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Abstract The characteristics of pneumococcal carriage vary between infants and adults. Host 
immune factors have been shown to contribute to these age-specific differences, but the role 
of pathogen sequence variation is currently less well-known. Identification of age-associated 
pathogen genetic factors could leadto improved vaccine formulations. We therefore performed 
genome sequencing in a large carriage cohort of children and adults and combined this with data 
from an existing age-stratified carriage study. We compiled a dictionary of pathogen genetic vari-
ation, including serotype, strain, sequence elements, single-nucleotide polymorphisms (SNPs), and 
clusters of orthologous genes (COGs) for each cohort – all of which were used in a genome-wide 
association with host age. Age-dependent colonization showed weak evidence of being heritable 
in the first cohort (h2 = 0.10, 95% CI 0.00–0.69) and stronger evidence in the second cohort (h2 
= 0.56, 95% CI 0.23–0.87). We found that serotypes and genetic background (strain) explained a 
proportion of the heritability in the first cohort (h2

serotype = 0.07, 95% CI 0.04–0.14 and h2
GPSC = 0.06, 

95% CI 0.03–0.13) and the second cohort (h2
serotype = 0.11, 95% CI 0.05–0.21 and h2

GPSC = 0.20, 
95% CI 0.12–0.31). In a meta-analysis of these cohorts, we found one candidate association (p=1.2 
× 10-9) upstream of an accessory Sec-dependent serine-rich glycoprotein adhesin. Overall, while we 
did find a small effect of pathogen genome variation on pneumococcal carriage between child and 
adult hosts, this was variable between populations and does not appear to be caused by strong 
effects of individual genes. This supports proposals for adaptive future vaccination strategies that 
are primarily targeted at dominant circulating serotypes and tailored to the composition of the 
pathogen populations.
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Editor's evaluation
Strain variability in bacterial infections is a confounding factor in the treatment and prevention of 
the associated diseases. Pneumococcal disease is widespread, and the current vaccine targets only a 
subset of circulating strains, with disease and vaccine efficacy likely varying with the age of the host. 
Using two large databases of pneumococcal genomes, this study explores the associations between 
genomic factors and the age of the human host. Ultimately, these data and related studies will 
establish whether and how vaccines should be differentially designed for children and the elderly. 
This work will be of interest to those working in bacterial infections and host–pathogen genomics.

Introduction
Streptococcus pneumoniae is a common commensal of the human upper respiratory tract and naso-
pharynx, but can also cause pneumonia and invasive diseases such as sepsis or meningitis (Bogaert 
et al., 2004). Invasive pneumococcal disease (IPD) has a high mortality, and the overall mortality rate 
from IPD is higher in extreme age ranges, such as infants and the elderly (Wahl et al., 2018; O Brien 
et al., 2009). In the Netherlands, pneumococcal carriage rates are higher in children than in adults, 
with a prevalence of up to 80% at 2 years of age (Wyllie et al., 2016).

Pneumococcal carriage manifests as multiple carriage episodes of different serotypes. From birth, 
mucosal immunity builds up against different serotypes due to exposure, while immunity from maternal 
antibodies wanes. Host age is known to affect carriage prevalence and carriage duration of different 
serotypes (Stearns et al., 2015; Turner et al., 2012b), which is suggested to be driven by differences 
in immunity.(Wyllie et al., 2020) Studies in mice and humans showed evidence for age-dependent 
host–pathogen interactions involving interleukin (IL)-1 response in reaction to the pore-forming pneu-
molysin (ply) toxin (Kuipers et al., 2018). IgA secretion is important in clearing S. pneumoniae from 
host upper respiratory tract mucosa, and this secretion is more effective in previously exposed indi-
viduals, the adults (Binsker et al., 2020). Bacterial genetics has been shown to explain over 60% of 
the variability in carriage duration, and specifically that the presence of a bacteriophage inserted in 
a mediator of genomic competence was associated with a decreased carriage duration (Lees et al., 
2017b).

Pneumococci are highly genetically variable, displaying over 100 diverse capsular serotypes (Ganaie 
et al., 2020), which are a major antigen and the strongest predictor of carriage prevalence (Croucher 
et al., 2018). Pneumococcal conjugate vaccines (PCVs), targeting up to 13 capsule serotypes with 
high burden of invasive disease, decrease the rate of nasopharyngeal carriage and invasive disease 
(Whitney et al., 2003; Poehling et al., 2006). Besides a direct effect of vaccination with a PCV on the 
disease burden in the target population, that is, young children, it also reduces the disease burden 
caused by pneumococci with vaccine serotypes in the population not eligible for vaccination through 
indirect protection from colonization – reducing carriage rates in children reduces overall transmis-
sion of the most invasive serotypes (Croucher et al., 2018; Desai et al., 2015; von Gottberg et al., 
2014). However, the introduction of PCV has resulted in the replacement of serotypes not covered by 
the vaccine (Croucher et al., 2013; Corander et al., 2017), which in some countries reaches levels 
of invasive disease return towards pre-vaccine levels (Ladhani et al., 2018; Koelman et al., 2020).

As not all serotypes can be included in a conjugate vaccine, three perspectives leading to improved 
pneumococcal vaccination have been proposed: whole-cell vaccines (Malley et  al., 2001; Campo 
et al., 2018), protein vaccines (Moffitt and Malley, 2016), or changing components in the conju-
gate vaccine in response to the circulating population.(Colijn et  al., 2020) Whole-cell vaccination 
trials are ongoing, but efficacy remains unproven in human populations (Morais et al., 2019). Protein 
vaccines contain antigens that elicit a strong mucosal immune response, with their targets chosen 
to be common or conserved in the target population, and ideally reducing onward transmission 
(Pichichero, 2017). In their current form, protein vaccines are not thought to be effective on their own, 
but if administered with serotype conjugates (possibly by replacing the carrier protein) they may help 
to reduce serotype replacement. Detailed modeling of the dynamics of pneumococcal population 
genetics has shown that targeting these vaccines towards serotypes prevalent in specific populations 
would likely be a superior strategy. This work further shows that providing age-specific vaccine design 
using complementary adult-administered vaccines (CAVs) is predicted to have the greatest effect on 
total IPD burden (Colijn et al., 2020). These authors also modeled including pilus in the vaccine, which 
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is more frequently present in a few key invasive serotypes and in infant carriage, but found this to be 
inferior to conjugate vaccines.

If proposing a future pneumococcal vaccination strategy based on host age, we should aim to 
better understand the differences between infant and adult carriage. Differences between other host 
niches have been found, some with a potential effect on onward transmission (Lees et al., 2017c; 
Lees et al., 2017a; Zafar et al., 2019). In particular, a previous study has suggested that the presence 
of pilus, which is found in a minority of pneumococcal isolates, has a selective advantage in infant 
carriage (Binsker et al., 2020).

We therefore wished to test three hypotheses. Firstly, carriage rates of individual strains or sero-
types vary substantially between infants and adults in the same contact networks. Secondly, this vari-
ation is attributable at least in part due to pathogen genetic adaptation to either the infant or adult 
nasopharynx, which are immunologically different niches. Finally, this adaptation is due both to sero-
type and genetic background, and that some of the genetic effects are resolvable to individual genes, 
alleles, or regulatory variants that arise on multiple different genetic backgrounds due to a selective 
advantage. If we find clear associations, this would support proposals for age-specific vaccine design 
and may also suggest specific protein components that more broadly suppress carriage in the target 
age group than multivalent PCV alone.

For the first hypothesis, to test varying rates of carriage we can swab children and adults from the 
same population (and likely exposed to the same infection pressures) and quantify serotype and strain 
prevalence. For the second hypothesis, if we whole-genome sequence bacteria from these swabs, 
we can model the effects of all genomic variants on host age in a heritability analysis. This accounts 
for genetic variation that arose long ago and is fixed in particular lineage, but cannot map it to a 
particular region of the genome (Earle et al., 2016). To find individual genetic effects, which have 
necessarily occurred more recently and frequently, one study design would be to identify adult–infant 
transmission pairs and find variation that consistently occurs in localized regions of the genome, which 
would be particularly informative if also associated with a particular direction of transmission (Lees 
et al., 2017c). This removes genetic background as a confounder, giving a clean signal (Young et al., 
2012). However, the identification of such pairs is very challenging for S. pneumoniae, and even when 
possible the small numbers limit power. We propose taking the more ‘opportunistic’ approach taken 
in genome-wide association studies (GWAS), where as many cases and controls (in this case, infant 
and adult samples) as possible are accumulated to boost statistical power, and genetic background 
is then controlled for in the association analysis. Where variation associated with age has arisen inde-
pendently on multiple genetic backgrounds, GWAS has the ability to find these signals among the 
many lineage associations tested in the second step. In all cases, analysis can be improved by studying 
more than one population to determine whether findings are consistent among different host and 
pathogen populations.

To carry out these analyses, we used pneumococci isolated from nasopharyngeal swabs of 4320 
infants and adults from the Netherlands (2009–2013) and Myanmar (October 2007–November 2008). 
Each cohort contains infant and adult samples from carriage, and there are significant differences 
between the host populations. This allows us to follow the above approach in each population and 
compare our findings between the populations. We present our findings with respect to each above 
hypothesis in turn and interpret them through the lens of using population genomics to determine 
optimal vaccination strategies.

Results
We first analyzed the observed distribution of serotypes and strains in each of the two cohorts 
to assess overall trends of differences in carriage between adults and children exposed to similar 
forces of infection and look at the pathogen population’s genetic heterogeneity between the two 
cohorts. Although our cohorts were broadly matched in the primary phenotype, age, large differences 
between the pathogen population are expected due to different geographies, social backgrounds, 
and only children in one cohort being vaccinated. Nucleotide variation across the entire genome can 
be used to cluster genetically related isolates into consistently named strains, called global pneumo-
coccal sequence clusters (GPSC) (Gladstone et al., 2019). We used this over older gene-by-gene 
approaches such as MLST as it has been shown to represent biologically discrete clusters in the popu-
lation, uses the full resolution available from whole-genome sequencing, and has strong community 
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support (Gladstone et al., 2020). For each sample, we enumerate the serotype (which is targeted by 
the vaccine) and GPSC membership, and count the number of each serotype observed in adult and 
child carriage.

Serotypes and strains are variably carried between age groups and 
between cohorts
The Dutch cohort was made up of 1329 S. pneumoniae isolates comprising 41 unique serotypes 
(Supplementary file 1). Of these isolates, 689 (52%) comprised seven serotypes: 19A (225; 17%), 
11A (111; 8%), 6C (97; 7%), 23B (84; 6%), 10A (67; 5%), 16F (54; 4%), and 21 (51; 4%). In this cohort 
of which the children were vaccinated, a minority of isolates (101; 8%) belonged to one of the vaccine 
serotypes (Supplementary file 2). A total of 3085 pneumococcal isolates of the Maela (unvaccinated) 
cohort comprised 64 unique serotype groups (Supplementary file 3). Of these isolates, 1631 (53%) 
comprised five serotypes: non-typable (511; 17%), 19F (402, 13%), 23F (307, 10%), 6B (236; 8%), and 
14 (175; 6%). In the Dutch cohort, there were 59 unique sequence clusters of which the four largest 
sequence clusters were GPSC 4 (171; 13%), GPSC 3 (156; 12%), GPSC 7 (131; 10%), and GPSC 11 
(119; 9%) (Supplementary file 4). There were 127 unique sequence clusters found in the Maela cohort 
(Supplementary file 5). The four largest sequence clusters were GPSC 1 (352; 13%), GPSC 28 (190; 
7%), GPSC 20 (168; 6%), and GPSC 42 (123; 5%). We also looked at a subset of the Maela cohort, 
which included only the earliest obtained samples from unique individuals (mothers and children). This 
subset consisted of 762 isolates, including 380 from mother–child pairs. Isolates in this subset had the 
same serotypes among the most common serotypes as in the full dataset (Supplementary file 6 and 
Supplementary file 7). Restricting this subset to mother–child paired samples only included the same 

Figure 1. Serotype and strain (global pneumococcal sequence clusters [GPSC]) distribution by age and between cohorts. Blue dots represent frequency 
of serotype and strain in child carriage, yellow dots represent frequency in adult carriage. Red and green dots show odds ratio of prevalence in children 
in the Maela and Dutch cohorts, respectively, on a log scale for serotype. Lines show differences. Top row: dominant serotypes, ordered by presence 
in cohort, and internally by overall frequency. Vaccine serotypes shown in red. (A) Serotype frequency in the Dutch cohort. (B) Serotype frequency in 
the Maela cohort. (C) Comparison of adult/child log odds in each cohort for serotype. Second row: dominants strains (GPSCs), ordered by presence in 
cohort, and internally by overall frequency. (D) Strain frequency in Dutch cohort. (E) Strain frequency in Maela cohort. (F) Comparison of adult/child log 
odds in each cohort for strain.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Histogram for child age (in months) in (A) Dutch cohort (red bars) and (B) Maela cohort (blue bars).

https://doi.org/10.7554/eLife.69244
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serotypes and sequence clusters among the most prevalent (Supplementary file 6 and Supplemen-
tary file 7).

Some serotypes exhibited a large difference in colonization frequency between the two age groups 
(Figure 1). In the Dutch cohort, serotype 6C (chi-squared test, p=0.02, not corrected for multiple 
testing) and serotype 15B (p=0.02) were overrepresented in children relative to adults, serotype 3 

Table 1. Chi-squared values for serotypes in the Dutch and Maela cohorts and the age group that 
the serotype is affiliated with.

Serotype
Dutch cohort Maela cohort

χ2 p-value Age group χ2 p-value Age group

Non-typeable 0.188 Adults 3.0 × 10–4 Adults

19A 0.089 Children 0.690 Children

11A 0.591 Children 0285 Adults

19F 1 Adults 0.131 Children

6C 0.022 Children 1 Adults

6B 0.099 Children 0.040 Children

35F 0.279 Children 0.100 Children

3 2.5 × 10–5 Adults 0.129 Adults

6A 0.709 Children 1 Children

23A 1 Adults - -

15B 0.023 Children - -

17F 0.943 Children - -

23B 0.727 Children - -

10A 0.155 Adults - -

15C 1.000 Adults - -

35B 0.775 Adults - -

22F 1 Adults - -

33F 0.132 Adults - -

23F - - 0.040 Children

14 - - 0.949 Children

35C - - 0.961 Children

34 - - 0.690 Children

13 - - 0.756 Adults

10B - - 0.756 Adults

4 - - 0.966 Children

5 - - 0.710 Adults

33B - - 1 Children

28F - - 0.652 Children

19B - - 0.710 Adults

7F - - 0.971 Children

20 - - 0.971 Children

18C - - 1 Adults

χ2, chi-square; -, not applicable.

https://doi.org/10.7554/eLife.69244
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was overrepresented in adults relative to children (p=2.5 × 10–5), while in the Maela cohort, serotype 
groups overrepresented in children were serotype 23F (chi-squared test, p=0.04) and serotype 6B 
(chi-squared test, p=0.04); while non-typeable serogroup was overrepresented in adults (chi-squared 
test, p=3.0 × 10–4) (Table 1). None of the 20 largest groups of sequence clusters overlapped between 
the cohorts. In the Dutch cohort, only GPSC 11 was significantly associated with carriage in children 
(chi-squared test, p=0.03, not corrected for multiple testing), while GPSC 12 (chi-squared test, p=1.2 
× 10–4) and GPSC 38 (chi-squared test, p=2.1 × 10–4) were overrepresented in adults. In the Maela 
cohort, only sequence cluster GPSC 128 was overrepresented in children compared to adults (chi-
squared test, p=0.04), while GPSC 20 (chi-squared test, p=7.0 × 10–3) and GPSC 74 (chi-squared test, 
p=0.04) were overrepresented in adults (Table 2).

A phylogenetic tree of pooled sequences from both cohorts, with serotype, sequence cluster, age 
group, and cohort for each sequence, revealed clonal discrimination between cohorts (Figure  2). 
Combined with the effects shown in Figure 1, this highlighted a key feature of our analysis of these 
datasets, which was the genetic heterogeneity between the two cohorts. Individually, each dataset 
clearly has strains and serotypes with strong signals of host age differences, but the overall makeup of 
each dataset is very different (nine common serotypes are shared, but only a single common GPSC), 
and where there are shared serotypes these can have different effect directions between the two 
cohorts.

Host age is heritable and mostly explained by strain and serotype
To quantify the amount of variability in carriage age explained by variability in the genome, we calcu-
lated a heritability estimate (h2) for each cohort. For isolates in the Dutch cohort, we did not find 
strong evidence that genetic variability in bacteria was related to variance in host age (h2 = 0.10, 
95% CI 0.00–0.69). In the Maela cohort, we found significant evidence that affinity with host age was 
heritable (h2 = 0.56, 95% CI 0.23–0.87) and thus genetic variation in this cohort explained variation 
in carriage age to a greater degree. In both cohorts, pan-genomic variation could be used to predict 
host age to some degree of accuracy (area under the receiver-operating characteristic [ROC] curve 
0.82 [Dutch cohort]; 0.91 [Maela cohort]), suggestive of some level of heritability and association of 
host age with strain (Figure 3). Prediction between cohorts using a simple linear model failed as the 
genetic variants chosen as predictors were not found in the other cohort – again highlighting the high 
level of genetic heterogeneity between cohorts.

To further investigate the association of serotype and sequence cluster to carriage age, we deter-
mined the proportion of variation in carriage age explained by serotype and sequence cluster alone. 
Here, we estimated h2

serotype = 0.07 (95% CI 0.04–0.14) and h2
GPSC = 0.06 (95% CI 0.03–0.13) for the 

Dutch cohort and h2
serotype = 0.11 (95% CI 0.05–0.21) and h2

GPSC = 0.20 (95% CI 0.12–0.31) for the Maela 
cohort, confirming a larger contribution of serotype and sequence cluster to carriage age heritability 
in sequences from the Dutch cohort. We also performed a genome-wide association analysis, but 
without controlling for population structure. This reveals genetic variants specific to serotype as deter-
minants for carriage age (p-values<5.0 × 10–8) in both cohorts (Supplementary file 8, Dutch cohort, 
and Supplementary file 9, Maela cohort). Among the genetic variants with the lowest p-values were 
variants in capsule locus genes (Cps) in both cohorts. This further supports a role of strain and sero-
type in association with host age, but does not distinguish between the two.

Genome-wide association analysis does not find genetic variants 
independent of strain
Following these observations that serotype and strain do not explain the full heritability, specifically 
in the Maela cohort, we performed a pathogen genome-wide association analysis to investigate 
whether we can detect genetic variants irrespective of the genetic background that are associated 
with carriage in children or adults. Though the cohorts have little genetic overlap in terms of genetic 
background, we would be well-powered to detect genetic variation independent of background 
(‘locus’ associations) (Earle et al., 2016; Lees et al., 2016). In the Dutch cohort, none of the unitigs, 
SNPs, COGs, or rare variants surpassed the threshold for multiple testing correction (Figure 4—figure 
supplement 1). The burden (sum) of rare variants in a gene for tryptophan synthase, trpB, approaches 
the multiple testing threshold, but was not significant. In the Maela cohort, unitigs in the ugpA gene 
surpassed the threshold for statistical significance (Figure 4—figure supplement 2), but these did 

https://doi.org/10.7554/eLife.69244
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Table 2. Chi-squared values for strains in the Dutch and Maela cohorts and the age group that the 
strain is affiliated with.

GPSC
Dutch cohort Maela cohort

χ2 p-value Age group χ2 p-value Age group

60 0.568 Adults 0.727 Adults

4 0.298 Children - -

3 0.392 Adults - -

7 0.858 Children - -

11 0.03 Children - -

35 and 36 0.617 Adults - -

29 0.049 Children - -

46 0.563 Children - -

75 0.666 Adults - -

19 0.978 Children - -

12 1.2 × 10–4 Adults - -

44 1 Adults - -

24 0.094 Children - -

49 1 Children - -

109 0.817 Adults - -

16 0.249 Adults - -

38 2.1 × 10–4 Adults - -

146 0.489 Children - -

99 1 Children - -

15 0.22 Adults - -

42 - - 0.134 Children

1 - - 0.276 Adults

28 - - 0.110 Children

73 - - 0.253 Children

10 - - 0.777 Adults

9 - - 1 Children

30 - - 0.993 Children

20 - - 7.0 × 10–3 Adults

128 - - 0.042 Children

66 - - 1 Children

87 - - 0.450 Adults

63 - - 1 Adults

45 - - 0.129 Adults

130 - - 1 Adults

74 - - 0.040 Adults

149 - - 0.686 Adults

8 - - 0.364 Children

Table 2 continued on next page

https://doi.org/10.7554/eLife.69244
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not hold after meta-analysis. After meta-analysis, there were two hits that surpassed the threshold for 
statistical significance (Figure 4).

The first is a nucleotide sequence marked by multiple unitigs of which the lowest has a p-value 
of 1.2 × 10–9 (Supplementary file 10). This sequence does not map to the S. pneumoniae D39V 
reference sequence (Altschul et al., 1990) For this reason, it is not visualized on the Manhattan plot, 
for which unitigs were mapped to the S. pneumoniae D39V reference sequence (Figure 4). Upon 
inspection of the individual sequences these unitigs are called from, we find them to map in the 
intergenic region between open-reading frames encoding the accessory Sec-dependent serine-rich 
glycoprotein adhesin and a MarR-like regulator, respectively. This region contains sequences resem-
bling transposable elements and an open-reading frame encoding a transposase. The unitigs map 
upstream of the start codon of the accessory Sec-dependent serine-rich glycoprotein adhesin. The 
sequence is present in 169 out of 1282 (13%) sequences in the Dutch cohort and in 241 out of 3085 
(8%) in the Maela cohort. The sequence is present in isolates dispersed over the phylogenetic tree 
and associated with carriage in children (Figure 2—figure supplement 1). This protein is involved in 
adhesion to epithelial cells and biofilm formation (Chan et al., 2020; Middleton et al., 2021; Weiser 
et al., 2018). Given that this sequence lies just upstream of the start codon, it is plausible that vari-
ation of this sequence alters the expression of the Sec-dependent adhesin protein, and therefore 
affects carriage.

The second hit is a burden of rare variants in a gene for tryptophan synthase, trpB, that surpass 
the threshold for statistical significance at a p-value of 5.0 × 10–5. The variants are two frameshift 
variants of very low frequency. These result in a predicted dysfunctional trpB gene in 9 out of 1282 
(1%) sequences in the Dutch cohort and in 12 out of 3073 (0.4%) sequences in the Maela cohort. This 
association of the trpB gene is likely to be an artifact of low allele frequency as we estimate we are 
only powered to detect variation in at least 5% of isolates.

Pilus gene presence does not determine carriage age independent of 
genetic background
Finally, we investigated whether pneumococcal isolates containing a pilus gene preferentially colo-
nize children in the Dutch cohort, as has been previously described in the Maela cohort (Binsker 
et al., 2020; Turner et al., 2012a). This study analyzed the Maela cohort and found that 934 out of 
2557 (37%) isolates in children versus 95 out of 592 (16%) isolates in adults had pilus genes present. 
However, this association of pilus gene presence to carriage age was dependent on lineages within 
the population (Binsker et al., 2020). In the Dutch cohort, we found no evidence that host age was 
dependent on pilus gene presence (22 out of 208 [10%] in adults versus 129 out of 1099 [12%] in 
children). This was the case whether or not the genetic background was adjusted for (p=0.35, uncor-
rected for population structure, and p=0.69, corrected for population structure). Based on these find-
ings, we suggest that the previously reported pilus-IgA1 association is not a universal explanation for 
difference in colonization between hosts of different ages.

GPSC
Dutch cohort Maela cohort

χ2 p-value Age group χ2 p-value Age group

25 - - 1 Adults

187 - - 0.371 Adults

154 - - 1 Adults

118 - - 0995 Children

110 - - 0.995 Children

106 - - 0.073 Adults

χ2, chi-square; -, not applicable; GPSC, global pneumococcal sequence clusters.

Table 2 continued

https://doi.org/10.7554/eLife.69244
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Discussion
The age of the host is known to have an important effect on pneumococcal colonization (Croucher 
et al., 2018). Observational studies have demonstrated variation in serotype prevalence and carriage 
duration between infants and adults. Mechanistic studies in mice and humans have shown examples 
of differing immune responses depending both on host factors and pathogen factors. Findings from 
these studies include the observation that capsular polysaccharides (determinants of serotype) inhibit 
phagocytic clearance in animal models of upper respiratory tract colonization (Nelson et al., 2007). 

Figure 2. Phylogenetic tree of carriage samples from both cohorts. The rings show metadata for the samples. Depicted from inside to outside, these 
are serotype, sequence cluster (global pneumococcal sequence clusters [GPSC]), age, and source (Maela, Netherlands). Scale bar: 0.013 substitutions 
per site. An interactive version is available at here (project link available here).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Phylogenetic tree of carriage samples from both cohorts.

https://doi.org/10.7554/eLife.69244
https://microreact.org/project/f2MdBLZhSyU9eF8MBobHhA/e2a5ebd7
https://microreact.org/project/f2MdBLZhSyU9eF8MBobHhA
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A pneumolysin-induced IL-1 response determined colonization persistence in an age-dependent 
manner Kuipers et al., 2018; and pilus-expressing strains were found to preferentially colonize chil-
dren because of immune exclusion via secretory IgA in non-naïve hosts (Binsker et al., 2020).

Building upon these observations, we sought to investigate and quantify the contribution of 
pathogen genetic variation to carriage in infant versus adult hosts using a top-down approach to 
systematically test the effect of pathogen genome variation on niche specificity (with age as the niche). 
We used whole-genome sequencing and applied statistical genetic methods to two large S. pneumo-
niae carriage cohorts. We aimed to quantify the differing patterns of serotype and strain prevalence 
between the two age classes during carriage and search for other genetic factors associated with host 
age. We show evidence that bacterial genetic variability indeed influences predilection for host age, 
though the effect size appears to be highly variable between populations.

Strain, or genetic background, explains 60% of the total heritability in the Dutch cohort, but only a 
minority in the Maela cohort. We found sequences in one region that map closely to the start codon 
of the accessory Sec-dependent serine-rich glycoprotein adhesin to be associated with carriage age 
independent of genetic background, in a meta-analysis of the two cohorts.

In previous bacterial GWAS of antimicrobial resistance (such as a single gene that causes antibiotic 
resistance), large monogenic effects have typically been found to have high heritabilities close to one, 
and the GWAS identify the causal variant precisely.(Earle et al., 2016; Chewapreecha et al., 2014b; 
Lees et al., 2020). When applied to virulence and carriage duration phenotypes, heritable effects have 

Specificity

S
en

si
tiv

ity

1.0 0.8 0.6 0.4 0.2 0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Dutch cohort (AUC: 0.82)

Maela cohort (AUC: 0.91)

Figure 3. Prediction of host age from pan-genomic variation in each cohort. The smoothed receiver-operating 
characteristic (ROC) curve based on a linear predictor (elastic net fitted to unitigs, with strains used as folds for 
cross-validation) is shown. Area under the curve (AUC) is 0.5 for no predictive ability and 1 for perfect prediction.
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also been found, but these only explained some of the variation in the phenotype. These appeared 
to be caused by many weaker effects, known as a polygenic trait, not all of which could be detected 
using the relatively small cohorts available (Lees et al., 2017b; Lees et al., 2019a). Polygenic effects 
were also seen in another study on the contribution of genetic variation to disease severity of IPD 
(Cremers et al., 2019). We found similar results for host age heritability in our two cohorts.

We could not distinguish between genetic background or serotype being the primary effect due to 
their correlation. We did note a difference in effect size of serotype between the two cohorts, which 
may make it unlikely to be the single largest effect on host age. This difference in cohorts could be 
explained by strain/GPSC being the main and consistent effect on host age. As strains are different 
between cohorts and each serotype appears in multiple strains, combining them in different amounts 
would create different directions of effect for serotype.

Our results are therefore suggestive of the following genetic architecture for association with host 
age. Primarily, whether a particular infant is colonized with a pneumococcus, when compared to an 
adult from the same population, is not due to the pathogen’s genetics. This may be due to technical 
factors such as detectability related to pathogen load (which varies between adults and children, as 
well as between serotypes), different local forces of exposure, or other environmental or host factors 
such as diet (which may affect survival to trpB-defective pneumococci). However, some of the variation 
of these patterns can be explained by the pathogen’s genetics. This appears largely to be driven by 
the fact that some strains and serotypes are more likely to be found in an infant or adult nasopharynx. 
In addition, there are likely to be many variants that each contribute a small amount to host age pref-
erence, but no single universally important gene or variant (a polygenic trait).

From this study, we cannot say specifically which regions of the genome contain these small effects, 
but it is useful to rule out recently adaptive variants with individually strong effects. We did not repli-
cate the association of piliated genomes in infant hosts in our newly sequenced cohort, further 
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Figure 4. Association of variants after meta-analysis with carriage age 0–24 months. (A) Minus log-transformed p-value on the y-axis and position of 
unitig and single-nucleotide polymorphism (SNP) variants on the S. pneumoniae genome on the x-axis (Manhattan plot). (B) Minus log-transformed p-
value on the y-axis and sorted lowest to highest p-value for rare variant burden in genes (purple) and clusters of orthologous genes (COGs, blue) on the 
x-axis.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Association of variants in the Dutch cohort with carriage age 0–24 months.

Figure supplement 2. Association of variants in the Maela cohort with carriage age 0–24 months.

https://doi.org/10.7554/eLife.69244
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demonstrating important differences between populations. An important corollary of our work is on 
future pneumococcal vaccine optimization efforts. A promising approach for future vaccination strat-
egies is to target the different age groups (Colijn et al., 2020). Whether these should consist of the 
dominant disease-causing serotypes overrepresented in carriage by each age group or whether there 
are age-specific pathogen proteins that should be included is an open question. Our study there-
fore suggests that targeting these age groups using serotype makeup alone would be sufficient and 
supports previous observational and modeling studies that advise targeting the serotype makeup in 
the vaccine at specific populations to maximize their effect.

Three reasons can contribute to not finding individual effects: a high proportion of the heritability 
being caused by lineage effects; rare locus effects that could not be detected with the current sample 
size; and by sampling from a cohort with vaccinated children and unvaccinated adults and comparing 
with a cohort of unvaccinated children and adults, we had lower power due to the reduced overlap 
within and between cohorts in pan-genome content. Although differences in vaccination status 
between cohorts is one plausible explanation for interpreting our findings, we were unable to rule out 
other factors, for example, a population-specific host effect, geographical differences (Li et al., 2019), 
or the broad effects of different socioeconomic status between these cohorts. Pneumococcal factors 
such as differences in detectability due to carriage density could also influence results.

One important difference between our study cohorts was that children from the Dutch cohort were 
vaccinated, while children from the Maela cohort were not. While our findings demonstrate that vacci-
nated versus unvaccinated children were colonized with different bacterial serotypes and different 
sequence clusters, we observed differences in prevalence beyond just the serotypes included in the 
vaccine. Another difference between the cohorts was that adults from the Dutch cohort were males 
and females, while adults from the Maela cohort were females only.

In summary, we found an effect of pneumococcal genetics on carriage in children versus adult 
hosts, which varies between cohorts, and is likely primarily driven by serotype or strain (lineage) effects 
rather than large population-wide effects of individual genes.

Materials and methods
Cohort collection
Cohorts were selected based on availability. The Dutch cohort consists of parent–child paired 
isolates of carriage samples from individuals obtained from three prospective carriage surveillance 
studies (Spijkerman et al., 2012; Bosch et al., 2016; van Beek et al., 2017). In these studies, 
carriage was assessed by conventional culture of nasopharyngeal or oropharyngeal swabs of vacci-
nated children (11 and 24 months of age) and their parents in 2009, 2010/2011, 2012, and 2013 
(Spijkerman et  al., 2012). All children were vaccinated with PCV-7 or PHiD-CV10 according to 
the Dutch national immunization program at 2, 3, 4, and 11 months of age. Vaccination status of 
the parents was unknown. Exclusion criteria are described elsewhere (Spijkerman et al., 2012; 
Bosch et al., 2016). Nasopharyngeal swabs were collected from all individuals and oropharyngeal 
swabs were collected from all adult subjects by trained study personnel using flexible, sterile swabs 
according to the standard procedures described by the World Health Organization (O Brien et al., 
2003). After sampling, swabs were immediately placed in liquid Amies transport medium and 
transported to the microbiology laboratory at room temperature and cultured within 12 hr. Pneu-
mococcal isolates were identified using conventional methods, as described previously (Trzciński 
et al., 2013). The Maela cohort consists of samples from people from a camp for displaced persons 
on the Thailand–Myanmar border, where monthly nasopharyngeal sampling was performed in 
unvaccinated children (0–24 months old) and their mothers. This cohort consists of mother–child 
paired samples, some of which were sampled from the same mother or child over multiple time 
points, and unpaired samples from mothers and children. A subselection from this cohort was 
made to reflect the first sampled isolates for each mother–child pair and unpaired samples to 
obtain isolates belonging to unique individuals. Procedures for collecting samples and generating 
whole-genome sequences have been previously described (Turner et al., 2012b; Chewapreecha 
et al., 2014b).

https://doi.org/10.7554/eLife.69244
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Informed consent
Written informed consent was obtained from both parents of each child participant and from all adult 
participants. Approval for the 2009 and 2012/2013 studies in children and their parents (NL24116 and 
NL40288/NTR3613) was received from the National Ethics Committee in the Netherlands (CCMO 
and METC Noord-Holland). For the 2010/2011 study, a National Ethics Committee in The Nether-
lands (STEG-METC, Almere) waived the requirement for EC approval. Informed consent for the Maela 
cohort is described elsewhere (Turner et al., 2012b). Studies were conducted in accordance with the 
European Statements for Good Clinical Practice and the Declaration of Helsinki of the World Medical 
Association.

Host age distribution in sequenced carriage cohorts
In the Dutch cohort, children had a median age of 23 months (interquartile range [IQR] 10–24 months). 
Adults had a median age of 35 (IQR 32–38) years. In the Maela cohort, the median age of children 
was 13 months (IQR 6–19 months), and for mothers (women of childbearing age) the exact age was 
unknown (Figure 1—figure supplement 1; Turner et al., 2012b; Turner et al., 2013) In the Dutch 
cohort, all children were vaccinated with PCV-7 or PHiD-CV10. None of the members of the Maela 
cohort had received PCV.

DNA extraction and whole-genome sequencing
For the Dutch cohort, DNA extraction was performed with the Gentra Puregene Isolation Kit (QIAGEN), 
and quality control procedures were performed to determine yield and purity. Sequencing was 
performed using multiplexed libraries on the Illumina HiSeq platform to produce paired-end reads of 
100 nucleotides in length (Illumina, San Diego, CA). Quality control involved analysis of contamination 
with Kraken (version 1.1.1)(Page et al., 2016), number and length of contigs, GC content, and N50 
parameter. Sequences for which one or more of these quality control parameters deviated by more 
than 3 standard deviations from the mean were excluded. Sequences were assembled using a stan-
dard assembly pipeline (Page et al., 2016). Assembly statistics can be found in Supplementary file 
11. Genome sequences were annotated with PROKKA, version 1.11 (Seemann, 2014). For the Maela 
cohort, DNA extraction, quality control, and whole-genome sequencing have been described else-
where (Chewapreecha et al., 2014a). Serotypes were determined from the whole-genome sequence 
by in-house scripts (Croucher et al., 2011). Sequence clusters (strains) were defined as GPSC using 
PopPUNK (version 2.2.0) using a previously published reference database (Gladstone et al., 2019; 
Lees et al., 2019b). For 114 and 401 sequences in the Dutch and Maela cohorts, respectively, the 
GPSC could not be inferred due to low sequence quality.

Sequencing characteristics and quality control
A total of 1361 bacterial isolates were sequenced as part of the Dutch cohort. During quality control, 
32 sequences were excluded. Of these, 8 belonged to a different pathogen species, 9 had contamina-
tion, 14 were excluded based on the number of contigs or genome length, and 1 sequence failed anno-
tation. For 47 sequences, host age was missing. The average length of the sequences was 2,105,305 
nucleotides, with a standard deviation of 51,679 nucleotides. The mean number of contigs was 67, 
range 23–226. The association analyses were performed on 1282 sequences in the Dutch cohort. Of 
these, 1052 were isolated from children and 230 from adults. There were 3085 sequences available 
from the Maela cohort. Quality control for this cohort was described previously (Chewapreecha et al., 
2014a). There were 2503 sequences isolated from children and 582 from adults. In a subset from the 
Maela cohort, there were 762 isolates from unique hosts, of which 380 were paired isolates (190 from 
children and 190 from their mothers). For the determination of the frequency and odds ratio of sero-
type and GPSCs in children and adults, only the first isolate from each carriage episode for each child 
was included in the analysis. This resulted in 964 serotypes and 799 GPSCs (165 missing) in children, 
and 582 serotypes and 508 GPSCs (74 missing) in adults. For adults, chi-squared tests to calculate 
the p-value for association between serotype and strain with age were performed in R (version 4.0.0).

Phylogenetic tree
A core genome for sequences from both cohorts together was generated with Roary (version 3.5.0, 
default parameters) using a 95% sequence identity threshold (Page et  al., 2015). A maximum 

https://doi.org/10.7554/eLife.69244
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likelihood phylogeny of SNPs in the core genome of all sequenced isolates from both cohorts together 
was produced with IQ-TREE (version 1.6.5, including fast stochastic tree search algorithm, GTR+I+ G) 
assuming a general time-reversible model of nucleotide substitution with a discrete γ-distributed rate 
heterogeneity and the allowance of invariable sites (Nguyen et al., 2015).

Heritability analysis
Based on the kinship matrix and phenotypes, a heritability estimate was performed in limix 
(version 3.0.4 with default parameters) for both cohorts separately (Lippert et al., 2014). A confi-
dence interval around the heritability estimate was determined with Accurate LMM-based herita-
bility Bootstrap confidence Intervals (ALBI) based on the eigenvalue decomposed distances in the 
kinship matrix and the heritability estimate with the gglim package (version 0.0.1) in R (version 
4.0.0) (Schweiger et al., 2018). To estimate the proportion of heritability attributable to serotype 
or strain alone, we calculated the heritability with limix, based on a kinship matrix treating sero-
types or strains as genetic variants (Lees et  al., 2017b; Lees et  al., 2018). Again, a confidence 
interval around the heritability estimate was determined with ALBI (Schweiger et  al., 2018). The 
code used to perform these analyses is available at https://github.com/philipkremer123/carriage_​
pneumo_heritability (Kremer, 2022a copy archived at swh:1:rev:73c4fa5c8d24d76945308b-
2616fbb5572d0c39b4) and https://github.com/johnlees/carriage-age-plots, (Kremer, 2022b copy 
archived at swh:1:rev:f9477d6b8382fee6926be7fd29b99afc15873fe8).

Determining bacterial genetic variation: Unitigs, SNPs, and COGs
Using the whole-genome sequence reads from both cohorts, we called SNPs, small insertions and 
deletions, and SNPs clustered as rare variants (deleterious variants at an allele frequency  < 0.01) 
based on the S. pneumoniae D39V reference (CP027540) sequence using the Snippy pipeline (version 
4.4.0, default parameters). We determined nonredundant sequence elements (unitigs) from assem-
bled sequences in the Dutch cohort by counting nodes on compacted De Bruijn graphs with Unitig-
counter (version 1.0.5, default minimum k-mer length of 31) (Jaillard et al., 2018). These unitigs were 
called in an indexed set of sequences from the Maela cohort with Unitig-caller (version 1.0.0, default 
parameters) (Lees et al., 2020). This gave us the distribution of sequences from both cohorts with 
consistent k-mer definitions, making it possible to run predictive models across cohorts. The same 
Roary run as was used to generate the core-genome alignment was used to extract accessory COGs 
(Page et al., 2015).

There were 9,966,794 unitigs counted from combined sequences in the Dutch cohort. Of these, 
303,901 passed a minor allele frequency (MAF – the frequency of isolates a genetic sequence, or 
allele, is identified in) of 0.05 filter and had association testing performed. The 9,966,794 unitigs from 
the Dutch cohort were called in sequences from the Maela cohort to obtain 726,040 unitigs. Asso-
ciation testing in this group was done for 323,112 unitigs that were present at MAF 0.05 or more. 
Meta-analysis was performed on 251,733 overlapping unitigs. There were 313,143 SNPs called from 
sequences in the Dutch cohort, of which 43,556 passed MAF filtering. For the Maela cohort, 382,230 
SNPs were called and 53,553 passed the MAF filter. For meta-analysis, 20,118 SNPs had overlapping 
positions and were included. There were 1997 rare variants called in the Dutch cohort, which were 
burdened in 538 genes. For the Maela cohort, these numbers were 1997 and 423. Together, 186 
genes were included in the meta-analysis. Lastly, 2348 COGs were analyzed in the Dutch cohort and 
4678 in the Maela cohort. In the meta-analysis, there were 627 overlapping COGs.

Genome-wide association study
The association analysis for SNPs, unitigs, rare variants, and COGs was run as a linear mixed model 
in Pyseer (version 1.1.1), with a minimum MAF of 0.05 (Lees et al., 2018). To correct for population 
structure, the model included a kinship matrix as covariates, which was calculated from the midpoint 
rooted phylogenetic tree. An association analysis not corrected for population structure was run with 
unitigs as sequence elements using a simple fixed-effects model in Pyseer. Rare variants were clus-
tered in their corresponding gene and analyzed in a burden test. Meta-analysis was performed on 
summary statistics from the Pyseer results files with METAL (version released on August 28, 2018, 
default parameters) for each variant (Willer et al., 2010). A threshold for association of the phenotype 
with meta-analyzed variants was determined using a Bonferroni correction with alpha < 0.05 and the 
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number of independent tests in the Dutch cohort, giving p<1.0 × 10–7 for unitigs, p<1.0 × 10–6 for 
SNPs, p<2.0 × 10–5 for COGs, and p<1.0 × 10–4 for rare variants. Unitigs were mapped to the S. pneu-
moniae D39V reference genome with bowtie-2 (version 2.2.3, with equal quality values and length of 
seed substrings 7 nucleotides). In accordance with the study populations in both cohorts, the pheno-
type was dichotomized as host age 0–24 months versus adult age. Manhattan plots were generated 
in R (version 3.5.1) with the package ggplot2 (version 3.1.0). Presence or absence of pilus genes was 
detected by nucleotide BLAST (version 2.6.0, default parameters) analysis. Pilus gene presence asso-
ciation to carriage age was calculated with a likelihood ratio test in Pyseer (version 1.1.1), corrected 
for population structure by including a kinship matrix as covariates.

The prediction analysis used the elastic net mode of Pyseer. This fitted an elastic net model with a 
default mixing parameter (0.0069 L1/L2) to the unitigs counted in each cohort using the strains from 
PopPUNK as folds to try and reduce overfitting (Lees et al., 2020). ROC curves for each cohort were 
drawn using the linear link output, with the R package pROC (version 1.16.2) using smoothing. To test 
inter-cohort prediction, the called unitigs from the other cohorts were used as predictors with the 
model from the opposing cohort.
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of the unitig in the Streptococcus_pneumoniae_D39V genome.

•  Supplementary file 9. Unitigs associated with carriage age in the Maela cohort when not corrected 
for population structure of the bacterial population (lrt-p-value). The other columns provide 
parameters of the regression line for the unitig. The final column (annotation) provides the location 
of the unitig in the Streptococcus_pneumoniae_D39V genome.

•  Supplementary file 10. Unitigs represent the top hits for carriage age after meta-analysis of both 
cohorts. These unitigs are not found in any currently available reference genome, but are found to 
be upstream of an accessory Sec-dependent serine-rich glycoprotein adhesin in a subset of samples 
from these cohorts.
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•  Supplementary file 11. Statistics on the assembly of the sequences from the Dutch cohort.

•  Supplementary file 12. Sample name, sample accession, lane name, and lane accession in the 
European Nucleotide Archive for the sequences from the Dutch cohort.

•  Supplementary file 13. Sample name, sample accession, lane name, and lane accession in the 
European Nucleotide Archive for the sequences from the Maela cohort.

•  Transparent reporting form 

Data availability
Fastq sequences of bacterial isolates from the Dutch cohort were deposited in the European Nucle-
otide Archive (ENA, study and accession numbers in Supplementary file 12). Sequences of bacte-
rial isolates in the Maela cohort are available at ENA under study numbers ERP000435, ERP000483, 
ERP000485, ERP000487, ERP000598 and ERP000599 (Supplementary file 13). Summary statistics for 
the results from the genome wide association studies can be found at https://figshare.com/articles/​
dataset/S_pneumoniae_carriage_GWAS/14431313.
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