporal mode decomposition796

In this section, we provide explicit expressions for the scalar and spherical harmonic basis
functions (‘spatial modes’), as well as for the Chebyshev basis functions (‘temporal modes’)
used in thiswork. Additionally, we describe a systematic approach to determine theminimal
number of modes needed to describe the coarse-grained data, while preserving a high level
of accuracy in the representation.

797

798

799

800

801

Spatial basis: Spherical Harmonics802

In this work, we use the real spherical harmonics defined in spherical coordinates (𝜃, 𝜙)
by (Arfken et al., 2013)

𝑌𝑙𝑚(𝜃, 𝜙) =

√

2𝑙 + 1
4𝜋

(𝑙 − |𝑚|)!
(𝑙 + |𝑚|)!

𝑃 |𝑚|
𝑙 (cos 𝜃)𝑁𝑚(𝜙) (27)

where 𝑃 |𝑚|
𝑙 (𝑥) is the associated Legendre polynomial of degree 𝑙 and order |𝑚|, and

𝑁𝑚(𝜙) =

⎧

⎪

⎨

⎪

⎩

√

2 cos(𝑚𝜙) if 𝑚 > 0
1 if 𝑚 = 0

√

2 sin(|𝑚|𝜙) if 𝑚 < 0
. (28)

Vector spherical harmonics can be defined and expressed as vector fields in 3D or covari-
antly as (Sandberg, 1978;Mietke et al., 2019)

𝚿𝑙𝑚 = ∇𝑆𝑌𝑙𝑚 ⇔ Ψ𝑖
(𝑙𝑚) = 𝑔𝑖𝑗𝜕𝑗𝑌𝑙𝑚 (29a)

𝚽𝑙𝑚 = 𝐫̂ ×𝚿𝑙𝑚 ⇔ Φ𝑖
(𝑙𝑚) = 𝜖𝑗𝑖𝜕𝑗𝑌𝑙𝑚 (29b)

where ∇𝑆 = 𝐞𝜃𝜕𝜃 + 𝐞𝜙 sin
−1 𝜃𝜕𝜙 denotes the gradient operator an a unit sphere, 𝜖𝑖𝑗 is thecovariant Levi-Civita tensor, and 𝑔𝑖𝑗 themetric tensor. Scalar harmonics 𝑌𝑙𝑚 and either vectorharmonic 𝚲𝑙𝑚 ∈ {𝚿𝑙𝑚,𝚽𝑙𝑚} are orthogonal:

∫ dΩ 𝑌𝑙𝑚𝑌𝑙′𝑚′ = 𝛿𝑙𝑙′𝛿𝑚𝑚′ (30a)
∫ dΩ𝚲𝑙𝑚 ⋅ 𝚲𝑙′𝑚′ = 𝑙(𝑙 + 1)𝛿𝑙𝑙′𝛿𝑚𝑚′ , (30b)

where dΩ = sin 𝜃d𝜃d𝜙. The increasing complexity of patterns and accuracy of reconstruction
with larger 𝑙 is illustrated in Appendix 2–Figure 1 and Video 2.
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Temporal basis: Chebyshev polynomials825

Chebyshev polynomials of the first kind 𝑇𝑛 are defined by (Arfken et al., 2013)
𝑇𝑛(cos 𝑥) = cos(𝑛𝑥). (31)

Chebyshev polynomials form an orthogonal basis of continuous functions on the interval
[−1, 1], such that an expansion

𝑓 (𝑡) =
𝑛max
∑

𝑛=0
𝑐𝑛𝑇𝑛(𝑡) (32)
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uniformly converges as 𝑛max → ∞ (Driscoll et al., 2014). This representation also allows
computing derivatives spectrally from

𝑓 ′(𝑡) =
𝑛max
∑

𝑛=0
𝑐𝑛𝑇

′
𝑛 (𝑡). (33)
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Information loss through coarse-graining840

Coarse-graining microscopic data into smooth fields is an irreversible operation, during
which some of the original particle information is irretrievably lost. The choice of coarse-
graining scale is thus dictated by a trade-off between smoothness and information content
- choosing larger coarse-graining scales leads to smoother fields but blurs finer scale struc-
tures which may be of interest. To inform our choice of coarse-graining scale, we quantify
the loss of information incurred by the coarse-graining operation.

841

842

843

844

845

846

The measure we introduce to quantify information loss is based on the the well-known
relationship between the smoothness of functions in real space and Fourier space (Stein
and Shakarchi, 2011): A smooth function in real space should have a peaked, quickly decay-
ing spectrum in Fourier space while a collection of point-like objects such as delta functions
should have a uniform non-decaying spectrum. Specifically, we describe a uniformly sam-
pled field as a 𝑀 ×𝑁 matrix with components being the field values 𝑋𝑖,𝑗 = 𝑋(𝜃𝑖, 𝜙𝑗). In ourcase,𝑋𝑖,𝑗 represents either the density field 𝜌 or any of the Cartesian components of the flux
vector field 𝐉 at a given time point. We find the complex discrete Fourier spectrum 𝑋̂𝑖,𝑗 ofthis matrix using the two-dimensional fast Fourier transform. We then calculate the power
spectral density (PSD) of the Fourier spectrum as 𝑅𝑖,𝑗 = |𝑋̂𝑖,𝑗|

2 and interpret the normalized
PSD

𝑃𝑖,𝑗 =
𝑅𝑖,𝑗

∑

𝑎,𝑏 𝑅𝑎,𝑏

as a discrete probability distribution. The spectral entropy 𝑆 characterizing the information
content of the field 𝑋 is then defined by

𝑆(𝑋) = − 1
log2 𝑁𝑀

∑

𝑖,𝑗
𝑃𝑖,𝑗 log2 𝑃𝑖,𝑗 . (34)

Smooth fields are sharply peaked in Fourier space and have a low spectral entropy, whereas
fields that resolve discrete single particle information are rather flat in Fourier space and
have a large spectral entropy. Thedifference in entropy betweenparticle data and smoothed
fields thenmeasures the information eliminated by the coarse-graining procedure. If we ad-
ditionally normalize by the entropy of the spectral entropy 𝑆0(𝑋) of the raw particle data,
we finally obtain a relative measure of the information that is lost in the coarse-graining
process. In general, a measure as given in Eq. (34) can be defined for any transform with
the property that smoothness in real space leads to a fast decaying spectrum in transform
space.
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We compute the spectral entropy of density and flux component fields at a representa-
tive time point and for varying coarse-graining length scales (Appendix 2–Figure 2). Specif-
ically, we coarse-grain density and flux through the procedure described in the main text
and in Appendix 1 for different values of the kernel parameter 𝑘 [see Eqs. (26)]. Large val-
ues of 𝑘 correspond to small coarse-graining length scales, with the effective half-width at
half-maximum (HWHM) of the kernels Eqs. (22) with weight functions Eqs. (26) scaling as
HWHM= arccos(2−1∕𝑘). Normalized spectral entropies 𝑆(𝑋)∕𝑆0(𝑋) with 𝑋 ∈ {𝜌, 𝐉} are then
computed using Eq. (34). For the flux field, we define 𝑆(𝐉) ∶= 𝑆(𝐽𝑥)+𝑆(𝐽𝑦)+𝑆(𝐽𝑧) ("Flux sum"
in Appendix 2–Figure 2) and interpret the sumof these three contributions ("Flux x", "Flux y",
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"Flux z" in Appendix 2–Figure 2) as the total information contained in the flux field. We find
that the spectral entropies of all fields show similar features. In particular, an increasing
coarse-graining width first results in a sharp loss of information as individual particle posi-
tions are blurred, followed by less steep information loss as continuous fields progressively
lose details of finer structures. In this work, we use an intermediate value of the coarse-
graining parameter 𝑘 = 6 (yellow data in Appendix 2–Figure 2).
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Optimal compression in space and time890

Spectral representations are exact in the limit of an infinite number of modes. In practice,
we choose a maximal harmonic mode number 𝑙max and maximal Chebyshev mode number
𝑛max. A too large value of 𝑙max and 𝑛max provides little compression benefit, while too small
values suffer accuracy penalties. Hence, there is a compression-accuracy trade-off that we
seek to optimize. To evaluate the trade-off quantitatively, we define a heuristic compression
metric 𝐶 by

1∕𝐶 =
𝑛max
𝑁𝑡

+
(𝑙max + 1)2

𝑁𝑠
, (35)

where 𝑁𝑡 is the number of sampled time steps and 𝑁𝑠 is the number of spatial grid points
used for coarse-graining. Larger values of 𝐶 correspond to a higher compression factor. To
define accuracy metrics, we consider the norm

‖𝑓‖2 =
𝑁𝑡
∑

𝑖=1
𝑓 (𝑡𝑖)2

where the sum runs over𝑁𝑡 regularly sampled time points 𝑡𝑖. We denote a particular mode
representation {𝜌̃𝑙𝑚(𝑡), 𝑗

(1)
𝑙𝑚 (𝑡), 𝑗

(2)
𝑙𝑚 (𝑡)} of the data that was coarse-grained via Eqs. (2) (main

text) for 𝑙 = 0,… , 𝑙refmax = 20 as the ‘uncompressed’ reference. A measure to characterize the
accuracy of a mode-truncated ‘compressed’ data representation is then given by a relative
average mode reconstruction error

𝐸modes(𝑛max, 𝑙max) = 1
2(𝑙refmax + 1)2

𝑙max
∑

𝑙=0

𝑚=𝑙
∑

𝑚=−𝑙

⎛

⎜

⎜

⎜

⎝

‖

‖

𝜌𝑙𝑚 − 𝜌̃𝑙𝑚‖‖
2

‖𝜌̃𝑙𝑚‖2
+

‖

‖

‖

𝑗(2)𝑙𝑚 − 𝑗(2)𝑙𝑚
‖

‖

‖

2

‖

‖

‖

𝑗(2)𝑙𝑚
‖

‖

‖

2

⎞

⎟

⎟

⎟

⎠

1∕2

. (36)

This measure compares the compressed mode representation {𝜌𝑙𝑚(𝑡), 𝑗
(2)
𝑙𝑚 (𝑡)}, truncated at

maximal Chebychev mode number 𝑛max (temporal representation Eq. (32), Appendix 2) and
maximal harmonic mode number 𝑙max (spatial representation, Eqs. (4) and (5), main text)
with the reference modes {𝜌̃𝑙𝑚(𝑡), 𝑗

(2)
𝑙𝑚 (𝑡)}. To find a compromise between accuracy, charac-

terized by 𝐸modes(𝑛max, 𝑙max), and compression 𝐶 defined in Eq. (35), the aim is to find a pair
(𝑛max, 𝑙max) on the Pareto front (Jin and Sendhoff, 2008) of 𝐸modes vs. 1∕𝐶 (red dots in Ap-
pendix 2–Figure 3).
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Note that themodes 𝑗(1)𝑙𝑚 (𝑡) and 𝑗(1)𝑙𝑚 (𝑡) are so far omitted from this analysis, because the lat-
ter are in practice found directly from density modes via Eq. (6) (main text). However, taking
temporal derivatives of 𝜌𝑙𝑚(𝑡) using Eq. (33) to determine 𝑗(1)𝑙𝑚 (𝑡) introduces undesirable oscil-lations for too large Chebychev cut-offs 𝑛max. This implies an additional trade-off between
the need for accuracy (higher 𝑛max) and stability (lower 𝑛max). In practice, we wish to find val-ues of (𝑛max, 𝑙max) such that relative amplitudes of pairs (𝑗(1)𝑙𝑚 , 𝑗

(2)
𝑙𝑚 ) and (𝑗(1)𝑙𝑚 , 𝑗

(2)
𝑙𝑚 ) are preservedby the compression. This can be achieved by comparing the relative curl amplitude

𝑆curl(𝑡) =
∑

𝑙𝑚[𝑗
(2)
𝑙𝑚 (𝑡)]

2

∑

𝑙𝑚[𝑗
(1)
𝑙𝑚 (𝑡)]2 + [𝑗(2)𝑙𝑚 (𝑡)]2
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to the analog quantity 𝑆̃curl(𝑡) computed from the reference modes {𝑗(1)𝑙𝑚 (𝑡), 𝑗
(2)
𝑙𝑚 (𝑡)} and ana-

lyzing the curl reconstruction error
𝐸curl =

‖𝑆curl − 𝑆̃curl‖
‖𝑆̃curl‖

(37)
as a function of 𝑛max and 𝑙max (Appendix 2–Figure 4). From this, we find a region of low error
around 𝑙max = 4, 𝑛max = 30, which also is on the Pareto front of the accuracy vs. compression
trade-off (orange circles in Appendix 2 Figures. 3 and 4) and represents the final values used
throughout this work.
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Appendix 2 Figure 1. Sequentially adding vector spherical harmonics 𝚿𝑙𝑚 and 𝚽𝑙𝑚 – equivalent toincreasing 𝑙max in Eq. (5) – resolves increasing levels of details present in experimental flux fields("Data"). Main features of the data are captured already by a relatively small number of modes(𝑙max = 4 used throughout this work).
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Appendix 2 Figure 2. Normalized spectral entropy as a function of the coarse-graining kernel width(top) computed for density 𝜌 and flux field 𝐉 using Eq. (34). To evaluate the spectral entropy for thevector-valued flux, we define 𝑆(𝐉) ∶= 𝑆(𝐽𝑥) + 𝑆(𝐽𝑦) + 𝑆(𝐽𝑧) ("Flux sum"). The coarse-graining width –the half-width at half-maximum (HWHM) of the coarse-graining kernels Eqs. (22) with weight functionsEqs. (26) – is varied by varying the kernel index 𝑘, where HWHM = arccos(2−1∕𝑘) (seeAppendix 1–Figure 2). The fields 𝜌 and |𝐉| are shown in the two bottom rows for different values of 𝑘.i. 𝑘 = 5000 (blue, data used to compute the reference spectral entropies 𝑆0(𝜌) and 𝑆0(𝐉)) ii. 𝑘 = 60(brown) iii. 𝑘 = 6 (yellow, used in main text) iv. 𝑘 = 2 (purple).
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Appendix 2 Figure 3. Relative average mode reconstruction error 𝐸modes(𝑛max, 𝑙max) [Eq. (36)] as afunction of the inverse of the compression 𝐶 defined in Eq. (35). Red points indicate the Pareto front(Jin and Sendhoff, 2008) of this compression-accuracy approximation trade-off. Orange circleindicates the final value used for our analysis.
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Appendix 2 Figure 4. 𝑆curl reconstruction error landscape (log scale) as a function of 𝑙max and 𝑛max.Black contour lines indicate iso-error lines (see Eq. (37), 𝐸curl = const.), whereas white contour linesindicate iso-compression levels (see Eq. (35), 𝐶 = const.). Orange circle indicates the final value usedfor our analysis.
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Appendix 3970

Active Brownian particles on the sphere971

In this section, we describe the stochastic dynamics of non-interacting, active Brownian par-
ticles (ABPs) (Romanczuk et al., 2012) on curved surfaces and derive analytically coarse-
grained mean-field equations, as well as a kernel representation of ABP dynamics. These
results are used in the main text to validate our coarse-graining and inference framework.
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We consider active Brownian particles at position 𝐱 ∈ ℝ3that move with speed 𝑣0 onthe surface of a unit sphere (radius 𝑅0 = 1) in the direction of their unit orientation vector
𝐮 ∈ ℝ3. Since |𝐱| = 1 at all times, we can interpret 𝑣0 as the particle’s angular speed on theunit sphere. The orientation vector is at all times tangential to the surface, but is subject
to random in-plane fluctuations characterized by a rotational diffusion coefficient 𝐷𝑟. Thecorresponding dynamics of 𝐱(𝑡) and 𝐮(𝑡) is given by the stochastic differential equations (in
units 𝑅0 = 1)

d𝐱 = 𝑣0𝐮 d𝑡 (38a)
d𝐮 = −𝑣0𝐱d𝑡 + (𝐱 × 𝐮)

√

2𝐷𝑟◦ d𝜉, (38b)
where the stochastic differential equation (38b) is interpreted in the Stratonovich sense, as
denoted by the symbol "◦" (Braumann, 2007). It follows from Eqs. (38) that 𝐱(𝑡) and 𝐮(𝑡) are
normalized at all times. In the absence of rotational diffusion (𝐷𝑟 = 0), the vectors 𝐱 and 𝐮
rotate over time by an angle 𝑣0𝑡 around the axis 𝐮 × 𝐱. Consequently, particle trajectories in
the absence of noise trace out great circles in the plane defined by (𝐮 × 𝐱).
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Spatial correlation of APBs on a sphere991

To illustrate how ABPs on a sphere differ from ABPs in Euclidean space, we study first the
correlation function 𝐶(𝑡) = ⟨𝐱(𝑡) ⋅ 𝐱(0)⟩, where the angled brackets denote a Gaussian white-
noise average. To this end, we rewrite the ABP dynamics Eqs. (38) in their equivalent Itô
form given by

d𝐱 = 𝑣0𝐮 d𝑡 (39a)
d𝐮 = −

(

𝑣0𝐱 +𝐷𝑟𝐮
)

d𝑡 +
√

2𝐷𝑟 (𝐱 × 𝐮) d𝜉. (39b)
In the Itô formulation any smooth function 𝑓 (𝐱,𝐮) obeys ⟨𝑓 (𝐱,𝐮)d𝜉⟩ = 0, such that (Winkler
et al., 2015)

d
d𝑡
⟨𝐱(𝑡) ⋅ 𝐱(0)⟩ = 𝑣0⟨𝐮(𝑡) ⋅ 𝐱(0)⟩

and
d
d𝑡
⟨𝐮(𝑡) ⋅ 𝐱(0)⟩ = −𝑣0⟨𝐱(𝑡) ⋅ 𝐱(0)⟩ −𝐷𝑟⟨𝐮(𝑡) ⋅ 𝐱(0)⟩,

which yields a damped harmonic oscillator equation for the correlation function
d2

d𝑡2
𝐶(𝑡) +𝐷𝑟

d
d𝑡
𝐶(𝑡) + 𝑣20𝐶(𝑡) = 0. (40)

Normalization andorthogonality of 𝐱(𝑡) and 𝐮(𝑡) imply the initial conditions𝐶 = 1 and d𝐶∕d𝑡 =
0 at 𝑡 = 0. The behavior of solutions of Eq. (40) is a function of the rotational Péclet number
Pe𝑟 ∶= 𝑣0∕𝐷𝑟 that quantifies the ratio between active motion and orientational diffusion.
For Pe𝑟 < 1, ("high-noise regime"), the position correlation function 𝐶(𝑡) = ⟨𝐱(𝑡) ⋅ 𝐱(0)⟩ decays
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according to Eq. (40) monotonically to zero. For Pe𝑟 > 1, ("low -noise regime") position cor-
relations exhibit damped oscillations. To validate our simulation method (described in the
following section), analytic predictions for𝐶(𝑡) are in Figure 3B (main text) compared against
the ensemble average ⟨𝐱(𝑡) ⋅ 𝐱(0)⟩ over 3 × 104 simulated ABPs.

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

Stochastic simulation of active Brownian particles on the sphere1020

To ensure a numerically exact normalization of the particle’s position and orientation vec-
tors on the unit sphere, we simulated the dynamics

d𝐱 =
𝑣0
|𝐮|

(

𝐮 − 𝐮 ⋅ 𝐱
|𝐱|2

𝐱
)

d𝑡 (41a)
d𝐮 = −𝑣0

𝐱
|𝐱|2

d𝑡 +
(𝐱 × 𝐮)
|𝐱 × 𝐮|

√

2𝐷𝑟◦ d𝜉. (41b)
We numerically solve the Itô formulation of this system using the Euler-Mayurama scheme
(Higham, 2001), and confirm that this system reproduces the correlation dynamics pre-
dicted by Eq. (40) (Figure 3B, main text).
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Fokker-Planck equation1029

To study the continuum dynamics of a large number of non-interacting ABPs on a sphere,
we determine the dynamics of the probability density 𝑝(𝐱,𝐮, 𝑡) of particle positions 𝐱 and
orientations 𝐮 at time 𝑡. To do so, it is convenient to express particle positions in terms of
a parameterisation 𝐱(𝑡) = 𝐱[𝑥1(𝑡), 𝑥2(𝑡)] that defines tangential basis vectors by 𝐞𝑖 = 𝜕𝐱∕𝜕𝑥𝑖

(𝑖 = 1, 2) and a metric tensor 𝑔𝑖𝑗 = 𝐞𝑖 ⋅ 𝐞𝑗 . By definition, we have d𝐱 = 𝐞𝑖d𝑥𝑖 and Eq. (38a) can
be rewritten as

d𝑥𝑖 = 𝑣0𝑢
𝑖d𝑡. (42)

General tangential vectors on the surface can be written as 𝐮 = 𝑢𝑖𝐞𝑖 and on a unit sphere thesurface normal can be identified with particle positions 𝐧 = 𝐞1 × 𝐞2∕|𝐞1 × 𝐞2| = 𝐱. Hence, on
the unit sphere the Gauss-Weingarten relation reads 𝜕𝑖𝐞𝑗 = −𝐶𝑖𝑗𝐱 + Γ𝑘

𝑖𝑗𝐞𝑘, where Γ𝑘
𝑖𝑗 denoteChristoffel symbols and 𝐶𝑖𝑗 is the curvature tensor. This implies together with Eq. (42) the

geometric relation
d𝐮 = 𝐞𝑖d𝑢𝑖 + 𝑢𝑖(𝜕𝑗𝐞𝑖)d𝑥𝑗

= 𝐞𝑖d𝑢𝑖 − 𝐶𝑖𝑗𝑢
𝑖𝑢𝑗𝑣0𝐱d𝑡 + 𝑣0𝑢

𝑖𝑢𝑗Γ𝑘
𝑖𝑗𝐞𝑘d𝑡.

Comparing this identity with the stochastic dynamics d𝐮 in Eq. (38b) and using that 𝐶𝑖𝑗𝑢𝑖𝑢𝑗 =
𝑔𝑖𝑗𝑢𝑖𝑢𝑗 = |𝐮|2 = 1 for unit vectors 𝐮 on the unit sphere, we find the covariant stochastic
differential equation

d𝑢𝑖 = −𝑣0𝑢𝑗𝑢𝑘Γ𝑖
𝑗𝑘d𝑡 + 𝜖𝑖𝑘𝑢

𝑘
√

2𝐷𝑟◦ d𝜉. (43)
In Eq. (43), 𝜖𝑖𝑗 = 𝐱 ⋅ (𝐞𝑖 × 𝐞𝑗) denotes the Levi-Civita tensor on the unit sphere.
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In this covariant basis, we define the scalar probability density
𝑝(𝐱,𝐮, 𝑡) =

⟨

1
√

𝑔(𝐱)

∏

𝑖
𝛿[𝑥𝑖 − 𝑥𝑖(𝑡)]𝛿[𝑢𝑖 − 𝑢𝑖(𝑡)]

⟩

, (44)
where 𝛿(𝑥) denotes a Dirac function. Combining Eqs. (42) and (43), standard methods (Fily
et al., 2016; Castro-Villarreal and Sevilla, 2018) allow us to obtain the Fokker-Planck equa-
tion for 𝑝(𝐱,𝐮, 𝑡) as

𝜕
𝜕𝑡
𝑝(𝐱,𝐮, 𝑡) = 𝐷𝑟

𝜕
𝜕𝑢𝑖

[

𝜖𝑖𝑘𝑢
𝑘 𝜕
𝜕𝑢𝑗

(

𝜖𝑗𝑙𝑢
𝑙𝑝
)

]

− ∇𝑖(𝑣0𝑢𝑖𝑝) +
𝜕
𝜕𝑢𝑖

(

𝑣0𝑢
𝑗𝑢𝑘Γ𝑖

𝑗𝑘𝑝
) (45)
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Using the identity 𝜖𝑖𝑘𝜖𝑗𝑙 = 𝑔𝑖𝑗𝑔𝑘𝑙 − 𝛿𝑖𝑙𝛿
𝑗
𝑘, the dynamics of the probability density is finally given

by
𝜕
𝜕𝑡
𝑝(𝐱,𝐮, 𝑡) = 𝐷𝑟

𝜕
𝜕𝑢𝑖

[

(𝑔𝑖𝑗 − 𝑢𝑖𝑢𝑗)
𝜕𝑝
𝜕𝑢𝑗

]

− 𝑣0𝑢
𝑖∇𝑖𝑝 +

𝜕
𝜕𝑢𝑖

(

𝑣0𝑢
𝑗𝑢𝑘Γ𝑖

𝑗𝑘𝑝
)

, (46)
which agrees with the result in Castro-Villarreal and Sevilla (2018).
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Hydrodynamic expansion1070

To connect the Fokker-Planck dynamics given in Eq. (46) to hydrodynamic fields, we define
(probability) density and fluxes by 𝜌(𝐱, 𝑡) = ∫ d2𝐮 𝑝(𝐱,𝐮, 𝑡), and 𝐽 𝑖(𝐱, 𝑡) = 𝑣0 ∫ d2𝐮 𝑢𝑖𝑝(𝐱,𝐮, 𝑡).
Their dynamics on the unit sphere is given by (Castro-Villarreal and Sevilla, 2018)

𝜕𝜌
𝜕𝑡

= −∇𝑖𝐽
𝑖 (47a)

𝜕𝐽 𝑖

𝜕𝑡
= −

𝑣20
2
∇𝑖𝜌 −𝐷𝑟𝐽

𝑖, (47b)
where couplings to higher order fields are neglected, as they vanish at shorter time-scales
due to the presence of rotational noise. Expressing Eqs. (47) in terms of scalar and vector
spherical harmonics (see Appendix 2) for an arbitrary sphere radius 𝑅0 yields the mode
dynamics given in Eqs. (13) of the main text.
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Appendix 41081

Learning and interpreting the linear model1082

We describe details about the inference procedure used to learn the linear ordinary differ-
ential equation (ODE) model considered in the main text. We then discuss how the matrix
𝑀 found by this procedure can be further studied in terms of its real-space kernel repre-
sentation and derive this kernel for the ABP dynamics introduced in Appendix 4.

1083

1084

1085

1086

Inference of the dynamical mode coupling matrixM1087

Given a dynamical mode vector 𝐚(𝑡) = [

𝜌𝑙𝑚(𝑡), 𝑗
(1)
𝑙𝑚 (𝑡), 𝑗

(2)
𝑙𝑚 (𝑡)

]⊤, the goal is to learn a linear min-
imal model

d𝐚(𝑡)
d𝑡

= 𝑀 ⋅ 𝐚(𝑡) (48)
of the mode dynamics. Here,𝑀 is an unknown 𝑛×𝑛mode coupling matrix, where generally
𝑛 = 3(𝑙max + 1)2 − 2. In systems with global mass conservation, as considered in this work,
one can additionally use that the mode 𝜌00 is constant and eliminate the corresponding
couplings from𝑀 .

1088

1089

1090

1091

1092

1093

1094

1095

1096

To describe the algorithm that was used to infer the mode coupling matrix 𝑀 , we pa-
rameterize 𝑀 by a vector 𝐩 that contains all non-zero entries and introduce a function 
that represents the underlying matrix structure. Together, they generate the explicit form
𝑀 = (𝐩) of themode couplingmatrix. Imposing structure on thematrix, such as rank con-
straints, or sparsity leads to a shorter vector 𝐩 andmodifies the definition of accordingly.
Denoting 𝐀(𝑡;,𝐩, 𝐚0) as the result of numerically integrating the system of ODEs Eq. (48)
up to time 𝑡 from initial condition 𝐚0 with𝑀 = (𝐩), we define the loss function

𝐿(𝐩; , 𝑡𝐼 , 𝑡𝑁 ) =
1

𝑁 − 𝐼

𝑁
∑

𝑖=𝐼
‖𝐚(𝑡𝑖) − 𝐀(𝑡𝑖;,𝐩, 𝐚(𝑡𝐼 )‖22, (49)

where the 𝑡𝑖 are time points in an interval [𝑡𝐼 , 𝑡𝑁 ] at which the data and the ODE solution
are sampled. Using the ODE solvers and optimization functions provided by the Julia mod-
ules DifferentialEquations.jl and DiffEqFlux.jl (Rackauckas et al., 2021), we can dif-
ferentiate through the ODE solver to calculate derivatives of the loss function Eq. (49) with
respect to parameters 𝐩 and subsequently apply gradient-based optimization algorithms.
The loss function is minimized using the ADAM algorithm (Kingma and Ba, 2017), followed
by the Broyden-Fletcher-Goldfarb-Shannon (BFGS) algorithm (Nocedal and Wright, 2006).
To increase the robustness of the optimization and promote sparsity, we use a sequentially
thresholded algorithm (Supekar et al., 2021; Brunton et al., 2016; Reinbold et al., 2020). A
complete overview of this procedure is shown in Appendix 4–Figure 1 and the details of the
specific design decisions made in the algorithm are discussed in the following:

1097
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1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1. To account for the variation in scale between the different modes in the data 𝐚(𝑡), each
mode is normalized by its median absolute deviation (MAD) across the full time-span
in which the data are available. Specifically, we scale each mode by

mad(𝑎𝑖) = median𝑘
(

|𝑎𝑖(𝑡𝑘) − 𝑎̄𝑖|
)

, (50)
where 𝑎̄𝑖 = median𝑘[𝑎𝑖(𝑡𝑘)] and the median is taken over all time-points, giving rise to a
scaled mode vector 𝐚̃(𝑡). Losses analogous to Eq. (49) that are computed using scaled
data are denoted in the following by 𝐿̃.

1118

1119

1120

1121

1122

1123

1124

1125

1126

2. To prevent over-fitting, we divide the data into two regions, a learning region from 𝑡𝐼to 𝑡𝑁 and a validation region from 𝑡𝑁 to 𝑡𝐹 . Only data from the learning region is used
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in the optimization of the loss function Eq. (49). However, the model is integrated into
the validation region, and a corresponding validation loss using only the data in the
validation region is calculated. During each optimization run, we choose the model
with the lowest loss in the validation region, lowering the likelihood of over-fitting to
the specific data in the learning region.

1127

1128

1129

1130

1131

1132

1133

3. To prevent the optimization from getting stuck in local minima, we incrementally in-
crease the time-span of the data included in the optimization objective (blue box in
Appendix 4–Figure 1). We increase the time window backward from a fixed endpoint
𝑡1 = 𝑡𝐹 , choosing an earlier initial condition at time 𝑡𝑖 < 𝑡𝑖−1, each interation. The advan-tage of stepping backward rather than forward from a fixed initial condition is twofold:
first, the validation region stays unchanged throughout the optimization, making com-
parisons of the validation loss easy. Second, because the initial condition changeswith
each run, the learned matrix tends to be more robust to fluctuations in the initial con-
dition.

1134

1135

1136

1137

1138

1139

1140

1141

1142

4. After the optimization step, sparsity is promoted by thresholding the elements in the
matrix (Brunton et al., 2016), removing small magnitude elements that do not notice-
ably contribute to the mode dynamics (purple box in Appendix 4–Figure 1). The opti-
mization procedure is then repeated until the thresholding converges. The threshold
is chosen to generate a sparse matrix that still reproduces the dynamics faithfully.

1143

1144

1145

1146

1147

5. Once the sparsity pattern is obtained from the sequential thresholding and optimiza-
tion procedure a final run of the optimization is performed on the unscaledmode data
to find the final dynamical matrix𝑀 , which removes any potential slight bias the MAD
scaling might have introduced in the parameter values 𝐩.

1148

1149

1150

1151

Finally, the numerical stability of the model can be checked by examining the eigen-
values of the learned matrix. For the ABP test data, we learn a matrix 𝑀 for which the
largest real part of its eigenvalues is at machine precision. For the experimental data, the
largest real part in the eigenvalues is 7.4×10−4, which corresponds to a time scale of around
675 mins. While the corresponding dynamics will eventually become unstable, solutions
remain bound over a period of approximately 45hours, which is four times as long as the
input data from which the mode coupling matrix was learned.

1152

1153

1154

1155

1156

1157

1158

1159

Learning and validation regions used in this work: For the ABP data, the first 15 frames are
excluded, so that – consistent with coarse-graining assumptions [see Appendix 3, Eqs. (47)]
any remnants of higher orientational order introduced by the initial conditions have de-
cayed. The subsequent 140 frames are used as the learning region, followed by a validation
region of 20 frames. Each frame corresponds to a time interval of approximately 0.06 in
units of 𝑅0∕𝑣0 = 1. We exclude the first and last 10 frames of the experimental zebrafish
data and split the remaining data into a learning region of 360 frames, with the remaining
40 frames used for validation. Each frame corresponds to a time interval of 2min.
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1164
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Green’s function representation of the learned matrix1168

The learned matrix𝑀 consists of 9 blocks each with [(𝑙max + 1)2 − 1] × [(𝑙max + 1)2 − 1] entries.
Each block relates a mode family to time derivatives of another and we write

𝑀 =

⎛

⎜

⎜

⎜

⎝

𝑀𝜌𝜌 𝑀𝜌1 𝑀𝜌2

𝑀1𝜌 𝑀11 𝑀12

𝑀2𝜌 𝑀21 𝑀22

⎞

⎟

⎟

⎟

⎠

.

We denote the components of each block by (𝑀𝑚1𝑚2 )𝑙𝑚,𝑙′𝑚′ ≡ 𝑀𝑚1𝑚2
𝛼𝛽 , where 𝑚1, 𝑚2 ∈ {𝜌, 1, 2},

and 𝛼, 𝛽 are multi-indices that represent the harmonic modes (𝑙𝑚). Using the mode repre-
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sentation Eq. (5) and the form of the linear minimal model Eq. (48), we find
𝜕
𝜕𝑡
𝐉(𝐫, 𝑡) =

∑

𝛼=𝑙𝑚

(

d𝑗(1)𝛼 (𝑡)
d𝑡

𝚿𝛼(𝐫̂) +
d𝑗(2)𝛼 (𝑡)
d𝑡

𝚽𝛼(𝐫̂)
)

=
∑

𝛼=𝑙𝑚

∑

𝛽=𝑙′𝑚′

[

𝑀1𝜌
𝛼𝛽𝜌𝛽(𝑡) +𝑀11

𝛼𝛽𝑗
(1)
𝛽 (𝑡) +𝑀12

𝛼𝛽𝑗
(2)
𝛽 (𝑡)

]

𝚿𝛼(𝐫̂)

+
[

𝑀2𝜌
𝛼𝛽𝜌𝛽(𝑡) +𝑀21

𝛼𝛽𝑗
(1)
𝛽 (𝑡) +𝑀22

𝛼𝛽𝑗
(2)
𝛽 (𝑡)

]

𝚽𝛼(𝐫̂). (51)
Using Eqs. (30), Eq. (51) can be cast into the dynamic kernel Eq. (14) given in the main text,
where we defined the vector kernel

𝐦𝜌(𝐫, 𝐫′) =
∑

𝛼=𝑙𝑚

∑

𝛽=𝑙′𝑚′

𝑀1𝜌
𝛼𝛽𝚿𝛼(𝐫̂)𝑌𝛽(𝐫̂′) +𝑀2𝜌

𝛼𝛽𝚽𝛼(𝐫̂)𝑌𝛽(𝐫̂′) (52)
and the matrix kernel

𝑀𝐽 (𝐫, 𝐫′) =
∑

𝛼=𝑙𝑚

∑

𝛽=𝑙′𝑚′

1
𝑙(𝑙 + 1)

[

𝑀11
𝛼𝛽𝚿𝛼(𝐫̂)⊗𝚿𝛽(𝐫̂′) +𝑀12

𝛼𝛽𝚿𝛼(𝐫̂)⊗𝚽𝛽(𝐫̂′)

+𝑀21
𝛼𝛽𝚽𝛼(𝐫̂)⊗𝚿𝛽(𝐫̂′) +𝑀22

𝛼𝛽𝚽𝛼(𝐫̂)⊗𝚽𝛽(𝐫̂′)
]

, (53)
where⊗ denotes a dyadic product. The matrix𝑀𝐽 (𝐫, 𝐫′) has a 0 eigenvalue with right eigen-
vector 𝐫̂′ and left eigenvector 𝐫̂, which implies det (𝑀𝐽

)

= 0. Numerical analysis of thematrix
invariants shows that a second eigenvalue is 0 (Appendix 4–Figure 2), leaving only a single
non-zero eigenvalue that can be conveniently found from tr [𝑀𝐽 (𝐫, 𝐫′)

] and is shown in the
main text, Figure 4D.
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Real-space kernels of active Brownian particle dynamics1194

In the following we determine a real-space kernel representation in the form Eq. (14) for the
flux dynamics of ABPs given in Eq. (47b). We can read off the kernel coefficients in Eqs. (52)
and in Eq. (53) from the coarse-grained ABP dynamics in mode space, given in Eqs. (13b)
and (13c). For the kernel 𝐦𝜌(𝐫, 𝐫′), we have𝑀1𝜌

𝛼𝛽 = −
𝑣20
2
𝛿𝛼𝛽 and𝑀2𝜌

𝛼𝛽 = 0 (𝛼, 𝛽 = (𝑙𝑚)), such that
Eq. (52) becomes

𝐦𝜌(𝐫, 𝐫′) = −
𝑣20
2
∇

∑

𝛼=𝑙𝑚
𝑌𝛼(𝐫̂)𝑌𝛼(𝐫̂′) = −

𝑣20
2
∇𝛿(𝐫 − 𝐫′). (54)

Here, we have used in the first step the definition of 𝚿𝑙𝑚(𝐫̂) given in Eq. (29a) and in the sec-ond step the completeness of the spherical harmonic basis functions 𝑌𝑙𝑚(𝐫̂), where
𝛿(𝐫 − 𝐫′) = 𝛿(𝜙 − 𝜙′)𝛿(cos 𝜃 − cos 𝜃′) denotes the delta function on a sphere. Note that a
unit sphere was considered throughout this analysis, such that 𝐫 = 𝐫̂. Similarly, Eqs. (13b)
and (13c) imply for the kernel coefficients in Eq. (53) that 𝑀11

𝛼𝛽 = 𝑀22
𝛼𝛽 = −𝐷𝑟𝛿𝛼𝛽 and 𝑀12

𝛼𝛽 =
𝑀21

𝛼𝛽 = 0. Consequently, we have
𝑀𝐽 (𝐫, 𝐫′) = −𝐷𝑟

∑

𝛼=𝑙𝑚

1
𝑙(𝑙 + 1)

[

𝚿𝛼(𝐫̂)⊗𝚿𝛼(𝐫̂′) +𝚽𝛼(𝐫̂)⊗𝚽𝛼(𝐫̂′)
]

= −𝐷𝑟𝛿(𝐫 − 𝐫′)𝑃∥, (55)
where 𝑃∥ = 𝕀 − 𝐫 ⊗ 𝐫 is the tangential projector on the unit sphere. The hydrodynamic flux
equation (47b) of ABPs on a sphere can therefore bewritten in the equivalent integral kernel
form

𝜕𝑡𝐉(𝐫, 𝑡) = ∫ dΩ′

[

−
𝑣20
2
∇𝛿(𝐫 − 𝐫′)𝜌(𝐫′, 𝑡) −𝐷𝑟𝛿(𝐫 − 𝐫′)𝐉(𝐫′, 𝑡)

]

. (56)
To make analytic kernel properties comparable to practical inference scenarios in which we
work with a finite number of harmonic modes, we computed the sums in Eqs. (54) and (55)
up to a maximum mode number 𝑙max = 4. The resulting kernels – depicted in Figure 4D
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(main text) – approximate the Dirac delta function 𝛿(𝐫 − 𝐫′) and its derivative, leading to
the finite range of tr(𝑀𝐽 ) with amplitude maximum at 𝜔 = 0, while |𝐦𝜌

| vanishes at and
peaks away from 𝜔 = 0. Additionally, finite mode representations introduce an apparent
kernel inhomogeneity across the spherical surface as evident from the non-zero standard
deviation depicted in Figure 4D of the main text (blue shades).
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Appendix 4 Figure 1

1226

Appendix 4 Figure 1. Schematic of the learning procedure. Initially the data is rescaled using themedian absolute deviation (MAD) defined in Eq. (50) to account for variation in scales across themodes. Scaled variables are denoted by tildes. To avoid local minima of the optimization function, weiteratively feed more data into the cost function. Next we sequentially threshold the small terms inthe matrix until convergence is reached. These procedures are repeated until the sparsity patternconverges. Finally the scaling is undone and the parameters are optimized on the unscaled data toproduce the final matrix.
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Appendix 4 Figure 2. The 3 × 3-matrix invariant 𝐼2 = 1
2

(

tr[(𝑀𝐽 )2] − (tr[𝑀𝐽 ])2
) sampled for pairs ofpositions 𝐫, 𝐫′ vanishes to machine precision for the dynamical matrix𝑀 learned on the zebrafishdata. This invariant can be expressed in terms of matrix eigenvalues as 𝐼2 = 𝜆1𝜆2 + 𝜆1𝜆3 + 𝜆2𝜆3.Additionally, 𝜆1𝜆2𝜆3 = det(𝑀𝐽 ) = 0 (Sec. 4), which implies only one eigenvalue is non-zero.Evaluating 𝐼2 for the kernel matrix𝑀𝐽 encoded by the theoretical [see Eqs. (13)] and inferred (see

Figure 3A,B, main text) dynamical matrix𝑀 of the ABP dynamics yields similar results.
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Video descriptions1243

1244

Video 1. Time evolution of the pre-processed cell tracking data (point cloud, see Materials and1245

Methods), and of the density field 𝜌(𝐫, 𝑡) (colormap) and associated flux 𝐉(𝐫, 𝑡) (streamlines) corre-1246

sponding to the harmonic modes {𝜌𝑙𝑚, 𝑗(1)𝑙𝑚 , 𝑗
(2)
𝑙𝑚 } shown in Figure 1D. This mode representation was1247

determined by the coarse-graining and projection procedure described in the main text. Stream-1248

line thickness is proportional to the logarithm of the average flux amplitude ⟨|𝐉|⟩𝑠. For visualization1249

purposes, cell distances to the origin were rescaled by a factor of 1.2𝑅𝑠∕⟨𝑅(𝑡)⟩, where ⟨𝑅(𝑡)⟩ is the1250

average cell distance from center at time 𝑡 and 𝑅𝑠 = 300𝜇m is the mid-surface radius.1251

1252

Video 2. Reconstruction of the hydrodynamics fields in real space by adding consecutive scalar1253

and vector spherical harmonic modes of progressively higher order 𝑙. Surface coloring depicts the1254

density field 𝜌(𝐫, 𝑡), the associated flux 𝐉(𝐫, 𝑡) is indicated by streamlines. Streamline thickness is1255

proportional to the logarithm of the average flux amplitude ⟨|𝐉|⟩𝑠. The shown fields correspond to1256

the time point 𝑡 = 420min in Video 1.1257

1258

Video 3. Coarse-grained dynamics of active Brownian particles on the unit sphere in the low-noise1259

(𝐷𝑟 = 0.5) and high noise (𝐷𝑟 = 10) regime. Data from 𝑁 = 3 × 104 independent ABP simulations1260

was coarse-grained using the kernels 𝑓𝑘(𝜔) and 𝑔𝑘(𝜔) (𝑘 = 6) described in Appendix 1. Initial ABP1261

positions were sampled from an axisymmetric distribution with 𝑝(𝜃) ∝ cos 𝜃 𝟏{𝜃<𝜋∕2}. Mollweide1262

projections in the left and right column are color-coded for density and flux magnitude |𝐉(𝐫, 𝑡)|,1263

respectively. Colormaps are normalized by the maximum values of density and flux magnitude1264

fields across all time points.1265

1266

Video 4. Comparison of dynamics of the experimental and learned density 𝜌(𝐫, 𝑡) (colormap) and1267

flux fields 𝐉(𝐫, 𝑡) (streamlines) represented in a Mollweide projection. White circles depict topolog-1268

ical defects of charge +1 in the vector field 𝐉(𝐫, 𝑡), red circles depict defects with charge −1. The1269

total defect charge is 2 at all times. Top row depicts the coarse-grained [see Eqs. (2)] and projected1270

[see Eqs. (4)–(7)] experimental data, snapshots in the bottom row are obtained by reintegrating1271

the ordinary differential equation model Eq. (12) using the learned matrix 𝑀 (see Figure 4A). The1272

colorbar is at each time point scaled to the interval [0, max𝐫𝜌(𝐫, 𝑡)].1273
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Figure 1–Figure supplement 1. Decay of power spectra for coarse-grained experimental den-
sity and flux fields. | Rotationally invariant spatial power spectra as a function of themode 𝑙 index
were computed for the density field 𝜌 as 𝑃𝜌,𝑙 =

∑𝑙
𝑚=−𝑙 𝜌

2
𝑙𝑚 and for modes contributing to cell fluxes

(𝑗(1) and 𝑗(2)) as 𝑃𝑗𝑘,𝑙 =
∑𝑙

𝑚=−𝑙[𝑗
(𝑘)
𝑙𝑚 ]

2 for 𝑘 = 1, 2. Spectra were computed at representative timepoints
𝑡 = 40 , 240 , 400 , 830min and normalized by their maximum value. The observed decay indicates
that a spectral representations of the coarse-grained fields ismeaningful, and shows that themode
cut-off chosen for the learning (𝑙 ≤ 4) amounts to discarding approximately 1% of spectral power
in each field.
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Figure 2–Figure supplement 1. Analysis of the harmonic mode representation for a second
experimental dataset. | A–C: Analysis presented in Figure 2A–C of the main text performed on a
second cell-tracking dataset (‘Sample 2’). In C, solid lines indicate results for Sample 2, dashed lines
correspond to the results for the dataset discussed in the main text (‘Sample 1’). D: Contributions
to density fluctuations from both samples, broken down into contributions from different modes
with harmonic mode number 𝑙 and normalized at each time point by the total fluctuation intensity.
Black triangles indicate the completion of epiboly.
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A B

Figure 2–Figure supplement 2. Validation of automated defect tracking. | Demonstration
of the defect tracking on two example tangential vector fields on a spherical surface. A: Vector
field defined by 𝐉 = 𝚽(2,2). B: Vector field defined by 𝐉 = 𝚿(2,−1) + 0.1𝚽(2,2). Black lines depict thestreamlines defined by these vector fields. White circles depict topological defects of charge +1,
red circles depict defects with charge −1. For further details of the tracking approach see Materials
and Methods.
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Figure 2–Figure supplement 3. Analysis of fluxes and defects for different coarse-graining
length scales (Sample 1). | Analysis shown in Figure 2C performed on data that was coarse-
grained with different coarse-graining length scales, represented by the parameter 𝑘 (see Ap-
pendix 1–Figure 2). Choosing larger (𝑘 = 5) or smaller (𝑘 = 7) coarse-graining length scales than
used in Figure 2C (𝑘 = 6), key signatures extracted from the data (dominant phases of divergent
and rotary flows and a correlation between increased defect dynamics and cellular fluxes with curl)
can still be robustly recovered.
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Figure 2–Figure supplement 4. Analysis of fluxes and defects for different coarse-graining
length scales (Sample 2). | Analysis shown in Figure 2–Figure Supplement 1C (solid lines) per-
formed on data that was coarse-grained with different coarse-graining length scales, represented
by the parameter 𝑘 (see Appendix 1–Figure 2). Choosing larger (𝑘 = 5) or smaller (𝑘 = 7) coarse-
graining length scales than used in Figure 2–Figure Supplement 1C (𝑘 = 6), key signatures extracted
from the data (dominant phases of divergent and rotary flows and a correlation between increased
defect dynamics and cellular fluxes with curl) can still be robustly recovered.
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Additional experimental sample 2

Rotated sample 1

Sample 1 with locally depleted density

0 ρmax(t)
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Figure 4–Figure supplement 1. Simulating the learned model with different initial condi-
tions. |Mollweide projections from simulations of themodel Eq. (12) with𝑀 depicted in Figure 4B
that was learned for experimental data from sample 1, but using different initial conditions (from
top to bottom): initial condition from experimental data set sample 2 (Figure 2–Figure Supple-
ment 1); initial condition from sample 1 rotated by 10◦ away from the animal pole; initial condition
from sample 1 with 𝜖 = 10% of the density at the animal pole removed. For the latter, the initial
density field of sample 1 is multiplied by a factor 1 − 𝜖𝑓6[𝜃], where 𝑓6[𝜃] denotes the 𝑘 = 6 density
coarse-graining kernel (see Appendix 1) evaluated at polar angle 𝜃. Blue lines and arrows illustrate
streamlines defined by the cell flux 𝐉(𝐫, 𝑡), circles depict defects with topological charge +1 (white)
and −1 (red).
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