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AbstractABSTRAGT

DNA methylation has evolved to silence mutagenic transposable elements (TEs) while typically
avoiding the targeting of endogenous genes. Mechanisms that prevent DNA methyltransferases
from ectopically methylating genes are expected to be of prime importance during periods of
dynamic cell cycle activities including plant embryogenesis. However, virtually nothing is known
regarding how DNA methyltransferase activities are precisely regulated during embryogenesis
to prevent the induction of potentially deleterious and mitotically stable genic epimutations.
Here, we report that microRNA-mediated repression of CHROMOMETHYLASE 3 (CMT3) and
the chromatin features that CMT3 prefers help prevent ectopic methylation of thousands of
genes during embryogenesis that can persist for weeks afterwards. Our results are also
consistent with CMT3-induced ectopic methylation of promoters or bodies of genes undergoing
transcriptional activation reducing their expressioneerresponding-transeript-levels. Therefore,
the repression of CMT3 prevents epigenetic collateral damage on endogenous genes. We also
provide a model that may help reconcile conflicting viewpoints regarding the functions of

gene-body methylation that occurs in nearly all flowering plants.
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IntroductioniNFROBUEHON

Methylation of DNA encoding transposable elements (TE) is required to silence their expression
and consequently prevent them from mobilizing and mutagenizing genomes (Kato et al., 2003;
Law and Jacobsen, 2010). Complex mechanisms have evolved to balance the high degree of
sensitivity needed to direct methylation and silencing of TEs with the precision required to
prevent ectopic methylation of endogenous genes (Antunez-Sanchez et al., 2020; Ito et al.,
2015; Papareddy et al., 2020; Saze and Kakutani, 2011; Williams et al., 2015; Zhang et al.,
2020). However, little is known about the mechanisms of epigenome homeostasis during
embryogenesis when organisms are particularly vulnerable to TE-induced mutagenesis, as well
as the establishment of potentially deleterious epimutations that can persist through many cell
divisions and even across generations (Henderson and Jacobsen, 2007; Mathieu et al., 2007;
Probst et al., 2009; Saze et al., 2003; Scheid et al., 1998).

In Arabidopsis thaliana (Arabidopsis), most TEs are found in pericentromeric regions of the
genome to which RNA polymerases have limited access (Arabidopsis Genome Initiative, 2000;
Lippman et al.,, 2004; 2000; Zhang et al, 2006). These TE-enriched constitutive
heterochromatic regions are characterized by high densities of cytosine methylation in
symmetric (CG or CHG; H # G) and asymmetric (CHH) contexts, as well as histone H3 lysine
dimethylation (H3K9me2) and other transcriptionally repressive chromatin marks (Cokus et al.,
2008; Lister et al., 2008; Stroud et al., 2014). Symmetric DNA methylation and H3K9me2 also
facilitate the stable propagation of silenced states through cell divisions (Jackson et al., 2002;
Lindroth et al., 2001; Stroud et al., 2013, 2014). METHYLTRANSFERASE 1 (MET1) maintains
CG methylation through mitotic and meiotic cell divisions with high fidelity due to VARIANT IN
METHYLATION 1/2/3 (VIM1/2/3) proteins that recognize hemi-methylated CG and recruit MET1
to methylate daughter strands (Feng et al., 2010; Finnegan and Dennis, 1993; Ning et al., 2020;
Woo et al., 2008). CG methylation can also recruit RNA Polymerase IV complexes required to
produce 24-nt small interfering RNAs (siRNAs) that are then loaded onto ARGONAUTE proteins
and guide them to target loci by base-pairing with nucleic acids (Blevins et al., 2015; Herr et al.,
2005; Papareddy et al., 2020; Zhai et al., 2015; Zilberman et al., 2003). This leads to the
recruitment of DOMAINS REARRANGED METHYLTRANSFERASES 1/2 (DRM1/2) and results
in de novo methylation of cytosines in all sequence contexts, including CHH, which is a hallmark
feature of RNA-directed DNA methylation (RdDM) (Cao and Jacobsen, 2002; Stroud et al.,
2013; Wierzbicki et al., 2008). However, RADM is typically restricted from constitutive

heterochromatin because it is inaccessible to DNA-dependent RNA polymerase IV and
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methyltransferases required for RdADM (Papareddy et al., 2020; Zemach et al., 2013). Instead,
CHH methylation of constitutive heterochromatin is mediated by CHROMOMETHYLASE 2
(CMT2) that binds to H3K9me2 deposited by KRYPTONITE (KYP) and closely related
SUPPRESSOR OF WARIAFIONVARIEGATION 3-9 HOMOLOGUE PROTEIN 5/6 (SUVH5/6)
methyltransferases (Stroud et al.,, 2014; Zemach et al., 2013). CHROMOMETHYLASE 3
(CMT3) also forms interlocking positive feedback loops with H3K9 methyltransferases (Du et al.,
2012; Jackson et al., 2002; Lindroth et al., 2001), but is more closely associated with the cell
cycle and mediates CHG methylation (Ning et al., 2020).

CMT3-mediated CHG methylation is largely deposited on TEs. However, CMT3 can also
induce the ectopic methylation of protein-coding genes (Wendte et al., 2019). Moreover, the
introduction of Arabidopsis CMT3 transgenes into Eufrema salsugineum, which lost CMT3
millions of years ago (Bewick et al., 2016), could occasionally reconstitute CG methylation on
genes (Wendte et al., 2019). The resulting gene-body methylation (gbM) could be stably
maintained independent of the CMT3 transgene for several generations (Wendte et al., 2019).
However, it remains largely unknown how CMT3 is restricted to targeting heterochromatin, as
well as the consequences of CMT3-induced hypermethylation of genes. Moreover, the
functional significance of gbM in animals and plants has been intensely debated. Because
methylated cytosines are mutagenic due to associated cytosine deamination (Shen et al., 1992;
Sved and Bird, 1990), features associated with gbM have been interpreted as evidence that
gbM provides selective advantages that counterbalance this mutagenesis-imposed fitness
penalty. For instance, gbM is depleted from transcription start and end sites (Tran et al., 2005;
Zhang et al., 2006; Zilberman et al., 2007), and it has recently been reported that gbM helps
prevent transcription initiation from cryptic promoters located in gene bodies as initially
proposed (Choi et al., 2019; Zilberman et al., 2007). Moreover, gbM tends to be enriched on
constitutively expressed genes (Lister et al., 2008; Niederhuth et al., 2016; Takuno et al., 2017;
Zhang et al., 2006), which would be consistent with gbM stabilizing gene expression by
excluding certain histone variants (i.e H2A.Z) from genes (Coleman-Derr and Zilberman, 2012)
and generally enhancing gene expression (Muyle and Gaut, 2019; Shahzad et al., 2021).
Nevertheless, accumulating evidence is also consistent with gbM being a heritable by-product of
CMT3-induced epimutations (Bewick et al., 2016, 2019; Wendte et al., 2019).

Consistent with the need to fine-tune the amount of CMT3 activities required to both silence
TEs and prevent epimutations on genes, mechanisms exist that transcriptionally (Ning et al.,

2020) and post-translationally (Deng et al., 2016) regulate CMT3, as well as remove H3K9me2
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specifically from expressed genes (Inagaki et al., 2010; Saze et al., 2008). These and additional
mechanisms are likely of utmost importance during embryo development when a proliferative
morphogenesis phase produces the most fundamental cell lineages of the plant, including those
that will eventually generate the gametes. Yet, how DNA methylation pathways are regulated
during this phase of dynamic cell division to exquisitely balance the need for TE methylation

with the prevention of potentially deleterious and stably inherited epimutations is virtually
unknown.
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ResultsRESULTS

Cell division is linked with CG and CHG methylation through distinct mechanisms

MET1 and VIM1/2/3 are required for the faithful transmission of mCG across cell cycles (Feng
et al., 2010; Finnegan and Dennis, 1993; Ning et al., 2020; Woo et al., 2008) and accordingly
had increased transcript levels in rapidly dividing early embryos that also correlated well with
transcripts encoding cell-cycle activators throughout embryogenesis (Figure: 1A) (Hofmann et
al., 2019; Papareddy et al., 2020). More specificallyy, MET1 and VIM1/2/3 transcript levels
peaked at the early heart stage and were reduced afterwards before plummeting at the mature
green stage. These transcript developmental dynamics were also characteristic of transcripts
encoding proteins involved in licensing DNA replication (e.g. Cyclins A2/B1, CDKB1-1,
MINICHROMOSOME MAINTENANCE?2), heterochromatin maintenance (e.g. DDM1) and DNA
methylation (e.g. CMT3), but not randomized controls (Figures. 1B, Figure 1-figure supplement;
& 1A). Therefore, genes required for DNA methylation and heterochromatin maintenance are
tightly correlated with cell-cycle activity during embryogenesis.

To test whether the patterns observed for transcripts regulating DNA methylation reflect DNA
methylation dynamics, we computed differentially methylated cytosines (DMCs) across flowers,
embryos and leaves (see Methods). Similar to previous observations (Bouyer et al., 2017; Lin et
al., 2017; Papareddy et al., 2020), 70% of DMCs occurred in the CHH context (Figure: 1C).
Consistent with dynamic expression patterns of MET1 and CMT3, substantial fractions of DMCs
respectively occurred in CG (20%) or CHG (10%) contexts. Therefore, DNA methylation is
dynamically reconfigured in all sequence contexts during embryogenesis. In total, these
symmetric DMCs represented 1,185 CG (Supplementary File Fable=S1) and 1,398 CHG
(Supplementary File ¥able=82) differentially methylated regions (DMRs) covering 201 kb and
185.8 kb, respectively (Figure: 1D, Supplementary File 1Table=S%+; see Methods). Although a
significant fraction of CG and CHG DMRs overlapped (n = 183; 7.1% of total), the vast majority
of CG and CHG DMRs were located in non-overlapping genomic regions corresponding to
euchromatic gene-rich and heterochromatic TE-rich regions of the genome, respectively
(Figure= 1D). Because CHG methylation can require CG methylation (Stroud et al., 2013), we
tested whether the 15.1% of CHG DMRs overlapping CG DMRs require CG methylation.
Leaves deficient in CG methylation did not have reduced CHG methylation in CHG DMRs
regardless of whether or not they overlapped with CG DMRs (Figure 2-figure supplement 2B«
§2B; data from Stroud et al. 2013). This indicates that CHG DMRs occur in distinct genomic
regions and are largely independent of CG methylation (Figure: 1E,F).
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Relative to floral bud samples, CG DMRs have slightly reduced methylation in preglobular
embryos, followed by increased methylation until after the torpedo stage, when levels
dramatically reduce in mature green embryos and recover in leaves (Figure: 1G). By contrast,
methylation levels of CHG DMRs are relatively stable between floral buds and early embryos,
then decrease in late embryos, reaching a minimum in leaves (Figure: 1H). Accordingly,
changes in CG and CHG DMR methylation levels during development were significantly
correlated with MET1 (Pearson’s R = 0.8; P value = 0.03) and CMT3 (Pearson’s R = 0.74; P
value = 0.05) transcript levels, respectively (Figure 1-figures supplement =&1B,C). Therefore,
although cell division rates are correlated with symmetric DNA methylation dynamics, distinct

mechanisms reconfigure CG or CHG methylation genome-wide during embryogenesis.
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Figure 1. Cell division is linked with CG and CHG methylation through distinct mechanisms.

A) Bar chart depicting total abundance (top) and heat map of individual relative transcript levels (botfom) of genes
involved in CG methylation in three biological replicates each of flowers, embryos and leaves (Hofmann et al.
2019). tb, floral buds; pg, preglobular; gl, globular; eh, early heart; lh, late heart; et, early torpedo; It, late torpedo;
bc, bent cotyledon; mg, mature green; If, leaf. B) Heatmap showing developmental dynamics of permuted gene set

(top) median values (i.e. 1000 iterations of random sampling of 25 genes) and top-25 genes co-varying with MET]1,
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VIM1, VIM2 and VIM3 obtained by employing nearest neighbour algorithm calculated based on Euclidean distance
between genes and centroid expression of MET1, VIM1, VIM2 and VIM3 (bottom). C) Sequence logo representing
nucleotide probability relative to differentially methylated cytosines (DMC). D) Proportion of CG and CHG
differentially methylated regions (DMRs) overlapping genomic features. Venn diagram showing overlap between
CG and CHG DMRs. Significance overlap of DMRs determined by Fisher's Exact test P value < 0.0001 is indicated
by **** E and F) Violin plot showing CG (fop) and CHG (bottom) methylation differences between mutant and
WTwild=type leaves for CHG DMRs overlapping (E) or not overlapping (F) with CG DMRs (Stroud et al., 2013). G
and H) Box plots of average weighted methylation of CG DMRs (n = 1,185) and G) CHG DMRs (n = 1,398) during
development. fb, floral buds; pg, preglobular; eh, early heart; tp, torpedo (6 DAP) (Pignatta et al., 2015); be, bent
cotyledon; It-mg, late torpedo-to-early mature green (Hsich et al., 2009); mg, mature green (Bouyer et al., 2017); If,
leaf. fb, pg, ch, bc and If were from ((Bouyer et al., 2017; Hsieh et al., 2009; Papareddy et al., 2020; Pignatta et al.,
2015). Unless stated as not significant (ns), all combinations are significant with P values < 0.001 obtained by
Mann-Whitney U test. Shaded horizontal line in the background represents the median methylation value of floral

buds.
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Figure 1-figure supplement S1. Characteristics of genes and differentially methylated regions co-expressed
with symmetric methyltransferases—(Related=to—Fig=1). A) Gene ontology enrichment of top-50 genes
co-expressed with MET1 and VIM1/2/3 with false discovery rates < 0.05. B and C) Scatterplots showing Pearson’s
R between METI transcript levels (TPM; transcripts per million) and mean-weighted CG methylation of
developmental CG DMRs (B) or CMT3 TPM and mean-weighted CHG methylation of developmental CHG DMRs.

Genome-wide coordination of symmetric DNA methylation
Because DNA methylation is concentrated on TEs (Stroud et al., 2013; Zhang et al., 2006), we

next investigated global developmental dynamics of TE methylation. CG methylation on both
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euchromatic and heterochromatic TEs was slightly reduced in pregobular embryos and then
restored to the levels found in floral buds by the early heart stage (Figure: 2A,B). Whereas CG
methylation of euchromatic TEs was relatively constant for the remainder of embryogenesis,
heterochromatic TEs had significantly increased methylation during late embryogenesis
compared to post-embryonic tissues. Consistent with heterochromatin becoming highly
condensed during embryo maturation (van Zanten et al.,, 2011), we found that CG
hypermethylation in mature green compared to bent cotyledon embryos predominantly occurred
in pericentromeric genomic regions rather than gene-rich chromosomal arms (Figure: 2C). CG
methylation was required for the production of 24-nt siRNAs from euchromatic TEs, but only
marginally for heterochromatic TEs (Figure 2-figure supplement =82A, data from (Lister et al.,
2008)). Conversely, the loss of 24-nt siRNAs in nrpd1a mutants only had negligible effects on
CG methylation of both heterochromatic and euchromatic TEs (Figure 2-figure supplement =
&2B,C). Therefore, siRNA production from euchromatic regions of the genome requires CG
methylation, but not vice versa.

Global CHG methylation of euchromatic and heterochromatic TEs was higher in embryos
compared to leaves (Figure: 2D,E). Similar to previous observations for CHH methylation
(Papareddy et al., 2020), siRNA-deficient nrpd1a mutant tissues had reduced CHG methylation
on euchromatic or heterochromatic TEs in all or only embryonic samples, respectively (Figure:
2F,G). Intriguingly, increased CHH methylation on heterochromatic TEs was significantly
correlated with decreased CHG methylation during late stages of embryogenesis when cell
division rates are reduced (Figurez 2H). Therefore, CMT3-dependent CHG and
CMT2-dependent CHH methylation of heterochromatic TEs are respectively positively and

negatively correlated with cell division rates.
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Figure 2. Genome-wide coordination of symmetric DNA methylation.

A and B) Boxplots of CG methylation percentages on euchromatic (A) and heterochromatic (B) TEs during
development. b, floral buds; sp, sperm (Ibarra et al., 2012); pg, preglobular; eh, early heart; tp, torpedo (6 DAP); bc,
bent cotyledon; lt-mg, late torpedo-to-early mature green; mg, mature green; lf, leaf. Thick horizontal bars indicate
medians, and the top and bottom edges of boxes represent the 75th and 25th percentiles, respectively. Shaded
horizontal line in the background represents the median methylation value of floral buds. C) Difference in CG
methylation between mature green (mg) and bent cotyledon (bc) embryos were calculated in 1-kb genomic bins,
which were divided into percentiles and sorted based on their distance to centromeres (1 and 100 being the tile
closest and furthest from centromeres, respectively). Red color line indicates the median and the top and bottom
edges of the blue colored boxes represent 75th and 25th percentiles, respectively. Vertical grey bars indicate 1.5X
the interquartile range. D and E) Boxplots of CHG methylation on euchromatic (D) and heterochromatic (E) TEs
during development (key as in A). F and G) Boxplots of CHG methylation differences between nrpdla and W Twild
type (Col-0) tissues for euchromatic (F) and heterochromatic (G) TEs. H) Scatterplot showing Pearson’s correlation
coefficients (R). Differences in mCHH and mCHG between bent cotyledon (bc) and torpedo stage (tp) embryos are

shown on x- and y-axes, respectively. Histograms show the number of TEs in thousands (K).
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Figure S2-figure supplement 1. Relationships between MET1 and 24-nt siRNAs-(Related-to-Fig=2). A) Boxplot
illustrating relative levels of 24-nt siRNAs in met! relative to wild=type<(WT) (Lister et al., 2008); Euchromatic and
heterochromatic TEs are abbreviated as Euc. TEs and Het. TEs, respectively. B and C) Boxplots of CG methylation
differences between nrpdla and wild-type tissues for euchromatic (B) and heterochromatic (C) TEs. fb, floral buds;
eh, early heart; be, bent cotyledon; If, leaf. Thick horizontal bars indicate medians, and the top and bottom edges of

boxes indicate the 75th and 25th percentiles, respectively.

Repression of CMT3 during embryogenesis regulates methylome dynamics
CMT3 is recruited to loci by binding to H3K9me2 deposited by SUVH4/5/6 histone
methyltransferases (Du et al., 2012; Jackson et al., 2002; Lindroth et al., 2001; Stroud et al.,
2014). CMT3 and KYP, which is the major SUVH4 H3K9 methyltransferase, were dynamically
expressed according to patterns characteristic of other cell-cycle regulated genes and CHG
methylation dynamics (Figures. 1A,H, Figure 3A). More specifically, CMT3 and KYP were highly
expressed in rapidly dividing early embryos and had reduced expression in late embryos until
the mature stage, where they were barely detectable. Altogether, our results are consistent with
the idea that the more rapid cell divisions in early embryos demand higher levels of CMT3 and
KYP to maintain mCHG through the cell cycle. Moreover, IBM1, which encodes an H3K9me2
demethylase and prevents CMT3 recruitment to gene bodies (Miura et al., 2009; Saze et al.,
2008), is dynamically expressed during embryogenesis in a pattern that strongly resembles
CMT3 and KYP (Figure= 3A). Therefore, co-expression of IBM1 with CMT3 and KYP likely helps
limit ectopic H3K9me2 and methylated CHG on gene bodies during embryogenesis as has been
demonstrated during post-embryonic development (Inagaki et al., 2017).

We previously found that miR823-directed cleavage of CMT3 transcripts is highly enriched

in embryos directly after morphogenesis (Plotnikova et al., 2019). In contrast to CMT3 transcript
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dynamics, miR823 accumulates during embryogenesis, and miR823:CMT3 cleavage products
were enriched and significantly detected specifically at late heart and early torpedo stages
precisely when CMT3 transcript levels were sharply decreasing (Figure: 3B). Based on these
observations, we hypothesized that miR823-mediated repression of CMT3 contributes to the
reduced CHG methylation levels observed during late embryogenesis.

To test if miR823-directed repression of CMT3 transcripts reduces CHG methylation levels
during embryogenesis, we generated deletions in the region of the MIR823 locus encoding the
mature miRNA (Figure 3-figure supplement 1=83A) and examined CMT3 transcript and CHG
methylation levels. Both independently generated mir823-1 and mir823-2 mutants were
confirmed as nulls (Figure 3-figure supplement 1B=83B) and had significantly increased CMT3
levels relative to wild type (WT) in embryos at the bent cotyledon stage whenembryoes-at-whieh
stage CMT3 levels are normally reduced (Figure: 3C). Consistent with miR823-directed
cleavage of CMT3 being highly enriched in embryos, we did not observe increased CMT3
transcripts in either leaves or floral buds of mir823 mutants (Figure 3-figure supplement 1=83D).
Moreover, CHG, but not CG or CHH, methylation was increased on TEs in bent cotyledon
embryos of both mir823-1 and mir823-2 mutants relative to \WTwild-type (Figures: 3D, Figure
3-supplemental figure 183E).

As an independent approach, we used site-directed mutagenesis to introduce synonymous
mutations in the miR823 target site within CMT3 transgene constructs that included 1.41 kb
upstream and 0.73 kb downstream intergenic regions, and associated cis-regulatory elements
(Figure= 3-figure supplement 1C83€; see Methods). As controls, we also generated CMT3
constructs without mutations, and introduced these miR823-cleavable CMT3 (cCMT3), as well
as the miR823-resistant (rCMT3), constructs into cmt3-17 mutant plants (Henderson and
Jacobsen, 2008). CMT3 transcript levels were increased in rCMT3 relative to cCMT3 lines at
the bent cotyledon stage (Figure: 3C), but not in leaves or floral buds (Figure 3-figure
supplement 1=83D), which further indicates that miR823-directed cleavage and repression of
CMT3 is highly enriched in embryos transitioning between morphogenesis and maturation.
CMT3 levels were also increased in cCMT3 and rCMT3 lines compared to Col-0 in embryos,
leaves and floral buds (Figures= 3C, Figure 3-figure supplement 183D) suggesting that miR823
is not sufficient to repress transgenic CMT3 to the same extent as endogenous CMT3
transcripts. Although we cannot rule out that this is due to missing cis-regulatory repressive
elements in the transgenes, increased gene dosage and positional effects of the transgenes
seems more likely. Upstream and downstream intergenic regions were included in the CMT3

constructs (Figure 3-figure supplement 1=8G). Moreover, although relative transgene copy
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numbers were not significantly different across the independently generated cCMT3 and rCMT3
transgenic lines, they were higher than endogenous CMT3 in WTwild-type (Figure 4-figure
supplement 1=84G,H). Nevertheless, it is clear that CMT3 levels are finely tuned during
embryogenesis. Together with the analysis of mir823 mutants and miR823-mediated CMT3
transcript cleavage products (Plotnikova et al., 2019), these results strongly indicate that
miR823 cleaves and represses CMT3 levels during mid-embryogenesis. Consistent with what
we observed in mir823 mutants, increased CMT3 transcript levels in cCMT3 and rCMT3
embryos resulted in CHG hypermethylation of TEs (Figure: 3D) but did not globally influence
CG or CHH methylation (Figure=figure supplement 1=S3E,F). Remarkably, increased CMT3
transcript levels in mir823 mutants, cCMT3 and most strikingly rCMT3 embryos were associated
with ectopic CHG methylation on protein-coding gene bodies and flanking regions in bent
cotyledon embryos (Figure: 3E). Therefore, both TEs and genes are hypermethylated when
CMT3 levels are not properly down-regulated upon the morphogenesis-to-maturation transition
during embryogenesis.

To test whether miR823-directed repression of CMT3 and prevention of CHG methylation of
genes that we observed in embryos persists after embryogenesis, we next profiled methylomes
of cCMT3 and rCMT3 plants three weeks after germination. \We chose to focus on rCMT3 plants
because of the large amount of hypermethylation observed in these lines during
embryogenesis, and used cCMT3 plants as controls. Although TEs had increased CHG
methylation levels in both cCMT3 lines relative to W Twild=type, protein-coding genes were not
affected (Figure= 3F,G). In stark contrast, TEs and genes were hypermethylated in both rCMT3
lines compared to cCMT3 or WTwild-type plants, and only slightly reduced relative to the levels
observed in rCMT3 bent cotyledon embryos (Figure: 3F,G). Together with miR823-independent
processes (e.g. IBM1 removal of H3K9me2), miR823-directed repression of CMT3 is therefore
required to prevent the hypermethylation of protein-coding genes that can be maintained weeks

after the completion of embryogenesis.
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Figure 3. Repression of CMT3 during embryogenesis regulates methylome dynamics. A) Barplots illustrating
transcript levels of CMT3 (top), KYP (middle) and IBM1 (bottom) in flowers, embryos and leaves. fb, floral buds;
pg, preglobular; gl, globular; eh, early heart; lh, late heart; et, early torpedo; It, late torpedo; be, bent cotyledon; mg,
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graphs showing the relative RNA abundance of miR823 (blue), CMT3 RNA (yellow) and miR823:CMT3 cleavage

products (pink). C) Log,-transformed relative CMT3 target transcript levels in bent cotyledon embryos (8 DAP; day
after pollination) from WTwild=type plants (Col-0), or cmt3-11 plants expressing either miR823-cleavable CMT3
(cCMT3) or miR823-resistant CMT3 (rCMT3) versions. Each dot represents the mean of two technical replicates of
embryos and= bBars represent mean values. E=and=error bars in A-C represent -ndieate-standard errors of the means
of three biological replicates. Asterisks indicate whether the transcript levels observed in mir823 mutant, cCMT3
and rCMT3 embryos were significantly different compared to W Twild-type (Two-tailed Student’s t tests; **** *%*
** and * represent P values < 0.0001, <0.001, <0.01, and < 0.05, respectively). Color-coded according to the key.
D) Boxplots of CHG methylation on transposons with >5 informative cytosines covered by >4 reads and classified
as either euchromatic or heterochromatic in Papareddy et al. 2020. P values <0.0001 based on Mann-Whitney U
tests of methylation differences between W Twild=type and either mutant or transgenic bent cotyledon embryos are
represented by ****_ E) Metaplots of average CHG methylation percentages across genes bodies from transcription
start sites (TSS) to transcription end sites (TES), 1.5-kb upstream and 1.5-kb downstream of genes in bent cotyledon
embryos. Color-coded according to the key. F and G) Boxplots of CHG methylation on transposons (F) and
metaplots of CHG methylation on genes (G) in three-week old plants as described in D and E, respectively.
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Figure 3-figure supplement 1Figure-S3. mir823 mutants and effects of miR823-directed repression of CMT3-
(Related=to=Fig=3). A) Diagram of sequences deleted by CRISPR/Cas9 approach from MIR823A locus in miR823-1

and miR823-2. B) Relative levels of miR823 in WTwild=type (Col-0), mir8§23-1 and mir§23-2 bent cotyledon
embryos (~8 DAP; days after pollination). Stem-loop qPCR values were normalized to U6 and then divided by the
levels observed in wild-type plants before log,-transformation. Each dot represents the mean of two technical
replicates of embryos, and error bars indicate standard error. P values <0.01 based on two-tailed Student’s t-test of
differences between W Twild=type and miRS823 mutants are represented by *. C) Schematics of miR823 target site in
CMTS3 transcripts. Base-pairing interactions of miR823 with either wild-type target sites (cleavable, cCMT3) or
miRNA-resistant target sites (resistant, rtCMT3) are indicated above and below, respectively. Mutations introduced
are labeled in red, and Watson-Crick base-pairing (1), non-base-pairing (X), and G:U wobbles (O) for each pair are
indicated. D) Relative CMT3 transcript levels in two-week old leaves (lef?) or floral buds (right) from W Twild-type
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plants (Col-0), mir823-1, mir823-2, or cmt3-11 plants carrying either miR823-cleavable CMT3 (cCMT3) or
miR823-resistant CMT3 (rCMT3) transgenes. Bars represent mean values and error bars indicate standard errors.
Asterisks indicate whether the transcript levels observed in mir823 mutants, or cCMT3 and rCMT3 transgenics were
significantly different compared to W Twild=type (Two-tailed Student’s t-tests; **** *** ** and * represent P
values < 0.0001, < 0.001, <0.01, and < 0.05, respectively). E) Boxplots of CG (top) and CHH (bottom) methylation
on euchromatic and heterochromatic transposons with >4 informative cytosines covered by >5 reads. F) Metaplots
of average CG (top) and CHH (bottom) methylation percentages across genes bodies, and 1.5 kb upstream and
downstream regions. Genotypes are color-coded according to the key. G) Integrative Genomics Viewer screenshot
of CMT3 locus showing normalized coverage of methylC-seq reads compared to W Twild=type (see Methods). H)
CMT3 copy number quantification based on qPCR in three-week old leaves from WTwild=type (Col-0), or
independently generated rtCMT3 or cCMT3 transgenics in the ¢mt3-11 background.

Chromatin features associated with CMT3-induced gene methylation

To yield insights into how genes are hypermethylated upon the derepression of CMT3, we
determined whether certain genomic features were associated with CMT3-induced genic
methylation. Towards this end, we first selected 22,637 nuclear-encoded protein-coding genes
that had =5 methylC-seq reads overlapping CHG sites in rCMT3 line #3 and that were
expressed (i.e. 21 TPM in any tissue based on (Hofmann et al., 2019)). We chose rCMT3 line
#3 because it had the strongest genome-wide CHG hypermethylation and focussed on
expressed genes to exclude those that may have TE-like features, which could confound
analysis. We then used k-means clustering of the differences between rCMT3 line #3 and
WTwild=type bent cotyledon embryos to partition this set of genes into four clusters (Figure
4-figure supplement 1=84A). These clusters were comprised of 1,439 to 7,882 genes (6.4% to
34.8% of total) and ranged from groups of genes that had no methylation changes (cluster 1) to
those that were strongly hypermethylated with 3’ biases (cluster 4) in rCMT3 compared to
WTwild=type embryos (Figure s=4A,B, Figure 4-figure supplement 184B,C). The same patterns
were observed across these clusters in embryos from an independently generated rCMT3
transgenic (line #1), which indicates that CMT3-induced hypermethylation is not stochastic
(Figure 4-figure supplement 1=84B,C).

TE-like methylated (teM) genes generally have non-CG methylation on their gene bodies
without strong 3’ biases (Kawakatsu et al. 2016; Bewick et al. 2016). To check whether rCMT3
induced genic CHG methylation is affected by teMs, we intersected our gene clusters with
previously defined teMs (Bewick et al. 2016) and found that only 272 of 22,637 (0.012%)

expressed genes overlapped teMs (Figure 4-figure supplement 1D). Hypermethylated clusters

(cluster 3 and 4) contained more teMs compared to unmethylated or lowly methylated gene
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clusters (Figure 4-figure supplement 1E). However, rCMT3 embryos still had genic CHG
hypermethylation and 3’ biases after excluding teM genes; whereas, WT embryos remained
devoid of CHG methylation (Figure 4-figure supplement 1F,G). Therefore, our analysis is not
confounded by either TEs or teM genes. As expected, CMT3-induced hypermethylation
predominantly occurred in the CMT3-preferred CWG context (Gouil and Baulcombe, 2016; Li et
al., 2018) although hypermethylation was also found in CCG and slightly, but significantly in
non-CHG contexts, including CG characteristic of gbM similar to previous observations (Figure
4-figure supplement 1H) (Wendte et al., 2019).

Consistent with methyltransferases preferring nucleosome-rich DNA as substrates
(Chodavarapu et al. 2010; Du et al. 2012), CMT3-induced hypermethylation was proportional to
patterns of nucleosome occupancy and biased towards the 3’ ends of gene bodies, which was
highly similar to CG methylation (Figure s=4C, Figure 4-figure supplement 1841E). Nucleosome
spacing is promoted by linker histone 1 (H1) (Choi et al., 2019; Fan et al.,, 2003) and
CMT3-induced CHG hypermethylation was proportional to H1 levels across gene bodies (Figure
4-figure supplement 1=—84JF). Because nucleosome occupancy was not as readily
distinguishable between clusters of affected genes (i.e. clusters 2-4) (Figure 4-figure
supplement 1==84l,JEsF), we hypothesized that histone variants conferring differential
nucleosome stabilities and chromatin accessibility may influence ectopic CMT3-induced
hypermethylation (Osakabe et al., 2018). Indeed, CHG hypermethylation across the four groups
was positively correlated with levels of the stable histone variants H2A, H2A. X and most notably
H2A.W that was recently shown to be required for CHG methylation (Figure s=4E,F, Figure
4-figure supplement 184K&) (Bourguet et al., 2021; Yelagandula et al., 2014). CMT3-induced
CHG hypermethylation was also tightly associated with transcriptionally repressive H3K9me2
marks, which are required for interdependent feedback loops with CMT3 (Figure: 4G). It was
inversely related to H2A.Z (Figure: 4H) and marks indicative of active transcription including;
H3K4me3 and H3K9ac (Figures: 4l, Figure 4-figure supplement 184LH). Further suggesting
that deregulated CMT3 prefers features typically associated with inaccessible chromatin, genes
with CHG hypermethylation had reduced chromatin accessibility (Figure 4-figure supplement 1=
S4M1) and were generally closer to heterochromatic centromeres (Figure: 4-figure supplement
184Nd). Moreover, the most CMT3-induced hypermethylated genes (i.e. cluster 4) were also
substantially hypermethylated in ddm? mutants (Figure: 4J) that have increased
heterochromatic accessibility (Figure: 4K) and decreased stability (Mathieu et al., 2003; Soppe
et al., 2002; Zhong et al., 2021). Although CMT3-induced CHG hypermethylation was strongly

associated with CG gene-body methylation (gbM), both the independence of developmental
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mCHG DMRs (Figure: 1E,F) and the gain of mMCHG being associated with proportional loss of
mCG over genes in ddm1 mutants (Figure 4-figure supplement: 1840K) (Ito et al., 2015; Stroud
et al., 2013; Zemach et al., 2013) indicate that mCG is not strictly required for ectopic CHG
hypermethylation of genes. Instead, the associations between chromatin features of genes and
their propensity for CMT3-induced hypermethylation altogether suggest that excessive CMT3 is
ectopically recruited to genic chromatin characterized by nucleosome stability and

inaccessibility.

A #2 low gain B @ rCMT3 c 60, @ WT
(7,847) 25+ L#3
#  F S
unaffected . moderate ¢y o
T
(7,882) (5.469) X M S
E o 7
#4 high gain :\ s /
(1,439) R — 04
D E F
rCcMT3 H2A H2A.W
25 3WK L#3 » 2.6 %)
2 T1.4
o O O ~ *okkk
2 £ 25 N/ﬂ\ v
] ] 1o}
N O N O
5 13 J 13 /—\f
£ o | E £ 17
NADNE| 2o 2os| W7
0
G H
H3K9me2 H2A.Z I H3K4me3
%] *kkk %) o 10
] 20- $3.07 3
Q G 9 G Hokdek (]‘;) 8
30 3O ‘ T O
N dedkede e N O N O
g C E o E 3 /;
S 4ol 215- F g /"
*hkk 4 : :
o » » Q
J K 5 @ W
10- ddm1 » 120 Het.TEs < [l =2
T~
) Ro
5 T
€ V\\r EL WT
Z%f)’ S s0q~Al N
O_T T
Q2 T © e
o] [9p] w Q X c C v
s8¢ EE 2z g

Figure 4. Chromatin features associated with CMT3-induced gene methylation. A) Proportion of genes in each
cluster partitioned using k-means clustering algorithm based on differences in mCHG between rCMT3 (line #3) and
WTwild=type embryos. Unaffected genes (vellow), low mCHG gain genes (red), moderate mCHG gain genes (blue)
and high mCHG gain genes (grey). Green inner circle represents all expressed genes. B-D) Metaplots showing

mCHG on gene clusters in bent cotyledon embryos from rCMT3 line #3 (L #3) (B), mCG on gene clusters in
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WTwild=type bent cotyledon embryos (C) and mCHG in rCMT3 (L #3) three-week old plants (3WK) (D). Shaded
ribbons in metaplots represent standard deviations. E-I) Metaplots showing normalized reads per genomic content
(RPGC) average values of histone variant H2A (E), H2A.W (F) (Yelagandula et al., 2014), H3K9me2 (G) (Stroud et
al., 2014), H2A.Z (H) (Yelagandula et al., 2014) and H3K4me2 (I) (Maher, 2020). P values < 0.0001 obtained by

Mann-Whitney U test based on differences between genes in cluster 1 or 4 compared to all genes is represented by

wax% J) Metaplots showing mCHG on gene clusters in seventh generation ddm! mutants (Stroud et al., 2013). K)

Normalized ATAC-seq reads (Zhong et al., 2021) representing accessibility of heterochromatic TEs (Het. TEs) in

WT and ddm 1 mutants as defined in Papareddy et al., 2020.
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432 Figure 4-figure supplement 184. Partitioning of CMT3-induced hypermethylated genes and associated chromatin
433 features=(Related=to=Fig=4). A) Determining the optimal K-value based difference in genic mCHG between rCMT3
434 (Line #3) and wild-type bent cotyledon embryos using the elbow method. Four clusters were selected as optimal
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because the total within cluster sum of squares (WSS) became marginal after a K value of four. B and C) Barplots
showing median mCHG gain on annotated gene bodies in rCMT3 (Line #1) (B) and rCMT3 (Line #3) (C) compared
to wild-type bent cotyledon embryos. D) Overlap between expressed genes used for K-means clustering in main
figure 4A and all genes classified as teM in Bewick et al 2016. E) Number of total intersected teM in each gene
cluster. F-G) Metaplot showing average weighted methylation rate in rCMT3 Line #3 (F) and wild=type=<tW T3 (G)
after excluding 272 teM intersecting genes. HB) Barplots illustrating median gain of methylation in rCMT3 (Line
#1) (top) and rCMT3 (Line #3) (bottom) compared to wild-type bent cotyledon embryos in various trinucleotide
cytosine contexts where W = A or T and D # C. P Values <0.05 and <0.0001 obtained by Mann Whitney U test
based on difference in DCG methylation between rCMT3 and WT in bent cotyledon embryos were represented by *
and **** respectively. I-ME=F) Metaplots showing nucleosome occupancy obtained from MNase-seq data
(Rutowicz et al., 2019) (IE), enrichment of linker histone 1 (H1) on gene clusters (Choi et al.) (JE), normalized
reads per genomic content (RPGC) average value of histone variant H2A.X (Yelagandula et al., 2014) (K&),
H3K9Ac (Wang et al., 2019) (LH) and DNase-Seq signal on gene clusters representing accessibility (Choi et al.)
(M¥). N&) Violin plot showing distances between genes and centromeres per cluster. White dots indicate the median
and vertical black bars indicate 1.5X interquartile ranges. OK) Metaplot of CG methylation in differences in ddm
compared to witd=type<(WT) (Stroud et al., 2013).

Impact of CMT3-induced hypermethylation on gene expression

Because CHG methylation of TEs contributes to their repression (Stroud et al., 2014), we tested
whether CMT3-induced ectopic CHG hypermethylation of protein-coding genes also represses
their expression levels. Namely, we performed mRNA-seq on three biological replicates of
WTwild=type and rCMT3 (line #s 1 and 3) bent cotyledon embryos. Principal component
analysis revealed that \WTwild-type and rCMT3 biological replicates clustered according to
genotype and in similar positions along the dominant principal component axis corresponding to
developmental time (Figure: 5A). This indicates that our mRNA-seq datasets captured gene
expression variation inherent to \WTwitd-type and rCMT3 genotypes, as well as that our staging
was accurate. Differences in global transcript levels were not observed across the four clusters
with increasing levels of CMT3-induced CHG methylation suggesting that ectopic CHG
methylation alone was not sufficient to globally repress gene expression (Figures= 5B, Figure
5-figure supplement 188A). We then identified 916 genes that were differentially expressed
between rCMT3 and WT embryos (i.e. =22-fold differences and adj. P values < 0.01; see
Methods) (Figure 5-figure supplement 1=88B,C and Supplementary File Table-83). Differentially
expressed genes (DEGs), defined by comparing either rCMT3 line #1 or rCMT3 line #3 with
WTwild=type, were commonly detected in both independently generated lines with 87.5% of

genes overlapping (Figure 5-figure supplement: 188C). In both rCMT3 lines, DEGs were less
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hypermethylated compared to all expressed genes, which indicates that the vast majority of
changes in gene expression observed upon up-regulation of CMT3 wereas not directly due to
their hypermethylation (Figure 5-figure supplement 1=88D). We then examined whether
hypermethylation affects a subset of genes by computing DMRs in rCMT3 compared to WT
bent cotyledon embryos and identified 4,603 (97% of total) and 127 (3% of total) CHG
hypermethylated and hypomethylated DMRs, respectively (Supplementary File Fable-84; see
Methods). Further suggesting that CHG hypermethylation has minimal direct consequences on
the expression of most genes under the conditions examined, we found that only a small but
significant number of the down-regulated genes (including 1.5 kb regions flanking their
transcriptional units) overlapped DMRs (21 of 542, 3.8% of total; Fisher's exact test, P value =
1.29e-05) (Figure 5-figure supplement 1=88E). Consistent with CMT3-induced hypermethylation
repressing their expression, the DMRs overlapping these 21 down-regulated genes were
significantly CHG hypermethylated compared to genomic bins (Figure: 5C). Moreover, the
stronger-expressing rCMT3 line #3 had significantly higher CHG methylation compared to
rCMT3 line #1 (Figure: 5C). This further supports that increased CMT3 levels lead to more
ectopic CHG methylation (Inagaki et al., 2010, 2017). However, the transcript levels of these 21
genes were only moderately reduced in rCMT3 line #3 compared to rCMT3 line #1, suggesting
non-linear relationships between gene hypermethylation and transcript levels (Figure 5-figure
supplement 1==88F). Strikingly, transcripts corresponding to these 21 CMT3-induced
hypermethylated and down-regulated genes were rapidly increasing when embryos were
transitioning to the maturation phase (Figure: 5D). Moreover, 10 of these 21 genes (Fisher’s
exact test, P value = 1.49e-13), were among a group of 381 genes previously identified to also
be rapidly activated at these time points (Figure 5-figure supplement 1=88G) (Hofmann et al.,
2019). Nearly half of these 381 genes (n = 183, 48%) were also among the 563 significantly
down-regulated genes in rCMT3 embryos compared to \WTwild=type. Altogether, our expression
and methylation analyses suggest that when CMT3 is not properly repressed it can induce
ectopic hypermethylation of genes. Furthermore, we suggest that CMT3-induced
hypermethylation of gene promoters or bodies can reduce the steady state levels of transcripts
from genes that are in the process of switching from silent to active transcriptional states.
However, additional experiments are required to directly test whether gene-body CHG

methylation can repress gene expression.
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Figure 5. Impact of CMT3-induced hypermethylation on gene expression. A) Principal component analysis of
mRNA-seq from three biological replicates of rCMT3 and WTwild=type (W5=Col-0) bent cotyledon embryos
generated in this study along with floral buds, embryos, leaves, from (Hofmann et al., 2019) and color-coded
according to the key. B) Violin plot showing transcript fold changes in rCMT3 (line #3) compared to W Twild-type
(WF=Col-0) bent cotyledon embryos per cluster as defined in Figure: 4A. C) Boxplot showing difference in
methylation comparing rCMT3 to WT in down-regulated genes (DRG) intersecting with DMRs and similarly sized
genomic bins of 213-bp as controls. P values < 0.001 and <0.0001 based on Mann-Whitney U tests are represented
by *** and **** respectively. D) Boxplot (fop) and heatmap (bottom) of transcript levels of DRGs intersecting

DMRs during embryogenesis. P values < 0.001 based on differences in transcript levels between mature green (mg)
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Figure 5-figure supplement 1S8. Additional information regarding the influence of CMT3-induced
hypermethylation on gene expression=(Related=to=Fig=5). A) Violin plot showing expression fold change in
rCMT3 (line #3) compared to W Twild=type (Col-0) bent cotyledon embryos per cluster as defined in Figure= 4A. B)
Scaled heatmap of differentially expressed genes (DEGs) when rCMT3 bent cotyledon are compared to WT with
upregulated (URGs) and downregulated genes (DRGs) shown at the top and bottom, respectively. C) Three-way
Venn diagram showing the proportion of DEGs overlapping with each labelled comparison. D) Metaplot of
difference in CHG methylation in tCMT3 (line #1) (red) or rCMT3 (line #3) (blue) compared to W Twild-type for all
expressed genes (AEGs, leff), downregulated genes (DRGs, middle) and upregulated genes (URGs, right). E) Venn
diagram showing overlap between hyper differentially methylated regions (DMRs) and down regulated genes
(DRGs) in rCMT3 compared to W Twild=type bent cotyledon embryos. F) Boxplot showing log, fold-change (FC) of
transcript levels between rCMT3 and Col-0 (WT) for all DRGs intersecting DMRs (fop). Heatmap showing
fold-change of individual DRGs (botfom). G) Venn diagram showing overlap between genes rapidly activated at
mature green stage (cluster D6 genes based on (Hofmann et al., 2019)) and 21 DRGs/DMRs.
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DiscussionBDISGUSSION

DNA methylation is faithfully propagated across cell cycles by methyltransferases to ensure
robust silencing of TEs (Borges et al., 2021; Law and Jacobsen, 2010; Mathieu et al., 2007;
Ning et al., 2020; Probst et al., 2009; Saze et al., 2003). However, it is not well understood how
DNA methyltransferases are regulated following periods of rapid division to prevent off-targeting
of genes and their consequential repression. Cell division rates are highly dynamic during
Arabidopsis embryogenesis. We found that the expression of MET1 and CMT3
methyltransferases and corresponding CG and CHG methylation are intricately linked to mitotic
indices through distinct mechanisms (Figure= 1). Moreover, miR823-mediated cleavage and
repression of CMT3 following the proliferative early phase of embryogenesis helps prevent
excess CMT3 from ectopically methylating protein-coding genes that can persist for weeks
afterwards (Figure: 3). CMT3-induced hypermethylation of genes was highly associated with
features conferring nucleosome stability (Figure: 4) and resulted in the repression of genes that
are transcriptionally activated (Figures 5). Repression of CMT3 following a period when it is
needed in high quantity to keep pace with TE methylation therefore prevents CMT3 from
ectopically targeting protein-coding genes for methylation. This resulting epigenetic collateral
damage on protein-coding genes appears toean negatively affect gene expression. Our results
are consistent with the model that CMT3-induced epimutations give rise to CG gene-body
methylation (gbM) that can be maintained by MET1 across many generations (Wendte et al.,
2019).

Complex mechanisms are required to specifically silence mutagenic TEs rather than
endogenous genes (Antunez-Sanchez et al., 2020; Deng et al., 2016; Lee et al., 2021; Lister et
al., 2008; Papareddy et al., 2020; Saze and Kakutani, 2011; Williams et al., 2015; Zhang et al.,
2020). Mechanisms regulating epigenome homeostasis are of paramount importance during
Arabidopsis embryogenesis due to highly dynamic cell cycle and transcriptional activities, as
well as the establishment of cell lineages that will produce all future cell types including the
gametes. MET1 and CMT3 methyltransferases are required for TE methylation (Kato et al.,
2003; Stroud et al., 2014) and are expressed at high levels during early embryogenesis likely
because this is a period of rapid cell division. CHG and CHH methylation exhibit opposite
developmental dynamics depending on the tissue’s mitotic index (Figures: 1, Figure 2, Figure 6)
(Papareddy et al., 2020). When embryos are transitioning to stages with reduced cell division,
decreased CMT3-mediated CHG methylation is correlated with increased CMT2-mediated CHH
methylation (Figure: 2H). Unlike CMT2, CMT3 can also target protein-coding genes for CHG
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methylation (Stroud et al., 2014) and lead to the recruitment of transcriptionally repressive
H3K9me2 methyltransferases such as KYP (Du et al., 2014; Jackson et al., 2002; Lindroth et
al., 2001). Therefore, handing over TE silencing to CMT2-dependent CHH methylation in cells
with reduced division rates likely reduces ectopic methylation of protein-coding genes. In
addition to what we observed during embryogenesis, varying degrees of mitotic indices across
development can readily explain the genome-wide patterns of non-CG methylation reported
thus far (Borges et al., 2021; Calarco et al., 2012; Gutzat et al., 2020; Ji et al., 2019; Kawakatsu
et al., 2016, 2017; Lin et al., 2017; Narsai et al., 2017; Papareddy and Nodine, 2021).

CMT3, KYP and their corresponding DNA and histone methylation marks form
interdependent feedback loops that perpetuate silencing through cell divisions (Du et al., 2015;
Ning et al.,, 2020). Consistent with the transcription-coupled H3K9me2 demethylase IBM1
breaking these loops and preventing ectopic CHG hypermethylation of genes, we found that
CMT3, KYP and IBM1 were highly expressed during early embryogenesis (Figure: 3). After this
rapidly dividing morphogenesis phase, transcripts from CMT3, KYP and IBM1 decrease, and
miR823 directs the cleavage and repression of excess CMT3 to help prevent hypermethylation
of protein-coding genes (Figure: 3). Excess CMT3 induces CHG methylation on distinct regions
of protein-coding genes that are characteristic of stable nucleosomes including transcriptionally
repressive H3K9me2 marks that bind to CMT3. Although the distribution of CMT3-induced CHG
hypermethylation is strikingly similar to CG gene-body methylation of genes (Figure= 4B,C), this
appears to be due to common targeting mechanisms by CMT3 and MET1 rather than a strict
prerequisite of CG. In fact, mutants with reduced CG methylation (Figure 4-figure supplement =
§40k) (Jacobsen and Meyerowitz, 1997; Lister et al., 2008; Saze and Kakutani, 2007; Stroud et
al., 2013) or species largely devoid of genic CG methylation (Wendte et al., 2019) can still
recruit CHG on genes. CMT3-induced CHG methylation of genes that we observed in rCMT3
transgenic plants was similar to ectopic gain of genic mCHG in ddm7 mutants (Figure= 4).
Notably, heterochromatin becomes destabilized in ddm7 mutants (Figure: 4K) (Mathieu et al.,
2003; Soppe et al., 2002) and CMT3 prefers features associated with stable (Figures= 4E,F,
Figure 4-figure supplement 184K&) (Bourguet et al., 2021; Osakabe et al., 2018; Yelagandula
et al., 2014) over unstable nucleosomes such as H2A.Z with active marks (Figures= 4H,I, Figure
4-figure supplement 184LH). Although destabilization of heterochromatin has been inversely
correlated with genic CHG methylation (lto et al., 2015; Zhang et al., 2020), chromatin features
underlying this mechanism are unclear. Therefore, we propose that destabilization of
heterochromatin in ddm1 mutants redirects CMT3 to genic regions with stable nucleosomes.

Therefore, factors such as DDM1 that stabilize heterochromatin may be yet another mechanism
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required to regulate CMT3 activity in order to achieve proper epigenome homeostasis (Figure:
6).

CMT3-induced CHG hypermethylation of genes did not globally affect steady state transcript
levels (Figure: 5). However, we observed exceptional association between CHG
hypermethylation and repression of genes that switch from transcriptionally inactive to active
states. Because IBM1-mediated removal of H3K9me2 marks is coupled to transcription (Inagaki
et al., 2017), it is possible that CMT3-induced methylation can form feedback loops with
H3K9me2 methyltransferases when genes are transcriptionally inert. However, when genes are
switched on, H3K9me2 could repress initial rounds of transcription before it is removed by
IBM1. Accordingly, it may be difficult to detect the effects of ectopic CHG methylation on gene
expression when quantifying transcripts at steady state with standard mRNA-seq. It is possible
that we observed a repressive effect of CHG hypermethylation on a subset of genes because
we profiled a developmental stage in which hundreds of genes become transcriptionally
activated at the onset of embryo maturation. Nevertheless, we cannot completely exclude that
the repression of hypermethylated genes undergoing transcriptional activation is due to
secondary effects of other genes influenced by CMT3-induced hypermethylation. Importantly,
CMT3-induced CHG hypermethylation due at least partially to loss of miR823 repression in
embryos is largely maintained for weeks after detectable miRNA activity (Figure: 3). Therefore,
epigenetic collateral damage occurring in embryos may also negatively impact gene expression
later in life. However, future experiments are required to directly test the relationship between
CMT3-induced hypermethylation and gene expression.

Transcriptional (Ning et al., 2020), post-transcriptional (Figure= 3), post-translational (Deng
et al., 2016), post-hoc (Saze et al., 2008) and perhaps substrate-related (Figure= 4) mechanisms
fine-tune CMT3 activities to levels required to specifically silence mutagenic TEs but not genes.
However, errors in restricing CMT3 to heterochromatin are inevitable on an evolutionary
timescale (Zhang et al., 2020) and recent studies indicate that CMT3-induced methylation of
genes precedes gbM (Wendte et al., 2019). Because gbM can be stably maintained over many
generations by MET1 and its functional significance is debatable (Bewick et al., 2016, 2019;
Choi et al., 2019; Coleman-Derr and Zilberman, 2012; Le et al., 2020; Picard and Gehring,
2017; Shahzad et al., 2021; Takuno and Gaut, 2013; Wendte et al., 2019; Williams et al., 2021;
Zilberman, 2017), it cannot be excluded that gbM is merely an evolutionary record of epigenetic
collateral damage events that occurred in the past (Bewick and Schmitz, 2017; Bewick et al.,
2017). Our results suggest that derepressed CMT3 and MET1 both prefer genic regions
characterized by increased nucleosome stability (Figure= 4). Accordingly, CMT3-induced CHG
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hypermethylation tends to occur away from transcription start and end sites of genes in a nearly
identical pattern as observed for gbM (Figure= 4). We propose that CHG methylation is more
tolerated in central/3’ biased regions because they are relatively inaccessible to trans-acting
factors that regulate transcription. Moreover, our results tentatively suggest that CMT3-induced
hypermethylation can repress genes that are transcriptionally activated (Figure= 5). Perhaps
genes that are consistently expressed can accumulate CHG methylation without having a large
effect on steady state transcript levels and resulting fitness penalties, and thus be more likely to
accumulate gbM over evolutionary time. In other words, miR823-mediated repression is one of
several ways to prevent CMT3 from ectopically methylating protein-coding genes. However,
CMT3 off-targeting on genes may still occur despite these complex regulatory mechanisms and
the resulting epigenetic collateral damage can be recorded as heritable gbM. The characteristic
features of gbM may not pertain to its current functions, but rather the consequences of

transient CHG methylation that occurred in the past and were selected on during evolution.
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chromatin. A) Model of non-CG methylation dynamics during embryo development and corresponding regulatory
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cluster location (bottom) according to key in Figure: 4A. Black dot represents the centromere. (i) In steady state,
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stable nucleosomes along with H3K9me2 and DNA methylation provides positive reinforcement to sequester CMT3
to constitutive heterochromatin. (ii) Loss of DDMI1 results in destabilized and accessible heterochromatin (Zhong et
al., 2021), characterized by loss of H3K9me2 and stable nucleosomes (Osakabe et al., 2021). Accessible chromatin
or DNA without stable nucleosomes is no longer a preferable substrate for CMT3 and results in CHG
hypomethylation of TEs. CMT3 will now be readily available and redirected to genic regions where it induces
ectopic CHG methylation in proportion to the levels of stable nucleosomes and chromatin marks. (iii) Excess levels
of CMT3 causes genome-wide CHG hypermethylation with a preference for stable nucleosomes associated with

repressive marks that tend to be in regions closer to centromeres compared to chromosomal arms.
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Key Resources Table

Reagent Designation Source or | Identifiers Additional

type reference information

(species) or

resource

gene CHROMOMETHY | TAIR AT1G69770

(Arabidopsis LASE 3 (CMT3)

thaliana)

gene MICRORNA 823A | TAIR AT3G13724

(Arabidopsis (MIR823A)

thaliana)

genetic miR823-cleavable this paper pAlligatorR43/prom

reagent CMT3 (cCMT3) oterCMT3::genomic
9 CMT3

(Arabidopsis

thaliana)

genetic miR823-resistant this paper pAlligatorR43/prom

reagent CMT3 (rCMT3) oterCMT3::resistant
g CMT3

(Arabidopsis (generated  from

thaliana) cCMT3 with

site-directed
mutagenesis)

recombinant | pAlligatorR43 DOI: mCherry selection

DNA (plasmid) 10.7554/eLi marker

reagent fe.04501

recombinant | pHSE401 Addgene #62201 CRISPR/Cas9

DNA (plasmid) plasmid

reagent
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recombinant | pCBCD-T1T2 Addgene #50590 CRISPR/Cas9
DNA (plasmid) plasmid
reagent
strain cmt3-11T NASC SALK 148381 T-DNA insertion
(Arabidopsis mutant of CMT3
thaliana)
strain mir823-1 this paper miR823  knockout
(Arabidopsis mutant
thaliana)
strain mir823-2 this paper miR823  knockout
(Arabidopsis mutant
thaliana)
commercial Q5 Site-Directed | New #E0554S
kit Mutagenesis Kit England

Biolabs
commercial Fast SYBR Green | Roche #0640271200
kit Master Mix 1
commercial SuperScript Il Thermo #18080093
kit Reverse Fisher

Transcriptase Scientific

commercial TRIzol Invitrogen #15596026
kit
Software Lightcycler 96® Roche Version

Diagnostics | 1.1.0.1320

Plant material and growth conditions
Arabidopsis thaliana accession Columbia-0 (Col-0) were grown in controlled growth chambers
at 20-22°C under a 16-h light/8-h dark cycle with incandescent lights (130 to 150 umol/m?/s).

Generation of transgenic lines

The control genomic CMT3 construct (miR823-cleavable; cCMT3) was generated by PCR
amplification of the CMT3 locus including 1,408 bp upstream and 730 bp downstream of the
TAIR10-annotated transcription start and end sites, respectively. PCR primers included

overhangs for subsequent Gibson assembly into MultiSite-Gateway destination vector
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pAlligatorR43 (Kawashima et al.,, 2013). The miR823-resistant CMT3 construct (rCMT3) was
generated by PCR site-directed mutagenesis (Q5 Site-Directed Mutagenesis Kit, New England
Biolabs) using the cCMT3 construct as a template to introduce six silent mutations as shown in
Figure 3-figure supplement 1=83C. Both cCMT3 and rCMT3 construct sequences were
analyzed for mutations using Sanger sequencing. All primers used are listed in the
Supplementary File Fable-S5. The constructs were transformed into cmt3-11T (SALK 148381)
using the Agrobacterium floral dip method (Clough and Bent, 1998), and transformants were
selected based on seed-coat RFP signal under fluorescent light (Zeiss SteREO DiscoveryV.8).
Multiple independent first-generation transgenic (T1) lines were identified for cCMT3 and

rCMT3, and three and four were respectively characterized in bent cotyledon embryos for each.

Generation of CRISPR/Cas9 knockout mutants for MIR823

CRISPR/Cas9 knockout mutants in MIR823 were created by using a modified pHSE401 binary
vector (Addgene #62201) according to the protocol detailed by (Xing et al., 2014). Primers
containing the sequences for the two guide RNAs targeting the MIR823 locus flanking the
miR823 sequence (Figure 3-figure supplement 1=83A and Supplementary File Table-85) were
amplified together with the pCBCD-T1T2 plasmid (Addgene #50590), and the resulting PCR
product was subsequently assembled into the pHSE401 binary vector using GoldenGate
cloning method (Xing et al., 2014). Plants were transformed with the floral dip method as
described above; and Cas9-positive seeds were selected based on the presence of seed coat
RFP signal. Deletion lines were identified with PCR using primers flanking gRNA-targeted sites
(Figure 3-figure supplement 1=83A and Supplementary File Table=85). Deletion mutants were

confirmed and mapped by Sanger sequencing.

qRT-PCR analysis

Leaves (two-week old rosettes), floral clusters (five weeks) and bent cotyledon embryos (eight
DAP) were homogenized in 500 pl TRIzol reagent (Invitrogen) and total RNA was isolated and
purified according to manufacturer’s recommendations. For mRNA, 200 ng of total RNA was
used for cDNA synthesis with SuperScript Ill Reverse Transcriptase (Thermo Fisher Scientific).
The cDNA was diluted two-fold for embryos or ten-fold for leaves and floral buds with
nuclease-free water. Two uL of diluted cDNA was used as a template for the gRT-PCR with Fast
SYBR Green Master Mix (Roche) on a LightCycler 96 instrument (Roche) with two technical
replicates for each biorep. For miRNA823 quantification, corresponding stem-loop primers were

added to the RT reaction (adapted from (Yang et al., 2014)) and miR823 levels were measured
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using Fast SYBR Green Master Mix (Roche) with miRNA823 specific forward primer and a
stem-loop specific universal reverse primer. U6 snRNA was used as the reference RNA
(adapted from (Shen et al., 2010). Primers used for qRT-PCR are listed in Supplementary File
Table S5.

Sample size estimation, eEmbryo isolation and nucleic acid extraction

Sample sizes were determined based on a combination of the required statistical power, ability
to acquire samples and cost of the experiments. Bent cotyledon embryos were dissected from
seeds eight days after pollination and also selected based on morphology to ensure accurate
staging. Embryos were serially washed 4x with nuclease-free water under an inverted
microscope. Approximately 50 embryos per replicate were isolated and stored at -80 °C until
further use. RNA was isolated as previously described (Lutzmayer et al., 2017; Plotnikova et al.,
2019). Genomic DNA was extracted from embryos and three-week old plants using
Quick-DNA™ Micro prep Kit (Zymo D3020) according to the recommendations of the

manufacturer.

DNA methylation profiling and analysis

MethylC-Seq libraries were generated as described previously (Papareddy et al., 2020) and
sequenced in single-read mode on an lllumina HiSeq 2500 or Nextseq 550 instrument. Adapters
and the first six bases corresponding to random hexamers used during the pre-amplification
step were trimmed from MethylC-seq reads using Trim Galore. Bisulfite-converted reads were
aligned against the TAIR10 genome (Lamesch et al., 2012) in non-directional mode using
Bismark (bismark --non_directional -q --score-min L,0,-0.4) (Krueger and Andrews, 2011).
Methylpy software was used to extract weighted methylation rates for each available cytosine
from BAM files containing only deduplicated and uniquely mapped reads (Schultz et al., 2015).
Reads mapping to the unmethylated chloroplast genome were used to calculate bisulfite
conversion rates. FASTQ files obtained from publicly available methylomes generated from
sperm (lbarra et al., 2012), early torpedo (Pignatta et al., 2015), mid-torpedo to early maturation
(Hsieh et al., 2009), mature green embryos (Bouyer et al., 2017) and DNA methylation mutant
leaves (Stroud et al., 2013) were also processed in a similar manner except that alignments
were performed in directional mode and only 5’ end nucleotides of the reads with m-bias were
removed. Differentially methylated regions (DMRs) were identified using Methylpy (Schultz et
al., 2015). Briefly, two biological replicates were pooled and differentially methylated cytosines

(DMCs) were identified by root mean squared tests with false discovery rates < 0.01. DMRs
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were defined by collapsing DMCs with 24 reads within 500 bps to single units requiring 28 and
>4 DMCs for CG and CHN sites, respectively (N = A, T,C,G; H # G). Using these parameters,
DMRs were identified across floral bud, early heart, early torpedo, bent cotyledon, mature green
and leaf samples, and merged into a single bedFile using the BEDtools merge function (Quinlan
and Hall, 2010). Resulting DMRs were then used to calculate the methylation rate on all
analyzed tissues and genotypes. We assigned that a gene and a DMR are associated if the
DMR is overlapping within 1.5 kb upstream or downstream of TAIR10 annotated gene bodies
using BEDtools closest function. For down-regulated genes overlapping with DMRs with above
criteria, significance was tested using BEDtools fisher function with nuclear genome as a

background control.

mRNA profiling and analysis

Smart-seq2 mRNA libraries were generated from 1 pl of the 7 ul bent cotyledon embryo total
RNA as previously described (Hofmann et al., 2019; Picelli et al., 2014). Both amplified cDNA
and final libraries were inspected using Agilent HS NGS Fragment Kit (DNF-474) to control for
library quality and proper length distributions. Libraries were sequenced in single-read mode on
an lllumina HiSeq 2500 or NextSeq 550 machine. Raw FASTQ files from technical replicates
were merged, quality filtered and trimmed for adapter sequences with Trim Galore using default
parameters. Trimmed reads were aligned using STAR (Dobin et al., 2013) against a genome
index generated using the TAIR10 genome fasta file and all transcripts in the GTF of Ensembl
build TAIR10 annotation set (release version 44). Aligned transcriptome bam files were used to
quantify read counts per gene and transcript abundance using RSEM (Li and Dewey, 2011).
Along with the transcriptomes generated in this study, publicly available embryonic
transcriptomes (Hofman et al., 2019) used for PCA were analyzed in the same fashion as
described above (Supplementary File Fable-86). Prior to PCA (Figure: 5A), read counts derived
from nuclear protein-coding genes were subjected to variance stabilizing transformations using
DESeqg2 (Love et al., 2014). Differential gene expression analysis was performed using DESeq2
for genes with at least five aligned reads. Genes with 22-fold differences and adjusted p-value <
0.01 were classified as differentially expressed genes (DEGs). Nearest-neighbour genes in
Figure: 1A,B were classified based on Euclidean distance. First, the centroid expression of
MET1 and VIM1/2/3 was calculated for all tissue types represented in the developmental time
series. This centroid value was then used to calculate Euclidean distance of all

TAIR10-annotated protein-coding genes and sorted based on their distances.

34


https://paperpile.com/c/ju89vP/6eeE
https://paperpile.com/c/ju89vP/6eeE
https://paperpile.com/c/ju89vP/liuc+j6Te
https://paperpile.com/c/ju89vP/5PA0
https://paperpile.com/c/ju89vP/dVZf
https://paperpile.com/c/ju89vP/oMgc

772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805

ChlIP-seq analysis

ChlP-seq data for H2A variants and H3K9me2 were downloaded from GSE50942 (Yelagandula
et al., 2014) and GSE51304 (Stroud et al., 2014) respectively. H3K9 acetylation marks were
from GSE98214 (Wang et al., 2019). H3K4me3 marks were obtained from GSE152243 (Maher,
2020). All FASTQ files were trimmed and quality filtered using Trim Galore default parameters.
Trimmed reads were aligned against the TAIR10 genome using BWA-MEM (Li and Durbin,
2009). Multi-mapping reads and clonal duplicates were removed using MarkDuplicates from the
Picard Tools suite (Toolkit, 2019). The resulting BAM files containing alignments were sorted,
indexed and used as input for the bamCoverage function of deepTools (Ramirez et al., 2014) to
obtain genome normalized coverage with parameters --normalizeUsing 'RPGC'. Processed
bigwig files for H1 Chromatin Affinity purification followed by sequencing (ChAP) and
DNase-seq datasets were obtained from GSE122394 (Choi et al., 2019). MNase-Seq data was
obtained from GSE113556 (Rutowicz et al., 2019). ATAC-seq processed bigwig files for W Twild
type and ddm1 mutants were from GSE155503 (Zhong et al., 2021).

Metaplots

ChiP, ATAC, MNase, DNase and MethylC-seq metaplots were plotted using the R library
Seqplots (Stempor and Ahringer, 2016). Body, upstream, and downstream regions of TEs or
genes were split into equal-sized bins, and the average levels for each bin was calculated and

plotted.

CMT3 transgene copy number estimation

CMT3 transgene copy number was estimated using two methods: qPCR and coverage
calculation. For the gPCR method, genomic DNA was extracted from leaves of three-week old
plants using the CTAB DNA isolation method (Aboul-Maaty and Oraby, 2019). Relative
transgene copy number was determined by using the qPCR-based method as described
(Shepherd et al., 2009). ACTIN2 was used as a control gene while transgene copy number was
calculated based on CMT3 levels. For the coverage method, Bismark-aligned and deduplicated
BAM files from WTwite=type, cCMT3 and rCMT3 lines were processed with DeepTools to obtain
normalized genome coverage as bins per million mapped reads (BPM) units with the
bamCoverage function and following parameters: --binsize 50 --skipNAs --normalizeUsing ‘BPM'
--ignoreForNormalization mitochondria chloroplast. The resulting bigwig files were used to
calculate genome-wide coverage fold-changes relative to \WTwild=type using the deepTools

function bigwigCompare --skipNAs --operation "ratio”. CMT3 locus was displayed with the
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Availability of data and material

All sequencing data generated in this study are available at the National Center for
Biotechnology Information Gene Expression Omnibus (NCBI GEO,
https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE171198. ChlP-Seq and

MmRNA-seq bioinformatic analysis pipelines were based on Nextflow (Di Tommaso et al., 2017)
and the nf-core framework (Ewels et al., 2020) are available at
https://github.com/Gregor-Mendel-Institute/RKP2021-CMT3.
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