Adult mouse fibroblasts retain organ-specific transcriptomic identity

Elvira Forte¹§, Mirana Ramialison²³⁴§, Hieu T. Nim²³⁴§, Madison Mara¹, Jacky Y. Li⁴, Rachel Cohn⁵, Sandra L. Daigle¹, Sarah Boyd⁶, Edouard G. Stanley⁴⁷⁸, Andrew Elefante⁴⁷⁸, J. Travis Hinson⁵⁹, Mauro W. Costa¹², Nadia A. Rosenthal¹²¹⁰,£ and Milena B. Furtado¹²,£*

¹ The Jackson Laboratory, Bar Harbor, ME 04609, USA
² The Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
³ Systems Biology Institute Australia, Clayton, VIC 3800, Australia
⁴ Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, VIC 3052, Australia
⁵ The Jackson Laboratory, Farmington, CT 06032, USA
⁶ Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
⁷ Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia
⁸ Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
⁹ Cardiology Center, UConn Health, Farmington, CT 06032, USA
¹⁰ National Heart and Lung Institute, Imperial College London, London SW72BX, UK
*Current address: Merck Research Laboratories, South San Francisco, CA 94080, USA

§,£ These authors contributed equally to this work

Corresponding authors:
Milena Furtado - milena.furtado@merck.com
Elvira Forte – elvira.forte@jax.org
Abstract
Organ fibroblasts are essential components of homeostatic and diseased tissues. They participate in sculpting the extracellular matrix, sensing the microenvironment and communicating with other resident cells. Recent studies have revealed transcriptomic heterogeneity among fibroblasts within and between organs. To dissect the basis of inter-organ heterogeneity, we compare the gene expression of murine fibroblasts from different tissues (tail, skin, lung, liver, heart, kidney, gonads) and show that they display distinct positional and organ-specific transcriptome signatures that reflect their embryonic origins. We demonstrate that expression of genes typically attributed to the surrounding parenchyma by fibroblasts is established in embryonic development and largely maintained in culture, bioengineered tissues and ectopic transplants. Targeted knockdown of key organ-specific transcription factors affects fibroblast functions, in particular genes involved in the modulation of fibrosis and inflammation. In conclusion, our data reveal that adult fibroblasts maintain an embryonic gene expression signature inherited from their organ of origin, thereby increasing our understanding of adult fibroblast heterogeneity. The knowledge of this tissue-specific gene signature may assist in targeting fibrotic diseases in a more precise, organ-specific manner.
Introduction

Fibroproliferative disorders are the main cause of mortality and morbidity in developed countries, accounting for about 45% of deaths in the United States [1]. Despite the impactful prevalence of chronic organ fibrosis, current anti-fibrotic drugs are both inefficient and non-specific to this condition [2, 3]. Fibroblasts, main players in fibrosis, have gained increased attention for their capacity to perform functions far beyond their canonical secretion of extracellular biological scaffolding and formation of scar tissue after injury. Recent literature poses the organ fibroblast as a major regulatory hub that senses local microenvironment imbalances and controls tissue remodeling [4] upon activation and phenotypic differentiation into the pro-fibrotic myofibroblast [5]. They are also involved in immunomodulation [6], by producing and responding to cytokines that activate immune cells of the innate and adaptive immune systems [7, 8], through organ-specific regulatory networks [9].

Organ fibroblasts have been historically difficult to identify and study in vivo, due to their vague functional definition and lack of adequate markers that label organ fibroblast pools completely and specifically [10]. Recent advances in lineage tracing and multiomics single-cell analyses have revealed a significant heterogeneity of fibroblasts within and among tissues, and we are just beginning to understand how fibroblast heterogeneity correlates with distinct functions [3, 11-14]. Despite being morphologically similar, spindle-shaped mesenchymal cells located in stromal tissues, fibroblasts acquire specialized functions related to their anatomical position [9, 15, 16]. They appear to retain a positional memory of the embryonic developmental axis: anterior-posterior, proximal-distal and dermal non-dermal, possibly reflecting their role in conveying positional identity in embryogenesis [17-20]. The retention of positional molecular information through to adulthood suggests organ fibroblasts respond to molecular cues that drive body compartmentalization. Fibroblast heterogeneity within an organ tends to arise from the distinct embryological origin and/or anatomical localization [12, 14, 21, 22], while inter-organ differences have been mostly ascribed to the matrisome, as shown by the transcriptomic comparison among fibroblasts from muscular tissues [21].

Having previously reported that fibroblasts isolated from the adult mouse heart retain a cardiogenic transcriptional program [23], we show here that fibroblasts isolated from
different adult organs similarly retain the expression of transcription factors and other
gene sets involved in the determination of organ formation and patterning during
embryonic development. This signature is captured in nascent embryonic organ
fibroblasts and retained in adult fibroblasts under culture in isolation or in co-culture with
parenchymal cells from different organs. Further ectopic transplantation of fibroblasts
into a different organ in vivo demonstrates the strength of the organ molecular signature
despite new microenvironmental challenges. The robustness of the fibroblast organ
transcriptome signature shown here supports its importance for organ interaction,
connectivity and function. In addition, knock-down of selected organ development
transcription factors in cardiac fibroblasts de-regulated the expression of genes involved
in inflammation, fibrosis and ECM deposition, further supporting the relevance of these
genes in fibroblasts function. In summary, our study uncovers stable expression of organ-
specific, development-related signature genes in adult fibroblasts, thus offering new
prospects for possible anti-fibrotic therapies.

Results

Cell homeostasis and extracellular matrix components comprise a generic fibroblast gene
signature
To compare the gene signature of fibroblasts from different organs and eliminate
potential RNA contaminants from other organ cell types, dissociated adult murine tissues
were cultured for five days, followed by sorting for CD45- CD31- CD90+ fibroblasts
[23] (Figure 1-Figure Supplement 1a). High-throughput gene expression profiling
identified 1281 highly expressed genes common to all fibroblast types, comprising the
generic fibroblast signature (Figure 1-Source Data 1).
Through Ingenuity Pathway Analysis (IPA, Qiagen), we classified the commonly
expressed genes based on cellular function (Figure 1-Figure Supplement 1b), and
cellular localization (Figure 1-Figure Supplement 1c). Top functions included
mechanisms of cell maintenance, such as proliferation, cytoskeletal arrangement and cell
movement, as well as general metabolic processes, including carbohydrate, nucleic acid
protein and small molecule biochemistry. Common fibroblast identifier genes were
encountered within various IPA process classification groups. As an example, the cell
surface receptor CD90 (Thy1 gene) belongs with cellular assembly and organization, growth and proliferation and protein synthesis, while the myofibroblast marker smooth muscle actin (Acta2 gene) was found in functions of cellular movement. The presence of CD90 and absence of CD31 (Pecam1 gene)/CD45 (Ptprc gene) in all organ groups validated our positive/negative selection strategy for cell isolation, indicating a generally consistent population of cells in all organs. Extracellular matrix (ECM) elements, including collagens, were included in several functional annotations, such as to cell morphology, assembly and organization, cellular compromise, function and maintenance or cell signaling.

Organ fibroblasts retain Hox codes
The Hox code defines body segmental identity and is highly conserved from flies to mammals. Hox genes show colinear expression and undergo chronological activation in the embryo, where upstream genes successively activate downstream genes in an antero-posterior fashion, such that upstream genes are activated first in more anterior segments of the body. In mammals, the Hox cluster has undergone a series of duplications and deletions that led to the formation of four paralogous clusters a, b, c and d (Figure 1a).

Site-specific HOX expression has been previously reported in human skin fibroblasts [17, 18, 20] and mouse mesenchymal cells isolated from different organs [19], and it has been shown to be cell-autonomous and epigenetically maintained, suggesting a source of positional memory to differentially pattern tissue-specific homeostasis and regeneration. To determine if fibroblasts isolated from other adult mouse organs retain a distinct Hox signature, we plotted the average raw expression of all Hox genes per each fibroblast type (Figure 1b and Figure 1-Supplement 2, Figure 1-Source Data 2). Among profiled organs, five patterns of Hox expression were identified: lung and liver showed expression of anterior Hox genes, in particular genes from the clusters 1 to 7, although liver had lower Hox4-7 expression when compared with lung. A second group including skin and gonad displayed high Hox6 expression, with skin from thoracic and abdominal ventral skin areas also expressing high Hox9 gene levels. The third classification group was represented by the heart, characterized by low Hox gene expression. This may reflect embryonic developmental processes, as Hox genes are known to exert minimal influence
on heart formation, and are generally not expressed in the heart, except for the residual expression carried over by neural crest cells that invade the arterial pole of the heart and promote aorticopulmonary septation [24]. The great vessels were excluded from our sample collection, and therefore cells of neural crest origin were likely not captured in the analyses. The fourth classification group was represented by the kidney, which expressed intermediate to high levels of most anterior Hox genes up to Hox11, consistent with previous observations for the developing kidney [25]. The fifth category, represented by the mouse tail, had a posterior Hox code signature, represented by Hox13, which correlates with previous findings for human distal segment fibroblasts, represented by feet skin fibroblasts [17, 18]. Taken together with previous observations, these analyses confirm that adult organ fibroblasts retain positional Hox gene expression signatures, generally reflecting the embryological segmental identity of organ fibroblasts.

Organ fibroblasts show unique molecular signatures

To highlight the unique transcriptomic signatures of these positionally distinct fibroblast pools, we performed a differential expression analysis and considered genes that were enriched by 10-fold change or more in single organ fibroblasts relative to tail fibroblasts (Figure 2, Figure 2-Source Data 1). Gene Ontology annotation revealed organ development programs; processes such as epithelial development, hepatoblast differentiation, lung lobe development, kidney development, reproductive process and heart development were found enriched in their respective organ fibroblast pools (Figure 2a). Strikingly, signature embryonic transcription factors, i.e., genes with established involvement in organ development, were enriched in organ-specific subsets, including Tbx20, a crucial transcription factor for heart development previously described in cardiac fibroblasts [23]. Likewise, genes essential for lung morphogenesis (Foxf1) [26], liver development (Hhex) [27], early kidney formation (Pax8) [28] and gonad development (Lhx9) [29] were all specifically enriched in fibroblasts from their respective organs. Expression of signature genes was validated by qPCR (Figure 2b, Figure 2-Figure Supplement 1) and immunocytochemistry (Figure 3, Figure 3-Figure Supplement 1). In general, signature gene expression patterns in embryonic fibroblasts were retained in fibroblasts from adult tissues (Krt4, Krt6a, Serpinb5 and Hp for skin;
Fibroblast organ code

Tbx20 and Col2a1 for heart; Foxf1 for lung; Hhex and Foxa2 for liver, Bmp7 and Pax8 for kidney, Cyp11a1 and Lbx9 for gonad. Significant expression of Hhex and Bmp7 were also found in several organs during embryonic development but were restricted to a single organ in adulthood. As an exception to single organ enrichment, Foxa2 was also substantially upregulated in lung fibroblasts (~20 fold), in addition to liver fibroblasts (~30 fold).

IPA analysis delineated top canonical pathways, diseases, functions and networks associated with selectively enriched genes in each fibroblast population and supported the argument that fibroblasts retain molecular identity of their developmental organ of origin (Figure 2-Figure Supplement 2-7). Among organ-related processes enriched in fibroblast subsets were dermatological diseases and conditions and morphogenesis of the epithelial tissue for skin fibroblasts (Figure 2-Figure Supplement 2), respiratory system development for lung fibroblasts (Figure 2-Figure Supplement 3), liver development for liver fibroblasts (Figure 2-Figure Supplement 4), acute renal failure, metanephr development and kidney formation, and abnormal kidney development, disease and function for kidney fibroblasts (Figure 2-Figure Supplement 5), reproductive system development, function and disease, morphology of genital organs and primary sex determination networks and reproductive system dysfunction for gonad fibroblasts (Figure 2-Figure Supplement 6), cardiovascular disease development and function, cardiac enlargement and disease and cardiac developmental processes for heart fibroblasts (Figure 2-Figure Supplement 7).

To establish the translational relevance of our findings, the presence of 42 genes uniquely enriched in cardiac fibroblasts (log2, 10-fold, FDR <0.01) was determined in left ventricular heart biopsies from healthy (N=5) and chronic ischemic heart failure patients (N=5) (Figure 2-Figure Supplement 7-Source Data 1). Ischemic heart failure was chosen for analysis due to the likelihood of replacement fibrosis as a pathological signature. Out of the 42 murine cardiac fibroblast genes, 28 were present in both control and heart failure samples, including Tbx20, which was unchanged between control and heart failure. FNDC1, FRZB, MFAP4 and OLFML1 were significantly up-regulated in ischemic heart failure; while MFSD2A, PNP and SERPINA3N were down-regulated. Four genes had no human homolog and ten were not found in the human heart transcriptome.
dataset. These findings confirm general commonalities across species and further identify potential candidates of fibrotic cardiovascular disease interest for future investigation.

Organ-enriched gene expression is retained at the single cell level in freshly isolated and cultured fibroblasts. Single-cell RNA seq (scRNAseq) is a powerful tool to determine granularity of gene expression at the population level. To assess how organ signatures are reflected in freshly isolated fibroblasts, we re-analyzed the stromal cell dataset from a publicly available multi-organ single-cell RNA seq (scRNAseq) study (the Mouse Cell Atlas) [30]. Focusing on lung, testis, kidney, liver and neonatal heart cells, we unbiasedly identified 8 populations, including 3 lung and 2 kidney sub-clusters (Figure 4a). Pairwise differential expression analysis supported a previously reported classification of lung fibroblasts populations [31], with two types of matrix fibroblasts - “LungA” (Col14a1, Pi16, Dcn enriched), “LungB” (Col13a1, Cxcl14, Tcf21 enriched)- and a group of myofibroblasts “LungC” (Acta2, Myl9, Tagln positive) (Figure 4-Figure Supplement 1 a-b). For kidney clusters, “KidneyB” showed higher levels of canonical fibroblast markers Dcn, Gsn and Col1a2, while the larger “KidneyA” expressed relatively higher levels of genes involved in response to injury, or in renal carcinoma metastasis and progression (Spp1, Krt8), suggesting that this cluster is composed of tubular cells acquiring a mesenchymal phenotype in vivo [32] (Figure 4-Figure Supplement 1 c-d), as kidney epithelial cells are known to undergo dedifferentiation in vivo and in vitro to repair tubular injuries [33, 34].

Overall, the expression of organ-specific (Figure 4b) and developmental related genes (Figure 4c) previously identified in the bulk cultured cell analysis was preserved, despite the reduced coverage and expected heterogeneity at the single cell level (Figure 4b). Interestingly, when multiple subclusters were present (as in lung and kidney fibroblasts) the expression of the organ-specific genes was enriched in myofibroblasts (Lung C expressed relatively higher levels of Foxf1) or activated fibroblasts (Kidney A, expressed higher levels of Pax8 and Wnt7b) (Figure 4c, Figure 4-Figure Supplement 1, Figure 4- Source Data 1).
Further confirmation of the organ enriched program was obtained with scRNAseq of pooled primary cultures from different origins (kidney, liver, lung, heart, skin, testis, tail) (Figure 4d). Unbiased clustering defined Kidney 1-2, Lung, Heart 1-2, and Tail fibroblasts. Two additional clusters were unclassified based on organ identity, although marked by the expression of Hoxc genes (HoxGenes) and proliferation genes (Prolif+HoxGenes) (Figure 4d-f, Figure 4-Source Data 2). Highly expressed (Figure 4e) and development-related genes (Figure 4f) from original bulk analysis were again confirmed in these organ populations. Both cultured kidney clusters (Kidney 1-2) expressed the epithelial stress response marker (Spp1) and were transcriptionally closer to freshly isolated “KidneyA” (Figure 4-Figure Supplement 2c), possibly representing two stages of tubular cells epithelial-to-mesenchymal transition [35]: Kidney1 had higher expression of myofibroblast genes (Col4a1, Tagln, Myl9, Sparc) and the kidney-fibroblast-enriched gene Pax8; Kidney2 strongly expressed epithelial genes (Krt7, 8, 18, Epcam, Clu) (Figure 4-Figure Supplement 2d-e, Figure 4-Source Data 2). As for the cultured heart fibroblasts, Heart1 displayed myofibroblast genes (Acta2, Tagln, Myl9) and Heart2 had enhanced signature of injury response/acutely activated fibroblasts (Mt1, Ccl2, Clu, Dcn) (Figure 4-Figure Supplement 2a-b, Figure 4-Source Data 2) [22]. Overall, scRNAseq experiments showed that cultured cells present an activated/myofibroblast-like phenotype compared to freshly isolated cells and confirmed the retention of an organ-specific core transcriptome identity on both cultured and freshly isolated cells.

Organ enriched transcriptome is involved in the fibrotic response

To investigate the functional relevance of organ-enriched fibroblast transcriptomes, a CRISPR knock-down approach was used to down-regulate core organ transcription factors, taking the heart as a model (Figure 5). ROSA^{Cas9-GFP} [36] adult cardiac fibroblasts were co-transfected with mCherry mRNA and GFP guide RNAs for determination of transfection and knock-down (KD) efficiency, respectively (Figure 5a). After 72h of transfection, mCherry was observed in roughly 67% of cells (Figure 5b) by flow cytometry, and GFP mRNA expression was downregulated by over 90% when compared with scrambled guides (negative control) (Figure 5c). GFP fluorescence was also dramatically decreased by 72 hours (Figure 5a) [37].
With this confirmation, *Gata4* and *Tbx20*, core transcription factors essential for heart formation in embryonic development [38], were knocked-down in cultured *ROSA*^{Cas9-GFP} cardiac fibroblasts, followed by bulk RNA-seq analysis (*Figure 5d-j*). *Gata4* is expressed by all organ fibroblasts while fibroblast *Tbx20* expression is restricted to the heart. Despite similar KD efficiencies for both targets (~60%; *Figure 5d-e*), *Gata4* KD induced a higher number of dysregulated genes (red dots on volcano plots) compared with *Tbx20* KD. Among genes up-regulated by 10-fold in the original bulk organ analysis (eHF; *Figure 5f-g*), 9 were dysregulated by *Gata4* KD and 5 by *Tbx20* KD. Only 2 of these genes were dysregulated in both conditions, including *Tbx20*, suggesting *Gata4* as a possible upstream regulator of *Tbx20*. A number of genes showed opposite regulation between *Gata4* KD and *Tbx20* KD (*Figure 5h*), confirming the specificity of KD response. These included cytokines and cytokine-receptors (*Il11, Tnfsf18, Ackr4*), genes involved in infection (*Ptgs2, Heyl*), cell adhesion and migration (*Spon2, Mmp10*). Of note, among the genes selectively upregulated in *Gata4* KD, *Il11* is a key mediator of organ fibrosis, possibly downstream of TGFβ [39]. Among genes upregulated in *Tbx20* KD, the downstream effector of Notch signaling *Heyl* is involved in cardiogenesis and is thought to repress *Gata4* expression [40], *Mmp10* is upregulated in patients with end-stage heart failure [41], and it is involved in valve ossification [42]. KEGG pathway analyses (*Figure 5i, Figure 5-Source Data 1*) confirmed the involvement of *Gata4* and *Tbx20* in common but also diverse pathways. The top pathways uniquely up-regulated by *Gata4* KD included Akt signaling, ECM-receptor interaction and renin secretion, implicating *Gata4* in the modulation of cardiac fibroblast growth and function [43-45]. The top pathways up-regulated by *Tbx20* KD involved IL-17 and relaxin signaling, as well as transcription misregulation in cancer. IL17 has been shown to regulate the fibrotic response in pro-inflammatory conditions such as psoriasis and pulmonary/liver fibrosis [46-49], while relaxin has a well-established role in suppressing myofibroblast activation and ECM remodeling [50-52].

In summary, both gene KDs affected matrix components and modulators (*Figure 5j*), as well as cell adhesion, cell-cell communication and cell signaling genes. Markers of the epicardium, the external layer of the heart from which embryonic fibroblasts derive [53], were also modulated, as well as several myocardial genes, found in low levels in cardiac
fibroblasts and downregulated in *Gata4* KD. These results confirm the biological relevance of organ-specific fibroblast gene expression.

Organ fibroblast specificity affects tissue function in co-culture systems

The studies described above confirmed that fibroblasts retain an organ-specific transcriptome from embryonic development to adulthood, and that their identities are largely maintained in cultured cells, suggesting that fibroblast transcriptomes may be important for *in vivo* organ function. To determine whether the source of organ fibroblast affects organ function, 2D and 3D co-cultures of cardiomyocytes (CMs) with adult kidney and cardiac fibroblasts were performed (Figure 6).

For 2D cultures, neonatal ventricular CMs were plated with *Coll1a1-GFP*+ fibroblasts isolated from the adult kidney or heart [54]. Within 24h, co-culture with adult kidney fibroblasts almost completely impaired CM contractility (Figure 6b-c, Video 1), although the number of CMs present in both cultures was not significantly different. Conversely, cardiac fibroblast co-culture resulted in a syncytium of cells beating in synchronism (Video 2) at a relatively lower pace than neonatal CMs alone (Figure 6c), possibly reflecting an effect of adult HF on neonatal CM maturation [55]. In addition, cardiac fibroblasts were well integrated with neonatal CMs, as shown by the percentage of co-localization, while kidney fibroblasts and CMs seemed to repel each other. To confirm these findings, 3D cardiac microtissues we generated, as previously described [56, 57]. A suspension of 85% human induced pluripotent stem cell derived CMs (iCMs) and 15% adult cardiac or kidney fibroblasts was loaded on millitissue devices with pairs of cantilevers to generate force. As expected, cardiac fibroblasts were homogeneously interspersed, while kidney fibroblasts were aggregated to the center or periphery of the organoids (Figure 6d), indicating lack of integration between the two cell types. These results implicate organ-specific fibroblasts in imparting their cognate tissue integrity.

Ectopically transplanted fibroblasts retain core transcriptional identity

To investigate if adult fibroblasts maintain their organ-specific signature when exposed to a different tissue microenvironment *in vivo*, *ROSA*<sup>tm1Gt3<sup> fibroblasts from tail, heart and kidney were absorbed on surgical gel foam and transplanted under the kidney capsule of syngeneic C57BL6/J mice (Figure 7a). Three days post-transplantation, kidneys were
dissected and sorted (**Figure 7b**) to determine transcriptional changes in transplanted fibroblasts. Transplanted heart (HFs), kidney (KFs), tail (TFs) fibroblasts and corresponding *in vitro* cultured controls (HFc, KFc, TFc) were processed for bulk RNA-seq. Multidimensional scaling plot for all samples showed that the three organ fibroblast types retained a distinct identity post-transplant, despite a reduced transcriptomic separation (**Figure 7c**).

To assess eventual changes in organ-specific identity, we compared the expression of sorted and cultured heart and kidney fibroblasts relative to tail fibroblasts, and we analyzed the expression of heart-enriched (eHF) and kidney-enriched (eKF) genes identified from the initial bulk RNA analyses (**Figure 2-Source Data 1, Figure 2-** **Supplement 2-7**). We observed that fibroblasts generally maintained their core identity after transplant. Of the 26 genes enriched in HFc, 21 (80.7%) were similarly modulated in HFs, only 2 were downregulated and 3 were not detected (**Figure 7d**). As expected, eHF gene expression was low or downregulated in KFc compared to TFc and kept a similar expression pattern post-transplant (**Figure 7d**). Of the 47 eKF significantly expressed in KFc, 41 (87.2%) were modulated in the same direction in KFs, one gene was downregulated, and 5 genes were not detected. 26 (55.3%) eKF genes were also found in HFc, 17 mildly upregulated, 9 downregulated. Of these, 14 were similarly regulated in HFs, one gene was not detected and 11 were differentially regulated (7 upregulated, 4 downregulated). An additional 13 eKF genes were detected in HFs, all mildly upregulated except for 1 downregulated, showing an adaptation to the new microenvironment (**Figure 7e**). Gene ontology (GO) analysis of KF or HF enriched genes in culture or post-transplant using *DAVID* (Database for Annotation, Visualization and Integrated Discovery [58]) revealed terms related to organ development, in line with the previous observations (**Figure 7f-g**). The top GO terms for both HFc and HFs were related to cardiac morphogenesis and cardioblast differentiation; the top terms for KFc and KFs were related to mesonephros and metanephros development. In summary, both HFs and KFs maintained their core transcriptomic identity compared to TFs.

Ectopically transplanted fibroblasts adapt to a new microenvironment
To analyze the differential HF, KF, TF responses to the transplantation, gene expression of each post-transplant fibroblast type was compared with its equivalent control kept in culture. Despite the retention of organ identity signatures, numerous genes were modulated in transplanted fibroblasts compared to cultured controls (4082 genes for HFs/HFc, 3555 for KFs/KFc, and 2750 for TFs/TFc) (Figure 7h). These included 4-5 Hox genes per cell type, showing a modulation of the cell-type specific positional code. *Hoxa1* (the highest expressed in HFc) and *Hoxc13* were downregulated in all conditions (Figure 7i). The tail-enriched *Hoxb13* was downregulated in TFs, while *Hoxa5* was increased. *Hoxd3* and *Hoxd8* were upregulated in both HFs and KFs; and *Hoxd10* was downregulated in KFs. Interestingly, *Hoxd8* is important for the maintenance of epithelial phenotype in adult kidney and is expressed in the ureteric bud during development [59], while *Hoxd10* is diffusely expressed in kidney mesenchyme in embryos; both *Hoxd10* and *Hoxd3* regulate *Itga3* expression and have been involved in different types of cancer [60]. The differential regulation of *Hoxd10* and *Hoxd3* may suggest the acquisition of a cortex-like phenotype by transplanted KFs.

KEGG analysis of the genes modulated in response to the transplant showed upregulation of pathways related to fibrosis and damage response (TNF signaling, ECM-receptor interaction, protein digestion and absorption) and downregulation of oxidative phosphorylation, steroid biosynthesis, and p53 signaling among the common regulated genes (Figure 7l, Figure 7-Figure Supplement 1a). Genes uniquely upregulated in KFs/KFc were related to homologous recombination and cell cycle, with pathways including several histone genes (Alcoholism, Systemic lupus erythematosus, Figure 7-Figure Supplement 1a); those selectively upregulated in HFs/HFc were associated with cell migration (axon guidance), vasopressin regulated water absorption and lipid metabolism; and to pro-inflammatory pathways for TFs/TFc (TNF signaling, cytokine-receptor interactions, pathways in cancers) (Figure 7l). Similarly, IPA analysis revealed that the most significantly affected Canonical Pathways were related to fibrosis (Hepatic fibrosis signaling, GP6 Signaling); cell migration (Axonal Guidance Signaling); acute phase response, inflammation and cholesterol biosynthesis (Figure 7-Figure Supplement 1b). Interestingly, Cardiac Hypertrophy Signaling (including pro-fibrotic signals AngII, TGFβ, IGF1), and HIF1α signaling were predicted to be downregulated in
KFs and upregulated in HFs and TFs, possibly inferring a better resilience of KFs to the kidney capsule environment.

Among the top 10 upregulated genes in transplanted fibroblasts, 6 were shared by the ectopically transplanted HFs and TFs, including the serum amyloid A Saa3, secreted during the acute phase of inflammation[22]; two metabolic enzymes, Slc27a2, primarily expressed in kidney and liver involved in lipid biosynthesis and fatty acid degradation, and Pck1 key regulator of gluconeogenesis; the cytochrome gene Cy2j5 involved in vasorelaxation[61]; the kidney abundant protein Kap, androgen-regulated, proximal tubule–specific not expressed at detectable levels in tissue other than the kidney[62], Fut9 a fucosyltransferase with the highest expression in adult pancreas, placenta, kidney (Figure 7m). In summary, while transplanted fibroblasts maintained their core identity, they responded to the kidney microenvironment by expressing a subset of kidney-specific genes, modulating positional code genes and activating common and cell-specific pathways in the attempt to adapt to the new, more hypoxic condition.
Discussion
The ability to target specific organ fibroblasts has long been impaired by the misconception that fibroblasts were functionally and phenotypically homogeneous cells, deputized to synthesizing and organizing the extracellular matrix, an idea possibly fostered by a common embryonic origin in the primary mesenchyme [13]. However, recent advances in lineage tracing and single-cell transcriptomic have revealed an extensive intra- and inter-organ heterogeneity [3, 13]. Multi-organ studies show that B-cells [63], endothelial cells [64], fibroblasts [21, 30] transcriptomes tend to cluster separately based on the organ of origin, suggesting a strong influence of the anatomical location or the local microenvironment on the cell state. A recent study has shown that, despite the likely tissue-specific imprinting, fibroblast subclusters across multiple organs present a common hierarchy with two universal subtypes, with distinct localization within the tissue, (Col15a1+ - parenchymal; Pi16+ - adventitial), which in turn generate other more specialized or activated fibroblasts states [65]. While our study did not prove or disprove this hypothesis, we were not able to unbiasedly classify our cell subtypes based on this principle. However, our data are in agreement with abovementioned studies that identified sub-clusters based on organ of origin.

We previously reported that fibroblasts isolated from the adult mouse heart retain a cardiogenic transcriptional program [23]. Here, we compared primary cultures of fibroblasts isolated from organs of different anatomical positions to expand our previous analysis and assess whether development-related genes contribute to the fibroblast inter-organ functional heterogeneity. The results of this analysis highlight the presence of an organ-enriched positional code, and the expression of core genes that represent the developmental signature of fibroblast organ origin previously thought to be restricted to the parenchymal component. These molecular profiles are established during embryogenesis, consistent with the fact that organ fibroblasts are not generated from a common progenitor pool but arise independently in different body segments and organs during embryonic development and persist to adulthood.

As in our previous study [23], we chose to analyze cultured fibroblasts to reduce the risk of contamination from parenchymal cell mRNA. Fibroblast expression patterns in culture were recapitulated in freshly isolated single cells, mostly enriched in activated or
myofibroblast-like fibroblast subclusters. These gene signatures can predict the tissue of origin of a mixed population of primary cultured cells analyzed at the single-cell level. Using the heart as a model, we show that signature genes contribute to organ fibroblast function, as evidenced by the deregulation of several pro-fibrotic and pro-inflammatory genes with knock-down of core transcription factors $Gata4$ (expressed in all fibroblast types) and $Tbx20$ (cardiac-specific) in cultured adult cardiac fibroblasts. These results place $Gata4$ upstream of $Tbx20$, both of which upregulate distinct pro-fibrotic signals, modulate genes involved in extra-cellular modulation and cell adhesion, and have opposite effects on cytokine-cytokine receptor expression, confirming that the core cardiogenic program in cardiac fibroblasts is involved in regulating their function.

Dermal fibroblasts from different sites of the body have shown different efficiency of reprogramming into induced pluripotent stem cells [66], but not much is known about other fibroblast tissue-specific functions. The co-culture studies presented here further reinforce the importance of fibroblast core transcriptomes for specialized organ function: while interspersion of cardiac fibroblasts within CM cultures facilitated the propagation of the electric pulse forming a syncytium, co-cultured kidney fibroblasts clustered separately and inhibited CM contraction, both in 2D and 3D assays. These findings carry repercussions to in silico organ bioengineering, where combining the correct match of diverse organ cell types may be essential for proper organ formation. Indeed, human induced pluripotent stem cell derived cardiac stromal cells enhance maturation of cardiac microtissues [67]. In addition, the source and type of organ scaffolding, mainly deployed by fibroblasts, is essential for the re-creation of organs in a dish [68].

Previous studies have shown that skin fibroblasts and mesenchymal cells from different organs keep a positional identity [17-19]. For mesenchymal cells, the Hox code was maintained also in culture, although whether this depended on cell-to-cell contact remained to be determined [19]. Here we show that adult fibroblasts, isolated from a variety of organs, preserve the expression of Hox genes in culture, but that tissue-specific Hox genes were downregulated after ectopic transplantation under the kidney capsule, suggesting that cellular environment can induce reprogramming of positional codes. Interestingly, control kidney fibroblasts also presented changes in the Hox code after transplantation, possibly reflecting the adaptation to the space between the capsule and
the cortex, with the decrease of the mesenchyme gene *Hoxd10* and increase of *Hoxd3* important for the maintenance of an epithelial phenotype in adult kidney. All three transplanted fibroblast types (heart, tail, kidney) presented an activated phenotype, involving initiation of the acute phase response, pro-fibrotic signals, and metabolic changes. While transplanted heart and tail fibroblasts showed a clearer activation of pro-inflammatory pathways, genes associated with cell migration, and HIF1α signaling; transplanted kidney fibroblasts appeared more resilient in their native milieu, with the activation of pathways related to proliferation and upregulation of genes indicative of a more epithelial cortex-like phenotype. Both heart and kidney fibroblasts retained a “memory” of their organ of origin, defined by the resilient expression of the core of development-related genes when compared to tail fibroblast control. It remains to be determined if this memory can be erased by a longer residence in the ectopic microenvironment. In light of recent studies on endothelial cells [69, 70], we propose that the expression of organ-specific genes, previously thought to be restricted to parenchymal cells, may form the basis for organ cohesiveness and performance.

In summary, adult fibroblasts maintain a lasting blueprint of the organ in which they reside, reflective of their developmental origin, which likely plays a role in the orchestration of the tissue-specific homeostasis and reparative response. Exploiting the organ-specific properties of fibroblasts may be a valuable strategy for the targeted control of organ fibrosis, an integral feature of organ failure and disease progression affecting a multitude of pathologies.
Methods

Mice

All experiments were performed with young adult (8-12 weeks old) C57BL/6J, Gt(Rosa26)m1(CAG-cas9*::EGFP)Feh/J (RosaCas9-EGFP), Rosa mt/mg (JAX Stock# 007576)[71], Col1a1-GFP[72] male mice and Col1a1-GFP E16.5 embryos. All animal experimentation conformed with local (Jackson Laboratory) and national (NHMRC and NIH) guidelines.

Fibroblast isolation and sorting

Liver, heart, lung, kidney, tail, gonad and ventral skin of adult mice and E16.5 embryos were dissected and finely minced. Fibroblasts were isolated using enzymatic digestion with 0.05% Trypsin/EDTA (Gibco) under agitation at 37°C for 30-40 minutes. Cells were spun and plated in 10 cm² dishes and cultured to semi-confluence in DMEM (ThermoFisher) high glucose supplemented with 10% FBS (ThermoFisher), 1% sodium pyruvate (ThermoFisher), 1% Penicillin-Streptomycin (10,000 U/mL) (ThermoFisher), 1% GlutaMAX Supplement (ThermoFisher) in a 5% CO₂ incubator at 37°C. Passage 0 cells were then trypsinized using TrypLE (ThermoFisher) and further processed for flow cytometry, labeled using CD90-APC (BioLegend), CD45-APC Cy7 (BioLegend), CD31-PECy7 (BD). The CD90+; CD45-; CD31- fraction was collected for mRNA isolation (Figure 1-Figure Supplement1). Adult fibroblasts from RosaCas9-EGFP and Col1a1-GFP were sorted using CD90-APC (BioLegend), CD45-APCCy7 (BioLegend), CD31-PECy7 (BD) after 3 or 5 days respectively.

Microarray Assay

Sorted organ fibroblasts were resuspended in Cell Lysis buffer, further processed for total RNA isolation using the RNAqueous Micro kit (ThermoFisher) and DNase digested on column. Fibroblasts from individual mice were used for each replicate. Triplicates or more were used for each organ. Samples were further processed by the Monash Health Translational Precinct Medical Genomics Facility and ran on Agilent SurePrint G3 mouse gene expression arrays (single color).

Bulk RNA sequencing
Total RNA was isolated from heart tissue using miRNeasy Mini kit (Qiagen); from cultured fibroblasts (CRISPR-experiment) and sorted fibroblasts (kidney capsule experiment), using RNeasy Micro kit (Qiagen) according to manufacturer instruction and including the optional DNase digest step. Sample concentration and quality were assessed using the Nanodrop 2000 spectrophotometer (Thermo Scientific) and the Total RNA Nano or Pico assays (Agilent Technologies).

For human heart samples, libraries were constructed using the KAPA RNA Hyper Prep Kit with RiboErase (HMR) (KAPA Biosystems), according to the manufacturer’s instructions. For cultured fibroblasts (CRISPR-experiment), libraries were constructed using the KAPA mRNA HyperPrep Kit (KAPA Biosystems), selecting polyA containing mRNA using oligo-dT magnetic beads, according to the manufacturer’s instructions. For cells isolated from the kidney capsule, given the low RNA input, libraries were constructed using the SMARTer Stranded Total RNA-Seq Kit v2-Pico (Takara), according to the manufacturer’s protocol.

All the libraries were checked for quality and concentration using the D5000 ScreenTape assay (Agilent Technologies) and quantitative PCR (KAPA Biosystems), according to the manufacturers’ instructions; pooled and sequenced 75 bp paired-ended (human samples) or single-end (cultured and sorted fibroblasts) on the NextSeq 500 (Illumina).

Single cell RNA sequencing

Fibroblasts isolated from the different tissues were FAC-sorted and loaded onto a single channel of the 10X Genomics Chromium single cell platform. Briefly, cells were loaded for capture using the v2 single cell reagent kit. Following capture and lysis, cDNA was synthesized and amplified (14 cycles) as per manufacturer’s protocol (10X Genomics). The amplified cDNA was used to construct an Illumina sequencing library and sequenced on a single lane of a HiSeq 4000.

Bioinformatics Analyses

For microarray experiments, data extraction and pre-processing were performed as described previously [73]. In brief, raw single-channel signals were extracted (Agilent Feature Extraction Software v.11.0.1.1), and quality control was performed using the default “Compromised” option in (GeneSpring GX v.12.6), with threshold raw signal of 1.0. The approximate mean of 24 samples × ~55,000 probes (10,000) was used as a
natural threshold between high-intensity probes and low-intensity probes. If several probes represented a single gene, the mean of these probes was used. Probes that could not be mapped to any gene were discarded. Log-2 transformation and quantile normalization was done using the R package limma v3.48.3. Differential analysis was performed using limma v3.48.3, which fits a linear model to the gene expression data, revealing the differential expression patterns (Benjamini-Hochberg adjusted p-value < 0.05 and fold-change >2). These genes were extracted from the transcriptome to generate a heat-map together with hierarchical clustering dendrograms using MultiExperiment Viewer (MeV) [74]. Differentially expressed genes showing more than 10-fold change in any given organ were retrieved and an interaction file listing in which organs these genes were enriched was constructed. The interaction file was used as input for Cytoscape [75] in order to reconstruct the network of genes shared by two or more organs, or specifically enriched in only one organ. The network layout was constructed using a Spring Embedded layout and MeV. Gene Ontology over-representations for the organ-specific subset of genes was performed using the Cytoscape Bingo plug-in. Ingenuity Pathway Analysis was performed using the IPA software (Qiagen).

For single cell RNA sequencing analyses of freshly isolated fibroblasts, stromal cell data from the Mouse Cell Atlas [30] were kindly provided by Dr. Guoji Guo and Dr. Huiyu Sun. The data were re-analyzed using Seurat v3 [76]. Cells with less than 200 and more than 2500 transcripts were filtered out. Out of the original aggregate, containing 21 samples and 4830 cells, 5 populations of interest were selected for further analysis: "Lung", "Testis", "Kidney", "Liver", "NeonatalHeart", corresponding to 682 cells. Data were natural-log normalized and scaled using the top-2000 most variable features in the raw data. Principal component analysis (PCA) dimensionality reduction was calculated on 50 principal components; the Uniform Manifold Approximation and Projection (UMAP) dimensional reduction was calculated on 24 dimensions; cluster determination was performed using shared nearest neighbor (SNN) at a 0.5 resolution. Cluster marker genes were identified with the FindAllMarkers function, using the default Wilcoxon Rank Sum test, at a threshold of 0.25 and a minimum difference in the fraction of detection (min.diff.pct) of 0.3. Pairwise comparisons were done using the FindMarkers function.
Fibroblast organ code

function, with MAST assay and only testing genes that are detected in 25% of cells in
either of the two populations (min.pct=0.25).

For bulk RNAseq analysis on cultured fibroblasts post-CRISPR-Cas9 knockdown or
kidney capsule implant: Single end, Illumina-sequenced stranded RNA-Seq reads were
filtered and trimmed for quality scores > 30 using a custom python script. The filtered
reads were aligned to Mus musculus GRCm38 using RSEM (v1.2.12) which performed
alignment using Bowtie2 (v2.2.0) (command: rsem-calculate-expression -p 12 --
phred33-quals --seed-length 25 --forward-prob 0 --time --output-genome-bam --
bowtie2). RSEM calculated expected counts and transcript per million (TPM). The
expected counts values from RSEM were used in the edgeR 3.20.9 package to determine
differentially expressed (DE) genes (based on fold-change > 1 and FDR < 0.05) [77].

For single cell RNA sequencing data from cultured fibroblasts, Illumina basecall files
(*.bcl) were converted to FASTQ files using Cell Ranger v1.3, using the command-line
tool bcl2fastq v2.17.1.14. FASTQ files were then aligned to mm10 genome and
transcriptome using the Cell Ranger v1.3 pipeline, which generates a gene vs cell
expression matrix. The data were analyzed using Seurat v3 [76] using the same pipeline
and parameters as described above, unless stated below. Given the high average number
of features, cells with less than 200 and more than 8500 transcripts were filtered out,
obtaining 1121 cells. Data were normalized and scaled as described above. PCA
dimensionality reduction was calculated on 50 principal components; UMAP
dimensional reduction was calculated on 28 dimensions (value chosen based on the
ElbowPlot of the standard deviations of the principal components).

qPCR
cDNA synthesis of RNAs used for the microarray was performed using the Superscript
VILO kit (Invitrogen) following manufacturer’s instructions. PCR reactions were
performed using GoTaq Green master mix (Promega). qPCR reactions were performed
using SYBR green master mix (Roche) and analyzed using the LightCycler 480 (Roche).
At least 2 individual experiments in triplicate were performed. We tested several primers
for endogenous control (Tbp, Gapdh, L13, Ppi, Actab and Hprt) and chose Hprt for
further experiments due to its consistent reproducibility within and among samples
(Figure 1-Figure Supplement 1). Primers are described in Supplementary Table 1. All
PCR reactions were performed in triplicates and repeated at least twice per sample. Standard error of the mean is represented in all graphs. Prism v7.0 was used for the generation of graphs and statistics.

Neonatal mouse cardiomyocyte isolation

The protocol from neonatal cardiomyocyte isolation was adapted from Argentin S. et al [78]. Hearts were collected from litters of 1-3days old pups, cut open and transferred to trypsin (1mg/ml in HBSS with phenol red pH6.4) for overnight digestion at 4°C. The next day, hearts were subjected to 3 x 5min digestions with Collagenase II (1mg/10ml; Worthington) in HBSS with phenol red. The cell suspension was collected in DMEM containing 10% fetal calf serum (FCS) and passed through a 100um cell strainer. After 5min centrifugation at 1000rpm, cells were plated in 10cm dishes. Two rounds of 1-hour pre-plating were done to remove cells highly adherent to plastic such as fibroblasts, before seeding the cell suspension on plates coated with 1:200 fibronectin (ThermoFisher) in 0.1%gelatin (ThermoFisher).

2D Co-cultures

Adult fibroblasts isolated from the heart or kidney of Col1a1-GFP mice were cultured to semi-confluence for 3-5-days, after which they were resuspended and co-cultured with mouse neonatal cardiomyocytes at a 4:1 ratio. After 24h, media was changed to DMEM containing 2% FCS, videos were recorded, and cells were imaged with an Eclipse Ts2 inverted fluorescence microscope (Zeiss) and fixed with 4%PFA for 10min at 4 °C for further staining.

Cardiac Microtissues

Cardiac Microtissues were generated as previously described [56, 57], using polydimethylsiloxane (PDMS) 3D microarrays with 24 microwells containing cantilevers. A suspension of 1.3 million cells, 85% hiPSCs derived Cardiomyocytes (iCM) and 15% cardiac or kidney fibroblasts, was loaded on each device and cells were seeded in each well by centrifugation. 2 millitissue devices with 48 organoids were used per fibroblasts type. The organoids were imaged and fixed 3 days post-production with 4%PFA for 15 min at RT. Only tissues uniformly anchored to the tips of the cantilevers were included in further analysis.

Immunostaining
A solution containing 2% bovine serum albumin (BSA), 2%FCS, 0.1% triton in PBS was used for permeabilization, blocking and dilution. Primary antibodies used in this study are: KRT14 (MA5-11599, ThermoFisher, mouse monoclonal, 1:100), TBX20 (MAB8124, Novus Biologicals, mouse monoclonal, 1:200), FOXA2 (ab108422, Abcam, rabbit monoclonal, 1:300), HHEX (MAB83771, R&D System, rabbit monoclonal, 1:100), FOXD1 (TA322737, OriGene, rabbit polyclonal, 1:50) PAX8 (NBP2-29903, Novus Biological, mouse monoclonal, 1:100), RSPO1 (AF3474, R&D Novus, goat polyclonal, 1:50), TNT (RC-C2, DSHB 1:200). Cells were stained overnight at 4 °C, washed in PBS and incubated 1h with 1:500 secondary antibodies (Alexa Donkey anti Goat Alexa Fluor 568 - A11057, Goat anti Mouse Alexa Fluor 568 - A11031, Goat anti Rabbit Alexa Fluor 555 -A27017; ThermoFisher). Nuclei were counterstained with 0.1µg/ml DAPI (D1306, ThermoFisher).

For the immunostaining of Cardiac Microtissues, blocking and permeabilization were achieved with 0.1% Triton, 1% BSA in PBS (PBS-T-BSA) for 8 hours. The same solution was used to dilute primary antibodies: TNT (RC-C2, DSHB 1:200) or MF20 (DSHB, mouse monoclonal, 1:100). Staining was performed overnight under gentle agitation at 4 °C. After 3 x 5 min washes in PBS-T-BSA, microtissues were stained with secondary antibody and DAPI for 1h at room temperature. After staining, the PDMS devices were pulled out of the 35mm dish used as support and flipped on glass coverslip for confocal imaging.

Imaging

Immunofluorescence images were acquired using either the either the upright fluorescent microscope Axio Imager.Z2 (Zeiss) or the SP8 confocal microscope equipped with a White Light Laser (Leica). For the cardiac microtissues, 3-4 tiles and 20-34 z stacks were imaged per sample. Tiles were combined using the LeicaX confocal software. Z-Stack projections and analysis were performed using Fiji version 1.0 and Imaris 8.4.1.

Cell transfection and CRISPR knock-down

Cardiac fibroblasts from ROSA^{Cas9-EGFP} mice were transfected with guide RNAs using Lipofectamine MessengerMAX (ThermoFisher) according to manufacturer’s instructions. Briefly, 3 days post-isolation, CD45-CD31-CD90+ cells were FACS sorted and re-plated at about 10,000 cells/cm². After 6 days, when reaching 80-90% confluency,
cells were incubated for 5 min with the RNA (1:50) - lipid (1:33) complex in Opti-MEM for
10 min at room temperature. Media was changed after 48 h and cells were collected for
RNA isolation at 72 h. Two guide RNAs, designed and synthesized in-house (JAX
Genetic Engineering Technologies facility), were used for each of the target genes
(Figure 6-Source Data 1). CleanCap® mCherry mRNA (TriLink Biotechnologies), and
guide RNAs for GFP and scrambled guides were used as controls. Guide RNA for the
GFP gene were same as in [37].

Cell transplantation in the kidney capsule
Adult fibroblasts from heart, tail and kidney were isolated from 10-week-old ROSA^{<i>mt/mG</i>}
male mice as described above. After ten days cells were collected, counted and 4-5x10⁵
cells were transferred to individual 1.5 ml Eppendorf tubes (one per each kidney
transplant), resuspended in 15-20 ul of saline solution and kept on ice until surgery.
Remaining cells were re-plated (5x10⁴/well; 6-well plate) for cultured cell controls.
Syngeneic 10-11 weeks old C57BL6/J mice were used as cell recipients. Mice were
anesthetized with 400 mg/kg Tribromoethanol intraperitoneally. In parallel, cell
suspensions were spotted on a petri dish and fragments of sterile absorbable gelatin foam
(about 1 mm long; Surgifoam, Ethicon) were immersed in the drop.
Fur was removed from the left flank of the animal and eye ointment was applied. The
mouse was placed in right lateral recumbency, and a drape positioned over the surgical
site. A 6-9 mm skin incision was made parallel and ventral to the spine and midway
between the last rib and the iliac crest. A similar incision was made in the underlying
abdominal wall. The kidney was externalized by placing forceps under the caudal pole
and gently lifting through the incision, kept moist with warm sterile saline. A small
incision was made in the capsule over the caudal-lateral aspect of the kidney, and a
shallow subcapsular pocket was made with a blunt probe advanced toward the cranial
pole of the kidney. The foam previously soaked in the cell suspension was placed in the
far end of the subcapsular pocket. If needed, additional foam was used to close the
incision site. Absorbable 6.0 Vicryl sutures (Ethicon) were used to close the abdominal
wall, 6.0 Vicryl black sutures (Ethicon) for the skin. 0.1% Bupivacaine was applied
topically on the injection site and 0.05 mg/kg SR buprenorphine (Zoopharm) was injected
subcutaneously.
Data availability: Sequencing data have been deposited in GEO under accession codes GSE98783 for the microarray experiment, and GSE175765 for the bulk RNAseq datasets generated for the CRISPR-experiment, kidney capsule transplant experiment and human cardiac biopsies comparison. Single cell RNA sequencing data of primary cultured fibroblasts have been deposited in SRA with the identifier SRR5590304. The scRNAseq stromal cell dataset from the Mouse Cell Atlas (Figure 6 in [30]) was kindly provided by Dr. Guoji Guo’s lab. Source Data files have been provided for Figures 1, 2, 4, 5. The code used for the manuscript is currently located at https://github.com/Ramialison-Lab-ARMI/MultiFibroblasts.

Acknowledgements: We gratefully acknowledge Dr. Guoji Guo’s lab for providing the scRNAseq stromal cell dataset, and the contribution of Luis E. Lima, Heidi Munger, Philipp Heinrich, and the Genome Technology, Single Cell, Light Microscopy, Flow cytometry, and Computational Sciences Services at The Jackson Laboratory for service provided. This work is supported by grants from the Australian Research Council (ARC) and the National Health and Medical Research Council (NHMRC) to NAR, MWC, MR, and NHMRC/Heart Foundation Fellowship to MR; and by the JAX Director’s Innovation Fund, and the NIH/NIGMS (2 P20 GM104318), the NIH/NIA (5 U01 AG022308-17), and grant from the Leducq Foundation for Cardiovascular Research to NR. The Australian Regenerative Medicine Institute is supported by grants from the State Government of Victoria and the Australian Government. The Jackson Laboratory scientific services are supported by the NIH/NCI (5 P30 CA034196).

Competing financial interests: the authors declare no conflict of interests.

Materials and correspondence: all material requests and correspondence should be directed to the corresponding authors.
References:

Figures

Figure 1

Positional Code of Organ Fibroblasts. (a) Murine Hox cluster code, showing proximally expressed Hox genes in pink and distal ones in purple. (b) Bar plots showing the average raw signal for all expressed *Hox* genes in organ-specific fibroblast samples. Data are mean ± SEM of 3 biological replicates for each fibroblast type from the microarray analysis. Refer to Figure 1-Figure Supplement 1-2, Figure 1-Source Data 1-2.
Figure 2

Embryological Molecular Signature of Organ Fibroblasts. (a) Cytoscape representation of network of genes (dots) singularly expressed in organ fibroblasts (only one grey edge between the gene and the organ) or shared among organs (multiple grey edges linking the gene to several organs). Genes involved in organ development are highlighted. (b-c) Validation of the expression of selected organ-enriched, developmental related genes using qPCR on cultured organ-derived fibroblasts isolated from adult mice (top row) or E16.5 embryos (bottom row). Data are mean ± SEM of the e^DDCt values, on 3 technical replicates of merged biological samples. The housekeeping gene is Hprt and the reference sample is tail fibroblasts. Refer to Figure 2-Figure Supplement 1-7, Figure 2-Source Data 1.
Figure 3

Adult fibroblasts express organ specific transcription factors. Immunocytochemistry for development-related organ-enriched markers (KRT14, TBX20, FOXA2, HHEX, FOXD1, PAX8, RSPO) on adult fibroblasts obtained from different organs of Col1a1-GFP mice and cultured for 5 days: (a) skin fibroblasts stained with a mouse monoclonal anti-KRT14 antibody; (b) heart fibroblasts stained with a mouse monoclonal anti-TBX20 antibody; (c) lung fibroblasts stained with a rabbit monoclonal anti-FOXA2 antibody; (d) liver fibroblasts stained with a rabbit monoclonal anti-HHEX antibody; (e) kidney fibroblasts stained with a rabbit polyclonal anti-FOXD1 antibody; (f) kidney fibroblasts stained with a mouse monoclonal anti-PAX8 antibody; (g) testis fibroblasts stained with a goat polyclonal anti-RSPO1 antibody. As secondary antibodies, goat anti-mouse Alexa Fluor 568 was used for a, b, f; goat anti-rabbit Alexa Fluor 555 for c, d and donkey anti-goat Alexa Fluor 568 for f. Representative images from 3 independent experiments on 3 biological replicates. Scale bar =100um. Refer to Figure 3-Figure Supplement 1.
Figure 4

Analysis of organ specific signatures at the single cell level. (a-c) Re-analysis of the Mouse Cell Atlas stromal cell dataset. (a) UMAP visualization of selected stromal cell populations (682 cells). (b) Heatmap representing the expression of top-organ specific genes, identified from the bulk RNAseq comparison, on individual cells in the scRNAseq dataset. (c) Heatmap showing the average expression per population of organ-development related genes (same as shown in Figure 3). (d-f) scRNAseq analysis of mixed cultured stromal cells of different origins. (d) UMAP visualization of the captured cells. (e) Heatmap representing the expression of top-organ specific genes, identified from the bulk RNAseq comparison, on individual cells. (e) Heatmap showing the average expression per population of organ-development related genes (same as shown in Figure 3). Refer to Figure 4-Figure Supplement 1-2, Figure 4-Source Data 1-2.
Figure 5

In vitro knock-down of core cardiac transcription factors. (a) Images of adult cardiac fibroblasts derived from ROSA^{Cas9-GFP} mice, 24 and 72 hours post-transfection with 2 guide RNAs for GFP and CleanCap® mCherry mRNA. (b) Flow cytometry plot showing the expression on mCherry in 67% of transfected cells (representative image of 3 independent experiments). (c) Relative quantification qPCR of GFP, normalized by Gapdh expression, in cells transfected with scrambled or GFP guide RNAs. (d-e) Volcano plots showing genes differentially expressed in Gata4 (left) and Tbx20 knock-downs (right). Fold change in expression of Gata4 (left) and Tbx20 (bottom) in cells transfected with specific gRNAs versus scramble RNA, quantified through RNA sequencing. (f) Venn diagram showing the overlap among genes affected by Gata4 (Gata4KD) or Tbx20 (Tbx20KD) knock-down and number of genes upregulated by 10-fold or more in heart fibroblasts (eHF) compared to other organs. (g) plot showing changes in expression of eHF genes affected by Gata4 (in blue) or Tbx20 (in red) knock-down. (h) Genes regulated by both Gata4 and Tbx20 in opposing manner. (i) KEGG Pathway analyses. Top panel: 58 genes affected in both Tbx20 and Gata4 knock-down; Middle panel: 594 genes affected by Gata4 knock-down; Bottom panel: 66 genes affected by Tbx20 knock-down. Blue - pathway changed in opposite directions, Red - up-regulated pathways, Green – down-regulated pathways. (j) Hand-picked genes illustrate alterations in processes known to affect the cardiac fibrotic response for Gata4 or Tbx20 knock-down. All data are represented as fold changes over scrambled control (Average ± SEM; d-j) from bulk RNA-seq of 3 biological replicates per condition. Selected significant genes have an FDR<0.05. Refer to Figure 5-Source Data 1.
Figure 6

Adult fibroblasts retain tissue specific function in vitro: impaired neonatal cardiomyocyte beating in presence of kidney derived fibroblasts. (a-b) Immunocytochemistry for TnT on 2D co-culture of neonatal ventricular cardiomyocytes (NCM, TnT+ in red) with either adult cardiac fibroblasts (HF) in (a) or kidney fibroblasts (KF) in (b), isolated from Col1a1-eGFP mice (in green). Nuclei are labelled with DAPI (in blue). The right panel shows colocalization of the two cell types (green+ and red+) in white. (c) quantifications of the percentage of cardiomyocytes per culture condition (top), beating of the 2D cultures expressed in beats per second (bottom left) and percentage of co-localization (bottom right). (d) Confocal Z-stack images reconstructed with Imaris, of cardiac microtissues constituted of 85% hiPSCs derived Cardiomyocytes (iCM) and 15% of either cardiac (HF) or kidney (KF) fibroblasts, stained for TnT (in red, left panels) or MF20 (in red right panels). The adult fibroblasts were isolated from Col1a1-eGFP mice (in green), nuclei stained with DAPI (in red). 48 organoids were generated per each fibroblasts cell type. Scale bar= 50μm. All data in (c) are mean ± SEM on 3 independent experiments, p-values were calculated by two-sample t-test. Refer to videos 1-2.

Figure 7

Fibroblast tissue-specific response to in vivo ectopic transplantation under the kidney capsule. (a) Representative images of a dissected kidney to highlight the area where TdTomato+ cells were transplanted; brightfield image on the left; brightfield overlaid with the fluorescence image acquired in the red channel on the right. (b) Flow cytometry plot showing the gating strategy used to isolate live CD45-;TdTomato+ cells 3 days post-transplantation in the kidney capsule. (c) Multidimensional scaling plot calculated on the top 500 genes post-normalization to visualize the transcriptomic similarity among all samples. (d-h) Comparison of HF and KF gene expression to TF in culture (HFc/TFc, KFc/KFc) and post-transplant in the kidney capsule (HFs/TFs, KFs/KFs). (d) Heatmap showing expression of significantly regulated eHF genes in the 4
conditions. (e) Heatmap showing the expression of eKF genes in the 4 conditions. (f) Dot plot indicating GO terms associated with cardiac development, identified from the DAVID database analysis of HFs or HFc enriched genes. (g) Dot plot indicating the GO terms associated with cardiac development, identified from the DAVID database analysis of KFs or KFc enriched genes. (h-k) Analysis of the differential expression by experimental condition: transplanted cells versus cells in culture HFs/HFc, TFs/TFc, KFs/KFc. (h) Venn diagram showing the significant differentially regulated genes (FDR<0.05) in the three comparison sets. Only genes with a logFC>1 or <-1 were considered. (i) Heatmap of differentially regulated Hox genes. (j) Bar plot of the KEGG pathway analysis on the common regulated genes (light blue - downregulated, dark blue - upregulated), and genes uniquely modulated in KF (dark green - upregulated, light green - downregulated), HF (red - upregulated, brown - downregulated), TF (black - upregulated, grey - downregulated). (k) Heatmaps showing the top 10 upregulated and top 10 downregulated genes for each dataset. In bold are the genes shared in two different sets of comparisons. Data are means of 3 biological replicates per condition. All the heatmaps (d,e,j,k) show the average log fold change. For (d-e) genes were ordered based on the FDR (smaller to larger value) of the comparison in the first column, HFc/TFc and KFc/TFc respectively. Dotplots (f-g) and bar plot (j) data were organized based on the log transformation of the p-values (-log(p-value)). eKF - kidney fibroblast enriched genes, same as shown in Figure 3-Figure Supplement 5, eHF - heart fibroblast enriched genes, same as shown in Figure 3-Figure Supplement 7, KFs - transplanted kidney fibroblasts, HFs - transplanted heart fibroblasts, TFs - transplanted tail fibroblasts, KFc - kidney fibroblasts in culture, HFc - heart fibroblasts in culture, TFc - tail fibroblasts in culture. Refer to Figure 7-Figure Supplement 1.
Isolation of fibroblasts from different organs and IPA analysis of common genes expressed across all organ fibroblasts.

- **a** Representative FACS plot showing the gating strategy used to isolate CD45-CD31-CD90+ fibroblasts from different organs.
- **b-c** IPA analysis of the genes highly expressed by all fibroblast types in the microarray analysis.
 - **b** pie chart of the molecular pathways
 - **c** pie chart of the cellular distribution of common highly expressed genes. The microarray analysis was performed on n=3 biological replicates per fibroblast type. Refer to **Figure 1-Source Data 1**.
Pairwise comparison of Hox code across organ fibroblasts. Heat map plot showing the pairwise square Euclidean distances based on raw signal intensity of organ fibroblasts (n=3). Smaller distance signifies closer transcriptional similarity.
Figure 2-Figure Supplement 1.

Embryological Molecular Signature of Organ Fibroblasts. Additional validation of expression of organ-enriched, developmental related genes using qPCR on adult and embryonic derived fibroblasts. Data are mean ± SEM on 3 technical replicates of merged biological samples.
Figure 2-Figure Supplement 2

Molecular Signature of Skin Fibroblasts. (a) Heatmap highlighting genes differentially expressed over 10-fold solely in skin fibroblasts. (b-f), IPA analysis on genes highly expressed in skin fibroblasts (shown in a). (b) Top 5 canonical pathways listed according to their p-value and estimated percentage of overlap. (c) Top diseases and biological functions. (d) Top networks and associated functions. (e) Representation of a pathway related to skin embryonic development (Morphogenesis of epithelial tissue) with related skin-fibroblasts enriched genes. (f) Graphic representation of the top network (highlighted with a red arrow in d) overlaid with the expression of genes enriched in our dataset (circled in pink) associated with skin disease and function. Red arrows point to all skin/derma related terms.
Molecular Signature of Lung Fibroblasts. (a) Heatmap highlighting genes differentially expressed over 10-fold solely in lung fibroblasts. (b-f), IPA analysis on genes highly expressed in lung fibroblasts (shown in a). (b) Top 5 canonical pathways with p-value and estimated percentage of overlap. c Top diseases and biological functions. (d) Top networks and associated functions. (e) Representation of a development associated pathway (Respiratory system development) with related lung-fibroblasts enriched genes. (f) Graphic representation of the top network (highlighted with a red arrow in d) overlaid with the expression of genes enriched in our dataset (circled in pink) associated with lung development and function.
Figure 2-Figure Supplement 4

Molecular Signature of Liver Fibroblasts. (a) Heatmap highlighting genes differentially expressed over 10-fold solely in liver fibroblasts. (b-f), IPA analysis on genes highly expressed in liver fibroblasts (shown in a). (b) Top 5 canonical pathways with p-value and estimated percentage of overlap. (c) Top diseases and biological functions. (d) Top networks and associated functions. (e) Representation of a development associated pathway (development of liver) with related liver-fibroblasts enriched genes. (f) Graphic representation of the top network (highlighted with a red arrow in d) overlaid with the expression of genes enriched in our dataset (circled in pink), associated with liver abnormal development and function.
Figure 2-Figure Supplement 5

Molecular Signature of Kidney Fibroblasts. (a) Heatmap highlighting the genes differentially expressed over 10-fold solely in kidney fibroblasts. (b-f), IPA analysis on genes highly expressed in kidney fibroblasts (shown in a). (b) Top 5 canonical pathways with p-value and estimated percentage of overlap. (c) Top diseases and biological functions. (d) Top networks and associated functions. (e) Top toxicology list, including different genes associated with kidney injury. (f) Representation of development associated pathways (development of metanephric mesenchyme, metanephros, formation of kidneys) with related kidney-fibroblasts enriched genes. (g) Graphic representation of the top network (highlighted with a red arrow in d) overlaid with the expression of genes enriched in our dataset (circled in pink), associated with kidney disease.
Molecular Signature of Gonad Fibroblasts. (a) Heatmap highlighting genes differentially expressed over 10-fold solely in gonad (testis) fibroblasts. (b-f), IPA analysis on genes highly expressed in gonad fibroblasts (shown in a). (b) Top 5 canonical pathways with p-value and estimated percentage of overlap. (c) Top diseases and biological functions. (d) Top networks and associated functions. (e) Representation of development associated pathways (morphology of genital organs, sex determination, size of genital organs), with related gonad-fibroblasts enriched genes. (f) Graphic representation of the top network (highlighted with a red arrow in d) overlaid with the expression of genes enriched in our dataset (circled in pink), associated with reproductive system development and dysfunction.
Molecular Signature of Cardiac Fibroblasts. (a) Heatmap highlighting the genes differentially expressed over 10-fold solely in cardiac fibroblasts. (b-f), IPA analysis on genes highly expressed in cardiac fibroblasts (shown in a). (b) Top 5 canonical pathways with p-value and estimated percentage of overlap. (c) Top diseases and biological functions. (d) Top networks and associated functions. (e) Representation of development associated pathways (Development of pericardium, hyper-trabeculation, innervation, hypoplastic heart syndrome) with related heart-fibroblasts enriched genes. (f) Graphic representation of the second top network (highlighted with a red arrow in d) overlaid with the expression of genes enriched in our dataset (circled in pink), associated with cardiac diseases and disorders. (g) Heatmap showing the expression of cardiac fibroblasts-enriched genes in human left ventricular biopsies from healthy (N=5) and chronic ischemic heart failure patients (N=5). Refer to Figure 3-Figure Supplement 7-Source Data 1.
Figure 3-Figure Supplement 1

Adult fibroblasts express organ specific transcription factors. Negative controls were obtained by staining with secondary antibodies only on Col1a1-GFP+ fibroblasts cultured for five days. Representative images of the staining with the secondary goat anti-mouse Alexa 568 on skin fibroblasts (a); goat anti-rabbit Alexa 555 on kidney fibroblasts (b); donkey anti goat Alexa 568 on tail fibroblasts (c). Representative images from 3 independent experiments on 3 biological replicates. Scale bar =100um.
Figure 4-Figure Supplement 1

Analysis of the organ specific fibroblasts heterogeneity in freshly isolated cells at single cell level. Data derived from the re-analysis of the ‘Mouse Cell Atlas’ stromal cell dataset. (a) Heatmap showing the top differentially expressed genes in each cell of the sub-cluster Lung A-B-C. Genes were identified by pairwise differential expression (Lung C versus Lung A, LungC versus Lung B and Lung B versus Lung A). (b) Heatmap showing the average expression per sub-population of key-defining gene and the lung-development related genes (Foxf1). (c) Heatmap showing the top differentially expressed genes in KidneyA-B. Genes were identified by pairwise differential expression. (d) Heatmap showing the average expression per sub-population of key defining genes and the kidney-development related genes (Pax8, Wnt7b, Bmp7).
Figure 4-Figure Supplement 2

Analysis of the organ specific fibroblast heterogeneity in cultured cells at single cell level. Data derived from cultured fibroblast scRNAseq data generated in this manuscript. (a) Heatmap showing top differentially expressed genes between Heart 1 and 2, (b) Heatmap showing the average expression per sub-population of key defining genes and the heart-development related genes (Itga4, Col2a1, Tbx20). (c) Heatmap showing the expression of genes identified by pairwise differential expression analysis of freshly isolated kidney fibroblasts for comparison (same as in Figure 4-Figure Supplement 1c), (d) Heatmap showing top differentially expressed genes between Kidney 1 and 2, (e) Heatmap showing the average expression per sub-population of key defining genes and the kidney-development related genes (Pax8, Wnt7b, Bmp7).
Analysis of organ fibroblast specific responses to transplant under the kidney capsule. (a) Table showing genes associated to the top KEGG pathways in Figure 8m, (b) Canonical pathways identified through Ingenuity Pathway Analysis of differentially expressed genes, ordered by significance (-LOG of the B-H corrected p-value) and colored by the activation z-score predicted for the three comparisons HFs/HFc, TFs/TFc, KFs/KFc.

Figure 1-Source data 1. Microarray data: highly expressed genes common to all organ fibroblast populations, classified based on cellular process or cellular localization.

Figure 1-Source data 2. Microarray data: average raw expression and standard errors of Hox code genes across all fibroblast samples from the microarray analysis (n=3).

Figure 2-Source Data 1. Microarray data: expression of genes that were enriched by 10-fold change or more in single organ fibroblasts compared to tail fibroblasts (n=3).

Figure 2-Figure Supplement 7-Source Data 1. Expression of cardiac fibroblast enriched genes in human left ventricular biopsies from healthy and chronic ischemic heart failure patients.

Figure 4-Source Data 1. Analysis of the stromal cell aggregate from the Mouse Cell Atlas: markers genes per each population, and markers identified by pairwise comparison of the 2 kidney and 3 lung populations.
Figure 4-Source Data 2. Analysis of in-house scRNAseq data of merged cultured fibroblasts from different organs: markers genes per each population, and markers identified by pairwise comparison of the 2 kidney and 2 cardiac populations.

Figure 5-Source Data 1. CRISPR-Cas9 experiments: sequence of the guide RNAs; differentially expressed genes between Tbx20KD and Gata4 KD and corresponding controls. KEGG pathways analysis.
Supplementary table 1. Sequence of all the qPCR primers used in the study.

Video 1. Co-culture of adult cardiac fibroblasts with neonatal ventricular cardiomyocytes. 20x magnification.

Video 2. Co-culture of adult kidney fibroblasts with neonatal ventricular cardiomyocytes. 20x magnification.
Figure 3

(a) Skin
(b) Heart
(c) Lung
(d) Liver
(e) Kidney
(f) Kidney
(g) Gonad

 stain: DAPI, Col1a1-GFP, KRT14, TBX20, FOXA2, HHEX, FOXD1, PAX8, RSPO

Scale bar: 100 μm
Figure 1 - Figure Supplement 1

(a) Scatter plots of different tissues (Gonad, Heart, Kidney, Liver, Lung, Skin, Tail) showing the distribution of certain parameters.

(b) Pie chart showing the distribution of functional categories such as Carbohydrate and nucleic acid metabolism, Cell cycle, Cell death and survival, and others.

(c) Circular diagram illustrating the localization of proteins in different cellular compartments: nucleus, cytoplasm, membrane, extracellular.

Legend:
- Carbohydrate and nucleic acid metabolism
- Cell cycle
- Cell death and survival
- Cell morphology
- Cell signaling
- Cell to cell signaling and interaction
- Cellular assembly and organization
- Cellular compromise
- Cellular function and maintenance
- Cellular growth and proliferation
- Cellular movement
- DNA replication, recombination and repair
- Energy production
- Free radical scavenging
- Gene expression
- Molecular transport, protein trafficking
- Post-translational modification
- Protein degradation
- Protein synthesis
- Small molecule biochemistry

Proteins:
- Ezfl, W2f5, Ccnd1/2, Ccn1/2, Hdac1/2
- Col1a1/2, Col3a1, Col4a3, Col5a1
- Acat2, Aldh2, Aldh1a2, Cytochrome C, Flna/c, Hsp70, Hsp90, Gapdh, Mapk1/2, Rock, Ubiquitin, Myh2/4/9, Myl6/9/9b
- Ace2, Arch, Adr1, Agrp1/2, Chrm1, Ddr1, Igflr, Caco1c, Cov1, Tgfbr1/2, Thy1, Itgα3/9, Itgβ3/6
- Cxcl11, Igfl1g/3, Nrg1
Figure 2 Figure Supplement 2

Top Canonical Pathways

<table>
<thead>
<tr>
<th>Name</th>
<th>p-value</th>
<th>Overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhibition of Matrix Metalloproteinases</td>
<td>4.77E-05</td>
<td>7.7 %</td>
</tr>
<tr>
<td>LXR/RXR Activation</td>
<td>1.36E-03</td>
<td>2.5 %</td>
</tr>
<tr>
<td>Atherosclerosis Signaling</td>
<td>1.52E-03</td>
<td>2.4 %</td>
</tr>
<tr>
<td>Glucocorticoid Receptor Signaling</td>
<td>3.10E-03</td>
<td>1.2 %</td>
</tr>
<tr>
<td>Acute Phase Response Signaling</td>
<td>4.12E-03</td>
<td>1.7 %</td>
</tr>
</tbody>
</table>

Top Diseases and Bio Functions

<table>
<thead>
<tr>
<th>Diseases and Disorders</th>
<th>p-value range</th>
<th># Molecules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermatological Diseases and Conditions</td>
<td>3.61E-03 - 4.83E-11</td>
<td>38</td>
</tr>
<tr>
<td>Organismal Injury and Abnormalities</td>
<td>3.61E-03 - 4.83E-11</td>
<td>39</td>
</tr>
<tr>
<td>Connective Tissue Disorders</td>
<td>3.61E-03 - 2.75E-08</td>
<td>21</td>
</tr>
<tr>
<td>Inflammatory Disease</td>
<td>3.61E-03 - 2.75E-08</td>
<td>23</td>
</tr>
<tr>
<td>Inflammatory Response</td>
<td>3.61E-03 - 2.75E-08</td>
<td>25</td>
</tr>
</tbody>
</table>

Molecular and Cellular Functions

<table>
<thead>
<tr>
<th>Name</th>
<th>p-value range</th>
<th># Molecules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellular Movement</td>
<td>3.61E-03 - 1.83E-10</td>
<td>26</td>
</tr>
<tr>
<td>Cellular Growth and Proliferation</td>
<td>3.61E-03 - 1.50E-07</td>
<td>20</td>
</tr>
<tr>
<td>Cell Morphology</td>
<td>3.40E-03 - 1.50E-05</td>
<td>15</td>
</tr>
<tr>
<td>Protein Synthesis</td>
<td>3.61E-03 - 2.81E-05</td>
<td>7</td>
</tr>
<tr>
<td>Cellular Development</td>
<td>3.61E-03 - 4.14E-05</td>
<td>18</td>
</tr>
</tbody>
</table>

Physiological System Development and Function

<table>
<thead>
<tr>
<th>Name</th>
<th>p-value range</th>
<th># Molecules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organismal Survival</td>
<td>3.61E-03 - 2.91E-08</td>
<td>24</td>
</tr>
<tr>
<td>Tissue Development</td>
<td>3.61E-03 - 2.35E-07</td>
<td>27</td>
</tr>
<tr>
<td>Tissue Morphology</td>
<td>3.61E-03 - 4.91E-07</td>
<td>23</td>
</tr>
<tr>
<td>Embryonic Development</td>
<td>3.61E-03 - 1.93E-06</td>
<td>19</td>
</tr>
<tr>
<td>Organismal Development</td>
<td>3.61E-03 - 1.93E-06</td>
<td>25</td>
</tr>
</tbody>
</table>

Top Networks

<table>
<thead>
<tr>
<th>ID</th>
<th>Associated Network Functions</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dermatological Diseases and Conditions, Organismal Injury and Abnormalities, Cellular Movement</td>
<td>47</td>
</tr>
<tr>
<td>2</td>
<td>Digestive System Development and Function, Gastrointestinal Disease, Organ Morphology</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>Cellular Movement, Skeletal and Muscular System Development and Function, Cancer</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>Cell Cycle, Cellular Movement, Cardiovascular System Development and Function</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Post-Translational Modification, Cancer, Hematological Disease</td>
<td>3</td>
</tr>
</tbody>
</table>

Morphogenesis of epithelial tissue 4
Figure 2 - Figure Supplement 3

- **Top Canonical Pathways**
 - Hepatic Fibrosis / Hepatic Steatosis Cell Activation
 - Agranulocyte Adhesion and Diapedesis
 - Actin Cytoskeleton Signaling
 - Neuroinflammation Signaling Pathway
 - Mineralocorticoid Biosynthesis

- **Top Diseases and Bio Functions**
 - **Diseases and Disorders**
 - Inflammatory Disease
 - Neurological Disease
 - Skeletal and Muscular Disorders
 - Cardiovascular Disease
 - Organous Injury and Abnormalities

- **Molecular and Cellular Functions**
 - Cell-To-Cell Signaling and Interaction
 - Small Molecule Biochemistry
 - Molecular Transport
 - Cellular Movement

- **Physiological System Development and Function**
 - Embryonic Development
 - Organismal Development
 - Nervous System Development and Function
 - Organ Development
 - Tissue Development

- **Top Networks**
 - 1. Cell-To-Cell Signaling and Interaction, Drug Metabolism, Small Molecule Biochemistry
 - 2. Cell-To-Cell Signaling and Interaction, Cell Signaling, Drug Metabolism
 - 4. Drug Metabolism, Endocrine System Development and Function, Lipid Metabolism
 - 5. DNA Replication, Recombination, and Repair, Tissue Morphology, Cellular Assembly and Organization

Respiratory system development

© 2000-2020 QIAGEN. All rights reserved.
Figure 2 - Figure Supplement 6

- **Top Canonical Pathways**
 - Name:
 - CPI-17 Signaling Pathway
 - Hepatic Fibrosis / Hepatocellular Carcinoma
 - Phagosome Biogenesis
 - Apoptosis
 - Ubiquitin-10 Biosynthesis
 - p-value:
 - CPI-17 Signaling Pathway: 5.14E-04
 - Hepatic Fibrosis / Hepatocellular Carcinoma: 1.7E-02
 - Phagosome Biogenesis: 3.8E-02
 - Apoptosis: 1.9E-02
 - Ubiquitin-10 Biosynthesis: 2.7E-02
 - Overlap:
 - CPI-17 Signaling Pathway: 0%
 - Hepatic Fibrosis / Hepatocellular Carcinoma: 8
 - Phagosome Biogenesis: 2
 - Apoptosis: 0
 - Ubiquitin-10 Biosynthesis: 0

- **Top Diseases and Bio Functions**
 - **Diseases and Disorders**
 - Name:
 - Developmental Disorder
 - Organ Injury and Abnormalities
 - Reproductive System Disease
 - Endocrine System Disorders
 - Cardiovascular Disease
 - p-value range:
 - Developmental Disorder: 4.4E-02 - 2.4E-07
 - Organ Injury and Abnormalities: 4.4E-02 - 2.4E-07
 - Reproductive System Disease: 3.8E-02 - 2.4E-07
 - Endocrine System Disorders: 3.5E-02 - 1.8E-06
 - Cardiovascular Disease: 2.7E-02 - 1.8E-05
 - # Molecules:
 - Developmental Disorder: 13
 - Organ Injury and Abnormalities: 10
 - Reproductive System Disease: 24
 - Endocrine System Disorders: 27
 - Cardiovascular Disease: 8

 - **Molecular and Cellular Functions**
 - Name:
 - Molecular Transport
 - Small Molecule Biochemistry
 - Lipid Metabolism
 - Cellular Development
 - Cell Cycle
 - p-value range:
 - Molecular Transport: 2.8E-02 - 1.2E-04
 - Small Molecule Biochemistry: 3.9E-02 - 3.6E-04
 - Lipid Metabolism: 3.8E-02 - 6.3E-04
 - Cellular Development: 3.7E-02 - 1.2E-03
 - Cell Cycle: 2.7E-02 - 1.3E-03
 - # Molecules:
 - Molecular Transport: 10
 - Small Molecule Biochemistry: 9
 - Lipid Metabolism: 6
 - Cellular Development: 18
 - Cell Cycle: 2

 - **Physiological System Development and Function**
 - Name:
 - Organ Morphology
 - Reproductive System Development and Function
 - Embryonic Development
 - Organizational Development
 - Skeletal and Muscular System Development and Function
 - p-value range:
 - Organ Morphology: 4.2E-02 - 1.0E-05
 - Reproductive System Development and Function: 3.7E-02 - 1.0E-05
 - Embryonic Development: 4.4E-02 - 1.8E-05
 - Organizational Development: 4.4E-02 - 1.8E-05
 - Skeletal and Muscular System Development and Function: 4.4E-02 - 6.3E-05
 - # Molecules:
 - Organ Morphology: 16
 - Reproductive System Development and Function: 9
 - Embryonic Development: 17
 - Organizational Development: 19
 - Skeletal and Muscular System Development and Function: 9

- **Top Networks**
 - Score: 14

- **Morphology of genital organ, Primary sex determination, Size of genital organ**

© 2000-2020 QIAGEN. All rights reserved.
Table

a.

<table>
<thead>
<tr>
<th>Type</th>
<th>Term</th>
<th>Pvalue</th>
<th>Log(pvalue)</th>
<th>Combined Score</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common_Up</td>
<td>Protein digestion and absorption</td>
<td>5.89E-10</td>
<td>9.23E+00</td>
<td>88.25</td>
<td>COL1A1;COL1SA1;COL14A1;SLC3A1;ATP1A3;ATP1A2;SLC2A1;COL27A1;MME;COL1A1; ATP1B2;COL1A1;COL1A2;SLC2A2;COL1A2;COL5A2;COL1A3;COL5A1;COL1A3;COL6A1; COL6A3;COL6A6;COL6A2;COL6A5</td>
</tr>
<tr>
<td>Common_Up</td>
<td>ECM-receptor interaction</td>
<td>8.24E-08</td>
<td>7.08E+00</td>
<td>61.69</td>
<td>VWF;LAMA1;ITGB3;ITGAV;ITGA4;ITGA4;THBS3;COL1A1;COL1A2;TNF;COL4A4;COL4A2;COL4 A3;COL6A1;COL1A4;SPPI;ITGB8;COL6A3;ITGB6;COL6A5;CD47;AGRN</td>
</tr>
<tr>
<td>Common_Up</td>
<td>TNF signaling pathway</td>
<td>8.32E-07</td>
<td>6.08E+00</td>
<td>43.75</td>
<td>JUN;MMP3;TNFAP3;OCX1;TRA1;FOS1;FOS2;OCX2;MMP5;ICAM1;NFKB1;SOCS3;SOCS10;M MP14;IL1B;IRF1;BC13;CCL2;MAP3K8;JUNB;BIRC2;MAP3K3;MAPK26;BIRC3</td>
</tr>
<tr>
<td>Common_Down</td>
<td>Oxidative phosphorylation</td>
<td>8.44E-07</td>
<td>6.07E+00</td>
<td>51.84</td>
<td>COX8A;ATP6V0B;NDUFAF7;NDUFA11;NDUFAA1;NDUFA3;NDUFA2;UQCRN1;ATP5H;UQCR 10;COX6A1;UQCRQ;ATP6V0H;ATP6V0D2;ATP6V0E2;ATP6V0C1;ATP6V0F;ATP6V0D3;AT 6V0E</td>
</tr>
<tr>
<td>Common_Down</td>
<td>Steroid biosynthesis</td>
<td>3.93E-06</td>
<td>3.41E+00</td>
<td>119.90</td>
<td>SCD1;NSD1;SC5D;HS117BP1;SS3;TM7SF2;FDFT1</td>
</tr>
<tr>
<td>Common_Down</td>
<td>p53 signaling pathway</td>
<td>1.45E-05</td>
<td>4.839231097</td>
<td>49.24</td>
<td>CCND2;RRM2;CD1;SIPR1;NEC1;CDG1;MDM2;PMAIP1;BAX;THBS1;PPRM;GADD45G; 4Q2L1L</td>
</tr>
</tbody>
</table>

KF Only Up

<table>
<thead>
<tr>
<th>Term</th>
<th>Pvalue</th>
<th>Log(pvalue)</th>
<th>Combined Score</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemic lupus erythematosus</td>
<td>3.20E-16</td>
<td>1.55E+01</td>
<td>238.79</td>
<td>HIST1H2BN;HIST2H2A2;HIST3H2BL1;HIST1H2BL1;HIST2H2AC;HIST1H2AE;HIST1H2G; HIST2H2CC;HIST1H2AF;HIST3H2BI;HIST1H2BI;HIST2H2CE;HIST1H2AC;HIST1H2E; HIST1H2AC;HIST2H2D;HIST2H2D;HIST1H4A;HIST1H4B;HIST2H2F;HIST2H2F;HIST1H2B; HIST1H2B;HIST1H2C;HIST1H2C;HIST1H2D;HIST1H2D;HIST1H4F</td>
</tr>
</tbody>
</table>

KF Only Down

<table>
<thead>
<tr>
<th>Term</th>
<th>Pvalue</th>
<th>Log(pvalue)</th>
<th>Combined Score</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteoglycans in cancer</td>
<td>1.26E-05</td>
<td>4.900652578</td>
<td>38.26</td>
<td>CDKN1A;ITG8;PRKCBI;FZD4;SDC2;FZD7;TWIST2;HSPB2;FZD8;FZD10;Hoxo11;Hoxo10; MAS5;RAS5;TIMP3;HC11S;FA5;ITPM6</td>
</tr>
</tbody>
</table>

HF Only Down

<table>
<thead>
<tr>
<th>Term</th>
<th>Pvalue</th>
<th>Log(pvalue)</th>
<th>Combined Score</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Either lipid metabolism</td>
<td>0.01378</td>
<td>1.86303421</td>
<td>12.96</td>
<td>PLA2G16;PLA2G7A;PLA2G4;CHPT1;EPNP;PAPAH1B3</td>
</tr>
</tbody>
</table>

HF Only Up

<table>
<thead>
<tr>
<th>Term</th>
<th>Pvalue</th>
<th>Log(pvalue)</th>
<th>Combined Score</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axon guidance</td>
<td>0.020772</td>
<td>1.682529307</td>
<td>7.13</td>
<td>SEMA5A;EPHB6;SEMA4D;SEMA4B;SEMA4G;NTN1;NTFAC4;NTN3;ENAH;PLXNB1;SLT3; EPHB2;NGE;WNT4</td>
</tr>
</tbody>
</table>

HF Only Up

<table>
<thead>
<tr>
<th>Term</th>
<th>Pvalue</th>
<th>Log(pvalue)</th>
<th>Combined Score</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vasopressin-regulated water reabsorption</td>
<td>0.03401</td>
<td>1.468391813</td>
<td>9.31</td>
<td>CREB3L4;CREB1;ACI4;AKAP2;AKAP3</td>
</tr>
</tbody>
</table>

HF Only Down

<table>
<thead>
<tr>
<th>Term</th>
<th>Pvalue</th>
<th>Log(pvalue)</th>
<th>Combined Score</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteosome</td>
<td>4.71E-06</td>
<td>5.32671858</td>
<td>73.35</td>
<td>PSMD8;PSM28;PSMD6;PSMD7;PSMB5;PSMD13;PSMB3;PSMA2;POMP;PSMD1</td>
</tr>
<tr>
<td>Gap junction</td>
<td>1.31E-05</td>
<td>4.882671073</td>
<td>46.75</td>
<td>ADCY1;TUBB4A1;TUBB4A4;TUBA1C;TUBB6;TUBA1B;TUBB3A;TUBB3;GNA11;MAPK3</td>
</tr>
</tbody>
</table>

TF Only Up

<table>
<thead>
<tr>
<th>Term</th>
<th>Pvalue</th>
<th>Log(pvalue)</th>
<th>Combined Score</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF signaling pathway</td>
<td>0.00118</td>
<td>2.928167959</td>
<td>25.88</td>
<td>MUKL1;TIAL3;TRAF3;CLC2;JIP4;NODD;NFKB1</td>
</tr>
</tbody>
</table>

TF Only Up

<table>
<thead>
<tr>
<th>Term</th>
<th>Pvalue</th>
<th>Log(pvalue)</th>
<th>Combined Score</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathways in cancer</td>
<td>0.001424</td>
<td>2.846432738</td>
<td>15.43</td>
<td>MMP18;IL15RA;FZD5;FNG1;IL1;2BT16;ILAM1;D1L1;2NK1;NFKB1;VEGFA;NFKB2;A R;BMP2;COL4A2;GATA3;COL1A1;TRAF3;CTNMA3;LIL6;RAGL2D5</td>
</tr>
</tbody>
</table>

TF Only Up

<table>
<thead>
<tr>
<th>Term</th>
<th>Pvalue</th>
<th>Log(pvalue)</th>
<th>Combined Score</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytokine-cytokine receptor interaction</td>
<td>0.003971</td>
<td>2.401114178</td>
<td>12.99</td>
<td>ACVR1L1;IL15RA;NGFR;IL15;JFGN1;CLC20;I2R28;GHR;BMP2;CC1;CCL2;CC5;JL6ST</td>
</tr>
</tbody>
</table>

TF Only Down

<table>
<thead>
<tr>
<th>Term</th>
<th>Pvalue</th>
<th>Log(pvalue)</th>
<th>Combined Score</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulation of lipid synthesis in adipocytes</td>
<td>0.007062</td>
<td>2.151101856</td>
<td>26.01</td>
<td>NPY;PRKGR2;PIK3R3;TSHR</td>
</tr>
<tr>
<td>Calcium signaling pathway</td>
<td>0.015051</td>
<td>1.822435247</td>
<td>11.43</td>
<td>SLCA3;RYR2;HTR7;PTGER1;ITPR3;PLD3;PLD4</td>
</tr>
</tbody>
</table>

Figure 7 - Figure Supplement 1

b. Canonical Pathways

Hepatic Fibrosis / Hepatic Steatite Cell Activation

- Hepatic Fibrosis Signaling Pathway
- Hepatic Steatite Cell Activation
- Axonal Guidance Signaling
- Cardiac Hypertrophy Signaling (Enhanced)
- Osteoarthropathy Pathway

Tumor Microenvironment Pathway

- Tumor Microenvironment Pathway

Cardiovascular Hypertrophy Signaling

- Cardiac Hypertrophy Signaling

HIF1α Signaling

- HIF1α Signaling

Acute Phase Response Signaling

- Acute Phase Response Signaling

Regulation Of The Epithelial Mesenchymal Transition By Growth Factors Pathway

- Regulation Of The Epithelial Mesenchymal Transition By Growth Factors Pathway
- Leukocyte Extravasation Signaling
- Granulocyte Adhesion and Diapedesis
- Superpathway of Cholesterol Biosynthesis

- **Z-Score**

 - 2 to +2
 - 0
 - -2 to -2

- **KEGG**

 - **Gene Level**
 - **Pathway Level**

- **Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis**

- **Neuroinflammation Signaling Pathway**

- **Agranulocyte Adhesion and Diapedesis**

- **GP6 Signaling Pathway**

- **Other Pathways**

- **Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis**

- **Neuroinflammation Signaling Pathway**

- **Agranulocyte Adhesion and Diapedesis**

- **GP6 Signaling Pathway**