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Abstract The human brain excels at constructing and using abstractions, such as rules, or

concepts. Here, in two fMRI experiments, we demonstrate a mechanism of abstraction built upon

the valuation of sensory features. Human volunteers learned novel association rules based on

simple visual features. Reinforcement-learning algorithms revealed that, with learning, high-value

abstract representations increasingly guided participant behaviour, resulting in better choices and

higher subjective confidence. We also found that the brain area computing value signals – the

ventromedial prefrontal cortex – prioritised and selected latent task elements during abstraction,

both locally and through its connection to the visual cortex. Such a coding scheme predicts a causal

role for valuation. Hence, in a second experiment, we used multivoxel neural reinforcement to test

for the causality of feature valuation in the sensory cortex, as a mechanism of abstraction. Tagging

the neural representation of a task feature with rewards evoked abstraction-based decisions.

Together, these findings provide a novel interpretation of value as a goal-dependent, key factor in

forging abstract representations.

Introduction

‘All art is an abstraction to some degree.’ Henry Moore
Art is one of the best examples of abstraction, the unique ability of the human mind to organise

information beyond the immediate sensory reality. Abstraction is by no means restricted to high-

level cognitive behaviour such as art creation. It envelops every aspect of our interaction with the

environment. Imagine that you are hiking in a park, and you need to cross a stream. Albeit decep-

tively simple, this scenario already requires the processing of a myriad visual (and auditory, etc.) fea-

tures. For an agent that operates directly on each feature in this complex sensory space, any

meaningful behavioural trajectory (such as crossing the stream) would quickly involve intractable

computations. This is well exemplified in reinforcement learning (RL), where in complex and/or multi-

dimensional problems, classic RL algorithms rapidly collapse (Bellman, 1957; Kawato and Same-

jima, 2007; Sutton and Barto, 1998). If, on the other hand, the agent is able to first ‘abstract’ the

current state to a lower dimensional manifold, representing only relevant features, behaviour

becomes far more flexible and efficient (Ho et al., 2019; Konidaris, 2019; Niv, 2019). Attention

(Farashahi et al., 2017; Leong et al., 2017; Niv et al., 2015), and more generally, the ability to act

upon subspaces, concepts or abstract representations has been proposed as an effective solution to

overcome computational bottlenecks arising from sensory-level operations in RL (Cortese et al.,

2019; Hashemzadeh et al., 2019; Ho et al., 2019; Konidaris, 2019; Wikenheiser and Schoen-

baum, 2016). Abstractions can be thus thought of as simplified maps carved from
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higher dimensional space, in which details have been removed or transformed, in order to focus on

a subset of interconnected features, that is, a higher order concept, category or schema (Gilboa and

Marlatte, 2017; Mack et al., 2016).

How are abstract representations constructed in the human brain? For flexible deployment,

abstraction should depend on task goals. From a psychological or neuroeconomic point of view,

task goals generally determine what is valuable (Kobayashi and Hsu, 2019; Liu et al., 2017;

McNamee et al., 2013), such that if one needs to light a fire, matches are much more valuable than

a glass of water. Hence, we hypothesised that valuation processes are directly related to abstraction.

Value representations have been linked to neural activity in the ventromedial prefrontal cortex

(vmPFC) in the context of economic choices (McNamee et al., 2013; Padoa-Schioppa and Assad,

2006). More recently, the role of the vmPFC has also been extended to computation of confidence

(De Martino et al., 2013; Gherman and Philiastides, 2018; Lebreton et al., 2015; Shapiro and

Grafton, 2020). While this line of work has been extremely fruitful, it has mostly focused on the

hedonic and rewarding aspect of value instead of its broader functional role. In the field of memory,

a large corpus of work has shown that the vmPFC is crucial for formation of schemas or conceptual

knowledge (Constantinescu et al., 2016; Gilboa and Marlatte, 2017; Kumaran et al., 2009;

Mack et al., 2016; Tse et al., 2007), as well as generalisations (Bowman and Zeithamova, 2018).

The vmPFC also collates goal-relevant information from elsewhere in the brain (Benoit et al., 2014).

Considering its connectivity pattern (Neubert et al., 2015), the vmPFC is well suited to serve a piv-

otal function in the circuit that involves the hippocampal formation (HPC) and the orbitofrontal cor-

tex (OFC), dedicated to extracting latent task information and regularities important for navigating

behavioural goals (Niv, 2019; Schuck et al., 2016; Stachenfeld et al., 2017; Viganò and Piazza,

2020; Wilson et al., 2014). Thus, the aim of this study is twofold: (i) to demonstrate that abstraction

emerges during the course of learning, and (ii) to investigate how the brain, and specifically the

vmPFC, uses valuation upon low-level sensory features to forge abstract representations.

To achieve this, we leveraged a task in which human participants repeatedly learned novel associ-

ation rules, while their brain activity was recorded with fMRI. Reinforcement learning (RL) modelling

allowed us to track participants’ valuation processes and to dissociate their learning strategies (both

at the behavioural and neural levels) based on the degree of abstraction. Participants’ confidence in

having performed the task well was positively correlated with their ability to abstract. In a second

experiment, we studied the causal role of value in promoting abstraction through directed effect in

sensory cortices. To anticipate our results, we show that the vmPFC and its connection to the visual

cortex construct abstract representations through a goal-dependent valuation process that is imple-

mented as top-down control of sensory cortices.

Results

Experimental design
The goal of the learning task was to present a problem that could be solved according to two strate-

gies, based on the sampled task-space dimensionality. A simple, slower strategy akin to pattern rec-

ognition, and a more sophisticated one that required abstraction to use the underlying structure.

Participants (N = 33) learned the fruit preference of pacman-like characters formed by the combina-

tion of three visual features (colour, mouth direction, and stripe orientation, Figure 1A–B). The pref-

erence was governed by a combination of two features, selected randomly by our computer

program for each block (Figure 1A–B). Learning the block rules essentially required participants to

uncover hidden associations between features and fruits. Although participants were instructed that

one feature was irrelevant, they did not know which. A block ended when a sequence of 8–12 (ran-

domly set by our computer program) correct choices was detected or upon reaching its upper limit

(80 trials). Variable stopping criteria were used to prevent participants from learning that a fixed

sequence was predictive of block termination. During each trial, participants could see the outcome

after selecting a fruit. A green box appeared around the chosen fruit if the choice was correct (red

otherwise). Additionally, participants were instructed that the faster they learned a block rule, the

higher the reward. At the end of the session, a final monetary reward was delivered, commensurate

with participant performance (see Materials and methods). Participants failing to learn the associa-

tion in three blocks or more (i.e. reaching a block limit of 80 trials without having learned the
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association), and / or failing to complete more than 10 blocks in the allocated time, were excluded

(see Materials and methods). All main results reported in the paper are from the included sample of

N = 33 participants.

Behavioural accounts of learning
We verified that participants learned the task sensibly. Within blocks, performance was higher than

chance as early as the second trial (Figure 1C, one-sample t-test against mean of 0.5, trial 2: t32 =

4.13, P(FDR) < 10�3, trial 3: t32 = 2.47, P(FDR) = 0.014, all trials t>3: P(FDR) < 10�3). Considering the
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Figure 1. Learning task and behavioural results. (A) Task: participants learned the fruit preferences of pacman-like characters, which changed on each

block. (B) Associations could form in three ways: colour – stripe orientation, colour – mouth direction, and stripe orientation – mouth direction. The left-

out feature was irrelevant. Examples of the two types of fruit associations. The four combinations arising from two features with two levels were divided

into symmetric (2x2) and asymmetric (3x1) cases. f1-3: features 1 to 3; fruit:rule refers to the fruit as being the association rule. Both block types were

included to prevent participants from learning rules by simple deduction. If all blocks had symmetric association rules and participants knew this, they

could simply learn one feature-fruit association (e.g. green-vertical), and from there deduce all other combinations. Both the relevant features and the

association types varied on a block-by-block basis. (C), Trial-by-trial ratio-correct improved as a measure of within-block learning. Dots represent the

mean across participants, while error bars indicate the SEM, and the shaded area represents the 95% CI (N = 33). Participant-level ratio correct was

computed for each trial across all completed blocks. Source data is available in file Figure 1—source data 1. (D), Learning speed was positively

correlated with time, among participants. Learning speed was computed as the inverse of the max-normalised number of trials taken to complete a

block. Thin gray lines represent least square fits of individual participants, while the black line represents the group-average fit. The correlation was

computed with group-averaged data points (N = 11). Average data points are plotted as coloured circles, the error bars are the SEM. (E), Confidence

judgements were positively correlated with learning speed, among participants. Each dot represents data from one participant, and the thick line

indicates the regression fit (N = 31 [2 missing data]). The experiment was conducted once (n = 33 biologically independent samples), **p<0.01.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Csv: panel C.

Source data 2. Csv: panel D.

Source data 3. Csv: panel E.

Figure supplement 1. Small (non-significant trends) influence of block/association type on learning speed.

Figure supplement 2. Behaviour analysis of excluded participants.
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whole experimental session, learning speed (i.e. how quickly participants completed a given block)

increased significantly across blocks (Figure 1D, N = 11 time points, Pearson’s r = 0.80, p = 0.003).

These results not only confirmed that participants learned the task rule in each block, but also that

they learned to use more efficient strategies. Notably, in this task, the only way to solve blocks faster

was by using the correct subset of dimensions (the abstract representation). When at the end of a

session, participants were asked about their degree of confidence in having performed the task well,

their self-reports correlated with their learning speed (N = 31 [2 missing data], robust regression

slope = 0.024, t29 = 3.27, p = 0.003, Figure 1E), but not with the overall number of trials, or the

product of the proportion of successes (learning speed: Pearson’s r = 0.53, p = 0.002, total trials: r =

�0.13, p = 0.47, test for difference in r: z = 2.71, p = 0.007; product of the proportion of successes:

r = �0.06, p = 0.75, test for difference in r: z = 2.43, p = 0.015). We also confirmed that the block

type (defined by relevant features, e.g., colour-orientation) or association type (e.g. symmetric 2x2)

did not systematically affect learning speed (Figure 1—figure supplement 1). Excluded participants

(see Materials and methods) had overall lower performance (Figure 1—figure supplement 2),

although some had comparable ratios correct.

Discovery of abstract representations
Was participants’ learning behaviour guided by the selection of accurate representations? To answer

this question, we built upon a classic RL algorithm (Q-learning) (Watkins and Dayan, 1992) in which

state-action value functions (beliefs) used to predict future rewards, are updated according to the

task state of a given trial and the action outcome. In this study, task states were defined by the num-

ber of feature combinations that the agent may track; hence, we devised algorithms that differed in

their state-space dimensionality. The first algorithm, called Feature RL, explicitly tracked all combina-

tions of three features, 23 = eight states (Figure 2A, top left). This algorithm is anchored at a low

feature level because each combination of the three features results in a unique fingerprint – one

simply learns direct pairings between visual patterns and fruits (actions). Conversely, the second

algorithm, called Abstract RL, used a more compact or abstract state representation in which only

two features are tracked. These compressed representations reduce the explored state-space by

half, 22 = four states (Figure 2A, top right). Importantly, in this task environment as many as three

Abstract RL in parallel were possible, one for each combination of two features.

The above four RL algorithms were combined in a mixture-of-experts architecture (Frank and

Badre, 2012; Jacobs et al., 1991; Sugimoto et al., 2012), Figure 2B and Materials and methods.

The key intuition behind this approach was that at the beginning of a new block, the agent did not

know which abstract representation was correct (i.e., which features were relevant). Thus, the agent

needed to learn which representations were most predictive of reward, so as to exploit the best

representation for action selection. Experts here denote the four learning algorithms (Feature RL,

and three options of Abstract RL). While all experts competed for action selection, their learning

uncertainty (RPE: reward prediction error) determined the strength in doing so (Doya et al., 2002;

Sugimoto et al., 2012; Wolpert and Kawato, 1998). This architecture allowed us to track the value

function of each RL expert separately, while using a unique, global action in each trial.

Estimated hyperparameters (learning rate a, forgetting factor g, RPE variance n) were used to

compute value functions of participant data, as well as to generate new, artificial choice data and

value functions (Figure 2C, and Materials and methods). Simulations indicated that expected value

and responsibility were highest for the appropriate Abstract RL, followed by Feature RL, and the

two Abstract RLs based on irrelevant features as the lowest (Figure 2D). Participant empirical data

displayed the same pattern, whereby the value function and responsibility signal of the appropriate

Abstract RL were higher than in other RL algorithms (Figure 2D, right side). Note that the large dif-

ference between appropriate Abstract RL and Feature RL was because the appropriate Abstract RL

was an ‘oracle’: it had access to the correct low-dimensional state from the beginning. The RPE vari-

ance (hyperparameter n) adjusted the sharpness with which each RL’s (un)certainty was considered

for expert weighting. Crucially, the variance v was associated with participant learning speed, such

that participants who learned block rules quickly were sharper in expert selection (Figure 2E, N =

29, robust regression slope = �1.02, t27 = �2.59, p = 0.015). These modelling results provided a first

layer of support for the hypothesis that valuation is related to abstraction.
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Behaviour shifts from Feature- to Abstraction-based reinforcement
learning
The mixture-of-expert RL model revealed that participants who learned faster relied more on the

best RL model value representations. Further, the modelling established that choices were mostly
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Figure 2. Mixture of reinforcement learning (RL) experts and value computation. (A) Outline of the representational spaces of each RL algorithm

comprising the mixture-of-experts architecture. (B) Illustration of the model architecture. See Methods for a formal description of the model. All experts

had the same number of hyperparameters: the learning rate a (how much the latest outcome affected agent beliefs), the forgetting factor g (how much

prior RPEs influenced current decisions), and the RPE variance v, modulating the sharpness with which the mixture-of-expert RL model should favour

the best performing algorithm in the current trial. (C) The approach used for data analysis and model simulation. The model was first fitted to

participant data with Hierarchical Bayesian Inference (Piray et al., 2019). Estimated hyperparameters were used to compute value functions of

participant data, as well as to generate new, artificial choice data and to compute simulated value functions. (D) Averaged expected value across all

states for the chosen action in each RL expert, as well as responsibility signal for each model. Left: simulated data, right: participant empirical data.

Dots represent individual agents (left) or participants (right). Bars indicate the mean and error bars depict the SEM. Statistical comparisons were

performed with two-sided Wilcoxon signed rank tests. ***p<0.001. AbRL: Abstract RL, FeRL: Feature RL, AbRLw1: wrong-1 Abstract RL, AbRLw2: wrong-2

Abstract RL. (E) RPE variance was negatively correlated with learning speed (outliers removed, N = 29). Dots represent individual participant data. The

thick line shows the linear regression fit. The experiment was conducted once (n = 33 biologically independent samples), * p<0.05.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Csv: panel D, mean expected value, model.

Source data 2. Csv: panel D, mean expected value, subjects.

Source data 3. Csv: panel D, lambda, model.

Source data 4. Csv: panel D, lambda, subjects.

Source data 5. Csv: panel E.

Figure supplement 1. Model comparison (accounting for model complexity).
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driven by either the appropriate Abstract RL or Feature RL, which had higher expected values (but

note that the other Abstract RLs had mean values greater than a null level of 0.5), and higher respon-

sibility l. It is important to highlight though that the mixture-of-experts RL might not reflect the

actual algorithmic computation used by the participant in this task, but it provides a conceptual solu-

tion to the arbitration between representations/strategies. Model comparison showed that Abstract

RL and Feature RL in many cases offered a more parsimonious description of the participants behav-

iour. This is unsurprising since Feature RL is a simple model and Abstract RL is an oracle model –

knowing which are the relevant feature (see Figure 2—figure supplement 1 for a direct model com-

parison between mixture-of-experts RL, Feature RL, and Abstract RL). Hence, we next sought to

explicitly explain participant choices and learning according to either Feature RL or Abstract RL strat-

egy. Given the task space (Figure 2A), the only way to solve a block rule faster was to use abstract

representations. As such, we expect to observe a shift from Feature RL toward Abstract RL to occur

with learning.

Both algorithms had two hyperparameters: the learning rate a and greediness b (inverse temper-

ature, the strength that expected value has on determining actions). Using the estimated hyperpara-

meters, we generated new, synthetic data to evaluate how fast artificial agents, implementing either

Feature RL or Abstract RL, solved the learning task (see Materials and methods). The simulations

attested that Feature RL was slower and less efficient (Figure 3A), yielding lower learning speed and

a higher percentage of failed blocks.

Model comparison at the single participant and block levels (Piray et al., 2019) provided a direct

way to infer which algorithm was more likely to explain learning in any given block. Overall, similar

proportions of blocks were classified as Feature RL and Abstract RL. This indicates that participants

used both learning strategies (binomial test applied to all blocks: proportion of Abstract RL = 0.47

vs. equal level = 0.5, P(212|449) = 0.26, Figure 3B; two-sided t-test of participant-level proportions:

lower, but close to 0.5, t32 = �2.87, p = 0.007, Figure 3B inset).

As suggested by the simulations (Figure 3A), the strategy that best explained participant block

data accounted for the distribution of learning speed measures in each block. Where learning pro-

ceeded slowly, Feature RL was consistently predominant (Figure 3B), while the reverse happened in

blocks where participants displayed fast learning (Figure 3B). Among participants, the degree of

abstraction (propensity to use Abstract RL) correlated with the empirical learning speed (N = 33,

robust regression, slope = 0.52, t31 = 4.56, p = 7.64x10�5, Figure 3C top). Participant confidence in

having performed the task well was also significantly correlated with the degree of abstraction (N =

31, robust regression, slope = 0.026, t29 = 2.69, p = 0.012, Figure 3C, bottom). In addition to the

finding that confidence related to learning speed (Figure 1E), these results raise intriguing questions

about the function of metacognition, as participants appeared to comprehend their own ability to

construct and use abstractions (Cortese et al., 2020).

The two RL algorithms revealed a second aspect of learning. Considering all blocks regardless of

fit (paired comparison), feature RL appeared to have higher learning rates a compared with Abstract

RL (two-sided Wilcoxon rank sum test against median 0, z = 14.33, p < 10�30, Figure 3D). A similar

asymmetry was found with greediness (Figure 3E, two-sided Wilcoxon rank sum test against median

0, z = 7.14, p < 10�10). Yet, more specifically, considering only the model (Feature RL or Abstract

RL) which provided the best fit on a given block, resulted in Feature RL displaying lower learning

rates and greediness (Figure 3—figure supplement 1A). The order inverted entirely when consider-

ing the model which provided the worst fit: higher learning rates and greediness for Feature RL (Fig-

ure 3—figure supplement 1B). These differences can be explained intuitively as follows. In Feature

RL, exploration of the task state-space takes longer - in short blocks (best fit by the Abstract RL strat-

egy) a higher learning rate is necessary for the Feature RL agent to make larger updates on states

that are infrequently visited. Results also suggest that action selection tends to follow the same prin-

ciples – more deterministic in blocks that are best fit by Abstract RL (i.e. large b for shorter blocks).

We predicted that use of abstraction should increase with learning, because the brain has to con-

struct abstractions in the first place and must initially rely on Feature RL. To test this hypothesis, we

quantified the number of participants using a Feature RL or Abstract RL strategy in their first and

last blocks. On their first block, most participants relied on Feature RL, while the pattern reversed in

the last block (two-sided sign test, z = �2.77, p = 0.006, Figure 3F). Computing the abstraction level

separately for the session median split of early and late blocks also resulted in higher abstraction in

late blocks (two-sided sign test, z = �2.94, p = 0.003, Figure 3G). These effects were
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Figure 3. Feature RL vs Abstract RL are related to learning speed and the use of abstraction increases with experience. (A) Simulated learning speed

and % of failed blocks for both Abstract RL and Feature RL. To make simulations more realistic, arbitrary noise was injected into the simulation, altering

the state (see Materials and methods). N = 100 simulations of 45 agents. Right plot: bars represent the mean, error bars the SEM. (B) The relationship

between the block-by-block, best-fitting model and learning speed of participants. Each dot represents one block from one participant, with data

aggregated across all participants. Note that some dots fall beyond p=one or p=0. This effect occurs because dots were scattered with noise in their

x-y coordinates for better visualisation. (C) Between participant correlations. Top: abstraction level vs learning speed. The abstraction level was

computed as the average over all blocks completed by a given participant (code: Feature RL = 0, Abstract RL = 1). Bottom: confidence vs abstraction

level. Dots represent individual participants (top: N = 33, bottom: N = 31, some dots are overlapping). (D) Learning rate was not symmetrically

distributed across the two algorithms. (E) Greediness was not symmetrically distributed across the two algorithms. For both (D and E), each dot

represents one block from one participant, with data aggregated across all participants. Histograms represent the distribution of data around the

midline. (F) The number of participants for which Feature RL or Abstract RL best explained their choice behaviour in the first and last blocks of the

experimental session. (G) Abstraction level was computed separately with blocks from the first half (early) and latter half (late) session. (H) Participants

count for the best fitting model, in each block. The experiment was conducted once (n = 33 biologically independent samples), * p<0.05, ** p<0.01, ***

p<0.001.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Csv: panel A left, model simulations histogram of learning speed.

Source data 2. Csv: panel A right, model simulations % failed blocks.

Source data 3. Csv: panel B, scatter plot of model probabilities.

Source data 4. Csv: panel B, violin plot of proportion Abstract RL.

Source data 5. Csv: panel C.

Figure 3 continued on next page
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complemented by two block-by-block analyses, displaying an increase in abstraction from early to

late blocks (Figure 3H, and Figure 3—figure supplement 2A).

Supporting the current modelling framework, the mean expected value of the chosen action was

higher for Abstract RL (Figure 3—figure supplement 2B–C), and model hyperparameters could be

recovered in the presence of noise (Figure 3—figure supplement 3; see Materials and methods)

(Palminteri et al., 2017). Given the lower learning speed in excluded participants, the distribution of

strategies was also different among them, with a higher ratio of Feature RL blocks (Figure 3—figure

supplement 4).

The role of vmPFC in constructing goal-dependent value from sensory
features
The computational approach confirmed that participants relied on both a low-level feature strategy,

and a more sophisticated abstract strategy (i.e. Feature RL and Abstract RL; Figures 2D and

3B). Beside proving that abstract representations were generally associated with higher expected

value, the modelling approach further allowed us to explicitly classify trials as belonging to either

learning strategy. Here, our goal was to dissociate neural signatures of these distinct learning strate-

gies in order to show how abstract representations are constructed by the human brain.

First, we reasoned that an anticipatory value signal might emerge in the vmPFC at stimulus pre-

sentation (Knutson et al., 2005). We performed a general linear model (GLM) analysis of neuroim-

aging data with regressors for ‘High-value’ and ‘Low-value’ trials, selected by the block-level best

fitting algorithm (Feature RL or Abstract RL, while controlling for other confounding factors such as

time and strategy itself; see Materias and methods and Supplementary note one for the full GLM

and regressors specification). As predicted, activity in the vmPFC strongly correlated with value mag-

nitude (Figure 4A). That is, the vmPFC indexed the anticipated value constructed from pacman fea-

tures at stimulus presentation time. We used this signal to functionally define, for ensuing analyses,

the subregion of the vmPFC that was maximally related to task computations about value when pac-

man visual features were integrated. Concurrently, activity in insular and dorsal prefrontal cortices

increased under conditions of low expected value. This pattern of activity is consistent with previous

studies on error monitoring and processing (Bastin et al., 2017; Carter et al., 1998; Figure 4—fig-

ure supplement 1).

In order for the vmPFC to construct goal-dependent value signals, it should receive relevant fea-

ture information from other brain areas and specifically from visual cortices, given the nature of our

task. Thus, we computed a psychophysiological interaction (PPI) analysis (Friston et al., 1997), to

isolate regions in which functional coupling with the vmPFC at the time of stimulus presentation was

dependent on the magnitude of expected value. Supporting the idea that the vmPFC based its pre-

dictions on the integration of visual features, only connectivity between the visual cortex (VC) and

vmPFC was higher on trials that carried large expected value, compared to low-value trials

(Figure 4B). Strikingly, the strength of this VC - vmPFC interaction was associated with the overall

learning speed among participants (N = 31, robust regression, slope = 0.016, t29 = 2.55, p = 0.016,

Figure 4C), such that participants with stronger modulation of the coupling between the vmPFC and

VC also learned block rules faster. The strength of the vmPFC - VC coupling showed a non-signifi-

cant trend with the level of abstraction (N = 31, robust regression, slope = 0.013, t29 = 1.56, p =

0.065 one-sided, Figure 4—figure supplement 2). However, this study was not optimised to detect

between subject correlations that normally require a larger number of subjects. Therefore, future

work is required to confirm or falsify this result.

Figure 3 continued

Source data 6. Csv: panel D.

Source data 7. Csv: panel E.

Source data 8. Csv: panels F and G.

Source data 9. csv: panel H.

Figure supplement 1. Comparison of learning rate a and greediness b in Feature RL and Abstract RL best-fitting and worst-fitting blocks.

Figure supplement 2. Abstraction index for single blocks and expected value for the chosen action in Abstract RL and Feature RL.

Figure supplement 3. Parameter recovery.

Figure supplement 4. Strategy analysis of excluded participants.
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A value-sensitive vmPFC subregion prioritises abstract elements
Having established that the vmPFC computes a goal-dependent value signal, we evaluated whether

the activity level of this region was sensitive to the strategies that participants used. To do so, we

used the same GLM introduced earlier, and estimated two new statistical maps from the regressors

‘Abstract RL’ and ‘Feature RL’, while controlling for idiosyncratic features of the task, that is, high/

low value and early/late trials (see Materials and methods and Supplementary note 1). We extracted

the peak activity at the participant level, under Feature RL and Abstract RL conditions, in two

regions-of-interest (ROI). Specifically, we focused on the vmPFC and the HPC, as both have been

consistently linked with abstraction, and feature-based and conceptual learning. The HPC was

defined anatomically (AAL atlas, Figure 5A top), while the vmPFC was defined as voxels sensitive to

the orthogonal contrast ‘High value’ > ‘Low value’ from the same GLM (Figure 5A bottom). A linear

mixed effects model (LMEM) with fixed effects ‘ROI’ and ‘strategy’ [LMEM: ‘y ~ ROI * strategy + (1|

participants)’, y: ROI activity] revealed significant main effects of ‘ROI’ (t128 = 2.16, p = 0.033), and

‘strategy’ (t128 = 3.07, p = 0.003), and a significant interaction (t128 = �2.29, p = 0.024), illustrating

different HPC and vmPFC recruitment (Figure 5B). Post-hoc comparisons showed vmPFC activity

levels distinguished Feature RL and Abstract RL cases well (LMEM: t64 = 2.94, p(FDR) = 0.009), while

the HPC remained agnostic to the style of learning (LMEM: t64 = 0.62, p(FDR) = 0.54). Alternative

explanations are unlikely, as there was no effect in terms of both the correlation between value-type

trials and algorithms, and task difficulty, measured by reaction times (Figure 5—figure supplement

2).

The next question we asked was, ‘Can we retrieve feature information from HPC and vmPFC

activity patterns?’ In order to abstract and operate in the latent space, an agent is still bound to rep-

resent and use the features, because the rules are dictated by feature combinations. One possibility

is that feature information is represented solely in sensory areas. What matters then is the connec-

tion with and/or the read out of vmPFC or HPC. Accordingly, neither HPC nor vmPFC should
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Figure 4. Neural substrates of value construction during learning. (A) Correlates of anticipated value at pacman stimulus presentation time. Trials were

labelled according to a median split of the expected value for the chosen action, as computed by the best fitting model, Feature RL or Abstract RL, at

the block level. Mass univariate analysis, contrast ‘High-value’ > ‘Low-value’. vmPFC peaks at [2 50 -10]. The statistical parametric map was

z-transformed and plotted at p(FWE) < 0.05. (B) Psychophysiological interaction, using as seed a sphere (radius = 6 mm) centred around the participant-

specific peak voxel, constrained within a 25 mm sphere centred around the group-level peak coordinate from contrast in (A). The statistical parametric

map was z-transformed and plotted at p(fpr) < 0.001 (one-sided, for positive contrast - increased coupling). (C) The strength of the interaction between

the vmPFC and VC was positively correlated with participant’s ability to learn block rules. Dots represent individual participant data points, and the line

is the regression fit. The experiment was conducted once (n = 33 biologically independent samples), * p<0.05.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Csv: panel C.

Figure supplement 1. ‘Low value’ > ‘High value’ GLM contrast.

Figure supplement 2. Neuro-behavioural correlation between VC-vmPFC coupling and abstraction.
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Figure 5. Neural substrate of abstraction. (A) Regions of interest for univariate and multivariate analyses. The HPC was defined through automated

anatomical labelling (FreeSurfer). The vmPFC was functionally defined as the cluster of voxels found with the orthogonal contrast ‘High value’ > ‘Low

value’, at P(unc) < 0.0001. (B) ROI activity levels corresponding to each learning mode were extracted from the contrasts ‘Feature RL’ > ‘Abstract RL’,

and ‘Abstract RL’ > ‘Feature RL’. Coloured bars represent the mean, and error bars the SEM. (C) Multivariate (decoding) analysis in three regions of

interest: VC, HPC, vmPFC. Binary decoding was performed for each feature (e.g. colour: red vs green), by using trials from blocks labelled as Feature RL

or Abstract RL. Colour bars represent the mean, error bars the SEM, and grey dots represent individual data points (for each individual, taken as the

average across all three classifications, i.e., of all features). Results were obtained from leave-one-run-out cross-validation. The experiment was

conducted once (n = 33 biologically independent samples), * p<0.05, ** p<0.01. (D) Classification was performed for each feature pair (e.g. colour: red

vs green), separately for blocks in which the feature in question was relevant or irrelevant to the block’s rule. The statistical map represents the strength

of the reduction in accuracy between trials in which the feature was relevant compared to irrelevant, averaged over all features and participants. (E)

Classification of the rule (2x2 blocks only). For each participant, classification was performed as fruit 1 vs fruit 2. In (D–E ), statistical parametric maps

were z-transformed, false-positive means of cluster formation (fpr) correction was applied. p(fpr) < 0.01, Z > 2.33.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Csv: panel B.

Source data 2. Csv: panel C.

Figure supplement 1. Ratio correct in Feature RL and Abstract RL.

Figure supplement 2. Value functions correlations and reaction time differences in Feature RL and Abstract RL trials.

Figure supplement 3. K-fold cross-validation in feature decoding, using Feature RL and Abstract RL trials separately.
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represent feature information, regardless of the strategy used. Alternatively, feature-level informa-

tion could also be represented in higher cortical regions under Abstract RL to explicitly support

(value-based) relational computations (Oemisch et al., 2019). To resolve this question, we applied

multivoxel pattern analysis to classify basic feature information (e.g. colour: red vs green) in three

regions of interest: the VC, HPC, and vmPFC, separately for trials labelled as Feature RL or Abstract

RL. We found that classification accuracy was significantly higher in Abstract RL trials compared with

Feature RL trials in both the HPC and vmPFC (two-sided t-test, HPC: t32 = �2.37, p(FDR) < 0.036,

vmPFC: t32 = �2.51, p(FDR) = 0.036, Figure 5C), while the difference was of opposite sign in VC (t32
= 1.61, p(FDR) = 0.12, Figure 5C). The increased feature decodability in Abstract RL was significantly

larger in the HPC and vmPFC compared to the VC (LMEM model ‘y ~ ROI + (1|participants)’, y: dif-

ference in decodability, t97 = 3.37, p = 0.001). Due to the nature of the task, the number of trials in

each category could vary and thus confounds the analysis. A control analysis equating the number of

training trials for each feature and condition replicated the original finding (Figure 5—figure supple-

ment 3). These empirical results support the second hypothesis. In Abstract RL, features are repre-

sented in the neural circuitry incorporating the HPC and vmPFC, beyond a simple read out of

sensory cortices. In Feature RL, representing feature-level information in sensory cortices alone

should suffice because each visual pattern mapped to a task-state.

We expanded on this idea with two searchlight multivoxel pattern analyses. In short, we inquired

which brain regions are sensitive to feature relevance, and whether we could recover representations

of the latent rule itself (the fruit preference). Beside the occipital cortex, significant reduction in

decoding accuracy was also detected in the OFC, ACC, vmPFC and dorsolateral PFC when a feature

was irrelevant to the rule, compared to when it was relevant (Figure 5D). Multivoxel patterns in the

dorsolateral PFC and lateral OFC further predicted fruit class (Figure 5E).

Artificially injecting value in sensory representations with
neurofeedback fosters abstraction
Our computational and neuroimaging results indicate that valuation serves a key function in abstrac-

tion. Two hypotheses on the underlying mechanism can be outlined here. On one hand, the effect of

vmPFC value computations could remain localised within the prefrontal circuitry. For example, this

could be achieved by representing and ranking incoming sensory information for further processing

within the HPC-OFC circuitry. Alternatively, value computation could determine abstractions by

directly affecting early sensory areas – that is, a top-down (attentional) effect to ‘tag’ relevant sen-

sory information (Anderson et al., 2011). Work in rodents has reported strong top-down modula-

tion of sensory cortices by OFC neurons implicated in value computations (Banerjee et al., 2020;

Liu et al., 2020). We thus hypothesised that abstraction could result from a direct effect of value in

the VC. Therefore, artificially adding value to a neural representation of a task-relevant feature

should result in enhanced behavioural abstraction.

Decoded neurofeedback is a form of neural reinforcement based on real time fMRI and multi-

voxel pattern analysis. It is the closest approximation to a non-invasive causal manipulation, with

high specificity and administered without participant awareness (Lubianiker et al., 2019; Muñoz-

Moldes and Cleeremans, 2020; Shibata et al., 2019). Such reinforcement protocols can reliably

lead to persistent behavioural or physiological changes (Cortese et al., 2016; Koizumi et al., 2016;

Shibata et al., 2011; Sitaram et al., 2017; Taschereau-Dumouchel et al., 2018). We used this pro-

cedure in a follow-up experiment (N = 22, a subgroup from the main experiment; see

Materials and methods) to artificially add value (rewards) to neural representation in VC of a target

task-related feature (Figure 6A). At the end of two training sessions, participants completed 16

blocks of the pacman fruit preference task, outside of the scanner. Task blocks could be labelled as

‘relevant’ (eight blocks) if the feature tagged with value was relevant to the block rule, or ‘irrelevant’

otherwise (eight blocks).

Data from the ‘relevant’ and ‘irrelevant’ blocks were analysed separately. The same model-fitting

procedure used in the main experiment established whether participant choices in the new blocks

were driven by a Feature RL or Abstract RL strategy. ‘Relevant’ blocks appeared to be associated

with a behavioural shift toward Abstract RL, whereas there was no substantial qualitative effect in

‘irrelevant’ blocks (Figure 6B). To quantify this effect, we first applied a binomial test, finding that

behaviour in blocks where the targeted feature was relevant displayed markedly increased abstrac-

tion (base rate 0.5, number of Abstract RL blocks given total number of blocks; ‘relevant’: P(123|176)
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= 1.37x10�7, ‘irrelevant’: P(90|176) = 0.82). We then measured the abstraction level for each partici-

pant and directly compared it to the level attained by the same participants in the late blocks of

main experiments (from Figure 3G). Participants increased their use of abstraction in ‘relevant’

blocks, whereas no significant difference was detected in the ‘irrelevant’ blocks (Figure 6C, two-

sided Wilcoxon signed rank test, ‘relevant’ blocks: z = 2.44, p = 0.015, ‘irrelevant’ blocks: z = �1.55,

p = 0.12, ‘relevant’ vs ‘irrelevant’: z = 4.01, p = 6.03x10�5). Finally, we measured the difference

between model probabilities P(Feature RL) - P(Abstract RL) for each block, and bootstrapped the mean

over blocks (with replacement) 10,000 times to generate a distribution for ‘relevant’ and ‘irrelevant’

conditions. Replicating the results reported above, behaviour in ‘relevant’ blocks was more likely to
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Figure 6. Artificially adding value to a feature’s neural representation. (A) Schematic diagram of the follow-up multivoxel neurofeedback experiment.

During the neurofeedback procedure, participants were rewarded for increasing the size of a disc on the screen (max session reward 3000 JPY).

Unbeknownst to them, disc size was changed by the computer program to reflect the likelihood of the target brain activity pattern (corresponding to

one of the task features) measured in real time. (B) Blocks were subdivided based on the feature targeted by multivoxel neurofeedback as ‘relevant’ or

‘irrelevant’ to the block rules. Scatter plots replicate the finding from the main experiment, with a strong association between Feature RL / Abstract RL

and learning speed. Each coloured dot represents a single block from one participant, with data aggregated from all participants. (C) Abstraction level

was computed for each participant from all blocks belonging to: (1) left, the latter half of the main experiment (as in Figure 3G, but only selecting

participants who took part in the multivoxel neurofeedback experiment); (2) centre, post-neurofeedback for the ‘relevant’ condition; (3) right, post-

neurofeedback for the ‘irrelevant’ condition. Coloured dots represent participants. Shaded areas indicate the density plot. Central white dots show the

medians. The dark central bar depicts the interquartile range, and dark vertical lines indicate the lower and upper adjacent values. (D) Bootstrapping

the difference between model probabilities on each block, separately for ‘relevant’ and ‘irrelevant’ conditions. The experiment was conducted once (n

= 22 biologically independent samples), * p<0.05, *** p<0.001.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Csv: panel B, irrelevant blocks.

Source data 2. Csv: panel B, relevant blocks.

Source data 3. Csv: panel C.

Source data 4. Csv: panel D.

Figure supplement 1. Neurofeedback experiment results.
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be driven by Abstract RL (Figure 6D, perm. test p < 0.001), while Feature RL tended to appear

more in ‘irrelevant’ blocks. Participants were successful at increasing the disk size in the neurofeed-

back task (Figure 6—figure supplement 1A–B). Furthermore, those who were more successful were

also more likely to display larger increases in abstraction in the subsequent behavioural test com-

pared to their initial level (Figure 6—figure supplement 1C).

A strategy shift toward abstraction, specific to blocks in which the target feature was tagged with

reward, indicates that the effect of value in facilitating abstraction is likely to be mediated by a

change in the early processing stage of visual information. In this experiment, by means of neuro-

feedback, value (in the form of external rewards) ‘primed’ a target feature. Hence, the brain used

these ‘artificial’ values when constructing abstract representations by tagging certain sensory chan-

nels. Critically, this manipulation indicates that value tagging of early representation has a causal

effect on abstraction and consequently on the learning strategy.

Discussion
The ability to generate abstractions from simple sensory information has been suggested as crucial

to support flexible and adaptive behaviours (Cortese et al., 2019; Ho et al., 2019;

Wikenheiser and Schoenbaum, 2016). Here, using computational, we found that value predictions

drive participant selections of the appropriate representation to solve the task. Participants explored

and used task dimensionality through learning, as they shifted from a simple feature-based strategy

to using more sophisticated abstractions. The more participants used Abstract RL, the faster they

became at solving the task. Note that in this task, structure, learning speed, and abstraction are

linked. To learn faster, an agent must use Abstract RL, as other strategies would result in slower

completion of task blocks.

These results build on the idea that efficient decision-making processes in the brain depend on

higher-order, summarised representations of task-states (Niv, 2019; Schuck et al., 2016). Further,

abstraction likely requires a functional link between sensory regions and areas encoding value pre-

dictions about task states (Figure 4C, the VC-vmPFC coupling was positively correlated with partici-

pant’s learning speed). This is consistent with previous work that demonstrates how estimating

reward value of individual features provides a reliable and adaptive mechanism in RL

(Farashahi et al., 2017). We extend this notion by showing that the mechanism may support forma-

tion of abstract representations to be further used for learning computations, for example selection

of the appropriate abstract representation.

An interesting question concerns whether the brain uses abstract representations in isolation -

operating in a hypothesis-testing regime - that is, favouring the current best model; or whether rep-

resentations may be used to update multiple internal models, with behaviour determined by their

synthesis (as in the mixture-of-experts architecture). The latter implementation may not be the most

efficient computationally - the brain would have to run multiple processes in parallel, but it would be

very data efficient since one data point can be used to update several models. Humans might (at

least at the conscious level) engage with one hypothesis at the time. However, there is circumstantial

evidence that multiple strategies might be computed in parallel but deployed one at the time

(Domenech et al., 2018; Donoso et al., 2014). Furthermore, in many cases, the brain may have

access to only limited data points, while parallel processing is a major feature of neural circuits

(Alexander and Crutcher, 1990; Lee et al., 2020; Spitmaan et al., 2020). In this study, we aimed

to show that arbitration between feature and abstract learning may be achieved using a relatively

simple algorithm (the mixture-of-experts RL) and then proceeded to characterise the neural under-

pinnings of these two types of learning (i.e. Feature RL and Abstract RL). Admittedly, in the present

work the mixture-of-experts RL does not provide a solid account of the data when compared to the

more parsimonious Feature RL and Abstract RL in isolation. Future work will need to establish the

actual computational strategy employed by the human brain. Of particular importance will be further

examining how such strategies vary across circumstances (tasks, contexts, or goals).

There is an important body of work considering how the HPC is involved in formation and update

of conceptual information (Bowman and Zeithamova, 2018; Kumaran et al., 2009; Mack et al.,

2016; McKenzie et al., 2014). Likely, the role of the HPC is to store, index, and update conceptual/

schematic memories (Mack et al., 2016; Tse et al., 2011; Tse et al., 2007). ’Creation’ of new con-

cepts or schemas may occur elsewhere. A good candidate could be the mPFC or the vmPFC in
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humans (Mack et al., 2020; Tse et al., 2011). Indeed, the vmPFC exhibits value signals directly mod-

ulated by cognitive requirements (Castegnetti et al., 2021). Our results expose a potential mecha-

nism of how the vmPFC interacts with the HPC in construction of goal-relevant abstractions. vmPFC-

driven valuation of low-level sensory information serves to channel-specific features/components to

higher order areas (e.g. the HPC, vmPFC, but also the dorsal prefrontal cortex, for instance). Con-

gruent with this interpretation, we found that the vmPFC was more engaged in Abstract RL, while

the HPC was equally active under both abstract and feature-based strategies (Figure 5B). When a

feature was irrelevant to the rule, its decodability from activity patterns in OFC/DLPFC decreased

(Figure 5D). These findings accord well with the role of prefrontal regions in constructing goal-

dependent task states and abstract rules from relevant sensory information (Akaishi et al., 2016;

Schuck et al., 2016; Wallis et al., 2001). Furthermore, we found block rules were also encoded in

multivoxel activity patterns within the OFC/DLPFC circuitry (Figure 5E; Bengtsson et al., 2009;

Mian et al., 2014; Wallis et al., 2001).

How these representations are actually used remains an open question. This study nevertheless

suggests that there is no single region of the brain that maintains a fixed task state. Rather, the con-

figuration of elements that determines a state is continuously reconstructed over time. At first

glance, this may appear costly and inefficient. But this approach would provide high flexibility in

noisy and stochastic environments, and where temporal dependencies exist (as in most real-world

situations). By continuously recomputing task states, the agent can make more robust decisions

because these are related to the subset of most relevant, up-to-date information. Such a computa-

tional coding scheme shares strong analogies with HPC neural coding, whereby neurons continu-

ously generate representations of alternative future trajectories (Kay et al., 2020), and replay past

cognitive trajectories (Schuck and Niv, 2019).

One significant topic for discussion concerns the elements used to construct abstractions. We lev-

eraged simple visual features (colour, or stripe orientation), rather than more complex stimuli or

objects that can be linked conceptually (Kumaran et al., 2009; Zeithamova et al., 2019). Abstrac-

tions happen at several levels, from features, to exemplars, concepts/categories, and all the way to

rules and symbolic representations. In this work, we effectively studied one of the lowest levels of

abstraction. One may wonder whether the mechanism we identified here generalises to more com-

plex scenarios. While our work cannot decisively support this, we believe it unlikely that the brain

uses an entirely different strategy to generate new representations at different levels of abstraction.

Rather, the internal source of information abstracted should be different, but the algorithm itself

should be the same or, at the very least, highly similar. The fact our PPI analysis showed a link

between the vmPFC and VC may point to this distinguishing characteristic of our study. Learning

through abstraction of simple visual features should be related to early VC. Features in other modali-

ties, for example, auditory, would involve functional coupling between the auditory cortex and the

vmPFC. When learning about more complex objects or categories, we expect to see stronger reli-

ance on the HPC (Kumaran et al., 2009; Mack et al., 2016). Future studies could incorporate differ-

ent levels of complexity, or different modalities, within a similar design so as to directly test this

prediction and dissect exact neural contributions. Depending on which type of information is rele-

vant at any point in time, we suspect that different areas will be coupled with the vmPFC to generate

value representations.

In our second experiment, we implemented a direct assay to test our (causal) hypothesis that val-

uation of features guides abstraction in learning. Artificially adding value in the form of reward to a

feature representation in the VC resulted in increased use of abstractions. Thus, the facilitating effect

of value on abstraction can be directly linked to changes in the early processing stage of visual infor-

mation. Consonant with this interpretation, recent work in mice has elegantly reported how value

governs a functional remapping in the sensory cortex by direct lateral OFC projections carrying RPE

information (Banerjee et al., 2020), as well as by modulating the gain of neurons to irrelevant stimuli

(Liu et al., 2020). While these considerations clearly point to a central role of the vmPFC and valua-

tion in abstraction by controlling sensory representations, it remains to be investigated whether this

effect results in more efficient construction of abstract representations, or in better selection of inter-

nal abstract models.

Given the complex nature of our design, there are some limitations to this work. For example,

there isn’t an applicable feature decoder to test actual feature representations (e.g. colour vs orien-

tation), or the likelihood of one feature against another. In our task design, in every trial, all features
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were used to define pacman characters. Furthermore, we did not have a localiser session in which

features were presented in isolation (see Supplementary note two for further discussion). Future

work could investigate how separate feature representations emerge on the path to abstractions,

for example in the parietal cortex or vmPFC, and their relation to feature levels (e.g. for colour: red

vs green) as reported here. We speculate that parallel circuits linking the prefrontal cortex and basal

ganglia could track these levels of abstraction, possibly in hierarchical fashion (Badre and Frank,

2012; Cortese et al., 2019; Haruno and Kawato, 2006).

Some may point out that what we call ‘Abstract RL’ is, in fact, just attention-mediated enhanced

processing. Yet, if top-down attention were the sole driver in Abstract RL, we contend that the pat-

tern of results would have been different. For example, we would expect to see a marked increase

in feature decodability in VC (Guggenmos et al., 2015; Kamitani and Tong, 2005). This was not the

case here, with only a minimal, non-significant, increase. More importantly, the results of the

decoded neurofeedback manipulation question this interpretation. Because decoded neurofeedback

operates unconsciously (Muñoz-Moldes and Cleeremans, 2020; Shibata et al., 2019), value was

added directly at the sensory representation level (limited to the targeted region), precluding alter-

native top-down effects. That is not to say that attention does not significantly mediate this type of

abstract learning; however, we argue that attention is most likely an effector of the abstraction and

valuation processes (Krauzlis et al., 2014). A simpler top-down attentional effect was indeed evi-

dent in the supplementary analysis comparing feature decoding in ‘relevant’ and ‘irrelevant’ cases

(Figure 5D). Occipital regions displayed large effect sizes, irrespective of the learning strategy used

to solve the task.

While valuation and abstraction appear tightly associated in reducing the dimensionality of the

task space, what is the underlying mechanism? The degree of neural compression in the vmPFC has

been shown to relate to features most predictive of positive outcomes, under a given goal

(Mack et al., 2020). Similarly, the geometry of neural activity in generalisation may be key here.

Neural activity in the PFC (and HPC) explicitly generates representations that are simultaneously

abstract and high dimensional (Bernardi et al., 2020). An attractive view is that valuation may be

interpreted as an abstraction in itself. Value could provide a simple and efficient way for the brain to

operate on a dimensionless axis. Each point on this axis could index a certain task state, or even

behavioural strategy, as a function of its assigned abstract value. Neuronal encoding of feature-spe-

cific value, or choice options, may help the system construct useful representations that can, in turn,

inform flexible behavioural strategies (Niv, 2019; Schuck et al., 2016; Wilson et al., 2014).

In summary, this work provides evidence for a function of valuation that exceeds the classic view

in decision-making and neuroeconomics. We show that valuation subserves a critical function in con-

structing abstractions. One may further speculate that valuation, by generating a common currency

across perceptually different stimuli, may be an abstraction in itself, and that it is tightly linked to the

concept of task states in decision-making. We believe this work not only offers a new perspective on

the role of valuation in generating abstract thoughts, but also reconciles apparently disconnected

findings in decision-making and memory literature on the role of the vmPFC. In this context, value is

not a simple proxy of a numerical reward signal, but is better understood as a conceptual represen-

tation or schema built on-the-fly to respond to a specific behavioural demand. Thus, we believe our

findings provide a fresh view of the invariable presence of value signals in the brain that play an

important algorithmic role in development of sophisticated learning strategies.

Materials and methods

Participants
Forty-six participants with normal or corrected-to-normal vision were recruited for the main experi-

ment (learning task). The sample size was chosen according to prior work and recommendations on

model-based fMRI studies (Lebreton et al., 2019). Based on pilot data and the available scanning

time in one session (60 min), we set the following conditions of exclusion: failure to learn the associa-

tion in three blocks or more (i.e. reaching a block limit of 80 trials without having learned the associ-

ation), or failure to complete at least 11 blocks in the allocated time. Eleven participants were

removed based on the above predetermined conditions, 2 of which did not go past the initial prac-

tice stages. Additionally, two more participants were removed due to head motion artifacts. Thus,
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33 participants (22.4 ± 0.3 y.o.; eight females) were included in the main analyses. Of these, 22 par-

ticipants (22.2 ± 0.3 y.o.; four females) returned for the follow-up experiment, based on their individ-

ual availability. All results presented up to Figure 5 are from the 33 participants who completed the

learning task. All results pertaining to the neurofeedback manipulation are from the subset of 22

participants that were called back. Figure 1—figure supplement 2 reports a behavioural analysis of

the excluded participants to investigate differences in performance or learning strategy compared

to the 33 included participants.

All experiments and data analyses were conducted at the Advanced Telecommunications

Research Institute International (ATR). The study was approved by the Institutional Review Board of

ATR with ethics protocol numbers 18–122, 19–122, 20–122. All participants gave written informed

consent.

Learning task
The task consisted of learning the fruit preference of pacman-like characters. These characters had

three features, each with two levels (colour: green vs red, stripe orientation: horizontal vs vertical,

mouth direction: left vs right). On each trial, a character composed of a unique combination of the

three features was presented. The experimental session was divided into blocks, for each of which a

specific rule directed the association between features and preferred fruits. There were always two

relevant features and one irrelevant feature, but these changed randomly at the beginning of each

block. Blocks could thus be of three types: CO (colour-orientation), CD (colour-direction), and OD

(orientation-direction). Furthermore, to avoid a simple logical deduction of the rule after one trial,

we introduced the following pairings. The four possible combinations of two relevant features with

two levels were paired with the two fruits in both a symmetric or asymmetric fashion - 2x2 or 3x1.

The appearance of the two fruits was also randomly changed at the beginning of each new block

(see Figure 1B,e.g., green-vertical: fruit 1, green-horizontal: fruit 2, red-vertical: fruit 1, red-horizon-

tal: fruit two or green-vertical: fruit 2, green-horizontal: fruit 2, red-vertical: fruit 1, red-horizontal:

fruit 2).

Each trial started with a black screen for 1 s, following which the character was presented for 2 s.

Then, while the character continued to be present at the centre of the screen, the two fruit options

appeared below, to the right and left sides. Participants had 2 s to indicate the preferred fruit by

pressing a button (right for the fruit to the right, left for vice versa). Upon registering a participant’s

choice, a coloured square appeared around the chosen fruit: green if the choice was correct, red

otherwise. The square remained for 1 s, following which the trial ended with a variable ITI - bringing

the trial to a fixed 8 s duration.

Participants were simply instructed that they had to learn the correct rule for each block, and the

rule itself (relevant features + association type) was hidden. Each block contained up to 80 trials, but

a block could end earlier if participants learned the target rule. Learning was measured as a set of

correct trials (between 8 and 12, determined randomly in each block). Participants were instructed

that each correct choice added one point, while incorrect choices did not alter the balance. They

were further told that points obtained would be weighted by the speed of learning on that block.

That is, the faster the learning, the greater the net worth of the points. The end of a block was

explicitly signalled by presenting the reward obtained on the screen. Monetary reward was com-

puted at the end of each block according to the formula:

R¼ A �

P

pts
P

tr

� �

�
X

tr�mcs
� �

� a (1)

where R is the reward obtained in that block, A the maximum available reward (150JPY),
P

pts the

sum of correct responses,
P

tr the number of trials, mcs the maximum length of a correct strike (12

trials), and a is a scaling factor (a = 1.5). This formula ensures time-dependent decay of the reward

that approximately follows a quadratic fit. In case participants completed a block in less than 12 tri-

als, if the amount was larger than 150JPY, it was rounded to 150JPY.

The maximum terminal monetary reward over the whole session was set at 3,000 JPY. On aver-

age, participants earned 1251 ± 46 JPY (blocks in which participants failed to learn the association

within the 80-trial limit were not rewarded). For each experimental session, there was a sequence of

20 blocks that was pre-generated pseudo-randomly, and on average, participants completed 13.6 ±
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0.3 blocks. In the post-neurofeedback behavioural test, all participants completed 16 blocks, 8 of

which had the targeted feature as relevant, while in the other half the targeted feature was irrele-

vant. The order was arranged pseudo-randomly such that in both halves of the session there were

four blocks of each type. In the post-neurofeedback behavioural session, all blocks had only asym-

metric pairings with preferred fruits.

For sessions done in the MR scanner, participants were instructed to use their dominant hand to

press buttons on a dual-button response pad to register their choices. Concordance between

responses and buttons was indicated on the display, and importantly, randomly changed across trials

to avoid motor preparation confounds (i.e. associating a given preference choice with a specific but-

ton press).

The task was coded with PsychoPy v1.82.01 (Peirce, 2008).

Computational modelling part 1: mixture-of-experts RL model
We built on a standard RL model (Sutton and Barto, 1998) and prior work in machine learning and

robotics to derive the mixture-of-experts architecture (Doya et al., 2002; Jacobs et al., 1991;

Sugimoto et al., 2012). In this work, the mixture-of-experts architecture is composed of several

‘expert’ RL modules, each tracking a different representational space, and each with its own value

function. In each trial, the action selected by the mixture-of-experts RL model is given by the

weighted sum of the actions computed by the experts. The weight reflects the responsibility of each

expert, which is computed from the SoftMax of the squared prediction error. In this section we

define the general mixture-of-expert RL model, and in the next section we define each specific

expert, based on the task-state representations being used.

Formally, the mixture-of-expert RL model global action is defined as:

At ¼
X

N

j¼1

ljta
j
t (2)

where N is the number of experts, l the responsibility signal, and a the action selected by the jth-

model. Thus, l is defined as:

ljt ¼ exp �
RPE
� j

t�1

v

0

@

1

A=
X

N

k¼1

exp �
RPE
� k

t�1

v

0

@

1

A

8

<

:

9

=

;

0

@

1

A (3)

where N is the same as above, n is the RPE variance. Expert uncertainty RPE
�

t is defined as:

RPE
� j

t ¼ gRPE
� j

t�1þ 1�gð Þ RPEj
t

� �2
(4)

where g is the forgetting factor that controls the strength of the impact of prior experience on the

current uncertainty estimate. The most recent RPE is computed as:

RPEj
t ¼O�Qj St;Atð Þ (5)

where O is the outcome (reward: 1, no reward: 0), Q is the value function, S the state for the current

expert, and A is the global action computed with Equation (2). The update to the value function can

therefore be computed as:

DQj St;Atð Þ ¼ ljtaRPE
j
t (6)

where l is the responsibility signal computed with Equation (3), a is the learning rate (assumed

equal for all experts), and RPE is computed with Equation (5). Finally, for each expert, the action a

at trial t is taken as the argmax of the value function, as follows:

ajt ¼ argmax Qj St;að Þ
� �

(7)

where Q is the value function, S the state at current trial, and a the two possible actions.

Hyperparameters estimated through likelihood maximisation were the learning rate a, the for-

getting factor g, and the RPE variance n.
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Computational modelling part 2: Feature RL and Abstract RLs
Each (expert) RL algorithm is built on a standard RL model (Sutton and Barto, 1998) to derive var-

iants that differ in the number and type of states visited. Here, a state is defined as a combination of

features. Feature RL has 23 = eight states, where each state was given by the combination of all

three features (e.g. colour, stripe orientation, mouth direction: green, vertical, left). Abstract RL is

designed with 22 = four states, where each state was given by the combination of two features.

Note that the number of states does not change for different blocks, only features used to deter-

mine them. These learning models create individual estimates of how participant action-selection

depended on features they attended and their past reward history. Both RL models share the same

underlying structure and are formally described as:

Q s;að Þ Q s;að Þþa r�Q s;að Þð Þ (8)

where Q s;að Þ in Equation (8) is the value function of selecting either fruit-option a for packman-

state s. The value of the action selected in the current trial is updated based on the difference

between the expected value and the actual outcome (reward or no reward). This difference is called

the reward prediction error (RPE). The degree to which this update affects the expected value

depends on the learning rate a. For larger a, more recent outcomes will have a strong impact. On

the contrary, for small a recent outcomes will have little effect on expectations. Only the value func-

tion of the selected action, which is state-contingent in Equation (8), is updated. Expected values of

the two actions are combined to compute the probability p of predicting each outcome using a Soft-

Max (logistic) choice rule:

Psi ;A ¼ 1= 1þ exp �b Q si;a1ð Þ�Q si;a2ð Þð Þð Þð Þ (9)

The greediness hyperparameter b controls how much the difference between the two expected

values for a1 and a2 actually influence choices.

Hyperparameters estimated through likelihood maximisation were the learning rate a, and the

greediness (inverse temperature) b.

Procedures for model fitting, simulations, and hyperparameter
recovery
Hierarchical Bayesian Inference (HBI) was used to fit the models to participant behavioural data,

enabling precise estimates of hyperparameters at the block level for each participant (Piray et al.,

2019). Hyperparameters were selected by maximising the likelihood of estimated actions, given the

true actions. For the mixture-of-experts architecture, we fit the model on all participants block-by-

block to estimate hyperparameters at the single-block and single-participant level. For the subse-

quent direct comparison between Feature RL and Abstract RL models, we used HBI for concurrent

model fitting and comparison at the single-block and single-participant basis. The model comparison

provided the likelihood that each RL algorithm best explained participants’ choice data. That is, it

was a proxy to whether learning followed a Feature RL or Abstract RL strategy. Because the fitting

was done block-by-block, with a hierarchical approach considering all participants, blocks were first

sorted according to their lengths, from longer to shorter, at the participant level. This ensured that

each block of a given participant was at the most similar to the blocks of all other participants, thus

avoiding unwanted effects in the fitting due to block length. The HBI procedure was then imple-

mented on all participant data, proceeding block-by-block.

We also simulated model action-selection behaviours to benchmark their similarity to human

behaviour, and in the case of Feature RL vs Abstract RL comparisons, to additionally compare their

formal learning efficiency. In the case of the mixture-of-experts RL architecture, we simply used esti-

mated hyperparameters to simulate 45 artificial agents, each completing 100 blocks. The simulation

allowed us to compute, for each expert RL module, the mean responsibility signal, and the mean

expected value across all states for the chosen action. Additionally, we also computed the learning

speed (time to learn the rule of a block) and compared it with the learning speed of human

participants.

In the case of the simple Feature RL and Abstract RL models, we added noise to the state infor-

mation in order to have a more realistic behaviour (from the perspective of human participants). In
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the empirical data, the action (fruit selection) in the first trial of a new block was always chosen at

random because participants did not have access to the appropriate representations (states). In later

trials, participants may have followed specific strategies. For model simulations, we simply assumed

that states were corrupted by a decaying noise function:

nt ¼ n0 1=t1=rte
� �

(10)

where nt is the noise level at trial t, n0 the initial noise level (randomly drawn from a uniform distribu-

tion within the interval [0.3 0.7]), and rte was the decay rate, which was set to 3. This meant that in

early trials in a block, there was a higher chance of basing the action on the wrong representation

(at random), rather than following the appropriate value function. Actions in later trials had a

decreasing probability of being chosen at random. This approach is a combination of the classic e-

greedy policy and the standard SoftMax action-selection policy in RL. Hyperparameter values were

sampled from obtained participant data maximum likelihood fits. We simulated 45 artificial agents

solving 20 blocks each. The procedure was repeated 100 times for each block with new random

seeds. We used two metrics to compare the efficiency of the two models: learning speed (same as

above, the time to learn the rule of a block), as well as the fraction of failed blocks (blocks in which

the rule was not learned with the 80-trials limit).

We performed a parameter recovery analysis for the simple Feature RL and Abstract RL models

based on data from the main experiment. Parameter recovery analysis was done in order to confirm

that fitted hyperparameters had sensible values and that the models themselves were a sensitive

description of human choice behaviour (Palminteri et al., 2017). Using the same noisy procedure

described above, we generated one more simulated dataset, using the exact blocks that were pre-

sented to the 33 participants. The blocks from simulated data were then sorted according to their

length, and the hyperparameters a and b were fitted by maximising the likelihood of the estimated

actions, given the true model actions. We report in Figure 3—figure supplement 3 the scatter plot

and correlation between hyperparameters estimated from participant data and recovered hyper-

parameters values, showing good agreement, notwithstanding the noise in the estimation.

For data from the behavioural session after multivoxel neurofeedback, blocks were first categor-

ised as to whether the targeted feature was relevant or irrelevant to the rule of a given block. We

then applied the HBI procedure as described above to all participants, with all blocks of the same

type (e.g. targeted feature relevant) ordered by length. This allowed us to compute, based on

whether the targeted feature was relevant or irrelevant, the difference in frequency between the

models. We resampled with replacement to produce distributions of mean population bias for each

block type.

fMRI scans: acquisition and protocol
All scanning sessions employed a 3T MRI scanner (Siemens, Prisma) with a 64-channel head coil in

the ATR Brain Activation Imaging Centre. Gradient T2*-weighted EPI (echoplanar) functional images

with blood-oxygen-level-dependent (BOLD)-sensitive contrast and multi-band acceleration factor six

were acquired (Feinberg et al., 2010; Xu et al., 2013). Imaging parameters: 72 contiguous slices

(TR = 1 s, TE = 30 ms, flip angle = 60 deg, voxel size = 2�2�2 mm3, 0 mm slice gap) oriented paral-

lel to the AC-PC plane were acquired, covering the entire brain. T1-weighted images (MP-RAGE;

256 slices, TR = 2 s, TE = 26 ms, flip angle = 80 deg, voxel size = 1�1�1 mm3, 0 mm slice gap) were

also acquired at the end of the first session. For participants who joined the neurofeedback training

sessions, the scanner was realigned to their head orientations with the same parameters for all

sessions.

fMRI scans: standard and parametric general linear models
BOLD-signal image analysis was performed with SPM12 [http://www.fil.ion.ucl.ac.uk/spm/], running

on MATLAB v9.1.0.96 (r2016b) and v9.5.0.94 (r2018b). fMRI data for the initial 10 s of each block

were discarded due to possible unsaturated T1 effects. Raw functional images underwent realign-

ment to the first image of each session. Structural images were re-registered to mean EPI images

and segmented into grey and white matter. Segmentation parameters were then used to normalise

(MNI) and bias-correct the functional images. Normalised images were smoothed using a Gaussian

kernel of 7 mm full-width at half-maximum.
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GLM1: regressors of interest included ‘High value‘, ‘Low value’ (trials were labelled as such based

on the median split of the trial-by-trial expected value for the chosen option computed from the

best fitting algorithm - Feature RL or Abstract RL), ‘Feature RL’, ‘Abstract RL’ (trials were labelled as

such based on the best fitting algorithm at the block level). For all, we generated boxcar regressors

at the beginning of the visual stimulus (character) presentation, with duration 1 s. Contrast of [1 -1]

or [�1 1] were applied to the regressors ‘High value’ - ‘Low value’, and ‘Feature RL’ - ‘Abstract RL’.

Specific regressors of no interest included the time in the experiment: ‘early’ (all trials falling within

the first half of the experiment), and ‘late’ (all trials falling in the second half of the experiment). The

early/late split was done according to the total number of trials: taking as ‘early’, trials from the first

block onward, adding blocks until the trial sum exceeded the total trials number divided by two.

GLM2 (PPI): the seed was defined as a sphere (radius = 6 mm) centred around the individual peak

voxel from the ‘High value’ > ‘Low value’ group-level contrast, within the vmPFC (peak coordinates

[2 50 -10], radius 25 mm). The ROI mask was defined individually to account for possible differences

among participants. Two participants were excluded from this analysis, because they did not show a

significant cluster of voxels in the bounding sphere (even at very lenient thresholds). The GLM for

the PPI included three regressors (the PPI, the mean BOLD signal of the seed region, and the psy-

chological interaction), as well as nuisance regressors described below.

For all GLM analyses, additional regressors of no interest included a parametric regressor for

reaction time, regressors for each trial event (fixation, fruit options presentation, choice, button

press [left, right], ITI), block regressors, the six head motion realignment parameters, framewise dis-

placement (FD) computed as the sum of the absolute values of the derivatives of the six realignment

parameters, the TR-by-TR mean signal in white matter, and the TR-by-TR mean signal in cerebrospi-

nal fluid.

Second-level group contrasts from all models were calculated as one-sample t-tests against zero

for each first-level linear contrast. Statistical maps were z-transformed, and then reported at a

threshold level of P(fpr) < 0.001 (Z > 3.09, false positive control meaning cluster forming threshold),

unless otherwise specified. Statistical maps were projected onto a canonical MNI template with MRI-

croGL [https://www.nitrc.org/projects/mricrogl/] or a glassbrain MNI template with Nilearn 0.7.1

[https://nilearn.github.io/index.html].

fMRI scans: pre-processing for decoding
As above, the fMRI data for the initial 10 s of each run were discarded due to possible unsaturated

T1 effects. BOLD signals in native space were pre-processed in MATLAB v7.13 (R2011b) (Math-

Works) with the mrVista software package for MATLAB [http://vistalab.stanford.edu/software/]. All

functional images underwent 3D motion correction. No spatial or temporal smoothing was applied.

Rigid-body transformations were performed to align functional images to the structural image for

each participant. One region of interest (ROI), the HPC, was anatomically defined through cortical

reconstruction and volumetric segmentation using the Freesurfer software [http://surfer.nmr.mgh.

harvard.edu/]. Furthermore, VC subregions V1, V2, and V3 were also automatically defined based on

a probabilistic map atlas (Wang et al., 2015). The vmPFC ROI was defined as the significant voxels

from the GLM1 ‘High value’ > ‘Low value’ contrast at p(fpr) < 0.0001, within the OFC. All subse-

quent analyses were performed using MATLAB v9.5.0.94 (r2018b). Once ROIs were individually iden-

tified, time-courses of BOLD signal intensities were extracted from each voxel in each ROI and

shifted by 6 s to account for the hemodynamic delay (assumed fixed). A linear trend was removed

from time-courses, which were further z-score-normalised for each voxel in each block to minimise

baseline differences across blocks. Data samples for computing individual feature identity decoders

were created by averaging BOLD signal intensities of each voxel over two volumes, corresponding

to the 2 s from stimulus (character) onset to fruit options onset.

Decoding: multivoxel pattern analysis (MVPA)
All ROI-based MVP analyses followed the same procedure. We used sparse logistic regression (SLR)

(Yamashita et al., 2008), to automatically select the most relevant voxels for the classification prob-

lem. This allowed us to construct several binary classifiers (e.g. feature id.: colour - red vs green,

stripes orientation - horizontal vs vertical, mouth direction - right vs left).
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Cross-validation was used for each MVP analysis to evaluate the predictive power of the trained

(fitted) model. In the primary analysis (reported in Figure 5C), cross-validation was done with a

leave-one-run-out scheme, whereby each run was iteratively held out as a test set, and all other runs

were used for training of the algorithm. The final accuracy was taken as the averaged accuracy across

the runs. This approach is generally used because there may be subtle differences across runs: hold-

ing out one run as a test ensures higher generalizability of the results while avoiding within-run infor-

mation leaks. Yet, because of the nature of our task and experiment, the leave-one-run-out cross-

validation leads to other confounds due to varying number of training trials across classes (e.g. col-

our red vs green) or conditions (Feature RL vs Abstract RL blocks). To control for this idiosyncratic

feature of our design, we performed a second cross-validation scheme. Here, we first merged the

data from all blocks for each condition, and then computed the lowest bound of trial number from

the minority class across conditions (e.g. if Feature RL had 128 trials labelled as ‘green’, and 109 as

‘red’, while Abstract RL had 94 trials labelled as ‘green’, and 99 labelled as ‘red’; then the minority

class lowest bound was 94). In each fold (N folds = 20), a number of trials equivalent to 80% of the

minority class lowest bound was assigned to the training set from each class, and the remaining trials

to the test set. The training samples were randomly chosen in each fold. Furthermore, for all MVP

analysis, SLR classification was optimised by using an iterative approach (Hirose et al., 2015) In each

fold of the cross-validation, the feature-selection process was repeated 10 times. In each iteration,

selected features (voxels) were removed from pattern vectors, and only features with unassigned

weights were used for the next iteration. At the end of the cross-validation, test accuracies were

averaged for each iteration across folds, in order to evaluate accuracy at each iteration. The number

of iterations yielding the highest classification accuracy was then used for the final computation.

Results (Figure 5C, Figure 5—figure supplement 3) report the cross-validated average of the best

yielding iteration.

For the multivoxel neurofeedback experiment, we used the entire dataset to train the classifier in

VC. Thus, each classifier resulted in a set of weights assigned to the selected voxels. These weights

could be used to classify any new data sample and to compute a likelihood of its belonging to the

target class.

Real-time multivoxel neurofeedback and fMRI pre-processing
As in previous studies (Cortese et al., 2017; Cortese et al., 2016; Shibata et al., 2011), during the

multivoxel neurofeedback manipulation, participants were instructed to modulate their brain activity,

in order to enlarge a feedback disc and maximise their cumulative reward. Brain activity patterns

measured through fMRI were used in real time to compute the feedback score. Unbeknownst to par-

ticipants, the feedback score, ranging from 0 to 100 (empty to full disc), represented the likelihood

of a target pattern occurring in their brains at measurement time. Each trial started with an induction

period of 6 s, during which participants viewed a cue (a small grey circle) that instructed them to

modulate their brain activity. This period was followed by a 6 s rest interval, and then by a 2 s feed-

back, during which the disc appeared on the screen. Finally, each trial ended with a 6 s inter-trial

interval (ITI). Each block was composed of 12 trials, and one session could last up to 10 blocks

(depending on time availability). Participants did two sessions on consecutive days. Within a session,

the maximum monetary bonus was 3000 JPY.

Feedback was calculated through the following steps. In each block, the initial 10 s of fMRI data

were discarded to avoid unsaturated T1 effects. First, newly measured, whole-brain functional

images underwent 3D motion correction using Turbo BrainVoyager (Brain Innovation, Maastricht,

Netherlands). Second, time-courses of BOLD signal intensities were extracted from each of the vox-

els identified in the decoder analysis for the target ROI (VC). Third, the time-course was detrended

(removal of linear trends), and z-score-normalised for each voxel using BOLD signal intensities mea-

sured up to the last point. Fourth, the data sample to calculate the target likelihood was created by

taking the average BOLD signal intensity of each voxel over the 6 s (6 TRs) ‘induction’ period as in

previous studies (Cortese et al., 2016; Shibata et al., 2011). Finally, the likelihood of each feature

level (e.g. right vs left mouth direction) being represented in the multivoxel activity pattern was cal-

culated from the data sample using weights of the constructed classifier.
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Data and code availability
Behavioural data, group-level maps of brain activation, and custom code used to generate results

and figures are available at https://github.com/BDMLab/Cortese_et_al_2021 copy archived at swh:1:

rev:3ac5090fe0af132364bbf92b9b0dff95919d60ee (Cortese et al., 2021).
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Appendix 1

Supplementary note 1
Target and control regressors for main GLM

On average Abstract RL blocks tended to be later blocks (Figure 3F–G, Figure 3—figure supple-

ment 2A), and to be associated with a small but significantly higher ratio of correct to incorrect

responses (Figure 5—figure supplement 1). Moreover, although Abstract RL blocks were associ-

ated with higher expected value compared with Feature RL blocks (Figure 3—figure supplement

2C), at the trial level value (high / low) and learning strategy (Feature RL or Abstract RL) were uncor-

related (Figure 5—figure supplement 2A), thus confirming the regressors’ orthogonality. The main

analysis that was used for the value contrast and for the strategy contrast thus included regressors

for ‘early’, ‘late’, ‘High value’, ‘Low value’, ‘Feature RL’, ‘Abstract RL’, such that the GLM explicitly

controlled for the idiosyncratic features of the task. Other regressors of no interest were motion

parameters, mean white matter signal, mean cerebro-spinal fluid signal, block, constant.

Supplementary note 2
Levels of multivoxel fMRI neurofeedback

It is worth noting that the neurofeedback procedure targeted one feature’s level, for example red

colour, rather than colour overall. One might wonder why this approach would work nevertheless?

Given previous work with fMRI-based decoded neurofeedback (1), the main driver of the effect was

most likely due to change in processing in VC, leading to increased functional representation of task

features also in PFC (particularly, in vmPFC). Because in the current work feature levels were intrinsi-

cally coupled in task space, for example if red-horizontal corresponded to fruit 1, then green-vertical

too, enhanced processing of red should also directly influence the paired colour.
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