SWI/SNF senses carbon starvation with a pH-sensitive low complexity sequence

J. Ignacio Gutiérrez¹,⁷, Gregory P. Brittingham², Yonca Karadeniz³, Kathleen D. Tran⁴, Arnob Dutta⁴, Alex S. Holehouse⁵,⁶, Craig L. Peterson³, and Liam J. Holt²*

Affiliations:
¹ Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States.
² Institute for Systems Genetics, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10010, United States.
³ Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, United States.
⁴ Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Road, Kingston, RI 02903, United States.
⁵ Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
⁶ Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
⁷ Current affiliation: Weill Cornell Medicine, 1300 York Ave, New York, NY 10065, United States.

Major Subject Areas:
Genes and Chromosomes
Biochemistry
Biophysics

* Correspondence to: liam.holt@nyulangone.org
Abstract

It is increasingly appreciated that intracellular pH changes are important biological signals. This motivates the elucidation of molecular mechanisms of pH-sensing. We determined that a nucleocytoplasmic pH oscillation was required for the transcriptional response to carbon starvation in *Saccharomyces cerevisiae*. The SWI/SNF chromatin remodeling complex is a key mediator of this transcriptional response. A glutamine-rich low complexity domain (QLC) in the SNF5 subunit of this complex, and histidines within this sequence, were required for efficient transcriptional reprogramming. Furthermore, the SNF5 QLC mediated pH-dependent recruitment of SWI/SNF to an acidic transcription factor in a reconstituted nucleosome remodeling assay. Simulations showed that protonation of histidines within the SNF5 QLC lead to conformational expansion, providing a potential biophysical mechanism for regulation of these interactions. Together, our results indicate that pH changes are a second messenger for transcriptional reprogramming during carbon starvation, and that the SNF5 QLC acts as a pH-sensor.
Introduction

Biological processes are inherently sensitive to the solution environment in which they occur. A key regulated parameter is intracellular pH (pH$_i$), which influences all biological processes by determining the protonation state of titratable chemical groups. These titratable groups are found across many biological molecules, from small-molecule osmolytes to the side-chains of amino acids. While early work suggested that pH$_i$ was a tightly constrained cellular parameter (Needham, 1926), more recent technologies have revealed that pH$_i$ can vary substantially in both space and time (Llopis et al., 1998; Seksek and Bolard, 1996). Moreover, changes in pH$_i$ can regulate metabolism (Busa and Nuccitelli, 1984; Young et al., 2010), proliferation (Busa and Crowe, 1983), and cell fate (Okamoto, 1994), among other processes. Intriguingly, stress-associated intracellular acidification appears to be broadly conserved, suggesting that a drop in pH$_i$ is a primordial mechanism to coordinate the general cellular stress response (Drummond et al., 1986; Gores et al., 1989; Munder et al., 2016; O’Sullivan and Condon, 1997; Triandafillou et al., 2020; Yao and Haddad, 2004).

The budding yeast *Saccharomyces cerevisiae* is adapted to an acidic external environment (pH$_e$), and optimal growth media is typically at pH 4.0 – 5.5. The plasma membrane (Pma1) and vacuolar (Vma1) ATPases maintain near neutral pH$_i$ of ~7.8 by pumping protons out of the cell and into the vacuole, respectively (Martínez-Muñoz and Kane, 2008). When cells are starved for carbon, these pumps are inactivated, leading to a rapid acidification of the intracellular space to pH ~ 6 (Kane, 1995; Orij et al., 2009). This decrease in intracellular pH$_i$ is crucial for viability upon carbon-starvation, and is thought to conserve energy, leading to storage of metabolic enzymes in filamentous assemblies (Petrovska et al., 2014), reduction of macromolecular diffusion (Joyner et al., 2016; Munder et al., 2016), decreased membrane biogenesis (Young et al., 2010) and possibly the non-covalent crosslinking of the cytoplasm into a solid-like material state (Joyner et al., 2016; Munder et al., 2016). These studies suggest that many physiological processes are inactivated when pH$_i$ drops. However, some processes must also be upregulated during carbon starvation to enable adaptation to this stress. These genes are referred to as “glucose-repressed genes”, as they are transcriptionally repressed in the presence of glucose (DeRisi, 1997; Zid and O’Shea, 2014). Recently, evidence was presented of a positive role for acidic pH$_i$ in stress-gene induction: transient acidification is required for induction of the transcriptional heat-shock response in some conditions (Triandafillou et al., 2020). However, the molecular mechanisms by which the transcriptional machinery senses and responds to pH changes remain mysterious.
The Sucrose Non Fermenting genes (SNF) were among the first genes found to be required for induction of glucose-repressed genes (Neigeborn and Carlson, 1984). Several of these genes were later identified as members of the SWI/SNF complex (Abrams et al., 1986; Carlson, 1987), an 11 subunit chromatin remodeling complex that is highly conserved from yeast to mammals (Chiba et al., 1994; Peterson et al., 1994; Peterson and Herskowitz, 1992). The SWI/SNF complex affects the expression of ~10% of the genes in Saccharomyces cerevisiae during vegetative growth (Sudarsanam et al., 2000). Upon carbon starvation, most genes are down-regulated, but a set of glucose-repressed genes, required for utilization of alternative energy sources, are strongly induced (Zid and O'Shea, 2014). The SWI/SNF complex is required for the efficient expression of several hundred stress-response and glucose-repressed genes, implying a possible function in pH-associated gene expression (Biddick et al., 2008a; Sudarsanam et al., 2000). However, we still lack evidence for a direct role for SWI/SNF components in the coordination of pH-dependent transcriptional programs or a mechanism through which pH-sensing may be achieved.

10/11 subunits of the SWI/SNF complex contain large intrinsically disordered regions (Figure 1 – figure supplement 1), and in particular, 4/11 SWI/SNF subunits contain glutamine-rich low complexity sequences (QLC). QLCs are present in glutamine-rich transactivation domains (Kadonaga et al., 1988, 1987) some of which, including those found within SWI/SNF, may bind to transcription factors (Prochasson et al., 2003), or recruit transcriptional machinery (Geng et al., 2001; Janody et al., 2001; Laurent et al., 1990). Intrinsically disordered regions lack a fixed three dimensional structure and can be highly responsive to their solution environment (Holehouse and Sukenik, 2020; Moses et al., 2020). Moreover, the SWI/SNF QLCs contain multiple histidine residues. Given that the intrinsic pK\textsubscript{a} of the histidine sidechain is 6.9 (Whitten et al., 2005), we hypothesized that these glutamine-rich low complexity regions might function as pH sensors in response to variations in pH\textsubscript{i}.

In this study, we elucidate SNF5 as a pH-sensing regulatory subunit of SWI/SNF. SNF5 is over 50% disordered and contains the largest QLC of the SWI/SNF complex. This region is 42% glutamine and contains 7 histidine residues. We investigated the relationship between the SNF5 QLC and the cytosolic acidification that occurs during acute carbon-starvation. By single cell analysis, we found that intracellular pH (pH\textsubscript{i}) is highly dynamic and varies between subpopulations of cells within the same culture. After an initial decrease to pH\textsubscript{i} ~ 6.5, a subset of cells recovered their pH\textsubscript{i} to ~ 7. This transient acidification followed by recovery was required for expression of glucose-repressed genes. The SNF5 QLC and four embedded histidines were required for rapid gene induction. SWI/SNF complex histone remodeling activity was robust to
pH changes, but recruitment of the complex to a model transcription factor was pH-sensitive, and this recruitment was mediated by the SNF5 QLC and histidines within. All-atom simulations indicated that histidine protonation causes a conformational expansion of the SNF5 QLC, perhaps enabling interaction with a different set of transcription factors and driving recruitment to the promoters of glucose-repressed genes. Thus, we propose changes in histidine charge within QLCs as a mechanism to sense pH changes and instruct transcriptional reprogramming during carbon starvation.
Results

Induction of \textit{ADH2} upon glucose starvation requires the \textit{SNF5} glutamine-rich low complexity sequence with native histidines

The SWI/SNF chromatin remodeling complex subunit \textit{SNF5} has a large low-complexity region at its N-terminus that is enriched for glutamine, the sequence of which is shown in figure 1A. This sequence contains seven histidine residues, and we noticed a frequent co-occurrence of histidines within and adjacent to glutamine-rich low complexity sequences (QLCs) of many proteins. Inspection of the sequence properties of proteins, especially through the lens of evolution, can provide hints as to functionally important features. Therefore, we analyzed the sequence properties of all glutamine-rich low complexity sequences (QLCs) in the proteomes of several species.

We defined QLCs as protein subsequences with a minimum of 25\% glutamine residues, a maximum interruption between any two glutamine residues of 17 residues, and a minimum overall length of 15 residues. These parameters were optimized empirically based on the features of glutamine-rich regions in the \textit{S. cerevisiae} proteome (see methods and Figure 1–Figure Supplement 2). By these criteria, the S288c \textit{S. cerevisiae} strain had 144 QLCs (Supplemental File 1). We found that Proline and Histidine were enriched (> 50-100\%-fold higher than average proteome abundance) in yeast QLCs (Figure 1B), with similar patterns found in \textit{Dictyostelium discoideum}, and \textit{Drosophila melanogaster} proteomes (Figure 1–figure supplement 3). Enrichment for histidine within QLCs was previously described across many \textit{Eukaryotes} using a slightly different method (Ramazzotti et al., 2012). Interestingly, the codons for glutamine are a single base pair mutation away from proline and histidine. However, they are similarly adjacent to lysine, arginine, glutamate and leucine, yet QLCs are depleted for lysine, arginine and glutamate, suggesting that the structure of the genetic code is insufficient to explain the observed patterns of amino acids within QLCs. We also considered the possibility that histidines might be generally enriched in low-complexity sequences. In fact, this is not the case: histidines are 50\% more abundant in yeast QLCs than in all in all other low-complexity sequences identified using Wootton-Fedherhen complexity (see methods). Thus, histidines are a salient feature of QLCs.

The N-terminus of \textit{SNF5} contains one of the largest QLCs in the yeast proteome and is in the top three QLCs in terms of number of histides (Figure 1 - figure supplements 2E, F). We compared the sequences of Snf5 N-terminal domains taken from twenty orthologous proteins from a range of \textit{Ascomycota} (a fungal phylum) (Figure 1 – figure supplement 4, Supplementary File 2). Despite the relatively poor sequence conservation across the N-
terminal disordered regions in **SNF5** (**Figure 1 – figure supplement 4A**), every region consisted of at least 18% glutamine (max 43%) and all possessed multiple histidine residues (**Figure 1 – figure supplement 4B; Supplementary File 2**; the phylogeny considered and the total number of QLCs for each species are shown in **Figure 1 – figure supplement 4C**). A broader survey of the tree of life (**Figure 1 – figure supplement 5**) indicates that the **SNF5** QLC was likely gained in the lineage leading to the **Ascomycota**, and is not present in most **Metazoa** (animals). In summary, enrichment for glutamine residues interspersed with histidine residues appears to be conserved sequence feature, both in QLCs in general, and in the N-terminus of **SNF5** in particular, implying a possible functional role (Zarin et al., 2019).

To further investigate the functional importance of the glutamine-rich N-terminal domain in **SNF5** we engineered 3 **SNF5** mutant strains: a complete deletion of the **SNF5** gene (**snf5Δ**); a deletion of the N-terminal QLC (**ΔQsnf5**); and an allele with 4 Histidines within the QLC mutated to Alanine (**HtoA snf5**) (**Figure 1A, C**).

As previously reported (Laurent et al., 1990), **snf5Δ** strains grew slowly, (**Figure 1 – figure supplement 6A**). In contrast, growth rates of **ΔQsnf5** and **HtoA snf5** were similar to WT during continuous growth in either fermentable (glucose) or poor (galactose or galactose/ethanol) carbon sources (**Figure 1 – figure supplement 6A-D**), and showed minimal defects when grown in glucose, carbon starved for 24 h and then reinculturated into glucose media. However, a strong growth defect was revealed for **ΔQsnf5** and **HtoA snf5** strains when cells were carbon starved for 24 h and then switched to a poor carbon source (**Figure 1 – figure supplement 6E-F**), suggesting that the **SNF5** QLC is important for adaptation to new carbon sources. Deletion of the **SNF5** gene has been shown to disrupt the architecture of the SWI/SNF complex leading to loss of other subunits (Peterson et al., 1994; Yang et al., 2007). To test if deletion of the QLC leads to loss of Snf5p protein or failure to incorporate into SWI/SNF, we immunoprecipitated the SWI/SNF complex from strains with a TAP tag at the C-terminal of the core **SNF2** subunit. We found that the entire SWI/SNF complex remained intact in both the **ΔQsnf5** and **HtoA snf5** strains (**Figure 1 – figure supplement 7A**). Silver-stains of the untagged Snf5p and Western blotting of TAP-tagged **SNF5** (Puig et al., 2001) strains showed that all **SNF5** alleles were expressed at similar levels to wild-type both in glucose and upon carbon starvation (**Figure 1 – figure supplement 7B**). Together, these results show that deletion of the **SNF5** QLC is distinct from total loss of the **SNF5 gene** and that this N-terminal sequence is important for efficient recovery from carbon starvation.

We hypothesized that slow recovery of **ΔQsnf5** and **HtoA snf5** strains after carbon starvation was due to a failure in transcriptional reprogramming. The alcohol dehydrogenase **ADH2** gene
is normally repressed in the presence of glucose and strongly induced upon carbon starvation. This regulation depends on SWI/SNF activity (Peterson and Herskowitz, 1992). Therefore, we used ADH2 as a model gene to test our hypothesis. We assayed SWI/SNF occupancy at the ADH2 promoter by chromatin immunoprecipitation (ChIP) of SWI/SNF complexes with a TAP-tag on the C-terminus of the SNF2 subunit from strains with various SNF5 alleles, followed by quantitative PCR (Q-PCR). These experiments showed that the wild-type complex is robustly recruited to the ADH2 promoter upon carbon starvation (Figure 1 – figure supplement 8). However, this recruitment is reduced in ΔQsnf5 and HtoA snf5 strains.

Next, we assayed transcription of the ADH2 gene using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). We found that robust ADH2 expression after acute carbon starvation was dependent on the SNF5 QLC and the histidines within (Figure 1D). This defect was far stronger in the ΔQsnf5 and HtoA snf5 strains than in snf5Δ strains; snf5Δ strains did not completely repress ADH2 expression in glucose, and showed partial induction upon carbon starvation, while ΔQsnf5 strains tightly repressed ADH2 in glucose (similar to WT), but completely failed to induce expression upon starvation (Figure 1D). These results suggest a dual-role for SNF5 in ADH2 regulation, both contributing to strong repression in glucose, and robust induction upon carbon starvation. The ΔQsnf5 and HtoA snf5 alleles separate these functions, maintaining WT-like repression while showing a strong defect in induction.

The RT-qPCR and ChIP assays report on the average behavior of a population. To enable single-cell analysis, we engineered a reporter strain with the mCherry (Shaner et al., 2004) fluorescent protein under the control of the ADH2 promoter integrated into the genome immediately upstream of the endogenous ADH2 locus (Figure 1E; Figure 1 – figure supplement 9A). We found high cell-to-cell variation in the expression of this reporter in WT strains: after 6 h of glucose starvation, P_{ADH2-mCherry} expression was bimodal; about half of the cells had high mCherry fluorescence and half were low. This bimodality was strongly dependent on preculture conditions, and was most apparent upon acute withdrawal of carbon from early log-phase cells that had grown for >16 h with optical density at 600 nm (O.D.) never exceeding 0.3 (see methods). If cells became partly saturated at any time during preculture, ADH2 induction was more rapid and uniform. Complete deletion of SNF5 eliminated this bimodal expression pattern; again, low levels of expression were apparent in glucose and induction during starvation was attenuated. As in the RT-qPCR analysis, the ΔQsnf5 strain completely failed to induce the P_{ADH2-mCherry} reporter at this time point and mutation of four central histidines to alanine was sufficient to mostly abrogate expression (Figure 1E). Mutation of a further two histidines had little additional effect (Figure 1 – figure supplement 9B - D).
together, these results suggest that the dual function of SNF5 leads to switch-like control of ADH2 expression. In glucose, SNF5 helps repress ADH2. Upon carbon starvation, SNF5 is required for efficient induction of ADH2. The SNF5 QLC and histidine residues within seem to be crucial for switching between these states.
Figure 1: Efficient induction of ADH2 upon glucose starvation requires the SNF5 glutamine-rich low complexity sequence with native histidines.

A) Sequence of the N-terminal low complexity domain of SNF5. This domain was deleted in the ΔQsfn5 strain. The glutamine rich domain is highlighted in orange. The 4/7 histidines that were mutated to alanine in the HtoA SNF5 allele are highlighted in red.

B) The log₂ of the frequency of each amino acid within QLCs divided by the global frequency of each amino acid in the proteome (S. cerevisiae). Values > 0 indicate enrichment in QLCs.

C) Left: Schematic of the SWI/SNF complex engaged with a nucleosome. The SNF5 C-terminus is shown in grey, while the disordered N-terminal QLC is shown in orange. Right: Schematic of the three main SNF5 alleles used in this study.

D) RT-qPCR results assessing levels of endogenous ADH2 mRNA in four strains grown in glucose (left) or after 4 h of glucose starvation (right). Note: y-axes are different for each plot.

E) Representative histograms (10,000 cells) showing the fluorescent signal from a P$_{ADH2}$-mCherry reporter gene for four strains grown in glucose (left) or after 6 h of glucose starvation (right). Statistical tests are Bonferroni corrected T-tests, * p < 0.05, ** p < 0.01, n.s. not significant.
The SNF5 QLC is required for ADH2 expression and recovery of neutral pH

Multiple stresses, including glucose-starvation, have been shown to cause a decrease in the pH of the cytoplasm and nucleus (nucleocytoplasm) (Dechant et al., 2014; Gores et al., 1989; Triandafillou et al., 2020; Yao and Haddad, 2004). Here, we refer to nucleocytoplasmic pH as intracellular pH, or pH_i. To investigate the relationship between ADH2 expression and pH_i, and how these factors depend upon SNF5, we engineered strains bearing both the ratiometric fluorescent pH-reporter, pHluorin (Miesenböck et al., 1998), and the P_ADH2-mCherry reporter. To calibrate the pHluorin sensor, we calculated the ratio of intensities of fluorescence emission after excitation with 405 and 488 nm light in cells that were ATP-depleted and permeabilized in media of known pH. We obtained a near linear relationship between ratios of fluorescence intensity and pH (Figure 2 – figure supplement 1, methods). Therefore, these strains allowed us to simultaneously monitor pH_i and expression of ADH2.

Wild-type cells growing exponentially in 2% glucose had a pH_i of ~ 7.8. Upon acute carbon starvation, cells rapidly acidified to pH_i ~ 6.5. Then, during the first hour, two populations arose: an acidic population (pH_i ~ 5.5), and a second population that recovered to pH_i ~ 7 (Figure 2A). Cells at pH_i 7 proceeded to strongly induce expression of the P_ADH2-mCherry reporter, while cells at pH_i 5.5 did not. We used Fluorescence-activated cell sorting (FACS) to separate these two populations and found that cells that neither recovered neutral pH nor expressed the P_ADH2-mCherry reporter had lower fitness relative to the the P_ADH2-mCherry inducing population, as indicated by lower rates of proliferation on both rich and poor carbon sources, and lower tolerance of heat stress (Figure 2 – figure supplement 2). After 8 h of glucose-starvation > 70% of wild-type cells had induced ADH2 (Figure 2A, C).

We next analyzed cells harboring mutant alleles of the QLC of SNF5. Similarly to WT, both ΔQsnf5 and HtoA snf5 strains rapidly acidified upon carbon starvation. However, these strains were defective in subsequent neutralization of pH_i and in the expression of P_ADH2-mCherry. At the 4 h time point, > 95 % of both ΔQsnf5, and HtoA snf5 cells remained acidic with no detectable expression, while > 60% of wild-type cells had neutralized and expressed mCherry (Figure 2A, C). Eventually, after 24 h, the majority of mutant cells neutralized to pH_i ~ 7 and induced expression of P_ADH2-mCherry (Figure 2 – figure supplement 3). Again, complete deletion of SNF5 led to less severe phenotypes than the ΔQsnf5, and HtoA snf5 alleles with only a modest delay in P_ADH2-mCherry expression (Figure 2 – figure supplement 4), suggesting that SNF5 plays both activating and inhibitory roles in ADH2 expression. Thus, the SNF5 QLC and histidines within are required for the rapid dynamics of both transient acidification and transcriptional induction of P_ADH2-mCherry upon acute carbon starvation.
We hypothesized that mutant cells might fail to recover from acidification because transcripts controlled by SWI/SNF are responsible for pH$_i$ recovery. In this model, SWI/SNF drives expression of a set of genes that must be both transcribed and translated. To test this idea we measured pH$_i$ in WT cells during carbon starvation in the presence of the cyclohexamine to prevent translation of new transcripts. In these conditions, we found that cells experienced a drop in pH$_i$ but were unable to recover neutral pH (Figure 2 – figure supplement 5). Thus, new gene expression is required for recovery of pH$_i$.
Figure 2: The SNF5 QLC is required for ADH2 expression and recovery of neutral pH.

A) Representative flow cytometry for WT, ΔQsnf5, or HtoASnf5 strains: the x-axis shows nucleocytoplasmic pH (pHi), while the y-axis shows fluorescence from the P_{ADH2-mCherry} reporter. Panels show cells grown in glucose (top) and then (2nd to bottom) after 0 - 8 h of acute glucose-starvation. Percentage of cells in each quadrant is indicated by grey numbers.

B) Schematic of quantification scheme: Raw data from A was fit to a single or double Gaussian curve determined by a least-residuals method.

C) Quantification of pH and P_{ADH2-mCherry} expression during acute starvation. The median of each Gaussian for pHi is plotted in (C, top), black and grey lines are from induced and uninduced populations respectively. The height of bars in (C, bottom) indicate the fraction of maximal P_{ADH2-mCherry} reporter gene expression (WT cells, 8 h glucose starvation) The darkness of the bars indicates the fraction of the population in the induced versus uninduced state. Mean and standard deviation of three biological replicates are shown.
Transient acidification is required for \(ADH2 \) induction upon carbon starvation

The acidification of the yeast nucleocytoplasm has been shown to depend upon an acidic extracellular pH (pH\(_e\)). We took advantage of this fact to manipulate the changes in pH\(_i\) that occur upon carbon starvation. Cell viability was strongly dependent on pH\(_e\), decreasing drastically when cells were starved for glucose in media at pH \(\geq 7.0 \) for 24 h (Figure 3 – figure supplement 1). Expression of \(P_{ADH2}\)-mCherry expression was also highly dependent on pH\(_e\), especially in \(SNF5 \) QLC mutants (Figure 3A, Figure 3 – figure supplement 2). WT cells failed to induce \(P_{ADH2}\)-mCherry at pH\(_e\) \(\geq 7 \), but induced strongly at pH\(_e\) \(\leq 6.5 \). RT-qPCR showed similar behavior for the endogenous \(ADH2 \) transcript (Figure 3 – figure supplement 3). ChIP experiments indicated that recruitment of SWI/SNF to the \(ADH2 \) promoter was also reduced when starvation was performed with media buffered to pH\(_e\) 7.5 (Figure 1 – figure supplement 7). Furthermore, we found that the nucleocytoplasm of all strains failed to acidify when the environment was held at pH\(_e\) \(\geq 7 \) (Figure 3 – figure supplement 4). Therefore, we conclude that an acidic extracellular environment is required for a decrease in intracellular pH upon carbon starvation, and that this intracellular acidification is required for activation of \(ADH2 \) transcription.

Given that intracellular acidification is necessary for \(ADH2 \) promoter induction, we next wondered if it was sufficient. First, we used the membrane permeable sorbic acid to allow intracellular acidification but prevent pH\(_i\) recovery. These cells failed to induce \(P_{ADH2}\)-mCherry, indicating that nucleocytoplasmic acidification is not sufficient; subsequent neutralization is also required. Carbon starvation at pH\(_e\) 7.4 prevented transient acidification and likewise prevented expression (Figure 3B, Figure 3 – figure supplement 3). Cells that were first held at pH\(_e\) 7.4, preventing initial acidification, and then switched to pH\(_e\) 5, thereby causing late acidification, failed to express mCherry after 6 h. Finally, starvation at pH\(_e\) 5 for 2 h followed by a switch to pH\(_e\) 7.4, with a corresponding increase in pH\(_i\) led to robust \(P_{ADH2}\)-mCherry expression. Together, these results suggest that transient acidification immediately upon switching to carbon starvation followed by recovery to neutral pH\(_i\) is the signal for the efficient induction of \(P_{ADH2}\)-mCherry.

Deletion of the \(SNF5 \) QLC leads to both failure to neutralize pH\(_i\) and loss \(ADH2 \) expression. We therefore wondered if forcing cells to neutralize pH\(_i\) would rescue \(ADH2 \) expression in a \(\Delta Qsnf5 \) strain. This was not the case: the \(\Delta Qsnf5 \) strain still fails to express \(P_{ADH2}\)-mCherry, even if we recapitulate normal intracellular transient acidification (Figure 3B, right). Therefore, the \(SNF5 \) QLC is require for normal kinetics of transient acidification and for additional steps in \(ADH2 \) gene activation.
Figure 3: Transient acidification is required for ADH2 induction upon carbon starvation.

A) Expression of P_{ADH2}-mCherry reporter gene in WT, ΔQsnf5, or $H_{toA}snf5$ strains 8 h after acute carbon starvation in media titrated to various pH (pH_e, see legend, right). Bar height indicates the fraction of maximal P_{ADH2}-mCherry reporter gene expression (WT cells, pH_e 5.5). The darkness of the bars indicates the fraction of the population in the induced versus uninduced state (see legend, right). B) Time courses of glucose starvation with media manipulations to perturb the intracellular pH response, either by changing media pH (pH_e), or by adding sorbic acid. Top panels show nucleocytoplasmic pH (pH_i), black and grey lines from induced and uninduced populations respectively. Bottom panels quantify expression of the P_{ADH2}-mCherry reporter gene (as in A). All strains are WT except for the far right panels, which are from a ΔQsnf5 strain.
The **SNF5** QLC and acidification of the nucleocytoplasm are required for efficient widespread transcriptional reprogramming upon carbon starvation

We wondered if transient acidification and the QLC of **SNF5** were important for transcriptional reprogramming on a genome-wide scale. To test this, we performed Illumina RNA-sequencing analysis on triplicates of each strain (WT, Δ**Qsnf5**, HtoA**snf5**) either growing exponentially in glucose or after acute carbon-starvation for 4 h at pH_e 5. In addition, to test the pH-dependence of the transcriptional response, we analyzed WT strains carbon-starved at pH_e 7, which prevents intracellular acidification (**Figure 3B; Figure 3 – figure supplement 4**).

Principal component analysis showed tight clustering of all exponentially growing samples, indicating that mutation of the QLC of **SNF5** doesn’t strongly affect gene expression in rich media (**Figure 4A**). In contrast, there are greater differences between wild-type strains with mutant **SNF5** alleles upon glucose starvation. The genes that accounted for most variation (the first two principle components) were involved in carbon transport, metabolism and stress responses. We defined a set of 89 genes that were induced (> 3-fold) and 60 genes that were down-regulated (> 3-fold) in WT strains upon starvation in media titrated to pH_e 5. Many of these genes were poorly induced in Δ**Qsnf5** and HtoA**snf5** mutants, as well as in WT strains starved in media titrated to suboptimal pH_e 7 (**Figure 4B**). **Figures 4C and D** show transcriptional differences between glucose-starved strains as volcano plots, emphasizing large-scale differences between WT and Δ**Qsnf5** strains, and similarities between Δ**Qsnf5** and HtoA**snf5**.

We next performed hierarchical clustering analysis (Euclidean distance) of the 149 genes that are strongly differentially expressed between strains, or at suboptimal pH_e 7 (**Figure 4E**). Based on this clustering and some manual curation, we assigned these genes to four groups. Group 1 genes (n = 42) were activated in starvation in a **SNF5** QLC and pH-dependent manner. They are strongly induced in WT but induction is attenuated both in mutants of the **SNF5** QLC and when the transient acidification of pH_i was prevented by starving cells in media titrated to pH_e 7. GO analysis revealed that these genes are enriched for processes that are adaptive in carbon starvation, for example fatty acid metabolism and the TCA cycle. Group 2 (n = 64) genes were not strongly induced in WT, but were inappropriately induced during starvation in **SNF5** QLC mutants and during starvation at pH_e 7. GO analysis revealed that these genes are enriched for stress responses, perhaps because the failure to properly reprogram transcription leads to cellular stress. Group 3 genes (n = 51) were repressed upon carbon-starvation in a pH-dependent but **SNF5** QLC-independent manner. They were repressed in all strains, but repression failed at pH_e 7. Finally, Group 4 genes (n = 16) were repressed in WT cells in a pH-independent manner, but failed to repress in **SNF5** QLC mutants.
We performed an analysis for the enrichment of transcription factors within the promoters of each of these gene sets using the YEASTRACT server (Teixeira et al., 2014). These enrichments are summarized in Supplementary File 3. Top hits for Group 1 included the CAT8 and ADR1 transcription factors, which have previously been suggested to recruit the SWI/SNF complex to the ADH2 promoter (Biddick et al., 2008b).

In conclusion, both pH changes and the SNF5 QLC are required for correct transcriptional reprogramming upon carbon starvation, but the dependencies are nuanced. Mutation of the SNF5 QLC or prevention of nucleocytoplasmic acidification appears to trigger a stress response (Group 2 genes). Another set of genes requires pH change for their repression upon starvation, but this pH sensing is independent of SNF5 (Group 3). A small set of genes requires the SNF5 QLC but not pH change for repression upon starvation (Group 4). Finally, a set of genes, including many of the traditionally defined “glucose-repressed genes”, require both the SNF5 QLC and a pH change for their induction upon carbon starvation (Group 1). For these genes, point mutation of 4 histidines in the QLC is almost as perturbative as complete deletion of the QLC. We propose that the SNF5 QLC senses the transient acidification that occurs upon carbon starvation to elicit transcriptional activation of this gene-set. It is striking that this set is enriched for genes involved in catabolism, TCA cycle and metabolism, given that these processes are important for energetic adaptation to acute glucose-starvation.
Figure 4: The SNF5 QLC and acidification of the nucleocytoplasm are required for efficient widespread transcriptional reprogramming upon carbon starvation.

A) Principal component (PC) analysis of 3 RNA-seq biological replicates for each condition tested. B) Expression levels of genes that were > 3 fold induced or repressed upon carbon starvation in WT strains are plotted for each SNF5 allele. C) Volcano plot showing the log₂ ratio of expression levels in WT versus
\(\Delta \text{Qsnf5} \) strains (x-axis) and p-values for differential expression (y-axis). Genes with significantly different expression are indicated in red (log\(_2 \) fold change > 1 and Wald test adjusted p value < 0.05). D) Volcano plot as in (C) but comparing expression levels in \(\text{htoAsnf5} \) strains to \(\Delta \text{Qsnf5} \) strains. E) Hierarchically clustered heat map showing expression values of 149 genes with a significant change in expression upon starvation of WT cells (log\(_2 \) fold change > 1 and Wald test adjusted p value < 0.05). Color code indicates gene expression relative to the mean expression of that gene across all strains and conditions, with red indicating high, and blue low values (see legend). Three biological replicates are shown for each experiment. Strain and condition identities are indicated at the bottom of each column. Four groups of genes with similar behavior are indicated to the left. Gene ontology enrichment results for 9 clusters of genes are shown to the right.

The \textit{SNF5} QLC mediates a pH-sensitive transcription factor interaction \textit{in vitro}

We reasoned that pH changes could affect the intrinsic nucleosome remodeling activity of SWI/SNF, or alternatively might impact the interactions of SWI/SNF with transcription factors. Indeed, recent structural evidence (He et al., 2021) shows that the QLCs of not only \textit{SNF5}, but also several other SWI/SNF subunits appear to be poised for interaction with transcription factors on DNA immediately downstream of the nucleosome (Figure 5 – Figure Supplement 1). We used a fluorescence-based strategy \textit{in vitro} to investigate these potential pH-sensing mechanisms. A center-positioned, recombinant mononucleosome was assembled on a 200 bp DNA fragment containing a “601” nucleosome positioning sequence (Dechassa et al., 2008) (Figure 5A). The nucleosomal substrate contained two binding sites for the Gal4 activator located upstream, and 68 base pairs of linker DNA downstream of the nucleosome. The mononucleosome contained a Cy3 fluorophore covalently attached to the distal end of the template DNA, and Cy5 was attached to the H2A C-terminal domain. The Cy3 and Cy5 fluorophores can function as a Förster Resonance Energy Transfer (FRET) pair only when the Cy3 donor and Cy5 acceptor are within an appropriate distance (see also Li and Widom, 2004). In the absence of SWI/SNF activity, the center-positioned nucleosome has a low FRET signal, but ATP-dependent mobilization of the nucleosome towards the distal DNA end leads to an increase in FRET (Brune et al., 1994; Luger et al., 1999; Sen et al., 2017; Smith and Peterson, 2005; Zhou and Narlikar, 2016) (Figure 5). In the absence of competitor DNA, SWI/SNF does not require an interaction with a transcription factor to be recruited to the mononucleosome and thus intrinsic nucleosome remodeling activity can be assessed independently of recruitment. In this assay, SWI/SNF complexes containing either \(\Delta \text{Qsnf5p} \) or \(\text{htoAsnf5} \) retained full nucleosome remodeling activity (Figures 5B-D), as well as full DNA-stimulated ATPase activity (Figure 5 – figure supplement 2). Furthermore, these activities were similar at pH 6.5, 7, or 7.6. Thus, we
conclude that the *SNF5* QLC does not sense pH by modifying its intrinsic ATPase and nucleosome remodeling activity, at least in this *in vitro* context.

Next, we assessed if the *SNF5* QLC and pH changes could affect SWI/SNF interactions with transcription factors. SWI/SNF remodeling activity can be targeted to nucleosomes in vitro by Gal4 derivatives that contain acidic activation domains, an archetypal example of which is VP16 (Yudkovsky et al., 1999). Indeed, it was previously demonstrated that the QLC of Snf5 mediates interaction with the Gal4-VP16 transcription factor (Prochasson et al., 2003). To assess recruitment of SWI/SNF, we set up reactions with an excess of nonspecific competitor DNA. In these conditions, there is very little recruitment and remodeling without interaction with a transcription factor bound to the mononucleosome DNA (*Figure 5E, F*). In this context, we found that the QLC of *SNF5* was required for rapid, efficient recruitment of SWI/SNF by the Gal4-VP16 activator, and that the pH of the buffer affected this recruitment (*Figure 5F*). Within the physiological pH-range (pH 6.5 to 7.6), recruitment and remodeling increased with pH. This behavior might correspond to the recruitment of SWI/SNF to genes that are active at high pH during growth in glucose. We predict that interactions with transcription factors at glucose-repressed genes would show the opposite behavior, i.e. recruitment would be increased at lower pH. SWI/SNF complexes deleted for the *SNF5* QLC (containing ΔQsnf5p) had constitutively lower recruitment and were completely insensitive to pH changes over this same range (*Figure 5G*). SWI/SNF complexes containing *HtoA*snf5p were even more defective than the ΔQsnf5 allele with respect to recruitment to the VP16 transcription factor (*Figure 5H*); this recruitment was barely above background levels at all pH values. Therefore, we conclude that the *SNF5* QLC can sense pH changes by modulating interactions between SWI/SNF and transcription factors. Furthermore, these results suggest that the histidines within the *SNF5 QLC* must be present and deprotonated to enable interaction with VP16.
Figure 5: The SNF5 QLC mediates a pH-sensitive transcription factor interaction in vitro.

A) Schematic: A Cy3 donor fluorophore was attached to one end of the DNA, and the histone H2A C-termini were labeled with a Cy5 acceptor fluorophore. ATP-dependent mobilization of the nucleosome to the DNA increases FRET, leading to increased emission at 670 nm. B) Representative kinetic traces for WT (B), ΔQsnf5p (C), and HtoAsnf5 (D) SWI/SNF complexes at pH 7.6 (blue), 7.0 (green), or 6.5 (orange). There is no competitor DNA, so these traces indicate intrinsic remodeling activity without requirement for recruitment by transcription factors. E) Schematic: In the presence of excess competitor DNA, SWI/SNF-dependent remodeling requires recruitment by a transcription factor (Gal4-VP16). D) Representative kinetic traces for WT (F), ΔQsnf5p (G), and HtoAsnf5 (H) SWI/SNF complexes at pH 7.6 (blue), 7.0 (green), or 6.5 (orange). Inset on the WT panel (F) shows the first 100 seconds of the assay after ATP addition. All traces are averages of 2-4 experiments and represent FRET normalized to values prior to addition of ATP.
Protonation of histidines leads to conformational expansion of the SNF5 QLC

How might pH change be sensed by SNF5? As described above (Figure 1B), Q-rich low-complexity sequences (QLCs) are enriched for histidines, and they are also depleted for charged amino acids (Figure 1B). Charged amino acids have repeatedly been shown to govern the conformational behavior of disordered regions (Mao et al., 2010; Müller-Späth et al., 2010; Sørensena and Kjaergaarda, 2019). Given that histidine protonation alters the local charge density of a sequence, we hypothesized that the charge-depleted QLCs may be poised to undergo protonation-dependent changes in conformational behavior. To test this idea, we performed all-atom Monte-Carlo simulations to assess the conformational ensemble of a 50 amino acid region of the SNF5 QLC (residues 71-120) that contained 3 histidines, 2 of which we had mutated to alanine in our experiments (Figure 6A). We performed simulations with histidines in both uncharged and protonated states to mimic possible charges of this polypeptide at the pH found in the nucleocytoplasm in glucose and carbon starvation respectively. These simulations generated ensembles of almost 50,000 distinct conformations (representative images shown in Figure 6B). To quantify conformational changes, we examined the radius of gyration, a metric that describes the global dimensions of a disordered region (Figure 6C). Protonation of the wildtype sequence led to a striking increase in the radius of gyration, driven by intramolecular electrostatic repulsions (Figure 6D, left). In contrast, when 2/3 histidines were replaced with alanines, no such change was observed (Figure 6D, right). For context, we also calculated an apparent scaling exponent (ν^{app}), a dimensionless parameter that can also be used to quantify chain dimensions. This analysis showed that protonation of the wildtype sequence led to a change in ν^{app} from 0.48 to 0.55, comparable to the magnitude of changes observed in previous studies of mutations that fundamentally altered intermolecular interactions in other low-complexity disordered regions (Martin et al., 2020; Sørensena and Kjaergaarda, 2019). These results suggest that small changes in sequence charge density can elicit a relatively large change in conformational behavior. An analogous (albeit less pronounced) effect was observed for the second QLC subregion that we mutated (residues 195-233) (Figure 6 – figure supplement 1). Taken together, our results suggest that charge-depleted disordered regions (such as QLCs) are poised to undergo pH-dependent conformational re-arrangement. This inference offers the beginnings of a mechanism for pH-sensing by SWI/SNF: the conformational expansion of the QLC sequence upon nucleocytoplasmic acidification may tune the propensity for SWI/SNF to interact with transcription factors (Figure 6E).
Figure 6: Protonation of histidines leads to conformational expansion of the SNF5 QLC.

A) Schematic of the SNF5 gene (center) with the N-terminal QLC in orange, and the two simulated peptides in dark orange. Sequences of the simulated peptides and identities of histidines mutated in both the HtoA snf5 yeast strain and in simulations are indicated.

B) Representative images of conformations sampled in Monte-Carlo all-atom simulations.
C) Cartoon depicting quantification of radius of gyration (R_g). D) Radius of gyration (R_g, y-axis) of simulations of amino acids 71-120 of the SNF5 QLC with histidines either neutral (pH 7.4) or protonated (pH 5.0). Left two datasets are for the native peptide, right two datasets are with 2/3 histidines (H106 and H109) replaced with alanine, mimicking the HtoA snf5 allele. Points represent the mean R_g from all conformations sampled in each independent simulation (beginning from distinct random initial conformers). Bars represent the mean values of all simulations. E) Model of SWI/SNF regulation during carbon starvation. Top) In glucose (pH, ~ 7.8), the SNF5 QLC is unprotonated. SWI/SNF is engaged by transcription factors that prevent transcription of glucose repressed genes, or that activate other genes (TF_A). Middle) Upon acute carbon starvation, pH_i drops to ~ 6.5 leading to protonation of histidines in the SNF5 QLC. Conformational expansion of the QLC may aid the release of SWI/SNF from some transcription factors (TF_A), and potentially drive recruitment to others (not shown). Bottom) As the cell adapts to carbon starvation, pH_i neutralizes to ~ 7.0. Histidines within the SNF5 QLC may be partially protonated? The pK_a of histidine is highly context-dependent. The QLC may aid recruitment of SWI/SNF to the promoters of glucose-repressed genes, thus leading to their expression.

Discussion

Intracellular pH changes occur in many physiological contexts, including cell cycle progression (Gagliardi and Shain, 2013), the circadian rhythm of crassulacean acid metabolism plants (Hafke et al., 2001), oxidative stress (van Schalkwyk et al., 2013), heat shock (Triandafillou et al., 2020), osmotic stress, (Karagiannis and Young, 2001), and changes in nutritional state (Jacquel et al., 2020; Orij et al., 2009). However, the physiological role of these pH fluctuations, and the molecular mechanisms to detect them, remain poorly understood. Prior results have emphasized the inactivation of processes in response to cytosolic acidification (Joyner et al., 2016; Munder et al., 2016; Petrovska et al., 2014). However, it is unclear how necessary modifications to the cell can occur if cellular dynamics are uniformly decreased. Much less has been reported regarding a potential role of fluctuations in pH as a signal to activate specific cellular programs. In this work, we found that transient acidification is required for activation of glucose-repressed genes. Therefore, our work establishes a positive regulatory role for nucleocytoplasmic pH changes during carbon starvation.

Previous studies of intracellular state during glucose starvation based on population averages reported a simple decrease in pH (Orij et al., 2009). In this work, we used single-cell measurements of both pH and gene expression, and found that two co-existing subpopulations arose upon acute glucose-starvation, one with pH ~ 5.5 and a second at ~ 6.5. The latter population recovered to neutral pH and then induced glucose-repressed genes, while the former remained dormant in an acidified state. We have not yet determined the mechanism that drives the bifurcation in pH response. It is possible that this bistability provides a form of bet-hedging (Levy et al., 2012) where some cells attempt to respond to carbon starvation, while others enter a dormant state (Munder et al., 2016). However, we have yet to discover any condition where the population with lower pH and delayed transcriptional activation has an advantage. An alternative explanation is that these cells are failing to correctly adapt to starvation, perhaps undergoing a metabolic crisis, as suggested in a recent study (Jacquel et al., 2020).

It is becoming clear that intracellular pH is an important mechanism of biological control. It was previously shown that the protonation state of phosphatidic acid (PA) determines binding to the transcription factor Opi1, coupling membrane biogenesis and intracellular pH (Young et al., 2010). We focused our studies on the N-terminal region of SNF5 because it is known to be important for the response to carbon starvation and contains a large low-complexity region enriched in both glutamine and histidine residues. Histidines are good candidates for pH sensors as they can change protonation state over the recorded range of physiological pH.
fluctuations, and their pK$_a$ can be tuned substantially depending on local sequence context. Consistent with this hypothesis, we found that the SNF5 QLC and the histidines embedded within were required for transcriptional reprogramming.

Our in vitro assays showed that the intrinsic ATPase and nucleosome remodeling activities of SWI/SNF are robust to pH changes from 6.5 to 7.6. However, recruitment of the SWI/SNF complex by a model transcription factor (GAL4-VP16) was pH-sensitive, and this pH dependence was dependent on both the SNF5 QLC and the four central histidines within this domain. In this case, the recruitment by GAL4-VP16 was inhibited at pH 6.5. We speculate that low pH favors release of SWI/SNF from activators that it is bound to in glucose conditions, and then the subsequent partial recovery in pH could allow it to bind to a different set of activators (e.g. ADR1 and CAT8), thus recruiting it to genes that are expressed during starvation. This model is consistent with the requirement for both acidification and subsequent neutralization for expression of ADH2 (Figure 3). In principle, the conformational dynamics of the SNF5 QLC could be distinct at all three stages (Figure 6E). There are almost certainly additional pH-sensing elements of the transcriptional machinery that also take part in this reprogramming; multiple candidates are present among the of transcription factors that were enriched in our RNA-seq experiments (Supplemental Table 3).

Low complexity sequences, including QLCs, tend to be intrinsically disordered and therefore highly solvent exposed. A recent large-scale study of intrinsically disordered sequences showed that their conformational behavior is inherently sensitive to changes in their solution environment (Holehouse and Sukenik, 2020; Moses et al., 2020). Similarly, our simulations revealed that histidine protonation may lead the SNF5 QLC to expand dramatically. This provides a potential mechanism for pH-sensing: upon acidification, histidines become positively charged leading QLCs to adopt a more expanded state, perhaps revealing short linear interaction motifs (SLIMs), reducing the entropic cost of binding to interaction partners, preventing polar-mediated protein-protein interactions, or facilitating electrostatic mediated contacts. The enrichment of histidines in QLCs hints that this could be a general, widespread mechanism to regulate cell biology in response to pH changes.

Glutamine-rich low-complexity sequences have been predominantly studied in the context of disease. Nine neurodegenerative illnesses, including Huntington’s disease, are thought to be caused by neurotoxic aggregation seeded by proteins that contain polyglutamines created by expansion of CAG trinucleotide repeats (Fan et al., 2014). However, polyglutamines and glutamine-rich sequences are relatively abundant in Eukaryotic cells: More than 100 human proteins contain QLCs, and the Dictyostelium and Drosophilid phyla have QLCs in ~ 10% and ~
5% of their proteins respectively (Schaefer et al., 2012). Furthermore, there is clear evidence of purifying selection to maintain polyQs in the Drosophilids (Huntley and Clark, 2007). This prevalence and conservation suggest an important biological function for these sequences. Recent work in Ashbya gosypii has revealed a role for QLC-containing proteins in the organization of the cytoplasm through phase separation into liquid droplets to enable subcellular localization of signaling molecules (Zhang et al., 2015). More generally, polyglutamine has been shown to drive self-association into a variety of higher-order assemblies, from fibrils to nanoscopic spheres to liquid droplets (Crick et al., 2013; Peskett et al., 2018; Posey et al., 2018). Taken together, these results imply that QLCs may offer a general mechanism to drive protein-protein interactions. In this study, we have identified a role for QLCs in the SWI/SNF complex as pH-sensors. Our current model (Figure 6E) is that the SNF5 QLC partakes in heterotypic protein interactions that are modulated by protonation of histidines when the cell interior acidifies. However, we don’t rule out the possibility for homotypic interactions and higher-order assembly of multiple SWI/SNF complexes.

All cells must modify gene expression to respond to environmental changes. This phenotypic plasticity is essential to all life, from single celled organisms fighting to thrive in an ever-changing environment, to the complex genomic reprogramming that must occur during development and tissue homeostasis in plants and animals. Despite the differences between these organisms, the mechanisms that regulate gene expression are highly conserved. Changes in intracellular pH are increasingly emerging as a signal through which life perceives and reacts to its environment. This work provides a new role for glutamine-rich low-complexity sequences as molecular sensors for these pH changes.
Key Resources Table

<table>
<thead>
<tr>
<th>Reagent type (species) or resource</th>
<th>Designation</th>
<th>Source or reference</th>
<th>Identifiers</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>gene (Saccharomyces cerevisiae)</td>
<td>SNF5</td>
<td>https://www.yeastgenome.org/</td>
<td>SGD:S000000493</td>
<td></td>
</tr>
<tr>
<td>gene (Saccharomyces cerevisiae)</td>
<td>SNF2</td>
<td>https://www.yeastgenome.org/</td>
<td>SGD:S000005816</td>
<td></td>
</tr>
<tr>
<td>Gene (pHluorin)</td>
<td>pHluorin</td>
<td>Doi:10.1099/mic.0.022038-0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>strain, strain background (Saccharomyces cerevisiae S288c)</td>
<td>BY4741</td>
<td>doi: 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2</td>
<td>All strains used in this study are derived from BY4741</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>LH3647</td>
<td>ADH2::p<sub>ADH2</sub>-mCherry-URA3 snf2::SNF2-TAP-His3MX6</td>
<td>Yeast strain used to purify SWI/SNF complex</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>LH3649</td>
<td>ΔQsnf5-HIS3 ADH2::p<sub>ADH2</sub>-mCherry-URA3 snf2::SNF2-TAP-kanMX6</td>
<td>Yeast strain used to purify SWI/SNF complex containing ΔQsnf5</td>
<td></td>
</tr>
<tr>
<td>Yeast strain used to purify SWI/SNF complex containing $\text{HtoA}^{\text{Snf5}}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>LH3652</td>
<td>$\text{HtoA}^{\text{Snf5}}$-HIS3</td>
<td>$\text{HtoA}^{\text{Snf5}}$-HIS3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\text{ADH2}^{\text{P}_{\text{ADH2}}}$-mCherry-URA3</td>
<td>$\text{Snf5}^{\text{snf2::SNF2-TAP-kanMX6}}$</td>
<td></td>
</tr>
<tr>
<td>recombinant DNA reagent</td>
<td>Plasmid (pRS316)</td>
<td>GenBank: U03442</td>
<td>Used to complement SNF5 gene in snf5^{Δ} strains prior to removal using 5FOA</td>
<td></td>
</tr>
<tr>
<td>recombinant DNA reagent</td>
<td>Plasmid (pRS306)</td>
<td>GenBank: U03438</td>
<td>SNF5 and snf5^{Δ} mutant alleles were all cloned into pRS306 and pRS303</td>
<td></td>
</tr>
<tr>
<td>recombinant DNA reagent</td>
<td>Plasmid (pRS303)</td>
<td>GenBank: U03435</td>
<td>SNF5 and snf5^{Δ} mutant alleles were all cloned into pRS306 and pRS303</td>
<td></td>
</tr>
<tr>
<td>antibody</td>
<td>Rabbit polyclonal IgG</td>
<td>Sigma</td>
<td>Cat# 12-370</td>
<td></td>
</tr>
<tr>
<td>antibody</td>
<td>Fluorescently labelled goat anti-rabbit polyclonal</td>
<td>LI-COR Biosciences</td>
<td>Cat# 926–68071</td>
<td>Western blot (1:15000 dilution)</td>
</tr>
<tr>
<td>antibody</td>
<td>Rabbit polyclonal Anti-glucokinase</td>
<td>US Biological</td>
<td>Cat# H2035-01</td>
<td>Western blot (1:3000 dilution)</td>
</tr>
<tr>
<td>antibody</td>
<td>Fluorescently labelled goat anti-rabbit polyclonal</td>
<td>LI-COR Biosciences</td>
<td>Cat# 926-32211</td>
<td>Western blot (1:15000 dilution)</td>
</tr>
</tbody>
</table>
Yeast strains used in this study. All strains were derived from LH2145.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH2145</td>
<td>WT, Mat a from sporulation of BY4743: ura3Δ0 his3Δ0 leu22Δ0 met15Δ0</td>
</tr>
<tr>
<td>LH2090</td>
<td>ΔQsnf5::kanMX6</td>
</tr>
<tr>
<td>LH2971</td>
<td>SNF5-TAP-His3MX6</td>
</tr>
<tr>
<td>LH2973</td>
<td>ΔQsnf5-TAP-His3MX6</td>
</tr>
<tr>
<td>LH2974</td>
<td>HtoA Snf5-HIS3</td>
</tr>
<tr>
<td>LH2975</td>
<td>HtoA Snf5-TAP-kanMX6</td>
</tr>
<tr>
<td>LH2991</td>
<td>ADH2::P<sub>ADH2</sub>-mCherry-URA3</td>
</tr>
<tr>
<td>LH2992</td>
<td>ΔQsnf5-kanMX6 ADH2::P<sub>ADH2</sub>-mCherry-URA3</td>
</tr>
<tr>
<td>LH2993</td>
<td>HtoA Snf5-HIS3 ADH2::P<sub>ADH2</sub>-mCherry-URA3</td>
</tr>
<tr>
<td>LH3486</td>
<td>met15Δ0 SNF5::kanMX6 (CEN/ARS-SNF5::URA3)</td>
</tr>
<tr>
<td>LH3513</td>
<td>snf5Δ::kanMX6 ADH2::P<sub>ADH2</sub>-mCherry-URA3 (CEN/ARS-SNF5::URA3)</td>
</tr>
<tr>
<td>LH3632</td>
<td>snf5Δ::kanMX6 ADH2::P<sub>ADH2</sub>-mCherry-URA3 TRP1::pHluorin-kanMX6 (CEN/ARS-SNF5::URA3)</td>
</tr>
<tr>
<td>LH3647</td>
<td>ADH2::P<sub>ADH2</sub>-mCherry-URA3 snf2::SNF2-TAP-His3MX6</td>
</tr>
<tr>
<td>LH3649</td>
<td>ΔQsnf5-HIS3 ADH2::P<sub>ADH2</sub>-mCherry-URA3 snf2::SNF2-TAP-kanMX6</td>
</tr>
<tr>
<td>LH3652</td>
<td>HtoA Snf5-HIS3 ADH2::P<sub>ADH2</sub>-mCherry-URA3 snf2::SNF2-TAP-kanMX6</td>
</tr>
<tr>
<td>LH3705</td>
<td>SNF5 ADH2::P<sub>ADH2</sub>-mCherry-URA3 leu2::pHluorin-LEU2</td>
</tr>
<tr>
<td>LH3707</td>
<td>ΔQsnf5::kanMX6 ADH2::P<sub>ADH2</sub>-mCherry-URA3 leu2::pHluorin-LEU2</td>
</tr>
<tr>
<td>LH3713</td>
<td>HtoA Snf5-HIS3 ADH2::P<sub>ADH2</sub>-mCherry-URA3 leu2::pHluorin-LEU2</td>
</tr>
</tbody>
</table>
Plasmids used in this study.

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>pLH226</td>
<td>pFA6a- ΔQsnf5-GFP(S65T)-KANMX6</td>
</tr>
<tr>
<td>pLH416</td>
<td>pFA6a-SNF5-GFP-KANMX6</td>
</tr>
<tr>
<td>pLH887</td>
<td>pRS316-SNF5 (CEN/ARS plasmid)</td>
</tr>
<tr>
<td>pLH931</td>
<td>pFA6a-ΔHtoAsnf5-KANMX6</td>
</tr>
<tr>
<td>pLH963</td>
<td>pFA6a-SNF5-TAP-KANMX6</td>
</tr>
<tr>
<td>pLH964</td>
<td>pFA6a-SNF5-TAP-HIS3MX6</td>
</tr>
<tr>
<td>pLH998</td>
<td>pRS306-P_{ADH2}mCherry</td>
</tr>
<tr>
<td>pLH1085</td>
<td>pFA6a-ΔHtoAsnf5-HIS3MX6</td>
</tr>
<tr>
<td>pLH1093</td>
<td>pFA6a-3’snf2-TAP-KANMX6</td>
</tr>
<tr>
<td>pLH1097</td>
<td>pRS305-P_{TDH3}pHluorin</td>
</tr>
<tr>
<td>pLH1206</td>
<td>pFA6a-3’snf2-TAP-NATMX</td>
</tr>
</tbody>
</table>

Cloning and yeast transformations

Yeast strains used in this study were all in the S288c strain-background (derived from BY4743). The sequences of all genes in this study were obtained from the *Saccharomyces cerevisiae* genome database (http://www.yeastgenome.org/).

We cloned the various SNF5 alleles into plasmids from the Longtine/Pringle collection (Longtine et al., 1998). We assembled plasmids by PCR or gene synthesis (IDT gene-blocks) followed by Gibson cloning (Gibson et al., 2009). Then, plasmids were linearized and used to overwrite the endogenous locus by sigma homologous recombination using homology to both ends of the target gene.

The ΔQsnf5 gene lacks the N-terminal 282 amino acids that comprise a glutamine rich low complexity domain. Methionine 283 serves as the ATG for the ΔQ-SNF5 gene. In the ΔHtoAsnf5 allele, histidines 106, 109, 213 and 214 were replaced by alanine using mutagenic primers to amplify three fragments of the QLC region which were combined by Gibson assembly into a SNF5 parent plasmid linearized with BamH1 and Sac1.

We noticed that the slow growth null strain phenotype of the *snf5Δ* was partially lost over time, presumably due to suppressor mutations. Therefore, to avoid these spontaneous suppressors, we first introduced a CEN/ARS plasmid carrying the SNF5 gene under its own
promoter and the \textit{URA3} auxotrophic selection marker. Then a kanMX6 resistance cassette, amplified with primers with homology at the 5’ and 3’ of the \textit{SNF5} gene was used to delete the entire chromosomal \textit{SNF5} ORF by homologous recombination. We subsequently cured strains of the CEN/ARS plasmid carrying WT \textit{SNF5} by negative selection against its URA3 locus by streaking for single colonies on 5-FOA plates immediately before each experiment to analyze the \textit{snf5Δ} phenotype.

The \(P_{ADH2}\)-\textit{mCherry} reporter was cloned into integrating pRS collection plasmids (Chee and Haase, 2012). \textit{URA3} (pRS306) or \textit{LEU2} (pRS305) were used as auxotrophic selection markers. The 835 base pairs upstream of the \textit{ADH2} gene was used as the promoter \((P_{ADH2})\). \(P_{ADH2}\), and the \textit{mCherry} ORF were amplified by PCR and assembled into linearized pRS plasmids (Sac1/Asc1) by Gibson assembly. These plasmids were cut in the middle of the \textit{ADH2} promoter using the Sph1 restriction endonuclease and integrated into the endogenous \textit{ADH2} locus by homologous recombination.

The \textit{pHluorin} gene was also cloned into integrating pRS collection plasmids. \textit{URA3} (pRS306) and \textit{LEU2} (pRS305) were used for selection. The plasmid with the \textit{pHluorin} gene was obtained described in (Orij et al., 2009). We amplified the \textit{pHluorin} gene and the strong \textit{TDH3} promoter and used Gibson assembly to clone these fragments into pRS plasmids linearized with Sac1 and Asc1. Another strategy was to clone the \textit{pHluorin} gene and a natMX6 cassette into the integrating pRS304 plasmid (that contains \textit{TRP1}), which was then linearized within the \textit{TRP1} cassette using HindIII and integrated into the \textit{TRP1} locus.

A C-terminal TAP tag was used to visualize Snf5 and Snf2 proteins in Western blots. pRS plasmids were used but the cloning strategy was slightly different. A 3’ fragment of the \textit{SNF5} and \textit{SNF2} genes were PCR amplified without the Stop codon. This segment does not contain a promoter or an ATG codon for translation initiation. The TAP tag was then amplified by PCR and cloned together with the 3’ of \textit{SNF5} and \textit{SNF2} ORFs by Gibson assembly into pRS plasmids with linearized Sac1 and Asc1. Plasmids were linearized in the 3’ of the \textit{SNF5} or \textit{SNF2} ORFs with Stul and Xbal respectively to linearize the plasmid allowing integration it into the 3’ of each gene locus by homologous recombination. Therefore, transformation results in a functional promoter at the endogenous locus fused to the TAP tag.

The \textit{SNF5-GFP} strain was obtained from the yeast GFP collection (Huh et al., 2003), a gift of the Drubin/Barnes laboratory at UC Berkeley. The \textit{SNF2-GFP} fused strain was made by the same strategy used for the TAP tagged strain above.

\textbf{Supplementary files 6 and 7} list strains and plasmids generated in this study.
Culture media
Most experiments, unless indicated, were performed in synthetic complete (SC) media (13.4 g/L yeast nitrogen base and ammonium sulfate; 2 g/L amino acid mix and 2% glucose). Carbon starvation media was SC media without glucose, supplemented with sorbitol, a non-fermentable carbon source to avoid osmotic shock during glucose-starvation (6.7 g/L YNB + ammonium sulfate; 2g/L Amino acid mix and 100 mM sorbitol). The pH of starvation media (pH_e) was adjusted using NaOH.

Growth assays
Growth rates were determined in an Infinite M200 plate reader (Tecan) in 96-well microtiter plates using 200 μl total volume, cultured at 30 °C and agitated at 800 rpm. Cells were pre-cultured overnight to log-phase (or subjected to other indicated pre-culture conditions) and then seeded at an A600 of 0.1 (based on a path length of ~0.3 cm) in SC media with various carbon sources. All measurements were performed in triplicate.

Glucose-starvation
Cultures were incubated in a rotating incubator at 30°C and grown overnight (14 - 16 h) to an OD between 0.2 and 0.3. Note: it is extremely important to prevent culture OD from exceeding 0.3, and results are different if cells are allowed to saturate and then diluted back. Thus, it is imperative to grow cultures from colonies on plates for > 16 h without ever exceeding OD 0.3 to obtain reproducible results. Typically, we would inoculate 3 ml cultures and make a series of 4 - 5 1/5 dilutions of this starting culture to be sure to catch an appropriate culture the following day. 3 milliliters of OD 0.2 - 0.3 culture were centrifuged at 6000 RPM for 3 minutes and re-suspended in 3 ml starvation media (SC sorbitol at various pH_e). This spin and resuspension was repeated two more times to ensure complete removal of glucose. Finally, cells were re-suspended in 3 milliliters of starvation media. For flow cytometry, 200 μL samples were transferred to a well of a 96-well plate at each time point. During the course of time lapse experiments, culture aliquots were set aside at 4°C. An LSR II flow cytometer with an HTS automated sampler was used for all measurements. 10,000 cells were analysed at each time point.

Nucleocytoplasmic pH measurements
Nucleocytoplasmic pH (pH_i) was measured by flow cytometry or microscopy. The ratiometric, pH-sensitive GFP variant, pHluorin, was used to measure pH based on the ratio of fluorescence
from two excitation wavelengths. The settings used on our for LSR II flow cytometer were AmCyan (excitation 457, emission 491) and FITC (excitation 494, emission 520). AmCyan emission increases with pH, while FITC emission decreases. A calibration curve was made for each strain in each experiment. To generate a calibration curve, glycolysis and respiration were poisoned using 2-deoxyglucose and azide. This treatment leads to a complete loss of cellular ATP, and the nucleocytoplasmic pH equilibrates to the extracellular pH. We used the calibration buffers published by Patricia Kane’s group (Diakov et al., 2013): 50 mM MES (2-(N-morpholino)ethanesulfonic acid), 50 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, 50 mM KCL, 50 mM NaCL, 0.2 M ammonium acetate, 10 mM sodium azide, 10 mM 2-Deoxyglucose. Buffers were titrated to the desired pH with HCL or NaOH. Sodium azide and 2-deoxyglucose were always added fresh.

RT-qPCR

For qPCR and RNA seq, RNA was extracted with the “High pure RNA isolation kit” (Roche) following the manufacturer’s instructions. Three biological replicates were performed. cDNAs and qPCR were made with iSCRIPT and iTAQ universal SYBR green supermix by Bio-Rad, following the manufacturer’s instructions. Samples processed were: exponentially growing culture (+Glu), or acute glucose-starvation for 4 h in media titrated to pH 5.5 or 7.5. Primers for qPCR were taken from Biddick et al 2008; for ADH2 and FBP1 genes: forward (GTC TAT CTC TGT CGG CTC), reverse (GCC CTT CTC CAT CTT TTC GTA), and forward (CTT TCT CGG CTA GGT ATG TTG G), reverse (ACC TCA GTT TTC CGT TGG G). *ACT1* was used as an internal control; primers were: forward (TGG ATT CCG GTG ATG GTG TT), reverse (TCA AAA TGG CGT GAG GTA GAG A).

RNA sequencing

We performed RNA sequencing analysis to determine the extent of the requirement for the *SNF5* QLC in the activation of glucose-repressed genes. Three biological replicates were performed. Total RNA was extracted from WT, ΔQ-*snf5* and HtoA*snf5* strains during exponential growth (+Glu) and after 4 hours of acute glucose starvation. In addition, WT strains were acutely starved in media titrated to pH 7. Next, poly-A selection was performed using Dynabeads and libraries were performed following manufactures indications. Sequencing of the 32 samples was performed on an Illumina Hi-seq on two lanes. RNA-seq data were aligned to the University of California, Santa Cruz (UCSC), sacCer2 genome using Kallisto (0.43.0, http://www.nature.com/nbt/journal/v34/n5/full/nbt.3519.html) and downstream visualization and
analysis was in R (3.2.2). Differential gene expression analysis, heat maps and volcano plots were created using DESeq2. A Wald test was used to determine differentially expressed genes. Euclidean distance was used to calculate clustering for heat maps, with some manual curation to remove small clusters with no significant GO hits, and to consolidate clusters that had similar behavior. RNA-seq R-code can be found at:

https://github.com/gbritt/SWI_SNF_pH_Sensor_RNASeq

RNA-seq datasets are deposited at GEO accession number GSE174687

Western blots

Strains containing SNF5 and SNF2 fused to the TAP tag were used. Given the low concentration of these proteins, they were extracted with Trichloroacetic acid (TCA): 3 mL culture was pelleted by centrifugation for 2 min at 6000 RPM and then frozen in liquid nitrogen. Pellets were thawed on ice and re-suspended in 200 µL of 20% TCA, ~ 0.4 g of glass beads were added to each tube. Samples were lysed by bead beating 4 times for 2 min with 2 min of resting in ice in each cycle. Supernatants were extracted using a total of 1 mL of 5% TCA and precipitated for 20 min at 14000 RPM at 4 C. Finally, pellets were re-suspended in 212 µL of Laemmli sample buffer and pH adjusted with ~26 µL of Tris buffer pH 8. Samples were run on 7 - 12% gradient polyacrylamide gels with Thermo-Fisher PageRuler prestained protein ladder 10 to 18 KDa. Proteins were transferred to a nitrocellulose membrane, which was then blocked with 5% nonfat milk and incubated with a rabbit IgG primary antibody (which binds to the protein A moiety of the TAP tag) for 1 hour and then with fluorescently labelled goat anti-rabbit secondary antibody IRdye 680RD goat-anti-rabbit (LI-COR Biosciences Cat# 926–68071, 1:15,000 dilution). Anti-glucokinase was used as a loading control (rabbit-anti-Hxk1, US Biological Cat# H2035-01, RRID:AB_2629457, Salem, MA, 1:3,000 dilution) followed by IRDye 800CW goat-anti-rabbit (LI-COR Biosciences Cat# 926-32211, 1:15,000 dilution). Membranes were visualized using a LI-COR Odyssey CLx scanner with Image Studio 3.1 software. Fluorescence emission was quantified at 700 and 800 nM.

Co-immunoprecipitation of SWI/SNF complex

To evaluate the assembly state of the SWI/SNF complex, we immunoprecipitated Snf2p. To enable this experiment, we constructed strains in which the SNF2 gene was tagged at the C-terminus with a tandem affinity purification (TAP) tag (Puig et al., 2001). For each purification, 6 L of cells were grown in YPD to an OD of 1.2. Cells were broken open using glass beads in
buffer A (40 mM HEPES [K+] pH 7.5, 10% glycerol, 350 mM KCl, 0.1% Tween-20, supplemented with 20 µg/mL leupeptin, 20 µg/mL pepstatin, 1 µg/mL benzamidine hydrochloride and 100 µM PMSF) using a Biospec bead beater followed by treatment with 75 units of benzonase for 20 minutes (to digest nucleic acids). Heparin was added to a final concentration of 10 µg/mL. The extract was clarified by first spinning at 15,000 RPM in a SS34 Sorvall rotor for 30 minutes at 4°C, followed by centrifugation at 45,000 RPM for 1.5 hours at 4°C in a Beckman ultracentrifuge. The soluble extract was incubated with IgG sepharose beads for 4 hours at 4°C using gentle rotation. IgG sepharose bound proteins were washed 5 times in buffer A and once in buffer B (10 mM TRIS-HCl pH 8.0, 10% glycerol, 150 mM NaCl, 0.5 mM EDTA, 0.1% NP40, 1 mM DTT, supplemented with 20 µg/mL leupeptin, 20 µg/mL pepstatin, 1 µg/mL benzamidine hydrochloride and 100 µM PMSF). Bound protein complexes were incubated in buffer B with TEV protease overnight at 4°C using gentle rotation. The eluted protein was collected, CaCl2 was added to a final concentration of 2 mM and bound to calmodulin-sepharose beads for 4 hours at 4°C using gentle rotation. Following binding the protein-bound calmodulin-sepharose beads were washed 5 times in buffer C (10 mM TRIS-HCl pH 8.0, 10% glycerol, 150 mM KCl, 2 mM CaCl2, 0.1% NP40, 1 mM DTT, supplemented with 20 µg/mL leupeptin, 20 µg/mL pepstatin, 1 µg/mL benzamidine hydrochloride and 100 µM PMSF). The bound proteins were eluted in buffer D (10 mM TRIS-HCl pH 8.0, 10% glycerol, 150 mM KCl, 2 mM EGTA, 0.1% NP40, 0.5 mM DTT, supplemented with 20 µg/mL leupeptin, 20 µg/mL pepstatin, 1 µg/mL benzamidine hydrochloride and 100 µM PMSF. The protein complexes were resolved by SDS-PAGE and visualized by silver staining.

Chromatin Immunoprecipitation of SWI/SNF

For Chromatin immunoprecipitation of the SWI/SNF complex, we constructed strains in which the SNF2 gene was tagged at the C-terminus with a TAP tag, as above. 1.25 X 10^8 cells were collected for each mutant and condition and fixed on 1% formaldehyde for 20 min to crosslink proteins to chromatin, and then the reaction was stopped with 136 mM Glycine. Cells were pelleted and frozen in liquid nitrogen. Cells were then resuspended in 400 µL lysis buffer (0.1% deoxycholic acid, 1 mM EDTA, 50 mM HEPES pH 7.5, 140 mM NaCl, 1% triton X-100 and 5 mM phenanthroline), mixed with 400 µL glass beads, and then lysed by vortexing for 15 min. The same lysis buffer was used to rinse the glass beads once more to recover remaining lysate. Lysates were then sonicated for 10 secs, 6 times in ice to shear chromatin and then incubated with 40 µL of IgG-conjugated magnetic beads per sample (1x10^6 beads) and incubated for 24
After binding, samples were washed once with 600 µL buffer 2 (0.1 % deoxycholic acid, 1 mM EDTA, 50 mM HEPES pH 7.5, 500 mM NaCl, 1 % triton X-100 and 5mM phenanthroline) and then washed once with 600 µL buffer 3 (0.5 % deoxycholic acid, 1 mM EDTA, 250 mM LiCl, 0.5% NP-50, 10 mM Tris pH 7.9 and 5mM phenanthroline), and finally washed once with 600 µL buffer TE.

The crosslinking between DNA and proteins was reversed by heating in elution buffer (50 mM Tris-HCl pH 7.5, 10 mM EDTA and 1 % SDS) for 2 hours at 42º C and then for 8 hours at 65 C. Eluted DNA was purified using QIAGEN kit (28104), according to the manufacturer's instructions.

QPCR was performed using a Roche LightCycler 480 SYBR green master mix (04707516001) following the manufacturer's instructions.

2 sets of primers were used to amplify for ADH2 (Parua et al., 2014):

1F: ACC ATC CAC TTC ACG AGA CTG A, 1R:AAA AGT CGC TAC TGG CAC TC
2F: GAG TGC CAG TAG CGA CTT TTT, 2R: ACT TGC CGT TGG ATT CGT AG

Data fitting
Fluorescence intensity from the P$_{ADH2}$-mCherry reporter and ratiometric fluorescence measurements from pHluorin were fit with a single or double Gaussian curve for statistical analysis using MATLAB (MathWorks). The choice of a single or double Gaussian fit was determined by assessing which fit gave the least residuals. For simplicity, the height (mode) of each Gaussian peak was used to determine the fraction of cells in each population rather than the area, because peaks overlapped in many conditions.

Sequence analysis of QLCs
Identification of QLCs
QLCs were defined as sub-regions of the proteome in which have an average fraction of glutamine residues of 25% or higher (minimum fraction), the maximum interruption between any two glutamine residues is less than 17 residues, and the whole QLC is at least 15 residues in length (minimum length) (Figure 1A, figure supplement 2A). All XLCs (low-complexity sub-sequences for all amino acids, including glutamine) are provided online for further exploration and analysis (see GitHub). Secondly, systematic variation of the maximum interruption size to
ask how the number of QLCs and number of residues found revealed that 17 residues was the value that maximized the number of QLCs and the number of residues found within QLCs, offering an optimally permissive value under the 0.25 or greater fraction of glutamine threshold.

Computation of per-residue conservation

Per-residue conservation was calculated by taking orthologous fungal proteins from the yeast genome order browser, aligning those using Clustal Omega, and calculating the Jensen-Shannon divergence as implemented by Caprah and Singh using the BLOSUM62 matrix (Byrne & Wolfe, 2005; Capra & Singh, 2007; Henikoff & Henikoff, 1992; Lin, 1991; Sievers et al., 2011).

Proteome-wide analysis

S. cerevisiae, Dictyostelium, Drosophila, and human proteins were obtained from UniProt. Sequence analysis was performed with SHEPHARD (https://shephard.readthedocs.io/). Predicted disorder scores, IDR identification, and predicted pLDDT scores were performed by metapredict (Emenecker et al., 2021). QLCs and full proteomes are provided at https://github.com/holehouse-lab/supportingdata/tree/master/2021/Gutierrez_QLC_2021.

Proteome-wide per-residue enrichment or depletion in QLCs

To compute the enrichment or depletion of specific amino acid residues in QLCs, we determined the fraction of non-glutamine residues in QLCs compared to the fraction of non-glutamine residues across the entire proteome. Specifically, for each proteome (*S. cerevisiae, D. dictyostelium, D. melanogaster* and *H. sapiens*) we first computed the proteome-wide background by taking the complete set of all protein sequences, removing all glutamine residues from all proteins, and then computing the fraction of the proteome made up of the remaining 19 amino acids. For each proteome we then identified the full set of QLCs and repeated the analysis. The log2 of the ratio of the fraction of each amino acid in a QLC vs. across the proteome was used to compute enrichment or depletion for different amino acids within QLCs.

Proteome-wide per-residue enrichment or depletion of QLCs with respect to all XLCs

To compute enrichment of different amino acids in QLCs compared to other low-complexity domains (XLCs), we repeated the analysis above using XLCs defined by enrichment for non-glutamine residues, and then re-computed non-glutamine enrichment as was done for the whole proteome. The complete set of all XLC subsequences for all four proteomes is provided.
Nucleosome Remodeling assays

SWI/SNF purification

SWI/SNF complexes were purified from yeast strains with a tandem affinity purification protocol as previously described (Smith et al., 2005). Cells were grown in YPAD media and harvested at OD_{600} = 3, and flash frozen and stored at -80°C. Yeast cells were lysed using a cryomill (PM100 Retsch). Ground cell powder was resuspended in E Buffer (20mM Hepes, 350mM NaCl, 0.1% Tween-20, 10% glycerol, pH 7.5), with fresh 1mM DTT and protease inhibitors (0.1 mg/mL phenylmethylsulfonyl fluoride, 2ug/mL leupeptin, 2ug/mL pepstatin, 1mM benzamidine) and incubated on ice for 30 minutes. The crude lysate was clarified first by centrifugation 3K rpm for 15 minutes, and then 40K rpm for 60 minutes at 4°C. The clear lysate was transferred to a 250 mL falcon tube and incubated with 400 µL IgG resin slurry (washed previously with E buffer without protease inhibitors) for 2 hours at 4°C. The resin was washed extensively with E buffer and protease inhibitors, and the protein-bound resin was incubated with 300 units TEV protease overnight at 4°C. The eluent was collected, incubated with 400 µL Calmodulin affinity resin, washed previously with E buffer with fresh protease inhibitors, DTT and 2mM CaCl₂, for 2 hours at 4°C. Resin washed with the same buffer and SWI/SNF was eluted with E buffer with protease inhibitors, DTT, and 10 mM EGTA. The eluent was dialyzed in E buffer with PMSF, DTT, and 50 uM ZnCl₂ at least 3 times. The dialyzed protein was concentrated with a Vivaspin column, aliquoted, flash frozen, and kept at -80°C. SWI/SNF concentration was quantified by electrophoresis on 10% SDS-PAGE gel alongside a BSA standard titration, followed by SYPRO Ruby (Thermo Fisher Scientific) staining overnight and using ImageQuant 1D gel analysis.

Mononucleosome reconstitutions

Recombinant octamers were reconstructed from isolated histones as described previously (Luger et al., 1999). In summary, recombinant human H2A (K125C), H2B, and H3 histones and Xenopus laevis H4 were isolated from Escherichia coli (Rosetta 2 (DE3) with and without pLysS). In order to label human H2A, a cysteine mutation was introduced at residue K125 via site-directed mutagenesis, which was labeled with Cy5 fluorophore attached to maleimide group (Zhou and Narlikar, 2016). DNA fragments were generated from 601 nucleosome positioning sequence and 2x Gal4 recognition sites with primers purchased from IDT. For FRET experiments, PCR amplification of labeled DNA fragments were as followed: 500nM Cy3 labeled (5'-Cy3/TCCCAAGTCACGACGTGTAACAC-3') and unlabeled primers (5'-ACCATTGATTACGCGAAGCTCGG-3'), 200uM dNTPs, 0.1ng/µl p159-2xGal4 plasmid kindly
donated by Blaine Bartholomew, 0.02 U/µl NEB Phusion DNA Polymerase, 1x Phusion High Fidelity Buffer. For ATPase assays, two unlabeled primers used (PrimerW: 5’-GTACCCGGGATCTCTAGAGTG-3’, PrimerS: 5’-GATCCTAATGACCAAGGAAGCA-3’)

under same PCR conditions with NEB Taq DNA Polymerase with 1x NEB ThermoPol Buffer.

400 nM fluorescently-labeled and unlabeled mononucleosomes were reconstituted via salt gradient at 4°C with a peristaltic pump as described previously (Luger et al., 1999), with 600mL high salt buffer (10 mM Tris-HCl, pH = 7.4, 1 mM EDTA, 2M KCl, 1 mM DTT) exchanged with 3 L of low salt buffer (10 mM Tris-HCl, pH = 7.4, 1 mM EDTA, 50 mM KCl, 1 mM DTT) over 20 hours. The quality of the nucleosomes was checked by visualizing proteins on a 5% native-PAGE gel and scanning fluorescence ratios of labeled nucleosomes on an ISS PC1 spectrofluorometer.

FRET-based nucleosome remodeling

The fluorescence resonance energy transfer between Cy3-labeled DNA and Cy5 labeled octamer was used to measure the remodeling and recruitment activity of SWI/SNF, using an ISS PC1 spectrofluorometer. The remodeling activity was measured by the increase in FRET signal in that occurred as a consequence of nucleosome sliding the DNA template. The reaction was performed under three different pH conditions: pH 6.5 (25 mM MES, 0.2 mM EDTA, 5 mM MgCl$_2$, 70 mM KCl, 1 mM DTT), pH 7 (25 mM Tris, 0.2 mM EDTA, 5 mM MgCl$_2$, 70 mM KCl, 1 mM DTT), and pH 7.6 (25 mM HEPES, 0.2 mM EDTA, 5 mM MgCl$_2$, 70 mM KCl, 1 mM DTT). Remodeling reactions contained 2 nM or 4 nM (WT or mutant) SWI/SNF, 5 nM nucleosome and 100 uM ATP or AMP-PNP. A 100 second pre-scan of the reaction was taken before the reaction started and the time-dependent fluorescence measurements started after addition of ATP or AMP-PNP for 1000 seconds at room temperature. Similarly, recruitment assays were performed in three different buffer conditions: pH 6.5, pH 7 and pH 7.6. The recruitment assays contained 2 nM or 4 nM (WT or mutant) SWI/SNF, 5 nM nucleosome, 4 nM competitor DNA, 100 uM Gal4–VP16 (Protein One, P1019-02) and 100 uM ATP or AMP-PNP, together with respective controls (Sen et al., 2018). 100 seconds of pre-scans and 1000 seconds of time-dependent enzyme kinetics were measured. At least 2 – 4 kinetic traces were collected per reaction. Data were normalized to their respective pre-scans to account for variation between reactions. The time-dependent FRET signals were excited at 530 nm and measured at 670 nm. The data analysis was performed using the OriginLab software package.

ATPase activity measurements
7-Diethylamino-3-[N-(2-maleimidoethyl)-carbamoyl]-coumarin-conjugated phosphate binding protein A197C (MDCC-PBP) (Brune et al., 1994) was used to detect inorganic phosphate (P\textsubscript{i}) release from ATPase activity in real-time. Before the reaction, ATP was cleared of free P\textsubscript{i} by performing a mopping reaction. In order to mop the ATP, 10 mM ATP was incubated with 1 U/mL PNPase (Sigma, N2415-100UN) and 200 uM 7-methylguanosine (Sigma, M0627-100MG) in mopping buffer (25 mM HEPES, 75 mM NaCl, 5 mM MgCl\textsubscript{2}, 1 mM DTT) for 2 hours at room temperature. ATPase assay reaction conditions were 2 nM SWI/SNF, 5 nM nucleosome, and 100 uM ATP in respective pH buffers; pH 6.5 (25 mM MES, 0.2 mM EDTA, 5 mM MgCl\textsubscript{2}, 70 mM KCl, 1 mM DTT), pH 7 (25 mM Tris, 0.2 mM EDTA, 5 mM MgCl\textsubscript{2}, 70 mM KCl, 1 mM DTT) or pH 7.6 (25 mM HEPES, 0.2 mM EDTA, 5 mM MgCl\textsubscript{2}, 70 mM KCl, 1 mM DTT). The measurements were performed on a Tecan Infinite 1000, with excitation at 405 nm and emission at 460 nm. Pre-scan measurements were taken to detect the basal level of signal per reaction. The time-dependent measurements were taken after starting the reaction by ATP addition. At least 3-4 kinetic traces were analyzed using the steady-state equation using Graph Pad Prism 8 software.

All-atom simulations

All-atom simulations were run with the ABSINTH implicit solvent model and CAMPARI Monte Carlo simulation (V2.0) (http://campari.sourceforge.net/) (Vitalis and Pappu, 2009). The combination of ABSINTH and CAMPARI has been used to examine the conformational behavior of disordered proteins with good agreement to experiment (Cubuk et al., 2020; Fuertes et al., 2017; Martin et al., 2020).

All simulations were started from randomly generated non-overlapping random-coil conformations, with each independent simulations using a unique starting structure. Monte Carlo simulations perturb and evolve the system via a series of moves that alter backbone and sidechain dihedral angles, as well as rigid-body coordinates of both protein sequences and explicit ions. Simulation analysis was performed using CAMPARITraj (www.ctraj.com) and MDTraj (McGibbon et al., 2015).

ABSINTH simulations were performed with the ion parameters derived by Mao et al. and using the abs_oplsp_3.4.prm parameters (Mao et al., 2010). All simulations were run at 15 mM NaCl and 325 K, a simulation temperature previously shown to be a good proxy for *bona fide* ambient temperature (Das et al., 2016; Martin et al., 2020). A summary of the simulation input details is provided in **Supplementary file 5**. For SNF571-120 simulations twenty independent simulations were run for each combination of pH (as defined by histidine protonation state) and...
mutational state. For SNF5¹⁹⁵⁻²²³, the high glutamine content made conformational sampling challenging, as has been observed in previous glutamine-rich systems, reflecting the tendency for polyglutamine to undergo intramolecular chain collapse (Crick et al., 2006; Newcombe et al., 2018; Warner et al., 2017). To address this challenge we ran hundreds of short simulations (with a longer equilibration period than in SNF⁷¹⁻¹²⁰) that are guaranteed to be uncorrelated due to their complete independence (Vitalis and Caflisch, 2010). Simulation code and details can be found at:

https://github.com/bolehouse-lab/supportingdata/tree/master/2021/Gutierrez_QLC_2021

Bioinformatic analysis

All protein sequence analysis was performed with localCIDER, with FASTA files read by protfasta (https://github.com/bolehouse-lab/protfasta) (Holehouse et al., 2017). Sequence alignments were performed using clustal omega (Sievers et al., 2011). Sequence conservation was computed using default properties in with the score_conservation program as defined by Capra et al. (Capra and Singh, 2007). Proteomes were downloaded from UniProt (The UniProt Consortium UniProt, 2015).

Low-complexity sequences were identified using Wootton-Fedherhen complexity (Ginell and Holehouse, 2020; Wootton and Federhen, 1993). Sequence complexity is calculated over a sliding window size of 15 residues, and a threshold of 0.6 was used for binary classification of a residue as ‘low’ or ‘high’ complexity. After an initial sweep, gaps of up to 3 “high complexity residues” between regions of low-complexity residues were converted to low-complexity. Finally, contiguous stretches of 30 residues or longer were taken as the complete set of low-complexity regions in the proteome. The full set of those SEG-defined LCDs for human, drosophila, dictyostelium and cerevisiae proteomes is provided as FASTA files at:

https://github.com/bolehouse-lab/supportingdata/tree/master/2021/Gutierrez_QLC_2021/
References

The UniProt Consortium UniProt. 2015. The UniProt Consortium UniProt. a hub for protein information Nucleic Acids Res.

Acknowledgements

We thank Conor Howard for help with initial bioinformatics and conception of this project and Morgan Delarue for help with MatLab analysis. We thank David Truong, Sudarshan Pinglay and JoAnna Klein for help writing the manuscript; Ivan Tarride for help with figure design; and Karsten Weis, Jeremy Thorner, and Douglas Koshland for advice, strains, plasmids and reagents. We thank Cindy Hernandez for help with growth curves. We gratefully acknowledge funding from the William Bowes Fellows program, the Vilcek Foundation, the HHMI HCIA summer institute, NIH R01 GM132447 and R37 CA240765, the American Cancer Society Cornelia T. Bailey Foundation Research Scholar Grant, RSG-19-073-01-TBE, and the Pershing Square Sohn Cancer Research Award (LJH); Becas Chile (JIG); and the National Science Foundation Graduate Research Fellows Program (GB).
Competing Interests

The authors declare no competing interests.
Legends to Figure Supplements

Figure 1 – figure supplement 1: The SWI/SNF complex has 10/11 subunits with significant disorder. Fractional disorder in each of the core eleven SWI/SNF components. Dashed red lines represent 25% and 50% disorder. Five of the eleven components contain over 25% disorder. Disorder prediction performed using MobiDBLite (see methods).

Figure 1 – figure supplement 2: Identification and analysis of glutamine rich low complexity sequences (QLCs). A) Example of a QLC region with the criteria that define QLCs annotated: QLCs were defined as sub-regions of the proteome in which have an average fraction of glutamine residues of 25% or higher (minimum fraction, e.g. here 40%), the maximum interruption between any two glutamine residues is less than 17 residues (e.g. here 11 residues), and the whole QLC is at least 15 residues in length (minimum length, e.g. here 46). B-D) Computational analysis used to select the interruption length criterion for QLC identification. Systematic variation revealed that a maximum interruption disruption length of 17 residues optimized the number of QLCs identified (B) and the number of residues found within QLCs (C), offering an optimally permissive value under the 0.25 or greater fraction of glutamine threshold. D) Number of residues in QLCs vs. number of QLCs shows that an interruption length of 17 sits at an optimum for both parameters. E) Histogram of the number of histidine residues within S. cerevisiae QLCs (n=144). Most QLCs contain relatively few histidine, but a small fraction contain five or more.

Figure 1 – figure supplement 3: Histidines are enriched in glutamine-rich low-complexity sequences. Amino-acid frequencies within glutamine-rich low-complexity sequences (QLCs) in S. cerevisiae (yeast), Dictyostelium discoides, Drosophila melanogaster, and humans. A) Enrichment of each amino acid in QLCs compared to global amino-acid frequencies in each proteome. B) Enrichment of each amino acid in QLCs compared to amino-acid frequencies in all low-complexity sequences identified using Wooton-Fedherhen complexity (see methods).

Figure 1 – figure supplement 4: The SNF5 N-terminal glutamine-rich low complexity domain (with embedded histidines) is broadly conserved across Ascomycota. A) Analysis of SNF5 N-terminal region showing conservation (black), disorder (red), glutamine positions (green) histidine positions (blue) histidines that are mutated (orange) and the QLC (shaded green area). Four histidine residues are highlighted which, when mutated to alanine, lead to a phenotypic change. Intriguingly, these four histidines are located in highly disordered and
poorly-conserved subregions of the SNF5 N-terminal region. **B)** The same analysis for 19 ascomycetes. **C)** Phylogeny of ascomycetes analyzed above, with the total number of QLCs identified in each proteome shown to the right.

Figure 1 – figure supplement 5: The SNF5 N-terminal glutamine-rich low complexity domain was probably gained in the fungal lineage. Broad orthologs of SNF5 were determined using the more conserved C-terminal domain. These orthologs were analyzed, and if QLCs were detected, the number of residues within was plotted in the bar-graph to the right. The Ascomycota and Basidiomycota both have QLCs, possibly indicating gain of the domain in this lineage. There is no evidence of SNF5 QLCs in the Metazoa (animals) or in the closest outgroup to the Metazoa (Choanoflagellates, i.e. Monosiga brevicollis). The slime mold amoeba Dictyostelium discoideum has a SNF5 QLC, but this organism is extremely rich in glutamine repeats, and it is not clear that this QLC has the same origin as the fungal clade.

Figure 1 – figure supplement 6: The SNF5 QLC is important for recovery from carbon starvation. Growth rate was assessed in a plate reader in various conditions. **A)** Comparison of growth rate of WT, ΔQsnf5, HtoAsnf5, and snf5Δ strains in synthetic complete media with glucose. **B)** Cells were grown to log phase, carbon starved for 24 h and then grown in. 2% glucose. **C-D)** Cells were immediately switched from glucose to poor carbon sources. **E-F)** Cells were subjected to acute starvation for 24 h and then switched to poor carbon sources.

Figure 1 – figure supplement 7: Mutation of the SNF5 QLC does not lead to protein degradation or loss of SWI/SNF complex integrity. **A)** The entire SWI/SNF complex copurifies with SNF2 in all strains and conditions. The endogenous SNF2 gene was TAP-tagged at the C-terminus, and used to immunoprecipitate the SWI/SNF complex from WT, ΔQsnf5, or HtoAsnf5 strains either exponentially growing in glucose, or after 4 h acute carbon starvation in media titrated to pH 5 or 7.4 (indicated at bottom). A silver stain of an SDS-PAGE analysis is shown. **B)** Neither SNF5 nor its mutant alleles are degraded upon glucose-starvation. Western blots of the TAP-tagged SNF5 alleles in various conditions (indicated at bottom). TAP-tagged ΔQ-snf5 runs at ~110 KDa, 288 amino acids smaller than WT (~160 KDa). An anti-glucokinase antibody was used as a loading control (Bottom band at ~50 kDa).

Figure 1 – figure supplement 7A – annotated source data file. The entire SWI/SNF complex copurifies with SNF2 in all strains and conditions. The endogenous SNF2 gene was TAP-tagged
at the C-terminus, and used to immunoprecipitate the SWI/SNF complex from WT, ΔQsnf5, or HtoAsnf5 strains either exponentially growing in glucose, or after 4 h acute carbon starvation in media titrated to pH₅ or 7.4 (indicated at bottom). A silver stain of an SDS-PAGE analysis is shown.

Figure 1 – figure supplement 7A – unannotated source data file. Silver stained SDS-PAGE gel with no annotation.

Figure 1 – figure supplement 7B – annotated source data file. *Neither SNF5 nor its mutant alleles are degraded upon glucose-starvation.* Western blots of the TAP-tagged SNF5 alleles in various conditions (indicated at bottom). TAP-tagged ΔQ-snf5 runs at ~110 KDa, 288 amino acids smaller than WT (~160 KDa). An anti-glucokinase antibody was used as a loading control (Bottom band at ~50 kDa). The SNF5-TAP bands are indicated by red boxes.

Figure 1 – figure supplement 7B – unannotated source data file. Western blot with no annotation.

Figure 1 – figure supplement 8: Efficient recruitment of the SWI/SNF complex to the ADH2 promoter depends upon pH, the SNF5 QLC and histidines within. The endogenous SNF2 gene was TAP-tagged at the C-terminus, and used to immunoprecipitate the SWI/SNF complex from WT, ΔQsnf5, or HtoAsnf5 strains. Prior to immunoprecipitation, chromatin and proteins were crosslinked with formaldehyde, enabling co-purification of chromatin associated with the SWI/SNF complex (Chromatin Immunoprecipitation, or ChIP). Quantitative polymerase chain reaction (QPCR) was then performed with primers specific to the ADH2 promoter. The y-axis shows the difference in QPCR signal in strains grown in glucose minus the signal after 4 h of acute carbon starvation. Values greater than one indicate recruitment of SWI/SNF to the ADH2 promoter upon carbon starvation. Experiments were performed in media titrated to pH₅ or 7.4 (indicated on the x-axis). n = 3, standard deviation is shown.

Figure 1 – figure supplement 9: The SNF5 QLC and embedded histidines are required for efficient ADH2 induction upon carbon starvation. A) Schematic of the P_ADH2-mCherry reporter gene: the reporter construct was integrated into the endogenous ADH2 locus resulting in a tandem repeat of the reporter gene followed and an intact ADH2 gene. B) Sequence of the SNF5 N-terminus with the 4/7 histidines that were mutated in the 4HtoASnf5 allele highlighted as
red on yellow, and the additional 2 histidines that were mutated in the \textit{\texttt{6HtoASnf5}} allele highlighted as purple on yellow. \textbf{C)} \textit{P\textsubscript{ADH2}-mCherry} induction during carbon starvation assessed by fluorescence cytometry, normalized to the maximal induction (median mCherry fluorescence at 24 h in \textit{SNF5} WT strains). \textbf{D)} The fraction of the cells that induce \textit{P\textsubscript{ADH2}-mCherry} induction at each time point during carbon starvation (see methods). The \textit{SNF5} alleles compared are: WT, \textit{\Delta Qsnf5}, \textit{4HtoASnf5} (referred to in the rest of the manuscript as simply \textit{HtoASnf5}) and the \textit{\texttt{6HtoASnf5}} strains with an additional 2 histidines (6/7 total) mutated to alanine. There is no significant difference between the \textit{4HtoASnf5} and \textit{6HtoASnf5} strains in these experiments. Mean and standard deviation are shown in each plot.

Figure 2 – figure supplement 1: Examples of calibration curves to measure cytosolic pH using pHluorin. \textbf{A – C)} Representative calibration curves to determine the ratio of fluorescence intensities at 405 And 488 nm in cells adjusted to a known pH by ATP-depletion. And permeabilization in buffers. The fluorescence properties of WT and mutant strains were slightly different; therefore, calibration curves were calculated for each strain: \textbf{A)} WT, \textbf{B)} \textit{\Delta Qsnf5} and \textbf{C)} \textit{HtoASnf5}. \textbf{D)} Shows representative scatterplots of fluorescence intensity obtained by cytometry from the WT strain.

Figure 2 – figure supplement 2: Cells that fail to induce \textit{P\textsubscript{ADH2}-mCherry} had lower fitness relative to the inducing population. 6 hours after acute carbon starvation, we used fluorescence-activated cell sorting (FACS) to separate equal numbers of cells with high (Induced) and low (Uninduced) mCherry fluorescence. \textbf{A} and \textbf{B)} Uninduced cells (dashed lines) have lower growth rates than induced cells (solid lines). Black lines indicate WT strains, orange indicates \textit{\Delta Qsnf5} cells. \textbf{A)} Comparison of growth rates in rich (2% glucose) media. \textbf{B)} Comparison of growth rates in poor (2% galactose) media. \textbf{C)} Uninduced cells have lower resistance to heat stress. Cells were subjected to heat shock for 15 minutes at 42°C followed by 3 min on ice, and then plated for single colonies. The number of colonies relative to unperturbed cells is plotted as % viability. Mean and standard deviation is shown, \(n = 3\); statistical test is the Student’s t-test, ** \(p < 0.01\).

Figure 2 – figure supplement 3: All strains ultimately express some amount of \textit{P\textsubscript{ADH2}-mCherry} reporter. Cytometry data showing \textit{P\textsubscript{ADH2}-mCherry} induction either in glucose (light grey peaks to left) or after 24 h of carbon starvation (dark lines, and color-coded by strain).
Figure 2 – figure supplement 4: snf5Δ strains only had a slight delay in expression of the P_{ADH2}-mCherry reporter. Cytometry data showing P_{ADH2}-mCherry induction (y-axis) and nucleocytoplasmic pH (pH_i), calculated using the ratiometric pHluorin probe (x-axis), in WT (left) and snf5Δ (right) strains. Percentage of cells in each of 4 quadrants is indicated.

Figure 2 – figure supplement 5: Recovery of pH_i requires new protein translation.

A) Cytometry data showing nucleocytoplasmic pH (pH_i), calculated using the ratiometric pHluorin probe. B) Quantification of pH_i data (see methods), orange and grey lines are from induced and uninduced populations respectively. Mean and standard deviation of three biological replicates are plotted. Cells were switched to acute carbon starvation media titrated to the optimal pH_e of 5.5 at time 0, but the right panels show cells additionally exposed to the translational inhibitor cycloheximide. Intracellular pH fails to recover without new protein translation.

Figure 3 – figure supplement 1: Deletion of the N-terminal glutamine rich domain of SNF5 renders cells hypersensitive to starvation at suboptimal extracellular pH. Cells were grown to log phase and then subjected to acute carbon starvation in media titrated to various pH_e values (see legend). After 24 h starvation, cells were plated to determine the number of colony-forming units compared to WT cells starved at pH_e 6.5. Mean and standard deviation of 3 biological replicates are shown. Single and double asterisks represent $p < 0.05$ and $p < 0.01$ respectively from t-tests.

Figure 3 – figure supplement 2: P_{ADH2}-mCherry induction requires an acidic extracellular environment and the SNF5 QLC. Cytometry data showing expression levels of the P_{ADH2}-mCherry reporter from WT, ΔQsnf5, or HtoA snf5 cells either growing in glucose (Glu), or 6 h after acute carbon starvation in media titrated to various pH_e values (these are representative source data for Figure 3A).

Figure 3 – figure supplement 3: Expression of the endogenous ADH2 mRNA requires an acidic extracellular environment and the SNF5 QLC. RT-qPCR data showing ADH2 mRNA levels. The ratio of ADH2 levels in carbon-starved cells to cells growing in glucose is shown. ACT1 was used as an internal control to normalize ADH2 values. WT and ΔQsnf5 strains were carbon starved in media titrated to pH_e of either 6.0 or 7.5. Mean and standard deviation of
three biological replicates are shown. Single and double asterisks represent $p < 0.05$ and $p < 0.01$ respectively from t-tests.

Figure 3 – figure supplement 4: Transient acidification of cells requires an acidic extracellular environment. Flow cytometry for WT, $\Delta Qsnf5$, or $HtoA Snf5$ strains: the x-axis shows nucleocytosoplasmic pH (pH), while the y-axis shows fluorescence from the P_{ADH2}-mCherry reporter. Panels show cells grown in glucose (top) and then (2nd to bottom) after 0 - 8 h of acute glucose-starvation.

Figure 5 – figure supplement 1: QLCs of SWI/SNF cluster around putative transcription factor interaction sites, as do low complexity sequences of human BAF complex. A) Electron microscopy structure of SWI/SNF (grey) bound to a nucleosome (DNA blue, histones green; PDB ID: 7C4J). The position of SNF5 is highlighted in corral. Rough positions of QLCs are depicted in orange, and large low-complexity sequences are shown in cyan. (B) Electron microscopy structure of human BAF complex (grey) bound to a nucleosome (DNA blue, histones green; PDB ID: 6LTJ). The position of ARID1B is highlighted in corral. Rough positions of large low complexity domains are depicted in cyan, two of which contain short QLCs (indicated in orange). In both cases, top views only highlight sequences that are proximal to the DNA exiting the nucleosome (potential transcription-factor binding site). C and D) Schematics showing predicted low complexity sequence (orange), including regions enriched for particular amino acids (grey, or green for QLCs). C shows SWI/SNF subunits and D shows BAF subunits. Orthology between SWI/SNF and BAF subunits is indicated by grey double-headed arrows.

Figure 5 – figure supplement 2: Basal ATPase activity is not affected by pH, and FRET changes require ATP hydrolysis. A) Representative trace of ATPase activity for WT and $\Delta Qsnf5$ mutant SWI/SNF complexes in response to varied environmental pH. WT and mutant complexes do not show significant changes in ATPase activity (as assessed by inorganic phosphate release, see methods). (B) Representative kinetic trace for wildtype type SWI/SNF under recruitment conditions after addition of AMP-PNP (a non-hydrolysable ATP analogue).

Figure 6 – figure supplement 1: A second peptide within the N-terminal QLC of $SNF5$ undergoes conformational expansion upon protonation. A) Schematic of the $SNF5$ gene, with the sequence and location of the simulated peptide indicated. B) Radius of gyration (R_g, y-axis) of all-atom Monte-Carlo simulations of amino acids 195-233 of the $SNF5$ QLC with
histidines either neutral (pH 7.4) or protonated (pH 5.0). Left two datasets are for the native peptide, right two datasets are with 2/3 histidines (H213 and H214) replaced with alanine, mimicking the HtoA SNF5 allele. Points represent the mean R_g from all conformations sampled in each independent simulation (beginning from distinct random initial conformers). Bars represent the mean values of all simulations. P-values are from two-sided independent t-tests.

Supplementary file 1: Sequences of glutamine rich low complexity sequences (QLCs) in the *Saccharomyces cerevisiae* genome.

All *S. cerevisiae* QLCs identified using the parameters optimized in figure 1 – figure supplement 2 are included in this summary table.

Supplementary file 2: Comparison of sequence properties of SNF5 N-terminal IDR

Comparison of the intrinsically disordered regions of SNF5 orthologues from Ascomycete fungi, with the number of glutamines and histidines indicated.

Supplementary file 3: Transcription factors enriched in each gene group from RNA-seq analysis. The YEASTRACT server used to find transcription factors enriched within the promoters of each of four gene sets defined by hierarchical clustering of genes significantly regulated upon carbon starvation (see figure 4E). YEASTRACT search settings were: DNA binding plus expression evidence; TF acting as either activator or inhibitor.

Supplementary file 4: SNF5 subregions examined by all-atom Monte Carlo simulations

Supplementary file 5: Parameters used for all-atom Monte Carlo simulations

Supplementary file 6: Yeast strains used in this study.

Supplementary file 7: Plasmids used in this study.
Figure 1 – Figure Supplement 1. Fractional disorder in each of the core eleven SWI/SNF components. Dashed red lines represent 25% and 50% disorder. Five of the eleven components contain over 25% disorder. Disorder prediction performed using MobiDBLite (see methods).
A
example N-terminal QLC from TAF5 (P38129)

Fraction of Q = 0.40 (over 0.25)

MSKOSTNNGTHQOPFKNORTNAAQGNSGCCQNTRGSNGPSASDLNRIVLEYLNK

largest Q interuption = 11 (under 17)

QLC length = 46 (over 15)

B

Number of QLCs

Largest interuption (residues)

C

Number of QLCs

Largest interuption (residues)

D

Number of QLCs

Number of residues in QLCs

E

QLC count

His count in QLC

F

QLC length

Fraction of QLC made up of glutamine

snf5 (31-314)

QLCs with 5 or more histidine residues
A

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>ΔQsnf5</th>
<th>HtoA Snf5</th>
<th>WT</th>
<th>ΔQsnf5</th>
<th>HtoA Snf5</th>
<th>WT</th>
<th>ΔQsnf5</th>
<th>HtoA Snf5</th>
<th>WT</th>
<th>ΔQsnf5</th>
<th>HtoA Snf5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td></td>
</tr>
<tr>
<td>4 h glucose-starvation pH_e 5</td>
<td></td>
</tr>
<tr>
<td>4 h glucose-starvation pH_e 7.4</td>
<td></td>
</tr>
</tbody>
</table>

* ΔQsnf5p

* IgG heavy and light chains

B

<table>
<thead>
<tr>
<th>Mw std KDa</th>
<th>WT</th>
<th>ΔQsnf5</th>
<th>HtoA Snf5</th>
<th>Δ Qsnf5</th>
<th>HtoA Snf5</th>
<th>Δ Qsnf5</th>
<th>HtoA Snf5</th>
<th>Δ Qsnf5</th>
<th>HtoA Snf5</th>
<th>Δ Qsnf5</th>
<th>HtoA Snf5</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
</tr>
</tbody>
</table>

Western

Glucose

4 h glucose-starvation pH_e 5

4 h glucose-starvation pH_e 7.4

Loading Control
Chromatin Immunoprecipitation of P_{ADH2} using SNF2-TAP

Graph:
- **X-axis:** WT, WT pH$_e$ 7.5, ΔQsnf5, $4^HtoAsnf5$
- **Y-axis:** ChIP signal (Starve - Glu)
- **Data points:**
 - WT: High signal
 - pH$_e$ 7.5: Moderate signal
 - ΔQsnf5: Low signal
 - $4^HtoAsnf5$: Low signal
A

\[P_{ADH2} \rightarrow mCherry \]
\[P_{ADH2} \rightarrow ADH2 \]

ADH2 endogenous locus

B

HIS mutated to ALA in \(4_{HtoA}SNF5 \) allele

HIS mutated to ALA in \(6_{HtoA}SNF5 \) allele

C

- **WT**
- **\(4_{HtoA}snf5 \)**
- **\(6_{HtoA}snf5 \)**
- **\(\Delta Qsnf5 \)**

D

- Fraction max induction (n.u.)
- Fraction cells induced

Graphs

- **C**: Fraction max induction vs. time (h)
- **D**: Fraction cells induced vs. time (h)
Excitation at 405 nm

Excitation at 488 nm

WT

\[y = 0.566x - 1.83 \]

\[R^2 = 0.9855 \]

ΔQsnf5

\[y = 0.582x - 1.939 \]

\[R^2 = 0.991 \]

pH

\[\Delta Q_{snf5} \]

\[y = 0.610x - 2.521 \]

\[R^2 = 0.988 \]
A

2% Glucose

OD(600)

<table>
<thead>
<tr>
<th>t (h)</th>
<th>Viability after Heat Shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>5</td>
<td>95%</td>
</tr>
<tr>
<td>10</td>
<td>90%</td>
</tr>
<tr>
<td>20</td>
<td>85%</td>
</tr>
<tr>
<td>30</td>
<td>80%</td>
</tr>
</tbody>
</table>

B

2% Galactose

OD(600)

<table>
<thead>
<tr>
<th>t (h)</th>
<th>Viability after Heat Shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>5</td>
<td>95%</td>
</tr>
<tr>
<td>10</td>
<td>90%</td>
</tr>
<tr>
<td>20</td>
<td>85%</td>
</tr>
<tr>
<td>30</td>
<td>80%</td>
</tr>
</tbody>
</table>

C

Viability after Heat Shock

- **Induced**
 - % Viability: 100%
 - Error: ±5%

- **Uninduced**
 - % Viability: 0%
 - Error: ±3%
WT

ΔQsnf5

H_{toA}^{snf5}

Glucose 24 h starvation

PADH2-mCherry fluorescence (A.U.)

$P_{ADH2^{-}}m$Cherry fluorescence (A.U.)
A

Mutated to Ala

195 QQQQQLRNLQiQQQQQQQFRHHVQIQQQQQKQQQQQQQHQQ 233

SNF5

- **QLC**

B

- **p > 0.5**
- **p > 0.002**
- **p < 0.00001**

B

- **pH 7.4**
- **pH 5.0**

Snf5

- **Snf5**
- **Snf5**

(H213A, H214A)