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Summary 19 

Inhibitory interneurons are believed to realize critical gating functions in cortical circuits, 20 

but it has been difficult to ascertain the content of gated information for well characterized 21 

interneurons in primate cortex. Here, we address this question by characterizing putative 22 

interneurons in primate prefrontal and anterior cingulate cortex while monkeys engaged in 23 

attention demanding reversal learning. We find that subclasses of narrow spiking neurons 24 

have a relative suppressive effect on the local circuit indicating they are inhibitory 25 

interneurons. One of these interneuron subclasses showed prominent firing rate 26 

modulations and (35-45 Hz) gamma synchronous spiking during periods of uncertainty in 27 

both, lateral prefrontal cortex (LPFC) and in anterior cingulate cortex (ACC). In LPFC 28 

this interneuron subclass activated when the uncertainty of attention cues was resolved 29 
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during flexible learning, whereas in ACC it fired and gamma-synchronized when outcomes 30 

were uncertain and prediction errors were high during learning. Computational modeling 31 

of this interneuron-specific gamma band activity in simple circuit motifs suggests it could 32 

reflect a soft winner-take-all gating of information having high degree of uncertainty. 33 

Together, these findings elucidate an electrophysiologically-characterized interneuron 34 

subclass in the primate, that forms gamma synchronous networks in two different areas 35 

when resolving uncertainty during adaptive goal-directed behavior. 36 

 37 

Introduction 38 

Inhibitory interneurons in prefrontal cortex are frequently reported to be altered in 39 

neuropsychiatric diseases with debilitating consequences for cognitive functioning. Groups of 40 

fast spiking interneurons with basket cell or chandelier morphologies have consistently been 41 

found to be abnormal in individuals with schizophrenia and linked to dysfunctional working 42 

memory and reduced control of attention (Dienel and Lewis, 2019). Altered functioning of a 43 

non-fast spiking interneuron class is linked to reduced GABAergic tone in individuals with 44 

severe major depression (Levinson et al., 2010; Fee et al., 2017). These findings suggest that the 45 

circuit functions of different subtypes of interneurons in prefrontal cortices are important to 46 

regulate specific aspects of cognitive and affective functioning.  47 

 48 

But it has remained a challenge to identify how individual interneuron subtypes support specific 49 

cognitive or affective functions in the nonhuman primate. For rodent prefrontal and anterior 50 

cingulate cortices, cells with distinguishable functions express differentially cholecystokinin 51 

(CCK), parvalbumin (PV) or somatostatin (SOM), amongst others (Roux and Buzsaki, 2015; 52 



Cardin, 2018). Prefrontal CCK expressing basket cells have been shown to impose inhibition that 53 

is required during the choice epoch, but not during the delay epoch of a working memory task 54 

(Nguyen et al., 2020). In contrast, retention of visual information during working memory delays 55 

has been shown to require activation specifically of PV+ expressing fast spiking interneurons 56 

(Lagler et al., 2016; Kamigaki and Dan, 2017; Nguyen et al., 2020). In the same prefrontal 57 

circuits, the PV+ neurons have also been associated with attentional orienting (Kim et al., 2016), 58 

shifting of attentional sets and response strategies during reward learning (Cho et al., 2015; 59 

Canetta et al., 2016; Cho et al., 2020), and with spatial reward choices (Lagler et al., 2016), 60 

among other functions (Pinto and Dan, 2015). Distinct from PV+, the group of somatostatin 61 

expressing neurons (SOM+) have been shown to be necessary during the initial encoding phase 62 

of a working memory task but not during the delay (Abbas et al., 2018), and in anterior cingulate 63 

cortex they activate specifically during the approach of reward sites (Kvitsiani et al., 2013; 64 

Urban-Ciecko and Barth, 2016). Taken together, these findings illustrate that rodent prefrontal 65 

cortex interneurons expressing PV, SOM or CCK fulfill separable, unique roles at different 66 

processing stages during goal-directed task performance (Pinto and Dan, 2015; Lagler et al., 67 

2016).  68 

 69 

The rich insights into cell-specific circuit functions in rodent prefrontal cortices stand in stark 70 

contrast to the limited empirical data from primate prefrontal cortex. While there are recent 71 

advances using optogenetic tools for use in primates (Acker et al., 2016; Dimidschstein et al., 72 

2016; Gong et al., 2020), most existing knowledge about cell specific circuit functions are 73 

indirectly inferred from studies that distinguish only one group of putative interneurons that 74 

show narrow action potential spike width. Compared to broad spiking neurons the group of 75 



narrow spiking, putative interneurons in lateral prefrontal cortex have been found to more likely 76 

encode categorical information during working memory delays (Diester and Nieder, 2008), show 77 

stronger stimulus onset responses during cognitive control tasks (Johnston et al., 2009), stronger 78 

attentional modulation (Thiele et al., 2016), more location-specific encoding of task rules 79 

(Johnston et al., 2009), stronger reduction of firing selectivity for task irrelevant stimulus 80 

features (Hussar and Pasternak, 2009), stronger encoding of errors and loss (Shen et al., 2015; 81 

Sajad et al., 2019), more likely encoding of outcome history (Kawai et al., 2019), and stronger 82 

encoding of feature-specific reward prediction errors (Oemisch et al., 2019), amongst other 83 

unique firing characteristics (Constantinidis and Goldman-Rakic, 2002; Ardid et al., 2015; Rich 84 

and Wallis, 2017; Voloh and Womelsdorf, 2018; Torres-Gomez et al., 2020).  85 

 86 

These summarized findings suggest that there are subtypes of narrow spiking neurons that are 87 

particularly important to regulate prefrontal circuit functions. But it is unclear whether these 88 

narrow spiking neurons are inhibitory interneurons and to which interneuron subclass they 89 

belong. Comparisons of protein expression with action potential spike width have shown for 90 

prefrontal cortex that >95% of all PV+ and ~87% of all SOM+ interneurons show narrow spike 91 

width (Ghaderi et al., 2018; Torres-Gomez et al., 2020), while narrow spikes are also known to 92 

occur in ~20% of VIP interneurons (Torres-Gomez et al., 2020) among other GABAergic 93 

neurons  (Krimer et al., 2005; Zaitsev et al., 2009), and (at least in primate motor cortex) in a 94 

subgroup of pyramidal cells (Soares et al., 2017). In addition, electrophysiological 95 

characterization has shown at least three different types of firing patterns in narrow spiking 96 

neurons of monkeys during attention demanding tasks (Ardid et al., 2015; Dasilva et al., 2019; 97 

Trainito et al., 2019). Taken together, these insights raise the possibility that spike width and 98 



electrophysiology will allow identifying the interneuron subtypes that are particularly important 99 

for prefrontal cortex functions. 100 

 101 

Here, we investigated this possibility by recording narrow spiking cells in nonhuman primate 102 

prefrontal and cingulate cortex during an attention demanding reversal learning task. We found 103 

that in both areas three narrow spiking neuron classes are well distinguished and show a 104 

suppressive influence on the local circuit activity compared to broad spiking neurons, supporting 105 

labeling them as inhibitory interneurons. Among these interneurons the same sub-type showed 106 

significant functional correlations in both ACC and LPFC, firing stronger to reward predictive 107 

cues when their predictability is still learned during the reversal (in LPFC), and firing stronger to 108 

outcomes when they are most unexpected during reversal (in ACC). Notably, in both, ACC and 109 

LPFC, these functions were evident in 35-45 Hz gamma rhythmic synchronization to the local 110 

field potential in the same interneuron subclass.  111 

 112 

Results 113 

We used a color-based reversal paradigm that required subjects to learn which of two colors 114 

were rewarded as described previously (Oemisch et al., 2019). The rewarded color reversed 115 

every ~30-40 trials. Two different colors were assigned to stimuli appearing randomly left and 116 

right to a central fixation point (Figure 1A). During the task the color information was presented 117 

independently from the up-/downward- direction of motion of the stimuli. The up-/downward 118 

direction instructed the saccade direction that animals had to show to a Go event in order to 119 

receive reward. Motion was thus the cue for an overt choice (with saccadic eye movements), 120 

while color was the cue for covert selective attention. Color was shown either before (as Feature-121 



1) or after the motion onset (as Feature-2) (Figure 1B). Both animals took on average 7/7 122 

(monkey H/K) trials to reach criterion performance, i.e., they learned which color was rewarded 123 

within 7 trials (Figure 1C). The asymptotic performance accuracy was 83 / 86 % for monkey’s 124 

H / K (see Methods).  125 

 126 

Characterizing narrow spiking neurons as inhibitory interneurons   127 

During reversal performance we recorded the activity of 329 single neurons in LPFC areas 46/9 128 

and anterior area 8 (monkey H/K: 172/157) and 397 single neurons in dorsal ACC area 24 129 

(monkey H/K: 213/184) (Figure 1D, Figure 1-figure supplement 1). The average action 130 

potential waveform shape of recorded neurons distinguished neurons with broad and narrow 131 

spikes similar to previous studies in LPFC and ACC (Gregoriou et al., 2012; Ardid et al., 2015; 132 

Westendorff et al., 2016; Dasilva et al., 2019; Oemisch et al., 2019) (Figure 1E). Prior 133 

biophysical modeling has shown that the extracellular action potential waveform shape, 134 

including its duration, is directly related to transmembrane currents and the intracellularly 135 

measurable action potential shape and duration (Gold et al., 2006; Bean, 2007; Gold et al., 2007; 136 

Buzsaki et al., 2012). Based on this knowledge we quantified the extracellularly recorded spike 137 

duration of the inferred hyperpolarization rates and their inferred time-of-repolarizations (see 138 

Methods, Figure 1-figure supplement 2A,B). These measures split narrow and broad spiking 139 

neurons into a bimodal distribution (calibrated Hartigan’s dip test for bimodality, p<0.001), 140 

which was better fit with two than one gaussian (Figure 1E, Bayesian information criterion for 141 

two and one gaussian fit: 4.0450, 4.8784, where a lower value indicates a better model). We 142 

found in LPFC 21% neurons had narrow spikes (n=259 broad, n=70 narrow cells) and in ACC 143 

17% of neurons had narrow action potentials (n=331 broad, n=66 narrow cells).  144 



 145 

To assess the excitatory or inhibitory identity of the broad and narrow spiking neuron classes (B- 146 

and N-type neurons), we estimated the power of multi-unit activity (MUA) in its vicinity (at 147 

different electrodes than the spiking neuron) around the time of spiking for each cell and tested 148 

how this spike-triggered MUA-power changed before versus after the cell fired a spike (see 149 

Methods). This approach expects for an excitatory neuron to spike concomitant with neurons in 150 

the local population reflected in a symmetric rise and fall of MUA before and after its spike. In 151 

contrast, inhibitory neurons are expected to spike when MUA rises, but when the spike occurs, 152 

the spike should contribute to suppress the local MUA activity, which should be reflected in a 153 

faster drop in MUA activity after the spike occurred (Oemisch et al., 2015). We found that B-154 

type cells showed on average a symmetric pre- to post- spike triggered MUA activity modulation 155 

indicative of excitatory participation with local activity (Figure 1F). In contrast, spikes of N-type 156 

cells were followed by a faster drop of MUA activity indicating an inhibitory influence on MUA 157 

(Figure 1F). The excitatory and inhibitory effects on local MUA activity were consistent across 158 

the population and significantly distinguished B- and N-type neurons (Figure 1G; MUA 159 

modulation index: [(post MUAspike - pre MUAspike) / pre MUAspike] for B- vs N-type cells, 160 

Wilcoxon test, p=0.001). This distinction was evident in ACC and in LPFC (Figure 1H; for the 161 

N-type the MUA modulation index was different from zero, Wilcoxon test, in ACC, p<0.001, 162 

and in LPFC, p=0.03; for B-type cells the difference was not sign.). These findings suggest 163 

narrow spiking cells contain mostly inhibitory interneurons (see Discussion).  164 

 165 

Putative interneurons in prefrontal cortex index choices when choice probability is low 166 



To discern how B- and N- type neurons encoded the learning of the rewarded color during 167 

reversal we analyzed neuronal response modulation around color onset, which instructed animals 168 

to covertly shift attention to the stimulus with the reward predicting color. In addition to this 169 

color cue (acting as attention cue) we also analyzed activity around the motion onset that served 170 

as action cue. Its direction of motion indicated the saccade direction the animal had to elicit for 171 

receiving reward. This action cue could happen either 0.5-0.9 sec. before or 0.5-0.9 sec. after the 172 

color cue. Many neurons in LPFC selectively increased their firing to the color attention cue 173 

with no apparent modulation to the motion action cue (n=71 cells with firing increases to the 174 

color but not motion cue) (for examples: Figure 2A, B). These neurons increased firing to the 175 

color onset when it was the first, or the second feature that was presented, but did not respond to 176 

the motion onset when it was shown as first or second feature (for more examples, Figure 2-177 

figure supplement 1).  178 

 179 

We found that N-type neurons in LPFC change transiently their firing to the attention cue when 180 

it occurred either early or late relative to the action cue (significant increase within 25-275ms 181 

post-cue for Feature 1 and within 50-250ms post-cue for Feature 2, p<0.05 randomization 182 

statistics, n=21 N-type cells with increases and 7 with decreases to the color cue, Figure 2C). 183 

This attention cue-specific increase was absent in B-type neurons in LPFC (n.s., randomization 184 

statistics, n=44 B-type cells with increases and n=35 with decreases to the color cue, Figure 2C). 185 

In contrast to LPFC, ACC N- and B-type neurons did not show an on-response to the color cue 186 

(n=36 / 6 B- and N- type cells with increases, respectively, and n=31 / 12 B- and N- type cells 187 

with decreased firing, respectively, to the color cue, the total cell number included in this 188 

analysis for the B- and N- type was n= 216 / 50 respectively) (Figure 2D).  189 



 190 

The N-type specific response to the attention cue might carry information about the rewarded 191 

stimulus color or the rewarded stimulus location. We found that the proportion of neurons whose 192 

firing rate significantly distinguished rewarded and nonrewarded colors sharply increased for N-193 

type cells after the onset of the color cue in LPFC (proportion of color selective responses within 194 

0-0.5 sec. after cue, 18%; n=10 of 54 N-type cells, randomization test p<0.05 within [175 575] 195 

ms after cue onset, but not in ACC (cells with significant information: 6%; n=3 of 50 N-type 196 

cells, ns., randomization test within [300 700] ms after cue onset) (Figure 2-figure supplement 197 

2A,B). Similar to the selectivity for the rewarded stimulus color N-type cells in LPFC (but not in 198 

ACC) showed significant encoding of the right versus left location of the rewarded stimulus (in 199 

LPFC: 22% with reward location information; n=12 of 54 N-type cells, randomization test 200 

p<0.05 within [200 500] ms after cue onset; in ACC: 10% with reward location information; n=5 201 

of 50 N-type cells, n.s. randomization test) (Figure 2-figure supplement 2C,D). 202 

 203 

The color-specific firing increase and the encoding of the rewarded color by N-type neurons in 204 

LPFC suggest they support reversal learning performance. We tested this by correlating their 205 

firing rates around the color cue onset with the trial-by-trial variation of the choice probability 206 

for choosing the stimulus with the rewarded color. Choice probability, p(choice), was calculated 207 

with a reinforcement learning model that learned to optimize choices based on reward prediction 208 

errors (see Eq. 3 in Methods and (Oemisch et al., 2019)). Choice probability was low (near ~0.5) 209 

early during learning and rose after each reversal to reach a plateau after around ~10 trials 210 

(Figure 1C, for example blocks, Figure 2-figure supplement 3A). We found that during the 211 

post-color onset time period 17% (n=20 of 120) of B-type cells and 27% (n=11 of 41) of N-type 212 



cells in LPFC significantly correlated their firing with p(choice), which was larger than expected 213 

by chance (binomial test B-type cells: p<0.001; N-type cells: p<0.001). On average, N-type cells 214 

in LPFC showed positive correlations (Pearson r=0.068, Wilcoxon rank test, p=0.011), while B-215 

type neurons showed on average no correlation (Wilcoxon rank test, p=0.20) (Figure 2E). The 216 

positive p(choice) correlations of N-type neurons in LPFC grew following color onset and 217 

remained significant for 0.7s following color onset (N=41 N-type neurons, randomization test, 218 

p<0.05 from 0-0.7 s post-cue, Figure 2E). N-type neurons in LPFC of both monkeys showed a 219 

similar pattern of response to the attention cue and positive correlation of firing rate with 220 

p(choice) (Figure 2-figure supplement 4A-C). Compared to LPFC, significantly less N-type 221 

cells in ACC correlated their firing with choice probability (6%, n=2 of 33 in ACC, versus 27% 222 

in LPFC, X
2
-test for prop. difference, X

2
-stat= 5.45, p=0.019) and showed no p(choice) 223 

correlations over time (Wilcoxon rank test, p=0.49, n.s., Figure 2F).  224 

 225 

Putative interneurons in anterior cingulate cortex index high reward prediction errors. 226 

Choice probabilities (p(choice)) increase during reversal learning when reward prediction errors 227 

(RPEs) of outcomes decrease, which was evident in an anticorrelation of (p(choice)) and RPE of 228 

r=-0.928 in our task (Figure 2-figure supplement 3A,B) with lower p(choice) (near ~0.5) and 229 

high RPE over multiple trials early in the reversal learning blocks when the animals adjusted to 230 

the newly rewarded color (Figure 2-figure supplement 3E,F). Prior studies have shown that 231 

RPEs are prevalently encoded in the ACC (Kennerley et al., 2011; Oemisch et al., 2019). We 232 

therefore reasoned that RPEs might preferentially be encoded by narrow spiking putative 233 

interneurons. First, we analyzed  N- and B-type cell responses to the reward. In both, LPFC and 234 

ACC, N- and B-type cells on average increased firing after the reward onset (p<0.05, 235 



randomization test, n=26 of 54 and 18 of 188 B- type cells with increases, respectively, and n=14 236 

of 54 N- type and 5 of 188 B-type cells with decreased firing in LPFC, and n=30 of 50 N-type 237 

and 13 of 216 B- type cells with increases, respectively, and n=19 of 50 and 8 of 216 B-type cells 238 

with decreased firing in ACC). However, the N- and B-type responses to the reward were not 239 

significantly different in ACC or LPFC (ns., randomization test, Figure 3A,B). We estimated 240 

trial-by-trial RPEs with the same reinforcement learning model that also provided p(choice) for 241 

the previous analysis. RPE is calculated as the difference of received outcomes R and expected 242 

value V of the chosen stimulus (see Methods). We found that on average 23% of LPFC and 35% 243 

of ACC neurons showed significant firing rate correlations with RPE in the post-outcome epoch 244 

with only moderately and non-significantly more N-type than B-type neurons having significant 245 

rate-RPE correlations (n=9 N-type neurons, n=31 B-type neurons, X
2
-test; p=0.64 for LPFC; 246 

n=15 N-type neurons, n=47 B-type neurons, X
2
-test; p=0.83 for ACC; Figure 3C,D). However, 247 

time-resolved analysis of the strength of the average correlations revealed a significant positive 248 

firing x RPE correlation in the 0.2-0.6 s after reward onset for ACC N-type neurons, which was 249 

absent in LPFC (ACC, n=43 N-type neurons, randomization test p<0.05; LPFC: n=31 N-type 250 

neurons, no time bin with sign.; Figure 3E,F). In ACC, the positive correlation of N-type 251 

neurons firing rate and RPE was evident in both monkeys (Suppl. Figure S6D). 252 

 253 

Classification of neural subtypes of putative interneurons.  254 

We next asked whether the narrow spiking, putative interneurons whose firing indexed relatively 255 

lower p(choice) in LPFC and relatively higher RPE in ACC are from the same 256 

electrophysiological cell type, or e-type (Markram et al., 2015; Gouwens et al., 2019). Prior 257 

studies have distinguished different narrow spiking e-types using the cells’ spike train pattern 258 



and spike waveform duration (Ardid et al., 2015; Dasilva et al., 2019; Trainito et al., 2019; 259 

Banaie Boroujeni et al., 2020b). We followed this approach using a cluster analysis to 260 

distinguish e-types based on spike waveform duration parameters (inferred hyperpolarization rate 261 

and time to 25% repolarization, Figure 1-figure supplement 2A,B), on whether their spike 262 

trains showed regular or variable interspike intervals (local variability ‘LV’, Figure 1-figure 263 

supplement 2D), or more or less variable firing relative to their mean interspike interval 264 

(coefficient of variation ‘CV’, Figure 1-figure supplement 2C). LV and CV are moderately 265 

correlated (r=0.26, Figure 1-figure supplement 2E), with LV indexing the local similarity of 266 

adjacent interspike intervals, while CV is more reflective of the global variance of higher and 267 

lower firing periods (Shinomoto et al., 2009). We ran the k-means clustering algorithm on 268 

neurons in ACC and LPFC using variables mentioned above and their firing rate (details in 269 

Methods). Clustering resulted in eight e-types (Figure 4A-C). Cluster boundaries were highly 270 

reliable (Figure 4-figure supplement 1). Moreover, the assignment of a cell to its class was 271 

statistically consistent, and reliably evident for cells from each monkey independently (Figure 4-272 

figure supplement 2). Narrow spiking neurons fell into three e-types. The first narrow spiking 273 

N1 e-type (n=18, 13% of narrow spiking neurons) showed high firing rates and highly regular 274 

spike trains (low LVs, mean LV 0.47, SE 0.05). The second N2 e-type (n=27, 20% of narrow 275 

spiking neurons) showed on average Poisson spike train variability (LVs around 1) and the 276 

narrowest waveforms, and the N3 e-type (n=91, 67% of all narrow spiking neurons) showed 277 

intermediate narrow waveform duration and regular firing (LV’s < 1, mean LV 0.84, SE 0.02) 278 

(Figure 4C). Neurons within an e-type showed similar feature characteristics irrespective of 279 

whether they were from ACC or LPFC. For example, N3 e-type neurons from ACC and in LPFC 280 

were indistinguishable in their firing and action potential characteristics (LVACC / LPFC= 0.79/0.88, 281 



ranksum-test, p=0.06; CVACC / LPFC = 1.19 / 1.31, ranksum-test, p=0.07; Firing RateACC/LPFC = 282 

4.41/4.29, ranksum-test p=0.71; action potential repolarization time (hyperpolarization rate)ACC / 283 

PFC= 0.18 sec. (97 sec
.-1

)/0.17 Sec. (93 sec
.-1

)).  284 

 285 

Beyond the narrow spiking classes, spiketrains and LV distributions showed five broad spiking 286 

neuron e-types. The B1-B5 e-types varied from irregular burst firing in e-types B2, B3 and B4 287 

(LV>1, class B2 mean LV 1.20, SE 0.02, class B3 mean LV 0.93, SE 0.02 , class B4 mean 1.24 , 288 

SE 0.03), regular firing in B1 (LV<1, class B1 mean LV 0.75, SE 0.02) to regular non-Poisson 289 

firing in B5 (LV>1, class B5 mean LV 1.68, SE 0.02) (number and % of broad spiking cells: B1: 290 

109 (18%), B2: 103 (17%), B3: 94 (16%), B4: 146 (25%), B5: 138 (23%)) (Figure 4B,C). LV 291 

values >1 indicate bursty firing patterns which is supported by a positive correlation of the LV of 292 

neurons with their probability to fire bursts defined as spikes occurring ≤ 5 ms apart (r = 0.44, p 293 

< 0.001, Figure 1-figure supplement 2F). We next calculated the post- to pre- spike-triggered 294 

MUA modulation ratio for each of the e-types. Across all e-types only the spike-triggered MUA 295 

modulation ratio for the N3 e-type was different from zero (p<0.05, FDR-corrected) (Figure 296 

4D). Comparison between cell classes showed that the spike-triggered MUA modulation ratio for 297 

the N3 e-type differed significantly from the B4 (p=0.02) and B5 (p=0.03) e-types.  298 

 299 

The same interneuron subclass indexes p(choice) in LPFC and RPE in ACC. 300 

The distinct e-types allowed testing how they correlated their firing with choice probability and 301 

with RPE. We found that the only e-type with a significant average correlation of firing and 302 

choice probability during the cue period was the N3 e-type in LPFC (r = 0.08, Kruskal Wallis 303 

test, p=0.04; randomization test difference to zero, Tukey-Kramer multiple comparison 304 



corrected, p<0.05; Figure 5A,B). Consistent with this correlation, neurons of the N3 e-type in 305 

LPFC also significantly increased firing to the color cue, irrespective of whether the color cue 306 

appeared early or later in the trial (p<0.05 during 0.04-0.2 s after feature 2 onset, and p<0.05 307 

during 0.175-0.225 s after feature 1 onset, Figure 5-figure supplement 1). The on-average 308 

positive correlation of firing rate and p(choice) was also evident in an example N3 e-type cell 309 

(Figure 5-figure supplement 2A-C). There was no other e-type in LPFC and in ACC showing 310 

significant correlations with choice probability. In LPFC, a linear classifier trained on multiclass 311 

p(choice) values was able to label N3 e-type neurons based on their p(choice) values with an 312 

accuracy of 31% (Figure 5-figure supplement 3A).   313 

 314 

Similar to the N3 e-type in LPFC, in ACC it was the N3 e-type that was the only narrow spiking 315 

subclass with a significant functional firing rate correlation with reward prediction errors (RPE) 316 

(n=30 neurons; r = 0.09, Kruskal Wallis test, p=0.01, randomization test for sign. difference to 317 

zero, Tukey-Kramer multiple comparison corrected p<0.05, Figure 5C,D). The only other e-type 318 

with a significant firing rate x RPE correlation was the B4 class which fired stronger with lower 319 

RPE’s (n=18 neurons; r = -0.08, Kruskal Wallis test, p=0.01, randomization test for sign. 320 

difference to zero, multiple comparison corrected p<0.05). There was no subtype-specific RPE 321 

correlation in LPFC (Figure 5C,D). The average positive correlation of firing rate and RPE was 322 

also evident in example ACC N3 e-type cells (Figure 5-figure supplement 2D-F). In ACC a 323 

linear classifier trained on multiclass RPE values was able to label N3 e-type neurons from their 324 

RPE value with an accuracy of 34% (Figure 5-figure supplement 3B).   325 

 326 

Narrow spiking neurons synchronize to theta, beta and gamma band network rhythms. 327 



Prior experimental studies have suggested that interneurons have unique relationships to 328 

oscillatory activity (Puig et al., 2008; Cardin et al., 2009; Sohal et al., 2009; Vinck et al., 2013; 329 

Womelsdorf et al., 2014a; Chen et al., 2017; Voloh and Womelsdorf, 2018; Shin and Moore, 330 

2019; Banaie Boroujeni et al., 2020c; Onorato et al., 2020), raising the possibility that the N3 e-331 

type neurons realize their functional contributions to p(choice) and RPE processing also through 332 

neuronal synchronization. To discern this, we first inspected the spike-triggered LFP averages 333 

(STAs) of neurons and found that STAs of many N3 e-type neurons showed oscillatory sidelobes 334 

in the 10-30 Hz range (Figure 6A). We quantified this phase synchrony by calculating the spike-335 

LPF pairwise phase consistency (PPC) and extracting statistically significant peaks in the PPC 336 

spectrum  (Vinck et al., 2012; Banaie Boroujeni et al., 2020a), which confirmed the presence of 337 

significant synchrony peaks across theta/alpha, beta and low gamma frequency ranges (Figure 338 

6B). The density of spike-LFP synchrony peaks, measured as the proportion of neurons that 339 

show reliable PPC peaks (see Methods), showed a high prevalence of 15-30 Hz beta synchrony 340 

for broad spiking neurons in both, ACC and LPFC, a peak of ~5-12 Hz synchrony that was 341 

unique to ACC, and a high prevalence of 35-45 Hz gamma synchronization in narrow spiking 342 

cells (but not in broad spiking cells) in both areas (Figure 6C) (Voloh et al., 2020). The 343 

synchrony peak densities of the N3 e-type neurons mimicked this overall pattern by showing beta 344 

to gamma band synchrony peak densities in LPFC and a 5-12 Hz theta/alpha and a gamma 345 

synchrony in ACC (Figure 6C) (for peak densities of other e-types, see Figure 6-figure 346 

supplement 1).  347 

 348 

Interneuron-specific gamma synchronization following cues in LPFC and outcomes in 349 

ACC.  350 



The overall synchrony patterns leave open whether the synchrony is task modulated or conveys 351 

information about choices and prediction errors. We addressed these questions by calculating 352 

spike-LFP phase synchronization time-resolved around the color cue onset (for LPFC) and 353 

around reward onset (for ACC) separately for trials with high and low choice probabilities (for 354 

LPFC) and high and low reward prediction errors (for ACC). We found in LPFC that the N3 e-355 

type neurons showed a sharp increase in 35-45 Hz gamma band synchrony shortly after the color 356 

cue is presented and choice probabilities were low (i.e. when the animals were uncertain which 357 

stimulus is rewarded), while broad spiking neurons did not show gamma synchrony (Figure 7A-358 

C) (N3 e-type vs broad spiking cell difference in gamma synchrony in the 0-700 ms after color 359 

cue onset: p<0.05, randomization test, multiple comparison corrected). When choice 360 

probabilities are high, N3 e-type neurons and broad spiking neurons in LPFC showed significant 361 

increases of 20-35 Hz beta-band synchronization (Figure 7D,E) with N3 e-type neurons 362 

synchronizing significantly stronger to beta than broad spiking neuron types (Figure 7F) (p<0.05 363 

randomization test, multiple comparison corrected). These effects were restricted to the color cue 364 

period. LPFC broad spiking neurons and N3 e-type neurons did not show spike-LFP 365 

synchronization after the reward onset in low or high RPE trials (Figure 7-figure supplement 366 

1A-D). Moreover, the gamma synchrony when p(choice) was low was not found in other narrow 367 

spiking or broad spiking e-types with the LPFC N3 e-type showing stronger gamma synchrony 368 

than broad spiking classes in the low p(choice) trials (p=0.02, Tukey-Kramer multiple 369 

comparison corrected) (Figure 7-figure supplement 1E-F). There was no difference in 35-45 370 

Hz gamma synchrony of other cell classes in LPFC in the 0-0.7 s after reward onset in the high 371 

or low RPE trials, or around the (0.7 s) color onset in the high p(choice) trials (Figure 7-figure 372 



supplement 1E-H, see Figure 7-figure supplement 2A for time-frequency maps for all cell 373 

classes around cue onset).  374 

 375 

In ACC, the N3 e-type neurons synchronized in a 35-42 Hz gamma band following the reward 376 

onset when RPE’s were high (i.e. when outcomes were unexpected), which was weaker and 377 

emerged later when RPEs were low, and which was absent in broad spiking neurons (Figure 8). 378 

In contrast to this gamma synchronization at high RPE, low RPE trials triggered increased spike-379 

LFP synchronization at a ~6-14 Hz theta/alpha frequency in the N3 e-type neurons (Figure 8C). 380 

The increase of 6-14 Hz synchrony was significantly stronger in the N3 e-type than in broad 381 

spiking neurons in the 0 to 0.7 s post reward onset period (Figure 8F). These gamma and theta 382 

band effects of the N3 e-type neurons in ACC were restricted to the reward period, i.e. they were 383 

absent in the color cue period for trials with high or low p(choice) (Figure 7-figure supplement 384 

3A-D). Comparison to the other e-types showed that the N3 e-type significantly stronger gamma 385 

synchronized in the reward period when RPEs were high (p=0.04, Tukey-Kramer, multiple 386 

comparison corrected) (Figure 7-figure supplement 3E). Other e-type classes did not differ in 387 

their spike-LFP synchronization in this 35-45 Hz gamma band in low or high RPE trials with the 388 

exception of the B2 class in ACC that synchronized in high RPE trials at a higher >50Hz gamma 389 

band (Figure 7-figure supplement 3E-H, see Figure 7-figure supplement 2B for time-390 

frequency maps for all cell classes around reward onset).   391 

 392 

The spike-LFP synchronization results in PFC and in ACC were unchanged when the average 393 

reward onset aligned LFP, or the average color-cue aligned LFP was subtracted prior to the 394 



analysis, which controls for a possible influence of lower frequency evoked potentials (Figure 7-395 

figure supplement 4). 396 

 397 

Circuits model of interneuron-specific switches between gamma and beta or theta 398 

synchronization.   399 

The previous results showed that neurons of the N3 e-type engaged in a transient ~35-45 Hz 400 

gamma band synchronization during trials that were characterized by uncertainty. In LPFC 401 

gamma synchronization was evident when expected stimulus values were uncertain (reflected in 402 

low p(choice)), and in ACC gamma synchronization emerged when reward outcomes were 403 

uncertain (reflected in high RPE). In contrast, there was no gamma-band synchrony when choice 404 

probabilities were certain and reward outcomes predictable. In these trials N3 e-type neurons 405 

rather showed beta synchronization to the cue (in LPFC), or theta band synchronization to the 406 

reward onset (in ACC). These findings indicate that oscillatory activity signatures inform us 407 

about the possible circuit motifs underlying uncertainty-related related computations. These 408 

computations are formally described in the reinforcement learning framework allowing us to 409 

propose a linkage of specific computations to oscillatory activity signatures and their putative 410 

circuits as proposed in the Dynamic Circuits Motif framework (Womelsdorf et al., 2014b).  411 

 412 

To show the feasibility of this approach we devised two circuit models that reproduces the 413 

gamma band activity signatures in LPFC and ACC using populations of inhibitory cells modeled 414 

to correspond to N3 e-type cells (for modeling details, see Appendix 1). First, we modeled a 415 

putative LPFC circuit. Here, N3 e-type neurons showed gamma synchronization when p(choice) 416 

was low which happens in trials in which the values of the two available objects are similar and 417 



the choice among them is difficult (see eq. 3 in Methods). We predicted in this situation gamma 418 

synchronization of the N3 e-type reflects resolving competition among inputs from similarly 419 

active, pyramidal cell populations encoding the expected values of the two objects. To test 420 

whether this scenario is plausible we conceptualized and then simulated a circuit which modelled 421 

the activity of an N3 e-type neuron population that we presumed to be PV+ fast-spiking basket 422 

cells (see Discussion) activated by two excitatory pyramidal cell populations (Es) whose activity 423 

scales with the value of the stimuli (Figure 9A). Such an E-I network can synchronize by way of 424 

mutual inhibition at beta or gamma frequencies depending on the total amount of drive the 425 

network receives (Wang and Buzsaki, 1996; White et al., 1998; Tiesinga and Jose, 2000). When 426 

both stimuli have similar values and the choice probability is relatively low, the drive to the 427 

network is high and it synchronizes in the gamma band. In contrast, when one of the objects has 428 

a value that is much larger than the other which results in high choice probabilities for that 429 

stimulus, it results in a net level of drive that makes the network synchronize in the beta band. 430 

We observed such a switch from gamma to beta frequencies in N3 e-type interneurons in LPFC 431 

when the choice probabilities changed from low to high (Figure 7). In order to show that such 432 

gamma-to-beta switch can indeed follow from such a E-I network as a function of the diversity 433 

of inputs we ran simulations in a firing rate E-I model (Keeley et al., 2017), described in detail in 434 

Appendix 1, which reproduces the gamma-beta switch (Figure 9-figure supplement 1). The 435 

network model simulations suggest that the N3 e-type inhibition in LPFC after color-cue onset 436 

might accomplish two functions. It leads to a normalization that transforms the object value into 437 

a choice probability (a soft winner-take-all gating of values, see eq. 3 in Methods) and its 438 

gamma synchrony indexes resolving strong competition when similar excitatory drive originates 439 

from different sources (Figure 9A).  440 



 441 

Secondly, we conceptualized and simulated a circuit model that reproduces the oscillatory 442 

findings in ACC where the N3 e-type neurons gamma-synchronized when outcomes were 443 

unexpected (high RPE) but synchronized in the theta band otherwise (low RPE). Such a gamma / 444 

theta switch is different to the gamma / beta switch seen in LPFC (see above). A parsimonious 445 

circuit realizing such a switch uses two separate interneuron populations (Is) that inhibit a 446 

common group of pyramidal cells (Es): A fast interneuron (I1) presumed to be PV+, 447 

corresponding to the N3 e-type (see Discussion), and a slower interneuron population (I2) 448 

(Figure 9B). When both are reciprocally connected with an excitatory population (E), an 449 

oscillatory regime emerges whose frequency varies depending on which interneuron population 450 

receives more excitatory drive (details in Appendix 1). When the I1 population receives stronger 451 

drive, gamma frequency synchronization dominates the network, while a relatively stronger 452 

drive to the I2 population causes neurons in the network to switch to slower, theta band 453 

synchronization. We documented this gamma / theta switching result in simulations of firing rate 454 

neurons in detail in the Appendix 1. The activity signatures of this E-I-I model resembles the 455 

empirical activity signatures. The theta synchronous activity that reflects the activity of I2 456 

neurons corresponds to low RPE trials, in which a reward R is received and the value V of the 457 

chosen stimulus was relatively high (a high V and a large R, the RPE is computed as = R - V  458 

(see eq. 1 in Methods) (Watabe-Uchida et al., 2017). In contrast, the gamma synchronous state 459 

that emerged with larger drive to the I1 neurons in the model corresponds to high RPE trials, in 460 

which a reward R is received, but the value V of the chosen stimulus was relatively low. This 461 

circuit motif is plausible when one assumes that the I1 neuron population is disinhibited when 462 

the chosen stimulus value is low. Such a disinhibition can be achieved by lowering the drive to 463 



I2 cells (which may require high values to be activated), or by assuming a separate disinhibitory 464 

circuit (for details see Appendix 1). In summary, the E-I-I motif reproduces the switch of 465 

gamma to theta synchronization we observed in ACC N3 e-type neurons. At the functional level, 466 

the circuit suggests that the emergence of gamma activity in this network indexes the detection 467 

of a mismatch between the received reward (as one source of excitation) and the chosen stimulus 468 

value (as another source of excitation) (Figure 9B). 469 

 470 

The described circuits provide proofs-of-concept that the synchronization patterns we observed 471 

in the N3 e-type interneurons in ACC and LPFC during periods of uncertain values and 472 

outcomes can originate from biologically realistic circuits. The results justify future studies 473 

generating and testing quantitative predictions that can be derived from these circuit motifs.   474 

 475 

Discussion 476 

We found that narrow spiking neurons in the medial and lateral prefrontal cortex of macaques 477 

cause a fast drop of local multiunit activity indicative of inhibitory interneurons. These putative 478 

interneurons in LPFC showed increased firing rates to the color-cue onset, encoded the rewarded 479 

color and correlated their rates with the choice probabilities, while in ACC their firing correlated 480 

with reward prediction errors during the processing of the reward outcome. These functional 481 

signatures were specifically linked to a putative interneuron subtype (N3) that showed 482 

intermediate narrow action potential waveforms and more regular firing patterns than expected 483 

from a Poisson process (LVs of N3 e-type neurons: 0.84). Moreover, this putative interneuron 484 

(N3) e-type) engaged in prominent event-triggered 35-45 Hz gamma band synchronization in 485 

each of the recorded brain areas. In LPFC, the N3 e-type synchronized at gamma to the cue when 486 



choice probabilities were low and uncertain, and in ACC the N3 e-type synchronized at gamma 487 

to the reward onset when the RPE was high and the reward outcome was unexpected. Thus, the 488 

same e-type showed functional firing correlations and gamma synchrony in LPFC and in ACC 489 

during periods of uncertainty about cues and outcomes, respectively.  Taken together, these 490 

findings point to a special role of the same type of interneuron in LPFC and in ACC to realize 491 

their area specific functional contribution to the color-based reversal learning task. This 492 

interpretation highlights several aspects of interneuron specific circuit functions.  493 

 494 

Characterizing narrow spiking interneurons in vivo  495 

The first implication of our findings is that narrow spiking neurons can be reliably subdivided in 496 

three subtypes based on their electrophysiological firing profiles. Distinguishing three narrow 497 

spiking neurons in vivo during complex task performance is a significant step forward to 498 

complement previous electrophysiological distinctions of three interneuron types in-vitro 499 

(Zaitsev et al., 2009; Torres-Gomez et al., 2020) or in vivo (Ardid et al., 2015; Dasilva et al., 500 

2019; Shin and Moore, 2019; Banaie Boroujeni et al., 2020c), and complementing the finer-501 

grained electrophysiological characterization of ‘e-types’ in-vitro that has been achieved with a 502 

rich battery of current injection patterns that are difficult to apply in the awake and behaving 503 

primate (Markram et al., 2004; Monyer and Markram, 2004; Medalla et al., 2017; Gouwens et 504 

al., 2019). This in-vitro ‘e-typing’ has distinguished eleven (Markram et al., 2015) or thirteen 505 

(Gouwens et al., 2019) distinct interneuron e-types in rodent somatosensory and mouse visual 506 

cortex, respectively. In the visual cortex, these classes entailed six fast spiking subclasses 507 

showing variably transient, sustained or pause-delay response patterns (Gouwens et al., 2019). 508 

Notably, the fast spiking interneuron classes in that study were characterized by a low coefficient 509 



of variation (CV), low bursting reflective of a low Local Variability (LV), and a feature-510 

importance analysis showed that the narrow action potential width and firing rate of these 511 

neurons were most diagnostic for separating the fast spiking from other neuron classes (c.f. 512 

Figure 2i, S9, and S14 in (Gouwens et al., 2019)). Our study used these diagnostic metrics (LV, 513 

CV, AP width and rate) directly for the clustering because we do not have the current injection 514 

responses available and distinguished three interneurons in the monkey compared to six fast 515 

spiking interneuron e-types in the mouse study. These results illustrate that our three interneuron 516 

e-types will encompass further subclasses that future studies should aim to distinguish in order to 517 

narrow the gap between the in-vivo e-types that we and others report in the monkey, and the in-518 

vitro e-types in the rodents that are more easily mapped onto specific molecular, morphological 519 

and genetic make-ups (Markram et al., 2015; Gouwens et al., 2019). As a caveat, this mapping of 520 

cell types between species might also reveal cell classes and unique cell class characteristics in 521 

nonhuman primate cortices that are not similarly evident in rodents as recently demonstrated in a 522 

cross-species study of non-fast spiking gamma rhythmic neurons in early visual cortex that were 523 

exclusively evident in the primate and not in mice (Onorato et al., 2020). 524 

 525 

With regard to the specific interneuron e-types we believe that the N3 e-type that showed 526 

functional correlations in two areas encompasses mostly parvalbumin PV+ expressing neurons, 527 

because of their narrow spikes, regular inter-spike intervals and their propensity to synchronize 528 

at gamma, which resemble the regular firing and gamma synchrony described for PV+ cells in 529 

the rodent (Cardin et al., 2009; Tiesinga, 2012; Stark et al., 2013; Amilhon et al., 2015; Chen et 530 

al., 2017; Gouwens et al., 2019). Moreover, similar to the N3 e-type responses to the attention 531 

cue, rodent dorsomedial frontal PV+ neurons systematically activate to preparatory cues while 532 



somatostatin neurons respond significantly less (Pinto and Dan, 2015). However, PV+ neurons 533 

are heterogeneous and entail Chandelier cells and variably sized basket cells (Markram et al., 534 

2004; Markram et al., 2015; Gouwens et al., 2019). It might therefore be an important 535 

observation that the N3 e-type was distinguished from other narrow spiking neurons by having a 536 

lower firing rate and an intermediate-narrow action potential shape as opposed to the narrowest 537 

waveform and highest firing rates that N1 e-types showed. The proposed tentative suggestion 538 

that N3 e-type neurons will be mostly PV+ cells also entails for the primate brain that they would 539 

not be part of calretinin (CR+) or calbindin (CB+) expressing cells as their expression profiles do 540 

not apparently overlap (Dombrowski et al., 2001; Medalla and Barbas, 2009; Raghanti et al., 541 

2010; Torres-Gomez et al., 2020).  542 

 543 

What is the circuit role of the N3 interneuron e-type?   544 

Assuming that N3 e-type neurons are partly PV+ neurons we speculate that this translates into 545 

gamma rhythmic inhibition of local circuit pyramidal cells close to their soma where they impose 546 

output gain control (Tiesinga et al., 2004; Bartos et al., 2007; Womelsdorf et al., 2014b; 547 

Tremblay et al., 2016). In our task, such local inhibition was linked to how uncertain the 548 

expected values of stimuli were (reflected in low choice probabilities) or how unexpected reward 549 

outcomes were (reflected in high RPE’s). These conditions are periods that require a behavioral 550 

adaptation for which N3 e-type mediated inhibition could be instrumental. For example, in LPFC 551 

pyramidal cells that encoded the rewarded color in trials prior to the un-cued reversal become 552 

irrelevant when the reversal links reward to the alternative color and hence need to be suppressed 553 

during the reversal. This suppression of neurons encoding the previously relevant but now 554 

irrelevant color might be realized through activation of the N3 e-type neuron.  Similarly, the N3 555 



e-type activation in ACC reflects a rise in inhibition when an unexpected outcome (high RPE) is 556 

detected. This activation might therefore facilitate the updating of value expectations to reduce 557 

future prediction errors (Sutton and Barto, 2018; Oemisch et al., 2019). 558 

 559 

The described, putative functions of N3 e-type activity provide direct suggestions on how they 560 

might contribute to transform inputs to outputs in a neural circuit. To understand this process, we 561 

devised and simulated circuit models of the activity signatures of inhibitory cells for the LPFC 562 

and the ACC (Figure 9, Appendix 1). For LPFC we devised an E-E-I circuit where the 563 

interneuron (I) population synchronized at gamma when the excitatory drive of two E-cell 564 

populations was similar (Appendix 1, Figure 9-figure supplement 1). This situation mimics the 565 

situation when the values of two objects are similar, resulting in a low choice probability. 566 

According to this circuit, the function of I cells that putatively correspond to the N3 e-type 567 

neurons in LPFC is twofold. They normalize the activity of the excitatory cells, and they are 568 

instrumental in gating the activity of one over the other excitatory cell population when there is 569 

competition among them. Such competition arises specifically when choice probabilities are low 570 

because the low p(choice) indicates that the expected values of the stimuli to choose from are 571 

similar which makes a choice difficult. We therefore speculate that the putative circuit function 572 

of the N3 e-type cells in LPFC is the gating of competing excitatory inputs (Figure 9A). 573 

 574 

For ACC, we devised an E-I-I circuit where the population of the N3 e-type putatively 575 

corresponded to one population of fast spiking inhibitory neurons (I1) that synchronized to 576 

gamma when receiving stronger excitatory drive than another population of slower inhibitory 577 

neurons (I2) (Figure 9-figure supplement 1B). The enhanced excitation of the I1 over the I2 578 



population was modeled to correspond to trials with high RPE, which occurred when a reward 579 

(R) was received but the expected value (V) of the chosen stimulus was relatively low (a large 580 

RPE defined as the difference of R-V). In this situation a stronger excitatory drive and 581 

consequently a gamma synchronous activity, could follow from disinhibiting the I1 population. 582 

Such a disinhibition could originate from reduced inhibition from the I2 cells in trials with low 583 

stimulus value, or it could originate from disinhibition from other neurons. These scenarios 584 

deserve explicit testing in future studies (for further discussion, see Appendix 1). They gain 585 

plausibility from anatomical studies that report that a large proportion of connections to 586 

interneurons go to disinhibitory interneurons that express calretinin and are distinct from the fast-587 

spiking PV+ neurons that more likely entail the N3 e-type neurons (Medalla and Barbas, 2009, 588 

2010). In summary, the proposed circuit model for the ACC suggests that the N3 e-type neurons 589 

activate when there is a mismatch of reward and chosen value. Activation of the N3 e-type 590 

neurons may thus be a (bio-) marker that predictions need to be updated to improve future 591 

performance.   592 

 593 

We acknowledge that the proposed circuit models represent merely a proof-of-concept that says 594 

that the neuronal activities can originate in reasonable and previously described E-I motifs. They 595 

are not full biophysical implementations of the actual reversal learning task and entail finer 596 

predictions that await quantitative testing in future studies. They motivate combined 597 

electrophysiological and optogenetic studies in the primate to clarify cell-type specific circuit 598 

functions during higher cognitive operations.  599 

 600 

Interneuron-specific gamma synchronization: Comparison to previous studies.  601 



Two major findings of our study pertain to spike-LFP gamma band synchronization. First, we 602 

found that N3 e-type neurons showed an event-triggered synchrony increase in the same 35-45 603 

Hz gamma frequency band in both LPFC and ACC when there was uncertainty about the correct 604 

choice (low p(choice) or about the outcomes (high RPE) (see Figure 7C and 8F). 605 

Synchronization of the N3 e-type switched from a gamma frequency to the beta frequency in 606 

LPFC when the choices became more certain, and to the theta frequency in ACC when outcomes 607 

became more certain. An intrinsic propensity for generating gamma rhythmic activity through, 608 

e.g. GABAaergic time constant, is well described for PV+ interneurons (Wang and Buzsaki, 609 

1996; Bartos et al., 2007; Womelsdorf et al., 2014b; Chen et al., 2017) and is a documented 610 

activity signature even at moderate excitatory feedforward drive that might be more typical for 611 

prefrontal cortices than earlier visual cortices (Cardin et al., 2009; Vinck et al., 2013; Shin and 612 

Moore, 2019; Onorato et al., 2020).  613 

 614 

Our findings provide strong empirical evidence that narrow spiking interneurons are the main 615 

carriers of gamma rhythmic activity in nonhuman primate prefrontal cortex during cue and 616 

outcomes processing (Whittington et al., 2000; Hasenstaub et al., 2005; Bartos et al., 2007; 617 

Hasenstaub et al., 2016; Chen et al., 2017; Shin and Moore, 2019). This conclusion resonates 618 

well with rodent studies that document how interneurons in infra-/peri-limbic and cingulate 619 

cortex engage in gamma synchrony (Fujisawa and Buzsaki, 2011; Cho et al., 2015).  620 

 621 

The second major implication of the gamma synchronous N3 e-type neurons is that gamma band 622 

synchrony was associated with task epochs in which neural circuits realize a circuit function that 623 

can be considered to be ‘area specific’. In LPFC, the gamma increase was triggered by the color-624 



cue onset of two peripherally presented stimuli that instructed covertly shifting attention. Our 625 

circuit model (Figure 9A) illustrates that cue related gamma was restricted to periods when 626 

object values were similar, and the animal still learned which object is most reward predictive. 627 

The control of learning what is relevant during cognitively demanding tasks is a key function of 628 

the LPFC, suggesting that gamma activity emerges when this key function is called upon (Miller 629 

and Cohen, 2001; Szczepanski and Knight, 2014; Cho et al., 2020). A similar scenario holds for 630 

the ACC whose central function is often considered to monitor and evaluate task performance 631 

and detect when outcomes should trigger a change in behavioral strategies (Shenhav et al., 2013; 632 

Heilbronner and Hayden, 2016; Alexander and Brown, 2019; Fouragnan et al., 2019).  In ACC, 633 

the gamma increase was triggered by an unexpected, rewarded outcome (high RPE). Thus, the 634 

N3 e-type specific gamma band signature occurred specifically in those trials with conflicting 635 

stimulus values requiring behavioral control to reduce the prediction errors through future 636 

performance (Figure 9A). Considering this ACC finding together with the LPFC finding 637 

suggests that gamma activity of N3 e-type neurons indexes a key function of these brain areas, 638 

supporting recent causal evidence from rodent optogenetics (Cho et al., 2020).  639 

 640 

Consistent with the proposed importance of interneurons for area-specific key functions prior 641 

studies have documented the functional importance of inhibition in these circuits. Blocking 642 

inhibition with GABA antagonists like bicuculline not only renders fast spiking interneurons 643 

nonselective during working memory tasks but abolishes the spatial tuning of regular spiking 644 

(excitatory) cells during working memory tasks in monkeys (Sawaguchi et al., 1989; Rao et al., 645 

2000), disturbs accuracy in attention tasks (Paine et al., 2011) and reduces set shifting flexibility 646 

by enhancing perseveration (Enomoto et al., 2011). Similarly, abnormally enhancing GABAa 647 



levels via muscimol impairs working memory and set shifting behavior (Rich and Shapiro, 2007; 648 

Urban et al., 2014) and can result in either maladaptive impulsive behaviors (Paine et al., 2015), 649 

and when applied in anterior cingulate cortex to perseveration (Amiez et al., 2006). Thus, altered 650 

medial and lateral prefrontal cortex inhibition is closely linked to an inability to adjust attentional 651 

strategies given unexpected outcomes. This evidence supports our studies suggestion of the 652 

importance of inhibitory neuron involvement in resolving uncertainties during adaptive 653 

behaviors.   654 

 655 

Taken together, our interneuron specific findings in primate LPFC and ACC stress the 656 

importance of interneurons to influence circuit activity beyond a mere balancing of excitation. 657 

Multiple theoretical accounts have stressed that some types of interneurons ‘control information 658 

flow’ (Fishell and Kepecs, 2019), by imposing important filters for synaptic inputs to an area and 659 

gain-control the output from that area (Akam and Kullmann, 2010; Kepecs and Fishell, 2014; 660 

Womelsdorf et al., 2014b; Roux and Buzsaki, 2015; Cardin, 2018). Testing these important 661 

circuit functions of interneurons has so far been largely limited to studies using molecular tools. 662 

Our study addresses this limitation by characterizing putative interneurons, delineating their 663 

suppressive effects on the circuit and highlighting their functional activation during reversal 664 

learning. The observed interneuron specific, gamma synchronous coding of choice probabilities 665 

and prediction errors lends strong support to study cell-type specific circuit mechanisms of 666 

higher cognitive functions.  667 

 668 

Materials and Methods 669 



All animal care and experimental protocols were approved by the York University Council on 670 

Animal Care (ethics protocol 2015-15-R2) and were in accordance with the Canadian Council on 671 

Animal Care guidelines.  672 

 673 

Electrophysiological Recording  674 

Data was collected from two male rhesus macaques (Macaca mulatta) from the anterior cingulate 675 

cortex and lateral prefrontal cortex as described in full in (Oemisch et al., 2019). Extra-cellular 676 

recordings were made with tungsten electrodes (impedance 1.2 - 2.2 MOhm, FHC, 677 

Bowdoinham, ME) through rectangular recording chambers implanted over the right hemisphere. 678 

Electrodes were lowered daily through guide tubes using software-controlled precision micro-679 

drives (NAN Instruments Ltd., Israel). Wideband local field potential (LFP) data was recorded 680 

with a multi-channel acquisition system (Digital Lynx SX, Neuralynx) with a 32kHz sampling 681 

rate. Spiking activity was obtained following a 300 - 8000 Hz passband filter and further 682 

amplification and digitization at a 32 kHz sampling rate. Sorting and isolation of single unit 683 

activity was performed offline with Plexon Offline Sorter, based on the first two principal 684 

components of the spike waveforms and the temporal stability of isolated neurons. Only well 685 

isolated neurons were considered for analysis (Ardid et al., 2015). Experiments were performed 686 

in a custom-made sound attenuating isolation chamber. Monkeys sat in a custom-made primate 687 

chair viewing visual stimuli on a computer monitor (60Hz refresh rate, distance of 57cm) and 688 

performing a feature-based attention task for liquid reward delivered by a custom-made valve 689 

system in (Oemisch et al., 2019).  690 

 691 

Anatomical reconstruction of recording locations 692 

Recording locations were identified using MRI images obtained following initial chamber 693 

placement. During MR scanning, we placed a grid marking the chamber center and peripheral 694 

positions as well as a diluted iodine solution inside the chamber for visualization. This allowed 695 

the referencing of target regions to the chamber center in the resulting MRI images. The 696 

positioning of electrodes was estimated daily using the MRI images and audible profiles of 697 

spiking activity. The relative coarseness of the MRI images did not allow us to differentiate the 698 

specific layer of recording locations in lateral prefrontal and anterior cingulate cortices.  699 

 700 

Task Paradigm  701 

The task (Figure 1) required centrally fixating a dot and covertly attending one of two 702 

peripherally presented stimuli (5° eccentricity) dependent on color-reward associations. Stimuli 703 

were 2.0° radius wide block sine gratings with rounded-off edges, moving within a circular 704 

aperture at 0.8 °/s and a spatial frequency of 1.2 (cycles/°). Color-reward associations were 705 

reversed without cue after 30 trials or until a learning criterion was reached, which makes this 706 

task a color-based reversal learning task.  707 

 708 

Each trial began with the appearance of a grey central fixation point, which the monkey had to 709 

fixate. After 0.5 - 0.9s, two black/white gratings appeared to the left and right of the central 710 

fixation point. Following another 0.4s the two stimulus gratings either changed color to green 711 

and red (monkey K: cyan and yellow), or they started moving in opposite directions up and 712 

down, followed after 0.5 - 0.9s by the onset of the second stimulus feature that had not been 713 

presented so far, e.g. if after 0.4s the grating stimuli changed color then after another 0.5 - 0.9s 714 

they started moving in opposite directions. After 0.4 - 1s either the red and green stimulus 715 



dimmed simultaneously for 0.3s or they dimmed separated by 0.55s, whereby either the red or 716 

green stimulus could dim first. The dimming of the rewarded stimulus represented the GO cue to 717 

make a saccade to one of two response targets displayed above and below the central fixation 718 

point. The dimming of the no-rewarded stimulus thus represented a NO-GO cue triggering the 719 

withholding of a response and waiting until the rewarded stimulus dimmed. The monkeys had to 720 

keep central fixation until this dimming event occurred.  721 

 722 

A saccadic response following the dimming was rewarded if it was made to the response target 723 

that corresponded to the (up- or down-ward) movement direction of the stimulus with the color 724 

that was associated with reward in the current block of trials, e.g. if the red stimulus was the 725 

currently rewarded target and was moving upward, a saccade had to be made to the upper 726 

response target at the time the red stimulus dimmed. A saccadic response was not rewarded if it 727 

was made to the response target that corresponded to the movement direction of the stimulus 728 

with the non-reward associated color. Hence, a correct response to a given stimulus must match 729 

the motion direction of that stimulus as well as the timing of the dimming of that stimulus. This 730 

design ensures the animal could not anticipate the time of dimming of the current target stimulus 731 

(which could occur before, after, or at the same time as the second stimulus), and thus needed to 732 

attend continuously until the ‘Go-signal’ (dimming) of that stimulus occurred. If dimming of the 733 

target stimulus occurred after dimming of the second/distractor stimulus, the animal had to 734 

ignore dimming of the second stimulus and wait for dimming of the target stimulus. A correct 735 

response was followed by 0.33ml of water reward.  736 

 737 

The color-reward association remained constant for 30 to a maximum of 100 trials. Performance 738 

of 90% rewarded trials (calculated as running average over the last 12 trials) automatically 739 

induced a block change. The block change was un-cued, requiring monkeys to use the trial’s 740 

reward outcome to learn when the color-reward association was reversed. Reward was delivered 741 

deterministically.  742 

 743 

In contrast to color, other stimulus features (motion direction and stimulus location) were only 744 

randomly related to reward outcome – they were pseudo-randomly assigned on every trial. This 745 

task ensured that behavior was guided by attention to one of two colors, which was evident in 746 

monkeys choosing the stimulus with the same color following correct trials with 89.5% 747 

probability (88.7%/ 90.3% for monkey H/K), which was significantly different from chance (t-748 

test, both p < .0001).  749 

 750 

Monkeys performed the task at 83 / 86 % (monkey’s H / K) accuracy (excluding fixation break 751 

errors). The 17/14 % of errors were composed on average to 50 / 50 % of erroneous responding 752 

to the dimming of the distractor when it dimmed before the target and 34 / 37 % of erroneous 753 

responding at the time when target and distractor dimmed simultaneously but the monkey chose 754 

the distractor direction, and 16 / 13 % of error were responses when the target dimmed before 755 

any distractor dimming and the choice was erroneously made in the direction of the distractor. 756 

  757 

Behavioral analysis of the animal’s learning status  758 

To characterize the reversal learning status of the animals we determined the trial during a block 759 

when the monkey showed consistent above chance choices of the rewarded stimulus using the 760 

expectation maximization algorithm and state–space framework introduced by (Smith et al., 761 



2004), and successfully applied to reversal learning in our previous work (Balcarras et al., 2016; 762 

Hassani et al., 2017; Oemisch et al., 2019). This framework entails a state equation that describes 763 

the internal learning process as a hidden Markov or latent process and is updated with each trial. 764 

The learning state process estimates the probability of a correct (rewarded) choice in each trial 765 

and thus provides the learning curve of subjects. The algorithm estimates learning from the 766 

perspective of an ideal observer that takes into account all trial outcomes of subjects’ choices in a 767 

block of trials to estimate the probability that the single trial outcome is reward or no reward. 768 

This probability is then used to calculate the confidence range of observing a rewarded response. 769 

We identified a “Learning Trial” as the earliest trial in a block at which the lower confidence 770 

bound of the probability for a correct response exceeded the p = 0.5 chance level. 771 

 772 

Reinforcement learning modeling to estimate choice probability and expected value of color 773 

The color reversal task required monkeys to learn from trial outcomes when the color reward 774 

association reversed to the alternate color. This color-based reversal learning is well accounted 775 

for by an attention augmented Rescorla Wagner reinforcement learning model (‘attention-776 

augmented RL’) that we previously tested against multiple competing models (Balcarras et al., 777 

2016; Hassani et al., 2017; Oemisch et al., 2019). Here, we use this model to estimate the trial-778 

by-trial fluctuations of the expected value for the rewarded color, the choice probability 779 

p(choice) of the animal’s stimulus selection and the positive reward prediction error (RPE, ‘R-780 

V’, see eq. 1, below). P(choice) increased and RPE decreased with learning similar to the 781 

increase in the probability of the animal to make rewarded choices (Figure 2-figure supplement 782 

3). They were highly anticorrelated (r=-0.928) (Figure 2-figure supplement 3A). 783 

  784 

The attention augmented RL is a standard Q Learning model with an added decay constant that 785 

reduces the value of those features that are part of the non-chosen (i.e. non-attended) stimulus on 786 

a given trial. On each trial t this model updates the value V for features i of the chosen stimulus 787 

according to  788 

𝑉𝑖,𝑡+1 = 𝑉𝑖,𝑡 + 𝜂(𝑅𝑡 − 𝑉𝑖,𝑡),         (eq. 1). 789 

where R denotes the trial outcome (0=non-rewarded, 1=rewarded) and 𝜂 is the learning rate 790 

bound to [0 1]. For the same trial the feature values i of the non-chosen stimulus decay according 791 

to  792 

𝑉𝑖,𝑡+1 = (1 − 𝜔)𝑉𝑖,𝑡 ,           (eq. 2) 793 

With ω denoting the decay parameter. Following these value updates, the next choice Ct+1 is 794 

made by a softmax rule according to the sum of values that belongs to each stimulus. We 795 

indicate the stimulus by the index j and the set of feature values that belong to it by set sj, (for 796 

instance, color x, location y, direction z): 797 

𝑃(𝐶𝑡+1 = 𝑗) =
exp(𝛽∑ 𝑉𝑖,𝑡𝑖∈𝑠𝑗

)

∑ exp(𝛽 ∑ 𝑉𝑖,𝑡𝑖∈𝑠𝑗
)𝑗
        (eq. 3). 798 

Equation 4 defines the choice probability, or p(choice), that is used for the neuronal analysis of 799 

this manuscript (Sutton and Barto, 2018). P(choice) increases with trials since reversal (Figure 800 

2-figure supplement 3D), indicating a reduction in the uncertainty of the choice the more 801 

information is gathered about the value of the stimuli.  802 

  803 

We optimized the model by minimizing the negative log likelihood over all trials using up to 20 804 

iterations of the simplex optimization method to initialize the subsequent call to fmincon matlab 805 

function, which constructs derivative information. We used an 80/20% (training/test dataset) 806 



cross-validation procedure repeated for n=50 times to quantify how well the model predicted the 807 

data. Each of the cross-validations optimized the model parameters on the training dataset. We 808 

then quantified the log-likelihood of the independent test dataset given the training datasets 809 

optimal parameter values. The cross-validation results were compared across multiple models in 810 

a previous study (Oemisch et al., 2019). Here, we used the best-fitting model based on this prior 811 

work.     812 

 813 

 814 

Waveform analysis 815 

We initially analyzed 750 single units and excluded 24 units that showed double troughs or those 816 

that had overall less than 50 spike number. We then analyzed 726 highly isolated cells in ACC 817 

(397 cells), and PFC (149 cells area 8, and 180 cells dLPFC). We trough-aligned all action 818 

potentials (AP) and normalized them to the range of -1(trough) to 1 (peak). APs were then 819 

interpolated from their original time-step of 1/32000 s to a new time step of 1/320000 s. To 820 

characterize AP waveforms, we initially computed three different measures of Trough to Peaks 821 

(T2P) and Time for Repolarization (T4R) and Hyperpolarization Rate (HR) according to eq. 4-6: 822 

𝑇2𝑃 =  (𝑡𝑡𝑟𝑜𝑢𝑔ℎ − 𝑡𝑝𝑒𝑎𝑘)      (eq.4),  823 

𝑇4𝑅 =  (𝑡0.75𝑥𝑝𝑒𝑎𝑘 − 𝑡𝑝𝑒𝑎𝑘)          (eq.5),  824 

𝐻𝑅 = 
1

𝑡𝑉𝑝𝑒𝑎𝑘−𝑡𝑉0.63𝑥𝑝𝑒𝑎𝑘
      (eq.6),        825 

where tpeak is time of the most positive value (peak) of the spike waveform, ttrough is time of the 826 

most negative value of the spike waveform, 𝑡0.75𝑥𝑝𝑒𝑎𝑘 is the time of spike waveform after the 827 

peak with a voltage equal to 75% of the peak and  𝑡𝑉0.63𝑥𝑝𝑒𝑎𝑘 is the time of the spike waveform 828 

before the peak with a voltage value equal to 63% of the peak (Suppl. Figure S2A,B). We 829 

performed Hartigan’s dip test was to test the unimodality hypothesis of distributions (P<0.05). 830 

HR and T2P were highly correlated (r=-.76). We chose HR as it was able to reject the Hartigan’s 831 

dip test null hypothesis of distribution unimodality (P=0.01). We then used HR and T4R to 832 

characterize waveform dynamics. T4R interval likely describes dynamics of the waveform in a 833 

period that calcium activated potassium channels are activated and most voltage-gated potassium 834 

channels are closed. While, HR reflects a time interval that most of sodium channels are closed 835 

and potassium channels have greater contribution to the dynamics of the waveform (Bean, 2007). 836 

Both T4R and HR and their first component of the PCA were fitted with a bi-modal Gaussian 837 

distribution. We applied Akaike's and Bayesian information criteria for the two vs one Gaussian 838 

fits to select the best fit to the waveform measures.  839 

 840 

 841 

Data analysis  842 

Analysis of spiking and local field potential activity was done with custom MATLAB code 843 

(Mathworks, Natick, MA), utilizing functions from the open-source Fieldtrip toolbox 844 

(http://www.ru.nl/fcdonders/fieldtrip/).  845 

For all statistical tests that were performed on time-series, we used permutation randomization 846 

test and multiple comparisons with both primary and secondary alpha level of 0.05, unless the 847 

type of multiple comparison correction is explicitly mentioned.  848 

 849 

Spike-triggered multiunit modulation  850 

http://www.ru.nl/fcdonders/fieldtrip/


We used spike-triggered multiunit analysis to estimate whether its spiking increased or decreased 851 

concomitantly with the surrounding neural activity - measured on a different electrode located 852 

~200-450 m from the electrode measuring the spiking activity. To compute the relative multi-853 

unit activity (MUA) of the signal before and after spike occurrences, we used the Wide-Band 854 

signal and bandpass filtered the signal to a frequency range of [800 3000] Hz. The signal was 855 

then rectified to positive values. For each single unit, we extracted a period of [-50 50] ms 856 

around each spike aligned to the spike trough and estimated the power time-course of the signal 857 

using a sliding median filter window (window length=5 ms) over the extracted signal every 0.5 858 

ms. For a given single unit, we computed the Z-transformation of each spike-aligned median 859 

filtered peak-amplitude by subtracting its mean and dividing by its standard deviation. This step 860 

normalized the MUA around the spike times. We then computed the average Z-transformed 861 

MUA across all spikes for each single unit. To compare the post spike MUA to pre-spike MUA, 862 

we computed the spike triggered MUA modulation ratio (SMUM) according to equation 863 

𝑆𝑀𝑈𝑀 =
𝑀𝑈𝐴𝑝𝑜𝑠𝑡−𝑀𝑈𝐴𝑝𝑟𝑒

𝑀𝑈𝐴𝑝𝑟𝑒
. Pre-spike MUA was the mean in a period of 10ms before the spike 864 

and the Post-spike MUA was the mean in a period of 10ms after the spike. 865 

  866 

For comparison of spike triggered MUA modulation of broad vs narrow spiking neurons we used 867 

the Wilcoxon test on the computed ratio, under the null hypothesis that there is no difference of 868 

MUA strength before and after the spike occurrence for narrow vs broad spiking neurons. We 869 

also performed the test on each individual group compare with population.  870 

 871 

We also tested whether spike triggered MUA modulation differed varies with the distance of the 872 

electrode tip that measured the spike providing neuron and the electrode that measured the 873 

MUA, but found no distance dependency (Wilcoxon test, n.s.).  874 

 875 

Analysis of Firing Statistics 876 

To analyze firing statistics of cells, we followed procedures described in by (Ardid et al., 2015), 877 

and for each neuron we computed the mean firing rate (FR), Fano factor (FF, mean of variance 878 

over mean of the spike count in consecutive time windows of 100 ms), the coefficient of 879 

variation (CV, standard deviation over mean of the inter-spike intervals, Figure 1-figure 880 

supplement 2C), and a measure of local variability of spike trains called the local variation (LV, 881 

Figure 1-figure supplement 2D). LV measures the regularity/burstiness of spike trains. It is 882 

proportional to the square of the difference divided by sum of two consecutive inter-spike 883 

intervals (Shinomoto et al., 2009).  884 

 885 

Cell clustering technique 886 

We followed procedures described in (Ardid et al., 2015), with minor adjustments to test whether 887 

neurons fall into different clusters according to the dynamics of their waveform dynamic 888 

measures and their firing statistics. For main clustering analysis, we used the K-Means clustering 889 

algorithm MATLAB/GNU Octave open-source code, freely available in public Git repository 890 

https://bitbucket.org/sardid/clusteringanalysis. We used the K-Means clustering algorithm to 891 

characterize subclasses of cells within the dataset upon the Euclidian distances of neuronal 892 

measures. We initially used three measures of the waveform: Hyperpolarization Rate, Time for 893 

repolarization, and their first component of PCA. For the firing statistic measures we used local 894 

variation, coefficient of variance, Fano factor, and firing rate. The k-Means clustering algorithm 895 

is sensitive to duplicated and uninformative measures. We set a criterion of .9 of Spearmans’ 896 

https://bitbucket.org/sardid/clusteringanalysis


correlation coefficient to exclude measures that were highly correlated (1
st
 PCA was excluded). 897 

To reduce the biases upon on variable magnitudes, we z-score transformed each measure and 898 

normalized it to a range of [0 1]. We then computed the percent of variance explained by each 899 

measure from overall variance in our data. The measures were sorted based on their explaining 900 

variance of the overall variance within data. To disregard uninformative measures, a cut-off 901 

criterion of 90% were set to the cumulated sorted variance explained across measures. The Fano 902 

Factor was excluded based on this criterion from the k-Means clustering (Figure 4-figure 903 

supplement 2A).   904 

 905 

Determining cluster numbers 906 

We used a set of statistical indices to determine a range of number of clusters that best explains 907 

our data. These indices evaluate the quality of the k-means clustering (Ardid et al., 2015): Rand, 908 

Mirkin, Hubert, Silhouette, Davies-Bouldin, Calinski-Harabasz, Hartigan, Homogeneity and 909 

Separation indexes (Figure 4-figure supplement 1A). We then run 50 replicates of k-means 910 

clustering for k=1-40 number of clusters. For each k, we chose the best replicate based on the 911 

minimum squared Euclidian distances of all cluster elements from their respective centroids. 912 

While validity measures were improved by increasing number of clusters, the benefit was slowed 913 

down for number of clusters more than 5, suggesting a range of at least five to 15 clusters that 914 

could be accountable for our dataset. We then used a meta-clustering algorithm to determine the 915 

most appropriate number of clusters: n=500 realizations of the k-means (from k=5 to k=15) were 916 

run. For each k and n 50 replicates of the clustering were run and the best replicate were selected. 917 

For each k and across n, we computed the probability that different pairs of elements belonged to 918 

the same cluster. To identify reliable from spurious clusters, we used a probability threshold (P 919 

>= 0.9) and considered only reliable clusters with at least 5 neurons to remove those composed 920 

of outliers. From the diagonal matrix of pairing cells into the same clusters using the defined 921 

criterion (P >= 0.9), clustering with 8 number of classes reached the highest number of cells 922 

grouped together (100%, Figure 4-figure supplement 1B). The final clustering was then 923 

visualized with a dendrogram based on squared Euclidean distances between the cluster 924 

centroids. We validated finally determined number of clusters using Akaike’s and Bayesian 925 

criteria which showed the smallest value for k=8 (AIC: [-17712, -17735, -18476, -11114] and 926 

BIC: [-1.7437, -1.7368, -1.8109, -1.0747], for k= [6,7, 8,9]).   927 

 928 

Validation of the identified cell classes 929 

We used dataset randomization (n = 200 realizations) as in (Ardid et al., 2015), to validate our 930 

meta-clustering analysis by computing two validity measures. First, In each realization, each of 931 

eight clusters were associated to the closest cell class in Figure 4A,B. From all realizations and 932 

for each cell class, the difference between the mean of all clusters that were associated to the 933 

same cell class with respect to the mean of all clusters that were not associated to that cell class 934 

is computed versus when the clusters were randomly assigned to the cell classes (Figure 2-935 

figure supplement 4C). Second, we validated the reliability of cell class assignment using n = 936 

200 realizations of a randomization procedure that calculated the proportion of consistently 937 

assigned cells to a class compared to other cells assigned to that class. The proportion of class-938 

matching cells with respect to control was systematically higher than class-matching when using 939 

a bootstrap procedure with random assignment of class labels (Figure 2-figure supplement 4D). 940 

We further validated the meta-clustering results for each monkey separately. We validated the 941 

results, analogous to what is describe above. First, validation according to the distances of 942 



clusters for each monkey (Figure 4-figure supplement 2E).   Second, validation according to 943 

the percent number of cells matches for each monkey (Figure 4-figure supplement 2F).    944 

 945 

Correlation of local variation with burst index 946 

The Local Variation (LV) measured how regular neighboring spike trains are, leading to higher 947 

values when neurons fire short interspike interval (ISIs) spikes (bursts) intermittent with pauses. 948 

We quantified how the LV correlated with the likelihood of neurons to show burst spikes. We 949 

calculated the burst proportion as: number of ISIs<5 ms divided by number of ISIs<100 ms 950 

similar to (Constantinidis et al., 2002). To control for effect of firing rate on the measure, we 951 

normalized it by the firing rate that would have been expected for a Poisson distribution of ISIs.  952 

 953 

We used burst-index computed for neurons and grouped neurons in PFC and ACC into two sub-954 

groups, high burst proportion and low burst proportion (Log(BI)>0 and Log(BI)<0 respectively). 955 

We computed the proportion of neurons in each group that showed significant correlation with 956 

RPE (in ACC) and Choice Probability (in PFC). In PFC, 25% of high BI neurons and 27.5% of 957 

low BI neurons were significantly correlated with Choice probability. In ACC, however, 47% of 958 

high BI neurons and 35.2% of low BI neurons were significantly correlated with RPE. Chi-959 

square test failed to show significant differences between two groups (low vs high BI) for 960 

proportion of significantly correlated cells with RPE (in ACC, P=0.15), and with Choice 961 

Probability (in PFC, P=0.75). The correlation of LV and BI is for all neurons is shown in Figure 962 

1-figure supplement 2F. 963 

 964 

Spike-LFP synchronization analysis 965 

Adaptive Spike Removal method was used on wide-band signal to remove artifactual spike 966 

current leakage to LFP (details in (Banaie Boroujeni et al., 2020a)). We then used the fieldtrip 967 

toolbox on the spike removed data to compute the Fourier analysis of the local field potential 968 

(LFP). Spike removed signals were resampled with 1000 Hz sampling rate. For each frequency 969 

number, Fourier transform was performed on 5 complete frequency cycles using an adaptive 970 

window around each spike (two and a half cycles before and after the spike). We then computed 971 

the pairwise phase consistency (PPC) to measure spike-LFP synchronization.   972 

 973 

To determine at which frequency-band single neurons showed reliable spike-LFP PPC, a 974 

permutation test was adapted and used to construct a permutation distribution of spike-LFP PPC 975 

under the null hypothesis of no significant statistical dependencies of spike-LFP phase locking 976 

were preserved between spike phases and across frequencies. Then, each bands of significant 977 

frequencies were identified and for each band the sum of PPC value (which is unbiased by 978 

number of spikes) was computed. We then determined the significance based on PPC band-mass. 979 

To determine whether the spectrum of spike-LFP synchronization measure (PPC) contains peaks 980 

that are statistically significant we used four criteria similar to (Ardid et al., 2015). These criteria 981 

ensure to indicate reliable frequencies that show phase-consistent spiking. First, detected peaks 982 

had to be Rayleigh test significant (P<0.05), to reject the homogeneity hypothesis of the phase 983 

distribution. Second, each peak had to have PPC value greater than 0.005. Third, each peak had 984 

to have peak prominence of at least 0.0025 from its neighboring minima to disregard locally 985 

noisy and possibly spurious PPC peaks. Fourth, detected peaks had to have PPC value greater 986 

than 25% of PPC range. 987 

 988 



Statistical analysis on the class-specific PPC peak distribution 989 

To determine whether clusters show significant proportion of PPC peaks in a specific frequency 990 

band, 1000 samples with the same size to each class was selected from the population of 991 

neurons. For each sample we computed the mean to construct a distribution of sample means 992 

under the null hypothesis that no class show proportion of PPC peak in frequency bands different 993 

than the population of samples. The distribution of peak proportion for each class was then 994 

compared with identified 95% confidence interval of the population of samples. This procedure 995 

was done separately for classes of neurons in PFC and ACC (Figure 6 and Figure 6-figure 996 

supplement 1). 997 

 998 

Analysis of the firing onset-responses to the Color onsets and Error/Reward Outcome onsets 999 

For each neuron, the spike density was computed using a gaussian window of 600ms (std 50ms) 1000 

around the Cue onsets, Error outcome onsets and Reward onsets across trials. We then performed 1001 

the z-score transformation of event onset aligned mean response of each cell over trials, by 1002 

subtracting the pre-onset mean of spike density divided by its standard deviation (a time window 1003 

of [-500ms 0ms] prior to the event onsets). To investigate class specific event response, we used 1004 

a permutation approach and randomly selected 1000 samples with a class size same as each 1005 

class. We then constructed a distribution of mean samples under the null hypothesis that no class 1006 

show event response different than sample population. Cell classes that showed significantly 1007 

different response than the population were then identified in a duration that they show response 1008 

more extreme than 2 standard deviation from the population of samples. We performed these 1009 

tests separately for classes in area PFC and ACC and event onsets: Color-Cue, Motion-Cue, 1010 

Error outcome, and reward outcome.  1011 

 1012 

For Broad vs Narrow spiking cell comparison of event onset response, we randomly shuffled the 1013 

label of neurons and constructed a distribution of 1000 times randomly sampled difference of 1014 

mean of Narrow and Broad spiking cells. We then computed 95% CI of the population samples 1015 

and computed the most extreme 5% of time courses from the 95% CI under the null hypothesis 1016 

that Broad and Narrow population of neurons do not show significant mean difference responses 1017 

to the event onsets.  1018 

 1019 

 1020 

Analysis of effect size of the firing onset-responses to the Cue onsets and Error/Reward outcome 1021 

event onsets 1022 

For effect size analysis of cell class specific response to each of the onsets, we computed the 1023 

mean difference of each cell class from each of 1000 randomly labeled samples divided by their 1024 

pooled standard deviation to compute Cohen’s d for each randomly selected sample. At the end 1025 

we averaged over the 1000 unsigned Cohen’s d computed for each cell class. The procedure was 1026 

done separately for ACC and LPFC classes and for Cue onsets and Error/Reward outcome event 1027 

onsets. (Supplementary File 1). 1028 

 1029 

 1030 

Analysis of time-resolved spike-LFP coherence under different behavioral conditions 1031 

To analyze the spike-LFP phase synchronization of neurons for the trials with 50% lowest and 1032 

the 50% highest reward prediction error (RPE) for ACC neurons, and for the trials with 50% 1033 

lowest and 50% highest choice probability (p(choice)) for LPFC neurons we computed time-1034 



resolved spike-LFP pairwise phase consistency. First, we divided trials into two groups of high 1035 

and low RPE and p(choice) values (trials were assigned based on their median value for each 1036 

experimental session). Then, for each neuron, RPE, and p(choice)condition we extracted spikes 1037 

and their phase synchronization to the LFP in different frequencies (4-80 Hz, 1 Hz resolution) by 1038 

applying Fourier transform on a hanning-tapered LFP signal (+/- 2.5 frequency cycles around 1039 

each spike). Then we computed the PPC for moving windows of +/-350ms every 50 ms around 1040 

the outcome onset (for RPE) and around color onset (for p(choice)). We included only neurons 1041 

with at least 50 spikes across trials, using on average 44 (SE 2) trials. To control for spike 1042 

number, we repeated the procedure 500 times with a random subsample of 50 spikes of a neuron 1043 

for each window before computing the PPC. For each neuron, behavioral condition, and window 1044 

we calculated the average PPC over the random subsamples. 1045 

 1046 

Statistical Analysis of time resolved spike-LFP coherence for putative interneurons and broad 1047 

spiking neurons 1048 

Statistics on the time-resolved coherence was computed in two steps. In the first step, we tested 1049 

for each post-event time window the null hypothesis that N3-type neurons and broad spiking 1050 

neurons showed similar spike-LFP synchronization strength after the event onset compared to 1051 

the time windows prior to the event. To test this, we first normalized the time resolved coherence 1052 

for each neuron to the baseline coherence (-850ms to 0ms) before reward or attention-cue onset 1053 

(in ACC and PFC respectively). We then randomly selected 1000 sample of neurons from the 1054 

population with the same size as neurons in class N3 and broad cells under the null hypothesis 1055 

that N3 class and broad spiking neurons do not show different synchronization pattern triggered 1056 

by event onset compared with population. For each sample we extracted the 95% CIs, and over 1057 

the population of samples we extracted the most extreme 5% of the previously extracted CIs and 1058 

set the final 95% multiple comparison corrected confidence intervals. We then found the average 1059 

of normalized PPC values for N3 class and broad spiking neurons in a time period and frequency 1060 

domain that were more extreme than the defined confidence intervals. The area of significance 1061 

then was shown by black contours. In the second step we asked whether N3 class neurons show 1062 

different average synchrony strength over a time window of [0ms 500ms] aligned windows to 1063 

the attention-cue onset (in PFC and for high and low Choice Probability conditions) and to the 1064 

reward onset (in ACC and for high and low Reward Prediction Error conditions). We randomly 1065 

selected 1000 samples, with the same size as N3 class, from broad spiking neurons and 1066 

computed their average pre-onset normalized synchrony in the defined post-onset period. We 1067 

then constructed the most 5% extreme values of 95% confidence intervals defined over 1000 1068 

samples and across frequencies under the null hypothesis that N3 class cells do not show 1069 

different synchrony strength from broad spiking cells in the post-onset time period and across 1070 

different frequencies. We set the confidence interval levels and selected frequency bands more 1071 

extreme than the CIs as significantly different (multiple comparison adjusted alpha level=0.05, 1072 

Figure 7 & 8). 1073 

 1074 

Analysis of spike-LFP synchronization controlled for event evoked LFP 1075 

This analysis controls that the synchronization results are not confounded by event evoked LFP 1076 

signals. First, we extracted the LFP aligned to the color cue and the reward onset on each 1077 

individual trial and averaged it in a -0.5 to 1 second window around the onset of the color cue 1078 

and reward onset respectively. We then removed the average event evoked LFP from individual 1079 

trials. We then repeated the above described synchronization and statistical analysis on the event 1080 



evoked LFP subtracted trials. Subtraction of event-evoked LFPs did not change the results 1081 

(Figure 7-figure supplement 4).  1082 

 1083 

Statistical analysis of functional spike-LFP gamma synchronization for neuron types 1084 

We analyzed how distribution of PPC values for each e-type is different from the other e-type in 1085 

high and low RPE/p(choice) conditions. For each area, we extracted average PPC value for each 1086 

neuron and conditions in frequency range 35-45 Hz. We used Kruskal Wallis test to see whether 1087 

neuron types show different synchronization patterns. Lastly, we performed multiple comparison 1088 

(Tukey-Kramer corrected) to see whether any of the classes is different from the others. These 1089 

analyses were done separately for each area and each behavioral condition. No significant 1090 

differences were observed between more certain conditions (high p(choice) and low RPE). 1091 

Consistent with time resolved results, only N3 class showed stronger gamma synchrony in low 1092 

p(choice) condition in LPFC, and high RPE condition in ACC (Figure 7-figure supplement 1; 1093 

Figure 7-figure supplement 3).      1094 

 1095 

 1096 

Analysis of narrow vs. broad and cell class specific firing correlations with reversal learning  1097 

To investigate whether firing rate of cells correlate with the learning state, we performed 1098 

correlation analysis between firing rate of single neurons and model parameters: probability of 1099 

chosen stimulus (choice probability, p(choice)), and positive Reward Prediction Error (RPEpos). For 1100 

the correlation analysis, we excluded neurons that had less than 30 trials of neural activity. For 1101 

each neuron, the event onset response was normalized to the mean of all trials’ pre-onset firing 1102 

(in a period of -0.5s to the event onset) and was divided by the standard deviation of all in that 1103 

period. We then computed for each neuron the Spearman correlation coefficient between p(choice) 1104 

values and then normalized firing rate in a moving window ±200ms with sliding increments of 1105 

25ms relative to the Color-Cue onset. We used the same procedure for the reward-onset mean of 1106 

normalized firing rate and RPEpos values. To test whether narrow and broad spiking neurons 1107 

correlate their firing rate differently to model values, we randomly shuffled cell labels and 1108 

constructed a distribution of 1000 differences of the mean correlations of randomly assigned 1109 

neurons to the broad and narrow groups under the null hypothesis that there is no difference in 1110 

correlations depending on the spike waveform group. We then computed the most extreme 5% of 1111 

the sample difference of means through their time course and identified the 95% confidence 1112 

interval to test our null hypothesis. We also tested whether cells of different cell classes showed 1113 

different correlations of firing rate and  p(choice) or RPEpos. using the  Kruskal-Wallis test 1114 

considering cell class as the grouping variable. To test which class shows correlations different 1115 

than the population mean, we randomly shuffled cell class labels 1000 times and computed the 1116 

mean difference between each randomly labeled cell class and the population. We then 1117 

constructed a distribution of mean difference samples under the null hypothesis that no class 1118 

shows a mean correlation different from the population mean. We then computed the top 5% of 1119 

samples and identified 95% confidence interval. Classes that showed a mean difference of 1120 

correlation to the population more extreme than the identified CI were marked as significant. All 1121 

mentioned procedures were performed separately for neurons in area ACC and PFC and for both, 1122 

p(choice) or RPEpos values. In addition to the correlations of firing rate and p(choice), and firing 1123 

rate and RPEpos, we also calculated the time resolved correlation of neurons firing rate with 1124 

number of trials since reversal. We found that B-type and N-type neurons in LPFC and in ACC 1125 

did not change their firing differently as a function of the raw trial count since reversal. The lack 1126 



of correlation with trial number was true for the color cue period and the reward period of the 1127 

task (data not shown). 1128 

 1129 

Training Classifiers for predicting cell classes from their correlations with learning variables 1130 

We used a machine learning approach to test how accurately cells can be labeled to a cell class 1131 

based on their functional properties. For training classifiers, we used correlation of cells firing 1132 

rate and RPE/p(choice) separately for areas LPFC and ACC. We test whether functional 1133 

correlation of cells activity in a class allows to reliably classify them into the true class label 1134 

(from the k-means clustering) or in alternate classes. We used multiclass Support Vector 1135 

Machine (SVM) with one to one comparison of identified cell-classes with 10 folds of cross 1136 

validation. A vector of correlation values (each element representing one neuron) was used along 1137 

with a vector of cluster labels (from our clustering results) to train the SVM. The classifier used a 1138 

Gaussian radial basis function kernel with a scaling factor of 1. For each classifier, only classes 1139 

were considered that contained ≥ 5 cells and each unique cluster was present in all folds. As 1140 

classes N1 and N3 did not meet the criteria, we excluded them from the classifier and instead 1141 

randomly distributed them to other classes (weighted by the size of classes) as an internal noise 1142 

factor. For each learning measure (RPE and p(choice)) and for each area (LPFC and ACC), we 1143 

subsampled each cluster with a size equal to the half of the minimum size of clusters ensuring an 1144 

equal cell number from clusters in each subsample. We constructed the confusion matrix as the 1145 

ratio of outcome matrix to the total count across all 1000 subsamples test and performed a 1146 

binomial test (FDR-corrected P<.05) to find cells of the confusion matrix that are significantly 1147 

greater than the chance level (chance level here was defined by one divide by the number of 1148 

classes). Prediction of classifiers on correlation of LPFC rate and RPE, and ACC rate and 1149 

p(choice) were closed to the chance level (not shown). However, in ACC N3 class was 1150 

predictable with an accuracy of 0.34 from its correlation with RPE, and in LPFC, N3 class was 1151 

predictable with an accuracy of 0.31 from its correlation with p(choice) (Figure 5-figure 1152 

supplement 3). 1153 

 1154 

 1155 

Analysis of the information coding cells for the rule identity and target location 1156 

To determine what proportion of neurons relative to the Color-Cue onsets as well as 1157 

Reward/Error outcome onsets systematically carry information about the rule identity (Red vs. 1158 

Green), or target location (Left vs. Right), we considered neurons we had at least 20 trials for 1159 

each condition. We used a moving window of ±200ms with sliding increments of 25ms relative 1160 

to the Cue-onset or Error/Reward outcome onsets. For each window we performed the 1161 

nonparametric rank sum test between the two of conditions under the null hypothesis that 1162 

neurons do not fire preferentially different to a specific color or location (Figure 2-figure 1163 

supplement 2). For Narrow and Broad spiking neurons we computed the proportion of neurons 1164 

that showed statistically significant firing rate (P<0.05) to each condition. We then randomly 1165 

shuffled the proportion amounts of significantly different firing neurons over the time course and 1166 

computed 95% CI under the null hypothesis that each group of neurons do not show 1167 

proportionally different number of neurons compared to the pre-onset population of proportion 1168 

values.      1169 

 1170 

Analysis of cell class firing statistics measures  1171 



For each of firing statistic measures (firing rate, local variation, and coefficient of variance) we 1172 

performed nonparametric Kruskal-Wallis test with cell class as grouping variable to test for a 1173 

main effect of cell class on each firing statistics. We then performed rank sum multiple 1174 

comparison for pairwise comparison of cell class differences (P<0.05). 1175 

 1176 

Analysis of PPC strength for learning correlated cells vs non-correlated cells 1177 

We grouped our neurons based on their waveform (Narrow vs Broad) and then further grouped 1178 

them into subgroups of those that their firing after the onset were significantly correlated with 1179 

learning values and those that were not (p(choice) x Firing Rate after Cue-onset in PFC, and 1180 

RPEpos x Firing rate after Reward-onset in ACC). For each waveform-grouped neuron, we 1181 

randomly shuffled their labels and computed the difference of PPC peak proportions between 1182 

neurons that their firing rate were significantly correlated with learning state and those that were 1183 

not significantly correlated. We constructed a distribution of 1000 randomly selected samples of 1184 

difference of proportions of PPC peaks under the null hypothesis that for each waveform 1185 

grouped neurons there is no significant difference in the proportion PPC peaks for neurons that 1186 

their firing rate were significantly correlated with learning values and those that were not 1187 

significantly correlated. We then identified the most extreme 5% of the peak proportion 1188 

difference and computed 95% CI over the population of samples.    1189 
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Appendix 1: Computational details of circuit motifs including the model implementation and 1211 

model results.  1212 

 1213 

 1214 



Supplementary File 1: Cohen’s d effect sizes for firing rate modulation of each of eight e-types 1215 

during the trial epochs Feature-1, Feature-2, and Reward for lateral prefrontal cortex (PFC) and 1216 

anterior cingulate cortex (ACC). 1217 

 1218 

 1219 

Figure Legends: 1220 

Figure 1. Task Paradigm and Cell Classification. (A) Trials required animals to covertly attend 1221 

one of two peripheral stimuli until a dimming (Go-event) instructed to make a saccade in the 1222 

direction of the motion of the attended stimulus. During the trial the two stimuli were initially 1223 

static black/white and then either were colored first or started motion first. Following this feature 1224 

1 Onset the other feature (Feature 2 on) was added 0.5-0.9 s later. (B) The task reversed the color 1225 

(red or green) that was rewarded over at least 30 trials. (C) Two monkeys learned through trial-1226 

and-error the reward-associated color as evident in increased accuracy choosing the rewarded 1227 

stimulus (y-axis) over trials since reversal (x-axis). (D) Recorded areas (details in Figure 1-1228 

figure supplement 1). (E) Top: Average normalized action potential waveforms of recorded 1229 

neurons were narrow (red) or broad (blue). Bottom: Inferred hyperpolarization ratio and 1230 

repolarization duration distinguishes neurons. (F) Average spike-triggered multiunit modulation 1231 

for narrow and broad spiking neurons (Errors are SE’s). Spiking neuron and MUA were from 1232 

different electrodes. The bottom panel zooms into the ±20ms around the spike time and shows 1233 

the difference between neuron classes (in green). (G) The histogram of post-to-pre spike AUC 1234 

ratios for narrow (red) and broad (blue) spiking neurons. (H) Average ratio of post- to pre-spike 1235 

triggered MUA for narrow and broad cell classes in ACC (left) and in LPFC (right). Values <0 1236 

indicate reduced post- versus pre-spike MUA modulation. Error bars are SE. 1237 

 1238 

 1239 

Figure 2. Firing rate modulation of narrow and broad spiking neurons to the color cue correlate 1240 

with choice probability. (A, B) Spike rasters for example neurons around the onset of feature-1 1241 

and feature-2 when feature-1 was color (magenta) or motion (green). Both neurons responded 1242 

stronger to the color than the motion onset irrespective of whether it was shown as first or as 1243 

second feature during a trial. (C) Narrow spiking neurons (red) in LPFC respond to the color 1244 

onset when it occurred as feature-2 (upper panel), or as feature-1 (bottom panel). (D) Same as c 1245 

for the ACC shows no or weak feature onset responses. (E) Firing rates of narrow spiking 1246 

neurons (red) in LPFC correlate with the choice probability of the to be chosen stimulus (left). 1247 

The average Rate x Choice Probability correlation in LPFC was significantly larger in narrow 1248 

than in broad spiking neurons (right). (F) Same as e for ACC shows no significant correlations 1249 

with choice probability. 1250 

Source data 1.  Correlation data and script for ploting panels E, and F. 1251 

 1252 

Figure 3. Firing rate modulation to trial outcomes correlate with reward prediction errors. (A, B) 1253 

Narrow (red) and broad spiking neurons (blue) in LPFC (A) and ACC (B) on average activate to 1254 

the reward outcome. (C, D) Proportion of narrow and broad spiking neurons in LPFC (C) and 1255 

ACC (D) with significant firing rate X reward prediction error correlations in the [0 0.75] s after 1256 

trial outcomes were received. (E, F) Time course of firing rate X reward prediction error 1257 



correlations for narrow and broad spiking neurons in LPFC (E) and ACC (F) around the time of 1258 

reward onset. Horizontal bar denotes time with significant correlations.  1259 

Source data 1.  Correlation data and script for ploting panels E, and F. 1260 

 1261 

Figure 4. Clustering of e-type sub-classes of cells using their spike width, firing variability and 1262 

rate. (A) Dendrogram of cluster distances for neuron classes with broad spikes (five subclasses, 1263 

blue), and narrower spikes (three subclasses, orange and red). (B) For each e-type (x-axis) the 1264 

average LV, CV and firing rate. The rightmost point shows the average for all e-types combined. 1265 

(C) Illustration of the average spike waveform, spiketrain raster example, and Local Variability 1266 

(LV, upper histograms) for each clustered e-type. The bottom grey LV histogram includes all 1267 

recorded cells to allow comparison of e-type specific distribution. (D) The average post- to pre- 1268 

spike MUA modulation (y-axis) for neurons of the different e-types. Values below 0 reflect 1269 

reduced multiunit firing after the neuron fires a spike compared to before the spike, indicating a 1270 

relative suppressive relationship. Only the N3 etype showed a systematically reduced post-spike 1271 

MUA modulation. MUA were always recorded from other electrodes nearby the spiking neuron.  1272 

Source data 2. Data and script used for clustering (panel A) and data used for plotting panels B, 1273 

and C. 1274 

 1275 

 1276 

Figure 5. E-type specific correlations with choice probability and reward prediction error in 1277 

LPFC and ACC. (A, B) Firing Rate X Choice Probability correlations for neurons of each e-type 1278 

subclass in LPFC (A) and ACC (B). Only the N3 e-type neurons in LPFC show significant 1279 

correlations. (C, D) Firing Rate X Reward Prediction Error correlations for neurons of each e-1280 

type subclass in LPFC (C) and ACC (D). The N3 e-type neurons in ACC show significant 1281 

positive correlations, and the B3 e-type shows negative firing rate x RPE correlations. Grey 1282 

shading denotes significance at p<0.05 (multiple comparison corrected). Error bars are SE’s. 1283 

Source data 1.  Correlation data and script for ploting panels A-D. 1284 

 1285 

Figure 6. Spike-LFP phase synchronization. (A) Average spike-triggered local field potential 1286 

fluctuations of nine N3 e-type neurons showing a transient LFP oscillations from 5 Hz up to ~30 1287 

Hz. Black vertical line is the time of the spike. The red lines denote the LPF after adaptive spike 1288 

artifact removal (raw traces in grey). (B) Peak normalized pairwise phase consistency for each 1289 

spike-LFP pair (y-axis) rank ordered according to the frequency (x-axis) with peak PPC. (C) 1290 

Proportion of sign. peaks of spike-LFP synchronization for neurons in LPFC (left) and ACC 1291 

(right) for narrow and broad spiking neurons (upper rows) and for the N3 e-type neurons (bottom 1292 

row).   1293 

 1294 

Figure 7. Spike-LFP phase synchronization in LPFC around the color onset for trials with low 1295 

and high choice probability. (A) Spike-LFP pairwise phase consistency for broad spiking 1296 

neurons in LPFC around the time of the color onset (x-axis) for trials with the 50% lowest choice 1297 

probabilities. (B) Same as (A) for neurons of the N3 e-type. Black contour line denotes 1298 

statistically significant increased phase synchrony relative to the pre-color onset period. (C) 1299 

Statistical comparison of spike-LFP synchrony for N3 e-type neurons (orange) versus broad 1300 

spiking neurons (blue) for low choice probability trials in LPFC. Synchrony is normalized by the 1301 

pre-color onset synchrony. Grey shading denotes p<0.05 significant differences of broad and N3 1302 



type neurons. (D,E,F) Same format as (A,B,C) but for the 50% of trials with the highest choice 1303 

probability.  1304 

Source data 3.  Coherence data and script for ploting panels A-F. 1305 

 1306 

 1307 

Figure 8. Spike-LFP phase synchronization in ACC during outcome processing for trials with 1308 

low and high reward prediction errors. (A) Spike-LFP pairwise phase consistency for broad 1309 

spiking neurons in ACC around reward onset (x-axis) for trials with the 50% lowest reward 1310 

prediction errors. (B) Same as (A) for neurons of the N3 e-type. Black contour line denotes 1311 

statistically significant increased phase synchrony relative to the pre-reward period. (C) 1312 

Statistical comparison of the spike-LFP synchrony (normalized by the pre-reward synchrony) for 1313 

N3 e-type neurons (orange) versus broad spiking neurons (blue) in ACC for trials ending in low 1314 

reward prediction errors. Grey shading denotes frequencies with p<0.05 significant differences 1315 

of broad spiking versus N3 e-type neurons. (D,E,F) Same format as (A,B,C) but for the 50% of 1316 

trials with the highest high reward prediction error outcomes.  1317 

Source data 3.  Coherence data and script for ploting panels A-F. 1318 

 1319 

 1320 

Figure 9. Hypothetical link of the observed gamma band synchronization of the N3 e-type to 1321 

circuit motifs and their putative functional correlate. (A) The N3 e-type in LPFC synchronized at 1322 

gamma when p(choice) was relatively low and at beta frequencies otherwise. The switch from 1323 

gamma to beta synchronization can be parsimoniously reproduced in a circuit model with an 1324 

interneuron (I) population receiving inputs from two excitatory (E) populations. When the input 1325 

is diverse (similar p(choice)) a simulated circuit shows gamma activity (left) while when one 1326 

excitatory population dominates it engages in beta synchronization (simulation details in 1327 

Appendix 1). This activity signature could correspond at the functional level to choosing among 1328 

similar valued stimuli (left) versus choosing stimuli with different values (bottom row).  (B) In 1329 

ACC the N3 e-type synchronized at gamma when the prediction error was large and at theta 1330 

frequencies otherwise. The switch from gamma to theta synchronization can parsimoniously be 1331 

reproduced in a circuit model with two I populations having different time constants and 1332 

reciprocally connected to an E population. When the faster spiking I1 population is activated 1333 

stronger, either directly from an external source, putatively by disinhibition of another 1334 

interneuron population, the network synchronizes at gamma while otherwise the I2 neurons 1335 

population imposes slower theta rhythmic synchrony to the network (simulation details in 1336 

Appendix 1). Bottom: The activity states were functionally linked to those trials when outcomes 1337 

mismatched expectations (high RPE) or matched the expected outcomes (low RPE). 1338 

 1339 

 1340 

Figure 1-figure supplement 1. Anatomical locations of recording sites. (a,b) Reconstructed 1341 

locations of the broad (blue) and narrow (red) spiking neurons in the anterior cingulate cortex 1342 

and lateral prefrontal cortex of monkey K (a) and monkey H (b). 1343 

  1344 

Figure 1-figure supplement 2. Action potential waveform parameters and spike variability 1345 

measures used for clustering cells. (A) The Hyperpolarization Rate Index (HR-Index) is defined 1346 

as the inverse of the required time for an action potential between 63% of the peak to reach the 1347 

peak. (B) The Time for Repolarization (T4R) quantifies the duration between spike peak to 75% 1348 



of the peak in the after-hyperpolarization domain. (C) The Coefficient of Variation (CV) indexes 1349 

the global variability of firing by normalizing the standard deviation across all ISI’s by the mean 1350 

ISI. (D) The Local Variability (LV) measures the variability of adjacent interspike intervals 1351 

(ISI’s). LV is proportional to the squared difference of ISI’s divided by their sum. LV’s around 1 1352 

indicate that spikes are generated by a near Poisson process, while LV’s < 1 reflect similar 1353 

(regular) ISI’s from neurons with a peak in their autospectra. Spike trains with LV’s >1 reflect 1354 

bursty spiking with periods of short ISIs alternating with periods of silence or long ISI’s. (E) 1355 

Regression plot of the LV and the CV. (F) Regression plot of the LV and the burst-index (BI, see 1356 

Methods). 1357 

 1358 

Figure 2-figure supplement 1. Narrow spiking neuron examples responding to the color but not 1359 

motion cue. (A) Spike rasters and spike densities for an example neuron (N3 e-type, see inset) 1360 

around the onset of feature-1 and feature-2 when feature-1 was color (magenta) or motion 1361 

(green). Note that 400 ms prior to the feature 1 onset the black/and white stimuli were presented 1362 

on the screen (first vertical black line). The neuron responded stronger to the color than the 1363 

motion onset irrespective of whether it was shown as first or as second feature during a trial. (B-1364 

F) Examples of other narrow spiking neurons showing the same color-specific cue onset 1365 

responses. Insets denote the specific e-type the neuron belongs to. 1366 

 1367 

Figure 2-figure supplement 2. Narrow spiking neuron examples responding to the color but not 1368 

motion cue. (A) Proportion of neurons with significant encoding of rewarded color (responding 1369 

significantly stronger for one over the other color when they are reward associated) around the 1370 

time of the color onset (x-axis) for broad (left) and narrow (right) spiking neurons in LPFC. Stars 1371 

highlight time period with significantly increased selectively compared to pre-feature onset 1372 

levels. Horizontal bars denote the upper confidence level of pre-feature onset selectivity. (B) 1373 

Same format as A for ACC neurons. (C,D) Same format as (A,B) showing the proportion of 1374 

neurons firing significantly different when the rewarded stimulus is on the left versus right side 1375 

from the central fixation point for broad (left) and narrow (right) spiking neurons in LPFC (C) 1376 

and ACC (D).   1377 

 1378 

 1379 

Figure 2-figure supplement 3. Distribution of choice probabilities (p(Choice)) and reward 1380 

prediction errors (RPEs) estimated by the reinforcement learning model (see Methods). (A) Two 1381 

example learning blocks showing the trial outcomes (correct=1, error=0) in the top row, and the 1382 

RPE, p(Choice) and the values of chosen stimuli in different rows. (B) Correlation of p(Choice) 1383 

and RPE). (C,D) Distribution of choice probabilities (C) and reward prediction errors (D).  1384 

Median and SE are shown as vertical dashed lines. The negative correlation signifies that when 1385 

reward outcomes are unexpected (high RPEs) than choices tend to be uncertain as reflected in 1386 

low (near ~0.5) choice probabilities. (E) Correlation of choice probabilities with trial since 1387 

reversal. (F) Correlation of reward prediction errors with trial since reversal. (G, H) 2D 1388 

histogram corresponding to E and F, respectively ,showing the distribution of trials P(choice) (G) 1389 

and RPE (H) and trial since reversal. 1390 

 1391 

 1392 

Figure 2-figure supplement 4. Cell-type specific responses and correlations with p(choice) and 1393 

reward prediction errors for each monkey separately. (A, B) In both monkeys narrow spiking 1394 



neurons in LPFC activate to the color cue onset when the color cue is the second feature after 1395 

motion was switched on (A), or when the color cue was the first feature before motion was 1396 

switched on (B). (C) In LPFC of both monkeys, firing rate of narrow spiking neurons correlates 1397 

positively with p(choice) during color cue period. (D) In ACC of both monkeys firing rate of 1398 

narrow spiking neurons correlates positively with reward prediction error after the reward onset. 1399 

 1400 

 1401 

Figure 4-figure supplement 1. Determining number of clusters. (A) A set of statistical indices 1402 

to determine a range of number of clusters that best explains the data. These indices evaluate the 1403 

quality of the k-means clustering: Rand, Mirkin, Hubert, Silhouette, Davies-Bouldin, Calinski-1404 

Harabasz, Hartigan, Homogeneity and Separation indexes. (B) Block diagonal matrices of 1405 

elements in each clustering with number of clusters k=7-9, that were paired together more than 1406 

90% over 500 realizations.  1407 

Source data 2. Data and script used for estimating number clusters, panels A, and B. 1408 

 1409 

 1410 

Figure 4-figure supplement 2.  Clustering of neurons. (A) Amount of variance explained by 1411 

individual cell features. Cell features are rank-orderd according to their specific contribution to 1412 

explain variance in the dataset. Cell features were considered for the clustering when they 1413 

contributed to reach 90% of cumulative total variance explained (red dashed line). (B) 1414 

Normalized values (heat map) for each cell feature (x-axis) across all cells (y-axis). Horizontal 1415 

dashed lines denote cell class borders. The dendrogram to the left shows the square Euclidean 1416 

distances between clusters’ centroids. (C) Validation of clustering using the cluster distance. In 1417 

each of n=200 realizations, each cluster was associated to the closest cell class. The difference 1418 

between the mean of the intradistances (i.e., all clusters that were associated to the same cell 1419 

class) with respect to the extradistances (i.e., all clusters that were not associated to that cell 1420 

class) is plotted (gray bars). The white bars show the results from random assignation. (D) 1421 

Validation of cluster assignments. In each realization of the randomization procedure, the 1422 

proportion of cells consistently associated to a class relative to the total number of cells in the 1423 

class. Gray bars refer to dataset randomization (mean and SE) and white bars to random 1424 

assignment (mean and SE). The red dashed line represents the proportion of cells as if cells 1425 

would evenly distribute among the seven reliable cell classes. (E, F) validation of clustering 1426 

across monkeys. (E) Validation according to the distances of clusters for each monkey 1427 

(analogous to C). (F) Validation according to the percent number of cells matches for each 1428 

monkey (analogous to D). 1429 

 1430 

Figure 5-figure supplement 1. Color selective responses in neurons of different e-types in 1431 

LPFC and ACC. (A, B) For LPFC neurons the average normalized firing of each e-type (in 1432 

color) when motion was feature-1 and color was feature-2 (A) and when color was feature-1 and 1433 

motion was feature-2 (B). Thickened line segments denote significant modulation over pre-1434 

feature firing levels at p<0.05. (C) Difference of firing aligned to feature-1 (left) and feature-2 1435 

(right) shows that e-types N2 and N3 responded significantly stronger to color onsets than 1436 

motion onsets irrespective of whether color was shown first or second. (D-F) Same as a-c for 1437 

neurons and e-types in ACC. The only consistent effect was for e-type B2 neurons showing a 1438 

transient onset response to the first feature irrespective of whether it was color or motion. See 1439 

Supplementary File 1 for Cohen’s d effect size measures for each cell type to rule out that we 1440 



overlooked significant effects because of low number of cells in a cell class. For example, in 1441 

LPFC the firing rates of the N2 and N3 e-type increased significantly to the color cue (p<0.05; 1442 

effect size values for N2, N3 are -0.491, -0.300). (G, H) Reward activated neurons of different e-1443 

types in LPFC and ACC. For LPFC the average normalized firing of each e-type to the reward 1444 

onset (G) show moderately increased firing rate in most e-types. B1 e-type neurons showed 1445 

stronger activation compared with other e-types (p<0.05, randomization test). In ACC (H) the N2 1446 

e-type neurons showed stronger activation to the reward onset compared with other e-types 1447 

(p<0.05, effect size values for B1, N2 are -0.311, -0.367 in LPFC and ACC respectively).    1448 

 1449 

 1450 

Figure 5-figure supplement 2. N3 e-type single cell example of firing rate and p(choice) in 1451 

LPFC, and of firing rate and RPE in ACC. (A) Trials (y-axis) are sorted by p(choice). The black 1452 

line shows the ascending order of trials. The red line shows the mean firing rate of p(choice)-1453 

ranked trials in a window of 500 msec. after the color cue onset for an example cell in LPFC. (B) 1454 

For the same cell the raster plot of the p(choice)-ranked trials aligned to the cue onset. (C) Cell 1455 

activity heatmap corresponding to the raster plot in B. (D-F) Same format as A-C but for an 1456 

example N3 e-type cell in ACC around the reward onset. Trials are rank-ordered according to the 1457 

RPE value of the trial. 1458 

 1459 

Figure 5-figure supplement 3. Predicting cluster label of cells from their functional correlation 1460 

values. (A) Confusion matrices from support vector machine (SVM) classification shows how 1461 

accurate LPFC cells are classified into their true cell class (diagonal band) given the correlation 1462 

value of their firing rate with p(choice). (B) Confusion matrices from support vector machine 1463 

(SVM) classification shows how accurate ACC cells are classified into their true cell class 1464 

(diagonal band) given the correlation value of their firing rate in reward period with RPE (In 1465 

both panels, classes N1, and N2 are not shown as these two classes did not meet the criteria for 1466 

training the classifier, for details see Methods). 1467 

 1468 

Figure 6-figure supplement 1. Spike-LFP synchronization for cell e-types in LPFC (A) and 1469 

ACC (B). Each panel shows the density of significant spike-LFP synchronization peaks across 1470 

frequencies. Synchrony was calculated as pairwise phase consistency. Light, medium and dark 1471 

grey shading visualizes different alpha/theta, beta, and gamma frequency bands. 1472 

 1473 

 1474 

Figure 7-figure supplement 1. Spike-LFP phase synchronization in LPFC around the reward 1475 

onset for trials with low and high reward prediction error. (A) Spike-LFP pairwise phase 1476 

consistency (PPC) for broad spiking neurons (left panel) and N3 e-type (right panel) in LPFC 1477 

around the time of the reward onset (x-axis) for trials with the 50% lowest reward prediction 1478 

error. (B) Statistical comparison of spike-LFP synchrony for N3 e-type neurons (orange) versus 1479 

broad spiking neurons (blue) for low RPE trials in LPFC. (C & D) Same as in A & B, for trials 1480 

with 50% highest reward prediction error. (E-F) PPC for synchrony of E-types in a window of 1481 

700 ms after the color cue onset for trials with (E) low and (F) high choice probability. The star 1482 

denotes significance at p<0.05 (see main text). (G-H) PPC for synchrony of E-types in a window 1483 

of 700 ms after the reward onset for trials with (G) low and (H) high reward prediction error. 1484 

Errors are SE’s. 1485 

 1486 



Figure 7-figure supplement 3. Spike-LFP phase synchronization in ACC during outcome 1487 

processing for trials with low and high choice probabilities. (A) Spike-LFP pairwise phase 1488 

consistency for broad spiking neurons (left panel) and N3 e-type (right panel) in ACC around 1489 

color cue onset (x-axis) for trials with the 50% lowest choice probabilities. (B) Statistical 1490 

comparison of the spike-LFP synchrony (normalized by the pre-reward synchrony) for N3 e-type 1491 

neurons (orange) versus broad spiking neurons (blue) in ACC for trials with low choice 1492 

probability. (C & D) Same as in A & B, for trials with 50% highest choice probability. (E-F) 1493 

Pairwise phase consistency for synchrony of E-types in a window of 700 ms after the color cue 1494 

onset for trials with (E) low and (F) high choice probability. The star denotes significance at 1495 

p<0.05 (see main text). (G-H) Pairwise phase consistency for synchrony of E-types in a window 1496 

of 700 ms after the reward onset for trials with (G) low and (H) high reward prediction error. 1497 

Errors are SE’s.     1498 

 1499 

Figure 7-figure supplement 2. Spike-LFP phase synchronization of e-types in LPFC and ACC 1500 

during outcome processing for trials with low and high choice probabilities and reward 1501 

prediction error. (A) Spike-LFP pairwise phase consistency e-types in LPFC around color cue 1502 

onset (x-axis) for trials with the 50% highest (Left panels) and trials with 50% lowest (right 1503 

panels) choice probabilities. (B) Spike-LFP pairwise phase consistency e-types in ACC around 1504 

reward onset (x-axis) for trials with the 50% lowest (Left panels) and trials with 50% highest 1505 

(right panels) reward prediction error. Black contours show class specific significant coherence 1506 

(P<0.05 randomization test). 1507 

Source data 3. Data and script used for class specific coherence results. 1508 

 1509 

Figure 7-figure supplement 4.  Spike-LFP synchronization of broad spiking neurons and the N3 1510 

e-type in LPFC and ACC after subtracting event evoked LFP. The plots are in same format as 1511 

Figure 7C,F and Figure 8C,F of the main text. (A) Statistical comparison of event evoked LFP 1512 

subtracted spike-LFP synchrony for N3 e-type neurons (orange) versus broad spiking neurons 1513 

(blue) for low choice probability trials in LPFC. Synchrony is normalized by the pre-color onset 1514 

synchrony. Grey shading denotes p<0.05 significant differences of broad and N3 type neurons. 1515 

(B) The same as in A but for 50% highest p(choice) trials. The same statistical comparison as in 1516 

A and B was done for neurons in ACC and after subtracting reward evoked LFP for 50% lowest 1517 

RPE trials (C) and 50% highest RPE trials (D). 1518 

 1519 

Figure 9-figure supplement 1. E-E-I circuit simulation results: Gamma oscillations index 1520 

similar excitatory input strength from two excitatory neuron populations to a fast spiking 1521 

inhibitory neuron, whereas beta oscillations index diverse input strength (see also Figure 9A). 1522 

(A) Firing rate of the E1, E2 and I population as a function of the drive to E1. The drive to E1 1523 

increase while concomitantly the drive the E2 decreases, see Appendix 1. These activity changes 1524 

could correspond to E1 and E2 representing the values of the two objects, and a change of these 1525 

values from E1 (object 1) to E2 (object 2) during reversal learning. (B) The oscillation frequency 1526 

and power of the I1 population versus E1 drive. Gamma synchronization (y-axis) emerges when 1527 

there is similar activity in E1 and E2. For details, see Appendix 1. 1528 

 1529 

Figure 9-figure supplement 2. E-I-I circuit simulation results: The circuit synchronizes at low 1530 

or high frequencies depending on whether I1 interneurons are inhibited or released from 1531 

inhibition (see also Figure 9B). (A) Firing rate of the E, I1 and I2 population as a function of the 1532 



drive to I1. (B) The oscillation frequency and power of the I1 population versus I1 drive show 1533 

that gamma emerges when the I1 population receives more excitatory drive. Empirically, the I1 1534 

interneurons could correspond to the N3 e-type cells and the situation with lager drive 1535 

corresponds to periods with large reward prediction errors. For details, see Appendix 1.1536 
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Appendix 1 1 

Circuit models and their implementation 2 

Content: 3 

1. Overview of circuit modeling 4 

2. E-E-I circuit motif realizing the switch from gamma to beta frequency 5 

synchronization  6 

3. E-I-I circuit motif realizing the switch from gamma to theta frequency 7 

synchronization  8 

4. Discussion of circuit motifs, relation to other models and experiment 9 

 10 

 11 

1. Overview of circuit modeling 12 

 13 

We constructed circuit motifs to account for our experimental observation that gamma 14 

synchronization characterized cue and reward onset triggered activity when choice probabilities 15 

were low (near ~0.5) and reward prediction errors relatively high. These circuit motifs provide a 16 

proof-of-concept that the empirical observations can follow from biologically plausible motifs. 17 

These circuits motifs also provide predictions which can be tested in future studies.  18 

 19 

One circuit motif is comprised of two populations of excitatory cells (E1 and E2) and one 20 

population of interneurons (I). This “E-E-I” motif (Figure 9A, Suppl. Figure 17) was 21 

constructed to test the gamma to beta synchronization switch that the N3 e-type interneuron 22 

population in LPFC showed in the empirical analysis. The second circuit motif is comprised of 23 

two populations of inhibitory neurons (I1 and I2) and only one population of excitatory neurons 24 

(E). This “E-I-I” motif (Figure 9B, Suppl. Figure 18) was constructed to test the theta to 25 

gamma switch that the N3 e-type interneuron population in ACC showed empirically.  26 

 27 

2. E-E-I circuit motif realizing the switch from gamma to beta frequency synchronization  28 

 29 

2.1 E-E-I Network architecture 30 

 31 

We simulated a simple E-E-I model with two excitatory populations recurrently connected with 32 

one inhibitory population that is conceived of reflecting the interneurons of the N3 e-type 33 

(Figure 9-figure supplement 1B, Figure 9A). Each population was represented by a two 34 

variables, a firing rate r modeled after the work of Hahn and colleagues (Hahn et al., 2020), and a 35 

synaptic variable s modeled as in (Keeley et al., 2017). The full description of the model is given 36 

below. Both E populations are reciprocally connected to the I population. We assume that the E 37 

cells receive input representing the aggregate values of the objects. We model the situation that 38 

the value of object 1 increases by increasing the drive to the E1 population, whereas 39 

concomitantly we reduce the drive to E2, such that their sum remains the same.  40 

 41 

2.2 Model equations for the E-E-I circuit model 42 

 43 



The activity of each population is represented by two vectors 𝑟 = (𝑟𝐸1, 𝑟𝐸2, 𝑟𝐼), representing the 44 

firing rate and 𝑠 = (𝑠𝐸1, 𝑠𝐸2, 𝑠𝐼), representing the synaptic inputs. They satisfy the following 45 

coupled differential equations 46 

 47 

𝜏
𝑑𝑟

𝑑𝑡
= −𝑟 + 𝛼𝐺(𝑊𝑠 + 𝐼) + 𝐼𝑛𝑜𝑖𝑠𝑒 

And 48 

𝜏𝑠𝑦𝑛

𝑑𝑠

𝑑𝑡
= −𝑠 + 𝛾𝐹(𝑟)(1 − 𝑠) 

 49 

Where 𝜏 = (𝜏𝐸1, 𝜏𝐸2, 𝜏𝐼) = (1.5385, 1.5385, 1.5385) is the firing rate time scale, 𝜏𝑠𝑦𝑛 =50 

(𝜏𝑠𝑦𝑛,𝐸1, 𝜏𝑠𝑦𝑛,𝐸2, 𝜏𝑠𝑦𝑛,𝐼) = (2.3077, 2.3077, 15.3846) is the synaptic time scale, 𝛼 =51 

(𝛼𝐸1, 𝛼𝐸2, 𝛼𝐼) = (2.5,2.5,5) is a scaling variable to adjust the mean firing rate of each 52 

population, 𝛾 = (𝛾𝐸1, 𝛾𝐸2, 𝛾𝐼) = (4,4,3) is the scale of synaptic onset rate,   𝐼 = (𝐼𝐸1, 𝐼𝐸2, 𝐼𝐼) is 53 

the drive for each population, and W is a 3 by 3 connection strength matrix: 54 

 55 

𝑊 = (
2.0 0 −2.6414
0 2.0 −2.6414

3.0 3.0 −0.1
) 

 56 

We write 𝐼𝐸1 = 𝐼0 + 𝐼𝑚𝑎𝑥𝑥 and 𝐼𝐸2 = 𝐼0 + 𝐼𝑚𝑎𝑥(1 − 𝑥), where x varies between 0 and 1.  Here 57 

𝐼𝐼 = 0, 𝐼0 = 0.8, 𝐼𝑚𝑎𝑥 = 0.4.  The noise current 𝐼𝑛𝑜𝑖𝑠𝑒 had a standard deviation of 0 for the 58 

simulations shown in this note. It can be used to induce transient oscillations when there is a 59 

stable fixed point with eigenvalues that have an imaginary part.  60 

 61 

The firing rate response function is 62 

 63 

𝐺(𝑥) =
𝑥

1−𝑒−𝑥, 64 

 65 

and the one for the synaptic inputs is 66 

𝐹(𝑟) =
1

1 + exp (
𝜃 − 𝑟

𝑘
)
 

 67 

Here 𝜃 = (𝜃𝐸1, 𝜃𝐸2, 𝜃𝐼 , ) = (5, 5, 10) is the activation threshold for the synapse and the 𝑘 =68 

(𝑘𝐸1, 𝑘𝐸2, 𝑘𝐼) = (0.5, 0.5, 1.0) is the sharpness of the synaptic activation function. 69 

 70 

 71 

2.3 Simulation results of E-E-I model 72 

 73 

When the drive to E1 increases, the activity of population E1 increases whereas that of E2 74 

decreases, with the level of I activity varying only moderately with E1 drive (Figure 9-figure 75 

supplement 1A). The circuit executes a soft version of the winner-take-all mechanism, the E 76 

population with the largest drive suppresses that of the one with the lower drive. We chose 77 

parameters such that the network displayed oscillations by first finding a Hopf bifurcation, using 78 

a continuation approach implemented with the software auto07 (Doedel et al., 1991). A Hopf 79 



bifurcation is signaled when the Jacobian at the fixed point has two complex conjugate 80 

eigenvalues of which the real part becomes positive at the bifurcation (Strogatz, 1994). For small 81 

amplitudes, the oscillation frequency is directly related to the imaginary part of the eigenvalues.   82 

Stable oscillations appear in the model with the frequency increasing from beta for low E1 drives 83 

to gamma when the E1 and E2 is similar (Figure 9-figure supplement 1B). The power of these 84 

oscillations follows more or less the mean activity of each population.  85 

 86 

 87 

3. E-I-I circuit motif realizing the switch from gamma to theta frequency synchronization  88 

 89 

3.1 E-I-I network architecture  90 

 91 

We constructed a second model to account for the switch between theta and gamma 92 

synchronization (Figure 9-figure supplement 2, Figure 9B). This model has two types of 93 

interneurons (the I1 and I2 populations) and one E cell population (E), reciprocally connected. 94 

They form two PING-type motifs similarly to (Domhof and Tiesinga, 2021), which focused on 95 

beta/gamma frequency switches (see 4. Discussion).  The first motif with I1 forming a fast 96 

circuit, generating gamma, the second one together with I2 forming a slow circuit for theta. Each 97 

motif can create its own oscillation, but when one circuit is dominant it takes over the other 98 

circuit and imposes its frequency. We assume that interneuron population I1 corresponds to PV 99 

neurons because they have a faster dynamics. We simulate the case of rewarded trials, which 100 

means that the RPE is low when the expected value is high, whereas when the RPE is high the 101 

expected value is low. We further assume that the value-associated drive to I1 is part of a 102 

disinhibitory circuit, i.e. it is an inhibitory input to I1 that reflects the expected value. In other 103 

words, when RPE varies from low to high values, the drive to I1 varies from low to high.  104 

 105 

3.2 Model equations for the E-I-I circuit model 106 

 107 

The network is simulated using the same modeling framework as in 2.2 (above), but now there 108 

are two I populations, I1, I2,  and only one E population, hence the vectors are changed in an 109 

obvious way: 𝑟 = (𝑟𝐸 , 𝑟𝐼1, 𝑟𝐼2); and 𝑠 = (𝑠𝐸 , 𝑠𝐼1, 𝑠𝐼2),  𝜏 = (𝜏𝐸 , 𝜏𝐼1, 𝜏𝐼2) = (1,1,5); 𝜏𝑠𝑦𝑛 =110 

(𝜏𝑠𝑦𝑛,𝐸 , 𝜏𝑠𝑦𝑛,𝐼1, 𝜏𝑠𝑦𝑛,𝐼2) = (1.5,5,45),  𝛼 = (𝛼𝐸 , 𝛼𝐼1, 𝛼𝐼2) = (2.5,5,5),   𝛾 = (𝛾𝐸 , 𝛾𝐼1, 𝛾𝐼2) =111 

(4,3,3), and 𝐼 = (𝐼𝐸 , 𝐼𝐼1, 𝐼𝐼2).  Here 𝐼𝐼1 = 𝐼01 + 𝐼𝑚𝑎𝑥1𝑥 with 𝐼01 = −3 and 𝐼𝑚𝑎𝑥1 = 3; 𝐼𝐸 =112 

0.71646; 𝐼𝐼2 = −0.3. The noise current 𝐼𝑛𝑜𝑖𝑠𝑒 has a standard deviation of 0. W is the following 3 113 

by 3 matrix: 114 

 115 

𝑊 = (
2.0 −1.3207 −1.3207
3.0 −0.1 0
3.0 0 −0.1

) 

 116 

The response function G and F are identical to those specified in model 1 (see 2.2), with for F the 117 

parameter values: 𝜃 = (𝜃𝐸 , 𝜃𝐼1, 𝜃𝐼2, ) = (5, 10, 10) and 𝑘 = (𝑘𝐸 , 𝑘𝐼1, 𝑘𝐼2) = (0.5, 1.0, 1.0) 118 

 119 

3.3 Simulation Results of E-I-I model 120 

 121 



We again used auto07 to find Hopf bifurcations, from which we started the exploration of the 122 

network dynamics. When we increased the drive to I1 the firing rate of I1 increased (Figure 9-123 

figure supplement 2A) and the oscillation frequency increased from around the theta band to 124 

gamma frequencies (Figure 9-figure supplement 2B).   125 

 126 

 127 

4. Discussion of circuit motifs, relation to other models and experiment 128 

 129 

The E-E-I motif provides a proof of principle for the link between diversity of input and 130 

oscillation frequency (see Figure 9-figure supplement 1 and Figure 9A). We increased the 131 

drive to E1 and reduced it to E2 in such a way that the sum remained constant and studied the 132 

oscillation frequency of the I population. The situation with high drive to E1 and low drive to E2 133 

(and vice versa) corresponds to a situation with diverse inputs which happens in a reversal block 134 

after learning of values is completed (in the ‘steady state’) and one object has high value and the 135 

other object a low value. In this regime oscillations are prominent in the beta frequency range 136 

(Figure 9-figure supplement 1A). But when the drive of the E1 and E2 populations is similar, 137 

indexing the situation of low p(choice), i.e. when it is near 0.5, the I population increased its 138 

oscillation frequency to the gamma range (Figure 9-figure supplement 1). Hence, in the model, 139 

competition between two similarly-valued objects that results in a low choice probability is 140 

indexed by gamma oscillations of the inhibitory cell population, while otherwise beta synchrony 141 

predominates. This result matches the core oscillatory signature we observed in the LPFC around 142 

the color cue onset. It suggests that the transient gamma increase of the N3 e-type might reflect 143 

the gating of diverse inputs as has been suggested by larger-scale modeling of similar circuit 144 

motifs (Buia and Tiesinga, 2008; Sherfey et al., 2018; Sherfey et al., 2020). 145 

 146 

The second circuit that implemented a E-I-I model provides a proof of principle for the link 147 

between the increased activation of a ‘fast’ interneuron population (I1) and a switch from theta to 148 

gamma oscillations. Here, theta synchronous activity driven by the I2 neurons corresponds to 149 

low RPE trials (after learning of values is completed), in which a reward R is received and the 150 

value V of the chosen stimulus was relatively high (a high V and a large R, the RPE is computed 151 

as  R - V  (see eq. 2 in methods of main text) (Watabe-Uchida et al., 2017). In contrast, the 152 

gamma synchronous state that emerges with larger drive to the I1 neurons in the model 153 

correspond to high RPE trials, in which a reward R is received, but the value of the chosen 154 

stimulus was relatively low (low V). This circuit motif is plausible when one assumes that the I1 155 

neuron population is disinhibited when the chosen stimulus value is low. Such a disinhibition can 156 

be achieved by lowering the drive to I2 cells, or by assuming a separate disinhibitory circuit 157 

involving other inhibitory cells. In the model simulation we only explored the former 158 

assumption. In summary, the E-I-I motif reproduces the switch of gamma to theta 159 

synchronization we observed during learning in ACC N3 e-type neurons. At the functional level, 160 

the circuit suggests that the emergence of gamma activity in this network indexes the detection 161 

of a discrepancy between the received reward (as one source of input) and the chosen stimulus 162 

value (as another source of input). 163 

 164 

The oscillation frequency observed in these two models was not directly related to biophysical 165 

time scales, such as, synaptic or membrane time scales or rate constants for the opening and 166 

closing of ionic channels, as would be the case in models based on Hodgkin-Huxley type 167 



channels (Tiesinga et al., 2001), rather it was achieved by the product of the two effective time 168 

scales (firing rate and synaptic) in the model. Therefore, these models serve as a proof of 169 

principle, indicating how populations may be wired up to produce oscillations with different 170 

frequencies, but they can not make conclusive predictions regarding the dynamics of the 171 

underlying interneurons, i.e. whether they are PV or SOM, or what type of spike patterns they 172 

produce. For this type of insight proper network models composed of biophysical models need to 173 

be constructed. Nevertheless, we think it is reasonable to identify faster interneuron populations 174 

with PV+ interneurons given prior modeling studies (see next paragraph), and thereby putatively 175 

link them to the N3 e-type (see also Discussion of the main text).   176 

 177 

Similar reservations hold for the mechanism by which oscillations are generated, such as for 178 

instance ING versus PING (Whittington et al., 2000; Tiesinga and Sejnowski, 2009; Tiesinga, 179 

2012). Model 1 is functionally a soft winner-take-all model, but the oscillations could emerge by 180 

way of an ING motif, potentially heterogeneously activated, when individual interneurons 181 

receive a different mix of inputs from E1 and E2. Previous simulations by us and others (Wang 182 

and Buzsaki, 1996; White et al., 1998; Tiesinga and Jose, 2000; Tiesinga and Sejnowski, 2004) 183 

show that this would be feasible. Model 2 is comprised of two competing E-I motifs, which our 184 

recent simulations indicate (Domhof and Tiesinga, 2021) could implement switches when one 185 

motif is more strongly activated than the other. Our simulations do not exclude the possibility 186 

that the I1 population synchronizes by the ING mechanism, but it would in our opinion represent 187 

a less parsimonious explanation.  188 

 189 

The involvement of ING and PING mechanisms for beta and gamma oscillations are well-190 

established. For theta oscillations other mechanisms have also been proposed, for instance by 191 

way of intrinsic membrane resonance (Hutcheon and Yarom, 2000) in the pyramidal cells 192 

(Tiesinga et al., 2001) activated by neuromodulatory tone or in a specific type of interneuron 193 

(Rotstein et al., 2005), which do need to be reciprocally connected to a fast interneuron for the 194 

theta oscillations to emerge. In other models slower synaptic time scales were instrumental 195 

(White et al., 2000). As resonance mechanisms were not explicitly modeled, our model 196 

simulations do not directly speak to whether the empirical findings rely on resonance properties. 197 

We can therefore not conclusively exclude them until a more comprehensive modeling study is 198 

conducted that not only takes into account synaptic time scales but also the intrinsic dynamics of 199 

all the involved neuron classes together with their task-dependent firing rate dynamics. A 200 

comprehensive review of cortical rhythms and their mechanisms can be found in (Wang, 2010).  201 

 202 

 203 
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