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Abstract Associative learning allows animals to use past experience to predict future events.

The circuits underlying memory formation support immediate and sustained changes in function,

often in response to a single example. Larval Drosophila is a genetic model for memory formation

that can be accessed at molecular, synaptic, cellular, and circuit levels, often simultaneously, but

existing behavioral assays for larval learning and memory do not address individual animals, and it

has been difficult to form long-lasting memories, especially those requiring synaptic reorganization.

We demonstrate a new assay for learning and memory capable of tracking the changing

preferences of individual larvae. We use this assay to explore how activation of a pair of reward

neurons changes the response to the innately aversive gas carbon dioxide (CO2). We confirm that

when coupled to CO2 presentation in appropriate temporal sequence, optogenetic reward reduces

avoidance of CO2. We find that learning is switch-like: all-or-none and quantized in two states.

Memories can be extinguished by repeated unrewarded exposure to CO2 but are stabilized against

extinction by repeated training or overnight consolidation. Finally, we demonstrate long-lasting

protein synthesis dependent and independent memory formation.

Introduction
Associative learning allows animals to use past experience to predict important future events, such

as the appearance of food or predators, or changes in their environmental conditions (Pavlov, 1927;

Kandel et al., 2014). The Drosophila larva is a favorable model system for the study of learning and

memory formation (Gerber et al., 2013; Widmann et al., 2018; Quinn and Dudai, 1976;

Scherer et al., 2003; Apostolopoulou et al., 2013; Neuser et al., 2005; Saumweber et al., 2018),

with approximately 10,000 neurons in its representative insect brain. Widely available experimental

tools allow manipulation of gene expression and introduction of foreign transgenes in labeled neu-

rons throughout the Drosophila brain, including in the learning and memory centers

(Saumweber et al., 2018; Eichler et al., 2017; Li et al., 2014; Duffy, 2002), whose synaptic con-

nectivities can be reconstructed via electron microscopy (Eichler et al., 2017; Eschbach et al.,

2020a; Eschbach et al., 2020b).

Larvae carry out complex behaviors including sensory-guided navigation (Luo et al., 2010;

Klein et al., 2015; Fishilevich et al., 2005; Asahina et al., 2009; Gomez-Marin and Louis, 2014;

Gershow et al., 2012; Gomez-Marin et al., 2011; Sawin et al., 1994; Kane et al., 2013;

Busto et al., 1999; Humberg et al., 2018), which can be modified by learning (Gerber et al., 2013;

Scherer et al., 2003; Neuser et al., 2005; Widmann et al., 2018). Larval Drosophila has long been

a model for the study of memory formation, with a well-established paradigm developed to study

associative memory formation through classical conditioning (Gerber et al., 2013; Widmann et al.,

2018; Schleyer et al., 2018; Scherer et al., 2003; Neuser et al., 2005; Gerber and Stocker, 2007;

Apostolopoulou et al., 2013; Saumweber et al., 2018; Weiglein et al., 2019). In this paradigm, lar-

vae are trained and tested in groups, and learning is quantified by the difference in the olfactory
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preferences of differently trained groups of larvae. These assays quantify the effects of learning on a

population level, but it is impossible to identify whether or to what extent an individual larva has

learned.

New methods allow direct measurement of neural activity in behaving larvae (Karagyozov et al.,

2018; He et al., 2019; Vaadia et al., 2019) and reconstruction of the connections between the neu-

rons in a larva’s brain (Eichler et al., 2017; Eschbach et al., 2020a; Eschbach et al., 2020b;

Takemura et al., 2017; Berck et al., 2016), potentially allowing us to explore how learning changes

the structure and function of this model nervous system. Using these tools requires us to identify lar-

vae that have definitively learned. Recently, a device has been developed for assaying individual

adult flies’ innate (Honegger et al., 2020) and learned (Smith et al., 2021) olfactory preferences,

but no comparable assay exists for the larval stage.

Further, to explore structural changes associated with learning, we need to form protein-synthesis

dependent long-term memories (Yin et al., 1995; Yin et al., 1994; Perazzona et al., 2004). Larvae

trained to associate odor with electric shock form memories that persist for at least 8 hr

(Khurana et al., 2009). Odor-salt memories have been shown to partially persist for at least 5 hr

(Widmann et al., 2016; Eschment et al., 2020) and can be protein-synthesis dependent

(Eschment et al., 2020), depending on the initial feeding state of the larva. Overnight memory

retention, whether or not requiring protein-synthesis, has not been demonstrated in the larva, nor

has long-lasting retention of appetitive memories.

In this work, we demonstrate a new apparatus for in situ training and measurement of olfactory

preferences for individual larvae. We use this assay to quantify appetitive memories formed by pre-

sentation of carbon dioxide (CO2) combined with optogenetic activation of reward neurons. Using

this device, we find that larvae are sensitive to both the timing and context of the reward presenta-

tion, that learning is quantized and all-or-none, and that repeated presentation of CO2 without

eLife digest Brains learn from experience. They take events from the past, link them together,

and use them to predict the future. This is true for fruit flies, Drosophila melanogaster, as well as for

humans. One of the main questions in the field of neuroscience is, how does this kind of associative

learning happen?

Fruit fly larvae can learn to associate a certain smell with a sugar reward. When a group of larvae

learn to associate a smell with sugar, most but not all of them will approach that smell in the future.

This shows associative learning in action, but it raises a big question. Did the larvae that failed to

approach the smell fail to learn, or did they just happen to make a mistake finding the smell? Given

another chance, would exactly the same larvae approach the smell as the first time? In other words,

did all the larvae learn a little, or did some larvae learn completely and others learn nothing?

To find out, Lesar et al. built a computer-controlled maze to test whether individual fruit fly larvae

liked or avoided a smell. Whenever a larva reached the middle of the Y-shaped maze, it could

choose to go down one of two remaining corridors. One corridor contained air and the other carbon

dioxide, a gas they would naturally avoid. Lesar et al. taught each larva to like carbon dioxide by

activating reward neurons in its brain while filling the maze with carbon dioxide gas. Studying each

larva as it navigated the maze revealed that they learn in a single jump, a ’lightbulb moment’. When

Lesar et al. activated the reward neurons, the larva either ‘got it’ and stopped avoiding carbon

dioxide altogether, or it did not. In the second case, it behaved as if it had received no training at

all.

Classic and modern experiments on people suggest that humans might also learn in jumps, but

research on our own brains is challenging. Fruit flies are an excellent model organism to study

memory formation because they are easy to breed, and it is easy to manipulate their genetic code.

Work in flies has already revealed many of the genes and cells responsible for learning and memory.

But, to find the specific brain changes that explain learning, researchers need to know whether the

animals they are examining have actually learned something. This new maze could help researchers

to identify those individuals, making it easier to find out exactly how associative learning works.
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reinforcer can erase a newly formed memory. We induce memories that persist overnight, and con-

trol whether these memories require protein synthesis through alteration of the training protocol.

Results

A Y-maze assay to characterize olfactory preferences of individual
Drosophila larvae
Establishing the degree to which an individual larva seeks out or avoids an odorant requires

repeated measurements of that larva’s response to the odor. We developed a Y-maze assay

(Buchanan et al., 2015; Werkhoven et al., 2019) to repeatedly test an individual’s olfactory prefer-

ence. The Y-mazes (Figure 1A) are constructed from agarose with channels slightly larger than the

larvae, allowing free crawling only in a straight line (Heckscher et al., 2012; Sun and Heckscher,

2016). An individual larva travels down one channel and approaches the intersection with the other

two branches of the maze. Here, the larva is presented with odorized air (or in this work, air contain-

ing CO2) in one branch and pure air in the other. The larva then chooses and enters one of the two

branches. This choice may be immediate or the result of a longer process in which the larva samples

both channels and even reverses (Figure 1—video 2, Figure 1—video 3). When the larva reaches

the end of its chosen channel, a circular chamber redirects it to return along the same channel to the

intersection to make another choice. Custom computer vision software detects the motion of the

larva while computer controlled valves manipulate the direction of airflow so that the larva is always

presented with a fresh set of choices each time it approaches the intersection (Figure 1A, Figure 1—

video 1).

We first sought to determine the suitability of this assay for measuring innate behavior. Drosoph-

ila larvae avoid carbon dioxide (CO2) at all concentrations (Faucher et al., 2006; Jones et al., 2007;

Kwon et al., 2007; Gershow et al., 2012). We presented larvae with a choice between humidified

air and humidified air containing CO2 each time they approached the central junction. At the 18%

concentration used throughout this work, larvae with functional CO2 receptors chose the CO2-con-

taining channel about 25% of the time. The probability of choosing the CO2 containing channel

increased as CO2 concentration in that channel decreased (Figure 1F). Gr63a1 (Jones et al., 2007)

larvae lacking a functional CO2 receptor were indifferent to the presence of CO2 in the channel

(Figure 1B), as were animals in which the CO2 receptor neurons were silenced (Gr21a>Kir.21), indi-

cating that larvae responded to the presence of CO2 and not some other property of the CO2 con-

taining air stream. Silencing the Mushroom Body (OK107>Kir2.1) did not impair innate CO2

avoidance.

Pairing CO2 presentation with optogenetic activation of a single pair of
reward neurons eliminates CO2 avoidance
Activation of the DAN-i1 pair of mushroom body input neurons has been shown to act as a reward

for associative learning (Saumweber et al., 2018; Thum and Gerber, 2019; Schleyer et al., 2020;

Weiglein et al., 2019; Eschbach et al., 2020b). In these experiments, the conditioned odor was

innately attractive, but CO2 is innately aversive. We wondered whether pairing DAN-i1 activation

with CO2 would lessen or even reverse the larva’s innate avoidance of CO2.

To train larvae in the same Y-maze used to measure preference, we manipulated the valves so

that the entire chamber was either filled with humidified air or with humidified air mixed with addi-

tional CO2, independent of the position of the larva, which was not tracked during training. At the

same time, we activated DAN-i1 neurons expressing CsChrimson using red LEDs built in to the

apparatus. For some larvae, we activated DAN-i1 when CO2 was present (paired, Figure 1D). For

others, we activated the reward neurons when only air was present (reverse-paired, Figure 1D).

Each training cycle consisted of one 15 s CO2 presentation and one 15 s air presentation, with DAN-

i1 activated for the entirety of the CO2 (paired) or air (reverse-paired) presentation phase. The train-

ing protocols schematized in Figure 1D were repeated for 20 successive cycles. Thus, for instance,

in the reverse-paired scheme CO2 offset at t=15s coincided with reward onset, and the reward offset

at t=30s coincided with CO2 onset at t=0 of the subsequent cycle.

For each larva, we first measured naive preference and then preference following training. We

found that in the paired group, larvae became indifferent to CO2 presentation following 20 training

Lesar et al. eLife 2021;10:e70317. DOI: https://doi.org/10.7554/eLife.70317 3 of 30

Research article Neuroscience

https://doi.org/10.7554/eLife.70317


cycles (Figure 1D, DANi1>CsChrimson, Paired). We did not observe any change in preference in the

reverse-paired group (DANi1>CsChrimson, Reverse-Paired). Nor did we observe a preference

change following paired training for genetically identical animals not fed all-trans-retinal (ATR), a

necessary co-factor for CsChrimson function (DANi1>CsChrimson, Paired ATR-). Animals fed ATR

but not exposed to red light failed to show a preference shift (DANi1>CsChrimson, No Training).

Larvae of the parent strains fed ATR and given paired training showed no preference shift (Effector

Control, Driver Control). To control for possible effects of DAN-i1 activation, we activated DAN-i1 in

15 s intervals without presenting CO2 at all during the training (DANi1>CsChrimson, DAN w/o CO2);

these larvae showed no shift in preference.
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Figure 1. Y-maze assay to quantify innate and learned preference. (A) Image sequence of a larva making two consecutive decisions in the Y-maze

assay. White arrows indicate direction of air flow; red arrow shows direction of larva’s head. (B) Probability of choosing channel containing CO2 without

any training. (C) Schematic representation of experiments in (D,E,F). All larvae were tested in the Y-maze for 1 hr to determine initial preference and

again following manipulation to determine a final preference. The manipulations were: Paired Training - reward in concert with CO2 presentation, 15 s

intervals, 20 repetitions; Offset After - reward presentation 7.5 s after CO2 onset, 15 s intervals, 20 repetitions; Reverse-Paired Training - reward

opposite CO2 presentation, 15 s intervals, 20 repetitions; Offset Before - reward presentation 7.5 s before CO2 onset, 15 s intervals, 20 repetitions; DAN

Activation Without CO2 - CO2 is never presented, while reward is presented at 15 s intervals, 20 repetitions; no training - no manipulation between two

testing periods; Forward Paired (extended spacing) - 15 s reward follows 15 s CO2 presentation, followed by 60 s of air, 20 repetitions; Backwards

Paired (extended spacing) - 15 s reward prior to 15 s CO2 presentation, followed by 60 s of air, 20 repetitions; Reward Between CO2 (extended spacing)

- 15 s reward presentation between two 15 s CO2 presentations, followed by 45 s of air, 20 repetitions. (D) Probability of choosing CO2 containing

channel before and after manipulation. All animals were fed ATR supplemented food, except those marked ATR-. (E) Probability of choosing CO2

containing channel before and after training as a function of reward timing, in training protocols with extended air spacings. All animals were

DANi1>CsChrimson and fed ATR. (F) Probability of choosing CO2 containing channel before and after 20 cycles of paired training, as a function of CO2

concentration, used both during training and testing. All animals were DANi1>CsChrimson and fed ATR. * p<0.05, ** p<0.01, *** p<0.001.

The online version of this article includes the following video and source data for figure 1:

Source data 1. Spreadsheet containing each individual animal’s decisions in temporal sequence.

Figure 1—video 1. Recording of a larva making 2 decisions within the Y-maze.

https://elifesciences.org/articles/70317#fig1video1

Figure 1—video 2. Recording of a larva before training, showing a sequence of decisions made at the Y-maze juncture.

https://elifesciences.org/articles/70317#fig1video2

Figure 1—video 3. Recording of a larva after training, showing a sequence of decisions made at the Y-maze juncture.

https://elifesciences.org/articles/70317#fig1video3
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Taken together these results show that the change in CO2 preference requires activation of the

DAN-i1 neurons and is not due to habituation (Twick et al., 2014; Das et al., 2011; Larkin et al.,

2010), red light presentation, or other aspects of the training protocol. In particular, the paired and

reverse-paired group experienced identical CO2 presentations and DAN-i1 activations with the only

difference the relative timing between CO2 presentation and DAN-i1 activation.

Activation of DAN-i1 coincident with CO2 presentation decreased larvae’s subsequent avoidance

of CO2. Formally, this admits two possibilities: the larva’s preference for CO2 increased because

CO2 was presented at the same time as the reward or because CO2 predicted the reward. To test

whether learning was contingent on coincidence or prediction, we carried out an additional set of

experiments. As before, we first tested innate preference, then presented 20 alternating cycles of 15

s of CO2 followed by 15 s of air. However, this time during the conditioning phase, we either acti-

vated DAN-i1 7.5 s after CO2 onset, in which case CO2 predicted DAN-i1 activation, or 7.5 s before

CO2 onset, in which case CO2 predicted withdrawal of DAN-i1 activation.

In both cases, DAN-i1 was activated in the presence of CO2 for 7.5 s and in the presence of air

alone for 7.5 s. If learning depended only on the coincidence between reward and CO2 presenta-

tions, both should be equally effective at generating a change in preference. In fact, we only found

an increase in CO2 preference following training in which the CO2 predicted the reward (Figure 1D).

Next, we asked whether reward prediction alone was sufficient to establish a memory, or if coinci-

dence between CO2 and DAN-i1 activation was also required. We altered the training protocol to

present 15 s of CO2 followed by 60 s of air. Some larvae were rewarded by activation of DAN-i1 in

the 15 s immediately following CO2 presentation (Forward Paired), while others were rewarded in

the 15 s immediately prior to CO2 presentation (Backwards Paired). For a third group of larvae, CO2

was presented both before and after reward presentation (reward between CO2 presentations). At

no time was DAN-i1 activated in the presence of CO2, but in the first group CO2 predicted DAN-i1

activation while in the others it did not. We found an increased CO2 preference for animals in this

first group only (Figure 1E), indicating that reward prediction is both necessary and sufficient for

learning in this assay.

In other associative conditioning experiments using DAN-i1 activation as a reward, decreased

attraction to the odor was observed in the reverse-paired groups (Saumweber et al., 2018;

Thum and Gerber, 2019; Schleyer et al., 2020). In our experiments, we did not see any evidence of

increased aversion in the reverse-paired groups.

Untrained larvae avoided CO2. After 20 cycles of paired, offset-after, or forward-paired training,

larvae no longer avoided CO2, but they also did not seek it out. We wondered whether it might be

possible to train larvae to develop an attraction to the innately aversive CO2. In other contexts,

reward via activation of 3 DANs (DAN-i1, DAN-h1, DAN-j1 - whether DAN-h1 is present in second

instar larvae, used in this study, is presently unreported) labeled by the 58E02-Gal4 line has been

reported to produce strong learning scores (Saumweber et al., 2018; Rohwedder et al., 2016;

Lyutova et al., 2019; Schleyer et al., 2020). We repeated the training protocol, substituting 58E02

activation for DAN-i1 activation alone, but did not see an increased preference following training

compared to DAN-i1 activation alone (Figure 1D, 58E02>CsChrimson).

Next, we asked how varying the CO2 concentration might affect animals’ performance in the

assay. We presented lower concentrations of CO2 both during the training and testing phases, and

found that decreasing the CO2 concentration decreased innate avoidance of CO2. In all cases, fol-

lowing training, larvae lost avoidance to CO2 but none showed statistically significant attraction

(Figure 1F).

Learning is quantized and all-or-none
We investigated how change in preference for CO2 following associative conditioning with DAN-i1

activation depended on the amount of training. As in the previous experiments, we first measured

the innate preference, then trained each larva using repeated cycles alternating pure and CO2 con-

taining air, while activating DAN-i1 in concert with CO2 presentation. In these experiments, however,

we varied the number of training cycles an individual larva experienced. We found that as a group,

larvae that had experienced more training chose the CO2 containing channel more often

(Figure 2A).

Our data showed that increasing the amount of training increased overall preference for CO2 up

to a saturation point. But what was the mechanism for this change? Did each cycle of training
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increase each larva’s preference for CO2 by some small amount, with the effect accumulating over

repeated training (graded learning)? Or did some larvae experience a dramatic preference change –

from naive to fully trained – with each cycle of training, with the number of fully trained larvae

increasing with training repetitions (quantized learning)?

Either quantized or graded learning can explain the shift of mean preference of a population

(Gallistel et al., 2004); to differentiate between the modes of learning, we examined repeated deci-

sions made by individual animals, measurements that were impossible in previous larval assays. For

each larva, we quantified the change in CO2 preference before and after training. Figure 2B shows

a histogram of larva preference (the fraction of times an individual larva chose the CO2 containing

channel) after training, grouped by the number of cycles of training a larva received.

Larvae that received no training (0 cycles) formed a single population that chose CO2 27% of the

time. Larvae that were trained to saturation (20 training cycles) also formed a single group centered

around 52% probability of choosing CO2. Both the graded and quantized learning models make the

same predictions for these endpoints, but their predictions vary starkly for the intermediate cases. A
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Figure 2. Dose dependence of learning DANi1>CsChrimson were given varying cycles of paired training (as in Figure 1C). (A) Probability of choosing

CO2 containing channel before and after training, as a function of amount of training. *** p<0.001. (B) Histograms of individual larva preferences after

training, grouped by number of training cycles. (C) Histogram of individual larva preference after training for all larvae. (D) Population average

probability of choosing CO2 following training vs. dose. (E) Fraction of larvae untrained vs. number of training cycles. Teal: fit parameters and error

ranges from quantized model, purple lines, prediction and error ranges from memoryless model. Note logarithmic y-axis on insert. (C–E) Orange:

graded model prediction - post-training preference is represented by a single Gaussian distribution whose mean and variance depend on amount of

training; Teal: quantized model prediction - post-training preference is represented by two fixed Gaussian distributions and the fraction of larvae in

each population depends on the amount of training; Purple: all-or-none model prediction - post-training preference is represented by two fixed

Gaussian distributions and the effect of a single training cycle is to train a fixed fraction of the remaining untrained larvae.

The online version of this article includes the following source data for figure 2:

Source data 1. Spreadsheet containing each individual animal’s decisions in temporal sequence.
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graded learning model predicts that all larvae that received the same amount of training would form

a single group whose mean preference for CO2 would increase with increasing training. A quantized

learning model predicts that larvae that have received the same amount of training will form two dis-

crete groups (‘trained’ and ‘untrained’) with fixed centers whose means do not depend on the

amount of training. With increased training an increasing fraction of larvae would be found in the

trained group.

We fit the distributions of preference following conditioning to graded and quantized learning

models. In the graded model, the preference was represented by a single Gaussian distribution

whose mean and variance were a function of amount of training (orange, Figure 2). In the quantized

model, the preference was represented by two Gaussian distributions; the fraction of larvae in each

population was a function of the amount of training (teal, Figure 2).

We found that the data were better described by the quantized learning model (Table 4): larvae

form two discrete groups, with the fraction in the trained group increasing with each cycle of addi-

tional training. The centers of the two groups do not vary with the amount of training, a point made

most clear by considering the preference after training of all larvae taken together regardless of the

amount of training received (Figure 2C), which shows two well defined and separated groups. From

these data, we concluded that the effect of our associative conditioning on an individual larva is to

either cause a discrete switch in preference or to leave the initial preference intact.

Next we asked what effect, if any, associative conditioning had on larvae that retained their innate

preferences following training. Whether humans form associative memories gradually through

repeated training or learn in an all-or-none manner has been the subject of debate in the Psychology

literature (Roediger and Arnold, 2012); recent electrophysiological measurements in humans sup-

ports the all-or-none hypothesis (Ison et al., 2015). If learning is all-or-nothing, then if a larva has

received training but has not yet expressed a behavioral switch, it is the same as if the larva has

received no training at all. In this case, with every training cycle, regardless of past experience, every

untrained larva will have the same probability of learning: �, and the effect of training can be

described by a particularly simple equation

nuðiþ 1Þ ¼ nuðiÞ� �nuðiÞ (1)

where nuðiÞ are the number untrained larvae following i cycles of training. Note that � can depend

on the training protocol or other external variables, but it does not depend on the past training

experiences of the larvae, and can be considered a fixed constant for a given experimental condi-

tion. The solution to this equation is an exponentially decaying population of untrained larvae. For a

given initial population nuð0Þ of untrained larvae,

nuðiÞ ¼ ð1� �Þinuð0Þ (2)

Any so-called memoryless process like this produces an exponential decay of the initial popula-

tion (Apostol, 1969). Meanwhile, processes with memory can produce other distributions. For exam-

ple, if the training were cumulative, we would expect a threshold effect: as the number of cycles of

training increased from 0, most larvae would initially remain untrained until a critical number of

cycles (nc) were reached and there would be a sudden shift to a mostly trained population. While a

process with memory can also produce exponential decay (e.g. if each larva required a fixed nc
cycles of training to learn, and nc was itself exponentially distributed), all memoryless processes must

produce an exponential decay, and exponential decay is therefore an indicator of a memoryless (all-

or-none) process.

Our fit to the quantized learning model produces an estimate of the fraction of larvae that remain

untrained following training. We plotted the fraction of untrained larvae vs. number of training cycles

and saw that the fraction of larvae in the untrained group exponentially decreased with increasing

training (Figure 2E, note logarithmic y-axis on insert). We then fit the population distributions to an

all-or-none quantized learning model in which the effect of a single training cycle was to train a fixed

fraction of the remaining untrained larvae (purple, Figure 2). This model fit the data better than the

graded learning model and almost as well as the original quantized learning model (in which the

fraction of untrained larvae was fit separately to each group) despite having fewer parameters than

either model. According to standard selection rules (BIC and AIC), the all-or-none quantized model

best describes the data (Table 4).
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Repeated exposure without reward following training leads to memory
extinction
Reversal learning, in which the reward contingency is reversed, and extinction, in which the condi-

tioned stimulus is presented without reward, experiments explore cognitive flexibility. Previous

experiments with both adult Drosophila (Tully et al., 1990; Ren et al., 2012; Wu et al., 2017;

Vogt et al., 2015) and larval (Mancini et al., 2019) Drosophila demonstrated a reversal learning par-

adigm. Extinction has been demonstrated in adult flies (Felsenberg et al., 2017; Felsenberg et al.,

2018; Schwaerzel et al., 2002) but not in larvae.

To test for extinction, we again first measured an individual larva’s CO2 preference and then car-

ried out associative conditioning for a given number (2-10) of training cycles. Next instead of imme-

diately testing the larva’s new preference for CO2, we exposed the larva to an extinction phase – 18

cycles of alternating CO2 and air without any optogenetic reward. Following the extinction period,

we tested larvae as usual to measure their changed preference for CO2. As a control against the

effects of increased CO2 exposure, we also performed habituation experiments, which were the

same as the extinction experiments, except the 18 unrewarded cycles were presented prior to the

rewarded training cycles. The extinction and habituation protocols are schematized in Figure 3A.

When we compared the ‘habituated’ groups of larvae to larvae trained for the same number of

cycles without habituation or extinction, we found that unrewarded CO2 presentation prior to
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Figure 3. Memory extinction (A) Testing and training protocols for B,C. Training + Extinction: larvae were exposed to 18 cycles of alternating CO2 and

air following training. Habituation + Training: larvae were exposed to 18 cycles of alternating CO2 and air prior to training. (B) Probability of choosing

CO2 containing channel (top) and fraction of larvae in trained group according to double Gaussian model fit (bottom) before and after training scheme.

(C) Histograms of individual larva preference after training, for all larva and for larva trained with 2–4 training cycles. * p<0.05, ** p<0.01, *** p<0.001.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Spreadsheet containing each individual animal’s decisions in temporal sequence.

Figure supplement 1. After extinction, larvae can be trained again.

Figure supplement 2. Larvae population average response following training.

Figure supplement 3. Larvae given additional training between testing periods.
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training had no effect on the eventual preference change (Figure 3B). This was unsurprising, as the

initial testing period already offered a number of unrewarded CO2 presentations. In contrast, unre-

warded CO2 presentations following training reversed the effect of training; for small (2 or 3 cycles)

amounts of training, the reversal was almost complete (Figure 3B).

We previously observed that associative conditioning produced a discrete and quantized change

in CO2 preference. Here, we found that extinction following training greatly reversed the effects of

conditioning. We wondered whether larvae that had been subject to both training and extinction

reverted to their original CO2 preference or to an intermediate state. In the former case, we would

expect to see a bimodal distribution of preference change following training and extinction, while in

the latter we would see a third group of larvae. This group would be most evident in experiments

where two to four cycles of training were followed by extinction, as these had the largest deficit in

the fraction of trained larvae compared to habituated larvae that received the same amount of train-

ing. We examined the preferences of all larvae following two to four cycles of training, grouped by

whether they were normally trained, habituated, or subject to extinction (Figure 3C). In all cases, we

observed two groups with the same central means and no evidence of a third intermediate group.

We concluded that larvae subject to training then extinction reverted to their ‘untrained’ state.

We wondered whether larvae would still learn if they received additional training directly follow-

ing extinction. As before, we measured the innate preference, presented three paired training cycles

followed by the extinction phase. At this point, based on our previous results, larvae would have

returned to their initial innate avoidance of CO2. We then immediately presented three more paired

training cycles before behavioral testing (Figure 3—figure supplement 1A). We found that follow-

ing this training-extinction-training protocol, both the population preference for CO2 (Figure 3—fig-

ure supplement 1B) and the fraction of larvae trained (Figure 3—figure supplement 1C) were

comparable to larvae that had been trained three times without extinction cycles.

Given the relatively short duration of training and the ability of unrewarded CO2 presentations to

extinguish prior training, we wondered whether larvae might change their CO2 preferences over the

course of the hour-long post-training behavioral readout. In particular, might the apparent threshold

of 50% attraction be an artifact due to a short period of attraction to CO2 followed by a longer

period of indifference or modest avoidance?

To test for a short period of increased attraction immediately following training, we reanalyzed

the results of experiments with 2, 5, and 20 cycles of paired training. In each case, we compared the

initial 10 min of the post-training choice assay to the final 50 min (Figure 3—figure supplement 2A)

and found no significant difference between the initial and final periods for any of these training con-

ditions. We then compared the mean preference over the first five choices (representing five unre-

warded CO2 presentations) made by each larva to the mean preference in the remainder of the

experiment and again found no significant difference (Figure 3—figure supplement 2B). Breaking

the behavioral readout into equal 15 min periods also reveals no strong temporal signal (Figure 3—

figure supplement 2C–E).

Finally, we developed a new protocol to minimize the possible effects of extinction over the

course of the behavioral readout, using the fact that training following extinction can re-establish a

lost memory (Figure 3—figure supplement 1). We trained each larva with 10 paired cycles (5 min of

training), then tested their preference for 15 min, then presented another 10 paired training cycles

followed by another 15 min of testing, for a total of 4 training and testing blocks (Figure 3—figure

supplement 3). The results were comparable to when we presented a single training block followed

by an hour-long test period. Thus, we concluded that the apparent limit of 50% population prefer-

ence to CO2 following training was not due to the long time-scale of the behavioral readout.

Larvae can retain memory overnight; the type of memory formed
depends on the training protocol
Studies in adult (Tully et al., 1990; Yin et al., 1995; Margulies et al., 2005) and larval (Honjo and

Furukubo-Tokunaga, 2005; Honjo and Furukubo-Tokunaga, 2009; Widmann et al., 2016;

Khurana et al., 2009; Eschment et al., 2020; Aceves-Piña and Quinn, 1979) Drosophila have iden-

tified distinct memory phases: short-term memory (STM), middle-term memory (MTM), long-term

memory (LTM), and anesthesia-resistant memory (ARM). LTM and ARM are consolidated forms of

memory controlled by partially separate molecular and anatomical pathways (Isabel et al., 2004;

Jacob and Waddell, 2020; Wu et al., 2012). ARM is resistant to anesthetic agents (Quinn et al.,
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1974); LTM requires cAMP response element-binding protein (CREB)-dependent transcription and

de-novo protein synthesis, while ARM does not (Yin et al., 1995; Perazzona et al., 2004). Adults

have been shown to retain memories for up to a week (Yin et al., 1995). Larvae trained to associate

odor with electric shock form memories that persist for at least 8 hr (Khurana et al., 2009). Odor-

salt memories have been shown to persist for at least 5 hr (Widmann et al., 2016; Eschment et al.,

2020) and can be either ARM or LTM, depending on the initial feeding state of the larva.

We sought to determine whether we could create consolidated memories that would persist

overnight, and if so, whether these memories represented ARM or LTM. As in previously described

experiments, we first tested each larva’s individual preference in the Y-maze assay, trained it to asso-

ciate CO2 presentation with DAN-i1 activation, and then measured its individual preference again

following training. After this second round of testing, we removed the larva from the apparatus and

placed it on food (without ATR) overnight. The next day, we placed the larva back in the Y-maze and

again tested its preference for CO2, without any additional training.

We found that following 20 cycles of training, larvae became indifferent to CO2 and this indiffer-

ence persisted to the next day. Similarly, we found that most larvae switched preference following

five cycles of training and retained that preference overnight. Larvae that received no training or 20

cycles of unpaired training had no change in CO2 preference immediately following training or the

next day (Figure 4B).

We had previously shown two cycles of training caused roughly half the larva to change prefer-

ence immediately after training. We decided to use this partition to verify a correlation between

immediate and long-term memories; we expected that larvae initially in the ‘trained’ group would

also form a ‘trained’ group the following day. However, while we found that two cycles of training

were sufficient to cause some larvae to become indifferent to CO2 immediately following training,

when we tested these larvae the next day, we found that all had reverted to their initial avoidance of

CO2.

There were two possible explanations for this reversion. Perhaps, two cycles of training were suffi-

cient to form a short term memory, but more training was required to induce a long-term memory.

Or perhaps the testing period, in which larvae were exposed repeatedly to CO2 without reward,

reversed the two-cycle training. To control for the latter, we modified the experimental protocol.

We tested each larva’s innate preference, presented two training cycles, and then immediately

removed the larva to food overnight, without any further testing. When we tested these larvae the

next day, we found that they showed decreased avoidance of CO2. This indicated that two cycles of

training were sufficient to form a memory lasting overnight, but that immediate exposure to unre-

warded CO2 following this short training interval likely reversed the effects of training, an effect we

observed in Figure 3. When larvae were trained for 20 cycles, omitting the testing had no effect on

these larvae’s preferences the following day.

To confirm that extinction could explain the failure to form a persistent memory, we exposed lar-

vae to three cycles of paired training, then 18 cycles of extinction (as in Figure 3) and then removed

them to food overnight before testing their preferences the next day. As expected, these larvae

avoided CO2 as much the next day as they did prior to training (Figure 4B, Ext Post-Train).

We wondered whether memories that had consolidated overnight would be more resistant to

extinction. We repeated the previous experiment with a single modification. As before, we tested

the larva’s initial preference and trained it with three cycles of rewarded CO2 presentation. This

time, we immediately removed the larva to food following training. The next day, we returned the

larva to the Y-maze and presented the extinction phase of 18 unrewarded CO2 presentations prior

to testing for CO2 preference. We found that in this case, larvae still expressed an increased prefer-

ence for CO2 despite the extinction phase (Figure 4B, Ext Pre-Test). The only difference between

the two experiments was whether we attempted extinction immediately after training or the next

day. Thus, we concluded that overnight consolidation made memories more resistant to extinction.

ARM can be distinguished from LTM because the latter requires de novo protein synthesis and

can be disrupted by ingestion of the translation-inhibitor cycloheximide (CXM). To incorporate CXM

feeding, we modified our protocols. Instead of raising larvae on ATR supplemented food, we raised

them on standard food and then fed them with ATR supplemented yeast paste for 4 hr prior to the

experiment (ATR+/CXM-). For some larvae (ATR+/CXM+), we also added CXM to the yeast paste.

In this way, we could be sure that if ATR+/CXM+ larvae ingested enough ATR to allow for CsChrim-

son activation of DAN-i1, they must have also ingested CXM as well. To further verify CXM
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ingestion, we placed ATR+/CXM+ and ATR+/CXM- larvae on clean food and allowed them to con-

tinue development. 95% of ATR+/CXM- larvae pupated, while only 45% of ATR+/CXM+ larvae

pupated.

Following the 4 hr feeding period, ATR+/CXM+ and ATR+/CXM- larvae were treated identically.

As in the previously described experiments, we first tested each larva’s individual preference in the

Y-maze assay, trained the larva 20 times to associate CO2 presentation with DAN-i1 activation, and

then measured its individual preference again following training. After this second round of testing,

we removed the larva from the apparatus and placed it on food (without ATR or CXM) overnight.

The next day we placed the larva back in the Y-maze and again tested its preference for CO2, with-

out any additional training.

We found that performances tested immediately and 16 hr after training were both unaffected by

CXM treatment. Following 20 cycles of training, larvae from both groups (ATR+/CXM+; ATR+/CXM-

) became indifferent to CO2 and this indifference persisted to the next day (Figure 4C). This sug-

gests that the memory formation was independent of de novo protein synthesis.

In adult Drosophila, whether ARM or LTM is formed depends on the training protocol

(Tully et al., 1990; Tully et al., 1994; Yin et al., 1995; Yu et al., 2006; Bouzaiane et al., 2015).
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Figure 4. Memory retention overnight. (A) Testing and training protocols. Except where indicated, larvae were tested, trained immediately after testing,

tested again, then placed on food overnight and tested the following day. For extinction experiments, larvae were trained three times, and then

exposed to 18 cycles of alternating CO2 and air either immediately following training or prior to testing the next day. (B,C,D) Probability of choosing

CO2 containing channel (top) and fraction of larvae in trained group according to double Gaussian model fit (bottom) prior to training, immediately

following training, and the next day. When the center bar is missing, larvae were not tested immediately following training but instead removed

immediately to food. M Nx = massed training, N repetitions, S 10x = spaced training 10 total pairings, RP = reverse paired (see Figure 1C), No Train =

no training. Larvae in (B,C) were DANi1>CsChrimson. Larvae in (D) were DANi1>hs-dCREB2-b;CsChrimson. Larvae were raised on food containing ATR,

except for ATR+/CXM-, ATR+/CXM+ larvae who were fed ATR supplemented yeast paste (without/with cycloheximide) for 4 hr prior to initial testing.

For reverse-paired (RP) and no training schemes, see Figure 1B. * p<0.05, ** p<0.01, *** p<0.001.

The online version of this article includes the following source data for figure 4:

Source data 1. Spreadsheet containing each individual animal’s decisions in temporal sequence.
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‘Massed’ training, in which all conditioning occurs in rapid sequence without rest intervals, results in

ARM, while ‘spaced’ training, in which the conditioning occurs in blocks separated by intervals of

time, produces LTM. Our training protocol more closely resembles massed training, so it seemed

sensible that it would produce ARM. To see if we could instead develop LTM, we established a

spaced training protocol. Larvae received two paired cycles of training, followed by a 15-min interval

of air-presentation only; this sequence was repeated five times. To keep the total length of the

experiment within a (covid-related) limited daily time window, we did not test the larvae immediately

after training but only the next day.

Prior to spaced training, both ATR+/CXM- and ATR+/CXM+ larvae avoided CO2 to the same

degree. We found that 1 day following spaced training, ATR+/CXM+ larvae continued to avoid CO2,

while ATR+/CXM- larvae did not. This indicated that spaced training formed a memory whose reten-

tion was disrupted by CXM. To verify that spacing the trials was essential to forming a protein-syn-

thesis dependent memory, we duplicated the experiments exactly, except we presented 10 cycles of

training en masse, rather than spacing them. In this case, both ATR+/CXM- and ATR+/CXM- larvae

expressed learned indifference to CO21 day following training (Figure 4C).

As an alternate to CXM feeding, LTM (but not ARM) formation can also be disrupted through use

of hs-dCREB2-b, a heat-shock inducible dominant-negative repressor of transcription mediated by

dCREB2-a. (Perazzona et al., 2004; Yin et al., 1995). Specifically, in adult flies expressing hs-

dCREB2-b, memory retention is disrupted in a heat-shock-dependent manner following spaced, but

not massed training (Yin et al., 1995). We therefore repeated our long-term memory experiments in

larvae that in addition to expressing Chrimson in DAN-i1 neurons also carried the hs-dCREB2-b

transgene. Massed and spaced training were carried out as previously described, using larvae raised

on ATR supplemented food, except that some larvae (HS) received a 30 min heat-shock (at 37 C),

followed by a 30 min recovery period (at 25 C) immediately prior to the beginning of the experiment

(i.e. prior to the initial testing of naive preference). Preference for CO2 was tested prior to training,

immediately following training, and the next day, following an overnight rest on food without ATR.

We found that, congruent with our CXM experiments, the day after spaced training, heat-

shocked larvae (Figure 4D,S 10x, HS) avoided CO2 to the same extent they did prior to training,

while larvae that were not heat-shocked (Figure 4D,S 10X, No HS) retained learned indifference; lar-

vae that received massed training (Figure 4D,M 10x, HS and No HS) retained their learned indiffer-

ence overnight, regardless of heat-shock. These results are consistent with similar experiments in

adult flies (Yin et al., 1994; Yu et al., 2006).

Immediately following spaced training (80 min after the initiation of the spaced training protocol),

heat-shocked larvae continued to avoid CO2, showing that memory formation was impaired on a rel-

atively short timescale. This is consistent with previous work in the larva, where dCREB2-b expression

induced memory deficits beginning 30 min following a single 30 min training cycle (Honjo and Furu-

kubo-Tokunaga, 2005), and immediately following 125 min of spaced training (Widmann et al.,

2016). In those experiments, neither training protocol was shown to induce a persistent long-term

memory.

Discussion
In this work, we demonstrated a new apparatus for training individual larvae and assessing their

olfactory preferences. Compared to the existing paradigm, our assay allows for measuring individual

animals’ changes in preference due to training, allows for greater control of the temporal relation

between the conditioned and unconditioned stimuli, and does not require any handling of the ani-

mals between training and testing.

In our assay, larvae learned in a switch-like (all-or-none two-state quantized) manner. The learning

process was better described as a sudden transition between states than as a graded change in pref-

erence, and each cycle of training (presentation of CO2 coupled with reward) either caused a state

transition or did not. Pigeons, rats, and rabbits have all been shown to experience sudden perfor-

mance increases in learning tasks, suggesting quantized learning may be a generalized phenomenon

(Gallistel et al., 2004). We found no evidence of a cumulative effect of prior training in the probabil-

ity that a given cycle of training would induce a state transition in larvae that had not already transi-

tioned. We did, however, find evidence that repeated cycles of training stabilized memories against
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later extinction effected by presentation of CO2 without reward. These measurements were enabled

by our assay’s ability to track individual preferences over the course of the entire experiment.

We directly tested the ability of unrewarded CO2 presentations to extinguish a just-formed mem-

ory by presenting CO2 without air immediately following training (Figure 3). We also indirectly mea-

sured the effects of extinction due to unrewarded CO2 presentation during the hour-long behavioral

test (Figure 3—figure supplement 2). Following two cycles of training, immediate presentation of

18 unrewarded CO2 cycles abolished the formed memory (Figure 3B), but without this direct extinc-

tion protocol, we saw no evidence of extinction over the course of the hour-long behavioral test

(Figure 3—figure supplement 2A–C). It is perhaps unsurprising that rapid and consistent unre-

warded presentations immediately following training are more effective at extinguishing a memory

than the later and more varied unrewarded presentations during the behavioral test. But following

two cycles of training, the behavioral test does prevent expression of the formed memory the next

day (Figure 4B). This could show that the unrewarded presentations during behavioral testing are

too late and/or sporadic to prevent immediate memory expression but do prevent the transition to

more long-lived ARM. Further study will be required to confirm this. Our apparatus can precisely

control the timing and nature of both rewarded and unrewarded presentations to probe different

phases of memory formation and consolidation.

We found that larvae trained in our assay retained memories overnight: 16–20 hr. When training

was presented all at once, these memories were not disrupted by ingestion of the protein-synthesis

inhibitor cycloheximide or induction of the transcrption repressor dCREB2-b, while when training

was spaced over time, cycloheximide feeding and dCREB2-b induction both prevented long dura-

tion memory formation. Thus, we identified spaced training as producing long-term memory (LTM)

and the massed training as producing anesthesia-resistant memory (ARM). These results are the first

demonstrations that larvae can retain memories overnight; they are entirely congruent with observa-

tions in adult flies.

We explored how the order of CO2 and reward presentations affected learning. We found that

for larvae to learn, CO2 onset must occur coincident with or before reward onset, but that it was nei-

ther necessary nor sufficient for CO2 and reward to be presented together at the same time. While

we assume that the same neural mechanism underlies learning in the ‘paired’, ’offset after’

(Figure 1D) and ‘forward-paired’ (Figure 1E) paradigms, it is at least formally possible that the

mechanism might be different in these contexts. Most of the work in this paper used the ‘paired’

protocol; it would be interesting to test in the future whether the ’forward-paired’ protocol produces

memories that differ in their resistance to extinction or in their long-term persistence.

Our results using the ‘reverse paired’ (Figure 1D) and ’backwards paired’ (Figure 1E) protocols

differed from previous reports. In other assays, presenting the reward (including via activation of

DAN-i1) prior to presenting the conditioned odor results in decreased attraction/increased avoid-

ance (Schleyer et al., 2020; Saumweber et al., 2018) of that odor. We found that such ‘reverse-

pairings’ neither increased nor decreased a larva’s avoidance of CO2. There are a number of differ-

ences, most significantly our new behavioral assay and our use of the innately aversive CO2 as the

conditioned stimulus that might account for the discrepancy.

While this work does not directly speak to the neural mechanism behind the change in prefer-

ence, it is congruent with the evolving model of learning in Drosophila. In this model, different Mush-

room Body Output Neurons (MBONs) promote approach or avoidance (Aso et al., 2014;

Eschbach and Zlatic, 2020; Perisse et al., 2013; Owald et al., 2015; Owald and Waddell, 2015;

Hige et al., 2015) and synapse onto a convergence neuron that integrates their activities

(Eschbach and Zlatic, 2020). Prior to learning, aversive and appetitive MBONs are thought to

receive similar drives from Kenyon Cells (KCs) that respond to specific olfactory signals. That is, in

response to a stimulus, the activities of MBONs representing these opposite valences are initially

balanced, and behavior is governed by an innate preference to that odor, controlled by neuronal cir-

cuits external to the MB (Aso et al., 2014; Eschbach and Zlatic, 2020). Aversive and appetitive

learning depress the odor drive to appetitive and aversive MBONs, respectively: learning that a stim-

ulus is appetitive weakens the connection between KCs encoding that stimulus and the avoidance

MBONs, promoting approach, while aversive conditioning weakens the connection between KCs

and approach MBONs, promoting avoidance (Aso et al., 2014; Owald and Waddell, 2015;

Eschbach and Zlatic, 2020).
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According to this model, presentation of CO2 coincident with or prior to the activation of DAN-i1

reduces the ability of CO2 to excite one or more aversive MBONs, likely including MBON-i1, which

encodes avoidance (Eschbach and Zlatic, 2020) and is postsynaptic to DAN-i1 (Eichler et al.,

2017). This results in an appetitive drive from the MB that cancels out the innate avoidance pathway.

Why in our experiments the learned appetitive drive appears to exactly cancel but not overcome the

innate aversion should be the subject of further study; it may be a simple coincidence or artifact of

the experimental protocol, or it may reflect more profound circuit principles.

Understanding memory formation at the circuit and synaptic levels simultaneously is a heroic task,

even aided by the larva’s numerically simple nervous system and the tools (including EM-reconstruc-

tion) available in the larva. The work here represents progress toward this goal. We demonstrate

long-term protein synthesis dependent memory, implying that memories are encoded in synaptic

change. Our assay allows us to precisely identify those individuals who have formed long-term mem-

ories. Animals are found in only two behavioral states: innate avoidance or learned indifference; this

likely reflects two discrete states of the underlying neural circuit.

Our associative conditioning paradigm pairing CO2 presentation with DAN-i1 activation has

experimental advantages for circuit-cracking. The conditioned stimulus is sensed by a single pair of

genetically identified sensory neurons; the unconditioned stimulus is provided by activation of a sin-

gle pair of genetically identified reward neurons whose connectivity has been fully reconstructed

(Schleyer et al., 2020). How the larva navigates in response to CO2 presentation has been described

in detail (Faucher et al., 2006; Gershow et al., 2012; Gepner et al., 2015; Gepner et al., 2018), as

has how neurons downstream of DAN-i1 and the KCs contribute to navigational decision making

(Eichler et al., 2017; Saumweber et al., 2018; Thum and Gerber, 2019; Schleyer et al., 2020).

This is a particularly favorable starting point to understand how synaptic plasticity due to associative

conditioning leads to changes in circuit function that effect changed behavioral outcomes.

Conclusion
We introduced a Y-maze assay capable of measuring the olfactory preferences of individual larval

Drosophila and of in situ associative conditioning. We found that when larvae learn to associate CO2

with reward neuron activation, the result is a switch from innate avoidance to learned indifference,

with no intervening states. We demonstrated a protocol to form stable protein-synthesis dependent

long term memories. This provides a strong starting point for ‘cracking’ a complete olfactory learn-

ing circuit.

Materials and methods

Key resources table

Reagent type (species) or
resource Designation Source or reference Identifiers Additional information

Genetic reagent
(D. melanogaster)

w[1118]; P{y[+t7.7]w[+mC]
=20XUAS-IVS-CsChrimson.
mVenus}attP2 (w;;UAS-
CsChrimson)

Bloomington
Stock Center

RRID:BDSC_55136

Genetic reagent
(D. melanogaster)

SS00864 split-
Gal4 (DAN-i1-Gal4)

Saumweber et al., 2018 Gift of Marta Zlatic,
Janelia Research
Campus

Genetic reagent
(D. melanogaster)

w[*]; Gr63a[1] Bloomington
Stock Center

RRID:BDSC_9941

Genetic reagent
(D. melanogaster)

w[1118]; P{y[+t7.7]
w[+mC]=GMR58E02-
GAL4}attP2 (GMR58E02-
Gal4)

Bloomington
Stock Center

RRID:BDSC_41347

Genetic reagent
(D. melanogaster)

w;hs-dCREB2-b 17–2 Yin et al., 1995 FlyBase_ FBti0038019 Gift of Jerry Chi-
Ping Yin, University
of Wisconsin,
Madison

Continued on next page
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Continued

Reagent type (species) or
resource Designation Source or reference Identifiers Additional information

Genetic reagent
(D. melanogaster)

w[*]; P{w[+mW.hs]=GawB}
ey[OK107]/In(4)ci[D],
ci[D] pan[ciD] sv[spa-
pol] (OK107-Gal4)

Bloomington Stock Center RRID:BDSC_854

Genetic reagent
(D. melanogaster)

w[*]; P{w[+mC]=UAS-
Hsap\KCNJ2.EGFP}7
(UAS-kir2.1)

Bloomington Stock Center RRID:BDSC_6595

Genetic reagent
(D. melanogaster)

w[*]; P{w[+mC]
=Gr21a-GAL4.C}
133t52.1
(Gr21a-Gal4)

Bloomington Stock Center RRID:BDSC_23890

Software,
algorithm

livetracker github.com/GershowLab/
TrainingChamber
(copy archived at URL swh:1:rev:
e2a7ccc4e8d845e
6cac59d3b2f344cca826c4727,
Lesar, 2021)

This work

Crosses and genotypes
Larva collection
Flies of the appropriate genotypes (Table 1) were placed in 60 mm embryo-collection cages (59–

100, Genessee Scientific) and allowed to lay eggs for 6 hr at 25C on enriched food media (Nutri-Fly

German Food, Genesee Scientific). For all experiments except otherwise specified, the food was

supplemented with 0.1 mM all-trans-retinal (ATR, Sigma Aldrich R2500). Cages were kept in the

dark during egg laying. When eggs were not being collected for experiments, flies were kept on

plain food at 18C.

Petri dishes containing eggs and larvae were kept at 25C in the dark for 48–60 hr. Second instar

larvae were separated from food using 30% sucrose solution and washed in water. Larvae were

selected for size. Preparations for experiments were carried out in a dark room.

Y-maze
We used SLA three-dimensional printing to create microfluidic masters for casting

(Karagyozov et al., 2018; Chan et al., 2015). Masters were designed in Autodesk Inventor and

printed on an Ember three-dimensonal printer (Autodesk) using black prototyping resin (Colorado

Photopolymer Solutions). After printing, masters were washed in isopropyl alcohol, air-dried, and

baked at 65C for 45 min to remove volatile additives and non-crosslinked resin. 4% agarose (Apex

Quick Dissolve LE Agarose, Cat #20-102QD, Genesee Scientific) was poured over the masters and

Table 1. Crosses used to generate larvae for experiments throughout this work.

For strain information, see key resource table.

Figure Designation Female parent Male parent

1 Gr63a1 w;Gr63a1

1 OK107>Kir2.1 UAS-Kir2.1-GFP OK107-Gal4

1 Gr21a>Kir2.1 UAS-Kir2.1-GFP Gr21a-Gal4

1-4 DANi1>CsChrimson w;;UAS-CsChrimson SS00864

1 Driver ctrl SS00864

1 Effector ctrl w;;UAS-CsChrimson

1 58E02>CsChrimson w;;UAS-CsChrimson 58E02-Gal4

4 hs-dcreb2-b;DANi1>CsChrimson w;hs-dcreb2-b;UAS-CsChrimson SS00864

Lesar et al. eLife 2021;10:e70317. DOI: https://doi.org/10.7554/eLife.70317 15 of 30

Research article Neuroscience

https://scicrunch.org/resolver/BDSC_854
https://scicrunch.org/resolver/BDSC_6595
https://scicrunch.org/resolver/BDSC_23890
https://github.com/GershowLab/TrainingChamber
https://github.com/GershowLab/TrainingChamber
https://archive.softwareheritage.org/swh:1:dir:b07e905a53e3bd66a5ddd04b1f7156cdc25efd5e;origin=https://github.com/GershowLab/TrainingChamber;visit=swh:1:snp:1cac126d292328c5860ae67dc14254158c4fbeac;anchor=swh:1:rev:e2a7ccc4e8d845e6cac59d3b2f344cca826c4727
https://archive.softwareheritage.org/swh:1:dir:b07e905a53e3bd66a5ddd04b1f7156cdc25efd5e;origin=https://github.com/GershowLab/TrainingChamber;visit=swh:1:snp:1cac126d292328c5860ae67dc14254158c4fbeac;anchor=swh:1:rev:e2a7ccc4e8d845e6cac59d3b2f344cca826c4727
https://archive.softwareheritage.org/swh:1:dir:b07e905a53e3bd66a5ddd04b1f7156cdc25efd5e;origin=https://github.com/GershowLab/TrainingChamber;visit=swh:1:snp:1cac126d292328c5860ae67dc14254158c4fbeac;anchor=swh:1:rev:e2a7ccc4e8d845e6cac59d3b2f344cca826c4727
https://doi.org/10.7554/eLife.70317


allowed to solidify; then mazes were removed from the mold. Agarose Y-mazes were stored in tap

water before use.

The mazes are 1 mm in depth. Each channel is 1.818 mm in length and 0.4 mm in width, and

ends in a circular chamber (radius = 1 mm) which redirects larva back to the intersection. An inlet

channel (depth = 0.1 mm, length = 1.524 mm, width = 0.1 mm) to the circular chamber connects to

tubing for our network of air, CO2, and vacuum sources.

Behavioral experiments
Individual larvae were selected for size and placed into a Y-maze using a paintbrush. The Y-maze

was placed into a PDMS (Sylgard 184, 10:1 base:curing agent) base, where tubing was secured. The

Y-maze and base were encased in a dark custom-built box. Larvae were monitored under 850 nm

infrared illumination (Everlight Electronics Co Ltd, HIR11-21C/L11/TR8) using a Raspberry Pi NoIR

camera (Adafruit, 3100), connected to a Raspberry Pi microcomputer (Raspberry Pi 3 Model B+,

Adafruit, 3775). Experiments were recorded using the same camera, operating at 20 fps. Eight cop-

ies of the assay were built, to assay the behaviors of multiple larvae in parallel.

Pressure for air, CO2, and vacuum were controlled at the sources (for vacuum regulation:

41585K43, McMaster-Carr; for pressure regulation: 43275K16, McMaster-Carr). CO2 and air were

humidified through a bubble humidifier. Vacuum, air, and CO2 tubing to individual assays were sepa-

rated through a block manifold after pressure control and humidification (BHH2-12, Clippard).

The CO2 concentration was controlled by a resistive network of tubing connected to the air and

CO2 sources. This inexpensive alternative to a mass-flow controller produced a stable ratio of CO2

to air that was consistent from day to day and independent of the overall flow rate. The direction of

flow was controlled by solenoid pinch valves (NPV2-1C-03–12, Clippard), actuated by a custom cir-

cuit we designed.

Custom computer vision software detected the location of the larva in real time. Based on the lar-

va’s location, computer controlled valves manipulated the direction of airflow so that the larva was

always presented with a fresh set of choices each time it approached the intersection. The software

randomly decided which channel would contain air and which contained air mixed with CO2.

In each maze, one channel was selected to be the outlet for flow and the other two were inlets.

An individual larva began in the outlet channel and approached the intersection of the Y-maze, then

chose to enter either an inlet branch containing air with CO2 or an inlet branch containing air only.

When the larva’s full body entered the chosen channel, software recorded the larva’s choice of chan-

nel. When the larva reached the end of that channel and entered the circular chamber, valves

switched to turn off CO2 and to switch vacuum to the channel containing larva, making that channel

the outlet. The CO2 remained off (the larva experienced only pure air) until the larva exited the circu-

lar chamber. When the larva exited the circular chamber and proceeded towards the intersection,

CO2 was introduced to one randomly selected inlet channel.

Software recorded the location of the larva at every frame (approx 20 Hz); the direction of airflow

in the maze (which channel(s) had air; which channel had CO2 mixed with air, if any; and which chan-

nel had vacuum); and all decisions the larva made. We recorded when larvae entered or left a chan-

nel, and whether that channel presented CO2. Larvae could take three actions as they approached

the intersection: choose the channel containing air with CO2 (scored as APPROACH); choose the

channel containing pure air (scored as AVOID); or move backwards into their original channel before

they reach the intersection. If a larva backed up and reentered the circular chamber it departed from

before reaching the intersection, the software reset and presented the larva with a fresh set of

choices when it next left the circle. We did not score backing up as a choice of either CO2 or air.

Following an hour of testing, larvae were trained in the same Y-maze assay used to measure pref-

erence. During the training period, unless described otherwise, each 30 s training cycles alternated

15 s of CO2 presentation, where both inlet channels contained a humidified mix of CO2 and air; fol-

lowed by 15 s of air presentation, where both inlet channels had humidified air alone. This cycle was

repeated some number of times (specified for each experiment in the figures). Red LEDs (Sun LD,

XZM2ACR55W-3) integrated into the setup were used to activate CsChrimson synchronously with

CO2 presentation (paired) or air presentation (reverse-paired).

The volume of the flow chamber was 11.68 mm3 and the volume of the tubing downstream of the

valves is approximately 214 mm3. The flow rate exceeded 560 mm3/s, and the state of the chamber

was taken to be the same as the state of valves.
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Following training, larvae were tested for one hour in an identical scheme to that previously

described for the naive measurement.

After larvae were placed into the Y-maze, larva were left in the maze in the dark for a minimum of

5 min. If a larva was not moving through the maze after 5 min, the larva was replaced before the

experiment began. If larvae stopped moving through the maze during the first hour of testing, larvae

were removed from the maze before training and results were discarded. This happened infre-

quently (approximately 5% of experiments).

Protocol for timing dependence experiments
For experiments in Figure 1D, reward presentation was offset from CO2 onset. 30 s training cycles

alternated 15 s of CO2 presentation, where both channels contained a mix of CO2 and air; followed

by 15 s of air presentation, where neither channel had CO2. Red LEDs are used to activate CsChrim-

son for 15 s. For some larvae, reward onset occurred 7.5 s after CO2 presentation; for others, reward

onset occurred 7.5 s before CO2 presentation. For all experiments of this type, larvae were pre-

sented with 20 cycles of training.

For experiments in Figure 1E, 75-second training cycles alternated 15 s of CO2 presentation,

where both inlet channels contained a mix of CO2 and air with 60 s of air presentation. For some lar-

vae, reward presentation occurred immediately following CO2 termination for 15 s. For others,

reward presentation occurred 15 s prior to CO2 onset, and reward presentation was terminated

upon CO2 presentation. For a third group of larvae, we rewarded larvae for 15 s between two CO2

presentations. In this case, 15 s of CO2 presentation was followed by 15 s of reward presentation in

the absence of CO2, followed by another 15 s of CO2 presentation. After the second presentation,

there was a 30 s air gap before the cycle repeated. For all experiments of these types, larvae were

presented with 20 cycles of training.

Habituation and extinction protocols
For experiments in Figure 3, we used either an extinction or habituation protocol during training.

For both types, larvae were tested for 1 hr to determine their innate CO2 preference in the method

described above.

For extinction experiments, larvae were trained in the same Y-maze used to measure preference.

30 s training cycles alternate 15 s of CO2 presentation, where both channels contain a mix of CO2

and air; followed by 15 s of air presentation, where neither channel had CO2. Red LEDs were used

to activate CsChrimson synchronously with CO2 presentation. This training cycle was repeated some

number of times (specified for each experiment above). Immediately after training, we presented

the larva with 18 cycles of repeated CO2/air exposure (15 s of CO2 followed by 15 s of air; repeat)

with no reward pairing. After these extinction cycles, larva preference for CO2 was tested for one

hour.

Habituation experiments were done exactly as for extinction experiments, except that the 18

unrewarded cycles of repeated CO2/air exposure were presented immediately prior to the training

cycles.

For experiments in Figure 4B, we tested each larva’s initial preference for one hour, then pre-

sented three rewarded paired training cycles. For some larvae (‘Extinction Post-Train’), we then

immediately presented 18 extinction cycles, removed the larvae to food overnight as described

above, and then tested their preferences for one hour the next day. For another set of larvae

(’Extinction Pre-Test’), we removed the larvae to food immediately following training. The next day,

after the larvae were cleaned and inserted into the Y-maze, they were exposed to 18 extinction

cycles immediately prior to testing their CO2 preferences for 1 hr.

Overnight memory formation
For the memory retention experiments of Figure 4, testing and training followed identical proce-

dures as above to establish larva preference. After the second round of testing testing, the larvae

were removed from the Y-maze assay with a paintbrush and transferred to an individual 4% agar

plate (30 mm, FB0875711YZ Fisher Scientific), with yeast paste added. Larvae were kept in the dark

at 18 C for approximately 20 hr. Prior to experiments the next day, larva were removed from the

agar plate and washed in water before being placed in a new Y-maze. Larvae were then tested for
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CO2 preference for one hour as previously described. In all experiments in which larvae were

removed from the apparatus and later retested, they were placed in the same apparatus but with a

new agar Y-maze. Out of 443 larvae placed on agar plates to be tested the following day, 439 larvae

were recovered and retested. The four lost larvae were excluded from analysis.

Cycloheximide feeding protocol
For specified experiments in section Figure 4, larva were raised on ATR- food plates at 25C for 48

hr. Second instar larvae were separated from food using 30% sucrose solution and washed in water.

Four hours prior to experiments, larvae were transferred to an agar dish with yeast paste for feeding.

Yeast paste was made with either a solution of 35 mM cycloheximide (CXM, Sigma Aldrich C7698)

and 0.1 mM all-trans-retinal (ATR, Sigma Aldrich R2500) in 5% sucrose (ATR+/CXM+); or 0.1 mM

ATR in 5% sucrose (ATR+/CXM-). To verify CXM ingestion, we placed ATR+/CXM+ and ATR+/CXM-

larvae not selected for experiments back on clean food and allowed them to continue development.

95% of ATR+/CXM- larvae pupated, while only 45% of ATR+/CXM+ larvae pupated. Before the

experiment, larvae were transferred to an empty petri dish and washed with tap water before being

placed into a maze. Except where noted, the same experimental protocol was followed as for non-

CXM overnight memory.

Protocol for cycloheximide experiments
For the CXM experiments in section Figure 4, larvae were trained with either a massed or spaced

training protocol. The 20x massed training protocol was as previously described for other experi-

ments in Figure 4.

In the 10x spaced training protocol, larvae were first tested for 1 hr to determine their initial CO2

preference. They then received two cycles of paired DAN-i1 activation with CO2 presentation (15 s

of CO2 presentation paired with reward, followed by 15 s of air presentation), followed by 15 min of

air presentation. This was then repeated five times (10 activations total). In these experiments, we

did not test the larvae immediately following training but instead removed them to food and tested

their preferences the next day only.

The 10x massed training protocol was identical to the 10x spaced training protocol, except train-

ing consisted of 10 sequential cycles of paired DAN-i1 activation with CO2 presentation (15 s of CO2

presentation paired with reward, followed by 15 s of air presentation, repeated 10 times). As in the

spaced training experiments, larvae were removed to food immediately following training, and their

preferences were tested the next day only.

hs-dCREB2-b heat-shock protocol
Petri dishes with larvae were placed in an oven at 37˚C for 30 min. The petri dish was placed in a

water bath in the oven and covered to preserve humidity and to ensure ATR+ larvae were kept in

the dark. The larvae were then removed to 25˚C for a 30 min recovery period before experiments.

Experiments began immediately after the recovery period. Larvae were kept in the dark at all times

during this protocol.

Larvae were tested for CO2 preference prior to training, immediately following training, and

the next day, after being kept overnight on food without ATR. Some larvae in the spaced train-

ing groups were not active immediately following training. In the heat-shocked group, 11 out of

24 larvae made less than five decisions during the immediate test; in the not-heat-shocked

group, 6 out of 22 larvae made less than five decisions during the immediate test. For this

scheme, larvae were in the Y-maze for longer than previous experiments, as the spaced training

protocol is 80 min (compared to approximately 10 min or less for the standard massed training).

All larvae were retested the following day, even if the larva did not make many decisions when

tested immediately following training. After the overnight rest period, all non-heat-shocked and

20/24 heat-shocked larvae were active in the final test period. Inactive larvae were included in

the analysis and in the bootstrapping of error bars, but contributed little to the population mea-

sure because of the few decisions made.
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Development of initial protocols
There are a number of parameters that can be adjusted in our assay, including the identity and con-

centration of gas used as a CS, the concentration and timing of ATR feeding, the period, duty cycle,

and number of CS and US presentations, and duration of behavioral readouts before and after train-

ing. We began with our normal protocol for optogenetic activation (Gepner et al., 2015;

Gepner et al., 2018): eggs were laid on ATR supplemented food, and larvae were raised in the

dark. We somewhat arbitrarily chose a 30 s, 50% duty cycle applied for 20 cycles as our standard for

paired training presentation; we began with DANi1>CsChrimson based on previous work

(Saumweber et al., 2018; Thum and Gerber, 2019; Schleyer et al., 2020; Weiglein et al., 2019;

Eschbach et al., 2020b), and the fact that CsChrimson can be activated via red light without provok-

ing a strong visual response. We then adjusted the CO2 concentration to maximize the contrast

between CO2 preference before and after training. From this basic platform, we changed as little as

possible while manipulating the parameter of interest, for example we maintained the 30 s 50% duty

cycle paired training while changing the number of cycles, or we maintained 20 cycles while varying

the temporal sequence of CS and US presentation, or we used exactly the same 30 s, 50% duty

cycle, 20 cycle paired protocol while changing the driver to RF58E02.

Data analysis
The probability of choosing the CO2 containing channel was scored for individual larvae and for pop-

ulations as

Prob choose CO2 ¼
#APPROACH

#APPROACHþ#AVOID
(3)

The population average was determined by dividing the total number of times any larva in the

population chose the CO2 containing channel by the total number of times any larva chose either

channel. In other words, larvae that made more decisions contributed more heavily to the average.

The number of larva and total number of approach and avoid decisions made by larvae for each

type of experiment is shown in Table 2. Error bars for ’probability choose CO2’ data displays and all

significance tests in the figures were generated by bootstrapping.

For each experimental set, we performed the bootstrapping as follows. If there were X larvae

from that experiment, we selected X larvae with replacement from that set. Then, from each larvae

selected, we selected with replacement from the decisions that larvae had made. For example, if the

larvae had made Y ‘approach’ and Z ‘avoid’ decisions, we selected (Y+Z) decisions with replacement

from that set to represent the larvae. We then calculated the population average from this gener-

ated set of animals. We generated 10,0000 numerical replicates using this bootstrapping method.

Error bars were the standard deviation of these replicates. Note that in each replicate, the same ani-

mals were included in each (e.g. trained and untrained) group.

A p-value p<x indicates that at least x fraction of these replicates ended with the same ranking

result (e.g. p<0:01 between trained and untrained would indicate that in at least 9900 out of 10,000

replicates, the trained group had a larger CO2 preference than the untrained group or vice versa).

These p-values are included in the ‘Hierarchical Bootstrap’ column of Table 3.

We also performed a non-hierarchical bootstrap, in which animals were resampled but their deci-

sions were not, preserving any correlations between decisions. In this case, we generated 10,000

numerical replicates by selecting with replacement from that set of larvae; the actual sequence of

decisions made by the resampled larvae was then used without further resampling. A p-value p<x

indicates that at least x fraction of these replicates ended with the same ranking result. These p-val-

ues are included in the ‘Bootstrap Animal Only’ column of Table 3. In Table 3, we also show p-values

for the Fisher’s exact test, which treats every decision as independent, and the Mann-Whitney u-test,

which treats every larva in each group as a discrete measurement and does not account for differing

numbers of decisions made by larvae.

To fit the data in Figure 2 to various models, we used a maximum-likelihood approach. First we

grouped the larvae according to the number of cycles (nc) of training they received. In each group,

for each larva we quantified the number of decisions made following training. The number of deci-

sions made by the jth larva that received nc cycles of training was nðnc; jÞ and the fraction of times the
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Table 2. Data for experiments in Figure 1, Figure 2, Figure 3, and Figure 4.

# Larva: number of individual larvae tested for experiment type; # Approach Pre-Train: total number of times all larvae chose the chan-

nel containing air with CO2 prior to training; # Avoid Pre-Train: total number of times all larvae chose the channel containing pure air

prior to training; # Approach Post-Train: total number of times all larvae chose the channel containing air with CO2 after the indicated

training scheme; # Avoid Post-Train: total number of times all larvae chose the channel containing pure air after the indicated training

scheme; # Approach Next Day: total number of times all larvae chose the channel containing air with CO2 during testing approxi-

mately 20 hr after training; # Avoid Next: total number of times all larvae chose the channel containing pure air during testing approxi-

mately 20 hr after training. All tests were 1 hr (for each larva).

Experiment Genotype
#
Larva

# Approach
Pre-Train

# Avoid
Pre-Train

# Approach
Post-Train

# Avoid
Post-Train

# Approach
Next Day

# Avoid
Next Day

Figure 1B

Gr63a1 Gr63a1 44 831 745 - - - -

DANi1> CsChrimson,
ATR+

DANi1> CsChrimson 159 1714 4978 - - - -

DANi1> CsChrimson,
ATR-

DANi1> CsChrimson 16 256 614 - - - -

Figure 1D

Paired DANi1> CsChrimson 64 561 1760 936 868 - -

Offset After DANi1> CsChrimson 20 288 757 316 305 - -

Reverse Paired DANi1> CsChrimson 29 315 1022 154 530 - -

Offset Before DANi1> CsChrimson 19 218 512 136 315 - -

Paired, ATR- DANi1> CsChrimson 16 256 614 127 307 - -

No Training DANi1> CsChrimson 50 578 1599 479 1295 - -

DAN w/o CO2 DANi1> CsChrimson 16 260 597 161 354 - -

Driver ctrl SS00864 17 110 289 158 358 - -

Effector ctrl UAS-CsChrimson 18 214 516 114 294 - -

58E02> CsChrimson 58E02> CsChrimson 21 380 912 493 501 - -

Figure 1E DANi1> CsChrimson

Forward Paired 22 181 496 350 337 - -

Backwards Paired 18 181 438 124 320 - -

Btw CO2 23 272 652 165 283 - -

Figure 1F DANi1> CsChrimson

6.5% 19 361 568 319 290 - -

8% 27 256 567 295 255 - -

15% 19 170 368 249 233 - -

18% 64 561 1760 936 868 - -

Figure 2A DANi1> CsChrimson

0 Cycles 50 578 1599 479 1295 - -

1 Cycles 35 218 606 317 495 - -

2 Cycles 87 840 2552 1081 1292 - -

3 Cycles 31 310 930 686 686 - -

4 Cycles 32 245 712 493 511 - -

5 Cycles 63 863 2491 975 993 - -

10 Cycles 14 100 287 154 144 - -

20 Cycles 64 561 1760 936 868 - -

Figure 3B DANi1> CsChrimson

2 Cycles, Training 87 840 2552 1081 1292 - -

2 Cycles, Habituation +
Training

30 385 1127 422 554 - -

Table 2 continued on next page
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Table 2 continued

Experiment Genotype
#
Larva

# Approach
Pre-Train

# Avoid
Pre-Train

# Approach
Post-Train

# Avoid
Post-Train

# Approach
Next Day

# Avoid
Next Day

2 Cycles, Training +
Extinction

30 336 946 375 793 - -

3 Cycles, Training 30 308 924 675 679 - -

3 Cycles, Habituation +
Training

18 222 591 260 294 - -

3 Cycles, Training +
Extinction

26 279 695 195 416 - -

4 Cycles, Training 30 225 659 490 502 - -

4 Cycles, Habituation +
Training

18 239 701 372 352 - -

4 Cycles, Training +
Extinction

27 384 1074 394 475 - -

5 Cycles, Training 63 863 2491 975 993 - -

6 Cycles, Habituation +
Training

19 266 758 367 324 - -

6 Cycles, Training +
Extinction

18 253 687 309 317 - -

10 Cycles, Training 14 100 287 154 144 - -

10 Cycles, Habituation
+ Training

30 406 1193 607 503 - -

10 Cycles, Training +
Extinction

30 426 1180 401 386 - -

Figure 4B DANi1> CsChrimson

20x 28 380 1172 509 499 459 409

20x (Only Test Next
Day)

14 224 768 - - 296 250

5x 29 472 1427 488 480 404 461

2x 42 514 1537 594 693 201 548

2x (Only Test Next Day) 22 209 696 - - 213 283

No Train 20 316 889 187 544 104 337

RP 20x 21 282 905 121 430 109 361

Ext Post-Train 23 181 477 - - 158 365

Ext Pre-Test 31 417 1002 - - 385 429

Figure 4C DANi1> CsChrimson

M 20x (CXM+/ATR+) 20 110 282 252 237 237 272

M 20x (CXM-/ATR+) 17 159 419 271 236 228 235

S 20x (CXM+/ATR+) 23 191 486 - - 150 316

S 20x (CXM-/ATR+) 20 197 511 - - 254 264

M 10x (CXM+/ATR+) 23 136 345 - - 331 344

M 10x (CXM-/ATR+) 20 175 454 - - 419 375

Figure 4D DANi1> hs-dCREB2-b;
CsChrimson

M 10x HS 21 175 434 392 370 253 246

M 10x No HS 22 248 656 367 353 451 490

S 10x HS 24 172 420 68 156 153 339

S 10x No HS 22 294 736 212 184 335 352
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Table 3. p-Values for experiments in Figure 1, Figure 2, Figure 3, and Figure 4.

P-values for experiments were calculated: Bootstrap - p-values calculated as explained in Materials and methods; Fisher - p-values cal-

culated using Fisher’s exact test; U-test - p-values calculated using two-sided Mann–Whitney U test. Unless otherwise noted, p-values

are calculated between pre-train and post-train data. A shaded row indicates not all tests reach the same significance level (out of ns,

p <0.05, p <0.01, p <0.001).

Experiment Genotype
Hierarchical
Bootstrap

Bootstrap Animal
Only Fisher U-test

Figure 1B

Gr63a1/DANi1> CsChrimson, ATR+ <10�4 <10�4 <10�4 <10�4

Gr63a1/DANi1> CsChrimson, ATR- <10�4 <10�4 <10�4 <10�4

Figure 1D

Paired DANi1> CsChrimson <10�4 <10�4 <10�4 <10�4

Offset After DANi1> CsChrimson <10�4 <10�4 <10�4 <10�4

Reverse Paired DANi1> CsChrimson 0.3429 0.2689 0.6166 0.9379

Offset Before DANi1> CsChrimson 0.4479 0.4373 0.9479 0.9770

Paired, ATR- DANi1> CsChrimson 0.4762 0.4315 1.000 0.2658

No Training DANi1> CsChrimson 0.4066 0.3664 0.7726 0.9835

DAN w/o CO2 DANi1> CsChrimson 0.3935 0.3102 0.7173 0.4852

Driver ctrl SS00864 0.3106 0.0313 0.3411 0.3977

Effector ctrl UAS-CsChrimson 0.3383 0.2361 0.6336 0.8366

58E02> CsChrimson 58E02> CsChrimson <10�4 <10�4 <10�4 <10�4

Figure 1C DANi1> CsChrimson

Forward Paired <10�4 <10�4 <10�4 <10�4

Backwards Paired 0,3368 0.163 0.6801 0.1939

Btw CO2 0.0107 0.0001 0.006543 0.0003257

Figure 1D DANi1> CsChrimson

6.5% <10�4 <10�4 <10�4 <10�4

8% <10�4 <10�4 <10�4 <10�4

15% <10�4 <10�4 <10�4 <10�4

18% <10�4 <10�4 <10�4 <10�4

Figure 2A DANi1> CsChrimson

0 Cycles 0.4132 0.3647 0.7726 0.9835

1 Cycles 0.0003 <10�4 <10�4 0.0591

2 Cycles <10�4 <10�4 <10�4 <10�4

3 Cycles <10�4 <10�4 <10�4 <10�4

4 Cycles <10�4 <10�4 <10�4 <10�4

5 Cycles <10�4 <10�4 <10�4 <10�4

10 Cycles <10�4 <10�4 <10�4 <10�4

20 Cycles <10�4 <10�4 <10�4 <10�4

Figure 3B DANi1> CsChrimson

2 Cycles, Training <10�4 <10�4 <10�4 <10�4

2 Cycles, Habituation + Training <10�4 <10�4 <10�4 <10�4

2 Cycles, Training + Extinction 0.0117 0.0020 0.001339 0.04743

3 Cycles, Training <10�4 <10�4 <10�4 <10�4

3 Cycles, Habituation + Training <10�4 <10�4 0.0007459 <10�4

3 Cycles, Training + Extinction 0.1133 0.0176 0.1763 0.03069

4 Cycles, Training <10�4 <10�4 <10�4 <10�4

Table 3 continued on next page
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Table 3 continued

Experiment Genotype
Hierarchical
Bootstrap

Bootstrap Animal
Only Fisher U-test

4 Cycles, Habituation + Training <10�4 <10�4 <10�4 <10�4

4 Cycles, Training + Extinction <10�4 <10�4 <10�4 <10�4

5 Cycles, Training <10�4 <10�4 <10�4 <10�4

6 Cycles, Habituation + Training <10�4 <10�4 <10�4 <10�4

6 Cycles, Training + Extinction <10�4 <10�4 <10�4 <10�4

10 Cycles, Training <10�4 <10�4 <10�4 <10�4

10 Cycles, Habituation + Training <10�4 <10�4 <10�4 <10�4

10 Cycles, Training + Extinction <10�4 <10�4 <10�4 <10�4

Figure 4B DANi1> CsChrimson

20x Pre-Test/Post-Test <10�4 <10�4 <10�4 <10�4

20x Pre-Test/Next Day <10�4 <10�4 <10�4 <10�4

20x (Only Test Next Day) Pre-Test/Next Day <10�4 <10�4 <10�4 <10�4

5x Pre-Test/Post-Test <10�4 <10�4 <10�4 <10�4

5x Pre-Test/Next Day <10�4 <10�4 <10�4 <10�4

2x Pre-Test/Post-Test <10�4 <10�4 <10�4 <10�4

2x Pre-Test/Next Day 0.2086 0.0501 0.3524 0.07216

2x (Only Test Next Day) Pre-Test/Next Day <10�4 <10�4 <10�4 <10�4

No Train Pre-Test/Post-Test 0.4035 0.3319 0.7893 0.2003

No Train Pre-Test/Next Day 0.1583 0.0530 0.3071 0.8884

RP 20x Pre-Test/Post-Test 0.2677 0.1507 0.4276 0.7396

RP 20x Pre-Test/Next Day 0.4205 0.3481 0.8474 0.3765

Ext Post-Train Pre-Test/Next Day 0.1801 0.0146 0.3315 0.01336

Ext Pre-Test Pre-Test/Next Day <10�4 <10�4 <10�4 <10�4

Figure 4C DANi1> CsChrimson

M 20x (CXM+/ATR+) Pre-Test/Post-Test <10�4 <10�4 <10�4 <10�4

M 20x (CXM+/ATR+) Pre-Test/Next Day <10�4 <10�4 <10�4 <10�4

M 20x (CXM-/ATR+) Pre-Test/Post-Test <10�4 <10�4 <10�4 <10�4

M 20x (CXM-/ATR+) Pre-Test/Next Day <10�4 <10�4 <10�4 <10�4

S 10x (CXM+/ATR+) Pre-Test/Next Day 0.1099 0.014 0.1671 0.02985

S 10x (CXM-/ATR+) Pre-Test/Next Day <10�4 <10�4 <10�4 <10�4

M 10x (CXM+/ATR+) Pre-Test/Next Day <10�4 <10�4 <10�4 <10�4

M 10x (CXM-/ATR+) Pre-Test/Next Day <10�4 <10�4 <10�4 <10�4

Figure 4D DANi1> hs-dCREB2-b;
CsChrimson

M 10x, HS Pre-Test/Post-Test <10�4 <10�4 <10�4 <10�4

M 10x, HS Pre-Test/Next Day <10�4 <10�4 <10�4 <10�4

M 10x, No HS Pre-Test/Post-Test <10�4 <10�4 <10�4 <10�4

M 10x, No HS Pre-Test/Next Day <10�4 <10�4 <10�4 <10�4

S 10x, HS Pre-Test/Post-Test 0.3804 0.2830 0.7310 0.2750

S 10x, HS Pre-Test/Next Day 0.2645 0.08860 0.4650 0.3802

S 10x, No HS Pre-Test/Post-Test <10�4 <10�4 <10�4 <10�4

S 10x, No HS Pre-Test/Next Day <10�4 <10�4 <10�4 <10�4

Lesar et al. eLife 2021;10:e70317. DOI: https://doi.org/10.7554/eLife.70317 23 of 30

Research article Neuroscience

https://doi.org/10.7554/eLife.70317


larva chose the CO2 containing channel was pðnc; jÞ. Then we sought a set of parameters � that

maximized
X

nc

X

j

logPðpðnc; jÞjnðnc; jÞ; �Þ (4)

where P was the model specific-probability function. For instance, for the quantized learning (two-

Gaussian shifting fraction) model:

Pðpðnc; jÞjnðnc; jÞ; �Þ ¼ fuðncÞN pðnc; jÞ;�u; ~s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�u � ð1��uÞ
nðnc; jÞ

s
 !

þ

ð1� fuðncÞÞN pðnc; jÞ;�t; ~s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�t � ð1��tÞ
nðnc; jÞ

s
 !

(5)

where Nðx;�;sÞ ¼ 1
ffiffiffiffiffiffiffiffi

2ps2
p exp� ðx��Þ2

2s2 and the parameters � are

�¼ f�u;�t; ~s; fuð0Þ; fuð1Þ; fuð2Þ; fuð3Þ; fuð4Þ; fuð5Þ; fuð10Þ; fuð20Þg (6)

The parameter ~s represents an adjustment to the expected variance due to counting statistics. If

all larva chose randomly and independently from the two channels with a fixed probability �p of

choosing CO2, then we would expect that the number of times the CO2 containing channel would

be binomially distributed. For ease of computation, we approximated the binomial distribution as a

normal distribution. In this case, the probability density of observing pðnc; jÞ given nðnc; jÞ would be

normally distributed with mean �p and variance

s
2 ¼ ð�pÞð1� �pÞ

nðnc; jÞ
(7)

In fact, we found that after choosing a CO2 containing channel, both naive and trained larvae are

less likely to choose the CO2 containing channel the next time they approach the intersection.

Because the choices are not independent, the variance of the mean of a series of choices is not given

by Equation 7. Instead, we modeled the variance as

s
2 ¼ ~s2

ð�pÞð1� �pÞ
nðnc; jÞ

(8)

where ~s was a global fit parameter in the shifting and exponential fraction models and in the shifting

mean model a function of the amount training. This formulation preserves the properties that the

variance should increase as the mean probability of choosing CO2 approaches 50% and should be

larger when fewer decisions are averaged together. However, if we instead just assume a single

global s, the results of our analysis (that the exponential fraction model is preferred) are unchanged.

In the graded learning (single Gaussian with shifting mean and variance) model, m and s were

allowed to change as a function of training. The probability of an individual observation was

Pðpðnc; jÞjnðnc; jÞ; �Þ ¼N pðnc; jÞ;�ðncÞ;
sðncÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðnc; jÞ
p

 !

(9)

and the parameters were

�¼ f�ð0Þ;sð0Þ;�ð1Þ;sð1Þ;�ð2Þ;sð2Þ;�ð3Þ;sð3Þ;�ð4Þ;sð4Þ;�ð5Þ;sð5Þ;�ð10Þ;sð10Þ;�ð20Þ;sð20Þg (10)

The exponential fraction model is identical to the quantized learning model, except that the frac-

tion of untrained larvae is an exponentially decreasing function of the number of training cycles:

fuðncÞ ¼ l
nc (11)

and the parameters were

�¼ f�u;�t; ~s;lg (12)
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These models were then fit to the data by maximizing the log-likelihood of the observed data set

using the MATLAB function fmincon. The predictions of these fits are shown in Figure 2. These

results are summarized in Table 4, along with the Aikake and Bayes Information Criterion, AIC and

BIC, which are used to compare models with different numbers of parameters. According to both

AIC and BIC, the exponential fraction model is strongly favored.

Throughout the paper ’Fraction of larvae trained’ represents the best fit to the two Gaussian shift-

ing fraction model. The error bars represent the uncertainty in the model fit. Specifically, they repre-

sent the range of f over which

Table 4. Model fits to data in Figure 2.

Shifting Mean and ~s, shifting fraction, and exponential fraction models are presented in Figure 2. Model name: name of the model.

Formula: expression for the probability of the data given the model and its parameters. # params: number of free parameters in the

model. D logðPÞ logarithm of the probability of the data given best fit to this model minus logarithm of the probability of the data given

the best fit model overall. A higher (less negative) value means the model better fits the data without regard to the number of parame-

ters. DAIC, DBIC - Aikake and Bayes Information Criterion minus the lowest values over the models tested. Lower numbers indicate

model is favored. According to both criterion, the exponential fraction model is strongly favored over the shifting fraction model, and

the shifting fraction model is strongly favored over all models except the exponential fractional model.

Model name Formula # params D logðPÞ DAIC DBIC

Shifting Mean (fixed ~s)
P /

Y

nc2ð0;1;2;3;4;5;10;20Þ

Y

j

N pðnc; jÞ; �ðncÞ; ~s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ðncÞ � ð1� �ðncÞÞ
nðnc; jÞ

s
 !

9 �42.7 84.86 104.45

Shifting Mean and s

(Graded learning) P /
Y

nc2ð0;1;2;3;4;5;10;20Þ

Y

j

N pðnc; jÞ; �ðncÞ;
sðncÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðnc; jÞ
p

 !

16 �12.9 39.3 86.3

Shifting Fraction
(Quantized learning) P /

Y

nc2ð0;1;2;3;4;5;10;20Þ

Y

j

fuðncÞN pðnc; jÞ; �u; ~s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�u � ð1� �uÞ
nðnc; jÞ

s
 !

þ

. . .ð1� fuðncÞÞN pðnc; jÞ; �t ; ~s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�t � ð1� �tÞ
nðnc; jÞ

s
 !

11 �3.93 11.3 38.7

Shifting Fraction
(3 clusters) P /

Y

nc2ð0;1;2;3;4;5;10;20Þ

Y

j

f1ðncÞN pðnc; jÞ; �1; ~s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�1 � ð1� �1Þ
nðnc; jÞ

s
 !

þ

. . .f2ðncÞN pðnc; jÞ; �2; ~s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � ð1� �2Þ
nðnc; jÞ

s
 !

þ

. . .ð1� f1ðncÞ � f2ðncÞÞN pðnc; jÞ; �3; ~s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�3 � ð1� �3Þ
nðnc; jÞ

s
 !

20 0 21.4 84.1

Exponential Fraction
(All-or-none) P /

Y

nc2ð0;1;2;3;4;5;10;20Þ

Y

j

l
ncN pðnc; jÞ; �u; ~s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�u � ð1� �uÞ
nðnc; jÞ

s
 !

þ

. . .ð1� l
nc ÞN pðnc; jÞ; �t ; ~s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�t � ð1� �tÞ
nðnc; jÞ

s
 !

4 �5.3 0 0

Symbol Definition Symbol Definition

nc number of training cycles pðnc; jÞ fraction of times jth larva chose CO2 after nc cycles

�ðncÞ mean probability of choosing CO2 after nc training cycles nðnc; jÞ # choices made by jth larva after nc training cycles

~s global adjustment to binomial standard deviation sðncÞ training dependent standard deviation

�u probability of larva in untrained group choosing CO2 �t probability of larva in trained group choosing CO2

fuðncÞ fraction of larvae in untrained group after nc cycles �1; �2; �3 probability of larva in group 1,2,3 choosing CO2

f1ðncÞ; f2ðncÞ fraction of larvae in groups 1,2 after nc cycles l fraction of larvae not trained after one cycle

Nðx; �;sÞ
normal cdf:

1
ffiffiffiffiffiffiffiffiffiffiffi

2ps2
p e

�ðx��Þ2
2s2

D logðPÞ relative log probability of data given model

AIC Aikake Information Criterion: 2k � 2 logðPÞ, k = # params DAIC AIC - lowest AIC

BIC Bayes Information Criterion: k logðnAÞ � 2 logðPÞ, k = # params, nA = # animals DBIC BIC - lowest BIC
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logPðdataj�0; f Þ � logPðdataj�0; f0Þ�
1

2
(13)

where f is the fraction of trained larvae, f0, is the best fit fraction of trained larvae, and �0 represents

the best fit of the remainder of the parameters, which are not adjusted.
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