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Abstract Genetic alterations that activate protein kinase A (PKA) are found in many tumor types. 
Yet, their downstream oncogenic signaling mechanisms are poorly understood. We used global 
phosphoproteomics and kinase activity profiling to map conserved signaling outputs driven by a 
range of genetic changes that activate PKA in human cancer. Two signaling networks were identified 
downstream of PKA: RAS/MAPK components and an Aurora Kinase A (AURKA)/glycogen synthase 
kinase (GSK3) sub-network with activity toward MYC oncoproteins. Findings were validated in two 
PKA-dependent cancer models: a novel, patient-derived fibrolamellar carcinoma (FLC) line that 
expresses a DNAJ-PKAc fusion and a PKA-addicted melanoma model with a mutant type I PKA 
regulatory subunit. We identify PKA signals that can influence both de novo translation and stability 
of the proto-oncogene c-MYC. However, the primary mechanism of PKA effects on MYC in our cell 
models was translation and could be blocked with the eIF4A inhibitor zotatifin. This compound 
dramatically reduced c-MYC expression and inhibited FLC cell line growth in vitro. Thus, targeting 
PKA effects on translation is a potential treatment strategy for FLC and other PKA-driven cancers.
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Notwithstanding that the underlying mechanisms remain obscure, it was thought that this study is of 
broad interest inasmuch as it provides hitherto unacknowledged insights into the molecular under-
pinnings of oncogenic PKA signalling and accordingly, it was thought that this manuscript may be of 
interest to researchers in the fields of cancer research, therapeutics, signal transduction and molec-
ular and cell biology.

Introduction
Protein kinase A (PKA) is an evolutionarily conserved signaling enzyme with established roles in 
diverse physiological processes, including the regulation of growth, differentiation, and metabolism 
(Turnham and Scott, 2016). PKA is controlled by cyclic AMP (cAMP) generated by the activation of G 
protein-coupled receptor (GPCR) signaling. Genomic alterations in the components of the GPCR-PKA 
signaling pathway lead to constitutive activation of this kinase in many human diseases including cancer 
(Taylor et al., 2013), such as amplified ligands of upstream GPCRs (Coles et al., 2020; McCudden 
et al., 2005), point mutations in the G-protein subunit GNAS (Patra et al., 2018), inactivation of PKA 
regulatory protein PKA-RIα (Yin et al., 2011), and mutations that directly alter the activity of the PKA 
catalytic subunit (PKAc; Berthon et al., 2015). Elevated PKA activity as a consequence of GNAS or 
PRKACA mutations has been reported in a variety of endocrine tumors (Salpea and Stratakis, 2014). 
A prototypical example is the PRKACA L205R mutation, which generates an unregulated PKAc variant 
found in adrenocortical and ACTH(Adrenocorticotropic Hormone)-producing pituitary tumors in 
patients with Cushing’s syndrome (Cao et al., 2014). Patients with germline inactivating mutations in 
PRKAR1A are predisposed to develop myxomas, thyroid, and gonadal tumors, referred to as Carney 
Complex (Yin et al., 2011). Recently, a DNAJB1-PRKACA gene fusion has emerged as the dominant 
oncogenic event in a rare liver cancer, fibrolamellar carcinoma (FLC; Honeyman et al., 2014). This 
genetic lesion is found in 79–100% of FLC (Honeyman et al., 2014; Cornella et al., 2015), with rare 
cases instead bearing PRKAR1A deletion (Graham et al., 2018). DNAJB1-PRKACA fusions have also 
been described in very small subsets of hepatocellular carcinoma (Cancer Genome Atlas Research 
Network, 2017), cholangiocarcinoma (Nakamura et al., 2015), and oncocytic biliary tumors (Singhi 
et al., 2020). Thus, oncogenic activation of PKA signaling is found in a substantial number of cancers.

The PKA holoenzyme is composed of two catalytic (C) and two regulatory (R) subunits (Taylor 
et al., 2013). In the inactive state, R subunits form a homodimer that binds and inhibits the C subunits. 
cAMP is generated by GPCR/Gαs-mediated stimulation of adenylyl cyclase. This diffusible second 
messenger binds R subunits, causing a conformational change that allows greater mobility and activity 
of the C subunits, while maintaining localization of active kinase complexes (Smith et al., 2017). The 
spatiotemporal specificity in cAMP signaling is provided by A-kinase anchoring proteins (AKAPs). This 
family of 60 human proteins sequester PKA at subcellular locations, creating nanodomains for relay 
and modulation of local cAMP signals (Langeberg and Scott, 2015; Omar and Scott, 2020).

PKA signaling modulates cancer-relevant processes including growth factor signaling, cell migra-
tion, cell cycle regulation, and control of cell metabolism. However, it remains unclear which onco-
genic pathways downstream of PKA are essential and in which tumor types and contexts they have the 
greatest impact (Burton and McKnight, 2007; London et al., 2020). For example, DNAJ-PKAc stimu-
lates ERK activation in an FLC model system (Turnham et al., 2019), operating via its interaction with 
AKAP-Lbc (Smith et al., 2010). In GNAS-mutant pancreatic tumor cells, PKA-mediated suppression 
of the salt-inducible kinases (SIK1-3) supports tumor growth (Patra et al., 2018). PKA has also been 
connected to control of the G2/M transition (Grieco et al., 1996; Kotani et al., 1998) and cell survival 
under glucose starvation (Palorini et al., 2016). Interestingly, PKA also has context-specific tumor 
suppressive functions including modulation of the Hedgehog and Hippo signaling pathways and is 
mutationally inactivated in a subset of cancers (Iglesias-Bartolome et al., 2015; Tokita et al., 2019).

Despite its oncogenic action in multiple tumor types, PKA is challenging to target directly with 
small molecules. The ubiquitous role of PKAc in normal physiology makes global inhibition of the 
kinase a challenge and selective inhibitors of this kinase have intolerable side effects (Wang et al., 
2022; Toyota et al., 2022). This challenge is particularly unfortunate in the context of FLC, a disease 
of young adults with only limited reported impact of chemotherapy, immunotherapy, or targeted 
therapy to date (Dinh et al., 2022). Thus, a better understanding of the essential downstream PKA 
targets in individual tumor types is a more tractable path for therapeutic development. To gain insight 
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into oncogenic PKA signaling networks and identify potential drug targets, we have investigated 
effects downstream of PKA activation. Accordingly, we generated cell models with regulatable PKA 
activity and derived proteomic profiles of PKA signaling. We show that common downstream effects 
of PKA include increased c-MYC protein expression. In this report, we demonstrate that Aurora Kinase 
A (AURKA), glycogen synthase kinase (GSK)–3B and the eukaryotic Initiation Factor (eIF)–4B all link 
PKA and c-MYC. Of these, control of translation appears to exert the most important effect in FLC 
and is targetable with the clinical eukaryotic Initiation Factor 4A (eIF4A) inhibitor zotatifin, leading to 
reduced c-MYC protein expression and tumor cell viability.

Results
PRKACA alterations are common among tumor types
We first analyzed the frequency of PKA-activating somatic alterations in the TCGA Pan Cancer Atlas 
(Weinstein et  al., 2013), including both PRKACA gain-of-function and PRKAR1A loss-of-function 
mutations in addition to copy number alterations across multiple cancers (Figure 1A). We found a 
frequency of PRKACA amplification of 0.3–11.3% and a rate of activating mutations of 0.2–2.7%. The 
greatest frequency of activation occurred in malignant peripheral nerve sheath tumors and ovarian 
cancers. PRKAR1A loss of function mutations were rarer, including both inactivating mutations (0.2–
5.3%) and deep deletions (0.4–4%), that were predominantly detected in adrenocortical carcinoma 
(Figure 1B).

Kinome profile of oncogenic PKA signaling
Cell lines with PKA-activating mutations were engineered for inducible PKAc activation or inhibi-
tion to study PKA signaling effects (Figure 1C). These models include the bladder cancer line 639V 
(PRKACA copy number gain Barretina et al., 2012) and Colo741 skin and ML1 thyroid (PRKAR1A 
frameshift mutations Ghandi et al., 2019) lines; of note, Colo741 was derived from a patient with 
colon cancer but is thought to be a melanoma (Vincent and Postovit, 2017). 639V and Colo741 have 
been profiled for PKA dependency in the Cancer Dependency Map program, with Colo741 highly 
dependent on PRKACA. Although not available when the proteomic analysis was performed, we also 
used FLX1, a novel cell line from a patient-derived xenograft FLC model (Oikawa et al., 2015). FLX1 
contains a fusion of PKAc with biochemical gain-of-function and may have distinct signaling effects 
from other PKA-activating mutations (Turnham et al., 2019). To create stably inducible cell models for 
proteomic analysis, we introduced doxycycline (dox)-controlled 3xFLAG-PRKACA or PRKAR1AG325D, a 
dominant inhibitor of PKAc with impaired cAMP binding (Viste et al., 2005; Willis et al., 2011), into 
639V, Colo741, and ML1 cells via lentiviral infection. Inducible expression of PKAc and PKA RIa was 
confirmed by immunoblot analysis using a phospho-PKA substrate antibody (Figure 1D).

The engineered cells described above were cultured with or without dox for 48 hr and analyzed with 
global phosphoproteomics and multiplex inhibitor bead (MIB) kinome profiing (Coles et al., 2020; 
Donnella et al., 2018; Sos et al., 2014; Budzik et al., 2020). Bioinformatic analysis was performed 
on the global phosphoproteomic data set with the Phosfate analysis tool to infer changes in kinase 
activity (Ochoa et al., 2016). These strategies allow us to measure known kinase/substrate relation-
ships (Phosfate) and assay the activity of kinases whose substrates are not well known (MIBs). We 
initially confirmed the expected impact of PRKACA and PRKAR1G325D constructs. Using the engineered 
639V cell lines, we showed that phosphorylation levels of the PKA target VASP pS239 increased with 
PRKACA induction and decreased with PRKAR1AG325D induction in our global phosphoproteomics 
analysis (Figure 2A). Similarly, we detected upregulation of PKAc with both Phosfate and MIBs plat-
forms following dox treatment of PRKACA-inducible cells (Figure 2B).

We integrated the proteomics data in four categories: (1) Phosfate for cells with inducible PRKACA 
(Figure 2C, top), (2) Phosfate for cells with inducible PRKAR1G325D (Figure 2C, bottom), (3) MIBs for 
cells with inducible PRKACA (Figure 2D, top), and (4) MIBs for cells with inducible PRKAR1AG325D 
(Figure 2D, bottom). This analysis showed that YES, LYN, EPHB4, LIMK1, LIMK2, CDK5, and CDK7 
kinase activities were reduced following PKAc overexpression and increased following PKA inhibition 
by PRKAR1AG325D induction. We also saw that ROCK1 was upregulated by PRKACA and downregulated 
by PRKAR1AG325D induction. These results provide proof of concept for our genetic model system. We 
focused on credentialed drug targets among the list of candidates: we observed upregulation of the 
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Figure 1. Recurrent PKA activating somatic alterations in human cancer. (A) Pathway illustrations of different PKA activating genomic alterations in order 
from top: PRKACA amplification, DNAJB1-PRKACA fusion, PRKACA activating mutation, and PRKAR1A inactivation or deletion. (B) TCGA PanCancer 
Project analysis showing the frequency of PRKACA gain-of-function (red and yellow) and PRKAR1A loss-of-function (green and blue) alterations in 
various cancer types. The reported frequency of DNAJB1-PRKACA fusion in fibrolamellar carcinoma (FLC) clinical samples is also included. (C) Cell lines 

Figure 1 continued on next page
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pro-proliferative kinases AURKA, BRAF, and AKT2 by PKA (Figure 2C, yellow). Interestingly, the tumor 
suppressor STK11 was downregulated by PKA. Fewer signaling changes influencing proliferation were 
observed upon PRKAR1AG325D induction (Figure 2C bottom, 2D bottom).

Differences in isoform expression and shared kinase functions can obscure relationships between 
proteomic datasets. Thus, we used network propagation to integrate data across all of our cell models 
(Cowen et al., 2017), applying established pathway relationships from the ReactomeFI network to 
define connect activated kinases in the PKA-regulated kinome (Gillespie et al., 2022). Cytoscape 
was used to visualize PKA and its kinase network neighbors that are significantly altered by PRKACA 
or PRKAR1AG325D induction (Figure 2E), with kinases that are upregulated by PKA function marked 
as positive (red) and downregulated negative (blue). Non-kinase network nodes and non-PKAc-
adjacent kinases were also found (Supplementary file 3). This analysis defined two PKA-dependent 
clusters with both networks including potential drug targets. One cluster is characterized by growth 
factor signaling effectors such as BRAF, multiple MAPKs, AKT, PKCs, and ERBB2. A second network 
emerged, with cell cycle kinases involved in the regulation of G2/M including AURKA, PLK1, GSK3A/B, 
and several casein kinase family members. Importantly, both AURKA (Walter et al., 2000) and GSK3 
(Gregory et al., 2003) have been previously described as PKA targets and can regulate MYC family 
proteins (Dauch et al., 2016; Gustafson et al., 2014; Gregory et al., 2003).

We confirmed key proteomic results by western blot in Colo741 and FLX1 cells treated with 
forskolin (FSK) and 3-isobutyl-1-methylxanthine (IBMX), to pharmacologically activate PKA. We 
observed strong activation of MAPK1/3 by FSK/IBMX in Colo741 and mild reduction in FLX1. Marked 
inhibition of GSK3B marked by phosphorylation of its inhibitory site serine 9 in FLX1, with a smaller, 
transient effect in Colo741 (Figure 2F).

PKA signaling induces c-MYC and n-MYC expression in cell lines and 
tumor specimens
Our finding that PKA regulates AURKA and GSK3A/B suggested that MYC-family proteins might be 
responsive to PKA signaling. To extend these findings, we focused on our two key PKA-driven models, 
the FLX1 FLC line and Colo741, to determine whether PKA induces c-MYC or n-MYC expression. Cells 
were treated with FSK/IBMX for 0.5, 2, or 4 hr, leading to rapid phosphorylation of PKA substrates 
that correlated with progressive increase in c-MYC protein levels. Relatively low levels of n-MYC were 
detected in FLX1 but did increase as well (Figure 3A). Interestingly, sustained PKAc activation also 
resulted in mildly elevated MYC mRNA levels in FLX1 but not in Colo741 cells (Figure 3B).

Additionally, we generated an FLX1 cell line with dox-inducible 3xFLAG-PRKAR1AG325D, which 
produced the expected reductions in PKA substrate phosphorylation and c-MYC and n-MYC levels 
(Figure 3C). In control experiments, siRNA directed against PRKACA and dox induction of 3xFLAG-
PRKAR1AG325D greatly reduce the cell proliferation rate of FLX1 (Figure 3—figure supplement 1A–B). 
To confirm the relationship between PKA and MYC, we used the isogenic FLC model (Turnham 
et al., 2019), where an allele of the Dnajb1-Prkaca fusion was CRISPR engineered into AML12 murine 
hepatocytes. Immunoblot analysis confirmed that the engineered FLC clone had increased basal PKA 
activation, as well as higher c-MYC expression (Figure 3D). In an additional control, treating FLX1 with 
the PKA inhibiting tool compound H89 also reduced c-MYC levels (Figure 3E).

Finally, we assessed MYC protein levels in resected human FLC specimens. Immunoblot detection 
of the slower migrating DNAJ-PKAc fusion protein was used as a marker for FLC (Figure 3E, mid lower 

used in this study, their PKA-related mutation, PRKACA dependency, and inclusion in proteomic analyses. (D) Immunoblots showing the change of PKA 
activity, as indicated by phospho-PKA substrate, in different cell lines with dox-inducible 3xFLAG-PRKACA or PRKAR1AG325D with 1 µg/ml doxycycline 
(dox) for 48 hr. Left: engineered cell lines with inducible 3xFLAG-PRKACA. Right: engineered cell lines with inducible 3xFLAG- PRKAR1AG325D.

The online version of this article includes the following source data for figure 1:

Source data 1. Images for Figure 1A.

Source data 2. Table for Figure 1B.

Source data 3. Images for Figure 1D part 1/3.

Source data 4. Images for Figure 1D part 2/3.

Source data 5. Images for Figure 1D part 3/3.

Figure 1 continued
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Figure 2. Kinome profiling to identify signaling nodes downstream of PRKACA. (A) Global phosphorylation changes in 639V with induction of 3xFLAG-
PRKACA or 3xFLAG-PRKAR1AG325D; VASP is shown as a positive control for PKA activation, technical replicates shown. (B) Change in kinase activity from 
Phosfate analysis or multiplex inhibitor beads (MIBs) pipeline using 639V with induction of 3xFLAG-PRKACA compared to control; PKA catalytic (PKAc) 
shown as a positive control. Technical replicates shown. (C) Summary of overlapping activity in Phosfate data sets: effect size for all inferred kinases 

Figure 2 continued on next page
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lane). Importantly, expression of this oncogenic PKAc form correlated with increased protein levels of 
both c-MYC and n-MYC (Figure 3F). To determine whether the relationship between PKA and MYC 
exists in additional cancers, we applied gene set enrichment analysis (GSEA) to RNASeq data from 
the TCGA adrenocortical carcinoma and serous ovarian carcinoma data sets. We compared all tumors 
with a genetic alteration conferring PKA activation to the tumors in the same dataset without genetic 
PKA activation. The higher rate of PKA-activating alleles in adrenal cancers allowed a more robust 
comparison, identifying multiple upregulated Hallmark Gene Sets, including MYC Targets V1 and V2. 
In the ovarian cancer dataset, MYC Targets V2 was in fact the only significantly upregulated gene set 
(Figure 3G). These data support a recurrent pattern of MYC activation by PKA.

c-MYC effects on transcription and cell proliferation in PKA-driven 
cancers
To connect PKA- and MYC-driven gene expression effects on cellular behavior, we first performed 
RNASeq. This analysis compared a non-targeting control (NTC) siRNA to four pooled anti-PRKACA 
siRNA in FLX1 (Figure 4A, key targets highlighted). These caused a dramatic alteration in the FLX1 
transcriptome, resulting in downregulation of Hallmark MYC Targets gene sets and upregulation of 
inflammatory and tumor suppressive gene sets (Figure 4B). Using individual siRNA, we knocked down 
PRKACA and MYC, confirming that both genes support the expression of the canonical c-MYC tran-
scriptional target ornithine decarboxylase (ODC; Figure 4C). Because of its low level of expression in 
FLX1, MYCN knockdown is not shown. Control experiments did show a minor, inconsistent decrease 
in MYC mRNA levels following PRKACA knockdown (Figure 4—figure supplement 1A), which did 
not match effects on ODC and cyclin D1 (CCND1). Similarly, treatment with FSK/IBMX caused a time-
dependent increase in ODC and CCND1 mRNA in FLX1 (Figure 4D).

We next tested the role of c-MYC in PKA-driven proliferation in Colo741 and FLX1 cells. Knock-
down of MYC with four pooled siRNAs suppressed proliferation in FLX1 cells (Figure  4E). MYC 
siRNA knockdown also reduced proliferation in Colo741 cells, although to a lesser extent than in 
FLX1 (Figure  4—figure supplement 1B). Individual siRNAs were used to confirm the impact of 
MYC knockdown on FLX1 proliferation. AUC analysis of growth curves is shown, demonstrating that 
silencing MYC leads to a significant decrease in proliferation vs. NTC; PRKACA knockdown is shown 
for comparison (Figure  4F). Conversely, ectopic expression of MYC using a dox-inducible system 
increased proliferation of FLX1 cells (Figure 4G). Thus, c-MYC can play a significant role in the regu-
lation of proliferation in PKA-dependent cancers.

AURKA, PIM and GSK3B can influence c-MYC expression in PKA-driven 
cells
Our next objective was to dissect the signaling mechanisms that might control c-MYC protein expres-
sion downstream of PKA. To generate a dataset of broad utility, we first undertook a screen of 352 
advanced kinase inhibitors to identify compounds that impact proliferation in FLX1 cells. We found 

identified in at least two samples were averaged, shown with SD. Top panel shows results from 3xFLAG-PRKACA induction, bottom panel from 3xFLAG-
PRKAR1AG325D induction. (D) Summary of overlapping activity in MIBs data sets: abundance of all bead-enriched kinases identified in at least two 
samples were averaged, shown with SD. Top panel shows results from 3xFLAG-PRKACA induction, bottom panel from 3xFLAG- PRKAR1AG325D induction. 
(E) Network integration of MIBs and Phosfate kinome profiles from 639V, Colo741, and ML1 with doxycycline (dox)-inducible 3xFLAG-PRKACA and 639V 
and ML1 with dox-inducible 3xFLAG-PRKAR1AG325D. Kinases marked in red show increased activity in PRKACA data sets and/or decreased activity in 
PRKAR1AG325D data sets, while those marked in blue show the converse. (F) Confirmation of PKA-induced signaling changes: Colo741 and FLX1 were 
treated with 50 μM forskolin (FSK)/3-isobutyl-1-methylxanthine (IBMX) for 30 or 120 min and then analyzed by immunoblot.

The online version of this article includes the following source data for figure 2:

Source data 1. Tables for Figure 2A.

Source data 2. Tables for Figure 2B.

Source data 3. Tables for Figure 2C.

Source data 4. Tables for Figure 2D.

Source data 5. Tables for Figure 2E.

Source data 6. Images for Figure 2F.

Figure 2 continued
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Figure 3. PKA activity correlates with c-MYC and n-MYC protein levels. (A) Immunoblots showing the change of PKA activity, as indicated by phospho-
PKA substrate, and c-MYC and n-MYC expression in Colo741 and FLX1 cells after treatment with 50 μM forskolin (FSK) and 3-isobutyl-1-methylxanthine 
(IBMX) for 30 min, 2 hr, or 4 hr. n-MYC was not detected in Colo741 so is not shown. (B) Impact of 0–4 hr treatment with FSK/IBMX on MYC mRNA levels 
in Colo741 and FLX1; ± SD. Technical replicates from a representative experiment shown. (C) Immunoblots showing the change of PKA activity and c-
MYC and n-MYC levels in engineered FLX1 cells with doxycycline (dox)-inducible 3xFLAG- PRKAR1AG325D with or without dox for 72 hr. (D) Immunoblots 
showing the basal level of PKA activity with phosphorylated PKA substrate and c-MYC expression in AML12 wild type (WT; left) and AML12DNAJ-PKAc cells 
(right). (E) Effect of 4 hr treatment with PKA-inhibiting tool compound H89 over a dose range from 1.25 to 20 μM on PKA substrate phosphorylation 
and c-MYC level. (F) Immunoblot showing the presence of DNAJ-PKAc and different level of c-MYC and n-MYC in fibrolamellar carcinoma (FLC) 
tumor samples (FLC) vs adjacent liver (N) from four FLC patients. (G) Summary gene set enrichment analysis (GSEA) of PRKACA amplified/mutant and 
PRKAR1A inactivated adrenocortical carcinoma or ovarian serous carcinoma vs. WT from TCGA. All significant ‘Hallmark’ gene sets are shown.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Images for Figure 3A.

Source data 2. Tables for Figure 3B.

Source data 3. Images for Figure 3C.

Source data 4. Images for Figure 3D.

Source data 5. Images for Figure 3E.

Source data 6. Images for Figure 3F.

Source data 7. Tables for Figure 3G.

Figure supplement 1. Effects of PKA inhibition on FLX1 cell proliferation.

Figure supplement 1—source data 1. Tables for Figure 3—figure supplement 1A.

Figure supplement 1—source data 2. Tables for Figure 3—figure supplement 1B.

https://doi.org/10.7554/eLife.69521
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Figure 4. c-MYC alters transcription and proliferation in PKA-dependent cell models. (A) RNASEQ data from FLX1 cells after 48 hr treatment with 
four pooled siRNA against PRKACA. PRKACA, ornithine decarboxylase (ODC) and Cyclin D1 (CCND1) are highlighted. (B) Gene set enrichment 
analysis of Hallmark Gene Sets altered by PRKACA siRNA treatment. MYC Targets V1 and MYC Targets V2 are among the most significantly reduced. 
(C) Confirmation of overlapping effects of PKA and c-MYC on gene expression: FLX1 cells were transfected with individual siRNA directed against 
PRKACA and MYC. ODC expression was measured 48 hr later by quantitative RT-PCR (MYC and PRKACA knockdown shown in Figure 1C). Log(2)fold 
change vs. cells transfected with a non-targeting control (NTC) siRNA is shown ± SD; technical replicates shown from a representative experiment. p 
Value determined using two-tailed Student’s t-test (D) Impact of 0–4 hr treatment with forskolin (FSK)/3-isobutyl-1-methylxanthine (IBMX) on ODC and 
CCND1 mRNA levels in FLX1; ± SD. (E) Relative confluence of FLX1 cells in 96 well plates after MYC knockdown with four pooled siRNA. FLX1 cells were 
incubated 36 hr before recording to ensure attachment and then monitored with real-time microscopy for 120 hr. Experiments were done in duplicate, 
and representative results were shown with mean of technical replicates ± SD, n=10 for each condition; confirmation of knockdown shown by western 
blot. (F) Summary data of relative cell confluence shown as average AUC measurement from technical replicates of FLX1 treated with NTC or individual 
PRKACA and MYC-targeting siRNA. Representative results of technical replicates shown. p Value determined using two-tailed Student’s t-test, *p<0.05 
and ** p<0.001. (G) Relative confluence of engineered FLX1 cells with doxycycline (dox)-controlled 3xFLAG-MYC in 96 well plates after treatment with 

Figure 4 continued on next page
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several Aurora kinase inhibitors in addition to the PKA-inhibiting tool compound H89 were particularly 
potent (Figure 5A). To illuminate potential PKA-regulated growth effects, we repeated this analysis 
in FLX1 cells upon induction of PRKAR1AG325D. These experiments revealed that blocking PKA activity 
increased the potency of RTK, RAS/MAPK, and Aurora Kinase inhibitors, while PI 3-kinase/mTOR 
pathway inhibitor effects were diminished (Figure 5B). In addition, we identified three GSK3A/B inhib-
itors with differential activity following induction of PRKAR1AG325D. Two compounds showed a minor 
increase in activity when PKAc was inhibited. The third, tideglusib, may have additional off-targets 
given its simple structure (Mathuram et al., 2018).

To expand this analysis beyond established drug targets, we next screened a kinome-wide siRNA 
library for modifiers of cellular proliferation in FLX1 cells. In a key control, the common essential genes 
WEE1 and PLK1 both showed a z-score of <–1. We identified a total of 30 kinases whose genetic 
depletion reduced cell proliferation with a z-score <–1 and 20 kinases that increased proliferation 
(Supplementary file 7). Sensitivity to PIM2, EGFR, RPS6KB1, and PRKACA knockdown were also 
noted, while AURKA knockdown did not significantly alter cell confluence. PIM2 is a serine/threonine 
kinase with similar substrates and function to AKT (Fox et al., 2003).

AURKA (Dauch et al., 2016; Gustafson et al., 2014), GSK3 (Gregory et al., 2003), and PIM2 (Zhang 
et al., 2008) are established regulators of MYC protein stability. To connect these screening results to 
c-MYC regulation, we first tested a panel of AURKA inhibitors against the PKA-dependent Colo741 
and FLX1 cell lines. We noted that the conformation-disrupting AURKA inhibitor (CD-AURKAi) CD532 
had the strongest effect on cell viability. This agent inhibits AURKA catalytic activity and also alters 
its conformation, resulting in destabilization of c-MYC and n-MYC (Dauch et al., 2016; Gustafson 
et al., 2014). Increasing our interest in this class of AURKA inhibitors, the partial CD-AURKAi MLN-
8237 (alisertib) showed some effect in Colo-741, albeit not in FLX1 (Figure 5D, Figure 5—figure 
supplement 1A). Importantly, drug sensitivities (EC50=217.3 nM for Colo741; 692.8 nM for FLX1) 
matched the reported dose range for AURKA kinase inhibition (Gustafson et al., 2014). As a control, 
we confirmed that FSK/IBMX can increase c-MYC expression levels in an FLX1 cells treated with noco-
dazole. AURKA pT288 was increased by nocodazole and nocodazole +FSK/IBMX, but we did not 
detect total AURKA. AURKA pT288 did not correlate with increased c-MYC levels, and nocodazole 
did not block PKA effects on c-MYC (Figure 5—figure supplement 1B). We next tested a collection 
of PIM1/2 inhibitors on FLX1 viability (Figure  5E). We found that CX6258 and SGI1776 can each 
reduce c-MYC protein levels in FLX1, although this effect is overwhelmed by chronic stimulation of 
cAMP production (Figure 5F).

As inhibitors of both kinases only exerted partial effects on c-MYC levels, we tested combinations 
of PIM and AURKA inhibition. We first confirmed that both CD532 and MLN8237 alone can reduce 
c-MYC expression in FLX1 and Colo741. We note an off-target effect of CD532 on PKA activity, which 

or without 1 μg/ml dox. Experiment was duplicate, the representative results shown with mean of technical replicates ± SD, n=6 for each condition; 
induction confirmed by Immunoblot at 48 hr dox treatment. 3xFLAG-tagged c-MYC (FL-c-MYC) is shown.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Tables for Figure 4A.

Source data 2. Tables for Figure 4B.

Source data 3. Tables for Figure 4C.

Source data 4. Tables for Figure 4D.

Source data 5. Tables for Figure 4E.

Source data 6. Images for Figure 4E.

Source data 7. Tables for Figure 4F.

Source data 8. Tables for Figure 4G.

Source data 9. Images for Figure 4G.

Figure supplement 1. Data supporting c-MYC effects on transcription and proliferation.

Figure supplement 1—source data 1. Tables for Figure 4—figure supplement 1A.

Figure supplement 1—source data 2. Tables for Figure 4—figure supplement 1B.

Figure supplement 1—source data 3. Images for Figure 4—figure supplement 1B.

Figure 4 continued
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Figure 5. AURKA and GSK3B regulate c-MYC in PKA-dependent cell models. (A) Summary data from the FLX1 cell line treated with 352 kinase 
inhibitors from an advanced clinical compound library at 2 μM for 120 hr. The targets of selected compounds with a z-score ≥2 are highlighted, with 
the PKA inhibiting tool compound H89 shown. Average of three biological replicates is shown. (B) Impact of doxycycline (dox) induction of 3xFLAG-
PRKAR1AG325D on drug sensitivity in FLX1: Cells were incubated with 1 μg/ml dox overnight and compound added on the following day; log2FC vs. 
median was derived ± dox, and then subtracted to identify those compounds whose activity was altered by 3xFLAG-PRKAR1AG325D. Data are averaged 
from three biological replicates. Inhibitors with p<0.05 were marked. Selected inhibitors were color coded based on their targets. (C) Kinase pooled 
siRNA library screen with FLX1 in 384 well plates shows the effect of each target kinase on cell proliferation (average of four biological replicates). 
Selected non-metabolic kinases that decrease cell proliferation with z-score –1 were marked. (D) FLX1 cells treated with dose curves of multiple AURKA 

Figure 5 continued on next page
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may explain its potent effect on cell viability. Thus, we focused on MLN-8237 for combinations. Treat-
ment with only MLN8237 was able to reduce c-MYC levels in Colo741, but not FLX1, and the PIM 
inhibitor CX6258 had only a mild cooperative effect with MLN8237 in reducing MYC levels in FLX1 
cells (Figure 5G). Combination treatment with CX6258 and MLN8237 did not synergize to reduce 
viability in FLX1 (not shown).

Finally, as our data above (Figure 3F) show that GSK3B is phosphorylated on an inhibitory site by 
PKA and can regulate c-MYC degradation, we tested its impact on c-MYC levels. Pharmacologically 
blocking GSK activity with CHIR99021 significantly augmented the impact of PKAc activation with 
FSK/IBMX on c-MYC expression (Figure 5—figure supplement 1C).

Our finding show that numerous kinases converge on c-MYC protein stability but that single or 
combination inhibition fails to overwhelm PKA stimulation. Thus, we directly assessed the contribu-
tion of altered protein stability in PKA effects on c-MYC. Treating FLX1 cells with the proteasome 
inhibitor MG132 augmented the impact of FSK/IBMX on c-MYC levels (Figure 5—figure supplement 
2A). Similarly, when PKA was inhibited with PRKAR1AG325D induction, MG132 did not rescue c-MYC 
levels (Figure 5—figure supplement 2B). These results suggested that reduced degradation is not 
a major mechanism of PKA effects on c-MYC. Similarly, our proteomics did not reveal significant 
changes in c-MYC phosphorylation on T58, T62, or the putative PKA site S281 (Padmanabhan et al., 
2013; Supplementary file 2). Thus, we tested c-MYC levels over time following treatment with cyclo-
heximide (CHX) with or without FSK/IBMX treatment, finding no significant effect on c-MYC half-life 
following FSK/IBMX treatment (Figure 5—figure supplement 2C).

PKA increases in c-MYC expression depend on eIF4A activity
These results raise the possibility that PKA could instead increase c-MYC translation. We performed 
GSEA on the altered phosphoproteins from our prior study of PKA signaling (Coles et al., 2020) and 
the phosphoproteomic data sets reported here. We observed statistically significant enrichment of 
proteins involved in translation initiation in all cases (Figure 6A). Our previous study showed that the 
eIF4F complex member eIF4B can be directly phosphorylated by PKA (Coles et al., 2020). Consistent 
with this, we observed increased eIF4B phospho-S422 by western blot following FSK/IBMX treatment 

inhibitors for 120 hr. Relative cell viability was measured by CTG assay vs. untreated control samples. Results are the mean ± SEM of triple biological 
replicates, three technical replicates per biological replicate. Inhibitors are color coded based on their binding mode. (E) FLX1 cells treated with dose 
curves of multiple PIM inhibitors as in B. (F) Effect of 24 hr treatment with 5 μM of different PIM inhibitors ±4 hr treatment with 50 μM forskolin (FSK)/3-
isobutyl-1-methylxanthine (IBMX). (G) Immunoblot showing the change of PKA activity, as indicated by phospho-PKA substrate, and c-MYC and n-MYC 
levels in Colo741 and FLX1 cells after treatment with DMSO, 1 μM CD532, MLN8237, CX6258, or combination of 1 μM MLN8237 and 1 μM CX6258 for 
24 hr.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Tables for Figure 5A.

Source data 2. Tables for Figure 5B.

Source data 3. Tables for Figure 5C.

Source data 4. Tables for Figure 5D.

Source data 5. Tables for Figure 5E.

Source data 6. Images for Figure 5F.

Figure supplement 1. Signaling effects on c-MYC in PKA-driven cells.

Figure supplement 1—source data 1. Tables for Figure 5—figure supplement 1A.

Figure supplement 1—source data 2. Images for Figure 5—figure supplement 1B.

Figure supplement 1—source data 3. Images for Figure 5—figure supplement 1C.

Figure supplement 2. Proteasome-independent PKA effects on c-MYC, (A) immunoblots showing the change of c-MYC protein in FLX1 cells after 
treatment with 50 μM forskolin (FSK)/3-isobutyl-1-methylxanthine (IBMX) and/or 20 μM MG132 for 2 hr.

Figure supplement 2—source data 1. Images for Figure 5—figure supplement 2A.

Figure supplement 2—source data 2. Images for Figure 5—figure supplement 2B.

Figure supplement 2—source data 3. Images and tables for Figure 5—figure supplement 2C.

Figure 5 continued
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Figure 6. PKA signaling supports translation initiation. (A) Gene set enrichment analysis (GSEA) of significantly altered phosphoproteins following 
doxycycline (dox) induction of PKA in proteomics data from this study or chemical PKA stimulation in our prior publications. Results are shown for 
Hallmark gene sets, with statistically significant enrichment of altered phosphoproteins annotated to be involved in translation initiation. (B) Time course 
of forskolin (FSK)/3-isobutyl-1-methylxanthine (IBMX) in Colo741 and FLX1 showing increased phosphorylation of eIF4B Ser422. (C) Impact of 24 hr dox 
treatment on phosphorylation of eIF4B at Ser422 in engineered FLX1 cells with dox-inducible 3xFLAG-PRKAR1AG325D. (D) Immunoblots showing the 
change of PKA activity and PKAc and c-MYC expression and phosphorylation of eIF4B Ser422 in Colo741 and FLX1 cells after pooled PRKACA siRNA 
knockdown for 24, 48, and 72 hr vs. 72 hr with non-targeting control (NTC). Long and short exposures are used in FLX1 to show knockdown effect in wild 
type (WT) PKAc and the DNAJ-PKAc fusion.

The online version of this article includes the following source data for figure 6:

Source data 1. Tables for Figure 6A.

Source data 2. Images for Figure 6B.

Source data 3. Images for Figure 6C.

Source data 4. Images for Figure 6D part 1/4.

Source data 5. Images for Figure 6D part 2/4.

Source data 6. Images for Figure 6D part 3/4.

Source data 7. Images for Figure 6D part 4/4.
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(Figure  6B). Conversely, eIF4B phosphorylation is reduced following induction of PKAR1AG325D 
(Figure 6C) or pooled siRNA knockdown of PRKACA in either Colo741 or FLX1 cells (Figure 6D).

eIF4B phosphorylation at S422 increases the activity of the RNA helicase eIF4A (Harms et  al., 
2014), which unwinds the complex 5’ untranslated regions (UTR) of multiple pro-growth genes 
including MYC (Wolfe et  al., 2014). We found that the related eIF4A inhibitors rocaglamide and 
zotatifin markedly attenuate the induction of c-MYC by FSK/IBMX to near baseline levels (Figure 7A). 
Similarly, rocaglamide reduces the level of c-MYC to one similar to that achieved by induction of 
PKAR1AG325D, with limited additive effect. Interestingly, napabucasin, which blocks eIF4E (Zuo et al., 
2018) and has been described to reduce MYC levels in FLC (Lalazar et al., 2021), had relatively little 
effect in our system (Figure 7B). Furthermore, we found that protein levels of exogenously introduced 
c-MYC lacking a 5’UTR are not reduced by PRKACA knockdown with pooled siRNA (Figure 7—figure 
supplement 1A) or zotatifin treatment (Figure 7C; Figure 7—figure supplement 1B).

Finally, we assessed whether eIF4A inhibitor sensitivity was connected to a signaling effect of 
PKAc. Zotatifin potently reduced FLX1 and Colo741 viability with an EC50 of 7 nM for FLX1 and 22 nM 
for Colo741. These concentrations are similar to those that predict in vivo potency for zotatifin in 
other cell lines (Gerson-Gurwitz et al., 2021). We further found that the impact of zotatifin is signifi-
cantly blunted by PRKAR1AG325D induction in FLX1 (Figure 7D–E), with siRNA knockdown of PRKACA 
and MYC also largely abrogating the effect of zotatifin on FLX1 proliferation (Figure 7F; Figure 7—
figure supplement 1C). Zotatifin treatment also resulted in reduced expression of CCND1 and ODC, 
mirroring the impact of PRKACA or MYC knockdown; eIF4A2 is known to be induced by zotatifin 
(Ho et al., 2021) and is shown as a control (Figure 7G). Thus, PKA effects on c-MYC translation are 
amenable to therapeutic inhibition.

Discussion
Over the last decade, tumor sequencing and mouse modeling studies have demonstrated the impor-
tance of GNAS/PKA signaling in cancer, including frequent oncogenic mutations in GNAS (O’Hayre 
et al., 2013) across multiple tumor types. Related studies have delineated the essential role of PKA as 
its effector (Coles et al., 2020; Patra et al., 2018). Here, we define the tissue distribution of genetic 
alterations in PRKACA and PRKAR1A that result in PKA activation in cancer and map the multiple 
conserved pathways downstream of oncogenic PKA signaling, many of which impinge on the expres-
sion of c-MYC (Figure 7H).

Our proteomic analysis has uncovered both expected and novel effects of PKA in cancer cell lines. 
We note that these findings may represent both direct and indirect effects of PKA, with PKA effects 
on the cell cycle and cellular metabolism potentially influencing kinase signaling due to changes in cell 
state. The analysis of kinase signaling recapitulated findings from previous studies, most notably acti-
vation of the AKT and RAS/MAPK pathways (Coles et al., 2020; Turnham et al., 2019; Isobe et al., 
2017; Dinh et al., 2020) and inhibitory effects of PKA on various kinases, including STK11 (Collins 
et al., 2000) and its effectors. We also noted substantial effects on kinases involved in cell migra-
tion (e.g. YES, EPHB4, LIMK1, LIMK2, and ROCK1), with the majority being inhibited by PKA. These 
interesting observations merit further investigation for their mechanistic impact in PKA-associated 
malignancies. When data were integrated using network propagation, we found two key clusters 
in PKA-driven signaling, one driven primarily by the RAS/MAPK pathway and the other made up of 
multiple kinases involved in the G2/M transition, also influencing the stability of MYC-family proteins. 
These findings are supported by other studies demonstrating PKA effects on GSK3A/B (Fang et al., 
2000) and upregulation of AURKA in GNAS (Coles et al., 2020) and DNAJ-PKAc-driven malignancies 
(Simon et al., 2015). Analysis of global phosphoproteomic data further revealed an activity of PKA 
toward mRNA translation, also seen in the upregulation of mTORC1 targets in our transcriptional 
analysis (Figures 3G and 4B). We found few reports connecting PKA to translation in mammalian cells 
other than our own previous work showing direct phosphorylation of eIF4B by PKAc (Coles et al., 
2020), but multiple studies in yeast have demonstrated PKA effects on translation (Leipheimer et al., 
2019), with reports from both yeast and plants that PKA impacts eIF4A (Bush et al., 2016).

A major objective of this study was to identify targetable signaling mechanisms downstream of 
PKA in FLC. This is particularly critical given that directly targeting PKA appears unlikely to be clinically 
possible due to the critical physiological functions of PKA. We found that upregulation of c-MYC, and 
to a lesser extent n-MYC, is an effect of PKA signaling. siRNA-mediated MYC knockdown decreased 
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Figure 7. PKA effects on c-MYC are blocked by eIF4A inhibition. (A) Immunoblots showing the c-MYC protein levels in FLX1 cells after treatment 
with 100 nM rocaglamide or zotatifin for 24 hr and/or 50 μM forskolin (FSK)/3-isobutyl-1-methylxanthine (IBMX) for 4 hr. (B) Immunoblots showing the 
change of c-MYC level in engineered FLX1 cells with doxycycline (dox)-inducible 3xFLAG-PRKAR1AG325D after dox induction for 48 hr and treatment with 
1 μM napabucasin or 100 nM rocaglamide for 24 hr. (C) Parental FLX1 cells or FLX1 with 48 hr dox-induced 3xFLAG-MYC lacking a 5’UTR treated with 
escalating doses of zotatifin for 24 hr and blotted for c-MYC. (D) Impact of 72 hr of a dose curve of zotatifin alone or in combination with dox-induced 
3xFLAG- PRKAR1AG325D on FLX1 viability by Cell Titer-Glo. Results from technical replicates of a representative experiment ± SD relative to DMSO for 
each curve. (E) Parental Colo741 treated as in D. (F) Zotatifin sensitivity tested in FLX1 as in D, following siRNA knockdown of PRKACA or MYC. Results 
combined from three siRNA. Quantitative RT-PCR (qRT-PCR) confirmation of knockdown is shown in Figure 1C. (G) Impact of 24 hr 100 nM zotatifin on c-
MYC targets by qRT-PCR; eIF-4A2 induction is a known effect of zotatifin and is shown as a control. Mean of technical replicates from one representative 
experiment is shown ± SD, p value determined with two-tailed Student’s t-test. (H) Schematic of DNAJ-PKAc mediating cell proliferation in fibrolamellar 
carcinoma (FLC) by increasing c-MYC expression by increased translation, with additional effects via GSK3B, AURKA, and PIM2.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Images for Figure 7A.

Source data 2. Images for Figure 7B.

Figure 7 continued on next page
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proliferation in FLC, and to a small extent in the melanoma line Colo741. Of note, while FLCs rarely 
harbors additional oncogenic mutations (Cornella et  al., 2015), Colo741 has an activating BRAF 
mutation (Ghandi et al., 2019) which may maintain its proliferation even when c-MYC expression is 
blocked. The overlapping results from these genetically distinct cell lines suggest that PKA specifically 
exerts an influence on c-MYC in carcinogenesis. That premise is supported by our finding of upregu-
lated MYC target gene expression in PKA-activated adrenal and ovarian cancers in the TCGA. When 
transcriptional activation of c-MYC drives oncogenesis, it is often considered to be ‘undruggable’ 
(Dang et al., 2017). We hypothesized, however, when that c-MYC is induced by an oncogenic kinase 
that disrupting the upstream signaling to c-MYC could in turn block its effects.

Our small molecule and siRNA kinome screens identified AURKA, GSK3A/B, and PIM1/2 as poten-
tial regulators of c-MYC levels, given prior publications connecting them to MYC stability. We present 
data that PKA stimulation can result in inhibition of GSK3B, and others have shown PKA phosphoryla-
tion of AURKA (Walter et al., 2000), although effects in FLX1 are not fully clear. We did not identify an 
effect of PKA on PIM kinases. While inhibition of AURKA and PIM kinases somewhat reduced c-MYC 
in our cell models, they had minor effects on cell proliferation and were variable between the two 
lines tested. Similarly, no significant phosphorylation changes were seen in sites that regulate MYC 
degradation by proteomics, and proteasome inhibition did not abrogate the effects of PKA on c-MYC 
in FLC. Finally, PKA could increase c-MYC levels without altering its stability.

These observations, coupled with findings that PKA stimulation increases eIF4B phosphorylation, 
suggested that PKA effects on translation initiation might be responsible for its induction of c-MYC 
expression. Consistent with this, inhibition of eIF4A with the natural product rocaglamide, or its clini-
cally used derivative zotatifin, significantly reduced c-MYC protein levels and potently inhibited prolif-
eration of our cell models. These effects were confirmed to be at least partially dependent on PKA 
and c-MYC expression.

Our study has several key limitations. While a valuable feature of our genetic approach to modu-
late PKA signaling is the lack of off-target effects seen with commonly used PKA-modulating tool 
compounds, PKA signaling is well known to be precisely spatiotemporally regulated (Bauman et al., 
2006; Coghlan et al., 1995) and our overexpression systems do not allow compartmentalized control 
of PKA signaling. We also note that while our FLX1 cells provide unique insight into the biology of 
FLC, they have significant limitations. Their long doubling time posed significant challenges in gener-
ating stably engineered cell lines, particularly with knockdown of growth mechanisms. Similarly, the 
FLX1 has proven more resistant to siRNA than our other exemplar line, Colo741 (Figure 6D), partic-
ularly when treated with individual rather than pooled siRNAs. Furthermore, our FLC clinical samples 
and the FLX1 cell line expressed both c-MYC and n-MYC. However, expression of n-MYC was quite 
low in FLX1, and it was not possible to clearly assess its regulation and contribution to FLC growth. 
Thus, the development of more precisely engineered PKA-driven cancer cell models is essential to 
provide genetic validation for the mechanisms that we have outlined using signaling and small mole-
cule inhibitors, with more FLC cell models specifically also needed to confirm dependency on MYC 
proteins for proliferation. Such models would also enable detailed characterization of the biochemical 
methods by which PKA can influence mRNA translation.

Source data 3. Images for Figure 7C.

Source data 4. Tables for Figure 7D.

Source data 5. Tables for Figure 7E.

Source data 6. Tables for Figure 7F.

Source data 7. Tables for Figure 7G.

Source data 8. Images for Figure 7H.

Figure supplement 1. Data supporting reversal of PKA effects on c-MYC by eIF4A inhibition.

Figure supplement 1—source data 1. Images for Figure 7—figure supplement 1A.

Figure supplement 1—source data 2. Images for Figure 7—figure supplement 1B.

Figure supplement 1—source data 3. Tables for Figure 7—figure supplement 1A.

Figure 7 continued
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This manuscript reports a network map of signaling downstream of oncogenic PKA. We use func-
tional studies to prioritize signaling mediators for their effect on cell growth in PKA-driven cancers, 
with a focus on FLC models. While our focus in this study has been on FLC, the systems-level mapping 
of PKA effects in cancer may have distinct implications for other tumor types. This may include a 
more significant role for PKA effects on c-MYC stability, including via AURKA and PIM2. Whereas FLC 
has few secondary mutations, the common co-occurrence of PKA-activating mutations with those 
impacting RAS/MAPK signaling suggests that PKA effects on other targets such as the SIK kinases 
(Patra et al., 2018) may also have a more important role in other cancers. Similarly, PKA activation 
in APC-mutant colorectal cancer could exert important effects on CTNNB1 via inhibition of GSK3. 
Finally, given PKA’s role in metabolism, its analysis in patient-derived tissues may yield additional 
nuance. In FLC, our results identify zotatifin as a potential mechanism-driven therapy for FLC and 
other PKA-driven cancers but require in vivo validation in multiple models to confirm their relevance. 
With more study, it may be possible to provide proof of concept that targeting MYC by inhibiting its 
translation is a potential treatment for patients with FLC or other PKA-driven cancers, for whom few 
options currently exist.

Materials and methods
Cell culture reagents and treatment
Human bladder 639V cells (DSMZ #ACC 413), human skin Colo741 cells (ECACC 93052621), 
and human thyroid ML1 (DSMZ #ACC 464) cells were maintained in Dulbecco’s modified Eagle’s 
medium (DMEM) supplemented with 10% fetal bovine serum (FBS), penicillin (100  U/ml), and 
streptomycin (100 U/ml). The murine hepatocyte AML12 wild type (WT) and AML12DNAJ-PKAc cell 
lines were developed as described previously by the Scott lab (Turnham et al., 2019). These cells 
were maintained in 50:50 DMEM/Nutrient Mixture F-12 (F-12) supplemented with 10% FBS, 0.1× 
ITS liquid media supplement, dexamethasone (0.1 μM), and gentamicin (50 μg/ml). FLX1 cells were 
derived in the Bardeesy lab from a human FLC tumor and xenografted to mice through dispersal 
and direct plating onto cell culture and maintained in RPMI with 50 ng/ml HGF(hepatocyte growth 
factor), 10% FBS, penicillin (100 U/ml), and streptomycin (100 U/ml). All cells were cultured in a 
37°C incubator with 5% CO2. Cells were tested for mycoplasma contamination routinely. Recom-
binant HGF was obtained from PeproTech; dexamethasone, FSK, gentamicin, IBMX, and 100× ITS 
liquid media supplement from Millipore Sigma; CD532, DMEM, DMEM/F-12, RPMI, FBS, Lipofect-
amine RNAiMAX Reagent, Opti-MEM, and penicillin-streptomycin from Thermo Fisher Scientific; 
Zotatifin from MedChemExpress; Rocaglamide, MLN8237, CX-6258, and kinase inhibitor library 
(L1200) from Selleckchem. The human protein kinase siGENOME siRNA library was obtained from 
GE Dharmacon. FuGENE 6 transfection reagent and CellTiter-Glo assay system were obtained 
from Promega. siGENOME single and SMARTpool siRNA targeting NTC, MYC, and PRKACA were 
purchased from Dharmacon.

For individual experiments, cells were seeded at 200,000 cells in 6 cm dishes overnight before 
treatment, except FLX1 cells, which grew for two nights. For drug treatment, a final concentration 
of 50 μM IBMX, 50 μM FSK, and 1 μM of the indicated drug were added to the cells in this order 
for the desired time periods and harvested, with the exception of zotatifin and rocaglamide, which 
were used at several doses. For siRNA treatment, 12 μl of 20 μM siRNA was added to the cells 
with Lipofectamine RNAiMAX reagent in Opti-MEM, incubated for 72 hr, and harvested. For CHX 
or MG132, a final concentration of 10 μg/μl and 20 μM, respectively, was added for the indicated 
time.

DNA transfections and lentivirus production
Plasmids containing PRKACA, PRKAR1A, and MYC were obtained from the Human ORFeome v8.1 
Collection (courtesy of Sourav Bandyopadhyay, UCSF or DNASU) and cloned into a gateway compat-
ible version of pLVX-Tet-One (puro) with 3xFLAG tag at the N terminal (for PRKAR1A and MYC) or C 
terminal (for PRKACA). The PRKAR1AG325D single point mutation was introduced using standard PCR 
site-directed mutagenesis. The final plasmids were packaged in HEK 293T cells for 72 hr to produce 
lentivirus, which were used to establish cell lines with each respective transgene.
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SDS-PAGE and immunoblotting
Cells were harvested by scraping in chilled PBS and lysed in RIPA buffer with protease and protein 
phosphatase inhibitors. Protein concentration of cleared lysate was determined by BCA protein assay 
(Pierce). Lysates were separated in 4–12% NuPAGE gradient gels (Thermo Fisher), transferred to nitro-
cellulose membrane and blocked with 5% milk in TBST using standard technique. Blocked membranes 
were immunoblotted with antibodies against the following targets separately: Phospho-PKA 
substrate (CST#9624), c-MYC (CST#18583), n-MYC (CST#84406), AURKA pThr288 (CST#3079), eIF4B 
pSer422 (CST#3591), eIF4B (CST#13088), GSK3B pSer9 (CST#9336), GSK3B (CST#12456), MAPK1/3 
pThr202/Thr204 (CST#4370), MAPK1/3 (CST#4695), PKAC-α (CST#4782), PKAR1a (CST#5675), FLAG 
(Sigma#F1804), Actin (CST#3700), Vinculin (CST#13901), or COXIV (CST#5247). Afterward, blotted 
membranes were washed in TBST, incubated with appropriate HRP(Horseradish peroxidase)-labeled 
secondary antibodies (CST#7074, 7076), probed with ECL reagents (Thermo Fisher), and developed 
by x-ray. Blots were washed and stripped with Restore Plus stripping buffer (Thermo Fisher) if multiple 
probes were required. At least two distinct biological replicates were performed for any western blot 
analysis.

Li-Cor western blot analysis
Cells were seeded, treated, harvested, separated by SDS-PAGE, and immunoblotted as described 
above, except Li-Cor specific secondary antibodies (CAT#926–32210, 926–32211) were used. The 
image was taken and quantified with the Li-Cor odyssey imaging system, and the half-life values were 
calculated using Prism.

RNA sequencing
Total RNA was isolated using the Total Purification kit (Norgen Biotek, Thorold, ON, Canada). High 
capacity RNA to cDNA kit (Life Technologies, Grand Island, NY, USA) was used for reverse transcrip-
tion of RNA. Libraries were generated by the Cornell Transcriptional Regulation and Expression (TREx) 
facility using the NEBNext Ultra II Directional Library Prep Kit (New England Biolabs, Ipswich, MA, 
USA) and subjected to paired-end sequencing on the NextSeq500 platform (Illumina) at the Genomics 
Facility in the Cornell University Biotechnology Resource Center. At least 80  M reads per sample 
were acquired. Reads were aligned to the human genome (build hg38) using STAR (Dobin et al., 
2013) (v2.5.3a) for identification and quality control. Salmon (Patro et al., 2017) (v0.06.0) was used 
for transcript quantification with annotations from GENCODE release version 25. Normalization and 
differential gene expression analysis were carried out using DESeq2 (Love et al., 2014). Each of the 
samples had at least 25 million uniquely mapped reads and greater than 90% unique-mapping rate.

Gene set enrichment analysis
GSEA for TCGA data was performed using the TCGA adrenocortical carcinoma (TCGA-ACC) and 
serous ovarian carcinoma (TCGA-OV) datasets, for which we obtained tumor somatic mutation and 
RNASEQ gene level read counts (normalized using the FPKM-UQ method) from the Genomic Data 
Commons Data Portal. There were 79 TCGA-ACC cases and 378 TCGA-OV cases for which RNASEQ 
data were available. For these cases, we ran GSEA (Subramanian et al., 2005) using default parame-
ters and compared cases harboring PKAc amplifications/activating mutations to those without these 
alterations. For RNASeq data and proteomics data, we used the Enrichr web analysis tool (Kuleshov 
et al., 2016) to assess Hallmark Gene Sets (analysis performed 7/2022).

Quantitative RT-PCR
Colo741 and FLX1 cells were seeded and treated in the same manner as described for immunoblot-
ting in preparation for siRNA treatments. RNA was extracted with Trizol reagent (Thermo Fisher) 
according to the manufacturer’s instructions and quantified with a NanoDrop instrument. Normal-
ized RNA was reverse transcribed with SuperScript II Reverse Transcriptase (Invitrogen). cDNAs were 
added to PerfeCTa SYBR Green FastMix Reaction Mixes (QuantaBio) and respective primers and 
analyzed using the BioRad CFX Connect Real-Time PCR Detection System. Primers were designed 
with Primer3 and obtained from Elim Biopharmaceuticals (Supplementary file 5). Quality control was 
performed for each primer using amplification and melting curves. All experiments were done in at 
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least biological duplicate with three technical replicates per condition. If only one technical replicate 
did not show an appropriate amplification or melting curve, it was excluded from analyses.

Cell viability assays
Cells were seeded into 96 well white opaque plates (Greiner) at 2000 cells per well and incubated at 
37°C and 5% CO2 overnight. Cells were treated with selected drugs at different final concentrations 
and incubated for another 72 hr except for the initial studies of Aurora Kinase inhibitors in FLX1, 
where incubation was 120 hr. After incubation, plates and CellTiter-Glo (CTG, Promega) reagent were 
allowed to equilibrate at room temperature on the bench for 30 min. The CTG assay was performed 
following the manufacturer’s instructions and measured with a SpectraMax i3 Multi-Mode Platform 
(Molecular Devices). All experiments were done in at least biological duplicate with three technical 
replicates per condition. When multiple individual siRNA were used, the results are shown averaged in 
a standard dose response curve. In addition, AUC is calculated for each siRNA using GraphPad Prizm 
and shown as a separate point.

Cell proliferation assays
For experiments with engineered FLX1 cells, 5333 cells of each line were seeded into black clear 
bottom 96 well plates (Corning) in 100 μl of media with or without dox (1 μg/ml). After seeding, plates 
were immediately incubated at 37°C and 5% CO2 inside the Incucyte Zoom system (Essen BioScience) 
for live cell image and confluence analysis. For experiments with parental cells and siRNA, Colo741 
and FLX1 cells were plated and treated with siRNA as described above. Cells were trypsinized after 
24 hr of siRNA treatment and transferred to a black clear bottom 96 well plate at 500 cells per well. 
All experiments were done in at least biological duplicate with a minimum of three technical replicates 
per condition. The plates were allowed to incubate at 37°C and 5% CO2 for 24 or 36 hr and moved 
to the Incucyte for further incubation. Once the plates were mounted inside the Incucyte system, 
pictures of each well were taken every 2 hr for confluence analysis.

Kinase inhibitor library screening
FLX1 cells were seeded at 600 cells per well in 40 μl in 384 well plates. 5 μl of 10 μg/μl dox were added 
24 hr after plating, and kinases inhibitors were added 48 hr after plating for a final concentration of 
2 μM or 5 μM in total volume of 50 μl as listed. 5 d post inhibitor addition, cell viability of the cells 
were measured using Cell-Titer Glo as described above. The precise inhibitors screened are listed in 
Supplementary file 5 and Supplementary file 6; they were purchased in library format from Selleck-
Chem in 2017. For the data where FLX1 was exposed to the entire library without any genetic modifi-
cation, statistical analysis was performed by developing a z-score within each screened plate and then 
averaging the z-scores across three biological replicates, allowing internal normalization. No samples 
or data points were excluded. For the data where FLX1 with dox-inducible 3xFLAG-PRKAR1AG325D was 
screened with the drug library ± dox treatment, a log(2)fold change vs. median was derived for each 
plate. This avoids amplifications in small differences in cell viability that may occur with a z-score. The 
normalized values ± dox were subtracted to generate an average log(2)fold change, and Student’s 
t-test performed to determine statistical significance; given the relatively small number of compounds 
screened, no false discovery correction was used.

siRNA kinase library screening
384 well plates containing the human protein kinase siGENOME siRNA library (Dharmacon Cat#G-
003505) were thawed at room temperature and centrifuged at 1000 rpm for 5 min prior to foil removal. 
50 µl of nuclease-free dH2O was added to each well to reconstitute the siRNA at a final concentration 
5 µM. Using a Labcyte Echo 525 liquid handling machine, 200 nl of reconstituted siRNA from each 
well from the master plates was transferred to the same position of the corresponding black trans-
parent bottom 384 well daughter plates (Thermo Fisher). Unused aliquoted plates were sealed with 
foil, covered with plastic lid, and stored at –80°C. For subsequent experiments, daughter plates with 
deposited siRNA were thawed at room temperature and centrifuged. 5 µl of nuclease-free dH2O was 
added to each well and agitated at room temperature for 30 min. 10 µl of a mixture of RNAiMAX 
and Opti-MEM was then added to each well and incubated at RT for 20 min. Finally, 500 FLX1 cells in 
30 μl media were added to each well. The plates were transferred to the Incucyte for cell proliferation 
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monitoring. Statistical analysis was performed by developing a z-score within each screened plate 
and then averaging the z-scores across four biological replicates, allowing internal normalization. No 
samples or data points were excluded.

TCGA analysis
TCGA PanCancer Project data between 3/13/18 and 4/23/18 were accessed through cBioPortal (at 
https://www.cbioportal.org) and queried by gene (e.g. PRKACA and PRKAR1A). Data were sorted 
through Cancer Types Summary function and exported to Microsoft Excel and Prism for reorganiza-
tion and analysis.

Phosphoproteomics
Engineered cell lines with dox-controlled 3xFLAG-PRKACA or PRKAR1AG325D constructs were treated 
with PBS or dox for 48 hr. Cells were then harvested in PBS, lysed in lysis buffer (8 μM urea, 50 mM 
Tris pH 8, 75 mM NaCl, and 1× protease and phosphatase inhibitors) and sonicated at 20% for 15 s. 
BCA protein assay was performed to quantify protein lysates. Samples were reduced with 5 mM dith-
iothreitol (DTT), cooled to room temperature, alkylated with 15 mM iodoacetamide, quenched with 
15 mM DTT, diluted with 50 mM Tris pH 8 to <2 M urea, and subjected to trypsin digestion at 37°C 
overnight. Samples were acidified with 10% trifluoroacetic acid (TFA).

50  mg Seppak cartridges were set up on vacuum, and columns were washed with series of 
MS-grade acetonitrile (ACN), 70% ACN/0.25% acetic acid (AA), and 0.1% TFA buffers. After letting 
samples drip through columns, columns were washed with 0.1% TFA and 0.5% AA. Samples were 
eluted and lyophilized in a speed vacuum concentrator, and phosphopeptide enrichment was 
performed with immobilized metal affinity chromatography following established protocols (Budzik 
et al., 2020). Phosphopeptides were eluted in 50% ACN/0.1% formic acid (FA) and dried on a speed 
vacuum concentrator. Enriched samples were analyzed on a Q Exactive Orbitrap Plus mass spec-
trometry system (Thermo Fisher Scientific) with an Easy nLC 1200 ultra-high pressure liquid chroma-
tography system (Thermo Fisher Scientific) interfaced via a Nanospray Flex nanoelectrospray source. 
Samples were injected on a C18 reverse phase column (25 cm × 75 μM packed with ReprosilPur C18 
AQ 1.9 μM particles). Mobile phase A consisted of 0.1% FA and mobile phase B consisted of 80% 
ACN/0.1% FA. Peptides were separated by an organic gradient from 2 to 18% mobile phase B over 
94 min followed by an increase to 34% B over 40 min, then held at 90% B for 6 min at a flow rate of 
300 nl/min. MS1 data was acquired with a 3e6 AGC target, maximum injection time of 100 ms, and 
70 K resolution. MS2 data was acquired for the 15 most abundant precursors using automatic dynamic 
exclusion, a normalized collision energy of 27, 1e5 AGC, a maximum injection time of 120 ms, and a 
17.5 K resolution. All mass spectrometry was performed at the Thermo Fisher Scientific Proteomics 
Facility for Disease Target Discovery at UCSF and the J. David Gladstone Institutes.

Mass spectrometry data were assigned to human sequences, and peptide identification and label-
free quantification were performed with MaxQuant (version 1.5.5.1) (Tyanova et al., 2016). Data were 
searched against the UniProt human protein database (downloaded 2017). Trypsin/P was selected 
allowing up to two missed cleavages. Standard quality control with variable modification was allowed 
for methionine oxidation, N-terminal protein acetylation, and phosphorylation of serine, threonine, 
and tyrosine, in addition to a fixed modification for carbamidomethyl cysteine. The other MaxQuant 
settings were left as default. Statistical analysis was performed using R (version 3.6.3), RStudio, and 
the MSstats Bioconductor package (Choi et al., 2014). These are broadly accepted statistical methods 
for mass spectrometry. Contaminants and decoy hits were removed, and samples were normalized 
across fractions by equalizing the median log2-transformed MS1 intensity distributions. Log2(fold 
change) for protein phosphorylation sites were calculated, along with p values. Phosphoproteomic 
data was uploaded to the PhosFate profiler tool (Ochoa et al., 2016; http://phosfate.com/) to infer 
kinase activity. Mass spectrometry RAW mass spectrum files are deposited into ProteomeXchange via 
PRIDE with the dataset identifier PXD025508.

Multiplex inhibitor beads
MIBs were performed as described previously (Donnella et al., 2018; Sos et al., 2014). Kinase inhibitor 
compounds were purchased or synthesized and coupled to sepharose beads using 1-ethyl-3-(3-dime
thylaminopropyl) carbodiimide chemistry. Engineered cell lines with dox-controlled 3xFLAG-PRKACA 
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or PRKAR1AG325D constructs were treated with PBS or dox for 48 hr then collected in PBS. Samples 
were lysed in 150 mM NaCl buffer with protease and phosphatase inhibitors. Lysates were diluted 
with 5 M NaCl and high-salt binding buffer (50 mM Hepes pH 7.5, 1 M NaCl, 0.5% Triton X-100, 1 mM 
EDTA, and 1 mM EGTA). Pre-washed columns containing ECH sepharose 4B and EAH sepharose 4B 
beads were layered with kinase inhibitor-coupled beads as follows: 200 µl JG-4, 100 µl VI-16832, 75 µl 
staurosporin, 100 µl PP-hydroxyl, 100 µl purvalanol B, 50 µl AKTi-46, 100 µl dasatinib, 50 µl sorafenib, 
50  µl crizotinib, 50  µl lapatinib, 50 µl SB202190, and 50  µl bisindolylmaleimide X. Columns were 
washed with high-salt buffer without disturbing bead layers, and affinity purification was performed 
with gravity chromatography. Bound kinases were washed with high-salt buffer, low-salt buffer (50 mM 
Hepes pH 7.5, 150 mM NaCl, 0.5% Triton X-100, 1 mM EDTA, and 1 mM EGTA), and 0.1% (w/v) SDS 
in high-salt buffer. Samples were eluted twice by capping the column, applying 300 µl of elution buffer 
(0.5% SDS/1% BME/0.1 M Tris-HCL pH 6.8) to the column, vortexing, heating to 98°C, removing caps, 
and allowing elution to flow through by gravity. Samples were frozen at –80°C overnight, reduced 
with 500 mM DTT, cooled to room temperature, and treated with 500 mM iodoacetamide. Methanol/
chloroform precipitation, trypsin digestion at 37°C overnight, and desalting were performed on all 
samples. Enriched samples were analyzed on a Q Exactive Orbitrap Plus mass spectrometry system 
(Thermo Fisher Scientific) with an Easy nLC 1200 ultra-high pressure liquid chromatography system 
(Thermo Fisher Scientific) interfaced via a Nanospray Flex nanoelectrospray source as described above 
for global phosphoproteomics. All mass spectrometry was performed at the Thermo Fisher Scientific 
Proteomics Facility for Disease Target Discovery at UCSF and the J. David Gladstone Institutes.

Peptides were identified with MaxQuant (version 1.5.5.1). Label-free quantification was performed 
with Skyline (Schilling et al., 2012), with Trypsin (KR|P) selected. Standard quality control was used, 
allowing up to two missed cleavages. Full scan MS1 filtering was performed with 70,000 resolving 
power at 400 m/z using the Orbitrap. Statistical analysis was performed with R, RStudio, and MSstats 
(Choi et al., 2014) to calculate log2(fold change) and p values of detected kinases. These are broadly 
accepted statistical methods for mass spectrometry. As above, mass spectrometry RAW mass spec-
trum files are deposited into ProteomeXchange via PRIDE with the dataset identifier PXD025508.

Proteomics data integration and network propagation
Initial integration of the proteomics data was performed by identifying all kinases that were present 
in Phosfate or MIBs data from at least two cell lines. The abundance (MIBs) or imputed activity (Phos-
fate) was averaged between all cells with inducible PRKACA or PRKAR1AG325D and shown ± SD. For 
network propagation, the log(2)fold change values of MIBs data and effect size of Phosfate data for 
each engineered cell line treated with or without dox were separately normalized out of one. The 
union of these two datasets was generated, and any duplicate genes were averaged. Z-scores were 
then calculated, and the absolute values of the z-scores for each cell line were separately propagated 
using a random walk with restart (alpha = 0.2) across the ReactomeFI network using a MATLAB script 
available on github (Huang et al., 2018). Propagated heat scores for each gene were multiplied across 
cell lines containing the same construct (either dox-inducible 3xFLAG-PRKACA or PRKAR1AG325D), and 
significance was calculated based on the probability that propagated heat scores match a permuted 
value by chance. Significant genes (p value<0.05) brought out by the network were then extracted 
and imported into Cytoscape (Shannon et al., 2003). To integrate engineered cell lines with Tet-on 
3xFLAG-PRKACA or PRKAR1AG325D, overlapping direct kinase neighbors of PRKACA, and their inter-
connections were extracted. The signs of the averaged z-scores of the Tet-on 3xFLAG-PRKAR1AG325D 
lines were flipped and averaged with the averaged z-scores of the Tet-on 3xFLAG-PRKACA lines, 
resulting in a final subnetwork for PKAc. Nodes representing the genes were filled to represent the 
original z-scores which were averaged across cell lines. Networks were searched on Cytoscape for 
PKAc and its direct neighbors and any interconnections.

Human FLC samples
Human FLCs and paired normal livers were obtained from the University of Washington Medical 
Center and Seattle Children’s Hospital after institutional review board approval (Seattle Children’s 
Hospital IRB #15277). For prospective fresh tissue collections, informed consent was obtained from 
the subject and/or parent prior to resection.
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Fresh/frozen human FLC and paired non-tumor livers were homogenized in RIPA buffer with 
protease inhibitors using a hand-held Pro200 homegenizer (ProScientific). Protein concentration of 
cleared lysate was determined by BCA protein assay (Pierce). Lysate were separated by 10% TGX gels 
(Biorad), transferred to nitrocellulose membrane, and blocked with 5% milk in TBST using standard 
technique. Blocked membranes were immunoblotted with antibodies against following targets sepa-
rately: PKAC-α (CST#4782), c-MYC (CST#18583), n-MYC (CST#84406), or Actin (Sigma#A5441). After-
ward, blotted membranes were washed in TBST, incubated with appropriate HRP-labeled secondary 
antibodies (GE Healthcare Life Sciences), washed as before, and developed using ECL (Thermo Fisher) 
on an iBright FL1000.

Materials availability
We will share all renewable reagents including plasmids, cell lines as well as assay methods, and proto-
cols with the scientific community at large upon direct request to our laboratory. These include the 
FLX1 cell line (available under MTA) and all plasmids reported here.

Data and code availability
All data generated or analyzed during this study are included in the manuscript and supporting files. 
Mass spectrometry RAW mass spectrum files have been deposited to the ProteomeXchange Consor-
tium via the PRIDE partner repository with the dataset identifier PXD025508. Code used for network 
propagation is available on github as cited in the manuscript where it was initially described (Huang 
et al., 2018).
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Consortium via the PRIDE partner repository with the dataset identifier PXD025508. The TCGA Adre-
nocortical Carcinoma and TCGA Ovarian Serous Cystadenocarcinoma datasets (https://www.ncbi.​
nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000178.v11.p8) were used.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Gordan 2023 Oncogenic PKA 
signaling stabilizes MYC 
oncoproteins via an aurora 
kinase A-dependent 
mechanism

https://www.​ebi.​ac.​
uk/​pride/​archive/​
projects/​PXD025508

PRIDE, PXD025508

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Weinstein JN, 
Collisson EA, Mills 
GB, Shaw KRM, 
Ozenberger BA, 
Ellrott K, Sander C, 
Stuart JM, Chang 
K, Creighton CJ, 
Davis C, Donehower 
L, Drummond J, 
Wheeler D, Ally A, 
Balasundaram M, 
Birol I, Butterfield 
YSN, Chu A, Kling T

2013 The Cancer Genome Atlas 
(TCGA)

https://www.​ncbi.​nlm.​
nih.​gov/​projects/​gap/​
cgi-​bin/​study.​cgi?​
study_​id=​phs000178.​
v11.​p8

dbGap, phs000178
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