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Abstract Response inhibition is among the core constructs of cognitive control. It is notori-
ously difficult to quantify from overt behavior, since the outcome of successful inhibition is the lack 
of a behavioral response. Currently, the most common measure of action stopping, and by proxy 
response inhibition, is the model-based stop signal reaction time (SSRT) derived from the stop signal 
task. Recently, partial response electromyography (prEMG) has been introduced as a complementary 
physiological measure to capture individual stopping latencies. PrEMG refers to muscle activity initi-
ated by the go signal that plummets after the stop signal before its accumulation to a full response. 
Whereas neither the SSRT nor the prEMG is an unambiguous marker for neural processes underlying 
response inhibition, our analysis indicates that the prEMG peak latency is better suited to investigate 
brain mechanisms of action stopping. This study is a methodological resource with a comprehensive 
overview of the psychometric properties of the prEMG in a stop signal task, and further provides 
practical tips for data collection and analysis.

Editor's evaluation
The authors propose that the covert latency of the stopping process, which allows for the stop-
ping of movements in tasks like the stop-signal paradigm, can be measured through the offset 
latency of bursts of electromyographic (EMG) activity that is observable on trials in which no overt 
response (typically a button press) was produced. The investigation is extensive and systematic and 
will provide a helpful methodological resource that rigorously specifies this alternative measure of 
stopping.

Introduction
Response inhibition, or the ability to stop actions, is a core construct of cognitive control and is widely 
studied among cognitive and clinical neuroscientists. Most of our knowledge about inhibitory capa-
bility is derived from a single behavioral measure, the stop signal reaction time (SSRT), which quanti-
fies the time the stopping process needs to countermand an already initiated action. SSRTs are slower 
in patients with attention deficit/hyperactivity disorder, obsessive compulsive disorder, drug abuse, 
schizophrenia, Parkinson’s disease, and Tourette syndrome among others (Jahanshahi et al., 2015; 
Lipszyc and Schachar, 2010; Smith et al., 2014; Snyder et al., 2015; Wylie et al., 2013; Yaniv et al., 
2017). However, accumulating evidence suggests that SSRT estimations may be unreliable in many 
practical settings (Bissett et al., 2021b; Bissett and Logan, 2014; Matzke et al., 2017; Skippen 
et al., 2019; Verbruggen et al., 2013). Here, we scrutinize electromyography (EMG) recordings from 
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the muscles that are successfully stopped as a potential physiological marker to capture individual 
differences in action stopping.

The stop signal task is among the most common experimental tasks used to study inhibition, with 
more than 7000 publications using the task in the last years (Verbruggen et al., 2019). The principle 
of the task is very simple: participants react repeatedly to a go signal with a button press but need to 
inhibit this response when a stop signal appears after the go signal with a variable delay (stop signal 
delay, SSD). The resulting go reaction time distribution, probability of responding despite stop signal 
presentation, and the resulting SSDs are the necessary variables for calculating the SSRT.

The SSRT estimation is based on the independent race model (or horse race model), in which go 
and stop processes independently race against each other, and whichever process wins this race, 
determines whether a planned action will be executed or not (Band et al., 2003; Logan and Cowan, 
1984). The theoretical basis of the model is well established and an extension of this model also has 
biological plausibility (Boucher et  al., 2007). However, recent work indicates that SSRT estimates 
may be inaccurate in many practical cases, for example due to extensive slowing of go responses 
(Verbruggen et al., 2013), violations of the independence assumptions at short SSDs (Bissett et al., 
2021b), or failures to initiate the stop process (Skippen et al., 2019). The available solutions focus 
on the derivation of putatively improved SSRT estimates, either by refining the estimation method 
(Verbruggen et al., 2019), discarding participants or trials that show obvious violations of the model 
assumptions (Bissett et  al., 2021a; Bissett et  al., 2021b), or by proposing alternative modelling 
approaches (Heathcote et al., 2019; Matzke et al., 2017; Matzke et al., 2013). However, the field 
has been in a remarkable standstill when it comes to the development of complementary measures 
that could potentially bypass issues related to model assumptions in the first place.

A notable exception is the proposition to derive a more direct measure of the stopping latency 
from EMG. Specifically, EMG recorded at the effector muscles that generate the response can be used 
to capture the time-point when the motor activity begins to decline in the muscles. In many success-
fully stopped trials (trials without a registered response), surface EMG recordings still capture small 
bursts of muscle activity. These bursts are presumably responses initiated after the go signal that are 
stopped before the muscle activity culminates in a button press. We have termed these responses 
partial response EMG (prEMG; see Box 1 for visualization and reflections on the naming). The prop-
osition to use the peak latency of the prEMG as an indicator of an individual’s stopping speed seems 
to have originated independently in two different laboratories (Atsma et al., 2018; Raud and Huster, 
2017). Raud and Huster used surface EMG from thumb muscles in a selective stop signal task and 
measured the prEMG peak latency to be about 150 ms, which was significantly shorter than the 
corresponding SSRT of about 200 ms. Atsma et al. used intramuscular recordings of the upper-limb 
muscle during reaching movements. They reported a prEMG offset latency (the time-point when 
muscle activity returned to the baseline level) at 165 ms, compared with an SSRT of 244 ms. While 
their methods and goals were different, both studies showed that the EMG-derived stopping latency 
was much faster than that of the model-based SSRT.

While using the prEMG latency as an index of stopping capability is a relatively recent sugges-
tion, recording EMG in a stop signal task is not particularly novel by itself. Earlier work identified 
that muscle activity can be stopped at any time before the movement is completed, and additionally 
focused on the time-courses of different electrophysiological measures, that is EMG, electrocardiog-
raphy, and electroencephalography (EEG; de Jong et al., 1990; Jennings et al., 1992; van Boxtel 
et al., 2001). These studies identified the motor cortex as a site of inhibition, yet they showed that 
the peripheral nervous system is affected as well. Several studies have attempted to interpret the 
prEMG within the context of the horse race model. For instance, trials with prEMG seem to roughly 
correspond to the middle part of the go-RT distribution, indicating that these trials have a relatively 
fast go process that nonetheless is slow enough to be suppressed by the stop process (de Jong 
et al., 1990; van Boxtel et al., 2001). Furthermore, the occurrence of the prEMG is dependent on 
the SSD, as prEMG frequency declines and its amplitude increases with increasing SSD (Coxon et al., 
2006). Interestingly, EMG in unsuccessful stop trials may be affected by the stop process as well, as 
these trials exhibit lower EMG amplitudes, but prolonged motor times (the time between EMG onset 
and the registered response) compared with standard go responses (van de Laar et al., 2014). This 
violates the assumption of independence underlying the independent horse race model, which states 
that unsuccessful stop trials are drawn from the distribution of fast go responses and should therefore 
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Box 1. Definition and naming of the partial response 
EMG (prEMG).

prEMG refers to small muscle bursts in successful stop trials (third panel in Box 1—Figure 
1). These bursts are elicited in response to the go signal but stopped in response to the stop 
signal before the muscle activation culminates in a button press. As such, the trial itself is 
considered a successful stop trial, but the prEMG onset and peak latencies indicate the exact 
timing of the go- and stop processes at the effector muscles, respectively.
Whereas we use the term prEMG here, this term has not been used consistently across 
studies. However, we believe prEMG to describe the phenomenon most accurately without 
any assumptions about the underlying mechanisms. Below, we list the terms found in the 
previous literature.
Partial EMG. Early papers used this term and it is a more concise version of the term prEMG. 
However, partial EMG implies that the EMG signal itself is incomplete, which is not the case. 
Rather, the EMG signal in successful stop trials itself is perfectly valid but different from other 
EMG bursts because the response is not completed.
Interrupted EMG. McGarry and Franks, 2003; McGarry and Franks, 1997 used this 
term for muscle bursts in stop trials that had a similar shape at their onset to the go EMG, 
indicating a slow stopping process after the motor pool activation by the go process. They 
further dissociated interrupted response EMG from partial response EMG, the latter having 
accumulation rates and milder slopes at their onset. This was interpreted as a weakened 
activation of the motor pool (or a leakage signal) in trials where go EMG was interrupted early, 
before reaching the motor pool. However, they used a stop signal task with unusually short 
SSDs from −100 to 100 ms relative to the go signal. Dissociation between these response 
types is unlikely in a more typical stop signal task with SSDs >100 ms.
Partial error. This term is consistently used in tasks in which an erroneous automatic response 
needs to be overridden by a correct response (e.g., Burle et al., 2002; Coles et al., 1995; 
Rochet et al., 2014). In such tasks, the term ‘error’ is appropriate. However, the prEMG in the 
stop signal task is not erroneous as it is elicited by the go signal, which is perfectly in line with 
the task instructions.
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Box 1—figure 1. Examples of electromyography (EMG) signals in a go, unsuccessful stop, and successful 
stop trial in an example participant. EMG in go and unsuccessful stop trials is associated with a button press 
(marked by RT), while no button press is registered in successful stop trials and the muscle burst therefore 
qualifies as partial response EMG (prEMG). The dashed vertical lines mark the onset of go signal, stop 
signal, and the recorded reaction time (RT).

continued on next page
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be unaffected by the stop signal. The dependence of go and stop processes was recently directly 
shown by Raud et al., 2020a who found a positive correlation between go-locked prEMG onsets and 
stop-locked prEMG peak latencies at the level of single stop trials.

The earlier timing of the prEMG peak latency compared to the SSRT has been replicated in a 
number of independent studies (Hannah et al., 2020; Jana et al., 2020; Raud et al., 2020a; Raud 
et al., 2020b; Sundby et al., 2021; Tatz et al., 2021; Thunberg et al., 2020). However, while the 
existence of the prEMG is relatively well established, its characteristics and utility have not been 
explored sufficiently. We therefore present a thorough investigation of the prEMG in the stop signal 
task. Importantly, we treat prEMG as a marker of action stopping only, without specifically linking it 
to inhibitory brain mechanisms, as mechanisms other than active inhibition may cause cessation in 
muscle activity too. This separation between action stopping and response inhibition holds for the 
SSRT as well, but is often overlooked in the literature, in which the stop runner in the horse race model 
is frequently interpreted as an active process to counteract the go process. Nonetheless, as the SSRT 
and the prEMG have been previously associated with the same underlying neural mechanisms, we 
benchmark the prEMG peak latency against the SSRT and the existing horse race model framework; 
investigate potential relationships between response onset, stopping, and the SSD at a single-trial 
level; present novel information about stopping variability; and estimate the reliability of the EMG 
measures. We additionally provide practical tips for data collection and analysis, accompanied by 
publicly available analysis code that can easily be adjusted to new datasets. With that, we demon-
strate the full potential of prEMG with the aim to encourage and accelerate future studies to adopt it 
as a standard outcome measure of supposed inhibition tasks.

Results
Behavior and EMG in a stop signal task
We analyzed surface EMG recorded over the thumb muscles (abductor pollicis brevis) from 46 healthy 
young adults who performed a standard stop signal task. The primary task was a choice reaction 
time task where participants had to respond to a go signal either with a left or right hand button 
press (Figure 1A). In 24% of the trials, a stop signal occurred instructing the participants to stop their 
response. The full analysis pipeline was additionally applied to a publicly available dataset provided 
by Jana et al., 2020 to replicate the current results. The main difference between these two datasets 
was the proportion of trials with prEMG of successful stop trials, which was relatively low (~20%) in 
the discovery, but higher (~60%) in the replication dataset. With a few minor exceptions, the results 
were the same in both datasets. Therefore, we report the results obtained on the discovery dataset, 
and only report the replication results when these deviate from the discovery dataset results. The 
complete replication results are available in Appendix 1.

The behavioral results (Table 1) were in line with previous studies, with stopping accuracies at 50% 
and an SSRT (integration method with RT replacement for go omissions) of 199 ms. We also esti-
mated behavioral parameters using the Bayesian Ex-Gaussian Estimation of Stop Signal Distribution 
approach accounting for go and trigger failures (BEESTS; Matzke et al., 2019; Matzke et al., 2013), 
which resulted in an SSRT of 202 ms (Table 1).

Subthreshold EMG. This term was used by Raud and Huster, 2017, indicating that the EMG 
in successful stop trials did not reach the threshold to trigger the button press. However, 
such thresholds are relatively arbitrary and depend on the physical properties of the response 
device. In addition, this naming becomes inappropriate if continuous movements are of 
interest, as for example is the case with measurements of force or movement trajectories.
Cancel time. This term, suggested by Jana et al., 2020, specifically refers to the prEMG 
peak latency. Whereas appealing due to its simplicity, it is potentially misleading as it implies 
a direct cancellation mechanism for stopped movements. Yet, alternative mechanisms may 
cause the same EMG phenomenon, such as the activation of antagonist muscle groups, or a 
simple reduction in response maintenance.

https://doi.org/10.7554/eLife.70332
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EMG bursts were identified automatically using a threshold-based algorithm (see Box 2 and Mate-
rials and methods for details). EMG bursts were detected in 99% of go trials and 98% of unsuccessful 
stop trials. Note that while 100% detection rate is expected in those trials, variations in signal quality 
(increased baseline muscle tone, unrelated movement artifacts, etc.) led to slight conservative bias in 
the detection algorithm. PrEMG was detected in 23% of successful stop trials.

Averaged EMG waveforms for each trial type are shown in Figure 1 and the summary statistics 
are presented in Table 2. When time-locked to go signal onset, the trials with a registered button 
press showed large EMG activity (Figure 1B). Note that go-locked averaging over varied SSDs causes 
a smeared waveform for prEMG. We used Bayesian hypothesis testing to compare the EMG onset 
latencies and peak amplitudes between trial types. This confirmed that the EMG onsets were earlier in 
unsuccessful stop trials than in go trials (BF = 1.32 × 1024) and that prEMG onset latencies were similar 
to the EMG onset latencies in go trials (BF = 0.28). When time-locked to the EMG onset (Figure 1C), 
the rising flanks of the EMG waveforms were remarkably similar across all trials but reached very 
different amplitudes. The peak amplitudes in successful stop trials were considerably smaller than in 
go (BF = 2.77 × 1029) and unsuccessful stop trials (BF = 1.91 × 1027). Interestingly, EMG amplitudes in 
unsuccessful stop trials were also smaller than those in go trials (BF = BF = 2.32 × 107), suggesting that 
the former were affected by stop signal processing despite the registered button press.

When time-locked to stop signal onset, a very clear prEMG waveform appeared (Figure 1D), which 
started declining at 165 ms after the stop signal. A similar decline also occurred in unsuccessful stop 

Figure 1. Task description and EMG time-courses. (A) Task depiction; (B, C) electromyography (EMG) time-courses, time-locked to (A) go signal onset, 
(B) EMG onset, and (C) stop signal onset. The lines depict averaged activity and the shaded areas depict 95% confidence intervals across participants. 
sstop – successful stop; ustop – unsuccessful stop.

https://doi.org/10.7554/eLife.70332
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trials, although they peaked slightly earlier at 99 ms after the stop signal (BF = 3.47 × 1012). Specu-
latively, the steep decline of the falling flank seen in unsuccessful stop trials may suggest that unsuc-
cessful stop trials were also affected by the processes triggered by the stop signal around the same 
time as the prEMG decline in successful stop trials.

We additionally quantified motor time, that is the difference between the EMG onset and the RT, 
and the rise time, that is the duration of the EMG burst from its onset to peak (relative to go signal). 
Even though the differences are numerically small (Table 2), the motor time was longer in unsuc-
cessful stop trials than in go trials (BF = 5.94; replicating the finding of van de Laar et al., 2014). 
When go trials were divided into fast, medium, and slow trials (see paragraph about the assessment 
of contextual independence for details on this division), the motor times increased with increasing 
RTs, so that slow go-trial motor times were equivalent to unsuccessful stop trial motor times (BF = 
0.16). The motor time results deviated somewhat in the replication dataset, which had generally much 
longer motor times at 118 ms. While motor times still increased with increasing RT in go trials, the 
unsuccessful stop trial motor times were equivalent with the medium part of the go distribution (BF = 
0.39), resulting in equivalence also with the full distribution (BF = 0.17). The absolute rise times were 
also longer in the replication dataset (ranging between 30 and 60 ms for different conditions), but 
they were shorter in unsuccessful stop trials than in go trials in both datasets (discovery BF = 1.16 
× 106; replication BF = 3.93 × 105). Altogether, these results indicate different response dynamics in 
unsuccessful stop trials and go trials, suggesting that unsuccessful stop trials may be affected by the 
stop process as well. However, this may be contingent on task procedure and even on the response 
device mechanics. Here, we used a response device with very little resistance to produce a button 
press, resulting in very small motor times and low proportion of trials with prEMG. Nonetheless, the 
replication dataset with longer motor times and a higher prEMG proportion still indicates different 
response dynamics in go and unsuccessful stop trials.

Table 1. Behavioral and BEESTS parameters summary statistics.
RT = reaction time; sd =standard deviation; SSD = stop signal delay; SSRT = stop signal reaction 
time. N = 46. *One outlier was removed from the SSRT sd data due to an implausible value (378 ms).

Mean sd Median min max

Behavior

Go accuracy (%) 97.92 2.21 98.76 91.23 100.00

Go errors (%) 0.69 0.88 0.37 0.00 5.12

Go omissions (%) 1.40 1.95 0.73 0.00 8.04

Go RT (ms) 545.28 77.11 549.04 398.29 715.24

SSD (ms) 347.50 97.59 349.53 155.71 551.60

SSRT (ms) 198.99 29.63 202.00 120.05 263.97

Stop accuracy (%) 49.88 1.84 50.46 43.06 54.17

Unsuccessful stop RT (ms) 480.47 70.85 496.64 351.11 671.92

BEESTS parameters

Go failures (%) 1.56 2.18 0.76 0.04 9.12

Trigger failures (%) 1.27 1.62 0.51 0.28 8.94

Go RT (mean; ms) 546.51 78.83 548.71 396.93 722.25

Go RT (sd; ms) 113.52 28.97 112.25 65.57 167.46

SSRT (mean; ms) 201.83 21.39 200.03 166.22 248.85

SSRT (sd; ms)* 30.70 13.38 27.69 14.94 86.55

The online version of this article includes the following source data for table 1:

Source data 1. Behavioral data.

Source data 2. BEESTS data.

https://doi.org/10.7554/eLife.70332
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Box 2. Detecting prEMG and extracting peak latency.

EMG detection
The identification of EMG bursts is a signal detection problem. Given that the signal-to-noise 
ratio of EMG data is relatively high, simple threshold-based detection algorithms perform 
reasonably well. Basic preprocessing steps to further increase the signal-to-noise ratio may 
include high-pass filtering, rectification or a root mean square transformation, smoothing or 
low-pass filtering, baseline normalization, and the definition of a temporal window eligible for 
burst detection. We additionally normalize the full EMG time-courses to be able to keep the 
detection threshold constant across participants. Our processing pipeline is freely available at 
the Open Science framework. Alternatively, one may refer to the toolbox provided by Jackson 
and Greenhouse, 2019.
Simple threshold-based algorithms may, however, show declined performance in the presence 
of high baseline EMG activity or when crosstalk from different muscle groups is prevalent. In 
such cases, burst detection in the frequency domain may outperform detection in the time-
domain (see Atsma et al., 2018; Liu et al., 2015 for examples).
Extracting peak latency
There are several ways to extract the prEMG peak latency. Here, we extracted the peak 
latency of an EMG burst from each trial in which prEMG was detected, and then averaged 
across trials to get a summary measure for each participant (Box 2—Figure 1, left upper 
panel). This method typically requires extra cleaning and restraints, discarding trials with 
elevated baseline muscle tone or irrelevant muscle artifacts outside of the expected response 
window. A more robust method is to first average the EMG activity time-point-wise across all 
successful stop trials with prEMG and then extract a single peak latency from the averaged 
waveform (Box 2—Figure 1, left middle panel). A third alternative is to extract the average 
peak latency from trials stemming from the most frequent SSD (the mode; Box 2—Figure 1, 
left lower panel). This has the closest resemblance to the SSRT estimation (as that is typically 
calculated at a single SSD, such as the mean SSD), but this method also has significantly fewer 
available trials, reducing the overall signal-to-noise ratio.

Box 2—figure 1. (Left panels) Schematics of partial response electromyography (prEMG) peak latency 
extraction methods on four trials, in which the ‘bumps’ represent rectified and smoothed EMG bursts, and 
the vertical red lines indicate the extraction points for latencies from the time-courses. In case of several 
red lines, the final estimate was averaged across the extracted latencies. G and s mark the onset of go and 
stop signal, respectively, with s also marking the zero time-point. (Right panels) Correlations between the 
prEMG peak latency and the SSRT, calculated by different methods. The diagonal shows the histograms for 
each variable together with the density functions, the lower diagonal shows the scatterplots, and the upper 
diagonal shows the Spearman correlation coefficients. SSRTint – integration method; SSRTbeest – BEESTS 
method; prEMG_st – extracted from single trials; prEMG_avg – extracted from the average waveform of all 
trials; prEMG_mode – estimated from the mode SSD.

continued on next page
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Associations of prEMG peak latency and frequency with behavior
In many studies, the SSRT has been reported as a single behavioral outcome measure of the stop 
signal task, purportedly reflecting the speed of response inhibition. However, recent evidence indi-
cates that both SSRTs and prEMG peak latencies are related to go RTs, potentially due to behavioral 
adaptations beyond response inhibition (Huster et al., 2020). We therefore investigated the correla-
tional structure of the prEMG and other behavioral measures, both across individuals in the current 
study and across different experiments by performing a meta-analysis. Given that the major caveat 
of the prEMG is that it is only present in a portion of successful stop trials, we further investigated 
whether its peak latency is affected by the proportion of available trials.

Firstly, goRTs correlated strongly with the SSRTs (r = −0.61, p = 1.62 × 10−5) and moderately with 
the prEMG latencies (r = −0.33, p = 0.027). Secondly, goRTs correlated moderately with the prEMG 
detection frequency (r = −0.35, p = 0.018). The relationships between prEMG frequency and stopping 
latency indices were not significant (SSRT r=0.23, p = 0.127; prEMG peak latency r = 0.27, p = 0.065). 
In sum, persons who responded fast had more prEMG trials and longer stopping latencies, likely due 
to a strategic trade-off between going and stopping. Noticeably, this trade-off seems to be best 
captured by the associations between the goRT and the SSRT.

Next, we quantified these relationships 
across 21 different experiments or conditions as 
reported in 10 studies (Figure  2). Despite the 
large variability of goRTs across the studies (range 
246 ms), the prEMG peak latency was surprisingly 
stable (range 35 ms) and averaged to 158 ms 
with an average detection frequency of 49% (see 
Table 3 for more descriptive statistics). Given that 
most articles reported several experiments or task 
conditions, relationships between prEMG and 
behavior were tested using general mixed models 
with article as a random variable (but the relation-
ships were the same if the average value across 
conditions and experiments was used for each 
study; Figure 2E). The strong negative association 
between go RTs and SSRTs seen across individuals 
was also evident across studies (b = −2.08, t(19) = 
−2.65, p = 0.012), as was the smaller association 
between the go RTs and prEMG peak latencies 
(b = −1.33, t(11) = −2.21, p = 0.049). Similarly, 
studies with faster go RTs reported higher prEMG 
detection frequencies (b = −2.03, t(15) = −2.96, 
p = 0.010). Interestingly, while every single study 
reported a positive correlation between the 
prEMG and the SSRT with an average correla-
tion of r = 0.64 (standard deviation covering 
the range from 0.44 to 0.78 across studies after 
Student z- and retransformation; Figure 2D), this 

We compared the three methods and found a good correspondence between them 
(Spearman r between 0.69 and 0.83). All three methods also correlated with the SSRT 
(Box 2—Figure 1, right panels). Peak latency estimates extracted from averaged waveforms 
appear more normally distributed than estimates from single trials, indicating that the former 
may represent the more robust estimation approach. However, as this method gives only a 
single summary measure per participant, it is not appropriate if single-trial analyses are of 
interest. The prEMG peak latency calculated using only the trials at mode SSD seems to be 
susceptible to outliers, likely because very few trials are used to derive the summary measure.

Table 2. Means (and standard deviations in 
brackets) of the electromyography (EMG) 
variables.
Motor time refers to the difference between 
the EMG onset latency and the reaction time. 
Rise time refers to the duration from EMG onset 
to its peak (both calculated relative to the go 
signal). AUC = area under the curve from onset 
to peak (relative to go signal). *Peak latencies 
in stop trials are time-locked to the stop signal 
onset. N = 46.

Variable Go Succ. stop
Unsucc. 

stop

Count 655 (25) 23 (13) 106 (5)

Percentage 99 (2) 23 (14) 98 (2)

Onset latency (ms) 487 (81) 481 (91) 422 (74)

Peak latency* (ms) NA (NA) 165 (31) 99 (37)

Peak amplitude (z) 12 (1) 4 (1) 11 (1)

Motor time (ms) 57 (13) NA (NA) 58 (14)

Rise time (ms) 52 (10) 19 (5) 48 (9)

AUC (z) 142 (18) 31 (12) 125 (16)

The online version of this article includes the following 
source data for table 2:

Source data 1. EMG summary data.

https://doi.org/10.7554/eLife.70332
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relationship was not particularly strong across studies, reaching significance only after discarding an 
obvious outlier (b = 0.34, t(11) = 2.29, p = 0.044). Most importantly, while prEMG detection frequency 
varied considerably across studies (between 23% and 70% of stop trials), it was not associated with its 
peak latency (b = 0.14, t(19) = 0.91, p = 0.375).

Comparison of prEMG peak latency and different SSRT estimates
There are several different ways to calculate the SSRT. The two state-of-the-art techniques are the 
integration method with replacement of go omissions (Verbruggen et al., 2019), and the Bayesian 

Figure 2. Meta-analysis of studies reporting partial response electromyography (prEMG) in stop signal tasks, which included 21 experiments or 
conditions reported in 10 independent studies. (A–D) Means and standard deviations (error bars) of each entry, ordered by go RTs. The error bars 
around the y-entry ‘Mean’ represent standard deviations across studies. (E) Associations between behavioral and EMG variables across studies. The dots 
reflect each separate condition/experiment study, color coded by the studies they originate from. The dashed gray lines represent bivariate regression 
lines, and the solid black lines represent the fixed effects of the general linear mixed model, accounting for the fact that single studies have more than 
one entry. The regression lines for the stop signal reaction time (SSRT)-prEMGlat plot are calculated excluding the outlier at top left. Note that the entry 
marked Raud et al., 2021 represent the data from current study.

The online version of this article includes the following source data for figure 2:

Source data 1. Meta-analysis data.

https://doi.org/10.7554/eLife.70332
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parametric approach (Heathcote et al., 2019; Matzke et al., 2013), which has been extended to 
incorporate go errors and failures to trigger both the go and the stop process (Matzke et al., 2019; 
Matzke et al., 2017). Where some studies show prevalent trigger failures and considerably faster 
BEESTS-SSRTs than integrations-SSRTs (Skippen et al., 2020; Skippen et al., 2019), others find a 
lower incidence of trigger failures and correspondingly little change in SSRT estimates (Jana et al., 
2020). In line with the latter, we found the different SSRT estimates to be comparable in this dataset 
(BF = 0.34). Both were considerably slower than the prEMG peak latency (integration BF = 9.6 × 105, 
BEESTS BF = 2.6 × 109). Both SSRTs correlated moderately with the prEMG peak latency (integration r 
= 0.51; BEESTS r = 0.57 for prEMG derived from single trials, but see Box 2 for differences in correla-
tions with different prEMG peak latency estimations). Consistent with previous studies, the delay 
between the prEMG and the SSRT (integration) was 33 ms (sd = 33). This did not correlate with the 
prEMG detection frequency (r = 0.04).

Comparison of behavior- and EMG-based inhibition functions
Having established the basic summary characteristics and their (non-)correspondence with the SSRT, 
we set out to investigate how the prEMG relates to the framework of the horse race model of going 
and stopping. A feature of the stop signal task 
is that the SSD varies, most commonly due to an 
online tracking algorithm that adapts the SSDs 
to each participant’s performance. The purpose 
of this is to capture the SSD where participants 
manage to stop their response for about 50% 
of the time. A key assumption of this approach 
is that the probability of unsuccessful stopping 
(p(button press|stop)) is low (approaching zero) 
at short SSDs, increases steeply at mid-SSDs, and 
approaches one at long SSDs. With EMG, this 
would correspond to the probability of producing 
EMG at any given stop trial (i.e., p(EMG|stop)), 
as this implies that the go process was at least 
initiated before stopping process. This proba-
bility thus includes all stop trials with detectable 
EMG, and is conceptually the sum of unsuccessful 
stop trials and successful stop trials with prEMG. 
Thus, by definition, the function of p(EMG|stop) 
should be shifted to the left from the function of 
p(button press|stop). In addition, assuming that 
the successful stop trials with prEMG are drawn 
uniformly from the distribution of successful stop 
trials, we would expect the two functions to run in 
parallel. However, preliminary evidence suggests 
that prEMG occurs more often at short SSDs 

Table 3. Meta-analysis behavioral and electromyography (EMG) values across 21 different conditions 
or experiments in 10 independent studies. prEMG = partial response electromyography; SSRT = 
stop signal reaction time.

Mean sd Median min max

Go RT (ms) 486 79 493 400 646

SSRT (ms) 217 16 216 194 259

prEMG frequency (%) 49 16 47 23 70

prEMG peak/offset latency (ms) 158 11 160 139 174

SSRT and prEMG latency difference (ms) 60 18 57 35 120
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Figure 3. Inhibition functions. Error bars represent 
95% confidence intervals. Note that the error bars are 
calculated across all trials and participants, ignoring 
that each participant has several data points.

The online version of this article includes the following 
source data for figure 3:

Source data 1. Inhibition functions data.

https://doi.org/10.7554/eLife.70332
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(Coxon et al., 2006; de Jong et al., 1990). Given that p(EMG|stop) represents the sum of unsuc-
cessful stop trials and successful stop trials with prEMG, this would lead to larger differences between 
the two functions at short than in long SSDs.

The empirical inhibition functions are depicted on Figure 3. To capture the expected nonlinear 
shape of the functions, we fit a generalized additive mixed model (GAMM), predicting the proba-
bility of responding (p(button press|stop)) or producing EMG (p(EMG|stop)) despite a stop signal as a 
function of SSD (model R2 = 0.64); this model thus also allows for the assessment of the interaction of 
response type (button, EMG) and SSD. The effect of SSD was significant (df = 3.18, F = 213.91, p < 2 
× 10−16), as was the parametric effect of response type (b = 0.07, t = 9.52, p < 2 × 10−16). Further, the 
interaction term was significant (df = 1.00, F = 6.795, p = 0.009), as the difference between detecting 
a button press compared to an EMG response was larger at smaller SSDs. Since p(EMG|stop) contains 
p(button press|stop) as well successful stop trials with prEMG, these effects indicate that prEMG was 
more common in trials with short SSDs.

Context independence of going and stopping
A key assumption of the horse race model is that the go and stop processes are independent of each 
other. In particular, the context independence assumption states that the stop process does not affect 
the primary go process, thus the distribution of the go-finishing times (estimated by go RTs) is iden-
tical in the go and stop trials (Band et al., 2003). We applied two tests of this assumption to both the 
behavioral and EMG data.

The most common test compares the mean go RT with the mean RT of unsuccessful stop trials. 
If response activation is identical in the go and stop trials, the unsuccessful stop trial distribution is 
censored at the right side; it thus follows that the mean RTs should be shorter in unsuccessful stop 
trials than in go trials. This was true in our data both for RTs (BF = 1.53 × 1024) and EMG onset latencies 
(BF = 1.32 × 1024).

However, a more stringent test directly compares the equivalence of the corresponding portions of 
the response time distributions in go and stop trials. Dividing the go-RT distribution at the percentile 
corresponding to p(button press|stop, SSD) gives an estimate of the distribution of trials for a given 

Figure 4. Depiction of the extension of the horse race model on electromyography (EMG) data extracted from an 
example participant. 
 The histogram depicts the distribution of EMG onsets in go trials, and the vertical lines mark (from left to right) the 
go signal onset, stop signal onset (mean stop signal delay [SSD]), percentile corresponding to the probability of 
producing a response and to the probability of producing EMG in stop trials. Assuming stochastic independence 
of go and stop trials, unsuccessful stop trials should correspond to the fast go trials (left side of the distribution 
between go signal and p(press|stop)), while partial response electromyography (prEMG) should correspond to the 
middle partition of the go distribution in between the p(press|stop) and p(EMG|stop).

https://doi.org/10.7554/eLife.70332
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SSD in which the go process would or would not 
escape the stop process. Specifically, the portion 
at the left of this division are the fast go trials that 
would escape inhibition, and the portion on the 
right are slow go trials that would be stopped. We 
found that the mean unsuccessful stop trial RTs 
were not equivalent to the mean of the left side 
of the go-RT distribution (mean = 470 ms, sd = 
72; BF = 1542). Since the means of the fast go-RT 
portions may misrepresent the central values, 
we repeated the analysis using median values 
instead. Here, we did find the participant-specific 
medians of the left side of the go-RT distribution 
equivalent to the unsuccessful stop trial RTs in the 
discovery set (BF = 0.53), but not in the replica-
tion dataset (BF = 34,849).

This test has been extended to the EMG onset 
latencies, deriving an additional division line using 
the percentile corresponding to p(EMG|stop, 
SSD) (de Jong et  al., 1990; Jennings et  al., 
1992; van Boxtel et al., 2001). Figure 4 explains 

the key expectations. Adhering to the independent horse race model, we expected EMG onsets in 
unsuccessful stop trials to match fast go-EMG onsets. Then, as the p(EMG|stop) is larger than p(button 
press|stop), there is a second division line derived from the percentile corresponding to p(EMG|stop), 
which is shifted to the right. The trials between those two lines should correspond to successful stop 
trials with prEMG. Consequently, the mean go-EMG onset latencies from trials between these two 
division lines should be equal to the prEMG onsets. Lastly, the go-EMG onsets to the right of the 
second dividing line should be slower than the prEMG onsets.

The EMG onset latencies, averaged over all trials within each partition of the go-EMG distribution, 
are listed in (Table 4). The data indicate a deviation from the independence assumption already for 
the left side of the distribution, as the average EMG onset in unsuccessful stop trials was slower than 
the average EMG onset in fast go trials (BF = 2.67 × 109). Secondly, the average prEMG onsets were 
faster than the corresponding average onset of the middle partition of the go-EMG distribution (BF 
= 2.17 × 104), which contrasts the prediction that these should be roughly equivalent. Lastly, the slow 
go-EMG onsets occurred later than the prEMG onsets, as expected (BF = 2.81 × 1021). These patterns 
remained the same if medians were used instead of means. To confirm that the results are not affected 
by sampling differences due to having more go trials than stop trials, we repeated this analysis by 
randomly sampling matching numbers of fast go and medium go trials for each participant and doing 
t-tests on these subsamples (on average 105 and 23 trials, correspondingly) 1000 times. The pattern 
of results stayed the same every single time. These results indicate that extending the horse race 
model to the EMG is not applicable and, consequently, estimating the SSRT based on go-EMG distri-
butions should be avoided.

Even though the EMG onset patterns do not seem to be in accordance with the assumption of the 
horse race model, it is important to determine the prEMG characteristics across all SSDs to establish 
whether stopping estimates based on the prEMG are representative of the overall stopping behavior. 
Based on previous findings, we expected the prEMG frequency to decline and its amplitude to increase 
with increasing SSD. Further, as go RTs tend to correlate positively with the SSDs, we expected that 
the prEMG onset latencies (calculated relative to the go signal) would increase with SSDs as well. Note 
that the prEMG peak latency, in contrast, is calculated relative to the stop signal and thus reflects the 
speed of the stop process. Critically, it has never been asked whether the prEMG peak latency remains 
stable at different SSDs.

We fit four GAMMs to predict the prEMG probability, onsets, amplitudes, and peak latencies from 
the SSDs (Figure 5). As expected, prEMG probability decreased with the SSD (df = 1.92, F = 24.28, 
p = 2.47 × 10−10, R2 = 0.09). Similarly, we found increased EMG onsets with increasing SSD (df = 2.60, 
F = 420.7, p < 2.00 × 10−16, R2 = 0.36). The prEMG peak latencies decreased with SSD (df = 2.29, F 

Table 4. EMG onsets in go trials divided into fast 
(between go onset and p(press|stop)), medium 
(between p(press|stop) and p(EMG|stop)) and 
slow (> p(EMG|stop)) trials.
usEMG = unsuccessful stop EMG; prEMG = 
partial response EMG (successful stop trials).

Mean sd Median min max

goEMG_fast 401 67 410 260 555

goEMG_medium 506 80 500 347 678

goEMG_slow 608 108 582 416 844

usEMG 422 74 430 272 596

prEMG 481 91 474 290 701

The online version of this article includes the following 
source data for table 4:

Source data 1. prEMG onset data.

https://doi.org/10.7554/eLife.70332
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= 11.77, p = 9.71 × 10−6, R2 = 0.06), indicating that stopping may be slower at short SSDs. PrEMG 
amplitudes increased slightly with longer SSDs, with the smooth term at the border of significance (df 
= 1.66, F = 4.16, p = 0.056, R2 = 0.02).

prEMG peak latency as a function of time on task
Another important question is whether prEMG remains stable across the experiment. It is possible 
that inhibition becomes automatic over time and loses its cognitive control element (Best et al., 2016; 
Verbruggen et al., 2014; Verbruggen and Logan, 2008). Consequently, prEMG peak latency may 
decrease after practice. We tested this by fitting a GAMM model predicting prEMG peak latency by 
trial order while controlling for SSD (model R2 = 0.04), but we found no evidence that the trial order 
would affect prEMG peak latency (df = 1.173, F = 0.11, p = 0.843). We also tested whether the trial 
order affected prEMG frequency by predicting the existence of prEMG in a given trial from the trial 
order using logistic regression (while controlling for the SSD), but this model yielded no trial order 
effects either (df = 1.00, χ2 = 0.87, p = 0.350). Note that these results do not exclude that stop-
ping may be automatic to begin with nor that automatism affects underlying processing (Raud et al., 
2020b; Verbruggen et al., 2014), but simply indicates that stopping performance did not change 
with practice in a single session.

Single-trial associations of prEMG onset latency, peak latency, and area 
under the curve
A clear advantage of the prEMG is that it allows to study the dynamics of going and stopping at a 
single-trial level. A simplified set of predictions outlining different dependencies between going and 
stopping are depicted in Figure 6, based on prEMG onset latencies (go-locked), peak latencies (stop-
locked), and areas under the curves (AUC) from onset to peak. The AUC integrates the latency and 
amplitude of each prEMG burst and was calculated as the cumulative sum of point-wise amplitudes 
from onset to peak latency. Note that these scenarios are constructed assuming stable SSDs. This 
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Figure 5. Partial response electromyography (prEMG) probability, onset latency, peak latency, and peak amplitude. The upper panels represent 
empirical data across all participants. Green lines represent the group average with 95% confidence intervals and gray lines represent each participant. 
The lower panels depict the model fit of the generalized additive models with 95% confidence intervals. Note the different y-axes between empirical 
data and model fits.

The online version of this article includes the following source data for figure 5:

Source data 1. SSD-centered prEMG frquency data.

Source data 2. SSD-centered prEMG onset latency data.

Source data 3. SSD-centered prEMG peak latency data.

Source data 4. SSD-centered prEMG peak amplitude data.

https://doi.org/10.7554/eLife.70332
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simplification helps to delineate the expected outcomes for different a priori hypotheses regarding 
the dependencies between going and stopping at the single-trial level.

Scenario 1 represents the independent horse race model, where there is considerable variability of 
the go process, but a constant and independent stop process. In this case, earlier prEMG onset leads 
to a larger AUC, but peak latencies are stable and independent of the onsets and AUCs.

Scenario 2 represents a case where delayed prEMG onset is associated with delayed prEMG peak 
latencies (as reported in Raud et al., 2020a), resulting in stable AUCs. This could be due to instances 
like competing resources for go and stop processes or attentional lapses that delay overall processing.

Scenario 3 represents a different dependency between the go and stop processes, in which more 
potent motor responses (i.e., earlier onsets and larger AUC) are associated with delayed stopping. 
This would result in a negative relationship between prEMG onset and peak latencies and between 
the onset latencies and AUCs, but a positive relationship between the peak latencies and the AUCs.

Figure 6. Predicted directions of single-trial correlations between electromyography (EMG) onset latency, peak 
latency, and area under the curve (calculated as the cumulative sum of point-wise amplitudes from onset to peak 
latency) under three different scenarios.
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Figure 7. Single-trial associations between partial response electromyography (prEMG) onset latency, peak latency, and area under curve (AUC). The 
dots represent single trials from all participants. The black lines represent the fixed effect model fits from generalized additive mixed models, where the 
individual variability was modeled as separate intercepts for each participant. The shaded areas represent 95% confidence intervals.

The online version of this article includes the following source data for figure 7:

Source data 1. prEMG single trial data.

https://doi.org/10.7554/eLife.70332
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We tested these scenarios by fitting GAMMs predicting (1) peak latency from onset latency, (2) 
peak latency from AUC, and (3) onset latency from AUC. Onset latencies and SSDs correlated highly 
at the single-trial level (r = 0.88). To account for this, we predicted onsets from the SSDs for each 
participant and used the residuals instead of original onset values. AUCs were log transformed since 
the original values were extremely skewed toward low values.

The data showed evidence for scenario 2 (Figure 7) with a strong positive relationship between 
onset and peak latencies (estimated degrees of freedom [edf] = 3.47, F = 1957, p < 2 × 10−16, R2 = 
0.72). There was also a small negative association between onset latencies and the AUCs (edf = 1.00, 
F = 29.25, p = 7.93 × 10−8, R2 = 0.03). In the discovery dataset, there was no relationship between 
peak latencies and AUCs (edf = 1.00, F = 0.09, p = 0.77, R2 < 0.001), while the replication dataset 
showed a very small negative association (edf = 1.00, F = 12.96, p = 0.0003, R2 < 0.001). As such, there 
was strong evidence for dependencies between going and stopping at the single-trial level, where 
delayed going was associated with delayed stopping. Note that none of these relationships were 
significant at the group level (i.e., taking the mean for each variable for each participant and fitting the 
same models), thus these results apply for single-trial data only.

prEMG variability
Until now, most previous studies focused on a single estimate of the peak latency of the prEMG. 
However, prEMG allows for the calculation of the standard deviation of the peak latency for each 
individual; we can therefore empirically capture the variability of single-trial stopping latencies for 
each individual (Jana et al., 2020). A caveat here is that that we detect prEMG only in a fraction of 
the trials, hence the variability estimates are truncated and likely biased. Nonetheless, the prEMG 

Figure 8. Variability of partial response electromyography (prEMG) peak latency. (A) Density functions of prEMG peak latency across all trials and 
participants (left panel) and separately for group of participants with low, medium, and large individual standard deviations (sd; right panels). (B) 
Correlation matrix between individual prEMG standard deviations (prEMGsd), number of prEMG trials (prEMGn), go reaction time standard deviations 
(goRTsd), average root mean square EMG amplitudes during the intertrial interval −200 to 0 before go stimulus onset (RMSmean), and standard 
deviations of the stop signal reaction time (SSRT) calculated through the BEESTS method (SDbeest). The diagonal shows the histograms for each 
variable together with the density functions, the lower diagonal shows the scatterplots, and the upper diagonal shows the Spearman correlation 
coefficients. prEMG reliability.

The online version of this article includes the following source data for figure 8:

Source data 1. prEMG variability data.

https://doi.org/10.7554/eLife.70332
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standard deviations show a considerable vari-
ability across participants and may therefore be 
informative of individual differences (Figure 8A). 
The average individual standard deviation was 
31 ms (group-level sd = 21) and varied from 7 to 
90 ms. Note that four outliers with values above 
two interquartile ranges were discarded from this 
analysis (see Appendix 2—figure 1 for visualiza-
tion of the outliers).

To understand the variability measure better, 
we first considered whether the between-
participant variability could be driven by nuisance 
factors, such as the number of prEMG trials per 
person or the amount of baseline noise in the 
EMG. Secondly, it is possible that the variability of 
the stopping latency simply reflects variability in 
general processing, which can simply be assessed 
through the analysis of plain go responses without 
any need for a stopping variability measure. 
Therefore, we correlated the variability of the 

prEMG peak latency with the variability of the go RTs, where a low correlation would indicate that 
stopping variability gives information beyond the variability seen in go responses. The correlation 
matrix is depicted in Figure 8B. Note that we are reporting all correlation coefficients from this explor-
atory analysis with p values uncorrected for multiple comparisons, as the effect sizes are more infor-
mative about potential relationships than their significance.

The individual variability in prEMG peak latency correlated moderately with the number of prEMG 
trials (r = 0.30, p = 0.05), but showed no associations with baseline EMG noise (r = 0.06, p = 0.72) or 
go-RT variability (r = −0.01, p = 0.94). Lastly, we replicated the moderate positive correlation reported 
by Jana et al., 2020 between the prEMG variability and the variability of the SSRT calculated using 
the BEESTS method (r = 0.40, p = 0.01). The correlational structure did not change if four outliers 
were included in the data, nor when the analysis was confined to participants with more than 10 
prEMG trials. The data thus suggest that an individual’s standard deviation of the prEMG peak latency 
provides complementary information on individual differences in stopping behavior.

prEMG reliability
An important question for individual differences research is whether we can reliably estimate the 
prEMG characteristics despite the varying number of available trials per participant. We therefore 
estimated the split-half reliability of the prEMG-based latency and amplitude measures (Table  5), 
using a permutation-based split-half reliability approach (Parsons et al., 2019). Using all available 
trials and participants, we found high reliability for latency measures (0.94 and 0.87 for the prEMG 
onset and peak latency, respectively) but somewhat lower reliability for the prEMG peak amplitude 
and AUC (0.51 and 0.48, respectively). The same pattern was observed in the replication dataset, with 
even higher reliability coefficients for latency measures (0.98 and 0.92 for onset and peak latency, 
respectively).

A critical question for further research is how many trials and participants are necessary for 
reliable prEMG estimates. For instance, it may seem reasonable to exclude participants with 
few prEMG trials from further analysis. Yet, this could be harmful for the overall power due to 
increased standard errors across participants. We therefore repeated the split-half reliability anal-
ysis, sampling the lowest number of trials available for all participants and increasing the number 
of trials while excluding participants if they did not have the necessary number of trials available. 
This procedure resulted in incremental reliability estimates starting with 46 participants with 6 trials 
and ending with 12 participants with 32 trials (Figure 9). Interestingly, the reliability estimates for 
prEMG onset latency remained high (above 0.8) no matter the reduction in the number of trials 
and/or participants. prEMG peak latency reliability increased with the number of trials and reached 
a plateau around 0.77 after around 13 trials (with increased confidence intervals as the number 

Table 5. Split half reliability estimates for 
prEMG characteristics, including mean, standard 
deviation, and percentiles derived from the 
permutation distributions that correspond to the 
95% confidence intervals.
RMS = root mean square; AUC = area under the 
curve from onset to peak.

Mmean sd 2.5th 97.5th

Onset latency (ms) 0.94 0.01 0.91 0.97

Peak latency (ms) 0.87 0.05 0.75 0.94

Peak RMS amplitude (z) 0.51 0.13 0.22 0.71

AUC (z) 0.48 0.11 0.24 0.68

The online version of this article includes the following 
source data for table 5:

Source data 1. Reliability data.

https://doi.org/10.7554/eLife.70332
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of participants decreased). As before, the reliability estimates for amplitude measures did not 
show good reliability, with values hovering around 0.25 and decreasing even further with fewer 
participants.

In sum, we conclude that the latency measures of prEMG have overall good reliability, while 
amplitude-based measures do not. While reliability measures are affected by the specifics of each 
dataset, our data suggest an optimal minimal number of trials to be around 15, and more is always 
better. However, the reliability estimates were highest when all participants (even those with less than 
10 trials) were included. Thus, excluding participants based on low number of available trials is not 
strictly necessary and may cause more harm by increasing the group-level standard errors and thereby 
reducing statistical power.

Discussion
We analyzed prEMG from a standard stop signal task to investigate its utility and reliability as a marker 
of action stopping. We compared it thoroughly to the best-established marker of stopping latency, the 
SSRT. Further, we evaluated whether prEMG supports the horse race model that underlies the SSRT 
estimation in nearly all studies using the stop signal task. We also provided practical tips for EMG 
data acquisition and analysis (Box 2 and Box 3). We found that prEMG provides unique information 
about stopping and that assumptions of the horse race model may not regularly be met, questioning 
the broad and often undifferentiated use of the SSRT as a single indicator of stopping performance.
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Figure 9. Reliability estimates as a function of number of trials (green) and number of participants (brown) for 
partial response electromyography (prEMG) latency- and amplitude-based measures. Green shaded areas 
represent 95% confidence intervals for the reliability estimates, and the black dashed horizontal line represent a 
reliability value of 0.7 for reference. Note the different y-axes for latency and amplitude measures. AUC = area 
under the curve from prEMG onset to peak.

The online version of this article includes the following source data for figure 9:

Source data 1. prEMG reliability data.

https://doi.org/10.7554/eLife.70332
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The independent horse race model and prEMG
Several results from our analysis indicate incompatibility of the prEMG with the horse race model. On 
the one hand, we replicated the results from de Jong et al., 1990, who demonstrated that prEMG 
trials correspond to trials in the go-trial distribution that are fast enough to initiate muscle activity, but 
slow enough to not outrun the stopping process. On the other hand, neither unsuccessful stop trials 
nor successful stop trials with prEMG matched the corresponding partitions of the go-EMG distribu-
tions. This indicates that the horse race model framework should not be extended to the go-EMG 
distribution. Furthermore, prEMG peak latency varied with the SSD, indicating that stopping latency is 
not stable. Lastly, the single-trial analysis indicated a major violation of the horse race model indepen-
dence assumption, as the go process (measured by the go-locked prEMG onset latency) and the stop 
process (measured by the stop-locked prEMG peak latency) share about 70% of variance if the SSD 
is accounted for. Together, these results add to the increasing pool of evidence which suggests that 

Box 3. Practical tips for data acquisition.

Recording systems
EMG can be recorded by dedicated systems, but also by using EEG equipment that many 
human neurophysiology labs already own. In fact, if simultaneous EEG–EMG measures 
are of interest, it is preferable to record them by the same system so that both signals are 
synchronized on acquisition. Many EEG systems include a limited number of dedicated 
channel pairs that allow for the recording of activity referenced against each other instead 
of a referencing against the common EEG reference. Those channels can be used to record 
from electrodes placed on the skin above muscles to capture EMG. Alternatively, EMG 
electrodes can be referenced against the common EEG reference during acquisition and then 
re-referenced offline to get a single bipolar EMG channel. Note though that a major caveat 
of this procedure is that a larger distance between the active EMG electrodes and the EEG 
reference increases the chance of amplifier saturation, rendering the EMG signal useless.
Muscle choice and movement direction
The signal-to-noise ratio of EMG bursts is highly dependent on the combination of target 
muscle, electrode placement, and movement direction. Most studies have recorded from 
thumb muscles (abductor pollicis brevis), index fingers (first dorsal interosseous), or a 
combination of both, although head, neck, and biceps muscles have been used as well (Atsma 
et al., 2018; Goonetilleke et al., 2010). The most intuitive movements (for pushing a button, 
for example) do not necessarily produce the largest signal-to-noise ratio in EMG recordings. 
Therefore, we recommend testing various ways of producing a movement before starting 
the experiment. For APB, the strongest signal is produced by moving the thumb down while 
keeping the rest of the fingers flat on a surface (it may thus be necessary to elevate the rest 
of the hand on a book or a block so that downward thumb movements become possible). For 
the index finger FDI, moving the finger horizontally while keeping the palms flat on the table 
gives the best results, sometimes outperforming the APB measurements (Coxon et al., 2006). 
Even though such movements may be unusual for the participants at first, they typically learn 
fast after some training. Gamified instructions may help to speed up the learning process 
(e.g., Quoilin et al., 2016).
Avoiding spurious muscle tension
Even though EMG bursts related to movement are large and clear, detection algorithms may 
struggle with exact onset and peak latencies if a lot of baseline muscle tension is present. This 
can be reduced significantly by letting the participants rest their arms comfortably on a pillow, 
and by reminding them before and during the task to relax their hands. Such verbal reminders 
typically help even if the participant is not aware of any muscle tension. One potential 
problem is that specific instructions to relax the hands may interfere with task-related tonic 
EMG fluctuations, but to the best of our knowledge, such effects have not been investigated 
systematically.

https://doi.org/10.7554/eLife.70332
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the independent horse race model is not an appropriate approximation of the stopping performance 
in practice.

Comparison of the prEMG peak latency and the SSRT
There are three main findings when comparing the prEMG with the SSRT. First, the prEMG peak 
latency occurs earlier than the SSRT. Second, the prEMG correlates moderately to highly with the 
SSRT. Third, prEMG frequency and latency distributions show that the horse race model assump-
tions do not hold in practice, particularly in trials with short SSDs. This begs the question of whether 
prEMG and SSRT reflect the same underlying mechanism, and if not, how should these measures be 
interpreted?

The most parsimonious explanation would be that the prEMG and the SSRT capture the same 
conceptual construct – action stopping – but they simply reflect different stages in the cascade of 
events. The prEMG peak latency leads the SSRT by 60ms with an average correlation of r = 0.64 
across studies. The 60ms delay between the myographic (prEMG peak latency) and behavioral (SSRT) 
measures may reflect the final ballistic component of the movement, the so-called point of no return, 
after which initiated movements are unaffected by any higher-order control mechanism (Osman 
et al., 1986). In this case, the prEMG may simply reflect the inertia in the neuromuscular system and 
response device presiding after the prepared movement has been stopped in the cortex (Gopal and 
Murthy, 2016; Jana et al., 2020). However, several lines of evidence challenge this explanation. First, 
such ‘leakage’ EMG has been shown to have a milder rising slopes compared to the normal go-EMG 
responses (McGarry and Franks, 2003; McGarry and Franks, 1997). In the current study, the EMG 
onset slopes were identical for all trial types (Figure 1B). Second, even with a moderate-to-strong 
association across all studies, correlation of prEMG and SSRTs varies considerably between studies. 
With explained variances ranging from about 10% to 60%, there remains plenty of unexplained vari-
ance even for the studies with the highest correlations. Third, the correlational structure with other 
behavioral and electrophysiological measures derived from the stop signal task differ greatly between 
the prEMG and the SSRT, where the latter exhibits a correlational structure indicative of an association 
with a trade-off between fast going and accurate stopping (Huster et al., 2020).

To account for the observed differences between the prEMG and the SSRT, we propose that both 
reflect the latency of action stopping to some degree, but that the SSRT is additionally affected by 
behavioral strategies and is thus more dependent on the task context. In support of this, the SSRT 
correlates negatively with go RTs, both across individuals in a single study, as well as across different 
studies. Whereas the prEMG detection frequency is also affected by task characteristics, evidenced 
by the correlations with go RTs, the primary outcome of interest, the peak latency, is relatively stable 
across different studies.

In sum, the prEMG peak latency captures action stopping speed and its variability across single 
trials. The SSRT likely captures action stopping to some degree but it is further affected by strategic 
behavioral adaptations and inaccuracies due to violations of the horse race model’s assumptions.

Generalizability of the prEMG peak latency
The generalizability of the prEMG is potentially hampered by the fact that it appears only in a fraction 
of trials. The prEMG latency distribution is a truncated representation of the distribution of the under-
lying stopping process, lacking trials in which actions were stopped cortically before muscle activation 
or in which go process was not initiated in the first place. The prEMG distribution is thus affected by 
two interacting processes – action generation and action stopping. The current dataset does not allow 
us to test which of these processes is dominating.

To estimate the potential effect of the missing trials, we tested whether the prEMG frequency is 
associated with other behavioral and EMG measures across participants and studies. First, partici-
pants and studies with faster RTs produced more prEMG trials, but there was no relationship between 
the prEMG frequency and peak latency. Of note, faster RTs were associated with longer stopping 
latencies, and this relationship was particularly strong for the SSRT. Second, whereas prEMG was 
detected only in a minority of 20% trials in our data, most of our results were replicated in an inde-
pendent dataset where 60% of successful stops contained prEMG. Third, the split-half reliabilities of 
the prEMG latency measures were high even for a small number of trials. Altogether, the fact that the 

https://doi.org/10.7554/eLife.70332
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prEMG distribution is truncated does not invalidate its use as a marker of action stopping, since the 
peak latencies are relatively stable despite the varying number of trials available for its estimation.

Nonetheless, as the contribution of the missing prEMG trials is unknown, it may still be argued that 
the available trials do not represent ‘typical’ stop trials. However, stopping actions may be achieved by 
different underlying mechanisms across different tasks, as well as within the same task across different 
trials. As such, whether there exists a ‘typical stop-trial’ is an empirical question that the prEMG can 
provide answers to. This can be achieved by (1) optimizing task design to produce more prEMG trials, 
for example by encouraging fast responding, using a response device with stiff buttons, or using an 
anticipated response task that discourages response slowing (Coxon et al., 2006; MacDonald et al., 
2014); (2) requiring multicomponent movements and/or using antagonist muscle onsets as proxy 
of stopping latency in each trial (Goonetilleke et al., 2012; Goonetilleke et al., 2010; De Havas 
et al., 2020); (3) combining EMG with other parametric approaches in which action stopping can be 
measured on a continuous scale, for example measuring movement trajectories (Atsma et al., 2018; 
De Havas et al., 2020) or response force (Nguyen et al., 2020). If properly validated, parametric 
approaches may eventually outperform EMG measures, especially in clinical samples where obtaining 
clean EMG signals may be challenging.

Another unsettled question regarding the generalizability is whether prEMG trials could be quali-
tatively different from other successful stop trials. McGarry and Franks, 1997 designed a stop signal 
task with untypically short SSDs, and found that they could differentiate between trials with early and 
late stopping mechanisms based on the shape of the prEMG rising slope (see Box 1 about inter-
rupted response for details), although it has been disputed that the same pattern could result from 
the differential recruitment times of motor neurons with different sizes (van Boxtel and Band, 2000). 
Further, EEG studies have found that prEMG trials show decreased lateralized readiness potentials 
and increased frontal negativities (de Jong et al., 1990; van Boxtel et al., 2001). Increased frontal 
negativities have also been related to awareness of the prEMG in response conflict tasks (Ficarella 
et al., 2019). However, whether these cortical changes reflect qualitatively different mechanisms or 
merely a continuous variation in the strength of the underlying processes is unresolved (van Boxtel 
et al., 2001).

Finally, does prEMG latency generalize across different contexts? While it has been shown that the 
SSRT becomes increasingly unreliable in more complex stop signal tasks and its use is thus discour-
aged (Bissett and Logan, 2014), prEMG can still be recorded in such task settings (Raud et  al., 
2020a; Raud and Huster, 2017). Further, (pr)EMG is not limited to the stop signal task, but can be 
recorded in any task that requires overt responses, as well as tasks that require more complex move-
ments activating several muscle groups (Tao et al., 2018). As such, EMG can provide highly sought-
after physiological measures that are comparable across different contexts and is currently the most 
useful approach for investigating putative response inhibition in tasks that rely on the absence of overt 
behavior as the primary outcome measure. For example, one study using this approach found that 
the prEMG peaked significantly later in the go/no-go task than in the stop signal task. This was also 
paralleled by differences in cortical activity, suggesting that these tasks may recruit different mecha-
nisms (Raud et al., 2020b). Similarly, Tatz et al., 2021 showed that EMG activity declines after any 
infrequent salient stimulus, highlighting the interdependence between attentional capture and inhib-
itory control constructs. Thus, comparisons of prEMG characteristics and their driving mechanisms in 
different contexts provide a rich ground for future research on motor and cognitive control.

Response inhibition and prEMG
While prEMG can be considered an assumption-free physiological measure in its implementation, it 
is not free from assumptions in its interpretation. The most urgent unresolved question is whether 
prEMG captures the latency of inhibitory mechanisms in the brain. On the one hand, prEMG decline 
unequivocally indicates stopping of muscle activity, so it is safe to presume that the peak latency 
represents the latency of action stopping. On the other hand, the actual mechanisms that cause this 
EMG decline cannot be derived from prEMG alone. Alternative explanations to cortical active inhibi-
tion mechanisms include activation of antagonist muscles triggering peripheral lateral inhibition, an 
initial subthreshold activation of the go response, or cessation of the invigoration of the go response 
by the motor system. Several studies have investigated whether stopping of specific muscle activity 
could be caused by the activation of antagonist muscles and found that agonist stopping occurs 
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before antagonist activation; thus, the former cannot be caused by the latter (Atsma et al., 2018; 
Corneil et al., 2013; Goonetilleke et al., 2012; Goonetilleke et al., 2010; Scangos and Stuphorn, 
2010). It is also unlikely that prEMG represents initial subthreshold go activations, as such stimulus-
locked responses are typically <100 ms after stimulus onset (Pruszynski et al., 2010), while prEMG 
onsets are closer to 300–500 ms. However, it remains to be seen whether prEMG declines because 
of a reduction in response maintenance (e.g., by restoring the inhibitory state of the cortical-basal 
ganglia–thalamic loop during rest), or because of an active inhibition mechanism that blocks ongoing 
motor activity (e.g., by blocking the direct pathway output by increased inhibition via the subthalamic 
nucleus, or by direct inhibitory influences on M1; e.g., Hynd et al., 2021). Complementary simulta-
neous data from brain imaging and neural stimulation studies are necessary to understand the neural 
mechanisms that cause the halt in muscle activity.

Conclusions
Based on the synthesis of previous work together with a comprehensive analysis of prEMG character-
istics in an independent dataset, we conclude that prEMG is a useful and reliable measure of action 
stopping. PrEMG is not limited to specific muscles, stimulus modalities, or task contexts, so it provides 
a comparative physiological measure for a range of different scenarios. Even though there are some 
similarities between the SSRT and the prEMG, these two measures should not be used interchange-
ably, but rather complementarily. The SSRT benefits from decades of research and is therefore well 
characterized across different contexts and sample populations. Yet, it is founded on assumptions 
that are not always met in empirical data, and it seems to be more strongly affected by behavioral 
strategies than the prEMG. In contrast, prEMG is directly observable and provides action stopping 
latencies at a single-trial level. Its peak latency is relatively stable even though design choices may 
limit the number of available trials. Importantly, neither the SSRT nor the prEMG peak latency is an 
unambiguous marker of response inhibition in the brain, but since the prEMG is directly observable, it 
has stronger potential for guiding research on brain mechanisms underlying action stopping.

Materials and methods
Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Software, algorithm E-prime
Psychology Software Tools, 
Pittsburgh, PA Version 2.0

Software, algorithm Matlab The Math Works, Inc MATLAB 9.4.0.949201 (R2018a)

Software, algorithm Eeglab Delorme and Makeig, 2004 14.1.1b

Software, algorithm R R Core Team, 2019; 3.6.2 (2019-12-12)

Software, algorithm
BEESTS; Dynamic Models of 
Choice

Matzke et al., 2019; Matzke 
et al., 2013
Heathcote et al., 2019 BEESTS2-GF

Sample
Data were analyzed from 46 healthy young adults (mean age = 23.7, sd = 5.5, 30 females, 3 left-
handed). Initially, data were collected from 52 participants, but four were discarded due to technical 
issues with the response device and another two were discarded as statistical outliers (above two 
interquartile ranges) based on EMG onset and peak latencies. Participants gave written informed 
consent prior to data collection, and everyone received monetary compensation for their participa-
tion. The study was conducted in accordance with the Helsinki declaration, and was approved by the 
internal review board of the University of Oslo (ref. 1105078).

Stop signal task and behavioral variables
All participants performed a choice-reaction time task and a stop signal task presented in alternating 
blocks (six blocks in total). Task presentation was controlled by E-prime 2.0 (Psychology Software 
Tools, Pittsburgh, PA). For this analysis, we focus on the stop signal task exclusively. The primary task 
was to respond with a button press using the thumb of the left or right hand to an arrow pointing to 
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the left or right, correspondingly. In 24% of the trials, a stop signal appeared after a variable SSD, 
instructing participants to stop their initiated response. In total, there were 684 go trials and 216 stop 
trials, equally distributed between left- and right-hand trials.

Each trial started with a black fixation cross (duration jittered between 500 and 1000 ms), followed 
by a colored arrow as a go signal, presented for 100 ms. In stop trials, a second arrow of a different 
color was presented after the SSD. The SSD could vary between 100 and 800 ms and was adjusted 
based on an adaptive tracking procedure collapsed across both hands: The initial SSD was set to 
250 ms, and then increased or decreased by 50 ms following successful and unsuccessful stop trials, 
respectively. Responses were collected up to 1000 ms after the go stimulus and potential responses 
after this window were treated as omissions. All stimuli were presented centrally against a gray back-
ground and the stimulus color assignments (green, orange, or blue) were counterbalanced across 
participants. Trial order within a block was randomized, except for the first block, which always started 
with a minimum of 10 go trials. Short pauses (9 s) were given after every 75 trials, and a longer break 
with a duration of roughly 5 min was allowed halfway through the task.

Prior to the experiment, the participants completed a short training block (20 trials, 50% stop trials) 
with computerized trial-by-trial feedback. In addition, participants were told that it was important to 
be both fast and accurate, that they were not supposed to wait for the stop signal, and that it was 
not possible to successfully stop in all stop trials. Automated feedback was presented on screen after 
every 75th trial. Here, participants were instructed to be faster if their average goRT was above 600 
ms, and to be more accurate if the average stop accuracy was below 40%. If neither of these applied, 
they received the feedback ‘Well done!’.

The following behavioral variables were extracted based on task performance: go accuracies, error, 
and omission rates, go reaction times, stop accuracies, unsuccessful stop reaction times, average SSD, 
and SSRTs. These were calculated using the integration method, where corresponding go reaction 
time distributions included choice errors, and omissions were replaced by the maximum reaction time 
(Verbruggen et al., 2019).

We also estimated SSRTs and their variability using a Bayesian parametric approach (BEESTS; 
Matzke et al., 2019; Matzke et al., 2013). We chose the BEESTS2-GF model due to the low amount 
of choice errors in our sample. This model assumes a single go process as well as a stop process, and 
that both the go and SSRTs can be approximated by an ex-Gaussian distribution, defined by the μ 
and τ parameters and a standard deviation of σ2 + τ2. As this model only fits one go process, choice 
errors were removed prior to analysis. We also removed outlier trials, defined as trials with RTs ± 3 
SDs away from each participant’s mean. Estimation was run using the Dynamic Models of Choice 
toolbox (Heathcote et al., 2019) in R Studio (version 1.3.1093) where models were fitted to each 
participant individually. Parameter priors were defined as weakly informative truncated normal distri-
butions (Heathcote et al., 2019; Skippen et al., 2019). Specifically, we set the mean to 500 ms (μgo 
and μstop), 200 ms (σgo and τgo), and 100 ms (σstop and τstop), and the standard deviations to 1000ms. The 
priors for go and trigger failures had a mean of 1.5 (probit scale) with a standard deviation of 1. We ran 
24 chains, 3 for each estimated parameter. All rhat-values were <1.1, indicating chain convergence. 
Posterior distributions were updated well, suggesting that priors were largely uninformative. Plots 
showing the prior relative to posterior distributions, chains, and posterior predictive model checks can 
be found in the accompanying materials on OSF (Raud et al., 2021).

EMG acquisition
Two surface EMG electrodes were placed on the skin above the abductor pollicis brevis in parallel 
to the belly of the muscles on each hand using bipolar Ag/Ag-Cl montages. Corresponding ground 
electrodes were placed on each forearm. The recordings were performed using a BrainAmp ExG 
extension for bipolar recordings (Brain Products GmbH, Germany) with an online low-pass filter of 
1000 Hz, a sampling rate of 5000 Hz, and a 0.5 µV resolution.

EMG preprocessing and burst detection
EMG preprocessing and variable extractions were performed with custom scripts in MATLAB (The 
Math Works, Inc MATLAB, version 2018a) and eeglab (Delorme and Makeig, 2004; version 14.1.1b) 
and are publicly available on the OSF (Raud et al., 2021; https://osf.io/rqnuj/). The EMG signal was 
bandpass filtered between 20 and 250 Hz using a second-order butterworth filter and resampled to 
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500 Hz. Data epochs were extracted for all trials from −0.2 to 1.6 s relative to go signal onset. Trials 
were rejected at this stage if the average baseline activity was larger than 100 μV (across all partici-
pants, this led to the rejection of 206 trials, i.e., roughly 0.5 %).

The data epochs were transformed by taking the root mean square over a moving average window 
or ±5 data points, and normalized to baseline by dividing the full time-course by the average of the 
baseline period (−0.2 to 0 s relative to the go signal). For each participant and each hand, epochs were 
then concatenated and z-scored block-wise.

EMG bursts were identified in a trial if any data point exceeded a threshold of 1.2 (in standard 
deviation units, taking into account all trials). This threshold was confirmed visually and has been held 
constant across several recent studies (Huster et al., 2020; Raud et al., 2020a; Raud et al., 2020b; 
Thunberg et al., 2020). The peak latency was defined as the time-point of the highest amplitude in 
a trial. Onset latency was determined by tracking amplitude values backwards in time, starting at the 
peak latency, up until continuous data points of 8ms were below amplitude threshold. Lastly, peak 
latencies of the EMG in stop trials were recalculated relative to the stop signal onset by subtracting 
the SSD. All variables were averaged over left- and right-hand trials.

Statistical analyses
Statistical analyses were performed using R (R Core Team, 2019) and the package collection of 
tidyverse (Wickham et al., 2019) and custom scripts in MATLAB. All figures were created either in 
MATLAB or in R using the packages ggplot2 (Wickham, 2020), ggpubr (Kassambara, 2020), and 
psych (Revelle, 2021).

The trial differences between EMG amplitudes and peaks were tested by means of t-tests and anal-
yses of variance within the Bayesian framework using the R package BayesFactor (Morey et al., 2018). 
The evidence was quantified using the Bayes factor, with values greater than 1 indicating support for 
the alternative and values below 1 for the null hypothesis (with >3 and <0.3 often considered indica-
tors of strong evidence toward alternative or null, respectively).

We further tested whether the prEMG characteristics (inhibition functions, probability, onset 
latency, peak latency, and peak amplitude) varied across SSDs. To account for individual variability in 
SSDs, we centralized the SSDs per participant instead of using the absolute values. The mode of each 
participant’s SSD distribution was treated as zero and we extracted the values ±3 SSD steps around 
the mode. The prEMG characteristics were averaged per SSD, so that each participant had one value 
per SSD, given that they had any trials with prEMG at that specific SSD.

The relationships between the prEMG characteristics and the prEMG were expected to be 
nonlinear with the exact shape unknown. Therefore, these were tested by the GAMMs using the R 
package gamm4 (Wood and Scheipl, 2020). GAMM includes the possibility of adding a smooth term 
to the model, which is a linear sum of several splines. The degree of nonlinearity (or wiggliness) of 
the resulting model fit is determined by the edf and the corresponding F and p values, together with 
the estimated lambda factor that penalizes for overfitting. For example, in cases where linear fit is the 
best fit, the edf will be close to one; in case of second-order polynomial fit, the edf will be close to 2, 
etc. We considered smooth parameters with a p value below 0.05 as indicative of a significant effect.

Single-trial analysis. The single-trial analysis was done on prEMG (successful stop trials) only, 
using prEMG onset latencies, peak latencies, and AUC from onset to peaks. These were calculated 
as a cumulative sum of the amplitudes from onset to peak. AUC thus integrates the duration and 
amplitude of the prEMG bursts before their decline. As the bivariate correlations with the SSD at a 
single-trial level were high for the onset latencies (r = 0.88), they were orthogonalized for the SSD by 
predicting onsets from the SSD for each participant and using the residuals instead of original values. 
AUCs were log transformed since the original values were extremely skewed toward low values. Addi-
tional data cleaning was applied, in which trials were excluded if the peak latency occurred before 
the stop signal or if the onsets (go-locked) or peaks (stop-locked) exceeded two interquartile ranges 
of the individual participant’s data. Three separate GAMMs were performed predicting peak latency 
from onset latency, AUC from peak latency, and AUC from onset latency.

Variability. Individual prEMG variability was estimated as the standard deviation of the prEMG peak 
latencies across trials for each participant. As some participants had implausibly large variability esti-
mates, we identified and excluded four outliers who exceeded two interquartile ranges. One of these 
was also an outlier for the standard deviation of the SSRT, calculated by the BEESTS method. Bivariate 
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Pearson rank-ordered correlation coefficients and (uncorrected) p values were used to identify rela-
tionships between prEMG variability and the number of prEMG trials per participant, go reaction time 
standard deviations, average root mean square amplitudes during the intertrial interval of −20 to 0 
ms before go stimulus, and standard deviation of the SSRT calculated by the BEESTS method. The 
scatterplots with the outliers included are in Appendix 1—table 2.

Reliability. We estimated the internal consistency of the different prEMG metrics (onset latencies, 
peak latencies, peak amplitudes, and AUCs from onset to peak) using a permutation-based split-half 
approach (Parsons et al., 2019). After the same level of additional data cleaning as in the single-trial 
analyses, we split the data for each participant into two random halves and calculated the mean of 
each half. These estimates for each half were then correlated across participants and the correlations 
were corrected using the Spearman-Brown prophecy formula (Brown, 1910; Spearman, 1910). This 
process was repeated 10,000 times, thus resulting in a distribution of reliability estimates. We used 
the mean of this distribution as our summary reliability estimate, and 2.5th and 97.5th percentiles as 
the upper and lower limits of the confidence intervals.

Initially, all trials from all participants were used for the reliability estimates. Next, we repeated 
the analysis iteratively using an equal number of trials per participant and excluding all participants 
who did not have enough trials available for a specific iteration. We started with 6 trials per partic-
ipant (lowest number of trials available for all participants) and increased the number of trials per 
iteration by one until we were left with 32 trials per participant (with 12 participants remaining). We 
repeated this process 1000 times, thus getting a distribution of reliability estimates at each trial 
count.

Meta-analysis
Three databases (Pubmed, Scopus, and Google Scholar) were searched with keywords (‘EMG’ OR 
‘electromyography’) AND (‘stop signal’ OR ‘countermanding’ OR ‘antisaccade’ OR ‘anticipated 
response’) on 11/21/2021. The abstracts of 158 entries were screened and included in the meta-
analysis if they reported prEMG peak or offset latencies relative to the stop signal onset. Most studies 
reported data from more than one experiment or experimental condition. All experiments/conditions 
were included as separate entries, except for Thunberg et al., 2020, from which we only included the 
three baseline sessions (and excluded the remaining six peri- and post-TDCS sessions, not to bias the 
results toward a single study with nine entries). Studies that reanalysed data already included in the 
meta-analysis were excluded. This resulted in 21 conditions/experiments from 10 different studies. 
In case of missing values, authors were contacted, and all authors provided the required values. We 
calculated the averages and standard deviations of the go RTs, SSRTs, prEMG detection frequen-
cies, and peak/offset latencies, the differences between the SSRT and prEMG peak latencies, and 
correlations between the prEMG and SSRT. For the correlation coefficients, the means and standard 
deviations were calculated on Student z-transformed data, and then retransformed into correlation 
coefficients. The associations between the behavioral and EMG measures were tested with general 
mixed models with ‘study’ as a random variable, using the R package lme4 (Bates, 2022). The spread-
sheet with extracted data for all included studies is uploaded in the accompanying OSF page (Raud 
et al., 2021).
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Appendix 1
Replication analysis
Replication on publicly available dataset in https://osf.io/b2ng5/ from Jana et  al., 2020. 

N = 41 (combined data from experiments 1 and 2). Results that divert from those reported in the 
original manuscript with discovery dataset are marked in boldface font.

Behavior and EMG in the stop signal task

Appendix 1—table 1. Behavioral summary statistics.
RT = reaction time; sd = standard deviation; SSD = stop signal delay; SSRT = stop signal reaction 
time. N = 41.

Mean sd Median min max

Behavior

Go accuracy (%) 97.95 2.26 98.44 86.67 100.00

Go errors (%) 0.66 1.07 0.22 0.00 5.11

Go omissions (%) 1.50 1.74 0.89 0.00 9.11

Go RT (ms) 481.28 80.33 471.67 335.16 636.69

SSD (ms) 271.18 93.04 255.17 88.33 453.21

SSRT (ms) 205.96 24.06 206.21 166.43 267.54

Stop accuracy (%) 50.00 2.09 50.00 42.67 54.00

Unsuccessful stop RT (ms) 441.05 72.64 436.43 318.15 591.36

Appendix 1—table 2. Means (and standard deviations in brackets) of the EMG variables.
Motor time refers to the difference between the EMG onset latency and the reaction time. Rise time 
refers to the duration of the rising flank of the EMG burst. *Peak latencies are time-locked to the 
stop signal onset. N = 41.

Variable Go Succ. stop
Unsucc. 
stop

Count 430 (15) 39 (11) 74 (3)

Percentage 99 (1) 58 (17) 99 (2)

Onset latency (ms) 367 (81) 369 (85) 316 (67)

Peak latency* (ms) NA (NA) 140 (27) 74 (36)

Peak amplitude (z) 11 (1) 6 (1) 10 (1)

Motor time (ms) 118 (16) NA (NA) 118 (16)

Rise time (ms) 60 (12) 30 (7) 57 (11)

AUC (z) 138 (14) 51 (12) 124 (15)

Statistical results
EMG onset latencies:

•	 unsuccessful stop < go (BF = 1.26 × 1016)
•	 prEMG ~ go (BF = 0.21)

EMG peak amplitudes:

•	 successful stop < go (BF = 1.30 × 1022)
•	 successful stop < unsuccessful stop (BF = 5.60 × 1016)
•	 unsuccessful stop < go (BF = 13,780)

Motor time:

•	 unsuccessful stop ~ go (BF = 0.17)

https://doi.org/10.7554/eLife.70332
https://osf.io/b2ng5/
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Rise time:
•	 unsuccessful stop < go (BF = 393,283)

Associations of prEMG latency and frequency with behavior
•	 correlation SSRT – goRT (r = −0.55, p < 0.001)
•	 correlation goRT – prEMG latency (r = −0.52, p < 0.001)
•	 correlation goRT – prEMG frequency (r = −0.39, p = 0.01)
•	 correlation prEMG frequency – latency (r = 0.01, p = 0.935)
•	 correlation prEMG frequency – SSRT (r = 0.21, p = 0.167)
•	 correlation SSRT-prEMG latency (r = 0.56, p < 0.001)

Comparison of behavior- and EMG-based inhibition functions
GAMM: probability of response as a function of SSD and response type (button press/EMG).

Model R2 = 0.75.
Significant effect of SSD (df = 3.30, F = 281.95, p < 2 × 10−16); response type (b = 0.07, t = 9.52, 

p < 2 × 10−16), and interaction between SSD and response type (df = 2.21, F = 29.03, p = 2 × 10−16).

Context independence of going and stopping
Statistical tests for RTs:

•	 unsuccessful stop < go (BF = 9.57 × 1013)
•	 unsuccessful stop > fast go (using means BF = 1.3 × 109, medians BF = 64,049)

Statistical tests for EMG onsets:
•	 unsuccessful > fast go (BF = 2.96 × 109)
•	 prEMG < medium go (BF = 34,849)

Appendix 1—table 3. EMG onsets in go trials divided into fast (between go onset and 
p(press|stop)), medium (between p(press|stop), and p(EMG|stop)) and slow (>p(EMG|stop)) trials.
usEMG = unsuccessful stop EMG; prEMG = partial response EMG (successful stop trials).

Mean sd Median min max

goEMG_fast 411 82 412 260 678

goEMG_medium 520 103 503 345 858

goEMG_slow 626 139 584 415 1,068

usEMG 431 87 433 272 704

prEMG 496 114 479 290 841

prEMG characteristics as a function of SSD
Four GAMMs to predict the prEMG probability, onsets, amplitudes, and peak latencies from the 
SSDs:

•	 probability: df = 2.42, F = 42.88, p < 0.01 × 10−15, R2 = 0.25
•	 onset latency: df = 1.00, F = 655.40, p < 0.01 × 10−15, R2 = 0.36
•	 peak latency: df = 1.00, F = 19.24, p = 2 × 10−5, R2 = 0.06
•	 peak amplitude: df = 1.00, F = 12.52, p = 5 × 10−5, R2 = 0.04

prEMG peak latency as a function of time on task
GAMM model predicting prEMG peak latency by trial order while controlling for SSD: df = 1.73, F 
= 0.56, p = 0.442.

GAMM model predicting probability of producing prEMG by trial order while controlling for SSD: 
df = 2.38, χ2 = 5.97, p = 0.233.

Single-trial associations of prEMG onset latency, peak latency, and AUC
GAMMs predicting: (1) peak latency from onset latency: edf = 3.36, F = 1119, p < 2 × 10−16, R2 = 0.57

1.	 peak latency from AUC: edf = 1.00, F = 12.96, p = 0.0003, R2 < 0.001
2.	 onset latency from AUC: edf = 2.59, F = 8.67, p < 2 × 10−16, R2 = 0.12

https://doi.org/10.7554/eLife.70332
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prEMG latency variability
The average individual standard deviation was 45ms (group-level sd = 20) and varied from 16 to 87 
ms.

prEMG split-half reliability

Appendix 1—table 4. Split-half reliability estimates for partial response electromyography (prEMG) 
characteristics, including mean, standard deviation, and percentiles derived from the permutation 
distributions that correspond to the 95% confidence intervals.
RMS = root mean square; AUC = area under the curve from onset to peak.

Mean sd 2.5th 97.5th

Onset latency (ms) 0.98 0.01 0.96 0.99

Peak latency (ms) 0.92 0.05 0.91 0.96

Peak RMS amplitude (z) 0.59 0.11 0.32 0.77

AUC (z) 0.53 0.12 0.27 0.73

Appendix 1—figure 1. Inhibition functions. Error bars represent 95% confidence intervals. Note that the error bars 
are calculated across all trials and participants, ignoring that each participant has several data points.

https://doi.org/10.7554/eLife.70332
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Appendix 1—figure 2. Partial response electromyography (prEMG) probability, onset latency, peak latency, and 
peak amplitude. The upper panels represent empirical data across all participants. Green lines represent the 
group average with 95% confidence intervals and gray lines represent each participant. The lower panels depict 
the model fit of the generalized additive models with 95% confidence intervals. Note the different y-axes between 
empirical data and model fits.

Appendix 1—figure 3. Single-trial associations between partial response electromyography (prEMG) onset 
latency, peak latency, and area under curve (AUC). The dots represent single trials from all participants. The black 
lines represent the fixed effect model fits from generalized additive mixed models, where the individual variability 
was modeled as separate intercepts for each participant. The shaded areas represent 95% confidence intervals.

https://doi.org/10.7554/eLife.70332
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Appendix 1—figure 4. Variability of partial response electromyography (prEMG) peak latency. Left: density 
functions of prEMG peak latency across all trials and participants (left panel) and separately for group of 
participants with low, medium, and large individual standard deviations (sd; right panels). Right: correlation matrix 
between individual prEMG standard deviations (prEMGsd), number of prEMG trials (prEMGn), go reaction time 
standard deviations (goRTsd), average root mean square EMG amplitudes during the intertrial interval −200 
to 0 before go stimulus onset (RMSmean). The diagonal shows the histograms for each variable together with 
the density functions, the lower diagonal shows the scatterplots, and the upper diagonal shows the Spearman 
correlation coefficients.

Appendix 1—figure 5. Reliability estimates as a function of number of trials (green) and number of participants 
(brown) for partial response electromyography (prEMG) latency- and amplitude-based measures. Green shaded 
areas represent 95% confidence intervals for the reliability estimates, and the black dashed horizontal line 
represent a reliability value of 0.7 for reference. Note the different y-axes for latency and amplitude measures. AUC 
= area under the curve from prEMG onset to peak.

https://doi.org/10.7554/eLife.70332
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Appendix 2
Scatterplots of prEMG latency variability with outliers

Appendix 2—figure 1. Scatterplots and histograms for the associations of the partial response electromyography 
(prEMG) peak latency standard deviations with stop signal reaction time (SSRT) standard deviations derived from 
BEESTS (left panel), number of prEMG trials (middle panel), and baseline EMG noise (right panel). The red dots 
represent outliers, while the histograms, rho/p values, and blue regression lines are calculated after excluding the 
outliers.

https://doi.org/10.7554/eLife.70332
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