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Abstract Metastasis is responsible for approximately 90% of cancer-associated mortality but few 
models exist that allow for rapid and effective screening of anti-metastasis drugs. Current mouse 
models of metastasis are too expensive and time consuming to use for rapid and high-throughput 
screening. Therefore, we created a unique screening concept utilizing conserved mechanisms 
between zebrafish gastrulation and cancer metastasis for identification of potential anti-metastatic 
drugs. We hypothesized that small chemicals that interrupt zebrafish gastrulation might also 
suppress metastatic progression of cancer cells and developed a phenotype-based chemical screen 
to test the hypothesis. The screen used epiboly, the first morphogenetic movement in gastrulation, 
as a marker and enabled 100 chemicals to be tested in 5 hr. The screen tested 1280 FDA-approved 
drugs and identified pizotifen, an antagonist for serotonin receptor 2C (HTR2C) as an epiboly-
interrupting drug. Pharmacological and genetic inhibition of HTR2C suppressed metastatic progres-
sion in a mouse model. Blocking HTR2C with pizotifen restored epithelial properties to metastatic 
cells through inhibition of Wnt signaling. In contrast, HTR2C induced epithelial-to-mesenchymal 
transition through activation of Wnt signaling and promoted metastatic dissemination of human 
cancer cells in a zebrafish xenotransplantation model. Taken together, our concept offers a novel 
platform for discovery of anti-metastasis drugs.

Editor's evaluation
We are so impressed with this new and ambitious concept for chemical screening using zebrafish 
embryos to find a novel anti-metastasis drug, Pizotifen. We hope many researchers will use this 
screening system for anti-cancer drug discovery.

Introduction
Metastasis, a leading contributor to the morbidity of cancer patients, occurs through multiple steps: 
invasion, intravasation, extravasation, colonization, and metastatic tumor formation (Nguyen et al., 
2009; Welch and Hurst, 2019; Chaffer and Weinberg, 2011). The physical translocation of cancer 
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cells is an initial step of metastasis and molecular mechanisms of it involve cell motility, the break-
down of local basement membrane, loss of cell polarity, acquisition of stem cell-like properties, 
and epithelial-to-mesenchymal transition (EMT) (Tsai and Yang, 2013; Lu and Kang, 2019). These 
cell-biological phenomena are also observed during vertebrate gastrulation in that evolutionarily 
conserved morphogenetic movements of epiboly, internalization, convergence, and extension prog-
ress (Solnica-Krezel, 2005). In zebrafish, the first morphogenetic movement, epiboly, is initiated at 
approximately 4 hr post fertilization (hpf) to move cells from the animal pole to eventually engulf 
the entire yolk cell by 10 hpf (Latimer and Jessen, 2010; Solnica-Krezel, 2006). The embryonic cell 
movements are governed by the molecular mechanisms that are partially shared in metastatic cell 
dissemination.

At least 50 common genes were shown to be involved in both metastasis and gastrulation progres-
sion: Knockdown of these genes in Xenopus or zebrafish induced gastrulation defects; conversely, 
overexpression of these genes conferred metastatic potential on cancer cells and knockdown of these 
genes suppressed metastasis (Yang and Weinberg, 2008; Dongre and Weinberg, 2019; Thiery 
et al., 2009; Nieto et al., 2016; Table 1). This evidence led us to hypothesize that small molecules 
that interrupt zebrafish gastrulation may suppress metastatic progression of human cancer cells.

Here, we report a unique screening concept based on the hypothesis. Pizotifen, an antagonist 
for HTR2C, was identified from the screen as a ‘hit’ that interrupted zebrafish gastrulation. A mouse 
model of metastasis confirmed pharmacological and genetic inhibition of HTR2C suppressed meta-
static progression. Moreover, HTR2C induced EMT and promoted metastatic dissemination of non-
metastatic cancer cells in a zebrafish xenotransplantation model. These results demonstrated that this 
concept could offer a novel high-throughput platform for discovery of anti-metastasis drugs and can 
be converted to a chemical genetic screening platform.

Results
Small molecules interrupting epiboly of zebrafish have a potential to 
suppress metastatic progression of human cancer cells
Before performing a screening assay, we validated a core of our concept through comparing the genes 
expressed in zebrafish gastrulation with the genes which expressed in EMT-mediated metastasis. 
Gene set enrichment analysis (GSEA) demonstrated that 50%-epiboly, shield, and 75%-epiboly stage 
of zebrafish embryos expressed the genes which promote EMT-mediated metastasis: EMT induction, 
TGF-β signaling, wnt/β-catenin signaling, Notch signaling (Figure 1—figure supplement 1).

We further conducted preliminary experiments to test the hypothesis. First, we examined whether 
hindering the molecular function of reported genes, whose knockdown induced gastrulation defects 
in zebrafish, might suppress cell motility and invasion of cancer cells. We chose protein arginine 
methyltransferase 1 (PRMT1) and cytochrome P450 family 11 (CYP11A1), both of whose knockdown 
induced gastrulation defects in zebrafish but whose involvement in metastatic progression is unclear 
(Tsai et al., 2011; Hsu et al., 2006). Elevated expression of PRMT1 and CYP11A1 was observed in 
highly metastatic human breast cancer cell lines and knockdown of these genes through RNA inter-
ference suppressed the motility and invasion of MDA-MB-231 cells without affecting their viability 
(Figure 1—figure supplement 2A-C).

Next, we conducted an inverse examination of whether chemicals which were reported to suppress 
metastatic dissemination of cancer cells could interrupt epiboly progression of zebrafish embryos. 
Niclosamide and vinpocetine are reported to suppress metastatic progression (Weinbach and 
Garbus, 1969; Sack et al., 2011; Huang et al., 2012; Szilágyi et al., 2005). Either niclosamide- or 
vinpocetine-treated zebrafish embryos showed complete arrest at very early stages or severe delay in 
epiboly progression, respectively (Figure 1—figure supplement 2D).

These results suggest that epiboly could serve as a marker for this screening assay and epiboly-
interrupting drugs that are identified through this screening could have the potential to suppress 
metastatic progression of human cancer cells.

https://doi.org/10.7554/eLife.70151
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132 FDA-approved drugs induced delayed in epiboly of zebrafish 
embryos
We screened 1280 FDA, EMA, or other agencies-approved drugs (Prestwick, Inc) in our zebrafish 
assay. The screening showed that 0.9% (12/1280) of the drugs, including antimycin A and tolca-
pone, induced severe or complete arrest of embryonic cell movement when embryos were treated 
with 10 μM. 5.2% (66/1280) of the drugs, such as dicumarol, racecadotril, pizotifen, and S(-)eticlo-
pride hydrochloride, induced either delayed epiboly or interrupted epiboly of the embryos. 93.3% 
(1194/1280) of drugs have no effect on epiboly progression of the embryos. 0.6% (8/1280) of drugs 
induced toxic lethality. Epiboly progression was affected more severely when embryos were treated 
with 50 μM; 1.7% (22/1280) of the drugs induced severe or complete arrest of it. 8.6% (110/1280) 
of the drugs induced either delayed epiboly or interrupt epiboly of the embryos. 4.3% (55/1280) of 
drugs induced a toxic lethality (Figure 1A and B, Table 2). Among the epiboly-interrupting drugs, 
several drugs have already been reported to inhibit metastasis-related molecular mechanisms: 
adrenosterone or zardaverine, which target HSD11β1 or PDE3 and -4, respectively, are reported to 
inhibit EMT (Nakayama et al., 2020; Kolosionek et al., 2009); racecadotril, which targets enkepha-
linase, is reported to confer metastatic potential on colon cancer cell (Sasaki et al., 2014); and disul-
firam, which targets ALDH (aldehyde dehydrogenase), is reported to confer stem-like properties on 

Figure 1. A chemical screen for identification of epiboly-interrupting drugs. (A) Cumulative results of the chemical 
screen in which each drug was used at either 10 µM (left) or 50 µM (right) concentrations. 1280 FDA, EMA, or other 
agencies-approved drugs were subjected to this screening. Positive ‘hit’ drugs were those that interrupted epiboly 
progression. (B) Representative samples of the embryos that were treated with indicated drugs.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Gene expression profiles obtained from zebrafish embryos at either 50%-epiboly (top left), 
shield (top right), or 75%-epiboly stage (bottom left) were analyzed based on the hallmark gene sets derived from 
the Molecular Signatures Database (MSigDB) (Liberzon et al., 2015).

Figure supplement 2. Epiboly could serve as a marker for this screening.

https://doi.org/10.7554/eLife.70151


 Research article﻿﻿﻿﻿﻿﻿ Developmental Biology

Nakayama et al. eLife 2021;10:e70151. DOI: https://doi.org/10.7554/eLife.70151 � 7 of 33

Table 2. A list of the drugs that interfere with epiboly progression in zebrafish.
Related to Figure 1. A list of positive ‘hit’ drugs that interfered with epiboly progression. 
Gastrulation defects or status of each of the zebrafish embryos that were treated with either 10 or 
50 μM concentrations are indicated.

Chemical name Chemical formula Effect of 10 µM Effect of 50 µM

Acitretin C21H26O3 Delayed Delayed

Adrenosterone C19H24O3 Delayed Delayed

Albendazole C12H15N3O2S Severe delayed Severe delayed

Alfadolone acetate C23H34O5 Delayed Delayed

Alfaxalone C21H32O3 Delayed Delayed

Alprostadil C20H34O5 Delayed Delayed

Altrenogest C21H26O2 Slightly delayed Delayed

Ampiroxicam C20H21N3O7S Non-effect Delayed

Anethole-trithione C10H8OS3 Delayed Delayed

Antimycin A C28H40N2O9 Delayed Delayed

Avobenzone C20H22O3 Delayed Delayed

Benzoxiquine C16H11NO2 Non-effect Delayed

Bosentan C27H29N5O6S Delayed Delayed

Butoconazole nitrate C19H18Cl3N3O3S Delayed Toxic lethal

Camptothecine (S,+) C20H16N2O4 Severe delayed Severe delayed

Carbenoxolone disodium salt C34H48Na2O7 Delayed Toxic lethal

Carmofur C11H16FN3O3 Slightly delayed Delayed

Carprofen C15H12ClNO2 Severe delayed Toxic lethal

Cefdinir C14H13N5O5S2 Delayed Delayed

Celecoxib C17H14F3N3O2S Delayed Delayed

Chlorambucil C14H19Cl2NO2 Slightly delayed Delayed

Chlorhexidine C22H30Cl2N10 Non-effect Toxic lethal

Ciclopirox ethanolamine C14H24N2O3 Delayed Severe delayed

Cinoxacin C12H10N2O5 Delayed Severe delayed

Clofibrate C12H15ClO3 Non-effect Severe delayed

Clopidogrel C16H16ClNO2S Non-effect Delayed

Clorgyline hydrochloride C13H16Cl3NO Delayed Delayed

Colchicine C22H25NO6 Non-effect Delayed

Deptropine citrate C29H35NO8 Delayed Delayed

Desipramine hydrochloride C18H23ClN2 Delayed Delayed

Diclofenac sodium C14H10Cl2NNaO2 Delayed Severe delayed

Dicumarol C19H12O6 Delayed Severe delayed

Diethylstilbestrol C18H20O2 Delayed Toxic lethal

Dimaprit dihydrochloride C6H17Cl2N3S Slightly delayed Delayed

Disulfiram C10H20N2S4 Delayed Delayed

Dopamine hydrochloride C8H12ClNO2 Delayed Delayed

Table 2 continued on next page
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Chemical name Chemical formula Effect of 10 µM Effect of 50 µM

Eburnamonine (-) C19H22N2O Delayed Delayed

Ethaverine hydrochloride C24H30ClNO4 Delayed Delayed

Ethinylestradiol C20H24O2 Delayed Severe delayed

Ethopropazine hydrochloride C19H25ClN2S Delayed Delayed

Ethoxyquin C14H19NO Non-effect Delayed

Exemestane C20H24O2 Slightly delayed Delayed

Ezetimibe C24H21F2NO3 Slightly delayed Delayed

Fenbendazole C15H13N3O2S Non-effect Delayed

Fenoprofen calcium salt dihydrate C30H30CaO8 Slightly delayed Delayed

Fentiazac C17H12ClNO2S Toxic lethal Toxic lethal

Floxuridine C9H11FN2O5 Delayed Toxic lethal

Flunixin meglumine C21H28F3N3O7 Delayed Toxic lethal

Flutamide C11H11F3N2O3 Delayed Toxic lethal

Fluticasone propionate C25H31F3O5S Non-effect Delayed

Furosemide C12H11ClN2O5S Delayed Delayed

Gatifloxacin C19H22FN3O4 Delayed Delayed

Gemcitabine C9H11F2N3O4 Delayed Delayed

Gemfibrozil C15H22O3 Delayed Toxic lethal

Gestrinone C21H24O2 Delayed Delayed

Haloprogin C9H4Cl3IO Delayed Toxic lethal

Hexachlorophene C13H6Cl6O2 Delayed Severe delayed

Hexestrol C18H22O2 Slightly delayed Delayed

Ibudilast C14H18N2O Non-effect Delayed

Idazoxan hydrochloride C11H13ClN2O2 Slightly delayed Delayed

Idazoxan hydrochloride C11H13ClN2O2 Non-effect Delayed

Idebenone C19H30O5 Severe delayed Toxic lethal

Indomethacin C19H16ClNO4 Non-effect Delayed

Ipriflavone C18H16O3 Delayed Severe delayed

Isotretinoin C20H28O2 Non-effect Severe delayed

Isradipine C19H21N3O5 Non-effect Delayed

Lansoprazole C16H14F3N3O2S Slightly delayed Delayed

Latanoprost C26H40O5 Non-effect Delayed

Leflunomide C12H9F3N2O2 Delayed Severe delayed

Letrozole C17H11N5 Non-effect Delayed

Lithocholic acid C24H40O3 Non-effect Delayed

Lodoxamide C11H6ClN3O6 Non-effect Delayed

Lofepramine C26H27ClN2O Non-effect Delayed

Loratadine C22H23ClN2O2 Delayed Delayed

Loxapine succinate C22H24ClN3O5 Delayed Delayed

Table 2 continued

Table 2 continued on next page
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Chemical name Chemical formula Effect of 10 µM Effect of 50 µM

Mebendazole C16H13N3O3 Severe delayed Severe delayed

Mebendazole C22H26N2O2 Non-effect Delayed

Meloxicam C14H13N3O4S2 Delayed Toxic lethal

Methiazole C12H15N3O2S Delayed Delayed

Mevastatin C23H34O5 Non-effect Delayed

MK 801 hydrogen maleate C20H19NO4 Slightly delayed Delayed

Nabumetone C15H16O2 Non-effect Severe delayed

Naftopidil dihydrochloride C24H30Cl2N2O3 Slightly delayed Delayed

Nandrolone C18H26O2 Delayed Delayed

Naproxen sodium salt C14H13NaO3 Delayed Delayed

Niclosamide C13H8Cl2N2O4 Delayed Delayed

Nifekalant C19H27N5O5 Delayed Delayed

Niflumic acid C13H9F3N2O2 Delayed Delayed

Nimesulide C13H12N2O5S Non-effect Delayed

Nisoldipine C20H24N2O6 Delayed Toxic lethal

Nitazoxanide C12H9N3O5S Severe delayed Severe delayed

Norethindrone C20H26O2 Non-effect Delayed

Norgestimate C23H31NO3 Slightly delayed Delayed

Oxfendazol C15H13N3O3S Slightly delayed Delayed

Oxibendazol C12H15N3O3 Severe delayed Severe delayed

Oxymetholone C21H32O3 Slightly delayed Delayed

Parbendazole C13H17N3O2 Severe delayed Severe delayed

Parthenolide C15H20O3 Non-effect Delayed

Penciclovir C10H15N5O3 Non-effect Delayed

Pentobarbital C11H18N2O3 Non-effect Delayed

Phenazopyridine hydrochloride C11H12ClN5 Delayed Toxic lethal

Phenothiazine C12H9NS Non-effect Delayed

Phenoxybenzamine hydrochloride C18H23Cl2NO Non-effect Delayed

Pizotifen malate C23H27NO5S Delayed Severe delayed

Pramoxine hydrochloride C17H28ClNO3 Slightly delayed Delayed

Prilocaine hydrochloride C13H21ClN2O Non-effect Delayed

Primidone C12H14N2O2 Slightly delayed Delayed

Racecadotril C21H23NO4S Slightly delayed Delayed

Riluzole hydrochloride C8H6ClF3N2OS Non-effect Delayed

Ritonavir C37H48N6O5S2 Non-effect Severe delayed

S(-)Eticlopride hydrochloride C17H26Cl2N2O3 Delayed Delayed

Salmeterol C25H37NO4 Non-effect Delayed

Streptomycin sulfate C42H84N14O36S3 Non-effect Delayed

Sulconazole nitrate C18H16Cl3N3O3S Delayed Delayed

Table 2 continued

Table 2 continued on next page
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metastatic cancer cells (Liu et al., 2013). This evidence suggests that epiboly-interrupting drugs have 
the potential for suppressing metastasis of human cancer cells.

Identified drugs suppressed cell motility and invasion of human cancer 
cells
It has been reported that zebrafish have orthologues to 86% of 1318 human drug targets (Gunnarsson 
et al., 2008). However, it was not known whether the epiboly-interrupting drugs could suppress meta-
static dissemination of human cancer cells. To test this, we subjected the 78 epiboly-interrupting drugs 
that showed a suppressor effect on epiboly progression at a 10 μM concentration to in vitro experi-
ments using a human cancer cell line. The experiments examined whether the drugs could suppress 
cell motility and invasion of MDA-MB-231 cells through a Boyden chamber. Before conducting the 
experiment, we investigated whether these drugs might affect viability of MDA-MB-231 cells using 
an MTT assay. Out of the 78 drugs, 16 of them strongly affected cell viability at concentrations less 
than 1 μM and were not used in the cell motility experiments. The remaining 62 drugs were assayed in 
Boyden chamber motility experiments. Out of the 62 drugs, 20 of the drugs inhibited cell motility and 
invasion of MDA-MB-231 cells without affecting cell viability. Among the 20 drugs, hexachlorophene 
and nitazoxanide were removed since the primary targets of the drugs, D-lactate dehydrogenase and 
pyruvate ferredoxin oxidoreductase, are not expressed in mammalian cells. With the exception of ipri-
flavone, whose target is still unclear, the known primary targets of the remaining 17 drugs are reported 
to be expressed by mammalian cells (Figure 2A and Table 3).

We confirmed that highly metastatic human cancer cell lines expressed target genes through 
western blotting analyses. Among the genes, serotonin receptor 2C (HTR2C), which is a primary 
target of pizotifen, was highly expressed in only metastatic cell lines (Figure 2B and Figure 2—figure 
supplement 2A). Clinical data also shows that that HTR2C expression is correlated with tumor stage 
of breast cancer patients and is higher in metastatic and Her2/neu-overexpressing tumors (Pai et al., 
2009). Pizotifen suppressed cell motility and invasion of several highly metastatic human cancer cell 
lines in a dose-dependent manner (Figure 2C). Similarly, dopamine receptor D2 (DRD2), which is a 

Chemical name Chemical formula Effect of 10 µM Effect of 50 µM

Tegafur C8H9FN2O3 Delayed Delayed

Telmisartan C33H30N4O2 Severe delayed Toxic lethal

Tenatoprazole C16H18N4O3S Non-effect Delayed

Terbinafine C21H25N Non-effect Delayed

Thimerosal C9H9HgNaO2S Non-effect Delayed

Thiorphan C12H15NO3S Delayed Delayed

Tolcapone C14H11NO5 Severe delayed Severe delayed

Topotecan C23H23N3O5 Delayed Delayed

Tracazolate hydrochloride C16H25ClN4O2 Severe delayed Delayed

Tribenoside C29H34O6 Delayed Delayed

Triclabendazole C14H9Cl3N2OS Delayed Delayed

Triclosan C12H7Cl3O2 Delayed Severe delayed

Trioxsalen C14H12O3 Delayed Delayed

Troglitazone C24H27NO5S Severe delayed Toxic lethal

Valproic acid C8H16O2 Non-effect Delayed

Voriconazole C16H14F3N5O Non-effect Delayed

Zardaverine C12H10F2N2O3 Slightly delayed Delayed

Zuclopenthixol dihydrochloride C22H27Cl3N2OS Delayed Delayed

Table 2 continued
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Figure 2. Pizotifen, one of epiboly-interrupting drugs, suppressed metastatic dissemination of human cancer cells 
lines in vivo and vitro. (A) Effect of the epiboly-interrupting drugs on cell motility and invasion of MBA-MB-231 
cells. MBA-MB-231 cells were treated with vehicle or each of the epiboly-interrupting drugs and then subjected 
to Boyden chamber assays. Fetal bovine serum (1% v/v) was used as the chemoattractant in both assays. Each 
experiment was performed at least twice. (B) Western blot analysis of HTR2C levels (top) in a non-metastatic 
human cancer cell line, MCF7 (breast) and highly metastatic human cancer cell lines, MDA-MB-231 (breast), 
MDA-MB-435 (melanoma), PC9 (lung), MIA-PaCa2 (pancreas), PC3 (prostate), and SW620 (colon); GAPDH loading 
control is shown (bottom). (C) Effect of pizotifen on cell motility and invasion of MBA-MB-231, MDA-MB-435, and 
PC9 cells. Either vehicle or pizotifen treated the cells were subjected to Boyden chamber assays. Fetal bovine 

Figure 2 continued on next page
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primary target of S(-)eticlopride hydrochloride, was highly expressed in only metastatic cell lines, and 
the drug suppressed cell motility and invasion of these cells in a dose-dependent manner (Figure 2—
figure supplement 2A-C).

These results indicate that a number of the epiboly-interrupting drugs also have suppressor effects 
on cell motility and invasion of highly metastatic human cancer cells.

serum (1% v/v) was used as the chemoattractant in both assays. Each experiment was performed at least twice. 
(D) and (E) Representative images of dissemination of 231R, shLacZ 231R or shHTR2C 231R cells in zebrafish 
xenotransplantation model. The fish larvae that were inoculated with 231R cells were treated with either vehicle 
(top left) or the drug (lower left) (D). The fish larvae that were inoculated with either shLacZ 231R or shHTR2C 
231R cells (lower left) (E). White arrows head indicate disseminated 231R cells. The images were shown in 4× 
magnification. Scale bar, 100 µm. The mean frequencies of the fish showing head, trunk, or end-tail dissemination 
were counted (graph on right). Each value is indicated as the mean ± SEM of two independent experiments. 
Statistical analysis was determined by Student’s t test.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Blocking Dopamine receptor D2 with S(-) Eticlopride hydrochloride suppressed cell motility 
and invasion of highly metastatic human cancer cells in a dose-dependent manner.

Figure supplement 2. Pizotifen suppressed metastatic dissemination of MDA-MB-231 and MIA-PaCa2 cells in a 
zebrafish xenotransplantation model.

Figure 2 continued

Table 3. Primary targets of the identified drugs.

The identified drugs Primary targets of the identified drugs

Hexachlorophene D-Lactate dehydrogenase (D-LDH), not expressed in mammalian cells

Troglitazone Agonist for peroxisome proliferator-activated receptor α and γ (PPARα 
and -γ)

Pizotifen malate 5-Hydroxytryptamine receptor 2C (HTR2C)

Salmeterol Adrenergic receptor beta 2 (ADRB2)

Nitazoxanide Pyruvate ferredoxin oxidoreductase (PFOR), not expressed in 
mammalian cells

Valproic acid Histone deacetylases (HDACs)

Dicumarol NAD(P)H dehydrogenase quinone 1 (NQO1)

Loxapine succinate Dopamine receptor D2 and D4 (DRD2 and DRD4)

Adrenosterone Hydroxysteroid (11-beta) dehydrogenase 1 (HSD11β1)

Riluzole hydrochloride Glutamate R and
voltage-dependent Na+ channel

Naftopidil dihydrochloride 5-Hydroxytryptamine receptor 1A (HTR1A) and
α1-adrenergic receptor (AR)

S(-)Eticlopride hydrochloride Dopamine receptor D2 (DRD2)

Racecadotril Membrane metallo-endopeptidase (MME)

Ipriflavone Unknown

Flurbiprofen Cyclooxygenase 1 and 2 (Cox1 and -2)

Zardaverine Phosphodiesterase III/IV (PDE3/4)

Leflunomide Dihydroorotate dehydrogenase (DHODH)

Olmesartan Angiotensin II receptor alpha

Disulfiram Aldehyde dehydrogenase (ALDH)
Dopamine β-hydroxylase (DBH)

Zuclopenthixol dihydrochloride Dopamine receptors D1 and D2 (DRD1 and -2)

https://doi.org/10.7554/eLife.70151
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Pizotifen suppressed metastatic dissemination of human cancer cells in 
a zebrafish xenotransplantation model
While a number of the epiboly-interrupting drugs suppressed cell motility and invasion of human cell 
lines in vitro, it was still unclear whether the drugs could suppress metastatic dissemination of cancer 
cells in vivo. Therefore, we examined whether the identified drugs could suppress metastatic dissem-
ination of these human cancer cells in a zebrafish xenotransplantation model. Pizotifen was selected 
to test since HTR2C was overexpressed only in highly metastatic cell lines supporting the hypothesis 
that it could be a novel target for blocking metastatic dissemination of cancer cells (Figure 2B). Red 
fluorescent protein (RFP)-labelled MDA-MB-231 (231R) cells were injected into the duct of Cuvier of 
Tg (kdrl:eGFP) zebrafish at 2 dpf and then maintained in the presence of either vehicle or pizotifen. 
Twenty-four hours post injection, the numbers of fish showing metastatic dissemination of 231R cells 
were measured via fluorescence microscopy. In this model, the dissemination patterns were generally 
divided into three categories: (i) head dissemination, in which disseminated 231R cells exist in the 
vessel of the head part; (ii) trunk dissemination, in which the cells were observed in the vessel dilating 
from the trunk to the tail; (iii) end-tail dissemination, in which the cells were observed in the vessel of 
the end-tail part (Nakayama et al., 2020).

Three independent experiments revealed that the frequencies of fish in the drug-treated group 
showing head, trunk, or end-tail dissemination significantly decreased to 55.3% ± 7.5%, 28.5 ± 
5.0%, or 43.5% ± 19.1% when compared with those in the vehicle-treated group; 95.8% ± 5.8%, 
47.1 ± 7.7%, or 82.6% ± 12.7%. Conversely, the frequency of the fish in the drug-treated group not 
showing any dissemination significantly increased to 45.4% ± 0.5% when compared with those in the 
vehicle-treated group; 2.0% ± 2.9% (Figure 2D, Figure 2—figure supplement 2 and Table 4).

Similar effects were observed in another xenograft experiments using an RFP-labelled human 
pancreatic cancer cell line, MIA-PaCa-2 (MP2R). In the drug-treated group, the frequencies of the fish 
showing head, trunk, or end-tail dissemination significantly decreased to 15.3% ± 6.7%, 6.2% ± 1.3%, 
or 41.1% ± 1.5%; conversely, the frequency of the fish not showing any dissemination significantly 
increased to 46.3% ± 8.9% when compared with those in the vehicle-treated group; 74.5% ± 11.1%, 
18.9% ± 14.9%, 77.0% ± 9.0%, or 17.2% ± 0.7% (Figure 2—figure supplement 2A and Table 5).

To eliminate the possibility that the metastasis suppressing effects of pizotifen might result from 
off-target effects of the drug, we conducted validation experiments to determine whether knock-
down of HTR2C would show the same effects. Sub-clones of 231R cells that expressed short hairpin 
RNA (shRNA) targeting either LacZ or HTR2C were injected into the fish at 2 dpf and the fish were 
maintained in the absence of drug. In the fish that were inoculated with shHTR2C 231R cells, the 
frequencies of the fish showing head, trunk, and end-tail dissemination significantly decreased to 6.7% 
± 4.9%, 6.7% ± 0.7%, or 20.0% ± 16.5%; conversely, the frequency of the fish not showing any dissem-
ination significantly increased to 80.0% ± 4.4% when compared with those that were inoculated with 
shLacZ 231R cells; 80.0% ± 27.1%, 20.0% ± 4.5%, 90.0% ± 7.7%, or 0% (Figure 2E and Table 6).

These results indicate that pharmacological and genetic inhibition of HTR2C suppressed metastatic 
dissemination of human cancer cells in vivo.

Pizotifen suppressed metastasis progression of a mouse model of 
metastasis
We examined the metastasis-suppressor effect of pizotifen in a mouse model of metastasis (Tao et al., 
2008). Luciferase-expressing 4T1 murine mammary carcinoma cells were inoculated into the mammary 
fat pads (MFP) of female BALB/c mice. On day 2 post inoculation, the mice were randomly assigned 
to two groups and one group received once daily intraperitoneal injections of 10 mg/kg pizotifen 
while the other group received a vehicle injection. Bioluminescence imaging and tumor measurement 
revealed that the sizes of the primary tumors in pizotifen-treated mice were equal to those in the 
vehicle-treated mice on day 10 post inoculation. The primary tumors were resected after the anal-
yses. Immunofluorescence (IF) staining also demonstrated that the percentage of Ki67-positive cells 
in the resected primary tumors of pizotifen-treated mice were the same as those of vehicle-treated 
mice (Figure 3A–C), additionally, both groups showed less than 1% cleaved caspase 3 positive cells 
(Figure 3—figure supplement 1). Therefore, no anti-tumor effect of pizotifen was observed on the 
primary tumor. After 70 days from inoculation, bioluminescence imaging detected light emitted in 
the lungs, livers, and lymph nodes of vehicle-treated mice but not those of pizotifen-treated mice 

https://doi.org/10.7554/eLife.70151
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(Figure 3C). Vehicle-treated mice formed 5–50 metastatic nodules per lung in all 10 mice analyzed; 
conversely, pizotifen-treated mice (n = 10) formed 0–5 nodules per lung in all 10  mice analyzed 
(Figure 3D). Histological analyses confirmed that metastatic lesions in the lungs were detected in all 
vehicle-treated mice; conversely, they were detected in only 2 of 10 pizotifen-treated mice and the 
rest of the mice showed metastatic colony formations around the bronchiole of the lung. In addition, 
4 of 10 vehicle-treated mice exhibited metastasis in the liver and the rest showed metastatic colony 
formation around the portal tract of the liver. In contrast, none of 10 pizotifen-treated mice showed 
liver metastases and only half of the 10 mice showed metastatic colony formation around the portal 
tract (Figure 3E). These results indicate that pizotifen can suppress metastasis progression without 
affecting primary tumor growth.

To eliminate the possibility that the metastasis suppressing effects of pizotifen might result from 
off-target effects, we conducted validation experiments to determine whether knockdown of HTR2C 
would show the same effects. The basic experimental process followed the experimental design 
described above except that sub-clones of 4T1 cells that expressed shRNA targeting either LacZ or 
HTR2C were injected into the MFP of female BALB/c mice and the mice were maintained without 

Table 5. Effects of pharmacological inhibition of HTR2C on metastatic dissemination of Mia-PaCa2 
cells in zebrafish xenografted models.
Related to Figure 4. The numbers and frequencies of the fish showing the dissemination patterns in 
vehicle- or pizotifen-treated group were indicated. The fish showed both patterns of dissemination 
were redundantly counted in this analysis.

Experiment
_#1

Experiment
_#2

Average of 
experiments

 � Drug: Vehicle
Cell: MIA-PaCa2

Non-dissemination 17.64% n1 = 3/17 16.66% n2 = 2/12 17.15% + 0.69%

Head 82.35% n1 = 14/17 66.66% n2 = 8/12 74.50% + 11.09%

Trunk 29.41% n1 = 5/17 8.33% n2 = 1/12 18.87% + 14.90%

End-tail 70.58% n1 = 12/17 83.33% n2 = 10/17 76.96% + 9.01

 � Drug: Pizotifen
Cell: MIA-PaCa2

Non-dissemination 40% n1 = 4/10 52.63% n2 = 10/19 46.31% + 8.93%

Head 20% n1 = 2/10 10.52% n2 = 2/19 15.26% + 6.69%

Trunk 10% n1 = 1/10 5.26% n2 = 1/19 7.63% + 3.34%

End-tail 40% n1 = 4/10 42.05% n2 = 8/19 41.4% + 1.48%

Table 6. Effects of genetic inhibition of HTR2C on metastatic dissemination of MDA-MB-231 cells in 
zebrafish xenografted models.
Related to Figure 2E. The numbers and frequencies of the fish showing the dissemination patterns 
in the zebrafish that were inoculated with either shLacZ or shHTR2C MDA-MB-231 cells were 
indicated. The fish showed both patterns of dissemination were redundantly counted in this analysis.

Experiment
_#1

Experiment
_#2

Average of 
experiments

 � shLacZ Non-dissemination 0% n1 = 0/10 0% n2 = 0/10 0%

Head 60% n1 = 6/10 100% n2 = 10/10 80%
± 28.28%

Trunk 30% n1 = 3/10 10% n2 = 1/10 20% ± 14.14%

End-tail 80% n1 = 8/10 100% n2 = 10/10 90% ± 14.14

 � shHTR2C Non-dissemination 80% n1 = 12/15 76.84% n2 = 14/19 76.84 ± 4.46
%

Head 6.66% n1 = 1/15 15.78% n2 = 3/19 11.22% ± 6.45%

Trunk 6.66% n1 = 1/15 5.26% n2 = 1/19 5.96% ± 0.99%

End-tail 20% n1 = 3/15 26.31% n2 = 5/19 23.15% ± 4.46%

https://doi.org/10.7554/eLife.70151
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Figure 3. Pizotifen suppressed metastatic progression in a mouse model of metastasis. (A) Mean volumes (n = 10 per group) of 4T1 primary tumors 
formed in the mammary fat pad of either vehicle- or pizotifen-treated mice at day 10 post injection. (B) Ki67 expression level in 4T1 primary tumors 
formed in the mammary fat pad of either vehicle- or pizotifen-treated mice at day 10 post injection. The mean expression levels of Ki67 (n = 10 mice per 
group) were determined and were calculated as the mean ration of Ki67-positive cells to 4’,6-diamidino-2-phenylindole (DAPI) area. (C) Representative 
images of primary tumors on day 10 post injection (top panels) and metastatic burden on day 70 post injection (bottom panels) taken using an IVIS 
Imaging System. (D) Representative images of the lungs from either vehicle- (top) or pizotifen-treated mice (bottom) at 70 days post tumor inoculation. 
Number of metastatic nodules in the lung of either vehicle- or pizotifen-treated mice (right). (E) Representative hematoxylin and eosin (H&E) staining of 
the lung (top) and liver (bottom) from either vehicle- or pizotifen-treated mice. Black arrow heads indicate metastatic 4T1 cells. (F) The mean number of 
metastatic lesions in step sections of the lungs from the mice that were inoculated with 4T1-12B cells expressing short hairpin RNA (shRNA) targeting 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.70151


 Research article﻿﻿﻿﻿﻿﻿ Developmental Biology

Nakayama et al. eLife 2021;10:e70151. DOI: https://doi.org/10.7554/eLife.70151 � 17 of 33

drug. Histological analyses revealed that all of the mice (n = 5) that were inoculated with 4T1 cells 
expressing shRNA targeting LacZ showed metastases in the lungs. The mean number of metastatic 
lesions in a lung was 26.4 ± 7.8. In contrast, only one of the mice (n = 5) were inoculated with 4T1 
cells expressing shRNA targeting HTR2C showed metastases in the lungs and the rest of the mice 
showed metastatic colony formation around the bronchiole of the lung. The mean number of meta-
static lesions in the lung significantly decreased to 10% of those of mice that were inoculated with 4T1 
cells expressing shRNA targeting LacZ (Figure 3F–H).

Taken together, pharmacological and genetic inhibition of HTR2C showed an anti-metastatic effect 
in the 4T1 model system.

HTR2C promoted EMT-mediated metastatic dissemination of human 
cancer cells
Although pharmacological and genetic inhibition of HTR2C inhibited metastasis progression, a role 
for HTR2C on metastatic progression has not been reported. Therefore, we examined whether HTR2C 
could confer metastatic properties on poorly metastatic cells.

First, we established a stable sub-clone of MCF7 human breast cancer cells expressing either 
vector control or HTR2C. Vector control expressing MCF7 cells maintained highly organized cell-cell 
adhesion and cell polarity; however, HTR2C-expressing MCF7 cells led to loss of cell-cell contact 
and cell scattering. The cobblestone-like appearance of these cells was replaced by a spindle-like, 
fibroblastic morphology. Western blotting and IF analyses revealed that HTR2C-expressing MCF7 
cells showed loss of E-cadherin and EpCAM, and elevated expressions of N-cadherin, vimentin, and 
an EMT-inducible transcriptional factor ZEB1. Similar effects were validated through another exper-
iment using an immortal keratinocyte cell line, HaCaT cells, in that HTR2C-expressing HaCaT cells 
also showed loss of cell-cell contact and cell scattering with loss of epithelial markers and gain of 
mesenchymal markers (Figure  4A–C and Figure  4—figure supplement 1A). Therefore, both the 
morphological and molecular changes in the HTR2C-expressing MCF7 and HaCaT cells demonstrated 
that these cells had undergone an EMT.

Next, we examined whether HTR2C-driven EMT could promote metastatic dissemination of 
human cancer cells. Boyden chamber assay revealed that HTR2C expressing MCF7 cells showed 
an increased cell motility and invasion compared with vector control-expressing MCF7 cells in vitro 
(Figure  4D). Moreover, we conducted in vivo examination of whether HTR2C expression could 
promote metastatic dissemination of human cancer cells in a zebrafish xenotransplantation model. 
RFP-labelled MCF7 cells expressing either vector control or HTR2C were injected into the duct of 
Cuvier of Tg (kdrl:eGFP) zebrafish at 2 dpf. Twenty-four hours post injection, the frequencies of 
the fish showing metastatic dissemination of the inoculated cells were measured using fluorescence 
microscopy. In the fish that were inoculated with HTR2C expressing MCF7 cells, the frequencies of 
the fish showing head, trunk, and end-tail dissemination significantly increased to 96.7% ± 4.7%, 
68.8% ± 6.4%, or 89.5% ± 3.4%; conversely, the frequency of the fish not showing any dissemination 
decreased to 0% when compared with those in the fish that were inoculated with vector control 
expressing MCF7 cells; 33.1% ± 18.5%, 0%, 56.9% ± 4.4%, or 43% (Figure 4E, Figure 4—figure 
supplement 1B and Table 7).

These results indicated that HTR2C promoted metastatic dissemination of cancer cells through 
induction of EMT, and suggest that the screen can easily be converted to a chemical genetic screening 
platform.

for either LacZ or HTR2C. (G) Representative H&E staining of the lung and liver from the mice that were inoculated with 4T1-12B cells expressing shRNA 
targeting for either LacZ or HTR2C. Black arrow heads indicate metastatic 4T1 cells. Each value is indicated as the mean ± SEM. Statistical analysis was 
determined by Student’s t test.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Cleaved caspase 3 expression level in 4T1 primary tumors formed in the mammary fat pad of either vehicle- or pizotifen-treated 
mice at day 10 post injection.

Figure 3 continued

https://doi.org/10.7554/eLife.70151
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Figure 4. HTR2C induced epithelial-to-mesenchymal transition (EMT)-mediated metastatic dissemination of 
human cancer cells. (A) The morphologies of the MCF7 and HaCaT cells expressing either the control vector or 
HTR2C were revealed by phase contrast microscopy. (B) Immunofluorescence staining of E-cadherin, EpCAM, 
vimentin, and N-cadherin expressions in the MCF7 cells from A. (C) Expression of E-cadherin, EpCAM, vimentin, 

Figure 4 continued on next page
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Pizotifen induced mesenchymal-to-epithelial transition through 
inhibition of Wnt signaling
Finally, we elucidated the mechanism of action of how pizotifen suppressed metastasis, especially 
metastatic dissemination of cancer cells. Our results showed that HTR2C induced EMT and that phar-
macological and genetic inhibition of HTR2C suppressed metastatic dissemination of MDA-MB-231 
cells that had already transitioned to mesenchymal-like traits via EMT. Therefore, we speculated that 
blocking HTR2C with pizotifen might inhibit the molecular mechanisms which follow EMT induction. 
We first investigated the expressions of epithelial and mesenchymal markers in pizotifen-treated 
MDA-MB-231 cells since the activation of an EMT program needs to be transient and reversible, and 
transition from a fully mesenchymal phenotype to a epithelial-mesenchymal hybrid state or a fully 
epithelial phenotype is associated with malignant phenotypes (Kröger et al., 2019). IF and FACS 
analyses revealed 20% of pizotifen-treated MDA-MB-231 cells restored E-cadherin expression. Also, 
western blotting analysis demonstrated that 4T1 primary tumors from pizotifen-treated mice has 
elevated E-cadherin expression compared with tumors from vehicle-treated mice (Figure 5A–C and 
Figure 5—figure supplement 1). However, mesenchymal markers did not change between vehicle 
and pizotifen-treated MDA-MB-231 cells (data not shown). We further analyzed E-cadherin-positive 
(E-cad+) cells in pizotifen-treated MDA-MB-231 cells. The E-cad+ cells showed elevated expressions 
of epithelial markers KRT14 and KRT19; and decreased expression of mesenchymal makers vimentin, 
MMP1, MMP3, and S100A4. Recent research reports that an EMT program needs to be transient 
and reversible and that a mesenchymal phenotype in cancer cells is achieved by constitutive ectopic 
expression of ZEB1. In accordance with the research, the E-cad+ cells and 4T1 primary tumors from 

N-cadherin, and HTR2C was examined by western blotting in the MCF7 and HaCaT cells; GAPDH loading control 
is shown (bottom). (D) Effect of HTR2C on cell motility and invasion of MCF7 cells. MCF7 cells were subjected 
to Boyden chamber assays. Fetal bovine serum (1% v/v) was used as the chemoattractant in both assays. Each 
experiment was performed at least twice. (E) Representative images of dissemination patterns of MCF7 cells 
expressing either the control vector (top left) or HTR2C (lower left) in a zebrafish xenotransplantation model. White 
arrow heads indicate disseminated MCF7 cells. The mean frequencies of the fish showing head, trunk, or end-tail 
dissemination tabulated (right). Each value is indicated as the mean ± SEM of two independent experiments. 
Statistical analysis was determined by Student’s t test.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. HTR2C promoted EMT-mediated metastatic dissemination of poorly metastatic human 
cancer cells in a zebrafish xenotransplantation model.

Figure 4 continued

Table 7. Effects of HTR2C overexpression on metastatic dissemination of MCF7 cells in zebrafish 
xenografted models.
Related to Figure 4E. The numbers and frequencies of the fish showing the dissemination patterns 
in the zebrafish that were inoculated with MCF7 cells expressing either vector control (VC) or HTR2C 
were indicated. The fish showed both patterns of dissemination were redundantly counted in this 
analysis.

Experiment
_#1

Experiment
_#2

Average of 
experiments

VC Non-dissemination 46.15% n1 = 6/13 40% n2 = 4/10 43.07% ± 4.35%

Head 46.15% n1 = 6/13 20% n2 = 2/10 33.07% ± 18.49%

Trunk 0% n1 = 0/13 0% n2 = 0/10 0%

End-tail 53.84% n1 = 7/13 60% n2 = 6/10 56.92% ± 4.35%

 � HTR2C Non-dissemination 0% n1 = 0/14 0% n2 = 0/15 0%

Head 100% n1 = 14/14 93.33% n2 = 14/15 96.66% ± 4.71%

Trunk 64.28% n1 = 9/14 73.33% n2 = 11/15 68.80% ± 6.39%

End-tail 85.71% n1 = 12/14 93.33% n2 = 14/15 89.52% ± 5.38%

https://doi.org/10.7554/eLife.70151
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Figure 5. Pizotifen restored mesenchymal-like traits of MDA-MB-231 cells into epithelial traits through blocking nuclear accumulation of β-catenin. 
(A) Immunofluorescence (IF) staining of E-cadherin in either vehicle- or pizotifen-treated MDA-MB-231 cells. (B) Surface expression of E-cadherin in 
either vehicle (black)- or pizotifen (red)-treated MDA-MB-231 cells by FACS analysis. Non-stained controls are shown in gray. (C) Protein expressions 
levels of E-cadherin, ZEB1, and β-catenin in the cytoplasm and nucleus of 4T1 primary tumors from either vehicle- or pizotifen-treated mice are shown; 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.70151


 Research article﻿﻿﻿﻿﻿﻿ Developmental Biology

Nakayama et al. eLife 2021;10:e70151. DOI: https://doi.org/10.7554/eLife.70151 � 21 of 33

pizotifen-treated mice had decreased ZEB1 expression compared with vehicle-treated cells and 
tumors from vehicle-treated mice (Figure  5D and Figure  5—figure supplement 2). In contrast, 
HTR2C-expressing MCF7 and HuMEC cells expressed ZEB1 but not vehicle control MCF7 and HuMEC 
cells (Figure  4C and Figure  5—figure supplement 3). HTR2C-expressing MCF7 cells expressed 
not only ZEB1 but also Twist1 and Snail. In contrast, pizotifen-treated MDA-MB-231 cells showed 
decreased expression of ZEB1 and Twist1 compared with that in vehicle-treated cells. Furthermore, 
in the primary tumors of pizotifen-treated mice, only ZEB1 expression was decreased compared with 
those of vehicle-treated mice. These results indicate that HTR2C-mediated signaling induced EMT 
through up-regulation of ZEB1 and blocking HTR2C with pizotifen induced mesenchymal-to-epithelial 
transition through down-regulation of ZEB1 (Figure 5—figure supplement 4).

We further investigated the mechanism of action of how blocking HTR2C with pizotifen induced 
down-regulation of ZEB1. In embryogenesis, serotonin-mediated signaling is required for Wnt-
dependent specification of the superficial mesoderm during gastrulation (Beyer et al., 2012). Wnt 
signaling plays critical role in inducing EMT. In cancer cells, overexpression of HTR1D is associated 
with Wnt signaling (Sui et al., 2015; Zhan et al., 2017). This evidence led to a hypothesis that HTR2C-
mediated signaling might turn on transcriptional activity of β-catenin and that might induce up-regula-
tion of EMT-TFs. IF analyses revealed β-catenin was accumulated in the nucleus of HTR2C-expressing 
MCF7 cells but it was located in the cytoplasm of vector control-expressing cells (Figure 5E). Nuclear 
accumulation of β-catenin in HTR2C-expressing MCF7 cells was confirmed by western blot (Figure 5F 
and Figure 5—figure supplement 2). In contrast, pizotifen-treated MDA-MB-231 cells showed β-cat-
enin located in the cytoplasm of the cells. Vehicle-treated cells showed that β-catenin accumulated 
in the nucleus of the cells. (Figure 5G), and western blotting analysis confirmed that it was located in 
the cytoplasm of pizotifen-treated MDA-MB-231 cells (Figure 5H and Figure 5—figure supplement 
5). Furthermore, immunohistochemistry and western blotting analyses showed that β-catenin accumu-
lated in the nucleus, and phospho-GSKβ and ZEB1 expression were decreased in 4T1 primary tumors 
from pizotifen-treated mice compared with vehicle-treated mice (Figure 5C and Figure 5—figure 
supplement 1). These results indicated that HTR2C would regulate transcriptional activity of β-catenin 
and pizotifen could inhibit it.

Taken together, we conclude that blocking HTR2C with pizotifen restored epithelial properties to 
metastatic cells (MDA-MB-231 and 4T1 cells) through a decrease of transcriptional activity of β-cat-
enin and that suppressed metastatic progression of the cells.

Discussion
Reducing or eliminating mortality associated with metastatic disease is a key goal of medical oncology, 
but few models exist that allow for rapid, effective screening of novel compounds that target the 
metastatic dissemination of cancer cells. Based on accumulated evidence that at least 50 genes play 
an essential role in governing both metastasis and gastrulation progression (Table 1), we hypothe-
sized that small molecule inhibitors that interrupt gastrulation of zebrafish embryos might suppress 

Luciferase, histone H3, and β-tubulin are used as loading control for whole cell, nuclear, or cytoplasmic lysate, respectively. (D) Protein expression 
levels of epithelial and mesenchymal markers and ZEB1 in either vehicle- or pizotifen-treated MDA-MB-231 cells or E-cadherin-positive (E-cad+) cells in 
pizotifen-treated MDA-MB-231 cells are shown. (E) IF staining of β-catenin in the MCF7 cells expressing either vector control (top left, bottom left) or 
HTR2C (top right, bottom right). (F) Expressions of β-catenin in the cytoplasm and nucleus of MCF7 cells. (G) IF staining of β-catenin in either vehicle 
(top left, bottom left) or pizotifen-treated MDA-MB-231 cells (top right, bottom right). (H) Expressions of β-catenin in the cytoplasm and nucleus of 
MDA-MB-231 cells and the E-cad+ cells.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Quantification analyses of western blotting bands in Figure 5C.

Figure supplement 2. Quantification analyses of western blotting bands in Figure 5D.

Figure supplement 3. Quantification analyses of western blotting bands in Figure 5F.

Figure supplement 4. Expression of Snail and Twist1 was examined by western blotting in the MCF7 cells (left); GAPDH loading control is shown 
(bottom).

Figure supplement 5. Quantification analyses of western blotting bands in Figure 5H.

Figure 5 continued

https://doi.org/10.7554/eLife.70151


 Research article﻿﻿﻿﻿﻿﻿ Developmental Biology

Nakayama et al. eLife 2021;10:e70151. DOI: https://doi.org/10.7554/eLife.70151 � 22 of 33

metastatic progression of human cancer cells. We created a unique screening concept utilizing 
gastrulation of zebrafish embryos to test the hypothesis. Our results clearly confirmed our hypothesis: 
25.6% (20/76 drugs) of epiboly-interrupting drugs could also suppress cell motility and invasion of 
highly metastatic human cell lines in vitro. In particular, pizotifen, which is an antagonist for serotonin 
receptor 2C and one of the epiboly-interrupting drugs, could suppress metastasis in a mouse model 
(Figure 3A–E). Thus, this screen could offer a novel platform for discovery of anti-metastasis drugs.

Among the 20 drugs which suppressed both epiboly progression and cell motility and invasion of 
MDA-MB-231 cells, hexachlorophene and troglitazone showed the strongest effect on suppressing 
cell motility and invasion of MDA-MB-231 cells. However, the drug could not suppress cell motility 
and invasion of other highly metastatic human cancer cell lines: MDA-MB-435 and PC3. With the 
exception of pizotifen and S(-)eticlopride hydrochloride, the remaining 18 drugs could not show the 
suppressor effect on more than three highly metastatic human cancer cell lines. These results indicate 
that the strength of interrupting effect of a drug on epiboly progression is not proportional to the 
strength of suppressing effect of the drug on metastasis.

We have provided the first evidence that HTR2C, which is a primary target of pizotifen, induced 
EMT and promoted metastatic dissemination of cancer cells (Figure 4A–E). Clinical data shows that 
HTR2C expression is correlated with tumor stage of breast cancer patients and is higher in metastatic 
and Her2/neu-overexpressing tumors (Pai et al., 2009). That would support our finding.

Pharmacological inhibition of DRD2 with S(-)eticlopride hydrochloride suppressed cell inva-
sion and migration of multiple human cancer cell lines in vitro. However, overexpression of DRD2 
could not induce EMT on MCF7 cells. Therefore, we stopped focusing on DRD2 and S(-)eticlopride 
hydrochloride.

There are at least two advantages to the screen described herein. One is that the screen can easily 
be converted to a chemical genetic screening platform. Indeed, our screen succeeded to identify 
HTR2C as an EMT inducer (Figure 4A–E). In this research, 1280 FDA approval drugs were screened, 
this is less than a few percent of all of druggable targets (approximately 100 targets) in the human 
proteome in the body. If chemical genetic screening using specific inhibitor libraries were conducted, 
more genes that contribute to metastasis and gastrulation could be identified. The second advantage 
is that the screen enables one researcher to test 100 drugs in 5 hr with using optical microscopy, 
drugs, and zebrafish embryos. That indicates this screen is not only highly efficient, low-cost, and 
low-labor but also enables researchers who do not have high-throughput screening instruments to 
conduct drug screening for anti-metastasis drugs.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) 
or resource Designation Source or reference Identifiers

Additional 
information

Strain, strain background 
(Zebrafish) AB line

National University of 
Singapore

Strain, strain background 
(Zebrafish) Tg (kdrl:eGFP) zebrafish Provided by Dr Stainier

Strain, strain background 
(Mus musculus) BALB/c

Charles River 
Laboratories

Cell line (Homo sapiens) MDA-MB-231 ATCC HTB-26

Cell line (Homo sapiens) MCF7 ATCC HTB-22

Cell line (Homo sapiens) MDA-MB-435 ATCC HTB-129

Cell line (Homo sapiens) MIA-PaCa2 ATCC CRM-CRL-1420

Cell line (Homo sapiens) PC3 ATCC CRL-3471

Cell line (Homo sapiens) SW620 ATCC CCL-227

Cell line (Homo sapiens) PC9 RIKEN BRC RCB0446

Cell line (Homo sapiens) HaCaT CLI 300493

https://doi.org/10.7554/eLife.70151
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Reagent type (species) 
or resource Designation Source or reference Identifiers

Additional 
information

Cell line (BALB/c Mus) 4T1-12B
Provided from Dr Gary 
Sahagian

Antibody
PRMT1 (A33)
(Rabbit polyclonal)

Cell Signaling 
Technology Cat#_2449 WB (1:1000)

Antibody
CYP11A1 (D8F4F)
(Rabbit polyclonal)

Cell Signaling 
Technology Cat#_14217 WB (1:1000)

Antibody
E-cadherin (4A2)
(Mouse monoclonal)

Cell Signaling 
Technology Cat#_14472

WB (1:1000)
IF (1:100)

Antibody
EpCAM (VU1D9)
(Mouse monoclonal)

Cell Signaling 
Technology Cat#_2929

WB (1:1000)
IF (1:100)

Antibody
Vimentin (D21H3)
(Rabbit polyclonal)

Cell Signaling 
Technology Cat#_5741

WB (1:1000)
IF (1:100)

Antibody
N-cadherin (D4R1H)
(Rabbit polyclonal)

Cell Signaling 
Technology Cat#_13116

WB (1:1000)
IF (1:100)

Antibody
ZEB1 (D80D3)
(Rabbit polyclonal)

Cell Signaling 
Technology Cat#_3396 WB (1:1000)

Antibody
Histone H3 (D1H2)
(Rabbit polyclonal)

Cell Signaling 
Technology Cat#_4499 WB (1:1000)

Antibody
β-Tubulin (9F3)
(Rabbit polyclonal)

Cell Signaling 
Technology Cat#_2128 WB (1:1000)

Antibody
GAPDH (14C10)
(Rabbit polyclonal)

Cell Signaling 
Technology Cat#_2118 WB (1:1000)

Antibody
HTR2C (ab133570)
(Rabbit polyclonal) Abcam Cat#_ab133570 WB (1:1000)

Antibody
DRD2 (ab85367)
(Rabbit polyclonal) Abcam Cat#_ab85367 WB (1:1000)

Antibody
Phospho-GSK3β (Ser9) (F-2)
(Mouse monoclonal)

Santa Cruz 
Biotechnology Cat#_sc-373800 WB (1:1000)

Antibody
GSK3β (1F7)
(Mouse monoclonal)

Santa Cruz 
Biotechnology Cat#_sc-53931 WB (1:1000)

Antibody
KRT18 (DC-10)
(Mouse monoclonal)

Santa Cruz 
Biotechnology Cat#_sc-6259 WB (1:1000)

Antibody
KRT19 (A53-B/A2)
(Mouse monoclonal)

Santa Cruz 
Biotechnology Cat#_sc-6278 WB (1:1000)

Antibody
MMP1 (3B6)
(Mouse monoclonal)

Santa Cruz 
Biotechnology Cat#_sc-21731 WB (1:1000)

Antibody
MMP2 (8B4)
(Mouse monoclonal)

Santa Cruz 
Biotechnology Cat#_sc-13595 WB (1:1000)

Antibody
S100A4 (A-7)
(Mouse monoclonal)

Santa Cruz 
Biotechnology Cat#_sc-377059 WB (1:1000)

Antibody
Luciferase (C-12)
(Mouse monoclonal)

Santa Cruz 
Biotechnology Cat#_sc-74548 WB (1:1000)

Antibody
ki67 (ki-67)
(Mouse monoclonal)

Santa Cruz 
Biotechnology Cat#_sc-23900 WB (1:1000)

Antibody
β-Catenin (E-5)
(Mouse monoclonal)

Santa Cruz 
Biotechnology Cat#_sc-7963

WB (1:1000)
IF (1:100)

Antibody
FITC-conjugated E-cadherin antibody 
(67A4) Biolegend Cat#_324104 FACS (1:100)

 Continued on next page

 Continued
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Reagent type (species) 
or resource Designation Source or reference Identifiers

Additional 
information

Antibody

Anti-mouse anti-rabbit immunoglobulin G 
(IgG) antibodies conjugated to Alexa Fluor 
488 Life Technologies A-11029 IF (1:100)

Antibody

Anti-goat anti-rabbit immunoglobulin G 
(IgG) antibodies conjugated to Alexa Fluor 
488 Life Technologies A-11034 IF (1:100)

Recombinant DNA reagent pLVX-shRNA1 Clontech Cat#_ 632,177

Recombinant DNA reagent pCDH-CMV-MCS-EF1α-Hygro System Biosciences Cat#_CD515B-1
Gene expression 
vector

Recombinant DNA reagent pMDLg/pRRE Addgene
Addgene Plasmid #12251 
RRID:Addgene_12251

Lentivirus packaging 
vector

Recombinant DNA reagent pRSV-rev Addgene
Addgene Plasmid #12253 
RRID:Addgene_12253

Lentivirus packaging 
vector

Recombinant DNA reagent pMD2.G Addgene
Addgene Plasmid #12259 
RRID:Addgene_12259

Lentivirus packaging 
vector

Recombinant DNA reagent Providing pCMV-h5TH2C-VSV Provided from Dr Herrick

Chemical compound, drug FDA-approved chemical libraries Prestwick Chemical

Chemical compound, drug Pizotifen
Santa Cruz 
Biotechnology Cat#_sc-201143

Chemical compound, drug S(-)Eticlopride hydrochloride
Santa Cruz 
Biotechnology Cat#_E101

Software, algorithm GraphPad Prism7 GraphPad Software Inc RRID:SCR_002798 Data analysis

Software, algorithm FlowJo BD Biosciences RRID:SCR_008520 FACS data analysis

 Continued

Zebrafish embryo screening
Zebrafish embryos at two-cell stage were collected at 20 min after their fertilization. Each drug was 
added to a well of a 24-well plate containing approximately 20 zebrafish embryos per well in either 
10 or 50 μM final concentration when the embryos reached the sphere stage. Chemical treatment was 
initiated at 4 hpf and approximately 20 embryos were treated with two different concentrations for 
each compound tested. The treatment was ended at 9 hpf when vehicle- (DMSO) treated embryos 
as control reach 80–90%  completion of the epiboly stage. The compounds which induced delay 
(<50% epiboly) in epiboly were selected as hit compounds for in vitro testing using highly metastatic 
human cancer cell lines. The study protocol was approved by the Institutional Animal Care and Use 
Committee of the National University of Singapore (protocol number: R16-1068).

Reagents
FDA, EMA, and other agencies-approved chemical libraries were purchased from Prestwick Chemical 
(Illkirch, France). Pizotifen (sc-201143) and S(-)eticlopride hydrochloride (E101) were purchased from 
Santa Cruz (Dallas, TX) and Sigma-Aldrich (St Louis, MO).

Cell culture and cell viability assay
MCF7, MDA-MB-231, MDA-MB-435, MIA-PaCa2, PC3, SW620, PC9, and HaCaT cells were obtained 
from American Type Culture Collection (ATCC, Manassas, VA). Luciferase-expressing 4T1 (4T1-12B) 
cells were provided from Dr Gary Sahagian (Tufts University, Boston, MA). All culture methods followed 
the supplier’s instruction. Cell viability assay was performed as previously described (Nakayama et al., 
2020). PCR-based mycoplasma testing on these cells was performed once in 4 months.

https://doi.org/10.7554/eLife.70151
https://identifiers.org/RRID/RRID:Addgene_12251
https://identifiers.org/RRID/RRID:Addgene_12253
https://identifiers.org/RRID/RRID:Addgene_12259
https://identifiers.org/RRID/RRID:SCR_002798
https://identifiers.org/RRID/RRID:SCR_008520
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Plasmid
A DNA fragment coding for HTR2C was amplified by PCR with primers containing restriction enzyme 
recognition sequences. The HTR2C coding fragment was amplified from hsp70l:mCherry-T2A-
CreERT2 plasmid (Huang et al., 2012).

Immunoblotting
Western blotting was performed as described previously (Nakayama et  al., 2020). Raw data of 
images of western blotting analyses are uploaded as source data for western. Anti-PRMT1 (A33), anti-
CYP11A1 (D8F4F), anti-E-cadherin (4A2), anti-EpCAM (VU1D9), anti-vimentin (D21H3), anti-N-cadherin 
(D4R1H), anti-ZEB1 (D80D3), anti-histone H3 (D1H2), anti-β-tubulin (9F3), and anti-GAPDH (14C10) 
antibodies were purchased from Cell Signaling Technology (Danvers, MA). Anti-HTR2C (ab133570) 
and anti-DRD2 (ab85367) antibodies were purchased form Abcam (Cambridge, UK). Anti-phospho-
GSK3β (Ser9) (F-2), anti-GSK3β (1F7), anti-KRT18 (DC-10), anti-KRT19 (A53-B/A2), anti-MMP1 (3B6), 
anti-MMP2 (8B4), anti-S100A4 (A-7), anti-luciferase (C-12), anti-ki67 (ki-67), and anti-β-catenin (E-5) 
antibodies were purchased from Santa Cruz Biotechnology (Dallas, TX).

Flow cytometry
Cells were stained with FITC-conjugated E-cadherin antibody (67A4, Biolegend, San Diego, CA). Flow 
cytometry was performed as described (Nakayama et al., 2009) and analyzed with FlowJo software 
(TreeStar, Ashland, OR).

shRNA-mediated gene knockdown
The shRNA-expressing lentivirus vectors were constructed using pLVX-shRNA1 vector (632177, 
TAKARA Bio, Shiga, Japan). PRMT1-shRNA_#3-targeting sequence is ​GTGT​TCCA​GTAT​CTCT​GATTA; 
PRMT1-shRNA_#4-targeting sequence is ​TTGA​CTCC​TACG​CACA​CTTTG. CYP11A1-shRNA_#4-
targeting sequence is ​GCGA​TTCA​TTGA​TGCC​ATCTA; CYP11A1-shRNA_#4-targeting sequence is ​
GAAA​TCCA​ACAC​CTCA​GCGAT. Human HTR2C-shRNA-targeting sequence is ​TCAT​GCAC​CTCT​
GCGC​TATAT. Mouse HTR2C-shRNA-targeting sequence is ​CTTC​ATAC​CGCT​GACG​ATTAT. LacZ-
shRNA-targeting sequence is CTACACAAATCAGCGATT.

Immunofluorescence
IF microscopy assay was performed as previously described (Nakayama et al., 2020). Goat anti-mouse 
and goat anti-rabbit immunoglobulin G (IgG) antibodies conjugated to Alexa Fluor 488 (A-11029 and 
A-11034, Life Technologies, Carlsbad, CA) and diluted at 1:100 were used. Nuclei were visualized by 
the addition of 2 μg/ml of 4’,6-diamidino-2-phenylindole (DAPI) (62248, Thermo Fisher, Waltham, MA) 
and photographed at 100× magnification by a fluorescent microscope BZ-X700 (KEYENCE, Osaka, 
Japan).

Boyden chamber cell motility and invasion assay
These assays were performed as previously described (Nakayama et al., 2020). In Boyden chamber 
assay, either 3 × 105 MDA-MB-231, 1 × 106 MDA-MB-435 or 5 × 105 PC9 cells were applied to each 
well in the upper chamber.

Zebrafish xenotransplantation model
Tg(kdrl:eGFP) zebrafish was provided by Dr Stainier (Max Planck Institute for Heart and Lung 
Research). Embryos that were derived from the line were maintained in E3 medium containing 200 μM 
1-phenyl-2-thiourea (P7629, Sigma-Aldrich, St Louis, MO). Approximately 100–400 RFP-labelled 
MBA-MB-231 or MIA-PaCa2 cells were injected into the duct of Cuvier of the zebrafish at 2 dpf. The 
fish were randomly assigned to two groups. One group was maintained in the presence of pizotifen-
containing E3 medium and the other group was maintained in vehicle-containing E3 medium.

Spontaneous metastasis mouse model
4T1-12B cells (2 × 104) were injected into the #4 MFP while the mice were anesthetized. To monitor 
tumor growth and metastases, mice were imaged biweekly by IVIS Imaging System (ParkinElmer, 
Waltham, MA). The primary tumor was resected 10 days after inoculation. D-Luciferin Potassium Salt 

https://doi.org/10.7554/eLife.70151
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(LUCK-100) was purchased from GoldBio (St Louis, MO). The study protocol (protocol number: BRC 
IACUC #110612) was approved by A*STAR (Agency for Science, Technology and Research, Singapore).

Gene set enrichment analysis
Gene expression profiles obtained from zebrafish embryos at either 50%-epiboly, shield, or 
75%-epiboly stage were analyzed based on the hallmark gene sets derived from the Molecular Signa-
tures Database (MSigDB) (Subramanian et al., 2005; Liberzon et al., 2015). The zebrafish transcrip-
tomic data was sourced from White et al., 2017. Gene sets that were significantly enriched (FDR < 
0.25) were presented with the normalized enrichment score (NES) and nominal p value. Source data 
files for analysis of either gene expression and enriched pathways are uploaded as GSEA Source data 
1 and 2, respectively.

Histological analysis
All OCT-embedded primary tumors, lungs, and livers of mice from the spontaneous metastasis 4T1 
model were sectioned on a cryostat. Eight micron sections were taken at 500 µm intervals through 
the entirety of the livers and lungs. Sections were subsequently stained with hematoxylin and eosin. 
Metastatic lesions were counted under a microscope in each section for both lungs and livers.

Statistics
Data were analyzed by Student’s t test; p < 0.05 was considered significant.
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